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Abstract

Rigorously comparing gene expression and chromatin accessibility in the same single cells 

could illuminate the logic of how coupling or decoupling of these mechanisms regulates 

fate commitment. Here, we present MIRA: Probabilistic Multimodal Models for Integrated 

Regulatory Analysis, a comprehensive methodology that systematically contrasts transcription 

and accessibility to infer the regulatory circuitry driving cells along cell state trajectories. MIRA 

leverages topic modeling of cell states and regulatory potential modeling of individual gene loci. 

MIRA thereby represents cell states in an efficient and interpretable latent space, infers high 

fidelity cell state trees, determines key regulators of fate decisions at branch points, and exposes 

the variable influence of local accessibility on transcription at distinct loci. Applied to epidermal 

differentiation and embryonic brain development from two different multimodal platforms, MIRA 

revealed that early developmental genes were tightly regulated by local chromatin landscape 

whereas terminal fate genes were titrated without requiring extensive chromatin remodeling.
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MIRA facilitates accurate inference of cell state trees and regulatory mechanisms driving cell fate 

decisions using single-cell multimodal data profiling gene expression and chromatin accessibility.

Profiling both expression and chromatin accessibility in the same single cells1–5 opens an 

unprecedented opportunity to understand the interaction of transcriptional and epigenetic 

mechanisms driving cells along developmental continuums. While many computational 

methods analyze expression and accessibility separately, several recent algorithms have 

adopted joint analysis where the cells are projected onto a shared latent space based on 

both data modalities, which better captures the biological structure of the data6–11. However, 

the field lacks tools that go beyond visualization and clustering to rigorously contrast 

transcription and accessibility in each single cell to illuminate the complex regulatory 

circuitry driving developmental fate decisions.

Integrated analysis of global transcriptional and accessibility states across developmental 

trajectories would enable discovery of key regulators controlling fate decisions at lineage 

branch points. At the gene level, examining the dynamics of transcription versus chromatin 

accessibility proximal to the gene locus may reveal how these mechanisms interact to 

regulate distinct gene modules. Certain genes may be regulated by cis-regulatory elements 

that are simultaneously activated as they become accessible, whereas others may be 

regulated by elements whose accessibility and activation are decoupled12,13. Determining 

the logic of which genes are regulated by each of these distinct mechanisms may provide 

insight into the patterns of pathways that demand tight spatiotemporal regulation versus 

signal responsivity.

Here, we present MIRA: Probabilistic Multimodal Models for Integrated Regulatory 

Analysis, a comprehensive methodology that systematically contrasts transcription and 

accessibility to determine the regulatory circuitry driving cells along developmental 

continuums. MIRA leverages topic modeling of cell states and regulatory potential (RP) 

modeling of individual gene loci. MIRA thereby represents cell states in an efficient and 

interpretable latent space, infers high fidelity cell state trees, determines key regulators of 

fate decisions at branch points, and exposes the variable influence of local accessibility on 

transcription at distinct loci. We applied MIRA to an epidermal maintenance differentiation3 

and brain developmental system14 assayed by multimodal single cell RNA-sequencing 

(scRNA-seq) and Assay for Transposase-Accessible Chromatin-sequencing (scATAC-seq) 

data from two different platforms (SHARE-seq and 10x Genomics). In each system, MIRA 

constructed a high fidelity developmental trajectory and determined the regulatory factors 

driving key fate decisions at trajectory branch points. Furthermore, MIRA distinguished 

early developmental genes that were tightly spatiotemporally regulated by local chromatin 

landscape from terminal fate genes that were permitted to remain accessible while titrated by 

factors with minimal impact on local chromatin, revealing how variable regulatory circuitry 

coordinates fate commitment and terminal identity.
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Results

MIRA leverages topic modeling and RP modeling to reveal the circuitry regulating 
developmental trajectories

MIRA leverages topic modeling and RP modeling of expression and chromatin accessibility 

in single cells to determine the regulatory mechanisms driving key fate decisions within 

cell state trajectories (Fig. 1a–b, Methods). Probabilistic topic modeling has been employed 

in natural language understanding to elucidate the abstract topics that shape the meaning 

of a given collection of text15. Recently, topic modeling has been applied to scRNA-seq 

and scATAC-seq separately to describe either transcriptional or epigenetic cell states16,17 as 

“thematic” groups of co-regulated genes or cis-regulatory elements, respectively.

MIRA’s topic model uses a variational autoencoder18 approach, intersecting deep learning 

with probabilistic graphical models, to learn expression and accessibility topics defining 

each cell’s identity (Extended Data Fig. 1a). MIRA accounts for the distinct statistical 

properties of each modality by using different generative distributions for overdispersed 

scRNA-seq counts and sparse scATAC-seq data. A sparsity constraint over cells’ topic 

compositions is employed to ensure cells’ topics are coherent and interpretable19. 

MIRA’s hyperparameter tuning scheme finds the appropriate number of topics needed to 

comprehensively yet non-redundantly describe each dataset.

MIRA next combines the expression and accessibility topics into a joint representation 

used to calculate a k-nearest neighbors (KNN) graph. The KNN graph is then leveraged 

to construct a cell state tree using a new method we developed to define the branch 

points between trajectories where the probabilities of differentiating into one terminal 

state diverges from another (Extended Data Fig. 1b–c). A benchmarking comparison of 

MIRA’s cell state tree construction demonstrated consistently better performance than 

standard alternatives (Fig. 1c–d, Extended Data Fig. 2–4, Supplementary Fig. 1). MIRA 

then contrasts the emergence of expression and accessibility topics mapped on this cell state 

tree to elucidate the key regulators driving fate decisions at the inferred branch points.

Next, MIRA leverages RP modeling20,21 to integrate transcription and accessibility at the 

resolution of individual gene loci to determine how regulatory elements surrounding each 

gene influence its expression (Fig. 1b). While correlation between chromatin accessibility 

and expression is confounded by coordinated genome-wide changes ascribed to cell state, 

genomic proximity suggests a mechanistic regulatory relationship between cis-regulatory 

elements and transcription. Thus, the perceived influence of cis-regulatory elements is 

modeled to decay exponentially with genomic distance upstream or downstream of a 

transcriptional start site (TSS) at independent rates learned by MIRA from the multimodal 

data. Each gene’s RP is scored as the sum of the contribution of individual regulatory 

elements. MIRA predicts key regulators at each locus by examining transcription factor 

motif enrichment or occupancy (if provided chromatin immunoprecipitation-sequencing 

(ChIP-seq) data) within elements predicted to highly influence transcription at that locus by 

probabilistic in silico deletion (pISD).
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Furthermore, MIRA quantifies the regulatory influence of local chromatin accessibility 

on gene expression by comparing the local RP model with a second, expanded model 

augmented with knowledge of genome-wide accessibility states encoded by MIRA’s 

accessibility topics. Genes whose transcription is sufficiently predicted by the RP model 

based on local accessibility alone (±600 kilobases from the TSS) are defined as local 

chromatin accessibility-influenced transcriptional expression (LITE) genes. Genes whose 

expression is significantly better described by the model with genome-wide scope are 

defined as non-local chromatin accessibility-influenced transcriptional expression (NITE) 

genes.

While LITE genes appear tightly regulated by local chromatin accessibility, the transcription 

of NITE genes appears to be titrated without requiring extensive local chromatin 

remodeling. MIRA defines the extent to which the LITE model over- or under-estimates 

expression in each cell as “chromatin differential”, highlighting cells where transcription 

is decoupled from shifts in local chromatin accessibility. MIRA examines chromatin 

differential across cell state continuums to reveal how variable circuitry regulates fate 

commitment and terminal identity.

MIRA topic modeling determined regulators driving key fate decisions in hair follicle 
differentiation

Applied to hair follicle maintenance differentiation assayed by SHARE-seq3, MIRA’s joint 

topic representation constructed a state space map whose latent structure mimicked the 

follicle’s true spatial layout22,23 (Fig. 2a, Extended Data Fig. 5). MIRA’s inferred cell state 

tree reconstructed the ancestral hierarchy of follicular lineages, with outer root sheath cells 

leading to early matrix progenitors, which subsequently branched into descendant inner root 

sheath (IRS) followed by medulla and cortex lineages (Fig. 2b). Accurate lineage trees are 

a crucial prerequisite to determining the factors directing cell fate decisions at trajectory 

branch points.

MIRA contrasts the flow of expression and accessibility topics across the inferred cell 

state tree using stream graphs24 to expose the regulatory modules driving cell fates along 

distinct paths (Fig. 2c; Extended Data Fig. 6a–b, Supplementary Table 1–2). Stream 

graphs enable high-dimensional, multimodal comparisons along continuums. Expression 

topic e2 captured the transcriptional state governing progenitor matrix cells, including cell 

proliferation25 and Eda and Shh signaling22,26 (Fig. 2d). Thereafter, expression topic e6 

described cortex specification corresponding with activation of Notch-associated factors27. 

Conversely, expression topic e4 characterized medulla specification, containing Bmp/Tgf-β-

associated factors22 aligned with enrichment of Smad5/Smad2/3 motifs in medulla-specific 

accessibility topic a5 (Fig. 2e, Extended Data Fig. 6c). Comparison with cortex-specific 

accessibility topic a6 showed both lineages were enriched for motifs bound by canonical 

hair shaft regulators Lef1 and Hoxc22, with expression implicating the influence of Hoxc13 

(Extended Data Fig. 7a).

Contrasting modalities, Wnt-driven accessibility topic a4 described a transitory accessibility 

state at the branch point between the medulla and cortex lineages without a corresponding 

expression topic (Fig. 2c, Extended Data Fig. 7b–c). Cell-level chromatin remodeling in 
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progenitor matrix cells thus preceded transcriptional alterations specifying each downstream 

lineage.

MIRA RP modeling distinguished LITE versus NITE genes in the hair follicle

While most genes in the hair follicle exhibited LITE regulation with local accessibility 

increasing synchronously with transcription, expression diverged from that predicted by 

the LITE model for genes such as Krt23 (Fig. 3a–d, Extended Data Fig. 7d–e). Although 

local chromatin accessibility was poorly predictive of Krt23 expression, its transcription 

was lineage-specific and closely aligned with activation of accessibility topic a5, encoding 

a medulla genome-wide pattern of accessibility. Consistently, Krt23 expression was more 

closely predicted by the NITE model which includes these genome-wide accessibility states 

as features (Fig. 3e). LITE genes are thus tightly regulated by local chromatin remodeling, 

whereas NITE genes are titrated without requiring extensive local chromatin remodeling, 

decoupling transcription from local accessibility (Fig. 3f).

MIRA’s “chromatin differential” mapped the extent to which local accessibility was 

decoupled from transcription across the developmental trajectory (Fig. 3g–h). Although 

Krt23 local accessibility increased at the branch point between the medulla and cortex 

lineages and remained elevated in both, it was ultimately only highly expressed in the 

medulla, causing high chromatin differential that over-estimated its expression in the 

cortex. Krt23’s lineage-specific expression despite accessibility in both lineages suggests 

its activation requires addition of a factor that does not primarily impact transcription via 

remodeling local accessibility.

MIRA analysis of NITE regulation elucidated hair follicle fate commitment mechanism

At the cell level, gene expression in terminally-differentiated medulla and cortex cells 

exhibited significantly more NITE regulation than gene expression earlier in hair follicle 

differentiation (p<0.05, Wilcoxon) (Fig. 4a, Extended Data Fig. 7f). Often, accessibility of 

terminally-expressed genes increased before fate commitment and was maintained in both 

subsequent lineages, but expression activated in a lineage-specific manner only after the 

branch point between medulla and cortex (Fig. 4b–c, Extended Data Fig. 7g). We used 

chromatin differential at the branch point to identify genes with these “branch-primed” 

dynamics. While priming suggests the inevitability of expression, these genes indicate 

subsequent expression at primed loci can be conditional, a pattern detected as strong NITE 

regulation.

Cell-level topic modeling also supported the pattern of primed accessibility preceding fate 

commitment. For example, the dynamics of genes ultimately expressed in the cortex whose 

accessibility was primed at the preceding branch point were described by cortex-specific 

expression topic e6 and branch-spanning accessibility topic a4 (Fig. 4d). As previously 

noted, accessibility topic a4 described a cell-wide change in chromatin state that did not 

correspond with a synchronous change in expression topic influence.

Branch-primed genes that were subsequently conditionally expressed in medulla or cortex 

appeared to respond to a regulator of medulla or cortex fate commitment. MIRA pISD 

implicated Notch effector Rbpj as a top regulator of branch-primed cortex genes and Bmp/
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Tgf-β-induced Smad5/Smad2/3 as regulators of branch-primed medulla genes (Fig. 4e, 

Extended Data Fig. 7h), consistent with expression of genes associated with these factors’ 

induction (Extended Data Fig. 6b). Thus, MIRA determined that cells at the branch point 

have a chromatin state permissible to multiple fates, described by transitory accessibility 

topic a4, ultimately driven to medulla or cortex through the subsequent addition of a fate-

defining signal, namely Bmp/Tgf-β or Notch22,27,28 (Fig. 4f).

Overall, leveraging MIRA to systematically contrast expression and accessibility at single 

cell and locus resolution in the hair follicle revealed the fate commitment mechanism 

regulating the medulla and cortex lineages.

MIRA captured two distinct spatiotemporal axes of differentiation in the interfollicular 
epidermis

We next applied MIRA to a separate system in the same dataset3, the interfollicular 

epidermis (IFE). Two spatial axes of differentiation specify the IFE, one controlling the 

differentiation of basal stem cells into increasingly superficial epidermal layers (epidermal 

stratification axis) and another controlling basal cell invagination and follicular formation 

(follicular axis)29 (Fig. 5a). The latent structure of MIRA’s joint topic representation again 

mimicked the spatial layout of this differentiation system, reconstructing the two axes of 

differentiation (Fig. 5b, Extended Data Fig. 8–9).

Furthermore, unlike prior reported analysis of this dataset3 that did not jointly 

model expression and accessibility, MIRA identified two distinct basal-spinous-granular 

trajectories. One trajectory, labeled “intermediate”, was more transcriptionally and 

epigenetically similar to upper hair follicle structures, suggesting these cells were 

spatially proximal to the hair follicle and subject to more pro-follicular regulation. These 

“intermediate” basal cells showed activation of Egr2 expression and motifs, previously 

implicated in epidermal proliferation and wound healing30 (Extended Data Fig. 9b–c). By 

contrast, basal cells distant from the hair follicle showed stronger expression of Thbs1, 

consistent with prior work29 that identified two distinct populations of basal cells with 

Thbs1 marking those distant from the hair follicle. Each of these two distinct basal cell 

niches produced their own columns of epidermal strata, which was captured by MIRA joint 

modeling.

Notably, the UMAP projection based only on expression obfuscated these distinct 

trajectories (Fig. 5c). RNA features were sufficient to distinguish the multi-stage transitions 

governing each basal-spinous-granular transformation but could not detect the lineage 

histories of each population. The accessibility-only representation, however, successfully 

aligned cells along lineages according to their distinct epigenetic characteristics (Fig. 5d). 

Projected together, the joint representation preserved the structure of the accessibility mode 

while integrating information of shared transcriptional identity from expression topics (Fig. 

5b). In particular, expression topic e13 established cells with granular identities and captured 

co-upregulation of hallmark genes29 marking epidermal terminal differentiation (Fig. 5e–f).

The cell state tree inferred from the joint topic representation revealed both the shared and 

lineage-specific regulators shaping the spatial programs of the two basal-spinous-granular 
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trajectories (Fig. 5g–h; Extended Data Fig. 10a, Supplementary Table 3–4). Visualizing state 

changes through accessibility topics identified the shared regulatory influence of Hes on 

basal cells, followed by Pou2f3 on spinous cells and terminating in Grhl and C/ebp23,31 

on granular cells in both trajectories. By contrast, lineage-specific accessibility topics 

distinguished the influence of Klf4 motifs23 in “intermediate” spinous and granular cells, 

as opposed to Gata3 influence32 in granular cells arising from Thbs1+ basal cells more 

distant from the hair follicle.

We observed that expression in terminal populations was significantly enriched for NITE 

regulation, especially in terminal genes differentially-expressed between lineages (p<0.05, 

Wilcoxon) (Fig. 5i, Extended Data Fig. 10b–d). Again, terminal fate chromatin accessibility 

appeared to specify the available cell states, while transcription ultimately depended on 

additional spatial or signaling queues. Overall, MIRA elucidated the shared and lineage-

specific mechanisms of differentiation along two parallel trajectories with distinct spatial 

regulation within the IFE.

MIRA elucidated regulators driving key fate decisions in embryonic brain development

We next applied MIRA to an E18 mouse embryonic brain dataset including cortex, 

hippocampus, and ventricular zone (assayed on a different platform, 10x Genomics 

Multiome)14 to determine the key factors driving astrocyte, excitatory neuron, and inhibitory 

neuron fates, the balance of which is critical for normal brain development. MIRA 

topic modeling constructed a joint representation with Pax6+ radial glia-like cells located 

centrally between the astrocyte, excitatory neuron, and inhibitory neuron branches (Fig. 

6a–b). Pax6 marks both dorsal progenitors that give rise to astrocytes and excitatory neurons 

and the anatomically juxtaposed ventral progenitors in the lateral ganglionic eminence that 

give rise to inhibitory neurons33,34. Both of these progenitor populations were present 

within the 10x Genomics dataset and co-located within the joint representation due to their 

shared transcriptional state (see Supplementary Fig. 2 for further discussion). MIRA topic 

analysis revealed the regulators driving the fate decision between astrocytes and excitatory 

neurons and furthermore identified regulators that contribute to the rise of excitatory versus 

inhibitory neurons from anatomically separated progenitors with a similar transcriptional 

state (Fig. 6c, Supplementary Fig. 3–5).

MIRA analysis revealed that astrocytes were defined by accessibility topic a1, which 

was significantly enriched for Rbpj motifs associated with Notch signaling (Fig. 6c–e, 

Supplementary Table 5–6). Rbpj motifs were also enriched in Pax6+ progenitors, but 

significantly depleted from the excitatory neuron branch. Conversely, early excitatory 

accessibility topic a6 was significantly enriched for Neurog2 and Neurod1 motifs. These 

findings are consistent with prior developmental studies indicating that Notch signaling 

maintains progenitor multipotency and specification towards astrocytes while Neurog2 and 

Neurod1 commit cells to the excitatory neuron fate35–37.

We then investigated how anatomically separated progenitors with a shared transcriptional 

state differentially give rise to excitatory versus inhibitory neurons. The major expression 

topic e3 defining both trajectories was enriched for cell cycle genes, likely reflecting 

the expansion of progenitors prior to commitment to their terminal neuron fates38 
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(Supplementary Fig. 5, Supplementary Table 5). Subsequent inactivation of cell cycle topic 

e3 aligned with activation of accessibility topic a2, which was enriched for motifs of Ascl1, 

a pioneering transcription factor in neural progenitors known to promote cell cycle exit and 

differentiation38 (Fig. 6c and f; Supplementary Fig. 5, Supplementary Table 6). Ascl1 motifs 

were also enriched in the early inhibitory accessibility topic a4, consistent with Ascl1’s key 

role in inhibitory neuron differentiation37.

In the alternative trajectory towards the excitatory fate, early excitatory accessibility topic a6 

demonstrated depletion of Ascl1 motifs coordinated with increased Neurod1 motifs (Fig. 6c 

and f, Supplementary Table 6). Ascl1 and Neurod1 belong to separate subgroups of basic 

helix-loop-helix transcription factors39; and Neurod1 promotes differentiation of induced 

pluripotent stem cells into excitatory neurons, while Ascl1 specifies inhibitory neurons37.

MIRA topics contrasted the temporal progression of specification initiated by inhibitory-

driving Ascl1 or excitatory-driving Neurod1. The inhibitory trajectory activated inhibitory 

maturation-driving Bdnf signaling40, culminating in the activation of GABA synapse 

components that define the terminal inhibitory fate (topic e13) (Fig. 6c; Supplementary 

Fig. 5, Supplementary Table 5–6). Consistently, aligned terminal inhibitory accessibility 

topic a10 was enriched for Egr1 motifs, a downstream Bdnf effector that directly activates 

GABAergic neurotransmission genes41.

The diverging excitatory branch first activated mitochondrial components important for 

supporting neuronal metabolic demands42 (topic e14) followed by terminal activation 

of glutamatergic synapse machinery, including glutamate transporters which uniquely 

distinguish excitatory neurons (topic e20) (Fig. 6c; Supplementary Fig. 5, Supplementary 

Table 5). Aligned terminal excitatory accessibility topic a13 was enriched for Mef2 

motifs attributable to Mef2c given its expression in the excitatory branch, consistent with 

its known role in maintaining the excitatory/inhibitory balance by promoting excitatory 

differentiation43 (Fig. 6c; Extended Data Fig. 10e, Supplementary Table 6).

In summary, contrasting expression and accessibility topics on MIRA’s joint representation 

identified regulators driving key cell fate decisions in the developing brain and demonstrated 

the temporal progression of specification into inhibitory or excitatory neuronal fates.

MIRA revealed LITE and NITE genes in the embryonic brain

To determine LITE and NITE genes in the embryonic brain, we trained MIRA RP models 

for the genes defining each expression and accessibility topic (Fig. 6g–h). Notable LITE 

genes included those encoding fate-driving transcription factors with tight spatiotemporal 

regulation such as progenitor gene Pax6 and excitatory-promoting Mef2c. Conversely, NITE 

genes were enriched for cell cycle machinery as well as neuronal differentiation gene 

batteries composed of neurotransmitter and ion channel genes. Local chromatin landscape 

has been previously reported to have limited contribution to the activation of cell cycle 

genes3, consistent with NITE regulation. This may reflect a requirement for titration of 

genes governing each cell cycle stage that would be incompatible with the time needed 

to remodel the local chromatin landscape. Similarly, synaptic maintenance and plasticity 
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may require fast-response regulation of neurotransmitter and ion channel genes, reflected as 

NITE regulation.

Analogously to the hair follicle and IFE, expression topics describing progenitors were 

significantly enriched for LITE regulation, whereas after commitment to the excitatory or 

inhibitory fate, topics were significantly enriched for NITE regulation (p<0.05, Wilcoxon) 

(Extended Data Fig. 10f). Progenitor and early inhibitory regulator Ascl1 is known to 

be a pioneering transcription factor that remodels the chromatin landscape to regulate its 

targets38,44. By contrast, terminal inhibitory regulator Egr1 was previously reported to have 

non-pioneer-like properties45. Notably, targets predicted by MIRA pISD to be downstream 

of Ascl1 demonstrated significantly stronger LITE regulation than predicted Egr1 targets, 

potentially reflective of local chromatin remodeling by pioneering Ascl1 driving their 

expression (p<0.05, Wilcoxon) (Extended Data Fig. 10g).

Discussion

In sum, MIRA leverages cell-level topic modeling and gene-level RP modeling to 

rigorously contrast the spatiotemporal dynamics of single cell transcription versus chromatin 

accessibility to reveal how these mechanisms interact to orchestrate key fate decisions in 

developmental trajectories. MIRA demonstrated the power of topic modeling of expression 

and accessibility data to infer high fidelity cell state trees that consistently outperformed 

standard alternatives in benchmarking. Mapping expression and accessibility topics onto 

MIRA’s joint cell state tree illuminated the key regulators driving fate decisions at pivotal 

trajectory branch points.

MIRA contrasted the dynamics of transcription and local chromatin accessibility to define 

the chromatin differential at each gene locus, revealing discrete gene modules regulated by 

primarily LITE or NITE mechanisms. Intriguingly, in all three systems that we tested from 

the skin3 and brain14 datasets, earlier-expressed genes were enriched for LITE regulation. 

LITE regulation of earlier-expressed genes may reflect the importance of strict regulation 

requiring extensive chromatin remodeling for their expression followed by strong silencing 

in fates where their aberrant expression would have devastating consequences. Conversely, 

gene batteries important for maintaining terminal cell function were less reliant on local 

chromatin remodeling for their regulation, suggesting larger influence by mechanisms such 

as cell signaling that allow titration of transcription to fulfill fluctuating cell needs.

Among NITE-regulated genes, we also noted genes with primed accessibility at trajectory 

branch points that showed subsequent lineage-specific activation in response to a fate-

defining force such as signaling, presumably via binding or activation of a factor with 

minimal impact on local accessibility. In these cases, accessibility appeared to reflect a 

plastic cell identity encoding the available transcriptional states of the cell where ultimate 

transcription ensued in response to the cell’s spatial or signaling niche. Future work 

is warranted to further determine the logic of when cells employ LITE versus NITE 

mechanisms to regulate distinct cellular processes.
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Of note, as with all approaches that model trajectories from single cell data, proper 

interpretation of the results requires an understanding of the biological system and the 

underlying model assumptions and limitations46. Trajectories inferred from single cell data 

do not necessarily reflect the clonal hierarchy of cells captured in traditional lineage tracing 

experiments47. For example, cells that are transcriptionally and epigenetically similar or 

following convergent developmental paths are assumed by the model to be nearby within 

the trajectory, even if they originate from disparate anatomical locations. Experimental 

approaches that retain the information of cells’ anatomical origins will be important to avoid 

co-location of cells that appear similar by the multimodal measurements presented to the 

model although they arise from different locations, as noted in the embryonic brain dataset 

analysis. Additionally, increased resolution of the data with more cells and more detected 

genes or accessible peaks may also reveal previously undetected cell states that will improve 

the accuracy and resolution of cell state tree inference. Finally, basic biological knowledge 

of the system of interest will ensure that the origin point of the trajectory is properly 

defined so that the directionality reflects the true biological progression through cell states. 

Future advances in experimental approaches and data resolution will thus further enhance 

the analyses made possible by MIRA.

In conclusion, MIRA leverages principled probabilistic cell-level topic modeling and gene-

level RP modeling to precisely contrast the spatiotemporal dynamics of transcription and 

local chromatin accessibility at high resolution. MIRA thereby exposes the key regulators 

driving fate decisions at trajectory branch points and reveals the distinct circuitry regulating 

fate commitment versus terminal identity. MIRA thus represents a useful computational tool 

for deeply integrated analysis of the rapidly expanding wealth of multimodal data in the 

single cell field. Moving beyond visualization, MIRA enables rigorous interrogation of the 

transcriptional and epigenetic mechanisms interacting to drive dynamic biological systems.

Methods

Complete methods, including further details for the methods summarized below, are 

available in Supplementary Notes.

MIRA input data

The input data for MIRA is expression (raw gene count) and accessibility (binary peak 

count) matrices from multimodal RNA-sequencing (scRNA-seq) and Assay for Transposase-

Accessible Chromatin-sequencing (scATAC-seq) in the same single cells.

MIRA topic model

Model architecture—The MIRA topic model is a generative probabilistic model where 

the cell’s observed features (transcript counts or accessible genomic intervals) are explained 

by hidden latent variables. Like Latent Dirichlet Allocation (LDA)1, we assume that the 

latent variables describing a cell’s state are sparse and compositional. As such, only a few 

latent variables are active in defining each cell state, and latent variables relate linearly 

to changes in the cell’s observed attributes. This constrains the model such that the latent 

variables decompose expression and accessibility into coherent, interpretable patterns of 
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covarying features. Each latent variable thereby describes a “topic” of coregulated genes 

or co-accessible genomic loci and suggests that the genes and loci influenced by that topic 

share some underlying facet of regulation.

MIRA uses a variational autoencoding neural network2 (Extended Data Fig. 1) to discover 

latent topics from expression or accessibility data. From the input data (described above), the 

topic model learns a mapping from the data distribution to a latent representation for cells 

Z ∈ INcells × Ntopics where I is the unit interval [0,1] and where:

∑t = 1
NtopicsZit = 1, ∀i ∈ {1, …, Ncells

For matrices Mxy, let the notation Mx ∙  indicate the matrix row indexed by x and M ∙ y
indicate the matrix column indexed by y. We specify a sampling procedure such that 

Zi ∙ ∈ INtopics is Dirichlet-distributed with a hierarchical prior controlling the pseudocounts 

allotted to each topic:

Zi . Dirichlet α1, …, αNtopics , ∀i ∈ {1, …, Ncells}

αt Gamma 2,
2Ntopics

ℐ , ∀t ∈ {1, …, Ntopics}

where ℐ is the initial pseudocounts allotted to the Dirichlet distribution and α is the random 

variable controlling the sparsity of Z. The hyperprior enables data-driven tuning of topic 

sparsity to fit different patterns and modalities.

The latent representation of each cell represents the composition of topics that describe the 

expression or accessibility observations measured from that cell. We adapt the generative 

process used to model those measurements as a function of Z to account for the distinct 

statistical properties of each modality3,4. We denote the gene expression data matrix as 

XRNA ∈ ℤ ≥ 0
Ncells × Ngenes, and specify a model such that each observation is independently 

drawn from the following generative process:

XijRNA NegativeBinomial(niρij, θj); ∀i ∈ {1, …, Ncells}, ∀j ∈ {1, …, Ngenes}

ρi ⋅ = softmax batchnorm Zi ⋅ β , ∀i ∈ {1, …, Ncells}

ni LogNormal log ni
RNA, 1 , ∀i ∈ {1, …, Ncells}
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ni
RNA = ∑j = 1

NgenesXijRNA, ∀i ∈ {1, …, Ncells}

where ρ ∈ INcells × Ngenesis the predicted composition of expression across all genes in each 

cell and ∑j = 1
Ngenesρij = 1, ∀i ∈ {1, …, Ncells ; β is the ℝNtopics × Ngenes matrix linking gene 

expression to the influence of topics; and ni is the effective read depth of cell i . θ ∈ ℝ ≥ 0
Ngenes

is a global variable determining the overdispersion of the negative binomial distribution for 

each gene across all cells.

For chromatin accessibility data, we model observations of accessibility 

XATAC ∈ 0,1 Ncells × Npeaks across all regions given a cell using the multinomial 

distribution:

Xi ⋅
ATAC Multinomial ρi ⋅ , ni

ATAC , ∀i ∈ {1, …, Ncells}

ρi ⋅ = softmax batchnorm Zi ⋅ β , ∀i ∈ {1, …, Ncells}

ni
ATAC = ∑k = 1

NpeaksXik
ATAC, ∀i ∈ {1, …, Ncells}

where ρ ∈ INcells × Npeaksis the predicted composition of accessibility across all regions in 

each cell; β is the ℝNtopics × Npeaks matrix linking accessibility to the influence of topics; and 

ni
ATAC is the observed number of accessible peaks in cell i. Thus, accessibility in a cell is 

generated by ni
ATAC independent samples from the categorical distribution over regions.

In the generative process, the β matrix encodes the linear associations between cell-level 

topics and features in expression or accessibility space. To find the features most strongly 

associated with a topic, MIRA calculates the normalized activation ψtj ∈ ℝ of a gene j (or 

congruently peak k) given topic t, scaling the value of the β matrix using the learned batch 

normalization function’s feature-specific variance and bias parameters:

ψtj = sign γj
βtj − μjbn

σjbn

The top n features most strongly associated with a topic are given by the top n activation 

scores.

MIRA uses Enrichr5 to find overlaps between the top genes from expression topics 

and precompiled ontologies. MIRA annotates accessibility topics based on enrichment of 
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predicted transcription factor (TF) binding sites in the top peaks versus the remaining peaks 

using the Fisher exact test6.

Stochastic variational inference—Given the observations from cells, XRNA or XATAC

as X, MIRA finds topics β; batch normalization parameters γ and b; dispersions θ (only for 

expression data); as well as cell-level latent representations Z, such that the probability of 

observing the data is maximized given those parameters ϑ and conditioned on the latent 

space:

ϑmax = argmaxϑ log pϑ X

pϑ X = ∫ pϑ X |Z pϑ Z dZ

ϑ = (β, γ, b, θ)

The integral for the marginal likelihood of the model is intractable, so MIRA employs the 

variational autoencoder approach2, which approximates the distribution pϑ Z X  using the 

variational distribution q, to estimate the likelihood via Bayes rule. Parameter values are 

learned by maximizing the ELBO objective, a lower bound on the marginal likelihood, 

implemented by Pyro. The variational distribution q, conditioned on the observations X, is 

represented by an encoder neural network with weights ϕ:

qϕ(Z |X) ≈ pϑ Z |X

Z qϕ(Z |X) = Encoderϕ(X) .

For observations Xi ∙  from cell i, the encoder outputs μi ∙ ∈ ℝNtopics and σi ∙2 ∈ ℝ > 0
Ntopics, 

which parameterize a logistic-normal distribution from which samples for Zi ∙  are drawn 

using the “reparameterization trick”. MIRA reparametrizes the Dirichlet prior using normal 

distributions, as implemented by ProdLDA7, enabling Pyro to find unbiased Monte Carlo 

estimates of the ELBO expectation’s gradient2.

Joint representation

The topic composition of cell i is given by the expected value of the variational 

approximation of the posterior of Zi ∙ , denoted Zi ∙ :

Zi ⋅ = E qϕ Zi ⋅ |Xi ⋅ ≈ softmax(μi ⋅ ),
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where q is the variational distribution parameterized by the encoder neural network 

conditioned on the observed features of cell i and mean μi ∙ ∈ ℝNtopics is given by the 

output layer of the network. MIRA projects the Ntopics-dimensional simplex space topic 

compositions for each cell to Ntopics − 1 -dimensional real space using the isometric log-

ratio transformation (ILR)8:

ILR Zi ⋅ = log
Zi1

g(Zi ⋅ )
, …, log

ZiNtopics
g Zi ⋅

⋅ G

g Zi ⋅ = exp 1
Ntopics ∑t = 1

Ntopics log Zit

Gtτ =

τ/(τ + 1)
τ if t < τ + 1

− τ/(τ + 1) if t = τ + 1
0 if t > τ + 1

for t ∈ 1, …, Ntopics

and τ ∈ 1, …, Ntopics − 1

where g Zi ∙  is the geometric mean of the composition of Zi ∙ , and 

G ∈ ℝNtopics × Ntopics − 1  is a Gram-Schmidt orthonormalized basis matrix derived from 

an arbitrary hierarchical relationship between topic compositions9. Transformation to 

Ntopics − 1 -dimensional space by the G matrix aligns topic activations along an orthogonal 

basis. To create a joint representation encoding information from both modalities, MIRA 

concatenates the isometric log-ratio transformed vectors for expression and accessibility 

topics into one vector representing the multimodal cell state, Ji ⋅ ∈ ℝNtopics
RNA + Ntopics

ATAC − 2:

Ji ⋅ = ILR Zi
RNA ⊕ ILR Zi

ATAC , for i ∈ {1, …, Ncells}

Using the Manhattan distance between cells in the joint space, MIRA constructs a k-

nearest neighbors (KNN) graph where edges represent cells with similar transcriptional 

and accessibility states. Assuming transitions between topics capture major biological state 

changes, those changes would be aligned along the axes in orthonormal ILR-transformed 

space. The joint KNN graph may be used for clustering by the Leiden algorithm10 and 

low-dimensional visualization using UMAP11.
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Pseudotime trajectory inference

Transport map construction—A transport map, or Markov chain model 

π ∈ INcells × Ncells where I is the unit interval [0,1], describes the transition probabilities 

between states as cells progress through some stochastic sequence of state changes (e.g., 

differentiation), where each state is represented by the measurements from a single cell:

∑ζ = 1
Ncellsπiζ = 1, ∀i ∈ {1, …, Ncells} .

Here, πiζ is the probability of transitioning from cell i’s state to cell ζ’s state after an 

arbitrary discrete time step. MIRA uses the Palantir algorithm12 to transform the undirected 

joint KNN graph describing cells in similar multimodal states into a directed transport map π
representing the stochastic transformation process starting from a chosen origin cell, cell O. 

Palantir also assigns a pseudotime s to each cell based on the shortest path distance between 

origin cell O and cell i in the joint KNN graph. MIRA then finds stationary states in the 

Markov chain representing trajectory terminal states and again uses Palantir to assign to 

each cell a probability of reaching each trajectory’s terminal state following a random walk 

through the transport map. We denote the probability of reaching the ztℎ terminal state from 

cell i following a random walk through the joint space derived transport map as p Jz Ji , 

where Ji is the multimodal state representation of cell i.

Cell state tree inference—MIRA extends the Palantir algorithm to find trajectories and 

branch points in bifurcating tree processes using Palantir’s terminal fate probabilities. First, 

a trajectory (commonly referred to as “lineage” in differentiation studies) lOz is defined as 

the set of all cells for which the probability of reaching that trajectory’s terminal state z is 

greater than or equal to the probability of reaching that terminus from the origin state O:

ℓOz = {i ⊆ 1, …, Ncells | p(Jz |Ji) ≥ p(Jz |JO)}

The branch time s* between two trajectories with terminal states a and b is defined by:

s* O, a, b = min
i ∈ ℓOa ∪ ℓOb

{s(i) | abs Fiab > ε}

Fiab = log
p(Ja |Ji) p(Jb |Ji)

p(Ja |JO) p(Jb |JO)
, for i ∈ ℓOa ∪ ℓOb

First, all cells in trajectories a and b are merged into a combined set of cells, lOa ∪ lOb, then 

MIRA calculates Fi
ab, the log fold change of the ratios between the probability of reaching 

trajectory terminus a versus trajectory terminus b at cell i relative to the probability at the 
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start cell O. The branch time between two trajectories is taken to be the pseudotime s of the 

first cell where Fi
ab exceeds some threshold ε .

To construct a bifurcating tree using these definitions, MIRA starts with all terminal states 

as disconnected leaves. MIRA first finds the branch times between all trajectories, and the 

trajectories with the latest branch point are merged to create a new super-trajectory, where 

each cell’s probability of reaching the terminus of the super-trajectory is p Ja Ji + p Jb Ji . 

A node is added upstream connecting these trajectories’ terminal states with a branch point, 

and all cells in the trajectories with a pseudotime greater than the branch time are assigned 

to the appropriate child of the branch node depending on which trajectory they have 

more affinity to, determined by sign(Fi
ab). Then, MIRA recomputes branch times between 

the trajectories to account for the super-trajectory and again merges the last-branching 

trajectories. This process is repeated until all trajectories have been connected to the root 

node and all cells have been assigned to a node.

MIRA regulatory potential (RP) model

Model architecture—The MIRA RP model relates changes in local accessible chromatin 

to gene expression by learning upstream and downstream distances of perceived regulatory 

influence that maximize the probability of observing the expression data given the 

accessibility state in the same single cells. MIRA models the generative process of sampling 

expression counts for gene j ∈ 1, …, Ngenes  in cell i ∈ 1, …, Ncells  given the accessibility 

state Ai ∙  of the cell as:

XijRNA NegativeBinomial niρij, θj

ρij = eλij

∑g = 1
Ngenesexp(batchnormg(Zi ⋅

RNAβ ⋅ g))

λij = γj
cij − μjbn

σjbn + bj

cij = R Dj ⋅ , Ai ⋅ , aj ⋅ , δj ⋅ , Δj ⋅ = ∑
η ∈ U, D, P

ajη ∑
ς ∈ Djη

Aiς2−δjς Δjη

Aiς = ρiς
ATAC
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For each cell i and gene j, the R function takes as arguments: the genomic interval sets 

Djηforη ∈ U, D, P  which filters peaks based on strand-oriented positional relationships 

upstream (U), downstream (D), or proximal (P) to the gene transcription start site (TSS); 

the accessibility state Ai ∙ ∈ ℝ ≥ 0
DjU + DjD + DjP  of each locus in a cell; non-negative 

aU, aD, and aP parameters that scale the relative effects of upstream (U), downstream 

(D), or proximal (P) accessibility (aU, aD, aP HalfNormal 0, 1 , respectively; the distances 

δj ∙ ∈ ℝ ≥ 0
DjU + DjD + DjP  from the TSS of gene j to the loci in the specified genomic 

interval set; and the decay rate parameters ∆iD and ∆iU.

The accessibility of each region in Djη is weighted by its distance from the TSS in terms 

of the learned decay rate parameter ∆iη, and the effects of all loci are summed together to 

summarize the cis-regulatory effect on gene expression. The accessibility state Ai ∙  of loci in 

cell i is taken to be the predicted compositional distribution ρi ∙
ATAC given by the chromatin 

accessibility topic model, to reduce noise and normalize for differences in read depth of 

ATAC observations between cells. The upstream and downstream region sets encompass 

regions between 1.5 and 600 kilobases from the TSS; the proximal region is within 1.5 

kilobases from the TSS. Regions within 1.5 kilobases of other genes are masked.

The ∆jD and ∆jU parameters affect the respective downstream (D) and upstream (U) decay 

rates of local chromatin accessibility’s influence on gene expression. The value of the 

parameter is the estimated distance, in kilobases, over which the influence of accessible 

sites on gene expression is halved, ∆U , ∆D LogNormal log 15 , 1.44 . The prior distribution 

reflects a priori information about the likely ranges of regulatory influence13,14, placing the 

mean decay distance at 15 kilobases and penalizing extreme ranges which suggest spurious 

long-range correlations. The model relates the cis-regulatory relationship cij to the observed 

expression data Xij
RNA following the same generative statistical method as the expression 

topic model, with learned mean and bias parameters γj and bj, and dispersion parameter θj.

MIRA finds parameter values ϑmax that maximize the probability of the observed expression 

XRNA given the accessibility state A:

ϑmax = argmaxϑ log pϑ(XRNA|A),

ϑ = {aj ⋅ , Δj ⋅ , γj, bj, θj},

while adjusting for technical variation and noise between both assays to learn regulatory 

distances describing a gene’s the cis-regulatory relationship with local chromatin. MIRA 

employs variation inference to learn point estimates for each parameter (which are given 

delta distribution priors), taking gradient steps to maximize the ELBO objective using the 

Frozen-batch L-BFGS15 algorithm.
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NITE model architecture—The RP model discussed above is defined as the 

local chromatin accessibility-influenced transcriptional expression (LITE) model. The 

LITE model learns a cis-regulatory relationship relating expression to local chromatin 

accessibility. The non-local chromatin accessibility-influenced transcriptional expression 

(NITE) model augments the LITE model with additional knowledge of cell-wide 

chromatin state through the incorporation of the MIRA latent accessibility topics as 

features. The specification of the NITE model follows the LITE model (see Regulatory 

Potential Modeling: Model architecture section) except for the inclusion of coefficients 

atopics ∈ ℝNtopics describing the relationship between cell-wide chromatin topics and 

expression:

cij = R(Dj ⋅ , Ai ⋅ , aj ⋅ , δj ⋅ , Δj ⋅ ) + ∑t = 1
Ntopicsat

topicsZit
ATAC

at
topics Normal 0, 1 , for   t ∈ {1, …, Ntopics}

θjNITE θjLITE

For a given gene, MIRA first trains a LITE model, then seeds the variational distribution 

of the NITE model with the point estimates from the LITE model. Except for dispersion 

parameter θj
NITE, which is fixed to the value found by the LITE model, MIRA learns new 

values for each NITE model parameter using the same training process as the LITE model.

LITE vs. NITE regulation test

To test the ability for local chromatin to predict expression of a gene, we perform a 

likelihood ratio test16 between the LITE and NITE models, where the null hypothesis is that 

the LITE model, based only on local chromatin features, is sufficient to predict expression:

Λj = − 2 log
ℒLITE ρ ⋅ jLITE|X ⋅ jRNA

ℒNITE ρ ⋅ jNITE|X ⋅ jRNA , for j ∈ {1, …, Ngenes}

Here, ℒℳ ρ ∙ j
ℳ X ∙ j

RNA  is the likelihood of the expression predictions of model ℳ, the LITE 

or NITE model for that gene, given the observations of the expression of gene j across all 

cells, where X ∙ j
RNA ∈ ℤ ≥ 0

Ncells. The LITE and NITE models parameterize a negative binomial 

distribution of expression given the accessibility state Ai ∙  of the cell. Thus, for model ℳ:

ℒℳ ρ ⋅ j
ℳ |X ⋅ jRNA = ∏

i = 1

Ncells
p XijRNA = NegativeBinomial niρij

ℳ, θjLITE
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If the expression predictions of the NITE model parameters are more likely given the 

observed data than the LITE model predictions, this increases the test statistic. The test 

statistic Λj is not directly comparable between genes due to differences induced by count 

variability, so we normalize all genes’ test statistics to remove this effect:

NITE scorej =
Λj

1 +
∑i = 1

Ncells I(Xij > 0)

median
g ∈ {1, …, Ngenes}

∑i = 1
Ncells I(Xig > 0)

, for j ∈ {1, …, Ngenes}

where  I True = 1and I False = 0 .

Due to properties of expression counts and the negative binomial distribution, both the LITE 

and NITE models predict zero counts for a gene with high probability. Thus, cells with no 

reads observed for a given gene are not as informative to the test, and genes which have a 

smaller fraction of zero counts have larger test statistics. To account for this, MIRA scales 

the test statistic for each gene based on the number of nonzero counts relative to the median 

nonzero counts across all genes tested to yield a comparable NITE score for each gene.

Cell NITE score

The cell NITE score is calculated similarly to gene NITE score, except the test is performed 

on rows of the expression matrix XRNA instead of columns:

Λ ′i = − 2 log
ℒLITE ρi ⋅LITE|Xi ⋅RNA

ℒNITE ρi ⋅NITE|Xi ⋅RNA , for i = 1, …, Ncells

NITE score′i =
Λ ′i

1 +
∑j = 1

NgenesI(Xij > 0)

median
k ∈ {1, …, Ncells}

(∑j = 1
NgenesI(Xkj > 0))

, for i = 1, …, Ncells

Chromatin differential

The chromatin differential χ in cell i ∈ 1, …, Ncells  for gene j ∈ 1, …, Ngenes  is given by:

χij = log
ρijLITE

ρijNITE

which is the log-ratio of the compositional prediction of expression given by the LITE and 

NITE models.
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Extended Data

Extended Data Fig. 1. Overview of MIRA topic model architecture
a, The MIRA topic model uses a variational autoencoder (VAE) approach to learn stochastic 

mappings between observations in X-space, gene-counts or peak-counts in a cell, which are 

high-dimensional and noisy, and a simpler latent Z-space or topic space, which exists on 

the simplex basis with a Dirichlet prior. (bottom right) The generative model relates the 

observations X to the estimated composition ρ over features (genes or peaks), sampling a 
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negative binomial distribution for RNA counts and a multinomial distribution for ATAC 

peaks. (top right) The composition over features is given by the topic matrix β encoding 

topic-feature associations and the latent topics Z of a cell, which are sampled from the 

distribution qϕ(Z|X), the variational approximation of pϑ(Z|X). (top left) The distribution 

of Z is parameterized by μ and σ2, outputs from the encoder neural network given the 

X-space observations as inputs. (bottom left) The encoder neural network for RNA data 

performs deviance residual featurization of counts which are passed through feed-forward 

layers. The ATAC data encoder passes binarized peak accessibility features through a 

deep averaging network. (Illustration adapted from Kingma and Welling, Foundations and 
Trends in Machine Learning, 2019). b, Ratio of probability of medulla fate commitment 

versus cortex commitment of each cell in the hair follicle, arranged by pseudotime. MIRA 

defines branch points between cell states where probabilities of differentiating into one 

terminal state diverges from another. c, MIRA joint representation UMAP colored by ratio 

of probability of medulla fate commitment within the ORS, matrix, medulla, and cortex 

populations. Differentiation in the hair follicle proceeds from ORS to progenitor matrix 

cells, which then specify into the medulla or cortex fate. (IRS cells indicated in black are not 

included in this trajectory).
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Extended Data Fig. 2. MIRA outperforms standard methodology for resolving cell state 
trajectories using expression data alone
Benchmarking results comparing MIRA to standard methodology of Seurat PCA+Slingshot 

in the indicated metrics of cell state trajectory inference using expression data alone. Top 

row shows ground truth scaffolds, which are computationally synthesized by mixing reads 

from distinct populations of single cells from a 10x Genomics dataset14 of peripheral 

blood mononuclear cells (PBMCs). Scaffold difficulty increases from left to right, where 

more difficult scaffolds contain cell states where mixture components are more similar 

(increased entropy), making them more difficult to distinguish by the tested lineage 
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inference methodologies. Line plots indicate MIRA (red) versus Seurat PCA+Slingshot 

(blue) performance in each of the four scaffold difficulties with trials for three different 

mean read depths (lower read depth further increases the difficulty of solving the topology). 

For each trial, 5 replicates were tested for each modeling approach. Edge accuracy measures 

the accuracy of the inferred edges compared to ground truth (dynverse’s edge flip score48). 

Branch F1 score48 measures the precision and recall of the inferred branches compared 

to ground truth. Pseudotime correlation48 measures the correlation between inferred versus 

ground truth pseudotime for each cell. The bottom rows show example UMAPs for MIRA 

or Seurat PCA+Slingshot for each scaffold difficulty with black edges showing cell state 

parsing from each algorithm. Cells colored by ground truth branch assignment where blue 

cells are the origin state. In the line plots above, black outlines indicate the points for the 

models shown in the example UMAPs.
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Extended Data Fig. 3. MIRA outperforms standard methodology for resolving cell state 
trajectories using accessibility data alone
Benchmarking results comparing MIRA to standard methodology of Seurat LSI+Slingshot 

in the indicated metrics of cell state trajectory inference using accessibility data alone. 

Top row shows ground truth scaffolds with scaffold difficulty increasing from left to right. 

No models solved the topology of the most difficult scaffold using accessibility alone so 

metric comparisons are shown for the other three scaffolds. See Extended Data Fig. 3 for 

description of metrics.
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Extended Data Fig. 4. MIRA outperforms standard methodology for resolving cell state 
trajectories using both expression and accessibility data jointly
Benchmarking results comparing MIRA joint representation to standard methodology 

of joint representation combining Seurat PCA of expression data and Seurat LSI of 

accessibility data followed by Slingshot. See Extended Data Fig. 3 for description of 

metrics. For expression data, mean read depth n=4000; for accessibility data, mean read 

depth n=14000.
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Extended Data Fig. 5. MIRA topics describing hair follicle cells were sparse and nonredundant
a, UMAP based on standard methodology versus MIRA topic modeling for expression or 

accessibility. Standard PCA-based representation of expression shows matrix population 

as shifted away from its predecessor ORS and descendant IRS, medulla, and cortex 

cells. However, MIRA topic modeling of expression appropriately represents matrix 

cells as an intermediate population between the aforementioned lineages. Standard LSI-

based representation of accessibility shows ORS cells interjected between matrix and its 

descendant IRS and shows medulla situated between two separate cortex populations. 
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Conversely, MIRA topic modeling of accessibility appropriately represents matrix cells as 

continuous with its descendant IRS and better separates medulla and cortex into two distinct 

branches. b, MIRA joint topic representation of expression and accessibility. In (a-b), colors 

demonstrate expression of marker genes of indicated lineages. c, MIRA expression topics 

e1-6 and d, MIRA accessibility topics a1-7 on joint representation UMAP. In (c-d), colored 

boxes correspond to topic colors as on stream graphs in Fig. 2c and Extended Data Fig. 7a.

Extended Data Fig. 6. MIRA topics described gene modules activated in each lineage
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a, Stream graph of window-averaged cell-topic compositions starting from ORS cell 

state, progressing rightward through pseudotime (to facilitate visualization of all lineages 

concurrently, pseudotime scale is not log-transformed, unlike other presented stream 

graphs). b, MIRA joint topic representation colored by expression of genes highly activated 

in each of the indicated topics, which described the activated gene modules in each lineage. 

c, MIRA joint topic representation colored by indicated motif scores.

Extended Data Fig. 7. Terminal medulla and cortex cells showed significantly higher NITE 
regulation compared to cells earlier in hair follicle differentiation
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a, MIRA joint topic representation colored by expression of Hoxc genes, indicating that 

Hoxc motifs activated in both the medulla and cortex accessibility topics (a5 and a6, 

respectively) were most attributable to Hoxc13 based on its expression in these lineages. 
b, Correlation matrix between expression and accessibility topics. While some topics had a 

clear one-to-one correlation between modalities (e.g. expression topic e1 with accessibility 

topic a1), others did not strongly correlate with a single topic from the opposing modality 

(e.g. branch accessibility topic a4). c, Comparison of motif enrichment in top peaks of 

preceding matrix versus subsequent branch accessibility topics (a2 and a4, respectively). 

While most motifs were shared between these topics, accessibility of Wnt signaling-related 

motifs uniquely arose at the branch. d, Distribution of NITE scores among genes expressed 

in the hair follicle. Scores of example LITE gene Braf and NITE gene Krt23 are indicated 

by arrows. e, LITE gene Braf as shown in Fig. 3c but extended to include further 

downstream region. As described in Fig. 3c, plot shows chromatin accessibility fragments 

across pseudotime (moving downwards) in trajectories from ORS to matrix to cortex or 

medulla. Colored bars on the right indicate the identity of cells (colored by clusters in 

Fig. 2a) within each bin reflected by each row of accessibility fragments. Line plots 

across pseudotime depict the indicated gene’s observed expression (red) and LITE model 

prediction of expression (black), which is informed by the local accessibility reflected in the 

fragment plot. f, Medulla and cortex cells showed significantly more NITE regulation than 

other cells in the hair follicle (data are presented as mean values +/− standard deviation; 

rest n=4565, cortex/medulla n=1607; *p<0.05 (1.4e-13), two-sided Wilcoxon rank-sum). 

g, Genes ultimately expressed in medulla or cortex that were primed at the branch were 

defined as those with a NITE regulation score above the indicated thresholds that had 

positive chromatin differential at the branch, indicating that expression was overestimated 

based on local chromatin accessibility. Branch-primed genes must also be upregulated in 

the downstream lineage relative to matrix cells. h, Driver transcription factor analysis of 

non-primed medulla versus cortex genes.
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Extended Data Fig. 8. MIRA expression topics describing IFE cells captured shared and lineage-
specific states
a, Expression of marker genes of indicated lineages on MIRA expression, accessibility, and 

joint topic UMAPs. b, MIRA expression topics e1-13 on joint representation UMAP.
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Extended Data Fig. 9. MIRA accessibility topics describing IFE cells captured shared and 
lineage-specific states
a, MIRA accessibility topics a1-15 on joint representation UMAP. Colored boxes 

correspond to topics indicated in Fig. 5h, which are shared or lineage-specific within the 

basal-spinous-granular or intermediate basal-spinous-granular differentiation trajectories as 

annotated in Fig. 5a–b. b, Thbs1 and c, Egr2 expression distinguished basal cells distant 

from the hair follicle from those within the intermediate basal-spinous-granular trajectory 
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near the hair follicle (*p<0.05, two-sided Wilcoxon rank-sum, Benjamini-Hochberg 

corrected).

Extended Data Fig. 10. Terminal granular cells were enriched for NITE regulation
a, Stream graph of expression topic compositions of basal-spinous-granular (top) and 

intermediate basal-spinous-granular (bottom) lineages. b, Terminal IFE granular cells 

showed significantly more NITE regulation than cells earlier in the differentiation trajectory 

(basal and spinous cells) (data are presented as mean values +/− standard deviation; basal 
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and spinous n=10850, granular n=1596; *p<0.05 (1.5e-15), two-sided Wilcoxon rank-sum). 

c, Genes upregulated in granular cells that were differentially-expressed between granular 

populations had significantly higher NITE scores than other genes (data are presented 

as mean values +/− standard deviation; rest n=4641, terminal and differentially-expressed 

granular genes n=241; *p<0.05 (0.041), two-sided Wilcoxon rank-sum). d, Examples of 

terminally upregulated, differentially-expressed granular genes’ local chromatin accessibility 

(LITE model prediction) and expression. Despite accessibility increasing in both lineages, 

expression only increased in one lineage. e, Mef2c was more highly expressed in excitatory 

neurons, indicating that Mef2 motifs enriched in the terminal excitatory neuron topic 

were likely attributable to Mef2c. f, Stream graphs of expression topics across cells state 

trajectory colored by NITE versus LITE regulation of the top genes in each topic. Topics 

describing earlier states tended towards LITE regulation with the notable exception of 

topic e3, which is composed of cell cycle genes that have been previously described 

to be regulated with minimal influence of local chromatin accessibility state3. Topics 

describing terminal states tended more towards NITE regulation, including the major 

terminal excitatory and inhibitory neuron topics that are composed of neurotransmitter 

genes. Overall, expression topics describing the excitatory and inhibitory progenitor states 

(labeled mixed progenitor) were significantly enriched for LITE regulation, whereas after 

commitment to either the excitatory or inhibitory fate, topics were significantly enriched for 

NITE regulation (*p<0.05, two-sided Wilcoxon rank-sum, Benjamini-Hochberg corrected). 

g, Genes predicted by MIRA pISD modeling to be regulated by pioneer transcription 

factor Ascl1 showed significantly more LITE regulation compared to genes predicted to 

be regulated by non-pioneer-like Egr1 (data are presented as mean values +/− standard 

deviation; n=200; *p<0.05 (0.0464), two-sided Wilcoxon rank-sum).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The authors of the SHARE-seq skin study3 provide the RNA-seq count 

matrix at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156608 and the 

ATAC-seq peak count matrix at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSM4156597. 10x Genomics provides the brain dataset14 RNA-seq 

count matrix and ATAC-seq peak count matrix at https://www.10xgenomics.com/

resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-2-0-0. RNA-seq and 
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ATAC-seq count matrices used for the benchmarking study may be 

found at https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-

granulocytes-removed-through-cell-sorting-10-k-1-standard-2-0-0.
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Fig. 1 |. Schematic of MIRA’s cell-level topic and gene-level RP models for integrated analysis of 
single cell multimodal transcription and accessibility data.
a, Schematic of MIRA’s variational autoencoder18 approach to modeling the transcription 

and chromatin accessibility topics defining each cell’s identity. The joint representation 

output can be leveraged for visualization and clustering, construction of high fidelity 

cell state trajectories, and rigorous topic analysis to determine regulators driving key fate 

decisions at trajectory branch points. b, MIRA’s RP model integrates transcriptional and 

chromatin accessibility data at each gene locus to determine how regulatory elements 
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surrounding each gene influence its expression. MIRA quantifies the regulatory influence 

of local chromatin state to distinguish genes primarily regulated by local chromatin 

remodeling (LITE genes) versus those more heavily influenced by non-local signals (NITE 

genes) reflected in the genome-wide accessibility topics with minimal impact on local 

chromatin landscape. MIRA furthermore predicts key regulators at each locus by examining 

transcription factor motif or occupancy (from ChIP-seq) enrichment within elements 

predicted to highly influence transcription at that locus. c, Benchmarking results comparing 

MIRA joint cell state trajectory inference to standard methodology of Seurat principal 

component analysis (PCA)+Slingshot on expression data only, Seurat latent semantic 

indexing (LSI)+Slingshot on accessibility data only, or joint model combining Seurat PCA 

on expression data and LSI on accessibility data followed by Slingshot. Overall score is 

the geometric mean of edge accuracy, branch F1 score, and pseudotime correlation metrics. 

Performance was tested on four different ground truth scaffolds, which are computationally 

synthesized by mixing reads from distinct populations of single cells. Scaffold difficulty 

increases from left to right, where more difficult scaffolds contain cell states where mixture 

components are more similar (increased entropy), making them more difficult to distinguish. 

Line plots indicate performance in each of the four scaffold difficulties with trials (5 

replicates each) for three different mean read depths (lower read depth further increases 

the difficulty of solving the topology). scRNA-seq mean read depth n=4000; scATAC-seq 

mean read depth n=14000. d, Example UMAPs for the least difficult scaffold. Black edges 

show cell state parsing. Cells colored by ground truth branch assignment.
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Fig. 2 |. MIRA topic modeling determined regulatory factors driving key fate decisions in hair 
follicle differentiation.
a, MIRA’s joint topic representation constructed a UMAP (right) whose structure mimicked 

the true spatial layout22 (left) of the progenitor matrix cells and descendant medulla, cortex, 

and IRS lineages in the hair follicle. Colors indicate cell types defined by fine Leiden 

clustering followed by agglomeration of clusters based on known marker gene expression. b, 
(top) Diffusion pseudotime through joint KNN graph representing differentiation progress. 

Terminal cells were identified using stationary states from a forward Markov chain model 

of differentiation. (middle) Each cell’s probability of reaching each terminal state. (bottom) 
Parsed bifurcating tree structure of cell state probabilities visualized as stream graph. Each 

point is an individual cell arranged as a swarm plot (arranged such that points do not 

overlap, resulting in larger spread where there are more points). Cells are colored by clusters 

in 2a, indicating that bifurcation points closely correspond to changes in cell identity as 

separately defined by markers for each cell type. c, Stream graph of window-averaged 
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cell-topic compositions as cells progress through differentiation starting from matrix cell 

state (see Extended Data Fig. 6a for stream graph including outer root sheath (ORS); 

topics that comprise ≥3% of the total at any point are shown). Representative genes 

activated in expression topics and motifs enriched in accessibility topics are depicted in 

boxes corresponding with the color of the source topic. Accessibility topic a4 described a 

transitory accessibility state at the branch point between the medulla and cortex lineages 

without a corresponding expression topic, suggesting global chromatin remodeling in 

progenitor matrix cells preceded transcriptional alterations specifying each downstream 

lineage. d, (left) Gene set enrichment for progenitor matrix cell expression topic e2. (right) 
Expression topic e2 activation or Eda expression on UMAP of joint topic representation. e, 
Comparison of motif enrichment in top peaks of medulla versus cortex accessibility topics 

(a5 and a6, respectively).
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Fig. 3 |. MIRA RP modeling identified genes for which changes in expression were insufficiently 
explained by local chromatin accessibility.
a, LITE gene Braf or b, NITE gene Krt23 expression or local-only RP model predictions 

(LITE model) on joint representation UMAP. c, LITE gene Braf or d, NITE gene 

Krt23 locus’s chromatin accessibility fragments across pseudotime (moving downwards) 

in trajectories from ORS to matrix to cortex (top) or medulla (bottom). Colored bars on 

the right indicate the identity of cells (colored by clusters in 2a) within each bin reflected 

by each row of accessibility fragments. Line plots across pseudotime depict the indicated 
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gene’s observed expression (red) and LITE model prediction of expression (black), which 

is informed by the local accessibility reflected in the fragment plot. While the observed 

expression and LITE model prediction align for LITE gene Braf, they diverge for NITE 

gene Krt23. e, Joint representation UMAP colored by (left) Krt23 NITE model prediction or 

(right) medulla accessibility topic a5 capturing a genome-wide chromatin state. NITE model 

predictions were more closely aligned with Krt23 expression shown in 3b. f, Proposed 

mechanism of LITE versus NITE regulation. In LITE regulation, expression is tightly 

regulated by chromatin remodeling. In NITE regulation, binding of an additional factor is 

required to enact transcription. g, LITE gene Braf or h, NITE gene Krt23 LITE versus NITE 

model predictions (cells colored by gene expression) and “chromatin differential” (relative 

prediction of LITE versus NITE models). In chromatin differential plots, red indicates 

LITE model overestimates expression while blue indicates LITE model under-estimates 

expression relative to NITE model.
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Fig. 4 |. Gene-level and cell-level analysis of NITE gene regulation in the hair follicle elucidated 
regulatory mechanisms of fate commitment.
a, NITE regulation score of each cell. b, Stream graph contrasting expression versus LITE 

model prediction (which represents local accessibility) of NITE gene Rnaset2b. When the 

lines diverge, this indicates that observed expression or local accessibility is changing in a 

way that is not coordinated with the other, drawing attention to genes whose expression 

is regulated by mechanisms not solely determined by local chromatin accessibility. c, 
(left) Regulatory classifications of medulla or cortex terminally expressed genes based 

on expression and local chromatin accessibility at the branch point between medulla 

and cortex lineages. Classifications colored green or orange by whether the genes were 

significantly upregulated in the medulla or cortex cells, respectively. The High Expression-

High Accessibility group is composed of medulla- or cortex-specific genes that are already 

highly expressed and accessible at the branch. The Low Expression-High Accessibility 

group, referred to as “branch-primed genes”, are medulla- or cortex-specific genes that are 

more accessible at the branch than would be expected based on their expression at the 
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branch. They subsequently increase in expression levels after the branch in one of the two 

lineages. The Low Expression-Low Accessibility group, referred to as “terminal genes”, are 

medulla- or cortex-specific genes that are not yet expressed nor accessible at the branch. 

Only after the cells have committed to one of the two fates do these genes become expressed 

and accessible in that lineage. (right) Example of each classification. d, Interaction between 

gene-level regulation and cell-level topics. (top) Expression of branch-primed cortex genes 

increased after branch, correlating with expression topic e6. (bottom) LITE model prediction 

(local chromatin accessibility) of branch-primed genes increased before cortex commitment, 

correlating with accessibility topic a4. e, Driver transcription factor analysis of branch-

primed medulla versus cortex genes. f, Model for regulation of fate commitment in hair 

follicle depending on activation of distinct signaling pathways. Accessibility topic a4 opens 

chromatin around branch-primed genes at branch point between lineages. Depending on 

signal, branch-primed lineage-specific genes are expressed, enforcing lineage commitment.
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Fig. 5 |. MIRA joint representation reconstructed complex multi-axis differentiation in the IFE.
a, Anatomical model of mouse keratinocyte differentiation along epidermal and 

follicular axes. b, UMAP calculated from MIRA joint expression and accessibility topic 

representation. Dotted lines show constructed cell state structure resulting from two axes 

of differentiation. c, UMAP calculated from MIRA expression topics alone. d, UMAP 

calculated from MIRA accessibility topics alone. e, Activation of intermediate granular 

expression topic e8 on joint representation UMAP. f, Gene Ontology (GO) enrichment of top 

genes from intermediate granular expression topic e8. g, Two separate terminal states were 

Lynch et al. Page 45

Nat Methods. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identified from the Markov chain model of differentiation starting from basal cells labeled 

“Start state”. h, Stream graph of accessibility topic compositions of basal-spinous-granular 

(top) and intermediate basal-spinous-granular (bottom) lineages. Top enriched factors shown 

in boxes with color indicating source topics. i, NITE regulation score of each cell in the IFE.
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Fig. 6 |. MIRA elucidated regulatory factors driving fate decisions in key developmental 
trajectories in the developing brain.
a, Expression of marker genes for progenitor Pax6+ cells and terminal states of astrocytes, 

excitatory neurons, or inhibitory neurons. b, MIRA joint representation UMAP colored 

by inferred cell states. Mixed progenitor cells include both excitatory and inhibitory 

progenitors, which are transcriptionally similar. (See Supplementary Fig. 2). c, Stream 

graphs of expression and accessibility topic activation across cell state trajectory. Pathways 

activated in expression topics and motifs enriched in accessibility topics are indicated by 
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topic color. d, Motif score of Rbpj and Neurog2 on joint representation UMAP. e, Motif 

score of Rbpj and Neurog2 in the indicated cell states (*p<0.05, two-sided Wilcoxon 

rank-sum compared to progenitors (including mixed progenitors), Benjamini-Hochberg-

corrected; Rbpj: astrocyte vs. progenitors p=3e-26, excitatory vs. progenitors p=3e-97; 

Neurog2: astrocyte vs. progenitors p=3e-39, excitatory vs. progenitors p=5e-98; all adjusted 

p-values~0). f, Activation level of Ascl1 versus Neurod1 motif scores in each single cell 

along cell state trajectory. g, GO terms enriched in top 500 genes with NITE regulation 

where local chromatin accessibility state is insufficient to predict expression. h, Correlation 

of LITE versus NITE model predictions of expression of example genes with LITE versus 

NITE regulation.
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