Lawrence Berkeley National Laboratory

 Recent WorkTitle
STRUCTURAL STUDIES, OF SALTS OF cis AND trans u-FLUORO-BRIDGED POLYMERS OF GeF5-, AND GeF5-MONOMER

Permalink

https://escholarship.org/uc/item/1d33441g

Authors

Mallouk, T.E.
Desbat, B.
Bartlett, N.
Publication Date
1983-09-01

③ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Molecular Research Division

Submitted to Inorganic Chemistry

STRUCTURAL STUDIES, OF SALTS OF cis AND trans
μ-FLUORO-BRIDGED POLYMERS OF GeF_{5}^{-}, AND
$\mathrm{GeF}_{5}{ }^{-}$MONOMER
T.E. Mallouk, B. Desbat, and N. Bartlett

HOV 169983

September 1983
LBL LIBRARY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Contribution from the Department of Chemistry, University of California, and the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

Structural Studies, of Salts of cis and trans $\underset{\sim \sim}{\mu-F l u \sim \sim}$ Bridged Polymers of $\underset{\sim \sim}{\mathrm{GeF}_{5}^{-}}$, and of $\mathrm{GeF}_{\sim \sim \sim \sim}^{-}$Monomer

THOMAS E. MALLOUK, BERNARD DESBAT, AND NEIL BARTLETT*

ABSTRACT
$\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$is orthorhombic and at 20$: a_{0}=7.119(2) ; b_{0}=12.936(4)$; $c_{0}=7.398(1) \AA ; V=683.9(5) \AA^{3} ; Z=4$; space group Pmnb (a non-standard setting of Pnma, no. 62). From 437 independent X-ray diffraction data, the structure was refined to a weighted R of 0.018 (unweighted $R=0.021$) a standard deviation of an observation of unit weight $=0.725$. The structure contains infinite chains of GeF_{6} octahedra sharing trans vertices. The XeF_{5} cations are arranged alternately to left and right along the chain such that each cation approaches symmetrically two of the μ fluoro-bridged GeF_{6} units. The non-bridging; GeF_{4} units are planar and approximately square, with Ge-F $=1.75(2)$ \&. The μ bridging Ge-F distance $=1.890(1)$ \&.
$\mathrm{ClO}_{2}^{+} \mathrm{GeF}_{5}{ }^{-}$is orthorhombic, and at $-105 \pm 10^{\circ}: a_{0}=14.648(2) ; b_{0}=7.576(1)$; $c_{0}=8.854(2) \notin ; V=987.0(4) \AA^{3} ; Z=8$; space group $C 222_{1}$ (no. 20). From 645 independent X-ray diffraction intensity data, refinement led to convergence with a weighted R factor $=0.068$ (unweighted $R=0.059$) a standard deviation of an observation of unit weight $=3.938$. In the structure, infinite chains

[^0]of approximately octahedral GeF_{6} units are joined by sharing cis vertices. This is an infinite helix having all Ge atoms of the chain nearly coplanar. The non-bridging Ge-F distances are in two sets, the shorter (Ge-F $=1.737$ (4) and $1.728(3) \AA$) being cis to the bridging Ge-F bonds, and the longer (Ge-F = $1.776(3)$ and $1.768(3) \AA$) being trans to the Ge-F bridging. The two μ-bridging Ge-F distances are not significantly different, at 1.887(1) A. The anion chains are held together by interactions with the cations. There are two crystallographically distinguishable ClO_{2}^{+}units. Each lies on a two-fold axis and the closest cation to anion contacts ($\left.\mathrm{Cl},-\mathrm{F}_{1}=2.539(3)\right)$; $\mathrm{Cl}_{2}-\mathrm{F}_{4}=2.625(3) \&$) involve approach of F to Cl normal to the ClO_{2} triangle.

Infrared and Raman spectra of the $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeFF}_{5}^{-}$and $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}^{-}$salts have been assigned. Similarities of the vibrational spectra of the latter to the spectra of the O_{2}^{+}salt indicate that the same anion occurs in both. The vibrational data show that a third oligomeric form of the anion must occur in the $\mathrm{NO}_{2}{ }^{+}, \mathrm{NF}_{4}{ }^{+}$and $\mathrm{SF}_{3}{ }^{+}$salts. The tetrabutyl ammonium salt contains a monomeric anion of approximately $D_{3 h}$ symmetry.

Introduction

The GeF_{5} anion is stabilized by a variety of cations including some of high electron affinity. ${ }^{1-4}$ To date such salts have been characterized by their vibrational spectra. Those studies ${ }^{2-4}$ have indicated that monomeric and oligomeric forms of the anion can occur. A need for detailed structural information for lattice energy evaluations, based upon the method of Bertaut ${ }^{5}$ as modified by Templeton, ${ }^{6}$ prompted the structural work reported in this paper. Salts were selected for those studies for which thermodynamic data, to complete the Born-Haber cycles, were accessible. The lattice energy evaluations and fluoride ion affinities derived using them are given in the accompanying paper. ${ }^{7}$ The present studies include the crystal and molecular structures and vibrational spectra of the previously known compound ${ }^{1} \mathrm{XeF}_{6} \cdot \mathrm{GeF}_{4}$ (for which x-ray structural work $8,9,10,11$ had suggested the formulation $\mathrm{XeF}_{5}^{+} \mathrm{GeF}_{5}^{-}$) and similar studies of the new compound $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$. The present crystallographic studies have provided a basis for the assignment of the structural form present in other salts.

Experimental Section

Apparatus and Materials: A Monel vacuum line was used. It was equipped with stainless steel or Monel lKS4 Kel-F tipped Whitey valves and a Monel Acco Helicoid pressure gauge ($0-1400$ torr $\pm .3 \%$). Reaction vessels were made from $4^{\prime \prime}$ or $3 / 8^{\prime \prime}$ Teflon-FEP tubing (Penntube Plastics Co.) sealed at one end and degassed for several hours at $65-70^{\circ}$. A J-Y Ramanor spectrometer with a double holographic grating monochrometer, using either argon (514 or 488 nm) or krypton (647 nm) laser excitation provided the Raman spectra. Infrared spectra were recorded on a Perkin-Elmer 597 spectrometer using an air-tight Kel-F sample cell with AgCl windows cut from 1 mm thick sheet (Harshaw Chemical

Co., Solon, Ohio). X-ray powder diffraction patterns were obtained from a General Electric Co. precision camera (circumference 45 cm), with a Ni filtered CuK $_{\bar{\alpha}}$ source.
GeF_{4} was made from GeO_{2} powder (Alfa Inorganics, 99.995\%) and F_{2} in a Monel bomb at 250°. It was purified by trap to trap distillation. $X_{6} F_{6}$ was prepared by heating a F_{2} i $X e$ mixture ($10 / 1$ mole ratio) at 300° in a Monel bomb previously passivated with F_{2}. The small quantities of XeF_{4} and XeOF_{4} also formed were removed by condensing the crude product on to an excess of NaF to form $\mathrm{NaF} / \mathrm{XeF}_{6}$ complexes. ${ }^{12}$ This mixture was heated in a dynamic vacuum at 50° to remove che impurities. $X e F_{6}$ was liberated by heating the remaining salt, $\mathrm{Na}_{2} \mathrm{XeF}_{8}$, in the range $100-150^{\circ}$.
$\mathrm{ClO}_{2} \mathrm{~F}$ was prepared by the method of Smith et al. ${ }^{13}$ from KClO_{3} and ClF_{3}. The product was purified by trap to trap distillation. SF_{4} and $\mathrm{NO}_{2} \mathrm{~F}$ were made and purified as described elsewhere. ${ }^{14,15}$

Preparation and X -Ray Structure Determinations. $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$: $\mathrm{XeF}_{6}(0.653$ mmol) was combined with $\mathrm{GeF}_{4}(0.878 \mathrm{mmol})$ at 50° for 20 minutes in a FEP U-tube which was then pumped out briefly at room temperature. The residual weight indicated the $1: 1$ compound $\mathrm{XeF}_{6} \cdot \mathrm{GeF}_{4}$ (0.636 mmol). A Debye-Scherrer photograph yielded \underline{d} spacings in agreement with those previously reported. ${ }^{1}$ The solid was handled in the dry nitrogen atmosphere of a (Vacuum Atmospheres Corp.) DRILAB.

Colorless crystals were formed upon sublimation of the microcrystalline solid at $40-50^{\circ}$ in 0.7 mm diameter quartz X-ray capillaries. These had been sealed under an atmosphere of nitrogen. Precession photographs indicated a primitive orthorhombic cell, space group Pnma or Pna2 ${ }_{1}$.

A crystal was mounted on an Enraf-Nonius CAD-4 four circle diffractometer, and accurate cell dimensions were obtained by a least-squares fit to three sets of eight symmetry-equivalent reflections with 2θ between 25 and 29°. The cell dimensions and data collection parameters are summarized in Table I.

The structure was solved by heavy-atom methods ${ }^{16}$ at the U. C. Berkeley CHEXRAY facility using full-matrix least-squares refinement procedures detailed elsewhere. ${ }^{18}$ Systematically absent reflections were eliminated from the data set and those remaining were corrected for absorption by means of the calculated absorption coefficient. A three dimensional Patterson synthesis gave peaks which were consistent with Xe atoms in Wyckoff position 4́ㅡ and Ge atoms in $4 \underline{a}$ in space group Pnmb (see Pnma, no. 62). Three cycles of least-squares refinement for $X e$ and $G e$ with isotropic thermal parameters followed by a difference-Fourier synthesis gave the locations of the fluorine atoms (four in 4c, three in 8d). Three more cycles of isotropic least-squares refinement resulted in an R-factor of 0.110 , indicating that the centric space group was probably the correct choice. Symmetry-equivalent reflections were averaged and the refinement continued with the inclusion of anisotropic thermal parameters and an extinction coefficient. ${ }^{19}$ This led to final convergence with a weighted R factor of 0.018 , unweighted $R=0.021$, standard deviation of an
observation of unit weight $=0.725$ for 65 parameters, and 437 independent data. A final difference Fourier showed no peaks with intensity greater than $0.33 \mathrm{e} / \mathrm{A}^{3}$.

The positional and thermal parameters for $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ are listed in Table II.
$\mathrm{ClO}_{2}^{+} \mathrm{GeF}_{5}^{-}: \quad \mathrm{ClO}_{2} \mathrm{~F}$ and GeF_{4}, condensed in equimolar proportions into a FEP tube, produced a pale yellow solid. This was purified by briefly subjecting it to a dynamic vacuum at 0°, followed by sublimation at 22° to a trap held at -78°. Yellow crystals were obtained by sublimation at $30-35^{\circ}$ in closed 0.5 mm . diameter quartz capillaries under an atmosphere of nitrogen.

The ready sublimation of these crystals required that the collection of data be at low temperature; an apparatus was constructed for the CAD-4 which provided a stream of dry nitrogen to maintain the crystal at $-105 \pm 10^{\circ}$ in all orientations. Apart from this modification the data collection (see Table I) and structure solution proceeded as for $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$, except that loss of the crystal following data collection precluded the application of an absorption correction. Positional and thermal parameters for $\mathrm{ClO}_{2} \mathrm{GeF}_{5}$ are included in Table II.

Refinement of intensity data for $\mathrm{ClO}_{2} \mathrm{GeF}_{5}$ led to convergence with a weighted R factor $=.068$, unweighted $R=.059$, std. dev. obs. unit wt. $=$ 3.938. The largest peak on a final difference electron density map was $.285 \mathrm{e} / \AA^{3}$.
$\mathrm{SF}_{3}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$: This compound was prepared by displacement of BF_{3} from $\mathrm{SF}_{3} \mathrm{BF}_{4}$ with GeF_{4}. The product is unstable with respect to disproportionation to $\left(\mathrm{SF}_{3}\right)_{2} \mathrm{GeF}_{6}$ and GeF_{4} at room temperature, except under liquid
(i.e., several atmospheres of) GeF_{4}, when $\mathrm{SF}_{3} \mathrm{GeF}_{5}$ can be stabilized. $\mathrm{SF}_{3} \mathrm{BF}_{4}(.35 \mathrm{mmol})$ was prepared ${ }^{14}$ by interaction of equimolar quantities of SF_{4} and BF_{3} in. FEP tubes. The compound was transferred by sublimation into a $\frac{1^{\prime \prime}}{4}$ diam. quartz tube, the end of which had been drawn down to a capillary (0.7 mm diam.). GeF_{4} (. 50 mmol) was condensed into the reactor and after one minute at 10° the BF_{3} liberated was pumped off at -126°. After two such treatments the powder was tapped down into the capillary, excess GeF_{4} condensed upon it and the capillary sealed off. The X-ray powder pattern of this material (see supplementary material, Table V) was indexed to an orthorhombic cel1, $\underline{a}=11.66(2), \underline{b}=7.69(1), \underline{c}=6.36(1) \AA$, $V=569(1) \AA^{3}, Z=4$ (consistent with Zachariasen's criterion ${ }^{20}$ of $18 \AA^{3}$ per fluorine atom). The Raman spectrum confirmed the formulation of this material as an $\mathrm{SF}_{3}{ }^{+}$salt.
$\mathrm{NO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$: $\quad \mathrm{NO}_{2} \mathrm{~F}$ and GeF_{4} were mixed at room temperature in equimolar proportions to produce a colorless vacuum-stable material, which was identified by its Raman and infrared spectra as an $\mathrm{NO}_{2}{ }^{+}$salt.

Results and Discussion

The $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$Structure. A stereo view of the $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}^{-}$structure is shown in Fig. 1. The anion consists of infinite chains of GeF_{6} octahedra which share trans vertices. The cations are arranged alternately to left and right along the chain. Each $\mathrm{XeF}_{5}{ }^{+}$cation has close contacts (2.752.76 A) to four fluorine atoms of two neighboring $\mu-F$-bridged $G e F_{6}$ groups in the chain. The coordination of the xenon atom is nearly that of a capped
square antiprism of $C_{4 v}$ symmetry. The dimensions of the cation are close to those reported previously $8,9,10,11$ for $\mathrm{XeF}_{5}{ }^{+}$salts, and for the $\mathrm{XeF}_{5}{ }^{+}$ in the cubic form ${ }^{21}$ of XeF_{6}. The μ-fluoro bridging of the anion with the cation is similar to that observed in the $\mathrm{XeF}_{5}{ }^{+} \mathrm{MF}_{6}{ }^{-}$salts $(M=\mathrm{Ru}, \mathrm{Ir}, \mathrm{Pt}) .8,9$ The bridging (and probably least negatively charged) fluorine atoms in the $\left(\operatorname{GeF}_{5}{ }^{-}\right)_{n}$ chain are apparently screened from interaction with the xenon atom by the non-bonding valence-electron pair of the latter. Note that the Ge-F-Ge linkage is kinked away from the Xe atom and its supposed sterically active non-bonding valence-electron pair. The coordination around each Ge atom is essentially an elongated octahedron of fluorine atoms, with cis F-Ge-F angles within the non-bridging fluorine GeF_{4} set being 87.9° and 92.1°, the angle between this approximately square set and the bridging fluorine atoms is a right angle within one standard deviation. All Ge-F distances within the square plane are equal at $1.745(2) \AA$, and the Ge-bridging-F distance is $1.890(1)$. This difference in length of bridging and non-bridging $M-F$ bonds of $0.14 \AA$ is similar to that observed in other systems, and is consistent with the bridging bonds being essentially one-electron bonds. ${ }^{22}$ Interactions between the chains are limited to F-F van der Wals' contacts ranging from $2.99 \AA(F 1-F 4)$ to $3.26 \AA$ (F2-F4). Selected bond lengths and angles are presented in Table III.

The $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}^{-}$. Structure. Figure 2 shows a stereo view of the $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$ structure. Here the infinite chains are formed from approximately octahedral GeF $_{6}$ units which share cis vertices; the chain is an extended helix with all germanium atoms of a chain nearly coplanar. The shortest Ge-F bonds (1.73$1.74 \AA$) are cis to the bridging fluorine atoms but those trans are only
slightly longer (1.77-1.78\%). The Ge-bridging F-distances are the same (1.887(1)) within one standard deviation. The anion chains are linked together, by the close contacts (2.54 and $2.90 \AA$) of the chlorine atoms of the cations, to fluorine atoms trans to bridging F atoms of the anionic chains. There are two crystallographically distinguishable chlorine atoms in the structure, but each lies on a twofold rotation axis. The coordination of each is shown in Fig. 3. The closest cation-to-anion contacts (Cl1-F1 and Cl2-F4) are made on the faces of the triangle defined by the two oxygen atoms and the chlorine atom. Presumably the non-bonding electron pair is in the plane of the triangle and exo to it at the Cl apex. The screening of the cation charge by the Cl non-bonding electron pair is the probable cause of the long Cl to F contacts in the plane of the ClO_{2} triangle, which contrast with the short Cl to F contacts roughly perpendicular to that plane. This differs from the coordination of the $\mathrm{CRF}_{2}{ }^{+}$ion. As Lynton and Passmore point out in their discussion of the $\mathrm{ClF}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$structure ${ }^{23}$ (and this view is supported by ab initio calculations ${ }^{24}$ for the free $\mathrm{ClF}_{2}{ }^{+}$ion), the $\mathrm{ClF}_{2}{ }^{+}$ion is a slightly diṣtorted $\mathrm{ClF}_{2} \mathrm{E}_{2}$ tetrahedron. In the $\mathrm{ClF}_{2}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$structure and also that ${ }^{25}$ of $\mathrm{ClF}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$the closest anion-tochlorine contacts are made on the FE_{2} faces of the tetrahedron, giving a distorted square planar arrangement of fluorine atoms about each Cl atom.

A summary of bond distances and angles for $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$is presented in Table IV.

> Vibrational Analysis of Salts Containing the GeF_{5}^{-}Ion. The Raman and infrared spectra of the GeF_{5}^{-}salts of $\mathrm{XeF}_{5}^{+}, \mathrm{NO}_{2}^{+}$, and SF_{3}^{+}are shown in Figures 4 and 5 .
$\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$. Assignments for the XeF_{5}^{+}ion in $\mathrm{XeF}_{5}^{+} \mathrm{GeF}_{5}^{-}$are given in Table VI. In polarized Raman spectra recorded from a single crystal, the cation stretching bands which transform as A_{g} in the point group of the crystal $\left(D_{2 h}\right)$ are most intense for the $I_{v v}$ polarization. The correlation $\underline{D}_{2 \underline{h}} \rightarrow C_{s} \rightarrow \underline{C}_{4 \underline{v}}$ shows that these are the A_{1}, B_{2}, and E modes of the approximately $\underline{C}_{4 \underline{v}}^{-} \mathrm{XeF}_{5}^{+}$ion; hence the bands at 669,622 , and $602 \mathrm{~cm}^{-1}$ are attributed to the $v_{1}\left(A_{1}\right), v_{4}\left(B_{2}\right)$, and $v_{2}\left(A_{1}\right)$ modes, respectively. The other Raman and infrared bands are assigned by analogy to published spectra of $X_{e f}{ }_{5}^{+}$salts. ${ }^{26,27}$ The assignments have been made according to the approximate $\underline{C}_{4 \underline{v}}$ symmetry of the ion, but since the crystallographic symmetry is C_{S}, the degeneracy of the E modes ought to be lifted.

Since the germanium atoms in $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}^{-}$lie on crystallographic inversion centers, the Raman and infrared spectra are mutually exclusive for $\left(\mathrm{GeF}_{5}\right)_{n}^{n-}$; it is important to note also that the Raman-active modes will involve no motion of the germanium atoms. To simplify the enumeration of the vibrations of the $\left(\mathrm{GeF}_{5}\right)_{n}^{n-}$ chain, the normal modes of the square plane formed by the germanium and four non-bridging fluorine atoms are considered separately from those of the germanium and the bridging F atoms. For a $G e F_{4}$ square plane of $\underline{D}_{4} \underline{h}$ symmetry we expect seven vibrations, of which three are stretching modes: $v_{7}\left(A_{1 g}\right), v_{4}\left(B_{2 g}\right)$, and $v_{7}\left(E_{u}\right)$. The v_{7} vibration should be the most intense, but since a Ge-F bond is less easily polarized than an Xe-F bond, its intensity in the Raman will be rather low. Thus ν_{7} is assigned to the band at $654 \mathrm{~cm}^{-1}$. The v_{4} stretch is not as firmly assigned, but by comparison with the same type
of vibration ${ }^{28}$ in $\mathrm{GeF}_{6}{ }^{2-}$ we associate it with the weak band found at $463 \mathrm{~cm}^{-1}$. On similar grounds the doublet at $339,331 \mathrm{~cm}^{-1}$ is attributed to the deformational modes of the square GeF_{4} group. The v_{7} stretch, observable only in the infrared, is found at $700 \mathrm{~cm}^{-1}$. The other vibrations of the square GeF_{4} group, also infrared-active, are of a frequency too low ($<300 \mathrm{~cm}^{-1}$) to be observed.

The remaining bands must arise, therefore, from vibrations of the infinite chains. In the $500-600 \mathrm{~cm}^{-1}$ region, the observed infrared (600 and $500 \mathrm{~cm}^{-1}$) and Raman bands (518 and $526 \mathrm{~cm}^{-1}$) are attributed to chain stretching modes. Chain-square plane deformational ($381 \mathrm{~cm}^{-1}$) and torsionalrotational modes ($184,124 \mathrm{~cm}^{-1}$) are also seen in the Raman.
$\mathrm{ClO}_{2}^{+} \mathrm{GeF}_{5}{ }^{-}$. The cation and anion bands for $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}^{-}$are shown in Table VI. The frequencies observed for $\mathrm{ClO}_{2}{ }^{+}$correspond well to those given previously by Christe and his coworkers. 29

Because the anion in $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$. consists of infinite chains of octahedra which share cis-vertices, its symmetry is lower than that of the trans-bridged anion found in $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$, and the IRRaman selection rules are not very restrictive. If one considers the group formed by the germanium and four non-bridging fluorine atoms, it approaches $C_{2 v}$ symmetry with four stretching modes which transform as $2 A_{1}+B_{1}+B_{2}$, all active in both infrared and Raman. Those of type A_{1} are primarily observable in the Raman, while those of type B_{1} and B_{2} will be most intense in the infrared. There-
fore we assign the IR bands at 695 and $650 \mathrm{~cm}^{-1}$ to the B_{1} and B_{2} vibrations, and the most intense Raman band ($657 \mathrm{~cm}^{-1}$) to the in-phase symmetric stretch $\left(A_{1}\right)$ of the GeF_{4} group. The bands between 500 and $600 \mathrm{~cm}^{-1}$ may then be attributed to the stretching modes of the chain. By analogy to the vibrational frequencies of the trans-bridged $\left(\mathrm{GeF}_{5}\right)_{n}{ }^{\mathrm{n}-}$ ion in $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$, we assign the $395,399 \mathrm{~cm}^{-1}$ band to a deformation of the angle between the GeF_{4} group and the bridging fluorines; the bands between 290 and $337 \mathrm{~cm}^{-1}$ are attributed to deformations of the GeF_{4} group, and the lower frequency bands (133 to $232 \mathrm{~cm}^{-1}$) to torsional and rotational motions of the infinite chains.

The published spectra ${ }^{3}$ of $\mathrm{O}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$are similar to those of $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{+}$. It is therefore probable that the anion has nearly the same structure in both compounds.

The $\mathrm{NO}_{2}^{+}, \mathrm{SF}_{3}{ }^{+}$and $\mathrm{NF}_{4}{ }^{+}$Salts of $\mathrm{GeF}_{5}{ }^{-}$. The vibrational spectra and assignments for the NO_{2}^{+}and SF_{3}^{+}salts are given in Table VI. Both compounds show Raman bands in the chain stretching region (507, $583 \mathrm{~cm}^{-1}$ in $\mathrm{SF}_{3}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$ and $501,606 \mathrm{~cm}^{-1}$ in $\mathrm{NO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$), indicating polymeric, ciss-bridged $\left(\mathrm{GeF}_{5}\right)_{n}{ }^{\mathrm{n}-}$ ions. Both compounds have a vibration of medium intensity near $500 \mathrm{~cm}^{-1}$ and a particularly simple bond bending region with only one strong band at $355 \mathrm{~cm}^{-1}$. For this reason we conclude that the anions are structurally similar, and yet different from $\left(\mathrm{GeF}_{5}\right)_{n}{ }^{\mathrm{n-}}$ in $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$, wherein the infinite chains of bridged octahedra form an extended helix with the Ge atoms nearly coplanar. The anion in $\mathrm{NF}_{4}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$, because its vibrational spectra ${ }^{4}$ are very like those of $\mathrm{NO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$, is probably of the same structural type.
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}^{+} \mathrm{GeF}_{5}^{-}$. The Raman and infrared spectra of the tetrabutylammonium salt, first prepared by Wharf and Onyszchuk ${ }^{2}$, are shown in Figure 6. The vibrations of the anion may be readily assigned on the basis of $\underline{D}_{3} \underline{h}$ symmetry, from selection rules and by comparison to other $M X_{5}$ species. The v_{7} band (IR and Raman active) which we expect to find near $100 \mathrm{~cm}^{-1}$, is obscured by a band of the tetrabutylammonium ion at $117 \mathrm{~cm}^{-1}$. In measuring the intensity of this band relative to the tetrabutylammonium band at $260 \mathrm{~cm}^{-1}$ in this compound and in $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}^{+} \mathrm{Br}^{-}$, we find that its intensity is enhanced in the $\mathrm{GeF}_{5}{ }^{-}$ salt. It seems therefore that the v_{7} vibration of $\mathrm{GeF}_{5}{ }^{-}$should be located near $117 \mathrm{~cm}^{-1}$. The vibrational assignments for GeF_{5}^{-}in $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) 4_{4}^{\mathrm{N}^{+} \mathrm{GeF}_{5}}$ - are given in Table VII, and assignments for other $\mathrm{MX}_{5}{ }^{-}$species are tabulated for comparison.
General Discussion. Onyszchuk and his coworkers ${ }^{2}$ had previously established that the monomeric $\mathrm{GeF}_{5}{ }^{-}$, of $\underline{\mathrm{D}}_{3} \underline{\mathrm{~h}}$ symmetry, is stabilized by large mono-cations. It seems that such cations cannot make the close anion-cation contacts necessary to sustain a clustered anion arrangement. It is pertinent to examine why such large cations do not sustain relatives of the $\left[\mathrm{XeF}_{5}\right]_{n}^{+}\left[\mathrm{GeF}_{5}\right]_{n}^{-}$structure.

Clearly the effective diameter of a cation in the $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ structure cannot exceed the span of an atomic sequence $F_{b}-G e-F_{b}-G e-F_{b}$. By allowing linear bridge bonds ($\mathrm{Ge}-\mathrm{F}_{\mathrm{b}}-\mathrm{Ge}=180^{\circ}$) this span can be maximized to $\sim 7.6 \AA$, thus accommodating large cations. A cation such as tetra-n-butyl ammonium however (which has a minimum effective radius 30 of 4.1 \&) would require appreciable stretching and weakening of the bridge bonds. But there
may be another factor contributing to the instability of the chain structure with a such a large cation. The closest approach of the center of any cation, to any atom of the chain, would be the sum of the large-cation radius and the van der Waals radius of the closest atom of the chain. Although $\mathrm{XeF}_{5}{ }^{+}$is a large cation (with an effective volume of $\sim 95 \AA^{3}$) it is highly unsymmetrical. As has been pointed out previously ${ }^{9,10}$ the positively charged xenon atom is effectively screened by the five F ligands and by the Xe-valence-electron pair, which is situated on the four-fold axis of the cation, trans to the axial ligand. The positive charge of the Xe atom is exposed on the pseudo-octahedral faces defined by the Xe-valence electron pair, and pairs of adjacent equatorial F ligands of the cation. It is very much a one-sided cation. This accounts for the short contacts between each Xe atom and four (two sets at 2.75 and $2.76 \AA$) F ligands of the $\left(\mathrm{GeF}_{5}^{-}\right)_{n}$ chain.

The development of the $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ structure appears to be a consequence (given the tendency of GeF_{5}^{-}to polymerize) of the cation to interact strongly with four anionic ligands, all on one side of it. This results in the cation interacting with two non-bridging (and hence more negative) F ligands of each of two F-bridged $\left[\mathrm{GeF}_{4}\right]$ units. The repulsive effect of the Xe-valence-electron pair, causes the bridging F ligand to be pushed away from the cation (this $\mathrm{Xe}-\mathrm{F}$ distance is $3.890(3) \AA$). These interactions, combined with the requirements that the cations be separated to maximum extent, and that the F ligand configuration about Ge be approximately octahedral, account for the observed structure.

That the $\mathrm{ClO}_{2} \mathrm{GeF}_{5}$ and $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ structures are different is presumably a consequence of the different interactive geometries of the cations. The $\mathrm{ClO}_{2}{ }^{+}$
has a cl-valence-electron pair (on the twofold axis, opposite the 0 ligands) and the structure reveals that the Cl atom does not make close contacts to anionic ligands in this direction. Unlike $\mathrm{XeF}_{5}{ }^{+}$however, the $\mathrm{ClO}_{2}{ }^{+}$makes two strong, almost centrosymmetric interactions with anionic ligands. These are approximately normal to the ClO_{2} plane. To accommodate such approximately centrosymmetric interactions of the cation with the $\left(\mathrm{GeF}_{5}{ }^{-}\right)_{n}$ chain of $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ type, would require the Cl atom to be brought closer to the bridging Fl ligands of the anion, than to other F.ligands of the GeF_{6} polyhedra. Clearly such a structure is not tenable for the $\mathrm{ClO}_{2}{ }^{+}$. Thus the observed structure, with its cis-bridging ligand configuration for the $\left[\mathrm{GeF}_{6}\right]$ unit must be an accommodation to the cation coordination requirements. The $\mathrm{NO}^{+}\left[\right.$Ref. 31] and O_{2}^{+}salts presumably adopt the same kind of structure because they also are able to interact approximately centrosymmetrically with anions.

Evidently the choice of cis versus trans bridging for polymerized $\mathrm{GeF}_{5}{ }^{-}$ is one of energetic subtlety. Indeed both bridging modes occur ${ }^{32}$ in SrAlF_{5}. The vibrational data show that the $\mathrm{NO}_{2}{ }^{+}, \mathrm{NF}_{4}{ }^{+}$and $\mathrm{SF}_{3}{ }^{+}$stabilize yet another polymeric form of $\left(\mathrm{GeF}_{5}{ }^{-}\right)_{n}$, although again, as in $\mathrm{ClO}_{2} \mathrm{GeF}_{5}$, the polymer must be cis bridged. Whether it is another chain or a ring is not clear, but the same form appears to be common to all.

Although the bridging Ge-F-Ge angles in $\mathrm{XeF}_{5} \mathrm{GeF}_{5}$ and $\mathrm{ClO}_{2} \mathrm{GeF}_{5}$ are similar, we believe that this coincidence is accidental. There is a systematic trend in related transition metal M-F-M bridging angles, such as those observed in the pentafluorides, ${ }^{22}$ but similar trends for non-transition elements appear
not to exist. Thus Edwards and Taylor ${ }^{33}$ in their structure of crystalline SbF_{5}, have found $\mathrm{Sb}-\mathrm{F}-\mathrm{Sb}$ angles of both 141° and 170°. Also, in $\mathrm{BrF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$ Lind and Christe ${ }^{34}$ found $\mathrm{Sb}-\mathrm{F}-\mathrm{Sb}=173 \pm 6.4^{\circ}$, whereas Bartlett and his coworkers ${ }^{35}$ found the $\mathrm{Sb}-\mathrm{F}-\mathrm{Sb}$ angle in $\mathrm{XeF}_{3}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$to be 155.4(2)${ }^{\circ}$. In $\alpha-\mathrm{BiF} \mathrm{F}_{5}$, the linear chain polymer ${ }^{36}$ involves $\mathrm{Bi}-\mathrm{F}-\mathrm{Bi}=180^{\circ}$.

Acknowledgements: This work was supported in part by the Committee on Research of the University of California, Berkeley and by the Director, Chemical Sciences Division of the U. S. Department of Energy under Contract Number DE-AC02-76SF00098. One of us (B.D.) also wishes to thank C.N.R.S. for support during a period of leave from Laboratoire de Spectroscopic Infrarouge et Raman, Universite de Bordeaux I. The X-ray diffraction studies were carried out with the assistance of Dr. F. Hollander and the facilities of the U.C. Berkeley CHEXRAY.

References

1. Pullen, K.; Cady, G. Inorg. Chem. $\underset{\sim}{1967}, \underline{6}, 1300$.
2. Wharf, I.; Onyszchuk, M. Can. J. Chem. $\underset{\sim}{1970}, 48,2250$.
3. Christe, K.; Shack, C.; Wilson, R. Inorg. Chem. $\underset{\sim}{1976}, \underline{15}, 1275$.
4. Christe, K.; Wilson, R.; Goldberg, I. Inorg. Chem. $\underset{\sim}{1976 \sim}$, 15, 1271.
5. Bertaut, E. F. J. Phys. Radium 1952, 13, 499.
6. Templeton, D. H. J. Chem. Phys. 1955, 21, 1629.
7. Following paper, this journal.
8. Bartlett, N.; Einstein, F.; Stewart, D.F.; Trotter, J. J. Chem. Soc., Chem. Commun., $\underset{\sim}{\text { 1966, }}$ 550, and J. Chem. Soc., (A) $\underset{\sim}{1967}, 1190$.
9. Bartlett, N.; Gennis, M.; Gibler, D. D.; Morrell, B. K.; Zalkin, A. Inorg. Chem. ${\underset{\sim}{97 N}}_{1973}$, 12, 1717.
10. Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1726.
11. Bartlett, N.; DeBoer, B. G.; Hollander, F. J.; Sladky, F. 0.; Templeton, D. H.; Zalkin, A. Inorg. Chem. 1974 , 13, 780.
12. Sheft, I.; Spittler, T. M.; Martin, F. H. Science $\underset{\sim}{1964}$, 145, 701.
13. Smith, D. F.; Begun, G. M.; Fletcher, W. H. Spectrochim. Acta $\underset{\sim}{1964 \sim}$, 20, 1763.
14. Bartlett, N.; Robinson, P. L. Chem. and Ind. $\underset{\sim}{\text { 1956~ }} 1351$ and J. Chem. Soc. 1961, 3417.
15. Aynsley, E.; Hetherington, G.; Robinson, P.L. J. Chem. Soc. 1954, 1119.

References

16. The quantity minimized in least-squares refinement was $\Sigma W\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$ where $w=4 F_{0}^{2} / \sigma\left(F_{0}{ }^{2}\right)+\left(p F_{0}{ }^{2}\right)^{2}, \sigma\left(F_{0}{ }^{2}\right)$ being the standard deviation and F_{0}^{2} and p being a pivot factor (taken as .03) used to decrease the weight of intense reflections. Scattering factors for neutral atoms corrected for anomalous scattering were used. ${ }^{17}$ The residuals were calculated as

$$
\begin{aligned}
R= & \frac{\Sigma\left|\left|F_{0}\right|-\left|F_{c}\right|\right| ; R_{w}}{\Sigma\left|F_{0}\right|}=\left(\frac{\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}}{\Sigma w\left|F_{0}\right|^{2}}\right)^{1 / 2} \text {, e.s.d.o.u.w. }= \\
& \left(\frac{\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}}{\left(n_{0}-n_{v}\right)}\right)^{1 / 2},
\end{aligned}
$$

where n_{0} is the number of observations and n_{v} the number of variables.
17. "International Tables for X-ray Crystallography"; Kynoch Press, Birmingham, England, 1974, Vol. IV.
18. Bleecke, J.; Burch, R.; Coulman, C.; Schardt, B. Inorg. Chem. $\underset{\sim}{1981}$, 20, 1316.
19. The form of the correction for secondary extinction is $\left|F_{\text {corr }}\right|=\left|F_{0}\right|$ $\left(1+g I_{C}\right)$.
20. Zachariasen, W. H. Acta Crystallogr. 19~~~~, 2, 390.
21. Burbank, R. D.; Jones, G. R.; Science $\underset{\sim}{1970}, \underline{\sim}$ 168, 248.
22. Morrell, B. K.; Zalkin, A.; Tressaud, A.; Bartlett, N. Inorg. Chem. 1973, 12, 2640.
23. Lynton, H.; Passmore, J. Can. J. Chem. 1971, 49, 2539.

References

24. Ungemach, S. R.; Schaefer, H. F., III, J. Am. Chem. Soc. 1976, 98, 1658.
25. Edwards, A. J.; Sills, R. J. C. J. Chem. Soc. (A) $\underset{\sim}{1970}, 2697$.
26. Adams, C. J.; Bartlett, N. Israel J. of Chem. 1978, 17, 114.
27. Christe, K. O.; Curtis, E. C.; Wilson, R. D. J. Inorg. Nucl. Chem. Supplement, $\underset{\sim}{\text { 1976 }}$, 159.
28. Begun, G. M.; Rutenberg, A. C. Inorg. Chem. $\underset{\sim}{\text { 19~~ }}$, 6, 2212.
29. Christe, K. O.; Shack, C. J.; Pilipovich, D.; Sawodny, W. Inorg. Chem. 1969, 8, 2489.
30. Kitaigovodsky, A. I. "Molecular Crystals and Molecules"; Academic Press: New York and London, 1973, pp. 18-21.
31. NOGeF_{5} prepared from $(\mathrm{NO})_{2} \mathrm{GeF}_{6}$ plus GeF_{4} at 220° resembled $\mathrm{O}_{2} \mathrm{GeF}_{5}$ in its vibrational spectra whereas NOGeF_{5} prepared from the same reactants in SO_{2} solution at -20° showed siightly different vibrational spectra.
32. Von der Mühl1, R.; Andersson, S.; Galy, J. Acta Cryst. B $\underset{\sim}{1971}$, 27, 2345.
33. Edwards, A.; Taylor, P. J. Chem. Soc. (D) $\underset{\sim}{1971}$, 1376.
34. Lind, M. D.; Christe, K. O. Inorg. Chem. $\underset{\sim}{\text { 19~~ }}$, 11, 608.
35. McKee, D. E.; Zalkin, A.; Bartlett, N. Inorg. Chem. ${\underset{\sim}{2}}_{\text {1973 }}$, 12, 1713.
36. Beattie, I. R.; Gilson, T.; Livingston, K.; Fawcett, V.; Ozin, G. A. J. Chem. Soc. (A) $\underset{\sim}{1967}$, 712. Fischer, J.; Rudzitis, E. J. Am. Chem. Soc. $\underset{\sim}{1959}$, 81, 6375.

	Table I: Crystallographic Data	
	$\mathrm{XeF}_{5} \mathrm{GeF}_{5}$	$\mathrm{ClO}_{2} \mathrm{GeF}_{5}$
Grystal dimensions:	$.15 \times .14 \times .10 \mathrm{~mm}$. $30 \times .10 \times .10 \mathrm{~mm}$
Space group:	Pmnb (non-std. setting of Prma, \#62)	$\mathrm{C}_{2} 2_{1}$
Volume (A^{3}) :	$\begin{array}{ll} \text { 683.9(5) } & Z=4 \\ & \text { calc } d=3.825 \end{array}$	$\begin{aligned} & 987.0(4) \quad Z=8 \\ & \quad c a l c^{\prime} d=3.163 \end{aligned}$
Cell dimensions (A) :	$\begin{aligned} & \frac{a}{b}=7.119(2) \\ & \frac{b}{c}=12.986(4) \\ & \underline{c}=7.398(1) \end{aligned}$	$\begin{aligned} & \frac{a}{b}=14.6480(15) \\ & \frac{b}{c}=7.5762(11) \\ & =8.8941(15) \end{aligned}$
radiation:	MoK $_{\alpha}$, monochromatized $(\lambda=$	$71073 \AA^{-}$
2θ range :	$2-45^{\circ}$	
hkl range:	+h, $+\mathrm{k}, \pm 1$	$-h,+k, \pm 1 \quad h+k=2 n$
scan mode:	$\theta-2 \theta$	
background:	. $25 \times \Delta \hat{\theta}$, where	. $70+.347 \tan \theta$
scar rate:	variable, maximum 5	sec.
absorption coefficient (f):	$98.9 \mathrm{~cm}^{-1}$	--
transmission:	29.4\% max., 11.7\% min.	--
orientation and intensity stds.:	$(272),(442),(124)$ every 250 reflections--no decay	$(\overline{3} 15),(\overline{8} 21),(\overline{4} 42)$ every hour--no decay
reflections measured:	1054	645

$$
\begin{aligned}
& \frac{B(1,3)}{0.0000(0)} \\
& -0.0006(2) \\
& -0.0013(6) \\
& -0.0001(7) \\
& 0.0000(0) \\
& 0.0000(0) \\
& -0.0053(8) \\
& 0.0000(0) \\
& 0.0000(0)
\end{aligned}
$$

$B(2,3)$
$0.00004(2)$
$0.0025(8)$
$-0.0004(9)$
$0.006(2)$
$0.000(0)$
$-0.005(2)$
$-0.002(2)$
$-0.001(1)$
$0.004(2)$
$0.000(2)$
$-0.000(2)$

$\operatorname{EXP}\left(-\left[B(1,1) \times h^{2}+B(2,2) \times k^{2}+B(3,3) \times \ell^{2}+B(1,2) \times h k+B(1,3) \times h \ell+B(2,3) \times k \ell\right]\right)$

Table III. Selected Internuclear Distances and Angles for $\mathrm{XeF}_{5}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$

Distances:

| Ge F1 | $1.745(2)$ | Xe F3 | $3.890(3)$ |
| :--- | :--- | :--- | :--- | :--- |
| Ge F2 | $1.745(2)$ | Xe F4 | $1.828(5)$ |
| Ge F3 | $1.890(1)$ | Xe F5 | $1.831(3)$ |
| Xe F1 | $2.752(3)$ | Xe F6 | $1.826(4)$ |
| Xe F2 | $2.764(3)$ | Xe F7 | $1.813(4)$ |

Angles:

F1-Ge-F1 180	F5-Xe-F5	$158.26(20)$	
F1-Ge-F2	$87.86(13)$	F5-Xe-F6	$88.18(11)$
F1-Ge-F3	$90.07(13)$	F5-Xe-F7	$79.13(10)$
F2-Ge-F2	180	F6-Xe-F7	$79.70(23)$
F2-Ge-F3	$90.48(13)$	Ge-F3-Ge	$140.70(20)$
F4-Xe-F5	$88.25(12)$	Xe-F1-Ge	$109.09(12)$
F4-Xe-F6	$160.94(21)$	Xe-F2-Ge	$108.58(11)$
F4-Xe-F7	$81.25(24)$		

$\underline{\text { Table IV - Selected Bond Lengths and Angles for } \mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}{ }^{-}}$

Ge - F1	$1.776(3)$	Cl1 - 54	$2.898(4)$
Ge - F2	$1.887(1)$	Cl1 - 01	$1.401(5)$
Ge - F3	$1.728(3)$	Cl2 - F1	$2.837(4)$
Ge - F4	$1.768(3)$	Cl2 - F4	$2.625(3)$
Ge - F5	$1.737(4)$	Cl2 - F5	$2.900(4)$
Ge - F6	$1.888(2)$	Cl2 - 02	$1.396(5)$
$C l 1-F 1$	$2.539(3)$		

F1 - Ge - F2	$91.57(12)$	$F 3-G e-F 5$	$172.92(17)$
$F 1-G e-F 3$	$91.97(18)$	$F 3-G e-F 6$	$86.89(16)$
$F 1-G e-F 4$	$94.60(17)$	$F 4-G e-F 5$	$93.31(16)$
$F 1-G e-F 5$	$91.66(18)$	$F 4-G e-F 6$	$90.04(18)$
$F 1-G e-F 6$	$175.26(18)$	$F 5-G e-F 6$	$88.99(15)$
$F 2-G e-F 3$	$87.59(16)$	$01-C l 1-01$	$119.5(4)$
$F 2-G e-F 4$	$173.82(14)$	$02-C \ell 2-02$	$119.5(4)$
$F 2-G e-F 5$	$86.24(16)$	$G e-F 2-G e$	$143.2(2)$
$F 2-G e-F 6$	$83.79(15)$	$G e-F 6-G e$	$148.1(3)$
$F 3-G e-F 4$	$92.46(16)$		

Table V - X-ray Powder Data for $\mathrm{SF}_{3}{ }^{+} \mathrm{GeF}_{5}{ }^{-}$

line \#	intensity*	$10^{4} / \mathrm{d}^{2}$ (obs)	$10^{4} / \mathrm{d}^{2}(\mathrm{calc})$	h	k
1	s	167	170	0	1
2	w	245	244	1	1
3	s	416	418	0	1
4	s	465	468	2	1
5	S	669	671	3	0
6	S	703	717	2	1
7	s	761	755	1	2
8	m	912	919	3	0
9	w	1095	1090	3	1
10	m	1167	1163	0	1
11	m, broad	1281	1292	2	0
12	m	1417	1442	4	0
13	w	1516	1530	0	3
14	vw	1589	1600	3	2
15	w	1662	1665	3	0
16	w	1788	1779	0	3
17	w, broad	1889	1874	4	2
18	w, broad	2115	2113	5	0

* Cuk $\bar{\alpha}$ radiation, $\lambda=1.5418 \AA \quad \begin{aligned} & s=\text { strong } \\ & m=\text { medium }\end{aligned} \quad \begin{aligned} & w=\text { weak } \\ & v w=\text { very weak }\end{aligned}$
orthorhombic, $\underline{a}=11.66(2), \underline{b}=7.69(1), \underline{c}=6.36(1) \AA$

Table VII - Vibrational Assignments for $\overline{G e F}_{5}^{-}$in $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Ge}_{5}^{-}$

	$\mathrm{GeF}_{5}{ }^{-}$(this work)		SiF_{5}^{-}(ref. 25)	GeCl_{5}^{-}(ref. 26)
$v_{1}\left(\mathrm{~cm}^{-1}\right)$	665	.	708	348
$v_{2}\left(\mathrm{~cm}^{-1}\right)$	520		519	236
$\nu_{3}\left(\mathrm{~cm}^{-1}\right)$	654		785	310
$\nu_{4}\left(\mathrm{~cm}^{-1}\right)$	345		481	200
$\nu_{5}\left(\mathrm{~cm}^{-1}\right)$	690	-	874	395
$\nu_{6}\left(\mathrm{~cm}^{-1}\right)$	317		449	200
$v_{7}\left(\mathrm{~cm}^{-1}\right)$	~ 117		-	-
$v_{8}\left(\mathrm{~cm}^{-1}\right)$	337		-	-

XBL 835-9962

Figure 3. Chlorine Coordination Environments in $\mathrm{ClO}_{2}{ }^{+} \mathrm{GeF}_{5}^{-}$

XBL 835-9970

Figure 4. Raman Spectra of GeF_{5}^{-}Salts

XBL 835-9971

Figure 5. Infrared Spectra of GeF_{5}^{-}Salts

XBL 835-9966

Figure 6. Raman and Infrared Spectra of $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{GeF}_{5}{ }^{-}$

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

[^0]: This work was supported in part by the Committee on Research of the University of California, Berkeley and by the Director, Chemical Sciences Division of the U. S. Department of Energy under Contract Number DE-AC03-76SF00098.

