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ABSTRACT OF THE DISSERTATION

Koszulity of Directed Graded k-linear Categories
and Their Quadratic Dual

by

Jordan Christopher Tousignant

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2018
Dr. Wee Liang Gan, Chairperson

We define a family of categories FZ;' 4 related to the category FZ of finite sets and injective
functions. We show that the k-linearizations of these categories are Koszul, where k is a field of
characteristic 0, using the language of directed graded k-linear categories. We also describe their

quadratic dual categories in special cases.
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1. INTRODUCTION

1.1. Motivation.
Before we introduce examples of the categories under consideration, we need to introduce some
notation from [SS].
Let
GL = GL(c0) = limGL(n) = [1GLmn)/ ~

n>1
be the direct limit of the groups GL(n) of invertible n X n invertible matrices under upper left
corner inclusion. Let V = C* be a countable dimensional complex vector space. Then GL acts on
V by left multiplication. Let GA = GA(o0) be the subgroup of GL stabilizing a nonzero linear map
t : V — C which annihilates all but finitely many basis vectors. Let O = O(o0) be the subgroup of
GL stabilizing a nondegenerate symmetric bilinear form w : V' x V' — C such that e; is orthogonal

to all but finitely many e;. Given a category C, let Modfc be the category of functors of finite length

from C to the category of complex vector spaces.

Example 1.1.1. Let FZ be the category of finite sets and injective functions. S. Sam and A.
Snowden call this the “upwards subset” category and denote it by (us); the opposite category is
called (ds) for “downwards subset”. They define a category ReppOI(GA) of polynomial representa-
tions of GA, i.e. those appearing as a subquotient of a finite direct sum of various tensor powers of
V. They describe a functor K : (ds) — RepP®(GA), which gives rise to an equivalence of categories

Modgus) — RepP® (G A) [SS, Corollary 5.2.4].

Example 1.1.2. Let FZM be the category of finite sets and injective functions that are equipped
with a perfect matching on the complement of the image. S. Sam and A. Snowden call this the “up-
wards Brauer” category and denote it by (ub); the opposite category is called (db) for “downwards
Brauer”. They define a category Rep(O) of algebraic representations of O, i.e. those appearing
as a subquotient of a finite direct sum of various tensor powers of V. They describe a functor
K : (db) — Rep(O), which gives rise to an equivalence of categories Modiub) — Rep(0) [SS, Corol-
lary 4.2.7].



Example 1.1.3. Let FZM,, be the category whose objects are pairs of finite sets and whose
morphisms are injective functions that are equipped with a perfect bipartite matching on the com-
plement of the image. S. Sam and A. Snowden call this the “upwards walled Brauer” category and
denote it by (uwb); the opposite category is called (dwb) for “downwards walled Brauer”. They de-
fine a category Rep(GL) of algebraic representations of GL, i.e. those appearing as a subquotient of
a finite direct sum of various tensor powers of V' and its restricted dual V.. They describe a functor
K : (dwb) — Rep(GL), which gives rise to an equivalence of categories Modguwb) — Rep(GL) [SS,
Corollary 3.2.12].

Example 1.1.4. Let FZM., be the category whose objects are pairs of finite sets and whose
morphisms are injective functions that are equipped with a perfect bipartite matching on the com-
plement of the image, such that each element of the domain and of the matching is either “marked”
or “unmarked”. The opposite category (FZM,, ) is used by D. Grantcharov and V. Serganova to
diagrammatically describe Homg ooy (77, T™%) [GS, Section 5], where q(c0) is a certain Lie superal-
gebra of linear operators in End(V)®End(W), with V and W being countable dimensional complex

super vector spaces equipped with a certain bilinear form W x V — C, and T™" = VO™ @ W®n,

Thus, each of these four “diagram” categories are used to describe morphisms between tensor
powers of certain countable dimensional representations of GA, O, GL, and q(cc), over C.

E. Dan-Cohen, I. Penkov, and V. Serganova proved that the C-linearization of FZM is Koszul
using the language of tensor representations of the infinite dimensional orthogonal Lie algebra o(co)
[DPS, Theorem 5.5].

W. L. Gan and L. Li proved that the k-linearizations of FZ and several other related categories
are Koszul, when k is a field of characteristic 0 [GL, Corollary 5.12]. They use the framework of
Koszul theory for directed graded k-linear categories, which we will utilize to establish our results
here.

In this paper, we shall define a 3-parameter family of categories FZI} 4, which include the
above four categories as special cases. We give a direct proof that the k-linearization of FIj 4
is Koszul when k is a field of characteristic 0. We also describe the quadratic dual category of the

k-linearization of FZ}' 4, under a certain restriction on the parameter ¢.



1.2. Notation and conventions.

Let N be the set of positive integers, and Ny be the set of non-negative integers. For any n € Ny,
let [n] = {1,...,n}; in particular, [0] = @. We use II to denote the disjoint union of sets, and LI
to indicate the union of sets that happen to be disjoint. We write C to signify C. For us, k will
always denote a field. For any k-vector space V, we write V* for its dual space Homy(V, k). For
any finite set S = {s1,..., sm}, we write kS for the m-dimensional k-vector space with basis S (if
S = {s} has only one element, we will write ks instead of k{s}). Also, we denote by det(S) the 1
dimensional k-vector space A" kS; in particular, det(@) = k. We denote by k-Mod the category
of k-vector spaces, and by k-gMod the category of Ng-graded k-vector spaces whose morphisms are
homogeneous of some fixed degree. By a category C we mean a small category. We write X € C
to mean X € Ob(C). Given X,Y € C, we write C(X,Y) for the set of morphisms in C from X to
Y. The composite of two morphisms f € C(X,Y) and g € C(Y, Z) is written as gf € C(X, Z). We

denote by 1x the identity morphism of X € C.

2. PRELIMINARIES

2.1. Directed graded k-linear categories.

Given a category C and a field k, the k-linearization of C is the category C having Ob(C) = Ob(C)
and C(X,Y) = kC(X,Y) for any X,Y € C. A k-linear category is a category C enriched over k-Mod.
Thus, the k-linearization C of a category C is a k-linear category. We shall denote k-linear categories
by C rather than C. A graded k-linear category is a category C enriched over k-gMod. In particular,
C(X,Y) = @,5,C(X,Y); for any X,Y € C. We shall refer to f € C(X,Y); as a morphism of
degree i. By letting C; = @y ycc C(X,Y); for each i > 0, we get a graded k-algebra B, C; whose
multiplication is given by composition of morphisms. A k-linear category C is directed if there is a
partial order < on Ob(C) such that whenever C(X,Y") # 0, we have X < Y. A full subcategory D
of a directed k-linear category C is convez if for any X,Y,Z € C satisfying X <Y < Z, we have
Y € D whenever X,Z € D. The convezx hull of a given set S C Ob(C) is the smallest convex full

subcategory of C containing S.



Definition 2.1.1. We say that C is a directed graded k-linear category if C is a graded k-linear
category that is directed, and which satisfies the following additional conditions:
A1) C(X,Y) is finite dimensional as a k-vector space for every X,Y € C;
A2) C(X, X) is semisimple as a k-algebra for every X € C;

A3)if X #Y, then C(X,Y)o = 0;

>

)

)

4) for every X € C and i > 0, we have C(X, X); = 0;

A5) for each X € C, there are only finitely many Y € C such that C(X,Y); # 0 or C(Y, X);1 # 0;
)€
)

A6 Q'] == Qi+1 for every 7 2 O,

(
(
(
(
(
(
(A7) the convex hull of any finite set S C Ob(C) contains only finitely many objects.

Note 2.1.2. By conditions (A3) and (A4), a directed graded k-linear category C is skeletal.
To see this, let f € C(X,Y) be an isomorphism. Then there exists f~! € C(Y, X) such that
f7lf = 1x € C(X,X)o. Since morphisms in C are graded, this forces f € C(X,Y)o. Hence,
C(X,Y)o # 0 implies X =Y.

2.2. Graded C-modules.

Let C be a k-linear category. A (left) C-module is a (covariant) k-linear functor M : C — k-Mod.
By k-linear we mean that M(cf + g) = ¢cM(f) + M(g) for all f,g € C(X,Y) and ¢ € k. Given
C-modules M, N, a C-module homomorphism T : M — N is a natural transformation of functors.

We denote by C-Mod the category of C-modules.

Note 2.2.1. A right C-module is a contravariant k-linear functor M : C — k-Mod. It is under-

stood that all definitions and results stated for C-modules are to hold analogously for right C-modules.



Let C be a graded k-linear category. A graded C-module is a degree-preserving k-linear functor
M : C — k-gMod. In particular, M(X) = @, M(X); for any X € C. By degree-preserving we
mean that if f € C(X,Y); is a morphism of degree j, then M (f)(M(X);) € M(Y);4; for all i > 0;
Le. M(f): @isoM(X)i = @i M(Y); is homogeneous of degree j. Given graded C-modules
M, N, a graded C-module homomorphism T : M — N is a degree-preserving natural transformation
of functors. By degree-preserving we mean that Tx (M (X);) C N(X); for all X € C and ¢ > 0;
ie. Tx : @50 M(X): = @, N(X); is homogeneous of degree 0. Let C-gMod be the category of

graded C-modules.

Example 2.2.2. Let C be a directed graded k-linear category, and X € C.

(a) The (covariant) Hom functor C(X,—) : C — k-gMod is a graded C-module. The right
C-module version of this is the contravariant Hom functor C(—, X) : C — k-gMod.

(b) C(X,X) : C — k-gMod is a graded C-module in the following way. We define C(X, X) on
objects Y € C by

C(X,X) fYy=X
Y —

0 ifY # X,
and on morphisms f € C(Y,Z) by f +— {g— fg}. The right C-module version of this is defined the

same way on objects and on morphisms f € C(Y,Z) by f — {g+— gf}.

Note 2.2.3. The categories k—Mod and k—gMod are abelian, hence so are C-Mod and C-gMod.
When a statement is made about a (graded) C-module homomorphism T : M — N, we mean that
statement is true for all of its components Tx : M(X) — N(X). For example, by saying that
T : M — N is injective (resp. surjective) we mean that Tx : M (X) — N(X) is injective (resp. sur-
jective) for every object X. Also, by saying that a sequence of (graded) C-module homomorphisms

L% ML N is exact at M we mean that im(Sx) = ker(Tx) for every object X.

Proposition 2.2.4. Let C be a directed graded k-linear category, and X € C. Then C(X, —) is

a projective object in C-gMod.



Proof. Consider a diagram of graded C-modules with bottom row exact:

Evaluation at X € C gives a diagram of graded k-vector spaces with bottom row exact:

C(X, X)
Tx

M(X)S—XJ\T(X) —0

Take the identity morphism 1y € C(X,X)o and apply Tx to get Tx(1x) € N(X)o. Since
Sx is surjective, there exists mx = > ,5omx,; € @;5oM(X); = M(X) such that Sx(mx) =
> is09x(mx,) = Tx(1x). Because Sx is degree-preserving, we must have Sx(mx;) = 0 for
all i > 0, so Sx(mx,) = Tx(lx). Define R : C(X,—) — M as follows: for any ¥ € C, let
Ry :C(X,Y) — M(Y) be given by Ry (f) = M(f)(mx,)- If g € C(Y, Z), then we get a commutative

diagram

CX,Y) 25 M(Y)

zZ

since f — M(f)(mx,o) — M(9)M(f)(mx,o) around the top right corner and f — gf —
M (gf)(mx ) around the bottom left corner. Thus, R is a natural transformation. If f € C(X,Y);,
then M(f) is homogeneous of degree ¢, so Ry (f) = M(f)(mx,0) € M(Y);. Hence, Ry (C(X,Y);) C

M(Y); and so R is degree-preserving. Therefore, R is a graded C-module homomorphism.



Now we check that Sy Ry =Ty forany Y € C. Let Y € C and f € C(X,Y). Then the naturality

of S and T yield commutative diagrams:

M(X) —2 N(X) C(xX, X) 25 N(X)
M(f) N(f) N()
M(Y) —— N(Y) C(X,Y) == N(Y)

Therefore,

Sy Ry (f) = Sy (M(f)(mx,0)) = N(f)(Sx(mx,0)) = N(f)(Tx(1x)) =Ty (flx) = Ty (f)-

It follows that SR =T and so C(X, —) is projective as a graded C-module. O

Remark 2.2.5.
(a) If V' is a 1-dimensional k-vector space, then C(X, —) ® V is a graded C-module isomorphic
to C(X, —) as a graded C-module.

(b) A direct sum of projective graded C-modules is a projective graded C-module.

Let C be a directed graded k-linear category. Given a C-module M, a C-submodule of M is a
C-module N : C — k — Mod satisfying N(X) C M(X) for all X € C and N(f) = M(f)|n(x) for all
[ €C(X,Y). Also, we say that M contains a set S if S C yxce M(X). A graded C-module M is

generated in degree i > 0 if the only C-submodule of M containing |Jyco M(X); is M itself.

Definition 2.2.6. A graded C-module M is Koszul if it has a linear projective resolution

o= PPy = =>P=-F—>M=0

in C-gMod. By linear we mean that each P; is generated in degree i. The category C is Koszul if for

every X € C, the graded C-module C(X, X) is Koszul.



3. THE CATEGORY FZj 4

3.1. Partition types.

Let FT be the category of finite sets and injective functions. Let n € N, and FZ" be the n-fold
product category FZ x - - - x FZ. Then an arbitrary object X € FZ™ is of the form X = (X3, ..., X,,)
for some finite sets X; € FZ. If X = (Xq, ..., X,,) € FI", then by z € X we mean z € X; for some .
By a partition Px of an object X = (X1,..., X,,) € FI", we mean a partition of X; IT---IT X,,. We
allow Py = @ to be a partition of @ € FZ". Let P be the set of all partitions of every X € FZ".
By a property t on P we mean a map t from P to a 2-element set {yes, no}. We say that a partition

Px of X € FI" has property t if t(Px) = yes; otherwise we say Px does not have property ¢.

Definition 3.1.1. We say that a property t is a partition type if the following conditions are
satisfied:

(P0) Py has property t;

(P1) if Px has property t and f € FZ"(X,Y), then f(Px) has property ¢;

(P2) if V,W are disjoint subsets of X € FZ™ and Py, Py have property ¢, then Py U Py has
property t;

(P3) if Px has property t and S € Px, then Px\{S} has property ¢;

(P4) there exists M € N such that if Px has property ¢, then |S| < M for all S € Px.

If ¢ is a partition type and Px is a partition of X € FZ" which has property ¢, then we say that

Px is a partition of type t.

Example 3.1.2.

(a) Let m € N. Define property m by declaring that m(Px) = yes for partitions Px of X € FI"
satisfying |S| = m for all S € Px; m(Px) = no otherwise. Then m is a partition type.

(b) Let m € N. Define property < m by requiring that < m(Px) = yes for partitions Py of
X € FI" satisfying |S| < m for all S € Px; < m(Px) = no otherwise. Then < m is a partition
type.

(c) Define property n* by declaring that n*(Px) = yes for partitions Px of X = (X1,...,X,,) €
FI" satisfying |[SN X;| = 1 for all S € Px, 1 < i < n; n*(Px) = no otherwise. Then n* is a

partition type. Note that if Px is a partition of type n*, then |S| = n for all S € Px.



(d) Let (my, ..., my) € N™. Define property (my, ..., m, ) by requiring that (my, ..., m,)(Px) = yes
for partitions Px of X = (X1,...,X,) € FI" satisfying |SN X;| = m, for all S € Px, 1 <i < n;

(mq, ..., my,)(Px) = no otherwise. Then (mq,...,m,,) is a partition type.

3.2. The category FZ; ,.

Let n € N, ¢ be a partition type, and A be an abelian group. We define a category FZ;' 4 having
the same objects as FZ", and morphisms defined by the following data: if X,Y € FZ; 4, then a
morphism (f, Py,ay) : X — Y in FI;', consists of a morphism f € FI"(X,Y), a partition Py of
Y\f(X) € FI" of type t, and a function ay : X I Py — A. If all 3 of these items do not exist for a
certain X,Y € FI", then FZ;' ,(X,Y) = &. The composite of two morphisms (f, Pr,af) : X =Y
and (g, Py,ay) : Y — Z in FI} 4 is given by the morphism (g, Py, o) (f, Py, ap) = (gf, Pys, cgy) :
X — Zin FI}} 4, where g f is the composite of f followed by g in FZ", P, is the partition g(Py)U P,
of Z\gf(X) € FI" of type t, and ay; : X Il P,y — A is the function defined by

agr(z) = ap(r) + ay(f(z)) for z € X,
agr(9(S)) = ap(S)+ ) ayly) for S € Py,
yeS
agf(T) = a4(T) for T € P,.

To show that composition in FZj' 4 is associative, let (f, Pr,af) : W — X, (g, Py,a4) : X =Y, and
(h, Py,an) 1 Y — Z be morphisms in FZ7 ,. Then h(gf) = (hg)f,

Phgr) = h(Pygg) U Py
=h(g(Pr)U Py) U P,
= hg(P¢) Uh(Py) U Py
= hg(Py) U Py,

= Phg) >



and

angn(w) = agr(w) + an(gf(w))
= as(w)+ ag(f(w)) + an(gf(w))
= as(w)+ ang(f(w))

= augs(w) for w e W,

anen(Mg(R) = agr(g(R)+ Y an(y)

y€g(R)
= ap(R)+ D ag(x)+ Y an(y)
TER y€g(R)
= OZf(R) + Z(ag(x) + Ozh(g(l’)))
zER
= of(R)+ Z g ()
TzER

= Q(ng)f((hg)(R)) for R € Py,

anggn(h(S)) = agr(S)+ > any)

angp)(T) = an(T)
= Qhg (T)

= a(hg)f(T) for T € Py.

Thus, (M(gf), Pugs)s @nigs)) = ((hg)fs Pihg)f> Q(ng)s)- The identity morphism of X € ]-"IZA is

(1x,9,0) : X — X, where 0: X — A is the zero map.
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Example 3.2.1.

(a) If n = 1, ¢t is partition type 1, and A is the trivial abelian group 0, then .FI?[’O is the category
FZT from Example 1.1.1.

(b) If n = 1, ¢ is partition type 2, and A is the trivial abelian group 0, ]—'IQO is the category
FIM from Example 1.1.2.

(c) If n = 2, t is partition type 2*, and A is the trivial abelian group 0, then .FI%*’O is the
category FZM,, from Example 1.1.3.

(d) If n = 2, ¢ is partition type 2%, and A is the abelian group Z/2Z, then }—I%*,Z/QZ is the
category FIM., from Example 1.1.4.

Thus, the family of categories FZ;' 4 unify the four categories from the Introduction in a general

setup.

Remark 3.2.2. If n € N, ¢ is a partition type, and A is an abelian group, then the full subcat-
egory of FI; 4, on objects of the form X = ([zy],...,[z,]) for z; € Ng (1 <@ < n), is skeletal, and

hence equivalent to FZ} 4.

Let n € N, t be a partition type, and A be a finite abelian group. Let C be the skeletal sub-
category of FZI}' 4 on objects of the form X = ([z1],...,[zn]) for 2; € Ny (1 < i < n). Then C is

equivalent to ]-'IZ 4- Let k be a field of characteristic 0, and C be the k-linearization of C.

Proposition 3.2.3. C is a directed graded k-linear category.
Proof. For any X,Y € C and i > 0, define the degree i component of C(X,Y") to be

Q(X,Y)z = @ k(f,Pf,Ozf).

(f,Pr,ap)€C(X,Y)
|Pyl=i

Then C(X,Y) = @,5,C(X,Y); is a graded k-vector space. So (f, P, ar) € C(X,Y); is a morphism
of degree 7 if and only if |Ps| = ¢. For any X,Y, Z € C, the composition map C(Y, Z) @ C(X,Y) —
C(X, Z) preserves the grading, and hence is a morphism in k-gMod. It follows that C is a graded
k-linear category. The objects of C are partially ordered by inclusion C, such that C(X,Y) # 0

implies X C Y. So C is a directed k-linear category.

11



We now check that C meets additional conditions (A1)-(A7).

(A1) For any X,Y € C, C(X,Y) is a finite set, so C(X,Y) is a finite dimensional k-vector space.

(A2) For any X = ([z1],...,[2,]) € C, a morphism (f, Pf,ay) € C(X,X) consists of a bijection
feFI"(X, X) and a function ay : X — A, because Py = @. Note that f € Sy, X --- x S5, where
S, is the symmetric group on [z;], and oy € A, where A¥ is the group of all functions from X to
A. Therefore, C(X, X) is the finite group S,, x --- x S, x AX. Since char k = 0, the group algebra
C(X, X) is semisimple, by Maschke’s theorem.

(A3) Let X,Y € C. If (f,Pr,ay) € C(X,Y)o is a basis element, then P; = @, which forces
X =Y. Soif X #Y, then C(X,Y)o = 0.

(A4) Let X € Cand ¢ > 0. If (f,Pr,ay) € C(X,X); is a basis element, then P; = & since
fe FI"(X,X) is a bijection. But |P¢| =¢ > 0 since (f, Py, ay) is a morphism of degree i. So for
all X € C and 7 > 0, we must have C(X, X); = 0.

(A5) Let X € C. Then there are only finitely many Y € C such that C(Y, X); # 0. By condition
(P4) of the partition type ¢, there are only finitely many Y € C such that C(X,Y); # 0.

(A6) Let 4 > 0. In order to prove C, - C; = C;,1, it is enough to show that any morphism
(f, Pr,ay) € C(X,Y) of degree i+1 can be factored as a composite of a degree ¢ morphism followed by
a degree 1 morphism. Let (f, Py, ay) € C(X,Y’) be a morphism of degree i+1. Then |P;| =i+1 > 1.
Pick T € Py. Since C is skeletal, there is a unique Y’ € C and a bijection g € FZ"(Y’,Y\T). Let
f' e FI"(X,Y\T) be the morphism obtained by restricting the codomain of f from Y to Y\T.
Define f1 = g~ f' € FI"(X,Y'), Py, = {g ' (P\{T})}, and ay, : X I Py, — A by ay, (z) = ap(x)
forall z € X and ay, (S) = ay(g(S)) for all S € Py,. Then (f1, Py, o) € C(X,Y”) is a morphism of
degree i. Let v € FZ"(Y'\T,Y') be the inclusion map. Define g; = 1g € FI"(Y',Y), P;, = {T'}, and
ag, 1 Y'II Py, — Aby ag (y) =0forally € Y and ay, (T) = af(T). Then (g1, Py, g,) € C(Y',Y)
is a morphism of degree 1. Now g1 fi =199~ f' = f, Py s, = q1(Pp,) U Py, = (P\{T}H)U{T} = Py,

and

ag,f, (¥) = ap (x) + ag, (f1(z)) = af(z) for v € X,

a91f1(gl(5)) = afl(S) + Zagl(y) = Oéf(g(S)) for S € Pf17
yeS

Qgy f1 (T) = Qg (T) = af(T)'

12



Hence, (f, Py, ar) = (91, Py, g, )(f1, Py, oy, ) is the composite of a degree i morphism followed by
a degree 1 morphism, as desired.

(A7) Let X, Z € C. Because C is skeletal, it is totally ordered by C. So without loss of generality,
suppose X C Z. Again since C is skeletal, there are only finitely many Y € C such that X CY C Z.
It follows that the convex hull of any finite set S C Ob(C) contains only finitely many objects.

Therefore, C is a directed graded k-linear category. (]

Notation 3.2.4. For any X,Y € C, we shall write degree 1 morphisms in C(X,Y) simply as
(f,R,ay) for Py = {R}, where RC Y.

4. KOSZULITY

Fix n € N, a partition type ¢, and a finite abelian group A. Let C = FZ 4, and C be the k-
linearization of C, where k is a field of characteristic 0. By Proposition 3.2.3, C is a directed graded
k-linear category. In this section, we will prove that C is Koszul (Corollary 4.3.2). To do this, we will
construct a linear projective resolution Co(—)(Y) — C(Y,Y) of graded right C-modules for arbitrary
Y eC.

4.1. The complex Co(—)(Y).
Fix Y € C for the remainder of this section. For any m € Ny, define a functor C,,,(—)(Y) : C —

k-gMod as follows. For any object X € C, let

Con(X)(Y) = @ C(X, Y\I) @ det(I),
(I,e)
the direct sum being over all pairs (I, «), where I = I1 LI---U I, is the union of m mutually disjoint
nonempty subsets I; C Y such that {I;} is a partition of type ¢, and o : {I1,....,I,,} — Ais a
function. By det(/) we mean the 1-dimensional k-vector space A" k{I1, ..., I;,}.

To see that C,,(X)(Y) is a graded k-vector space, let

Cr(X) (V)i = P &y k(f, Py, az) @ det(I)

(I,a) (f,Pg,af)€C(X,Y\I)
|Pfl=i—m
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for ¢ > m and C,,(X)(Y); =0 for i < m. Then

Cn(X)(Y) = @ C(X, Y\I) @ det()
(I,0)

- @@ @ E(f, Py, ay) @ det(I)

(I,a)i>m (f,Py,op)€C(X,Y\I)

|Pfl=i—m

=P Cn(X)(v¥

i>m

So C,(X)(Y) is a graded k-vector space living in degrees > m. This completes the definition of
Cmn(=)(Y) on objects.
For any morphism (g, Py, ay) € C(X, X'), we define a map C,,(X')(Y) — C,,(X)(Y) on direct

summands corresponding to (I, a) by k-linear extension of the assignment

m

m
(fanvaf)®/\ (fanaaf ga gy Qg ®/\I
j=1

In other words, a basis element (f, Pf,af) ® /\;":1 I; in a direct summand C(X',Y\I) ® det(I) of
Cm(X')(Y) corresponding to (I, a) gets sent to the basis element (f, Py, ar)(g, Py, ay) ® \j=, I; in
the direct summand C(X,Y\I) ®, det(I) of Cp,(X)(Y) corresponding to (I, a).

To see that Cp,, (X')(Y) — Cp(X)(Y) is a morphism of graded k-vector spaces, let (g, Py, ay) €
C(X, X"); be amorphism of degree j > 0, and (f, Py, af)®/\}n=1 I; be in the degree ¢ > m component
of Cy, (X')(Y). Then |P,| = j and |P¢| = i—m, which implies | Pyy| = | f(P,)|+|Pf| = (i+7)—m. So
(f, Pr,ap)(g, Py, aq) ® /\;":1 I; is in the degree i + j component of Cy,(X)(Y'), hence C,,, (X')(Y) —
Cn(X)(Y) is homogeneous of degree j. This completes the definition of Cy,(—)(Y) : C — k-gMod
on morphisms.

So Cp(—)(Y) : C — k-gMod is a degree-preserving k-linear functor that is contravariant. Thus,

we have a graded right C-module C,,(—)(Y) for each m € Ny. In particular, Co(—)(Y) =C(—,Y).

Before we define a differential 0 : C,,(=)(Y) = Cp—1(—)(Y), we need the notion of an inclusion

morphism in C.
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Definition 4.1.1. Let X,Y € C with X C Y such that {Y\X} is a partition of type t. We
say that (¢, P,,a,) € C(X,Y) is an inclusion morphism if ¢(x) = x for all z € X, P, = {Y\X}, and
a,(z) =0for all z € X.

Note 4.1.2. In order to completely describe an inclusion morphism, one still needs to specify
a,(Y\X) € A. Thus, there may be many inclusion morphisms from X to Y. Also, since inclusion

morphisms are of degree 1, we shall write them as (¢, Y\ X, o).

Remark 4.1.3. Inclusion morphisms “commute” in the following sense. Let Y € Cand I1, I, C Y
be two disjoint nonempty subsets such that {I}, {2} are partitions of type ¢. Suppose we have

inclusion morphisms

(Ll,Il,OéLl) S C(Y\117Y)7 (L2,127QL2) S C(Y\IQ,Y)

and

(jl,ll,ah) (S C(Y\(Il L IQ),Y\IQ)7 <j271270432) S C(Y\(Il L IQ>7Y\11)

such that o, (I1) = ay, ([1) and o, (I2) = o, (I2). Then

(LlallvaLl)(anI27a]2) = (L27[27aL2)(j1a117a]1)

because
1192(y) =y = tagi(y) for y € Y\(I; U I3),

Py =u({LY)U{L} ={,1}=wu({L})U{l}=P,,,,

and

155 (Y) = 0= quyy, (y) for y € Y\(L1 U 1),
abuz(Il) = abl(Il) = Oy (Il) = Quyyy (Il>7

Auygp (12) = Qy, (IQ) =y, (12) = oy (IQ)

15



For every m € N, we define a graded C-module homomorphism 9 : Cp,(=)(Y) = Ch—1(—)(Y)
as follows. For any X € C, let 0x : Cpp(X)(Y) = Cp1(X)(Y) be defined on each direct summand

corresponding to (I, ) by k-linear extension of the assignment

fanaaf /\ Z L]7 '7aj)(fapf7af)®ll/\"'j;'"'/\[m7

where (¢5,1;,a5) € C(Y\I, (Y \I) U{I;}) is the inclusion morphism defined by «;(I;) = a(I;) € A.
Note that for each j =1,...,m, (¢;,;, ) (f, Pr,ap) @ I1 A - IAJ -++ A I, is in the direct summand
of Cpp—1(X)(Y) corresponding to (I\Ij, Oz|{]1,m7[m}\{1j}).

To see that 0 is a natural transformation, let (g, P;, ay) € C(X, X’). Then we get a commutative

diagram:
Cn(X)(Y) Con(X)(Y)
Ox’ Ox
Cm—1 (X")(Y) Crm—1(X)(Y)
because
(f,Proap) @ \ I = (f, Pr,ap)(g, Po,ag) @ N\ T
Jj=1 Jj=1

=Y (=1 g, Iy ) (f, Pryag) (g, Poyag) @ I A= I+ A,

IR

<
Il
N

around the top right corner, while

fan7af /\ ] 1<Ljﬁlj’aj)(f7pfaaf)®ll/\"'fj"'/\Im

Ms i Ms

=Y (=17 g, Ly o) (f Proag) (g, Pyyag) @ L A=+ I Ny

<.
Il
N

around the bottom left corner.
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To see that 9 is degree-preserving, let X € C and ¢ > m. We must show that dx (C,, (X)(Y);) C
Crn1(X)(Y)i. I (f, Pryay) @ AL, Ij is a basis element in a direct summand C(X,Y\I) @y, det(])
of Cp,(X)(Y); corresponding to (I,«), then (f, Py, o) € C(X,Y\I) with |P¢| = i —m. For each
j=1,...,m, we have (¢j,1;,o;)(f, Py,ay) € C(X,(Y\I) U{I;}) with

[Pl = [0 (Pr)U{L;} = [Pl +1 =i~ (m—1).

So

m m
~

Ox((f, Proap) @ N\ L) =Y (1) "5, I, 05)(f, Pryag) @ Iy Av - Ty Ay,

j=1 j=1
belongs to Cp—1(X)(Y);. Thus, 9 : Cp(—)(Y) = Cp—1(—)(Y) is a graded C-module homomor-
phism for each m € N.

For any X € C, observe that

(8x)2((f, Pr,ap) ® /\ I;) = Z(—l)jilax((Lj,Ij,aj)(f, Prap) @I A- I/; ANy
j=1 j=1
= Z(_l)i+j_2(LiaIi7ai)(Lj7Ijaaj)(fv Pfaaf) ®Il AN j; t j; e /\Im
i<j
+ Y (=D Ly ) (4, 1y ) (F, Proag) @ A -+ L I ALy,
>3]
=0

after switching ¢ and j in the third line and using the fact that the inclusion morphisms (¢4, I;, ;)
and (v, I;, ;) commute, by Remark 4.1.5. So 82 = 0 and hence 9 is a differential.
By putting Cy,,(—)(Y) = 0 for all m < 0, we obtain a complex Co(—)(Y) of graded right C-

modules.
Remark 4.1.4. For any m € Ny, Cy,(—)(Y') can be viewed as a direct sum P ) C(—, Y'\I) @

det(I) of graded right C-modules C(—, Y\I) ®; det(I). By Remark 2.2.5, C,,,(—)(Y) is projective as

a graded right C-module.
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Proposition 4.1.5. For any m € Ny, Cy,,(—)(Y) is generated in degree m.

Proof. Let M be a right C-submodule of Cy,(=)(Y) containing |Jyce Crm(X)(Y)m. We must
show M(X) = C,,(X)(Y) for all X € C. Let X € C and (f, Py, o) ®/\;—":1 I; be a basis element in a
direct summand of C,,(X)(Y') corresponding to (I, «). We will show (f, P, af) ® /\;n:1 I; e M(X)
by factorizing (f, Pf,cy) € C(X,Y\I) as follows. Choose Y’ € C and an isomorphism (g,@,0) €
C(Y’',Y\I) (in which g € FZ"(Y’,Y\I) is a bijection, P, = &, and a4 : Y' — A is the zero map).
Then (g,2,0) ® AjZ, I; belongs to the direct summand of Cy,(Y")(Y), corresponding to (I, ).
Define f' = g7'f, Py = g Y(Pf), and apr : X I Py — A by ap(x) = ay(z) for all z € X,
ap(S) = as(g(S)) for all S € Pp. This defines a morphism (f’, Py, ap) € C(X,Y’) such that

91" = [, Pypr = g(Py) = Py, and

agp(x) = ap(z) + ag(f'(z)) = ar(z) for z € X,

agr (9(S)) = ap(S) + > ag(y) = as(g(S)) for S € Pyp.

y'es
Hence, (g,9,0)(f’, Py, ap) = (f, Pf, ). Since M is a right C-submodule of Cy,(—)(Y),

M((f', Py ap)) s M(Y') = M(X)

is the restriction of C,,(Y')(Y) = Cpn(X)(Y) to M(Y'). Because M contains Jy e Crm(X)(Y)m,
we have (g,2,0) @ AJL; Ij € Co(Y')(Y)m € M(Y”). So

(f,Pf,O[f)@/\Ij:(g,Q,O)(f/,Pf/,O[f/)®/\Ij:M((f/,Pf/,Oéf/))((g,®7O)®/\Ij)EM(X).
j=1 j=1 j=1
Hence, C,,(—)(Y) is generated in degree m. O

We therefore have a complex Co(—)(Y) of graded right C-modules

o COn(=)Y) = Croa () YY) = - = C1(—)(Y) = C(—,Y) =0

in which C,,(—)(Y) is projective and generated in degree m for all m € Ny.
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4.2. Exactness of Co(—)(Y) in positive degrees.
In this subsection, we will show that H,,(Ce(—)(Y")) = 0 for all m € N. First, we will prove that

Hi(Co(—)(Y)) = 0 with the aid of the following lemma.

Lemma 4.2.1. Let X,Y € C and I;, > C Y be distinct nonempty subsets such that {1}, {I2}
are partitions of type t. For i = 1,2, let (f;, Py,,a,) € C(X,Y\I;) be morphisms and (¢, [;, o0,,) €
C(Y\I;,Y) be inclusion morphisms. If

(lellaau)(flvpfuah) = (L27]2aaLz)(f27Pf27af2)a

then I1NI, = @ and there exists a morphism (f, Py, af) € C(X,Y\(I1UI3)) and inclusion morphisms

(]1,]1,(1]1) S C(Y\(Il (] IQ),Y\IQ), (]2,]2,06.72) S C(Y\(Il U Ig),Y\Il) such that

(J17‘[17ajl)(f7 Pf,Oéf) = (f27Pf27af2)

and

(]2,I27O£]2)(f, Pf’af) = (fl’Pf17afl)'

Proof. From (1, I1,00,)(f1, Pty of,) = (t2, Lo, 0wy ) (f2, Pry, g, ), we get vy f1 = tafo, Py, U{I1} =
Py, U{I5}, and o, ¢, = v, f,. These respectively imply that fi(z) = fo(x) for all 2z € X, Py, \{I2} =
P, \{I1}, and

afl (1.) = aL1f1 (SIJ) = aLZfQ(x) = af2($) fOI" T € X?

arf (S) =y fy (S) = aLsz(S) = Oéf2(S) for S € Pfl\{IQ} = sz\{ll}'

In particular, Iy € Py, and I € Py, are disjoint because they are distinct elements of the same
partition Py, U{I;} = Py, U {l2}. Define (f, Py,ay) € C(X,Y\(I1 U I2)) by setting f(z) = fi(z) =
fa(z) for all v € X, Py = Py \{I2} = P, \{11}, and a5 = oy, |xup,= oy, |xup;. Let (51,11, 04,) €
C(Y\(I; UI5),Y\I5) and (y2,I2,,,) € C(Y\(I; UI2),Y\I;) be the inclusion morphisms defined by
a,,(I) = ay,(I) and oy, (I2) = oy, (I2). Then j f(x) = fo(z) forallx € X, Py = PfU{l1} = Py,,
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and

a, () = af(z)=ay(z)forz e X,
ayf(9) = ap(9) =ap(9) for S € Pr=Pp,\{11},
ayp(h) = a,(h)=ap(h)

So (1,11, a9, )(f, Py, ap) = (f2, Py, p,). Similarly, jof (x) = fi(z) forallz € X, P,y = PyU{lx} =
Pf17 and

a]zf('r) = af(m) =Qf (J?) for z € X,
a1 (S) = ap(S) =y (S) for S € Py = P \{I2},
a]zf(I2) = Qy, (12) =Of (12)
So (]27127aj2)(f’Pf>af):(flvpflﬁaﬁ)' O

Remark 4.2.2. Let X,Y € C and I C Y be a subset such that {I} is a partition of type t.
For i = 1,2, let (f;, Pf,,ay,) € C(X,Y\I) be morphisms and (¢, 1, ,,) € C(Y\I,Y) be inclusion
morphisms. If

(le-[vau)(flvpfuaﬁ) = (L27]7at2)(f2»Pf27af2)’

then fi(z) = fa(x) for all x € X, Py, = Py, ap(z) = ap,(x) for all z € X, and ay, (S) = ay,(S)
for all S € Py, = Py,. So (flan1’a.f1) = (f?anz’afz)'

Proposition 4.2.3. H{(Ce(—)(Y)) =0.

Proof. Let us abbreviate morphisms (f, Pf,ay) in C simply as f, while keeping in mind the
remaining data Py and ay that define them. Let X € C and consider the tail of the complex
Co(X)(Y):

o (X)) B o(X)(Y) B e(X,Y) 0.

Recall that

CUX)(Y) = D C(X, Y \I) @y, det(1),
(1,2)
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where I C Y such that {I} is a partition of type ¢, «(I) € A, and det(I) = kI. Thus, an arbitrary

element of C1(X)(Y) is of the form
u=0enfi)Ohi+-+ 0 e fi) L,

where the I; C Y are distinct and equipped with an element o;(f;) = a; € A (j = 1,...,5), the

fi; € C(X,Y\I;) are all distinct, and ¢;; € k. For simplicity, we reindex this sum as

U= Zcifi ® I,

)

in which the I; are no longer distinct, yet the f; remain distinct. Suppose u € ker(9;). Then
O1(u) = Zcibifz‘ =0,

where the ¢; are the inclusion morphisms (¢;, I;, ;) € C(Y'\I;,Y) defined by a;(I;) = a; € A. Now,
some of the ¢; f; may have composed to the same element in C(X,Y’). By grouping together all such
terms in the sum 0;(u), we see that the sum of the corresponding ¢; is zero in each group. By

reindexing if necessary, we get
C1+"'+Ci1 :Ci1+1+"'+ci2 :"':Cir,1+1+"'+ci,« =0
for some r, and so
Cl = —C — " —Cjy,Ciy41 = —Cjy42 — =+ * —Ciyy ooy Cipo 41 = —Cj 42 — =00 — Gy
Hence, the sum u can be rearranged to

cafe@h—fioh)+--+e,(fi, ) — i)+
Civ+2(fi42 @ Liyr2 — fiy 41 @ Liy1) + -+ eiy (fi, ® Liy — fiy 1 @ Liy 1) + -

+ei,_yr2(fi,_y2 @ L _yyo—fi, 1@ L)+ e, (fi, L, — fi, y 11 ® L 11).

Each of the terms f; ® I; — f; ® I; in this sum result from morphisms for which ¢;f; = ¢;f; in
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the sum 0, (u). If I; = I;, then by Remark 4.2.2, we must have f; = f;, contradicting that the f;
are distinct. Thus, I; # I; for each of the terms f; ® I; — f; ® I;. In particular, ¢1 f1 = t2f2 and
I, # I, so by Lemma 4.2.1, there exists a morphism f € C(X,Y\([;U/2)) and inclusion morphisms
1 €C(Y\(1Uly),Y\I3), 32 € C(Y\(I1UI3),Y\I1) such that 1 f = faand gof = f1. Let I = UL
and define a : {I1,Io} — A by o(l1) = oy, ([1), a(I2) = ), (I2). Then f ® I A I belongs to the

direct summand of Cy(X)(Y) corresponding to (I, o), and
B(fehANL)=nfelh—pfeh=Ffel-fieh.

Hence, fo ® Iy — f1 ® I} € im(0s). Likewise, every term in the above sum u belongs to im(9s).

Therefore, ker(9;) C im(d;) and so H1(Ce(X)(Y)) = 0. O

Theorem 4.2.4. H,,(Ce(—)(Y)) = 0 for all m > 2.

Proof. We proceed by induction on |Y|. If |Y| = 0, then Y = & implies C,,,(—)(@) = 0 for all m >
1, 80 H;, (Co(=)(Y)) = 0 for all m > 2 in the base case. Let N > 0 and assume H,,(Ce(X)(Y)) =0
for all m > 2 and X,Y € C for which |Y| < N. Let X,Y € C with |Y| = N. We must show
H,(Co(X)(Y)) =0 for all m > 2. We may assume X = ([z1], ..., [zn]) and Y = ([y1], ..., [yn]), Wwhere
> y; = N. Since N > 0, we must have y; > 0 for some i. Fix the element y; € Y.

Define a subcomplex S¢(X)(Y) of Co(X)(Y) as follows. For each m € Ny, let S,,,(X)(Y) be
the k-submodule of C,,(X)(Y) spanned by the direct summands C(X,Y\I) ® det(I) such that
y; ¢ I. Then for a typical basis element (f, Py, af) ® /\;ﬂ:1 I; € Sp(X)(Y) in a direct summand
corresponding to (I, ), we have (f, Pr,af) € C(X,Y\I), I =L U---Ulp, a: {[1,...I,} = A,
and y; ¢ I; for any j. Because y; ¢ I implies y; ¢ I\I; for every j = 1,...,m, we see that Ox maps
S (X)(Y) into Sy,—1(X)(Y) for each m € N. Hence, So(X)(Y) is a subcomplex of Cq(X)(Y).

For any m € Ny, given a basis element (f, Py, ay) ® /\T=1 I; in a direct summand of S,,,(X)(Y)
corresponding to (I, «), we have either y; € f(X) ory; ¢ f(X). Ify; € f(X), then f(x) = y; for some
unique z € [z;] and ayf(x) € A. By restricting the domain of f to X\{z} and the domain of s to
X\{z} I Py, we can regard (f, Py, ay)® /\;n=1 I; as an element of @, ¢, Co (X \{2}) (Y \{y: )@,
by identifying it with (f [x\(a}, Prs s |(x\{zpup;) @ Ajo; Ij. On the other hand, if y; ¢ f(X),
then y; € S for some unique S € Py and a(S) € A. By restricting the codomain of f to Y\

and the domain of ay to X II (P\{S}), we can regard (f,Ps,ay) ® /\;n:1 I; as an element of
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D O (X)(Y'\S)®MI, where the direct sum is over all S C Y such that {S} is a partition of type ¢

and y; € S, by identifying it with (f, P\{S}, ay |xu(p,\(s})) @ Aj=; Ij- This gives a map

Sm(X)(Y) = D Cn(X\{H (Y \{y:})*H @@C )(Y\S)®IA

(/Ce[$1]

The inverse map

D X\ EH Ny h M @ P Crn (X)) P = 5, (X)(V)
celzi] S

is defined as follows. Given a basis element (f, Py, as)®AJL, I; of a direct summand Cy, (X \{z})(Y\{y:})
corresponding to both z € [z;] and a € A, we identify it with (f, Py, a5) ® Njey I in Sy (X)(Y),
where f extends f by f(z) = y;, and @y extends as by @7(z) = a. On the other hand, given a basis
element (f, P, af) ® /\;n:1 I; of a direct summand of C,,(X)(Y'\S) corresponding to both S C Y
(where {S} is a partition of type ¢t and y; € S) and a € A, we identify it with (5,5, as)(f, P, af) ®
Ajey I in Sy (X)(Y), where (1g,S,as) € C((Y\S)\I,Y\I) is the inclusion morphism defined by
as(S) =a.

Therefore, we identify the subcomplex So(X)(Y') with

D c.x\{zhH(Y\{v:}) ‘A‘@@C )(Y\S)®lAl,

z€[z;]

Consider the quotient complex Co(X)(Y)/Se(X)(Y). Since So(X)(Y) =C(X,Y) = Co(X)(Y),
we have Co(X)(Y)/So(X)(Y) = 0. If m € N, then a typical basis element in the quotient
Con(X)(Y)/Sm(X)(Y) is represented by (f, Pr,ay) @ Aj=, I; in C(X,Y\I) @ det(]), with y; € I.
So if

(/,Prag) @ /\I T S(X)(Y) € Cu(X)(V)/Su(X)(Y),

then y; € I; for exactly one j. By removing I; from I, along with its associated element a(I;) € A,
we can regard (f, Pr,ar) @ \TL; I;+S,(X)(Y) as an element of @ g C,—1(X)(Y\S) 14, the direct

sum being over all S C Y such that {S} is a partition of type ¢t and y; € S, by identifying it with

sgn(0)(f, Proag) @ Iy A=+ I+ AL € C(X, (Y\I)\(I\L)) @ det(I\I),
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where 0 = (1,2,...,j — 1, j) is the permutation that moves I; to the leftmost position in the wedge

product and preserves the order of the remaining wedge factors. This gives a map

Crn(X)(Y) /S %@Cm L(X)(Y\S)®H

The inverse map

P s (OIS = Cn (X)W S (X))

is defined as follows. Given a basis element (f, Pr,af) ® It A --- A Ip,—q of a direct summand
Cr—1(X)(Y'\S) corresponding to both S CY (where {S} is a partition of type t and y; € S) and

a € A, we identify it with
(fiPr,ap) @S ANLLA - N1 + S (X)(Y) € Cro (X)(Y) /S (X)) (Y).

Here, if (f, Pr,ay) @ I1 A--- A Ip,—1 belongs a direct summand of C),—1(X)(Y'\S) corresponding to
(I U---UIp_1,a), then the representative (f, Pr,ar) ® S A Iy A--- A L,_1 belongs to the direct
summand of C,,(X)(Y) corresponding to (I; U--- U I,,—_1 US,@), where @ extends a by @(S) = a.

Therefore, we identify the quotient complex Co(X)(Y)/Se(X)(Y) with

(@c ) ) =

where [—1] is the shift functor on complexes defined by (K[—1]),, = K,,—1 for any complex K,.

Thus, we have a short exact sequence of complexes
0= Se(X)(Y) = Co(X)(Y) = Co(X)(Y)/Se(X)(Y) — 0,
which gives a long exact sequence in homology:

= Hp(Se(X)(Y)) = Hin(Co(X)(Y)) = Hin(Co(X)(Y)/Se(X)(Y)) = -

= Hy(Se(X)(Y)) = Hz(Co(X)(Y)) = Ha(Co(X)(Y)/Se(X)(Y)) = -+

By the subcomplex identification and the induction hypothesis, we get H,,(Se(X)(Y)) = 0 for all

m > 2. By the quotient complex identification, the induction hypothesis, and since Hy(Co(X)(Y)) =
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0 for all X,Y € C, we obtain H,,(Ce(X)(Y)/Se(X)(Y)) = 0 for all m > 2. By exactness of the

homology sequence, we arrive at H,,(Ce(X)(Y)) = 0 for all m > 2. O

Remark 4.2.5. We will show that Ce(X)(Y) is the mapping cone of a certain morphism of
chain complexes, with the same notation of Theorem 4.2.4. For any m € Ny, consider the direct

summand @ g Cy, (X)(Y\S)®I4! in the degree m part of the subcomplex identification:

Sn(X)(Y) = @ Con( X\ {2\ {1:}) 1 @ @ (X)) (Y\5) P11,
r€[x;] S

Under this identification, @g Cy,(X)(Y\S)®I4 is the k-subspace of S,,(X)(Y) spanned by the

elements (f, Py, af) ® /\;”:1 I; for which y; ¢ f(X). Since y; ¢ f(X) implies y; ¢ ¢; f(X) for every

inclusion morphism ¢; € FZ™(Y\I, (Y\I)U{L;}) (1 <7 <m), Dg Ce(X)(Y\S5)®Ml is a subcomplex

of Se(X)(Y). For any m € N, let
im t @ Crn(X)(Y\S)® < S, (X)(Y)
s

be the inclusion map. Recall that a basis element (f, Pr,af) ® /\;n:1 I; in a direct summand
Cn (X)(Y'\S) corresponding to both S C Y (where {S} is a partition of type t and y; € S) and a € A,
gets identified with (vs, S, as)(f, Py, ar)@NL; Ij in Sy (X)(Y) (where (1, S, ) € C((Y\S)\I,Y\I)

is the inclusion morphism defined by as(S) = a). So

im((fapf’af) ® /\ Ij) = (Ls,S,as)(f,Pf,Oéf) ® /\ 1;
for all m € Ny. The diagram
D ()N — T @y i (X)(\ )24
5 (X)(Y) . 5, (X)(Y)
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commutes since

j I(Lj,Ij,Olj)(f,Pf,Oéf)@)Il/\"'E"'/\Im

Ms

(f,Proap) @ N\ I

j=1 j:1
= S (-1 s, Syas) (4, I ag) (f, Proag) @ LA -+ I ALy,
j=1

around the top right corner, while

(f, Pryap) @ /\ Ij = (s, S, as)(f, Pr,ap) ® /\ I
j=1 J=1

= Z(_]') (LJ7I OZj)(LS,S,CES)(f,Pf,CVf)@Il /\j;/\-[m

around the bottom left corner, and the inclusion morphisms (g, S, as), (¢, 1;, ;) commute by

Remark 4.1.3. Thus,
@c Y(Y\S)EA 5 5, (X)(Y)

is a morphism of complexes.

The mapping cone of —i is the complex

(@c )(Y'\S) @|A> (1] ® Se(X)(Y)

whose differential d in degree m is given by
A u) = (=O(u'), D(u) + i1 ()

for v’ € @y Cr—1(X)(Y\S)®l and u € S,,,(X)(Y). By the quotient complex identification, we

have an isomorphism of k-vector spaces
Qi @Cm LX) (Y\S)FH = C (X) (V) /S (X)(Y),

in which a basis element (f, Py, af) ® /\;n;ll I; in a direct summand Ci,—1(X)(Y'\S) corresponding
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to S CY and a € A gets identified with
(fs Proag) @ SALLNA - ANy + S (X)(Y)
in Cpp(X)(Y) /S (X)(Y). Also, there is a k-vector space isomorphism
B+ (Cn(X)(YV) /S (X)(Y)) © S (X)(Y) = Crn(X)(Y)

given by
Bm(v+ S (X)(Y),u) =v+u

for v € Cpp, (X)(Y) and w € S, (X)(Y). For any m € Ny, we define the k-vector space isomorphism
em + D Crnr (X)(Y\S)TH @ 5, (X)(YV) 5 Con(X)(Y)
s

to be

em(u',u) = Pmamml) +u

foru' € @g Cr_1(X)(Y\S)®M and u € S,,(X)(Y), where pp, : Cro(X)(Y) /S (X) (V) = Cpro(X)(Y)
is the splitting map ppm, (v + S (X)(Y)) = v.

Observe that for any m € Ny, we have
em—_1d(u ,u) = ep_1(=0(u'), 0(u) + im_1(t)) = —pmamd) + O(u) + ipm_1(u)

and

8em(u’, u) = 8(pmam(u') +u) = 8pmam(ul) + 0(u)

for v’ € @g Cr_1(X)(Y\S)®IM and u € S,,(X)(Y). So em—1d = e,y provided that
Opmm (') = —pmamO(’) + ipm_1(u)

for u' € @g Crm—1(X)(Y\S)®4l. Take a basis element (f, P,ay) ® /\;':11 I; in a direct summand
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of Cp—1(X)(Y'\S) corresponding to S CY and a € A. Then

Opmonm ((f, Py, o) @ /\ (f: Prrap) @ S NI A+ Nlp_)

m—1
= (ts, S, as)(f, Proap) @ N\ I
j=1
m—1
+ L]7 ‘,O{j)(f,Pf,Oéf)@S/\Il/\"'Ij"'/\[m_l.
j=1

On the other hand,

m—1 —1

3

—pmamO((f, P, af) ® /\ Ij) = —pmam( (_1) (L], o) (fy Pryay) @ In A I""/\Im—l)
Jj=1 j=1
m— 1 N
LJ, L, o) (f, Proap) @ SNy N - T+ Ny
]:1
and
_ m—1
tm—1 f,Pf,Oéf /\ Ls,S Ozs)(f,Pf,Ozf)® /\ Ij.
=1 =1

It follows that e,,_1d = Je,, for all m € Ny, which means the diagram

D Con 1 (X)) @ S, (X)(Y) — @B Cra (X)(V\S)PH1 @ 5,01 (X)(Y)
€m €m—1

commutes. Hence, (g Ce(X)(Y\S)®) [~1] @ So(X)(Y) and Co(X)(Y) are isomorphic as

complexes of k-vector spaces. Therefore, Co(X)(Y") is the mapping cone of —i.

4.3. Co(—)(Y) is a resolution of C(Y,Y).

We have a complex of graded right C-modules

=
|
o

w2 On(S)(Y) = Coa (S)(Y) = -+ = Ci(=)(Y) = C(=
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which is exact at each m € N, and in which C,,(—)(Y) is projective and generated in degree m for
all m € Ny.

Consider the augmented sequence
s Co()(Y) = Coa (<)(Y) = = Co(=)(Y) D C(=,Y) S CY,Y) =0

in which e : C(—,Y) — C(Y,Y) is the graded right C-module homomorphism defined for each X € C
by
levyy iHX=Y

EX =
0 if X £Y.

The augmented sequence is exact at C(Y,Y) because ex is surjective for each X € C.

Proposition 4.3.1. The augmented sequence is exact at C(—,Y).

Proof. Let X € C. We must show that im(dx) = ker(ex).

For (C), take a basis element (f, Pf,af) ® I in a direct summand of C1(X)(Y') corresponding
to (I,a), with @ # I C Y and o) € A. Then Ox((f, Pr,ar) ® I) = (v, 1,a,)(f, Pf,ay), where
(t,I,0,) € C(Y\I,Y) is the inclusion morphism defined by «,(I) = a(I). Since C is directed, we
have X C Y\I C Y. But then X # Y, because otherwise Y\I = Y contradicts I # &. So
(t,I,0,)(f, Pr,ap) € C(X,Y) with X # Y, hence ex((¢,I,0,)(f, P, a¢)) = 0. Thus, im(dx) C
ker(ex).

For (D), let (f, P,ayf) € C(X,Y) be a basis element such that ex((f, Pr,ar)) =0. If X =Y,
then ex is the identity map on C(Y,Y"), which forces (f, Py, oy) = 0 and contradicts that (f, Py, ay)
was a basis element. So X # Y and hence X C Y because C is directed. We claim that (f, Py, ay)
has a preimage in C1(X)(Y) under 9x. Since X C Y, there exists I € Py and ay(I) € A. By
restricting the codomain of f : X — Y to Y'\I and the domain of oy : XIT Py — A to XII(P;\{I}),
we get a morphism (f, P\{I}, oy |xu(p,\(13)) € C(X,Y\I). Then (f, PA\{I}, o |x1pp\1y) @ 1

belongs to the direct summand of C;(X)(Y) corresponding to (I, as|;ry) and

Ox((f, Pr\{I}, af |xupp\ry) @ 1) = (1, L o) (f, PP\{T}, af |xtpp\oy) = (f, Pryag),
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where (¢, 1, o) € C(Y'\1,Y) is the inclusion morphism defined by o, (I) = a¢(I). So (f, Pf, ) €
im(0x), and hence im(0x) 2 ker(ex).

Therefore, im(0x ) = ker(ex) and the augmented complex is exact at C(—,Y). O

This completes the construction of our linear projective resolution

o COpn()Y) = Chroi(H)Y) == C1(H)Y) = C(—,Y) = CY,Y) >0

of C(Y,Y) in C-gMod. We conclude that the category C is Koszul, summarized in the Corollary below.

Corollary 4.3.2. Let n € N, t be a partition type, A be a finite abelian group, and % be a field

of characteristic 0. Then the k-linearization of FZ}' , is Koszul.

Remark 4.3.3. If we only allow left modules in the definition of Koszulity, then what we have
proven is that the k-linearization of (FZ' 4)°? is Koszul. By [GL, Proposition 3.5], the k-linearization
of FI} 4 is Koszul.

5. THE QUADRATIC DUAL

5.1. Preliminaries.
Let C be a category such that C(X, X) is a group for any X € C (in other words, C is an EI
category, one whose endomorphisms are isomorphisms). Let & be a field, and C be the k-linearization

of C. Assume that C is a directed graded k-linear category.

Remark 5.1.1. Let X, Y € C. If Visa (C(Y,Y),C(X, X))-bimodule, then V*isa (C(X, X),C(Y,Y))-
bimodule with left action given by k-linear extension of (o - v*)(v') = v*(v'o) for o € C(X, X), and
right action given by k-linear extension of (v* - 7)(v") = v*(7v’) for 7 € C(Y,Y), where v* € V* and
vV eV. Ifg:V—-Wisa (C(Y,Y),C(X, X))-bimodule homomorphism, then ¢* : W* — V* defined
by ¢*(w*) = w*¢ is a (C(X, X),C(Y,Y))-bimodule homomorphism.
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In particular, C(X,Y); isa (C(Y,Y),C(X, X))-bimodule by composition of morphisms, so C(X,Y);
isa (C(X,X),C(Y,Y))-bimodule. Also, for any X,Y, Z € C, the composition map

Yxvz : C(Y,Z)1 @cryv,y) C(X,Y)1 = C(X, Z)2

isa (C(Z,7),C(X, X))-bimodule homomorphism, thus

Yxvz C(X,Z)5 = (C(Y, Z)1 ®c(v,y) C(X, Y )1)*

is a (C(X, X),C(Z, Z))-bimodule homomorphism.

Remark 5.1.2. Let X, Y € C,and V be a (C(Y,Y),C(X, X))-bimodule that is finite dimensional
as a k-vector space. Let {e1,...,e,} be a basis of V, and {e},...,e}} be the dual basis of V*, so
that V' = V* as k-vector spaces by the correspondence e; <» ef. Then V*is a (C(X, X),C(Y,Y))-
bimodule in the following way. Define the left action of C(X,X) on V* by k-linear extension of
o-v* = (vo~H)* for o € C(X, X), and the right action of C(Y,Y) on V* by k-linear extension of
v* -7 = (r71v)* for 7 € C(Y,Y), where v <+ v* correspond under the isomorphism V 2 V*. These

actions are compatible since

Note 5.1.3. If X, Y € C and Vis a (C(Y,Y),C(X, X))-bimodule that is finite dimensional over
k, then in order to distinguish between the two ways in which V* is a (C(X, X),C(Y,Y"))-bimodule,
let us call the bimodule action of Remark 5.1.1 the “natural” action, and the bimodule action of

Remark 5.1.2 the “inverse” action.
Proposition 5.1.4. Let X,Y,Z € C. Suppose V is a (C(Y,Y),C(X, X))-bimodule and W is a

(C(Z,Z),C(Y,Y))-bimodule, both of which are finite dimensional over k. Then (W ®¢(y,y) V)* =
V* ®@c(y,yy W* as (C(X, X),C(Z, Z))-bimodules under the inverse action.
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Proof. Define

0: (W&ewy) V) =V Qcy,yy W*
by k-linear extension of the assignment (w®v)* — v* @ w*. To see that ¢ is well defined, note that
o((wa®@v)*) =v* @ (wa)* =v*@a ! w =v-a ' @uw* = (aw)* @w* = p((w @ awv)*)
for any oo € C(Y,Y). To see that ¢ is a (C(X, X),C(Z, Z))-bimodule homomorphism, observe that
o-(wev) =(wev)e ) =weve ) = (vo ) @uw*=(c-v")Quw* =0 (v @w")
for any o € C(X, X), and
(wev) -7=(1"Hwev) =T lwev) s (T w) =v e W T)= W W) T
for any 7 € C(Z, Z). Next, define
YV Qeyyy W = (W ¢vy) V)"
by k-linear extension of the assignment v* ® w* — (w ® v)*. Then ¢ well defined since
(" -a)@w”) = ¢((a” ) @w’) = (wea™lv)" = (wa” ' @v)" =Y B (wah)) =Y B (ew))
for any o € C(Y,Y). Also, ¢ is a (C(X, X),C(Z, Z))-bimodule homomorphism because
o-(Wew)=(-v)ow =W ) Qu = (weve ) =(wev)e ) =0 (w®v)*
for any o € C(X, X), and
Wew) - T=v*"® W -7)=v' (T w) = (rTwev) =T wev) = (wev)* T
for any 7 € C(Z,Z). Thus, (W ®@c(y,y) V)" = V* Q¢v,yy W* as (C(X, X),C(Z, Z))-bimodules under

the inverse action. O
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Remark 5.1.5. In particular, for any X,Y, Z € C, (C(Y, Z)1®¢(v,y)C(X,Y)1)* = C(X,Y)[®c(v,v)
C(Y, Z);5 as (C(X, X),C(Z, Z))-bimodules under the inverse action. Moreover, it follows by induction

that

(C(Yi, Z)1 @ceviyve) - Ocvivy) C(X, Y1)1)" 2 C(X,Y1)T @cvyva) - Oeviyy) C(Yi, Z)1

as (C(X,X),C(Z, Z))-bimodules under the inverse action, for any X,Yy,....Y;, Z €C, i > 1.

Proposition 5.1.6. Let X,Y,Z € C. Then C(Y, Z)1 ®¢(v,y) C(X,Y)1 is a (C(Z, Z),C(X, X))-
bimodule that is finite dimensional over &, and the natural and inverse actions on (C(Y, Z)1 ®¢(v,v)
C(X,Y)1)* coincide.

Proof. C(Y,Z)1 ®¢(v,y) C(X,Y ) is spanned by the finite set

S={g9g®f:9€e€C(Y,Z), f €C(X,Y) are morphisms of degree 1},

so S contains a basis of C(Y,Z)1 ®¢(y,y) C(X,Y)1. To show the natural and inverse actions on
(C(Y, Z)1®¢(y,v)C(X,Y)1)* coincide, it is enough to check this on basis elements. Let g, g’ € C(Y, Z),
f,f" € C(X,Y) be morphisms of degree 1 and let o € C(X,X), 7 € C(Y,Y). Under the natural

action, we have

(c-GN)NG )= (G ®[f0)=bafgase

and

(@) T)Nd@f) =@ ) (g ef)=0mtryar
On the other hand, under the inverse action, we have
(- (g@N)Ng @) =(9 fe) (¢ @) =bgafor gor

and

(N g ef)=0"90NG F)=06r140fg0p

But dysr.90fc = Ogefo1,g0f and dyorrgef = Or-1gsf.g'@f > SO the natural and inverse actions

coincide. 0
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Therefore, we may unambiguously identify im(v%y ) as a (C(X,X),C(Z, Z))-subbimodule of
C(X,Y)T ®cvy) C(Y, Z)1, where

Yxyz 1 C(X, Z)5 = (C(Y, Z)1 @c(v,y) C(X,Y)1)" 2 C(X,Y)] ®c(v,y) C(Y, Z2)7.

5.2. The category c.

Definition 5.2.1. Let C be a directed graded k-linear category. Recall that A = P,,,C; is a
graded k-algebra, where C; = Dy y ¢ C(X,Y);. Note that C, is a ring, with multiplicative identity
> xec 1x if and only if [Ob(C)| is finite. Since C; is a (Cy,Cy)-bimodule, we can form the graded
k-algebra

T:QO@Q1@(Q1®QOQ1)@“' :

Let v : T — A be the map induced by composition of morphisms. It is a graded k-algebra ho-
momorphism, and is surjective by condition (A6). Let K = ker(y), which is a graded ideal of T.

If K is generated by its degree 2 component Ky = KN(C;®¢ C,), then we call C a quadratic category.

Remark 5.2.2. If a directed graded k-linear category C is Koszul, then it is quadratic by [GL,

Proposition 3.10].

Remark 5.2.3. Let R = @izo R; be a graded ring, and a,b € Ry. Then aRb = @izo aR;b is
a graded subring of R. Let S C R; for some 7 > 0, and I be the ideal of R generated by S. Then
I'=@D;5o(INRy) is a graded ideal of R. Put I; = I N R; for each i > 0. Then alb= P, al;bis a
graded ideal of aRb, and hence admits a graded quotient ring aRb/alb = P, (aR;b/al;b).

Let C be an EI category, and C be the k-linearization of C. Assume that C is a directed graded

k-linear category. Recall that C is skeletal, by Note 2.1.2.
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Definition 5.2.4. Let C] = @y y C(X,Y)]. Since C(X,Y)] is a (C(X, X),C(Y,Y))-bimodule

for any X,Y € C, it follows that C] is a (C,, Cy)-bimodule. So we can form the graded k-algebra
R=Cy®Ci®(C1®c,C1)®---.

Put Ry = Cy and R; = C] ®¢, -+ ®¢, C; (i factors) for i > 0, so that R = @, Ri- Note that
Ry = @ xcc C(X, X)o by condition (A3), and C(X, X) = C(X, X)o for any X € C by condition (A4).
So for any X, 7 € C, we have 1x,1z € Ry. Hence, 1xRlz = EBizo 1x R;1z is a graded k-subalgebra
of R. Notice that

C(X,X) ifX=2
1XR01Z =

0 if X # 2,

IxR11z =C(X, 2)7,
IxRolz = @ CX,Y)} @y CY, 2)5,
YeC

and for i > 2, we have

IxRilz= P CX V)i ®eriv) - Peirvioy CYio1, Z)5.
Yi1,...,Yi—1€C

Let S =Uyx.y zec im(vxyz)- Since

Ry = @ C(X,Y)] ®@cvy) C(Y, Z)7,
XY, ZeC
we have S C Ry. Let I be the ideal of R generated by S. Then [ = @izo I; is a graded ideal of R,
where I; = INR; for all ¢ > 0; in particular, Iy = I = 0. So 1xI1; = @izo 1x1I;17 is a graded ideal
of 1x R1z, and hence admits a graded quotient k-algebra 1xR1,/1xI1; = @izo(lxRilz/lxhlz)-
The quadratic dual of C is the k-linear category C' having the same objects as C and morphisms

defined by

C(Z.X)=1xRlz/1xI1z = PAxRilz/1x1;12)
i>0

for any X,Z € C. For any X,Y,Z € C, the composition map Q!(Y,X) Rk Q!(Z, Y) — Q!(Z,X) is
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defined by

(Ixrly +1xI1ly)(lyslz + 1yIly) =1xrsly + 1x11z.

To see this is well-defined, suppose
Ixrly +1xTly = 1x7'1y + 1xI1ly and lysly + 1y Ily = 1y s'ly + 1y 1.
Then
Ixrly —1xr'ly = 1x(r—7")1y € 1xIly and lysly — lys'ly =1y (s — s )1z € 1y Iy
implies r — ', s — s’ € I. So

1xrsly — 1x’l“lsllz =1xrsly — lxrsllz + 1)(7”5/12 — lxssllz

=1xr(s =8z +1x(r—1")sly

belongs to 1xI1z, and hence 1xrsly + 1xI1z = 1x1r's'lz + 1xI1z. For any X € C, the identity

morphism in C'(X, X) is 1x + 1x/1x.

Proposition 5.2.5. C' is a directed graded k-linear category.
Proof. Let X,Z € C. Recall that

CY(Z,X)=1xRlz/1xI1; = @(1XRilz/1X]ilz).
i>0

Put Q’(Z,X)l = 1XRi1Z/1XIi12 for each ¢ Z 0. Then

Q!(Z7X) = @Q!(ZvX)i

i>0

is a graded k-vector space. Notice that

' CX,X) ifX=2
Q(Z7X)0 =

0 if X # 7,
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(2, X) =C(X, 2)],
C(2,X); = @(C(X Y)1 ®cv,y) €Y, 2)1 /im(vxy z))
vec

and for i > 2,

C(Z,X); = @ (C(X, Y1)} ®cvivi) * Bevirviy) CYim1, 2)1)/Wi),
Yi,....Y;1€C

with
Z (X, Y1)1®crvi) - Be(, Yj-1,Y] )im(ﬂ"j—lyjY}Jrl)@Q(YjﬂxYHl)'"®Q(Yi—1’Yi—1)Q(Yi—1’Z)T

in which X = Yy and Z = Y. For any X,Y,Z € C, the composite of a degree i morphism
1xr;ly+1xI;1y in Q!(Y, X); and a degree j morphism 1yr;1z+1y ;17 in c' (Z,Y); is the degree i+j
morphism 1xr;rjlz+1x1;4;1z7 in Q(Z, X)iyj. Hence, the composition map Q(Y, X) ®kQ‘(Z, Y)—
Q!(Z, X) is a morphism in k-gMod. It follows that C'isa graded k-linear category.

Since C is directed, Ob(C) is partially ordered by C such that whenever C(X,Y) # 0, we have
X C Y. We partially order Ob(Q!) by 2, and claim that whenever Q!(Z,X) # 0, we have Z D X.
To show this, let X, Z € C and suppose Q!(Z,X) # 0. Then we must have a nonzero morphism
u € Q!(Z,X)z- for some ¢ > 0. If ¢ = 0, then Q!(Z,X)o #0forces X = Z,s0Z 2 X. Ifi =1,
consider C'(Z, X); = C(X, Z)*. Since C(X, Z), is finite dimensional as a k-vector space by condition
(A1), C(X,Z); =2 C(X,Z), as k-vector spaces. Hence, C(X,Z) # 0 implies X C Z,s0o Z O X. If
i > 2, then there exist Y7,...,Y;_1 € C and nonzero morphisms u; € C(X,Y7)7 =2 C(X,Y1)1,...,u; €
C(Y;_1,2)y 2 C(Yi—1,Z)1. So the composite u;---u; € C(X,Z); is nonzero. Hence, C(X,Z) # 0
implies X C Z, so Z O X. Thus, Q! is directed.

It remains to verify conditions (A1)-(A7) for C'.

(A1) Let X,Z € C. We must show that C'(Z, X) is finite dimensional as a k-vector space.
Define the graded k-linear category C* by setting Ob(C*) = Ob(C) and C*(Y, W) = 1w R1ly for any
W,Y € C, where

R=Cy®dCi®(Ci®c,C1)®---.

It suffices to show that C*(Z, X) is finite dimensional. C* is directed by 2 in the same way as C'.
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Let D be the convex hull of {X, Z} in C*. Then D(Z, X) = ,,D(Z, X)i, where

CX,X) ifX=2
D(ZvX)O =

0 it X 4 Z,
Q(Za X)l = Q(Xu Z)Tu

and for ¢ > 2,
D(Z,X)i= B (CEY)®cmiw) - Dew v CYi1, 2))).

For any finite set S C Ob(C), the convex hull of S in C* is the same as the convex hull of S in C. By
condition (A7) for C, D has only finitely many objects. Hence, each D(Z, X); is finite dimensional
and D(Z,X); =0 for all i > |Ob(D)| + 1. Thus, C*(Z,X) =D(Z, X) is finite dimensional.

(A2) Let X € C. By condition (A4) for C' below, C'(X, X); = 0 for all i > 0. Thus, C'(X, X) =
C'(X,X)o = C(X, X). Hence, C'(X, X) is semisimple as a k-algebra by condition (A2) for C.

(A3) C'(Z,X)o = 0if X # Z by definition.

(A4) Let X € C. We will show that C'(X,X); = 0 for all # > 0. For i = 1, we have
C'(X,X); = C(X,X)r = C(X,X), as k-vector spaces. Hence, C'(X,X); = 0 by condition (A4)
for C. Next suppose QI(X,X)i # 0 for some i > 2, for sake of contradiction. Then there ex-
ist ¥7,...,Y;—1 € C such that C(X,Y7)f = C(X,Y1)1,....C(Yi—1,X)} = C(Y;—1,X); are nonzero.
Since C is directed, this implies X C Y; C --- C Y;_; C X, which gives X =Y} =--- =Y, _;.
But then C(X,Y1):,...,C(Y;—1,X)T are all isomorphic to C(X,X); as k-vector spaces. Hence,
C(X,Y1)5,...,C(Y;_1,X); = 0 by condition (A4) for C. This is a contradiction, so we must have
C'(X,X); =0 for all i > 2. Therefore, C'(X, X); = 0 for every X € C and i > 0.

(A5) Let X € C. By condition (A5) for C, there are only finitely many Y € C such that
C(Y,X)1 2C(X,Y)1 #00r C'(X,Y); 2C(Y,X); #0.

(A6) We must show that C} - C} = Qiﬂ for every i > 0, where C} = Dx zec C'(Z,X); for each
i > 0. Note that C; = @y zcc C(X, Z); by definition, and Cy = @ 0 C(Z, Z)o by condition (A3)
for C'. Let X,Z € C. If f* € C(Z,X)1 = C(X, Z)%, then 1, € C'(Z,Z2)o = C(Z, Z) and f* = f* 1.
It follows that C} - Cy = C. If ff ® -+ ® ff 1 + Wit belongs to a direct summand of C'(Z, X); 41

corresponding to some Y7,...,Y; € C, ¢ > 1, then f{ ® --- ® f + W, is in the direct summand of
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Q!(Z, X); corresponding to Y1,...,Y;_1 € C and ff,, € C(Y;, Z)7. So
i@ @ fipn+ Wi = (1 ®-- @ ff + Wi)- fiy1,

and it follows that Qé+1 = Q!l Q; for ¢ > 1.
(A7) Since Ob(C') = Ob(C) and Z DY D X if and only if X C Y C Z, the convex hull of any
finite set S C Ob(C') contains only finitely many objects, by condition (A7) for C.

Therefore, C' is a directed graded k-linear category. ]

Remark 5.2.6. Let A' be the graded k-algebra Do C', where C} = Dx zec C'(Z, X); for each
i > 0. Because C}), = P xec C(X, X) and ¢ = Dx.zec C(X, 2)1, ¢ is a (C),C})-bimodule. So we

can form the graded k-algebra
T'=CoaC @ (Ci & C) &

and let 4' : 7' — A' be the graded k-algebra homomorphism induced by composition of mor-
phisms in C'. Then +' is surjective by condition (A6) for ¢ and K' = ker(v') is generated by its

degree 2 component K} = K* O(Q!l ®Oc! Q'l) by construction of morphisms in C'. Thus, C' is quadratic.

5.3 The category C'.
Let n € N, ¢ be a partition type, and A be a finite abelian group. Let C be the skeletal subcategory
of FIi' 4 on objects X = ([z1], ..., [zn]). Let C be the k-linearization of C, where k is a field of charac-

teristic 0. Then C is an EI category and C is a directed graded k-linear category, by Proposition 3.2.3.

Definition 5.3.1. The twist of C is the k-linear category C* having the same objects as C, and

morphisms defined by

Qtw(XvY) = @ k(f;Pf,Oéf) Rk det(Pf)
(f,Pr,op)€C(X,Y)

for any X,Y € C, where det(Py) = /\‘Pf‘ kPy. The composite of two morphisms (g, Py, ag)®/\;ﬁ:1 S;
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in C"(Y, Z) and (f, Py, ap) ® \j_y R; in C"(X,Y) is defined to be
(9f, Pyprogf) @ g(RI) A~ Ag(R)ASL A A Sy,

in C"(X, Z). Composition in C' is associative because if

P m l
(h, Poyan) @ J\ Ty € C™(Y, 2), (9, Pyoog) ® \ S € C(X,Y), (f, Proap)® \ Ry € C™ (W, X),

Jj=1 j=1 j=1
then
p l m
(B, Poyan) @ N\ T)((afs Pogragr) @ J\ g(R)) AN S;)
j=1 j=1 j=1
and
m P l
((hg, Prgs ang) @ N\ h(S)) A N\ T)((f: Proag) @ \ R))
j=1 j=1 j=1
both equal

l m P
(hgf, Pugsrangs) ® \ hg(R) A\ B(S;) A N\ T5.
j=1 j=1

j=1

The identity morphism in C**(X, X) is (1x,@,0) ® 1, where 0 : X — A is the zero map.

Proposition 5.3.2. C™ is a directed graded k-linear category.
Proof. For any X,Y € C, define the degree i > 0 part of C"(X,Y) by

C(X,Y); = &b k(f, Py, ar) @y det(Py).

(f,Pr,ap)€C(X,Y)
|Ppl=i

Then C™(X,Y) = @izo C"™(X,Y); is a graded k-vector space, such that " (Y, Z)J<®;€Q“”(X7 Y); —
C'"(X,Z)iy; for every i, j > 0. It follows that C" is a graded k-linear category. Also, C"" is directed
by the same partial order C on C. We now verify conditions (A1)-(A7) for C* below.

(A1) Let X,Y € C. Since det(Py) is 1-dimensional for any (f, Py,ay) € C(X,Y), C"™(X,Y) =
C(X,Y) as k-vector spaces. By condition (A1) for C, C"(X,Y) is finite dimensional as a k-vector

space.
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(A2) Let X € C. Then

C(X,X) = &y k(f, @,0ap) @ k
(f:9,a5)€C(X,X)

is isomorphic to C(X, X) as a k-algebra. So C*(X, X) is semisimple as a k-algebra for any X € C,
by condition (A2) for C.

(A3) If X # Y, then there is no (f, Py,ay) € C(X,Y) for which | P;| = 0. Hence, C"(X,Y)o = 0
it X £Y.

(A4) If X € C and 7 > 0, then there is no (f, Py,ay) € C(X,X) for which |P;| = 4. Thus,
C"™(X,X); =0 for every X € C and i > 0.

(A5) For any X,Y €C,

C(X,Y)) = &y k(f, Py, ap) ® kP

(f,Pr,op)€C(X,Y)
[Pyl=1

is isomorphic to C(X,Y"); as a k-vector space. So for any X € C, there are only finitely many Y € C
such that C"(X,Y); # 0 or C"™(Y, X); # 0, by condition (A5) for C.
(A6) Let X,Y € C. If (f, Py,ap) ® R € C"™(X,Y); is a morphism of degree 1, where P; = {R},

then the identity morphism (1yx,@,0) ® 1 € C"(X, X)o is a morphism of degree 0, and
(f, Pr.ap) @ R=((f,Pr,ap) @ R)o ((1x,2,0) @ 1).

It follows that C; - Cy = C;. Next, let (f, Py, af) ® /\;=1 T; € C"™(X,Y); be a morphism of de-
gree ¢ > 1. By condition (A6) for C, (f, Pf,co5) = (¢', Py, g )(f, Py, pr) for some morphisms
(f',Pp,ap) € C(X,Y"), (¢, Py,ay) € C(Y',Y), of degrees i—1 and 1, respectively, for some Y’ € C.
Let Py = {Ra,...,Ri—1} and Py = {S}. Then {Th,...,T;} = Py = Py = {¢'(R1),...,¢'(Ri=1), S}
So (f', Ppr o) ® Niy Ry € C™(X,Y")i1 and (¢, Py, ag) ® S € C"™(X,Y"); with

i—1

((glvpg’vag/) & S) © ((flvpf’vaf’) by /\ R]) = (f7 Pfaaf) ®g/(R1) A /\gl(Rifl) A S)
j=1

which equals £(f, Py, o) ® /\;=1 T;. Tt follows that C, - C; = C, ,; for every i > 0.

41



(A7) The convex hull of any finite set S C Ob(C*) contains only finitely many objects, by
condition (A7) for C.

Therefore, C' is a directed graded k-linear category. (]

Note 5.3.3. For any X € C, we have C(X,X) = C(X,X)o and C™(X,X) = C"(X,X)o by
condition (A4) for C and C', respectively. Let us identify C(X,X)o = C"(X, X)o as k-algebras
under the correspondence (f,@,ay) > (f,@,0p) ® 1. Since Cj = Pyec C(X,X)o and C¥ =
Dxec C"™ (X, X)o by condition (A3) for C and C™, respectively, we shall identify C* = C, as k-
algebras. Then for any X,Y € C, C"(X,Y); is (C(Y,Y),C(X, X))-bimodule with left action given

by k-linear extension of
(1,9, 07) - ((f, Ppap) @ R) = (1, Pry, arf) © 7(R)
for (1,9, a,) € C(Y,Y), and right action given by k-linear extension of
((f, Ppyap) @ R) - (0,9, a0) = (fo, Po,ay0) ® R

for (0,9, a,) € C(X,X), where Py = {R}.

Notation 5.3.4. Given a group G, let X be a right G-set and Y be a left G-set. Define an
equivalence relation ~ on X X Y be declaring that (z,y) ~ (2’,y’) if and only if there exists g € G
such that z = 2/g and gy = 3. Let X xgY = X X Y/ ~ denote the set of equivalence classes.
For any X,Y € C, let C(X,Y); be the set of morphisms in C(X,Y) of degree 1. Then for any
X,)Y,Z €C,C(Y,Z), is aright C(Y,Y)-set and C(X,Y); is a left C(Y,Y)-set, so we can form the
set C(Y, Z)1 Xev,y) C(X,Y)1.

Proposition 5.3.5. C' is quadratic.
Proof. Let A™ = @, Ci", where C; = @ x y¢c C"™"(X,Y);. Then A™ is a graded k-algebra
with multiplication given by composition of morphisms in C*. Since C!" is a (C,, C,)-bimodule, we

can form the graded k-algebra

T =Cp" @ C1" @ (€Y ®¢, 1) @ -+
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Let ~*% : T™ — A™ be the graded k-algebra homomorphism induced by composition of morphisms
in C™. It is surjective by condition (A6) for C*. Let K™ = ker(y*), which is a graded ideal of
T**.We must show that K* is generated by its degree 2 component K5 = ker(v")N(C}" ®¢, C1").
Let us abbreviate morphisms (f, Py, ay) in C simply by f. Also, for any morphism f, pick an
ordering of the elements of P; and write Ay for the basis element of det(Py).
We define a graded k-algebra 7% = Do TH as follows. Let T¢® = C, and for i > 1, let

T = D P k(i 1) @k det(Py,..p,),

X Y1, Yi-1,Z€C (fi,...,f1)

where the inner direct sum is over all
(fises f1) € C(Yi1, Z)1 Xevi 1 via) " Xe(vi,vn) C(X, Y.
The product of two basis elements
(Gjs - 91) @ Ngjogy € Tth and (fi, ..., f1) ® Afpy € Titw

is defined to be

(gja - 91, fi7 seey fl) ® /\gj"‘glfq‘,'“fl c Tﬁ_ﬂj
Let 4 >2 and X’ Yl,...,l/;‘,l,Z € C. For any
(fi’ " fl) € C(E71’2)1 XC(Yq‘,—th‘,—l) T XC(Ylle) C(Xa Yl)h

choose the ordering (f;--- fa(R1),...,R;) of the elements of Py,...r,, where P;, = {R;} for each
1 <1<

Define 5% : T* — A in degree ¢ > 1 by k-linear extension of the assignment

(fises J1) @ Ny 7> fir o f1 @ Api s

where Ag,...q, = fi-- fa(R1) A -+ A R;. To see that 3 is a k-algebra homomorphism, take basis
elements

(Gjs s 91) @ Ngj gy € T;w and (fi, .o, f1) @ Afyoy € TEV.
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Then

A ((Ggs wr 91) @ Agyooeg ) (Fir s 1) © A g 1)) = 3G o0 915 Jis oos 1) © Ngyovogi g 1)
=4gj-- “gifi 1 ® /\gj"'glfi“'fl
= (g5 91) @ Ngjoeg ) ((fi - [1) @ Nfioooy)

= ;th((gﬁ ...,gl) ® /\gj.ugl):)/tw((fiv P fl) ® /\fi'“fl)

where

for P, = {R;} (1 <1<i)and Py, ={S,} (1 <p<j).
Recall that v: T — A is a graded k-algebra homomorphism given by composition of morphisms
in C, where A = @izogi and T =Cy®C, @ (Cy ®c, C,) @ ---. Note that Tt =~ T as graded

k-algebras by k-linear extension of the correspondence

(fi,"'vfl) ®/\f1f1 A fl Q- ®fl

in degree i > 1.
For any i > 2, an arbitrary element in a direct summand of Titw correspondingto X, Y3, ...,Y;_1,Z €

C is of the form

L yenns 1]'(fij""7f1j)®/\fij'“flj'

Then
’Vtw(i)zzcz‘j ..... 1jfij"'f1j®/\fij...f

1j

belongs to the direct summand of A corresponding to X, Z € C. Let

r= Zcijwwljfij ®---® fi
J
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be the image of & under the isomorphism T =~ T, Then

belongs to the direct summand of A; corresponding to X, Z € C. Group together like terms in both

of the sums 5" (%) and 7(z), i.e. those for which the composite f;, --- f1, is the same element in

C(X,Z). If 7 € ker(3*), then
;?tw(j') = Zcij7"'71j fl] N flj ® /\fyflj =0
J

implies that the sum of the corresponding scalars is 0 in each group, and hence = € ker(y). Since C
is quadratic by Remark 5.2.2, x is generated by the degree 2 component of ker(y). Because Tw ~T
as graded k-algebras, 7 is generated by the degree 2 component of ker('%). It follows that ker(7*)
by its degree 2 component.

Observe that T = T as graded k-algebras by k-linear extension of the correspondence

(fiv""fl) QO Nfifr (fl ®Ri) Q- (fl ®R1)

in degree i > 1, where Py, = {R;} for each 1 <1 <. Hence, we get a commutative diagram
Ttw # Ttw

:ytx /tw
Atw

because

’?tw((fia ) fl) ® /\fi“'fl) =fi-f1i® Nfjofy = 'Vtw((fi & Rz) Q- ® (fl & Rl))

Since ker(7'%) is generated by its degree 2 component and Ttw >~ Tt a5 graded k-algebras,

ker(y%") is generated by its degree 2 component. Therefore, C'* is quadratic. |
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5.4. Description of C'.

Let n € N, ¢ be a partition type, and A be a finite abelian group. Let C be the skeletal subcategory
of FZIi 4 on objects of the form X = ([z1], ..., [zn]), Wwhere x; € Np, 1 <4 < n. Let k be a field of
characteristic 0, and C be the k-linearization of C. Then C is Koszul by Corollary 4.3.2 and hence
quadratic by [GL, Proposition 3.10].

In this section we will show that C' and (C')° are isomorphic categories (Corollary 5.4.10),
provided that we make a further assumption on the partition type ¢ (Remark 5.4.2). To prove
C' = (C™)°P we need to show that C'(Z, X); = C'" (X, Z); as k-vector spaces for any X, Z € C and

12> 0.

Note 5.4.1. For ¢ = 0, 1, this is immediate. For any X, Z € C, recall that

=~ I 0

0 if X 27

and

C'(X,2)1 =C(X,2);.

On the other hand,
CX,. X)ork ifX=2Z

Qtw()(7 Z)O —_
0 if X 472
and
Qtw(XaZ)lz @ k(fvpfvaf) ®kdet(Pf)
(f,Pfﬂlf)EC(X,Y)
[Pyl=1

Thus, Q!(Z,X)i =~ C"(X, Z); as k-vector spaces for i = 0, 1.
Remark 5.4.2. For i > 2, we must make a further assumption on the partition type t. There

are two cases depending on n. If n = 1, then fix m € N and assume ¢ is partition type m; if n > 1,

then assume t is partition type n*.
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Proposition 5.4.3. Let X, Z € C and i > 2. If C(X, Z),; # 0, then there is a unique sequence
of objects Y1, ..., Y;—1 € C such that C(X, ¥1)1,...,C(Yi—1, Z)1 are nonzero.

Proof. Recall that any morphism of degree i > 2 factors into a composite of degree 1 morphisms
by condition (A6) for C. Let X = ([z1],...,[zn]) and Z = ([z1],...,[2n]). I n = 1, then we must
have [z1] = [z1 +im], so Y1 = [x1 + m],...,Y;—1 = [x1 + (i — 1)m] are the only objects in C for which
C(X,Y1)1,..,C(Yi—1, Z)1 are nonzero. On the other hand, if n > 1, then we must have ([z1], ..., [zn]) =
(k1 + 1]y ooy [20 +14]), s0 Y1 = ([21 + 1], ..y [X0 + 1)), Yie1 = ([21 + (= 1)], ..., [2,, + (i — 1)]) are the
only objects in C for which C(X,Y1)1,...,C(Y;-1, Z)1 are nonzero. O

Corollary 5.4.4. Let X,Z € C and i > 2. Suppose C(X, Z); # 0, and let Y7, ...,Y;_; € C be the

unique objects such that C(X,Y7)1,...,C(Y;—1, Z)1 are nonzero. Then
C(Z,X); = (C(X, Y1)} ®cviva) - Bevia i) CYic1, 2)3) /Wi,
where
2_: (X, Y1)1@cvi vy @crv; 1y, 0Oy, vy, ) @ein v ey CYim1, 2)1,

in which X =Yy and Z =Y.

To show QI(Z7 X); =2 C"™(X,Z); as k-vector spaces for any X, Z € C and i > 2, we will exhibit a
surjection

¢: C(X, Y1)} @cvivy) + Pevioyvin) C(Yie1, Z)7 = C(X, Z);

whose kernel is W;. The map ¢ is constructed as follows.

By Remark 5.1.5, we have an isomorphism of (C(X, X),C(Z, Z))-bimodules
C(X, Y1) ®cviv)  Bevioryii) C(Yic1, 2)1 = (C(Yie1, Z2)1 ®c(vi_1,vioy) - Pe(vi,vi) C(X, Y1)1)"

Since

C(Yi1,Z)1 ®c(vi_y.viiy)  Qcviyy) (X, Y
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is finite dimensional as a k-vector space, we have an isomorphism of k-vector spaces

(C(Yie1,2)1 @c(v,_1 Y1) ey, v) C(X, Y1)1)" 2 C(Yi1, 2)1 ®crvi_y vy - @cvavy) C(X, Y1)

Let

o C(X, Y1) ®cvivi)  ®cvi1,vi) C(Yie1, Z2)] = C(Yi1, 2)1Qc(vi v vi 1) - Qcvivn) C(X, Y1)

be the composite of the above two k-vector space isomorphisms.
Recall that C"™(X,Y); 2 C(X,Y); as (C(Y,Y),C(X, X))-bimodules for any X,Y € C. It follows

by induction that

C"(Yi-1, 21 Qc(Yi_1,Yi_1) " '®Q(Y1,Y1)Qtw(X, Yi)i1 Z2C(Yie1,Z)1®¢(vi_1,vi1) Dcva,v) C(X, Y1)1
as (C(Z,7),C(X, X))-bimodules. Let

B:C(Yi1,2)1®¢(vi 1vi 1) ®crviv)C(X, Y1)1 = C (Yie1, Z)1®¢(vi 1 vi 1) ®crvav)C (X, Y1)

be this isomorphism as k-vector spaces.
Let

A CM (Yie1, 21 @c(viy i) - Qv CU(X V) = C(X, Z);

be the composition map in ', which is surjective by condition (A6) for C™™.

Thus, we define

¢:C(X,Y1)T ®cvivy) - Devioavis) CYinr, 2)1 = (X, Z),

as the composite v Ba.
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Notation 5.4.5. For arbitrary X,Y, Z € C, let us denote by ¢xyz : C(X,Y)[®c(v,y)C(Y, Z)] —

Qtw(X, 7)o the composite 74, ,Bxy zaxyz, where

~

axyz :C(X,Y)] ®cvy)C(Y,2)] — C(Y,Z)1 @¢v,y) C(X, Y )1,
(f, Proap)" @ (g, Py, 0q)" = (9, Py, o) ® (f, Py ap),

Bxyz :C(Y.Z)1 @crvy) C(X, Y )1 = C"™(Y, Z)1 ®c(vyy C (X, Y )

(g’PgaO‘g)@(ﬁPf?af) = ((g7pg7ag)®s)®((f,Pf’af>®R)?
Wz €Y, 2)1 @cvy) C (XY )1 — C"(X,Z)s

((gvpgvag)®S)®((fvpf7af)®R) = (gf,ng,agf)®g(R)/\S,

with P, = {S}, P; = {R}.

Since C™ is quadratic by Proposition 5.3.5, ker(y*") equals
i—1
D Vi1, 218y vies) Oy Y K (B vy, ) ®ev, 1y, ®eryn € (X, Vi),

j=1

in which X = Y, and Z = Y;. Because «, 3 are k-vector space isomorphisms, we get ker(¢) =

a8 1 (ker(y'*)). Hence, ker(¢) equals
Z (X, Y1)7 ®¢ (v1,v1) "~ ®c(v11.Y5-1) ker(d)yjflyjyjﬂ) Qc(vj41,Y541) 7 De(vi1,Yi1) C(Yi1, 2)7.

Thus, it suffices to show that ker(¢xyz) = im(y%y ), where X, Z € C are arbitrary and Y is the
unique object in C such that C(X,Y);,C(Y, Z); # 0.
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Definition 5.4.6. Let X,Z € C and i > 0. Given a morphism (g, P;,ay) € C(X, Z);, there is a
unique sequence of objects Y7, ...,Y;_1 € C such that C(X,Y7)1,...,C(Y;—1, Z); are nonzero. We call

an element

(fis Pryop) @ -+ @ (f1, Pryyap,) € C(Yic1, Z2)1 @ctviy,viy) -+ Qcva,vi) C(X, Vi)

a factorization of (g, Py, o) if

(fianwafi)'”(fl?Pfl’afl) = (g,Pg,Oég).

Lemma 5.4.7. If X,Z € C, then any basis element (h, P, ap) € C(X,Z)2 has exactly
two factorizations in C(Y,Z)1 ®¢(y,y) C(X,Y)1, where Y is the unique object in C such that
C(X,Y)1,C(Y, Z)1 # 0.

Proof. By the proof of condition (A6) for C, we know that (h, Py, o) factors into a composite of
two degree 1 morphisms (f, Py,af) € C(X,Y): and (g, Py, ay) € C(Y, Z)1. We shall reproduce that
argument here for future reference.

Since (h, P, ay,) is a degree 2 morphism, we have P, = {T},T»} for some disjoint nonempty
subsets T1,T> C Z. Then there is a bijection 7 € FZ"(Y, Z\{I1}). Let v; € FI"(Z\{T1 }, Z) be the
inclusion map. Define g1 = vy € FI"(Y, Z), Py, ={T1}, and oy, (y) =0 fory € Y, and o, (T1) =
ap(T1). Then (g1, Py, , g, ) € C(Y, Z) is a morphism of degree 1. Let A’ € FI"(X, Z\{T1}) be the
morphism obtained by restricting the codomain of h € FZ"(X, Z) to Z\{T1}. Define f; = 7, '’ €
FI'(X,Y), Py, = {r; '(T»)}, and ay, (z) = ap(x) for z € X, and ay, (17 (T2)) = an(Tz). Then
(f1,Pp,ap) € C(X,Y) is a morphism of degree 1.

So

g1fi =unt 'h' =uh =h,

Py p = 1(Pr,) U Py, = {unm "(To)} U{T1} = {T1, T} = Py,
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and

aglfl(x) =arn (z) + Qg, (f(z)) = an(z) for z € X,

Qg f1 (T2) = Qg fi (gl(Tl_l(T2))) =arn (TI_I(T2)) + Z Qg, (y) = ah(TQ)a
yer  (Ta)

Qg fr (Tl) = Qg (Tl) = ah(Tl)'
Thus, <917P917a91>(f1apf17af1) = (h’P’wah)' So
(91, Pgrs ag,) @ (f1, Prysapy) € C(Y, Z)1 @c(v,y) C(X, Y )

is a factorization of (h, Py, o) such that Py, = {T1} and ¢1(Py,) = {T>}.

Similarly, we can find a bijection 7 € FZ"(Y, Z\{T2}) and construct two degree 1 morphisms
(fa, Ppyy ) € C(X,Y), (92, Pyys tgy) € C(Y, Z) such that (h, Py, ) = (g2, Pyy, gy)(f2, Pryy atsy),s
so that

(gQanzvafm) b2 (anszvaf2) € Q(K Z)l ®Q(Y,Y) Q(X7 Y)l

is a factorization of (h, Py, ap) such that Py, = {Tb} and ¢2(Py,) = {T1}. Hence, (h, Py,as) €
C(X,Z) has at least two factorizations (g;, Py,, ;) @ (fi, Py, ap,) (i = 1,2) in C(Y, Z)1 ®¢(v,y)
C(X,Y)1.

We now show that these are the only two factorizations of (h, Py, o) in C(Y, Z)1®¢v,y)C(X, Y)1.
Suppose (h, Pn,an) = (g, Py, og)(f, Py, ay) for some degree 1 morphisms (f, Pr,af) € C(X,Y) and
(g9, Py,aq) € C(Y,Z). Say Py, ={S} and Py = {R}. Then {T%,T>} = P, = g(Py) U P, = {g(R), S}
implies that either 77 = g(R) and T = S, or T} = S and Ty = g(R). Without loss of generality,
assume 77 = S and Ty = g(R). We claim that (g, Py, ag) @ (f, Py, cf) = (91, Py, , g, ) @ (f1, Py, tpy)
in C(Y, Z)1®¢(v,y)C(X,Y)1. To prove this, we must find (0, J, a,) € C(Y,Y) such that (g, P, o) =
(91, Py, g, )(0,D, 00) and (0, D, a0)(f, Pr,ay) = (f1, Pr,op,).

Let ¢’ € FI"(Y, Z\{T1}) be the morphism obtained by restricting the codomain of g € FZI"(Y, Z)
to Z\{T1}. Recall that (g1,P,,,a4) € C(Y,Z) was defined by ¢1 = uwn € FI"(Y,Z), P, =
{Th}, and ag,(y) =0 for y € Y, ay,(T1) = ap(Th), where 13 € FI"(Z\{T1}, Z) is inclusion and
m € FI"(Y,Z\{T1}) is a bijection. Define (c,@,0a,) € C(Y,Y) by 0 = 77 *¢' € FI"(Y,Y) and
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ao(y) = ay(y) for y € Y. Then

-1 7
g10 = 41T17Ty g =9

and

Qg0 (T1) = ag, (T1) = an(Th) = agy(Th) = ay(Th),

50 (91, Py, 0q,)(0,D,00) = (9, Py, q). On the other hand, recall that (f1,Py,,ayp) € C(X,Y)
was defined by f, = 7, 'h' € FI"(X,Y), P, = {r {(T2)}, as, () = ap(z) for + € X and
af (171 (Ty)) = an(Ty), where ' € FI™(X,Z\{T1}) is the morphism obtained by restricting the
codomain of h € FI"(X, Z) to Z\{T1}. Then

of =7 g f =m0 = f,
o(P) =7 'g({R}) = {r '(12)} = Py,,
and

aop(x) = ap(z) + ao(f(2)) = ap(z) + ag(f(2)) = an(z) = ay, (z) for z € X,

Qo (o(R) = ay(R) + ) asly) = ag(R) + Y ag(y) = an(g(R)) = an(Ty) = ay, (7 (T2))-

YyER YER

So (0,9, a0)(f, P, o) = (f1, Py, , o5, ), and hence
(ganvO‘Q) ® (fvaaaf) = (917Pgl’a91) ® (f17Pfl’afl)

in C(Y, Z)1 ®¢(v,y) C(X,Y)1.

Similarly, if we had assumed T3 = g(R) and Tz = S, we would get

(.%ngag) ® (f’Pf’O‘f) = (9271:)9270‘92) ® (f27Pf270‘f2)

in C(Y, Z)1 ®c(v,y) C(X,Y)1.

Therefore, (h, Py, ) € C(X, Z)2 has exactly two factorizations (g1, Py, , ag,) ® (f1, Py, , ay, ) and
(92, Pgs s 0tgy) @ (f2, Pry vg,) in €Y, Z)1 @c(v,y) C(X, Y )i, such that Py, = {T1}, 1(Py,) = {1} and
Py, = {12}, g2(Py,) = {T1}. -
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Proposition 5.4.8. ker(¢xyz) is the span of all elements of the form
fTogi+f5©95 € C(X,Y)] @cvy) CY, 2)7

for which fi ® g7 # f3 ® g5 and g1 f1 = g2 f.
Proof. Recall that

dxvz :C(X,Y)} ®cvy) C(Y,2); = C™ (X, 2)2
is defined as the composite 74, 8xy zaxy z, where
axyz((f, Pr,ap)” © (9, Py, ag)”) = (9, Pgs ) @ (f, Pr, axp),
Bxyz((9: Py, a9) @ (f, Pr,ay)) = ((9, Py, g) © ) @ ((f, Py, ap) @ R),
with P, = {S}, Py = {R}, and
18y 2(((9, Py 0g) ® ) @ (£, Py, o) @ R)) = (9, Pyg, 00qf) @ g(R) A S.

So

¢XYZ((fan7O‘f)* ® (g,Pg,ag)*) = (gfanfvagf) ®g(R) /\Sa

where Py = {R} and P, = {S}.

Consider the composite of the second and third map:
Y&y zBxyz 1 C(Y, Z)1 ®c(v,y) C(X, Y )1 = C (Y, Z)1 ®civyy C(X, Y )1 — C™(X, Z)s.

For simplicity, we shall abbreviate degree 1 morphisms (f, Py,cy) in C as f. Then an arbitrary
element of C(Y, Z)1 ®¢(v,y) C(X,Y)1 is of the form z = } a;;(g; ® f;), where a;; € k and f; €
C(X,Y), gj € C(Y, Z) are degree 1 morphisms, say with Py, = {R;}, P,, = {S;}. We may assume
that all g; ® f; in  are distinct. Thus, = is a k-linear combination of distinct factorizations in

C(Y,Z)1 ®¢(v,y) C(X,Y); of various degree two morphisms h € C(X,Z). By Lemma 5.4.7, each
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degree two morphism h € C(X, Z) has exactly two factorizations in C(Y, Z)1 ®¢(y,y) C(X,Y)1. So
for each h € C(X, Z), at most 2 of its factorizations are present in x. Suppose = € ker(v4%,,8xyz)-

Then
tw _ _
V& 2Bxvz(x) =) ai(9;fi © g;(Ri) A S;) =0
in

C"(X,Z)y = @ kh @y, det(Py,).

heC(X,Z)
| Pp|=2

Fix a direct summand corresponding to h € C(X, Z), |P,| = 2. Then there are at most two terms in
v, Bxyz(x) that belong to kh @y, det(P,), and the sum of those terms is 0. If there is only one
such term a(gf ® g(R) A S), then a(gf @ g(R) A S) = 0 implies a = 0. If there are two such terms

ai1(g1f1 ® g1(R1) A S1) and az(gaf2 ® g2(R2) A Sz), then
0=a1(g1f1 ® g1(R1) A S1) + a2(g2fa ® g2(R2) A S2) = (a1 — a2)(g1f1 ® g1(R1) A S1),

since g1 f1 = gaf2 and g1(Ry1) = Sa, g2(R2) = S1. Hence, a; — az = 0 implies a1 = ay. Because this

holds for each direct summand, it follows that ker(74%, ,B8xyz) C span(U), where

U={01®fi+92® fo€C(Y,Z)1 Qcv,y)C(X,Y)1 : 1 ® f1 # g2 @ f2 and g1 f1 = g2 fo}.

Conversely, if g1 ® f1,92® f2 € C(Y, Z)1®¢(y,y)C(X,Y )1 are distinct elements such that g, f1 = g2 fo,

then
V& 2 Bxyz(91 @ f1 + 92 ® fa) = g1 f1 @ g1(R1) A S1 + gafa @ ga(R2) A So =0,

again since g1 fi = gofo and g1 (R1) = S, ga(R2) = S1. Thus, ker(v%%, ,8xyz) = span(U).
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Looking back at our isomorphism

axyz : C(X,Y)] ®cvyy C(Y, Z)] = C(Y,Z)1 @cy,v) C(X,Y)1,

we conclude that ker(¢xyz) is the span of all elements of the form

i @gi + f3 ®g5 € C(X,Y)T Qcrvyy) €Y, Z))

for which f{ ® gi # f5 ® g5 and g1 f1 = g2 fo. 0

Proposition 5.4.9. im(y%y ;) is the span of all elements of the form

T @91+ f3 @95 € C(X,Y)T Qcrvyy) CY, 2)1,

where ff ® g7 # f5 ® g5 and g1 f1 = g2 fo.
Proof. Recall that

Yxvz C(X,Z)5 = (C(Y, Z)1 ®c(v,y) C(X, Y )1)*

is the (C(X, X),C(Z, Z))-bimodule homomorphism obtained by dualizing the composition map

vxvz :C(Y,Z)1 @cryv,y) C(X,Y)1 = C(X, Z)s.

For simplicity, we again write morphisms (f, Py,ay) in C as f. Then for any dual basis element

h* € C(X, Z); and for any basis elements g € C(Y, Z);, f € C(X,Y)1, we have

1 ifh=gf
Yxyz(h)g® f)=h"(gf) =
0 else.

Fix a dual basis element h* € C(X,Z)3. Let v%y(h*) = > ai(g; ® fi)* in (C(Y,Z)1 ®c(v,y)

C(X,Y)1)*, where a;; € k and the g; ® f; are distinct and range over all basis elements in
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C(Y,Z)1 ®@civ,y) C(X,Y)1. If g fi = h, then
aij = Vxvz(h*)(g; ® fi) =1

If gjfi }é h, then

aij = Yxyz(P")(9; © fi) =0

By Lemma 5.4.7, h has exactly two factorizations in C(Y, Z)1 ®¢(y,y) C(X,Y)1, both of which are

present within the sum 7% ,(h*). If g1 ® f1 and g2 ® fs are these factorizations, then

Yxyz(R) = (91 ® f1)" + (92 ® f2)".
Since this holds for each h* € C(X, Z)3, it follows that im(v% ) C span(V'), where
V={(@1®f1)"+(92© f2)" € (C(Y, Z2)1®cv ) C(X, Y)1)" : (1®f1)" # (92® f2)" and g1 f1 = g2 fo}.

Conversely, if (g1 ® f1)*, (g2 ® f2)* are distinct elements of (C(Y, Z)1 ®¢(v,y) C(X,Y)1)* for which
g1f1 = g2f2, let h = g1 fi. Then h* € C(X, Z)5 and

Yxvz(P*) = (91 @ f1)" + (92 ® fa)".
Thus, im(v%y ) = span(V). By identifying im(v%,-,) under the (C(X,X),C(Z, Z))-bimodule iso-
morphism (C(Y, Z)1 ®¢(y,y) C(X,Y)1)* Z C(X,Y)] ®¢(v,y) C(Y, Z)], we conclude that im(v%y ) is
the span of all elements of the form
fi®g +fs®g5 € C(X,Y)] ®cv,y) C(Y, 2)7,

where fI' ® g7 # f3 ® g5 and g1 f1 = g2 fo. 0

By Propositions 5.4.8 and 5.4.9, ker(¢xyz) = im(y%y ) for any X,Z € C and Y being the
unique object in C for which C(X,Y);,C(Y, Z)1 # 0. So ker(¢) equals

Z (X, Y1) ®cviyvi) - ®ev;1,v;-0) MOy, yvyv,40) @y @cviy,viy) C(Yie1, 2)1,
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in which X =Y, and Z =Y;. Hence, ker(¢) is precisely W;. Therefore,
C™ (X, Z); 2 (C(X. Y1)} ®cviv) - Oeviy viy) CYim1, 2)7)/Wi = C(Z,X);

as k-vector spaces for any X, Z € C and ¢ > 0. This proves that Q!(Z,X) >~ C"™(X, Z) for all
X,Z € C. It follows that C' and (C')°P are isomorphic categories, summarized in the Corollary

below.

Corollary 5.4.10. Let n € N, t be a partition type, A be a finite abelian group, and k be a field of
characteristic 0. Let C be the skeletal subcategory of FZ;' 4 on objects of the form X = ([z1], ..., [z,])
for x; € Ny (1 <4 < n). Let C be the k-linearization of C. If ¢ is partition type m for some m € N

when n = 1, or if ¢ is partition type n* when n > 1, then = (ctyer.
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