UC Riverside UC Riverside Electronic Theses and Dissertations

Title

Koszulity of Directed Graded k-linear Categories and Their Quadratic Dual

Permalink https://escholarship.org/uc/item/1d380975

Author Tousignant, Jordan

Publication Date 2018

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA RIVERSIDE

Koszulity of Directed Graded k-linear Categories and Their Quadratic Dual

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

 $_{
m in}$

Mathematics

by

Jordan Christopher Tousignant

June 2018

Dissertation Committee: Dr. Wee Liang Gan, Chairperson Dr. Vyjayanthi Chari Dr. Jacob Greenstein

Copyright by Jordan Christopher Tousignant 2018 The Dissertation of Jordan Christopher Tousignant is approved:

Committee Chairperson

University of California, Riverside

ABSTRACT OF THE DISSERTATION

Koszulity of Directed Graded k-linear Categories and Their Quadratic Dual

by

Jordan Christopher Tousignant

Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 2018 Dr. Wee Liang Gan, Chairperson

We define a family of categories $\mathcal{FI}_{t,A}^n$ related to the category \mathcal{FI} of finite sets and injective functions. We show that the k-linearizations of these categories are Koszul, where k is a field of characteristic 0, using the language of directed graded k-linear categories. We also describe their quadratic dual categories in special cases.

Table of Contents

1. Introduction	1
2. Preliminaries	3
3. The Category $\mathcal{FI}_{t,A}^n$	8
4. Koszulity	13
5. The Quadratic Dual	30
References	58

1. INTRODUCTION

1.1. Motivation.

Before we introduce examples of the categories under consideration, we need to introduce some notation from [SS].

 Let

$$GL=GL(\infty)=\lim_{\rightarrow}GL(n)=\coprod_{n\geq 1}GL(n)/\sim$$

be the direct limit of the groups GL(n) of invertible $n \times n$ invertible matrices under upper left corner inclusion. Let $V = \mathbb{C}^{\infty}$ be a countable dimensional complex vector space. Then GL acts on V by left multiplication. Let $GA = GA(\infty)$ be the subgroup of GL stabilizing a nonzero linear map $t: V \to \mathbb{C}$ which annihilates all but finitely many basis vectors. Let $O = O(\infty)$ be the subgroup of GL stabilizing a nondegenerate symmetric bilinear form $\omega: V \times V \to \mathbb{C}$ such that e_i is orthogonal to all but finitely many e_j . Given a category \mathcal{C} , let $Mod_{\mathcal{C}}^{f}$ be the category of functors of finite length from \mathcal{C} to the category of complex vector spaces.

Example 1.1.1. Let \mathcal{FI} be the category of finite sets and injective functions. S. Sam and A. Snowden call this the "upwards subset" category and denote it by (us); the opposite category is called (ds) for "downwards subset". They define a category $\operatorname{Rep}^{\operatorname{pol}}(GA)$ of polynomial representations of GA, i.e. those appearing as a subquotient of a finite direct sum of various tensor powers of V. They describe a functor $K : (ds) \to \operatorname{Rep}^{\operatorname{pol}}(GA)$, which gives rise to an equivalence of categories $\operatorname{Mod}_{(us)}^{\mathrm{f}} \to \operatorname{Rep}^{\operatorname{pol}}(GA)$ [SS, Corollary 5.2.4].

Example 1.1.2. Let \mathcal{FIM} be the category of finite sets and injective functions that are equipped with a perfect matching on the complement of the image. S. Sam and A. Snowden call this the "upwards Brauer" category and denote it by (ub); the opposite category is called (db) for "downwards Brauer". They define a category $\operatorname{Rep}(O)$ of algebraic representations of O, i.e. those appearing as a subquotient of a finite direct sum of various tensor powers of V. They describe a functor $K: (db) \to \operatorname{Rep}(O)$, which gives rise to an equivalence of categories $\operatorname{Mod}_{(ub)}^{\mathrm{f}} \to \operatorname{Rep}(O)$ [SS, Corollary 4.2.7]. **Example 1.1.3.** Let \mathcal{FIM}_w be the category whose objects are pairs of finite sets and whose morphisms are injective functions that are equipped with a perfect bipartite matching on the complement of the image. S. Sam and A. Snowden call this the "upwards walled Brauer" category and denote it by (uwb); the opposite category is called (dwb) for "downwards walled Brauer". They define a category $\operatorname{Rep}(GL)$ of algebraic representations of GL, i.e. those appearing as a subquotient of a finite direct sum of various tensor powers of V and its restricted dual V_* . They describe a functor $K: (dwb) \to \operatorname{Rep}(GL)$, which gives rise to an equivalence of categories $\operatorname{Mod}^{f}_{(uwb)} \to \operatorname{Rep}(GL)$ [SS, Corollary 3.2.12].

Example 1.1.4. Let \mathcal{FIM}'_w be the category whose objects are pairs of finite sets and whose morphisms are injective functions that are equipped with a perfect bipartite matching on the complement of the image, such that each element of the domain and of the matching is either "marked" or "unmarked". The opposite category $(\mathcal{FIM}'_w)^{op}$ is used by D. Grantcharov and V. Serganova to diagrammatically describe $\operatorname{Hom}_{\mathfrak{q}(\infty)}(T^{p,q},T^{r,s})$ [GS, Section 5], where $\mathfrak{q}(\infty)$ is a certain Lie superalgebra of linear operators in $\operatorname{End}(V) \oplus \operatorname{End}(W)$, with V and W being countable dimensional complex super vector spaces equipped with a certain bilinear form $W \times V \to \mathbb{C}$, and $T^{m,n} = V^{\otimes m} \otimes W^{\otimes n}$.

Thus, each of these four "diagram" categories are used to describe morphisms between tensor powers of certain countable dimensional representations of GA, O, GL, and $\mathfrak{q}(\infty)$, over \mathbb{C} .

E. Dan-Cohen, I. Penkov, and V. Serganova proved that the \mathbb{C} -linearization of \mathcal{FIM} is Koszul using the language of tensor representations of the infinite dimensional orthogonal Lie algebra $\mathfrak{o}(\infty)$ [DPS, Theorem 5.5].

W. L. Gan and L. Li proved that the k-linearizations of \mathcal{FI} and several other related categories are Koszul, when k is a field of characteristic 0 [GL, Corollary 5.12]. They use the framework of Koszul theory for directed graded k-linear categories, which we will utilize to establish our results here.

In this paper, we shall define a 3-parameter family of categories $\mathcal{FI}_{t,A}^n$, which include the above four categories as special cases. We give a direct proof that the k-linearization of $\mathcal{FI}_{t,A}^n$ is Koszul when k is a field of characteristic 0. We also describe the quadratic dual category of the k-linearization of $\mathcal{FI}_{t,A}^n$ under a certain restriction on the parameter t.

1.2. Notation and conventions.

Let \mathbb{N} be the set of positive integers, and \mathbb{N}_0 be the set of non-negative integers. For any $n \in \mathbb{N}_0$, let $[n] = \{1, ..., n\}$; in particular, $[0] = \emptyset$. We use II to denote the disjoint union of sets, and \sqcup to indicate the union of sets that happen to be disjoint. We write \subset to signify \subsetneq . For us, k will always denote a field. For any k-vector space V, we write V^* for its dual space $\operatorname{Hom}_k(V, k)$. For any finite set $S = \{s_1, ..., s_m\}$, we write kS for the m-dimensional k-vector space with basis S (if $S = \{s\}$ has only one element, we will write ks instead of $k\{s\}$). Also, we denote by $\det(S)$ the 1 dimensional k-vector space $\bigwedge^m kS$; in particular, $\det(\emptyset) = k$. We denote by k-Mod the category of k-vector spaces, and by k-gMod the category of \mathbb{N}_0 -graded k-vector spaces whose morphisms are homogeneous of some fixed degree. By a category \mathcal{C} we mean a small category. We write $X \in \mathcal{C}$ to mean $X \in \operatorname{Ob}(\mathcal{C})$. Given $X, Y \in \mathcal{C}$, we write $\mathcal{C}(X, Y)$ for the set of morphisms in \mathcal{C} from X to Y. The composite of two morphisms $f \in \mathcal{C}(X, Y)$ and $g \in \mathcal{C}(Y, Z)$ is written as $gf \in \mathcal{C}(X, Z)$. We denote by 1_X the identity morphism of $X \in \mathcal{C}$.

2. Preliminaries

2.1. Directed graded k-linear categories.

Given a category \mathcal{C} and a field k, the k-linearization of \mathcal{C} is the category $\underline{\mathcal{C}}$ having $\operatorname{Ob}(\underline{\mathcal{C}}) = \operatorname{Ob}(\mathcal{C})$ and $\underline{\mathcal{C}}(X,Y) = k\mathcal{C}(X,Y)$ for any $X,Y \in \mathcal{C}$. A k-linear category is a category \mathcal{C} enriched over k-Mod. Thus, the k-linearization $\underline{\mathcal{C}}$ of a category \mathcal{C} is a k-linear category. We shall denote k-linear categories by $\underline{\mathcal{C}}$ rather than \mathcal{C} . A graded k-linear category is a category $\underline{\mathcal{C}}$ enriched over k-gMod. In particular, $\underline{\mathcal{C}}(X,Y) = \bigoplus_{i\geq 0} \underline{\mathcal{C}}(X,Y)_i$ for any $X,Y \in \underline{\mathcal{C}}$. We shall refer to $f \in \underline{\mathcal{C}}(X,Y)_i$ as a morphism of degree i. By letting $\underline{\mathcal{C}}_i = \bigoplus_{X,Y\in \mathcal{C}} \underline{\mathcal{C}}(X,Y)_i$ for each $i\geq 0$, we get a graded k-algebra $\bigoplus_{i\geq 0} \underline{\mathcal{C}}_i$ whose multiplication is given by composition of morphisms. A k-linear category $\underline{\mathcal{C}}$ is directed if there is a partial order \leq on $\operatorname{Ob}(\underline{\mathcal{C}})$ such that whenever $\underline{\mathcal{C}}(X,Y) \neq 0$, we have $X \leq Y$. A full subcategory $\underline{\mathcal{D}}$ of a directed k-linear category $\underline{\mathcal{C}}$ is convex if for any $X, Y, Z \in \underline{\mathcal{C}}$ satisfying $X \leq Y \leq Z$, we have $Y \in \underline{\mathcal{D}}$ whenever $X, Z \in \underline{\mathcal{D}}$. The convex hull of a given set $S \subseteq \operatorname{Ob}(\underline{\mathcal{C}})$ is the smallest convex full subcategory of $\underline{\mathcal{C}}$ containing S. **Definition 2.1.1.** We say that \underline{C} is a *directed graded k-linear category* if \underline{C} is a graded *k*-linear category that is directed, and which satisfies the following additional conditions:

- (A1) $\underline{\mathcal{C}}(X, Y)$ is finite dimensional as a k-vector space for every $X, Y \in \underline{\mathcal{C}}$;
- (A2) $\underline{\mathcal{C}}(X, X)$ is semisimple as a k-algebra for every $X \in \underline{\mathcal{C}}$;
- (A3) if $X \neq Y$, then $\underline{C}(X, Y)_0 = 0$;
- (A4) for every $X \in \underline{\mathcal{C}}$ and i > 0, we have $\underline{\mathcal{C}}(X, X)_i = 0$;
- (A5) for each $X \in \underline{C}$, there are only finitely many $Y \in \underline{C}$ such that $\underline{C}(X,Y)_1 \neq 0$ or $\underline{C}(Y,X)_1 \neq 0$;
- (A6) $\underline{\mathcal{C}}_1 \cdot \underline{\mathcal{C}}_i = \underline{\mathcal{C}}_{i+1}$ for every $i \ge 0$;
- (A7) the convex hull of any finite set $S \subseteq Ob(\underline{\mathcal{C}})$ contains only finitely many objects.

Note 2.1.2. By conditions (A3) and (A4), a directed graded k-linear category $\underline{\mathcal{C}}$ is skeletal. To see this, let $f \in \underline{\mathcal{C}}(X,Y)$ be an isomorphism. Then there exists $f^{-1} \in \underline{\mathcal{C}}(Y,X)$ such that $f^{-1}f = 1_X \in \underline{\mathcal{C}}(X,X)_0$. Since morphisms in $\underline{\mathcal{C}}$ are graded, this forces $f \in \underline{\mathcal{C}}(X,Y)_0$. Hence, $\underline{\mathcal{C}}(X,Y)_0 \neq 0$ implies X = Y.

2.2. Graded \underline{C} -modules.

Let \underline{C} be a k-linear category. A (left) \underline{C} -module is a (covariant) k-linear functor $M : \underline{C} \to k$ -Mod. By k-linear we mean that M(cf + g) = cM(f) + M(g) for all $f, g \in \mathcal{C}(X, Y)$ and $c \in k$. Given \underline{C} -modules M, N, a \underline{C} -module homomorphism $T : M \to N$ is a natural transformation of functors. We denote by \underline{C} -Mod the category of \underline{C} -modules.

Note 2.2.1. A right \underline{C} -module is a contravariant k-linear functor $M : \underline{C} \to k$ -Mod. It is understood that all definitions and results stated for \underline{C} -modules are to hold analogously for right \underline{C} -modules. Let \underline{C} be a graded k-linear category. A graded \underline{C} -module is a degree-preserving k-linear functor $M: \underline{C} \to k$ -gMod. In particular, $M(X) = \bigoplus_{i \ge 0} M(X)_i$ for any $X \in \underline{C}$. By degree-preserving we mean that if $f \in \underline{C}(X, Y)_j$ is a morphism of degree j, then $M(f)(M(X)_i) \subseteq M(Y)_{i+j}$ for all $i \ge 0$; i.e. $M(f): \bigoplus_{i\ge 0} M(X)_i \to \bigoplus_{i\ge 0} M(Y)_i$ is homogeneous of degree j. Given graded \underline{C} -modules M, N, a graded \underline{C} -module homomorphism $T: M \to N$ is a degree-preserving natural transformation of functors. By degree-preserving we mean that $T_X(M(X)_i) \subseteq N(X)_i$ for all $X \in \underline{C}$ and $i \ge 0$; i.e. $T_X: \bigoplus_{i\ge 0} M(X)_i \to \bigoplus_{i\ge 0} N(X)_i$ is homogeneous of degree 0. Let \underline{C} -gMod be the category of graded \underline{C} -modules.

Example 2.2.2. Let \underline{C} be a directed graded k-linear category, and $X \in \underline{C}$.

(a) The (covariant) Hom functor $\underline{C}(X, -) : \underline{C} \to k$ -gMod is a graded \underline{C} -module. The right \underline{C} -module version of this is the contravariant Hom functor $\underline{C}(-, X) : \underline{C} \to k$ -gMod.

(b) $\underline{\mathcal{C}}(X, X) : \underline{\mathcal{C}} \to k$ -gMod is a graded $\underline{\mathcal{C}}$ -module in the following way. We define $\underline{\mathcal{C}}(X, X)$ on objects $Y \in \underline{\mathcal{C}}$ by

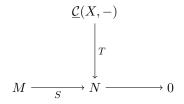
$$Y \mapsto \begin{cases} \underline{\mathcal{C}}(X, X) & \text{if } Y = X \\ 0 & \text{if } Y \neq X, \end{cases}$$

and on morphisms $f \in \underline{\mathcal{C}}(Y, Z)$ by $f \mapsto \{g \mapsto fg\}$. The right $\underline{\mathcal{C}}$ -module version of this is defined the same way on objects and on morphisms $f \in \underline{\mathcal{C}}(Y, Z)$ by $f \mapsto \{g \mapsto gf\}$.

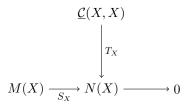
Note 2.2.3. The categories k-Mod and k-gMod are abelian, hence so are $\underline{\mathcal{C}}$ -Mod and $\underline{\mathcal{C}}$ -gMod. When a statement is made about a (graded) $\underline{\mathcal{C}}$ -module homomorphism $T: M \to N$, we mean that statement is true for all of its components $T_X: M(X) \to N(X)$. For example, by saying that $T: M \to N$ is injective (resp. surjective) we mean that $T_X: M(X) \to N(X)$ is injective (resp. surjective) for every object X. Also, by saying that a sequence of (graded) $\underline{\mathcal{C}}$ -module homomorphisms $L \xrightarrow{S} M \xrightarrow{T} N$ is exact at M we mean that $\operatorname{im}(S_X) = \ker(T_X)$ for every object X.

Proposition 2.2.4. Let \underline{C} be a directed graded k-linear category, and $X \in \underline{C}$. Then $\underline{C}(X, -)$ is a projective object in \underline{C} -gMod.

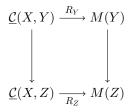
Proof. Consider a diagram of graded \underline{C} -modules with bottom row exact:



Evaluation at $X \in \underline{\mathcal{C}}$ gives a diagram of graded k-vector spaces with bottom row exact:



Take the identity morphism $1_X \in \underline{C}(X, X)_0$ and apply T_X to get $T_X(1_X) \in N(X)_0$. Since S_X is surjective, there exists $m_X = \sum_{i\geq 0} m_{X,i} \in \bigoplus_{i\geq 0} M(X)_i = M(X)$ such that $S_X(m_X) = \sum_{i\geq 0} S_X(m_{X,i}) = T_X(1_X)$. Because S_X is degree-preserving, we must have $S_X(m_{X,i}) = 0$ for all i > 0, so $S_X(m_{X,0}) = T_X(1_X)$. Define $R : \underline{C}(X, -) \to M$ as follows: for any $Y \in \underline{C}$, let $R_Y : \underline{C}(X,Y) \to M(Y)$ be given by $R_Y(f) = M(f)(m_{X,0})$. If $g \in \underline{C}(Y,Z)$, then we get a commutative diagram



since $f \mapsto M(f)(m_{X,0}) \mapsto M(g)M(f)(m_{X,0})$ around the top right corner and $f \mapsto gf \mapsto M(gf)(m_{X,0})$ around the bottom left corner. Thus, R is a natural transformation. If $f \in \underline{\mathcal{C}}(X,Y)_i$, then M(f) is homogeneous of degree i, so $R_Y(f) = M(f)(m_{X,0}) \in M(Y)_i$. Hence, $R_Y(\underline{\mathcal{C}}(X,Y)_i) \subseteq M(Y)_i$ and so R is degree-preserving. Therefore, R is a graded $\underline{\mathcal{C}}$ -module homomorphism.

Now we check that $S_Y R_Y = T_Y$ for any $Y \in \underline{C}$. Let $Y \in \underline{C}$ and $f \in \underline{C}(X, Y)$. Then the naturality of S and T yield commutative diagrams:

$$\begin{array}{ccc} M(X) \xrightarrow{S_X} N(X) & & \underline{\mathcal{C}}(X,X) \xrightarrow{T_X} N(X) \\ M(f) & & & & & & \\ M(f) & & & & & & \\ M(Y) \xrightarrow{S_Y} N(Y) & & & \underline{\mathcal{C}}(X,Y) \xrightarrow{T_Y} N(Y) \end{array}$$

Therefore,

$$S_Y R_Y(f) = S_Y(M(f)(m_{X,0})) = N(f)(S_X(m_{X,0})) = N(f)(T_X(1_X)) = T_Y(f_X) = T_Y(f).$$

It follows that SR = T and so $\underline{\mathcal{C}}(X, -)$ is projective as a graded $\underline{\mathcal{C}}$ -module.

Remark 2.2.5.

(a) If V is a 1-dimensional k-vector space, then $\underline{\mathcal{C}}(X, -) \otimes_k V$ is a graded $\underline{\mathcal{C}}$ -module isomorphic to $\underline{\mathcal{C}}(X, -)$ as a graded $\underline{\mathcal{C}}$ -module.

(b) A direct sum of projective graded \underline{C} -modules is a projective graded \underline{C} -module.

Let \underline{C} be a directed graded k-linear category. Given a \underline{C} -module M, a \underline{C} -submodule of M is a \underline{C} -module $N : \underline{C} \to k$ – Mod satisfying $N(X) \subseteq M(X)$ for all $X \in \underline{C}$ and $N(f) = M(f)|_{N(X)}$ for all $f \in \underline{C}(X, Y)$. Also, we say that M contains a set S if $S \subseteq \bigcup_{X \in \underline{C}} M(X)$. A graded \underline{C} -module M is generated in degree $i \ge 0$ if the only \underline{C} -submodule of M containing $\bigcup_{X \in \underline{C}} M(X)_i$ is M itself.

Definition 2.2.6. A graded \underline{C} -module M is Koszul if it has a linear projective resolution

$$\cdots \to P_i \to P_{i-1} \to \cdots \to P_1 \to P_0 \to M \to 0$$

in \underline{C} -gMod. By linear we mean that each P_i is generated in degree *i*. The category \underline{C} is *Koszul* if for every $X \in \underline{C}$, the graded \underline{C} -module $\underline{C}(X, X)$ is Koszul.

3. The category $\mathcal{FI}_{t,A}^n$

3.1. Partition types.

Let \mathcal{FI} be the category of finite sets and injective functions. Let $n \in \mathbb{N}$, and \mathcal{FI}^n be the *n*-fold product category $\mathcal{FI} \times \cdots \times \mathcal{FI}$. Then an arbitrary object $X \in \mathcal{FI}^n$ is of the form $X = (X_1, ..., X_n)$ for some finite sets $X_i \in \mathcal{FI}$. If $X = (X_1, ..., X_n) \in \mathcal{FI}^n$, then by $x \in X$ we mean $x \in X_i$ for some *i*. By a partition P_X of an object $X = (X_1, ..., X_n) \in \mathcal{FI}^n$, we mean a partition of $X_1 \amalg \cdots \amalg X_n$. We allow $P_{\varnothing} = \varnothing$ to be a partition of $\varnothing \in \mathcal{FI}^n$. Let \mathcal{P} be the set of all partitions of every $X \in \mathcal{FI}^n$. By a property *t* on \mathcal{P} we mean a map *t* from \mathcal{P} to a 2-element set {yes, no}. We say that a partition P_X of $X \in \mathcal{FI}^n$ has property *t* if $t(P_X) =$ yes; otherwise we say P_X does not have property *t*.

Definition 3.1.1. We say that a property t is a *partition type* if the following conditions are satisfied:

(P0) P_{\emptyset} has property t;

(P1) if P_X has property t and $f \in \mathcal{FI}^n(X, Y)$, then $f(P_X)$ has property t;

(P2) if V, W are disjoint subsets of $X \in \mathcal{FI}^n$ and P_V, P_W have property t, then $P_V \sqcup P_W$ has property t;

(P3) if P_X has property t and $S \in P_X$, then $P_X \setminus \{S\}$ has property t;

(P4) there exists $M \in \mathbb{N}$ such that if P_X has property t, then $|S| \leq M$ for all $S \in P_X$.

If t is a partition type and P_X is a partition of $X \in \mathcal{FI}^n$ which has property t, then we say that P_X is a partition of type t.

Example 3.1.2.

(a) Let $m \in \mathbb{N}$. Define property m by declaring that $m(P_X) =$ yes for partitions P_X of $X \in \mathcal{FI}^n$ satisfying |S| = m for all $S \in P_X$; $m(P_X) =$ no otherwise. Then m is a partition type.

(b) Let $m \in \mathbb{N}$. Define property $\leq m$ by requiring that $\leq m(P_X) =$ yes for partitions P_X of $X \in \mathcal{FI}^n$ satisfying $|S| \leq m$ for all $S \in P_X$; $\leq m(P_X) =$ no otherwise. Then $\leq m$ is a partition type.

(c) Define property n^* by declaring that $n^*(P_X) = \text{yes}$ for partitions P_X of $X = (X_1, ..., X_n) \in \mathcal{FI}^n$ satisfying $|S \cap X_i| = 1$ for all $S \in P_X$, $1 \le i \le n$; $n^*(P_X) = \text{no otherwise}$. Then n^* is a partition type. Note that if P_X is a partition of type n^* , then |S| = n for all $S \in P_X$.

(d) Let $(m_1, ..., m_n) \in \mathbb{N}^n$. Define property $(m_1, ..., m_n)$ by requiring that $(m_1, ..., m_n)(P_X) =$ yes for partitions P_X of $X = (X_1, ..., X_n) \in \mathcal{FI}^n$ satisfying $|S \cap X_i| = m_i$ for all $S \in P_X$, $1 \le i \le n$; $(m_1, ..., m_n)(P_X) =$ no otherwise. Then $(m_1, ..., m_n)$ is a partition type.

3.2. The category $\mathcal{FI}_{t,A}^n$.

Let $n \in \mathbb{N}$, t be a partition type, and A be an abelian group. We define a category $\mathcal{FI}_{t,A}^n$ having the same objects as \mathcal{FI}^n , and morphisms defined by the following data: if $X, Y \in \mathcal{FI}_{t,A}^n$, then a morphism $(f, P_f, \alpha_f) : X \to Y$ in $\mathcal{FI}_{t,A}^n$ consists of a morphism $f \in \mathcal{FI}^n(X, Y)$, a partition P_f of $Y \setminus f(X) \in \mathcal{FI}^n$ of type t, and a function $\alpha_f : X \amalg P_f \to A$. If all 3 of these items do not exist for a certain $X, Y \in \mathcal{FI}^n$, then $\mathcal{FI}_{t,A}^n(X,Y) = \emptyset$. The composite of two morphisms $(f, P_f, \alpha_f) : X \to Y$ and $(g, P_g, \alpha_g) : Y \to Z$ in $\mathcal{FI}_{t,A}^n$ is given by the morphism $(g, P_g, \alpha_g)(f, P_f, \alpha_f) = (gf, P_{gf}, \alpha_{gf}) :$ $X \to Z$ in $\mathcal{FI}_{t,A}^n$, where gf is the composite of f followed by g in \mathcal{FI}^n , P_{gf} is the partition $g(P_f) \sqcup P_g$ of $Z \setminus gf(X) \in \mathcal{FI}^n$ of type t, and $\alpha_{gf} : X \amalg P_{gf} \to A$ is the function defined by

$$\begin{aligned} \alpha_{gf}(x) &= \alpha_f(x) + \alpha_g(f(x)) \text{ for } x \in X, \\ \alpha_{gf}(g(S)) &= \alpha_f(S) + \sum_{y \in S} \alpha_g(y) \text{ for } S \in P_f, \\ \alpha_{gf}(T) &= \alpha_g(T) \text{ for } T \in P_g. \end{aligned}$$

To show that composition in $\mathcal{FI}_{t,A}^n$ is associative, let $(f, P_f, \alpha_f) : W \to X, (g, P_g, \alpha_g) : X \to Y$, and $(h, P_h, \alpha_h) : Y \to Z$ be morphisms in $\mathcal{FI}_{t,A}^n$. Then h(gf) = (hg)f,

$$\begin{split} P_{h(gf)} &= h(P_{gf}) \sqcup P_h \\ &= h(g(P_f) \sqcup P_g) \sqcup P_h \\ &= hg(P_f) \sqcup h(P_g) \sqcup P_h \\ &= hg(P_f) \sqcup P_{hg} \\ &= P_{(hg)f}, \end{split}$$

 and

$$\begin{aligned} \alpha_{h(gf)}(w) &= & \alpha_{gf}(w) + \alpha_{h}(gf(w)) \\ &= & \alpha_{f}(w) + \alpha_{g}(f(w)) + \alpha_{h}(gf(w)) \\ &= & \alpha_{f}(w) + \alpha_{hg}(f(w)) \\ &= & \alpha_{(hg)f}(w) \text{ for } w \in W, \end{aligned}$$

$$\begin{aligned} \alpha_{h(gf)}(h(g(R))) &= & \alpha_{gf}(g(R)) + \sum_{y \in g(R)} \alpha_h(y) \\ &= & \alpha_f(R) + \sum_{x \in R} \alpha_g(x) + \sum_{y \in g(R)} \alpha_h(y) \\ &= & \alpha_f(R) + \sum_{x \in R} (\alpha_g(x) + \alpha_h(g(x))) \\ &= & \alpha_f(R) + \sum_{x \in R} \alpha_{hg}(x) \\ &= & \alpha_{(hg)f}((hg)(R)) \text{ for } R \in P_f, \end{aligned}$$

$$\begin{aligned} \alpha_{h(gf)}(h(S)) &= & \alpha_{gf}(S) + \sum_{y \in S} \alpha_h(y) \\ &= & \alpha_g(S) + \sum_{y \in S} \alpha_h(y) \\ &= & \alpha_{hg}(h(S)) \\ &= & \alpha_{(hg)f}(h(S)) \text{ for } S \in P_g, \end{aligned}$$

$$\alpha_{h(gf)}(T) = \alpha_h(T)$$
$$= \alpha_{hg}(T)$$
$$= \alpha_{(hg)f}(T) \text{ for } T \in P_h.$$

Thus, $(h(gf), P_{h(gf)}, \alpha_{h(gf)}) = ((hg)f, P_{(hg)f}, \alpha_{(hg)f})$. The identity morphism of $X \in \mathcal{FI}_{t,A}^n$ is $(1_X, \emptyset, 0) : X \to X$, where $0 : X \to A$ is the zero map.

Example 3.2.1.

(a) If n = 1, t is partition type 1, and A is the trivial abelian group 0, then $\mathcal{FI}_{1,0}^1$ is the category \mathcal{FI} from Example 1.1.1.

(b) If n = 1, t is partition type 2, and A is the trivial abelian group 0, $\mathcal{FI}_{2,0}^1$ is the category \mathcal{FIM} from Example 1.1.2.

(c) If n = 2, t is partition type 2^{*}, and A is the trivial abelian group 0, then $\mathcal{FI}_{2^*,0}^1$ is the category \mathcal{FIM}_w from Example 1.1.3.

(d) If n = 2, t is partition type 2^{*}, and A is the abelian group $\mathbb{Z}/2\mathbb{Z}$, then $\mathcal{FI}_{2^*,\mathbb{Z}/2\mathbb{Z}}^1$ is the category \mathcal{FIM}'_w from Example 1.1.4.

Thus, the family of categories $\mathcal{FI}_{t,A}^n$ unify the four categories from the Introduction in a general setup.

Remark 3.2.2. If $n \in \mathbb{N}$, t is a partition type, and A is an abelian group, then the full subcategory of $\mathcal{FI}_{t,A}^n$ on objects of the form $X = ([x_1], ..., [x_n])$ for $x_i \in \mathbb{N}_0$ $(1 \le i \le n)$, is skeletal, and hence equivalent to $\mathcal{FI}_{t,A}^n$.

Let $n \in \mathbb{N}$, t be a partition type, and A be a finite abelian group. Let \mathcal{C} be the skeletal subcategory of $\mathcal{FI}_{t,A}^n$ on objects of the form $X = ([x_1], ..., [x_n])$ for $x_i \in \mathbb{N}_0$ $(1 \le i \le n)$. Then \mathcal{C} is equivalent to $\mathcal{FI}_{t,A}^n$. Let k be a field of characteristic 0, and $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} .

Proposition 3.2.3. \underline{C} is a directed graded k-linear category.

Proof. For any $X, Y \in \mathcal{C}$ and $i \geq 0$, define the degree *i* component of $\underline{\mathcal{C}}(X, Y)$ to be

$$\underline{\mathcal{C}}(X,Y)_i = \bigoplus_{\substack{(f,P_f,\alpha_f)\in\mathcal{C}(X,Y)\\|P_f|=i}} k(f,P_f,\alpha_f).$$

Then $\underline{\mathcal{C}}(X,Y) = \bigoplus_{i\geq 0} \underline{\mathcal{C}}(X,Y)_i$ is a graded k-vector space. So $(f, P_f, \alpha_f) \in \underline{\mathcal{C}}(X,Y)_i$ is a morphism of degree *i* if and only if $|P_f| = i$. For any $X, Y, Z \in \mathcal{C}$, the composition map $\underline{\mathcal{C}}(Y,Z) \otimes_k \underline{\mathcal{C}}(X,Y) \to$ $\underline{\mathcal{C}}(X,Z)$ preserves the grading, and hence is a morphism in k-gMod. It follows that $\underline{\mathcal{C}}$ is a graded k-linear category. The objects of $\underline{\mathcal{C}}$ are partially ordered by inclusion \subseteq , such that $\underline{\mathcal{C}}(X,Y) \neq 0$ implies $X \subseteq Y$. So $\underline{\mathcal{C}}$ is a directed k-linear category. We now check that \underline{C} meets additional conditions (A1)-(A7).

(A1) For any X, Y ∈ C, C(X, Y) is a finite set, so C(X, Y) is a finite dimensional k-vector space.
(A2) For any X = ([x₁], ..., [x_n]) ∈ C, a morphism (f, P_f, α_f) ∈ C(X, X) consists of a bijection f ∈ FIⁿ(X, X) and a function α_f : X → A, because P_f = Ø. Note that f ∈ S_{x1} × ··· × S_{xn}, where S_{xi} is the symmetric group on [x_i], and α_f ∈ A^X, where A^X is the group of all functions from X to A. Therefore, C(X, X) is the finite group S_{x1} × ··· × S_{xn} × A^X. Since char k = 0, the group algebra C(X, X) is semisimple, by Maschke's theorem.

(A3) Let $X, Y \in \mathcal{C}$. If $(f, P_f, \alpha_f) \in \underline{\mathcal{C}}(X, Y)_0$ is a basis element, then $P_f = \emptyset$, which forces X = Y. So if $X \neq Y$, then $\underline{\mathcal{C}}(X, Y)_0 = 0$.

(A4) Let $X \in \mathcal{C}$ and i > 0. If $(f, P_f, \alpha_f) \in \underline{\mathcal{C}}(X, X)_i$ is a basis element, then $P_f = \emptyset$ since $f \in \mathcal{FI}^n(X, X)$ is a bijection. But $|P_f| = i > 0$ since (f, P_f, α_f) is a morphism of degree i. So for all $X \in \mathcal{C}$ and i > 0, we must have $\underline{\mathcal{C}}(X, X)_i = 0$.

(A5) Let $X \in \mathcal{C}$. Then there are only finitely many $Y \in \mathcal{C}$ such that $\underline{\mathcal{C}}(Y, X)_1 \neq 0$. By condition (P4) of the partition type t, there are only finitely many $Y \in \mathcal{C}$ such that $\underline{\mathcal{C}}(X, Y)_1 \neq 0$.

(A6) Let $i \geq 0$. In order to prove $\underline{C}_1 \cdot \underline{C}_i = \underline{C}_{i+1}$, it is enough to show that any morphism $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ of degree i+1 can be factored as a composite of a degree i morphism followed by a degree 1 morphism. Let $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ be a morphism of degree i+1. Then $|P_f| = i+1 \geq 1$. Pick $T \in P_f$. Since \mathcal{C} is skeletal, there is a unique $Y' \in \mathcal{C}$ and a bijection $g \in \mathcal{FI}^n(Y', Y \setminus T)$. Let $f' \in \mathcal{FI}^n(X, Y \setminus T)$ be the morphism obtained by restricting the codomain of f from Y to $Y \setminus T$. Define $f_1 = g^{-1}f' \in \mathcal{FI}^n(X, Y')$, $P_{f_1} = \{g^{-1}(P_f \setminus \{T\})\}$, and $\alpha_{f_1} : X \amalg P_{f_1} \to A$ by $\alpha_{f_1}(x) = \alpha_f(x)$ for all $x \in X$ and $\alpha_{f_1}(S) = \alpha_f(g(S))$ for all $S \in P_{f_1}$. Then $(f_1, P_{f_1}, \alpha_{f_1}) \in \mathcal{C}(X, Y')$ is a morphism of degree i. Let $i \in \mathcal{FI}^n(Y \setminus T, Y)$ be the inclusion map. Define $g_1 = \iota g \in \mathcal{FI}^n(Y', Y)$, $P_{g_1} = \{T\}$, and $\alpha_{g_1} : Y' \amalg P_{g_1} \to A$ by $\alpha_{g_1}(y) = 0$ for all $y \in Y'$ and $\alpha_{g_1}(T) = \alpha_f(T)$. Then $(g_1, P_{g_1}, \alpha_{g_1}) \in \mathcal{C}(Y', Y)$ is a morphism of degree 1. Now $g_1f_1 = \iota gg^{-1}f' = f$, $P_{g_1f_1} = g_1(P_{f_1}) \sqcup P_{g_1} = (P_f \setminus \{T\}) \sqcup \{T\} = P_f$, and

$$\alpha_{g_1 f_1}(x) = \alpha_{f_1}(x) + \alpha_{g_1}(f_1(x)) = \alpha_f(x) \text{ for } x \in X,$$

$$\alpha_{g_1 f_1}(g_1(S)) = \alpha_{f_1}(S) + \sum_{y \in S} \alpha_{g_1}(y) = \alpha_f(g(S)) \text{ for } S \in P_{f_1},$$

$$\alpha_{g_1 f_1}(T) = \alpha_{g_1}(T) = \alpha_f(T).$$

Hence, $(f, P_f, \alpha_f) = (g_1, P_{g_1}, \alpha_{g_1})(f_1, P_{f_1}, \alpha_{f_1})$ is the composite of a degree *i* morphism followed by a degree 1 morphism, as desired.

(A7) Let $X, Z \in \mathcal{C}$. Because \mathcal{C} is skeletal, it is totally ordered by \subseteq . So without loss of generality, suppose $X \subseteq Z$. Again since \mathcal{C} is skeletal, there are only finitely many $Y \in \mathcal{C}$ such that $X \subseteq Y \subseteq Z$. It follows that the convex hull of any finite set $S \subseteq Ob(\underline{\mathcal{C}})$ contains only finitely many objects.

Therefore, $\underline{\mathcal{C}}$ is a directed graded k-linear category.

Notation 3.2.4. For any $X, Y \in C$, we shall write degree 1 morphisms in $\mathcal{C}(X, Y)$ simply as (f, R, α_f) for $P_f = \{R\}$, where $R \subseteq Y$.

4. Koszulity

Fix $n \in \mathbb{N}$, a partition type t, and a finite abelian group A. Let $\mathcal{C} = \mathcal{FI}_{t,A}^n$, and $\underline{\mathcal{C}}$ be the klinearization of \mathcal{C} , where k is a field of characteristic 0. By Proposition 3.2.3, $\underline{\mathcal{C}}$ is a directed graded k-linear category. In this section, we will prove that $\underline{\mathcal{C}}$ is Koszul (Corollary 4.3.2). To do this, we will
construct a linear projective resolution $C_{\bullet}(-)(Y) \to \underline{\mathcal{C}}(Y,Y)$ of graded right $\underline{\mathcal{C}}$ -modules for arbitrary $Y \in \mathcal{C}$.

4.1. The complex $C_{\bullet}(-)(Y)$.

Fix $Y \in \mathcal{C}$ for the remainder of this section. For any $m \in \mathbb{N}_0$, define a functor $C_m(-)(Y) : \underline{\mathcal{C}} \to k$ -gMod as follows. For any object $X \in \mathcal{C}$, let

$$C_m(X)(Y) = \bigoplus_{(I,\alpha)} \underline{\mathcal{C}}(X, Y \setminus I) \otimes_k \det(I),$$

the direct sum being over all pairs (I, α) , where $I = I_1 \sqcup \cdots \sqcup I_m$ is the union of m mutually disjoint nonempty subsets $I_j \subseteq Y$ such that $\{I_j\}$ is a partition of type t, and $\alpha : \{I_1, ..., I_m\} \to A$ is a function. By det(I) we mean the 1-dimensional k-vector space $\bigwedge^m k\{I_1, ..., I_m\}$.

To see that $C_m(X)(Y)$ is a graded k-vector space, let

$$C_m(X)(Y)_i = \bigoplus_{(I,\alpha)} \bigoplus_{\substack{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y \setminus I) \\ |P_f| = i - m}} k(f,P_f,\alpha_f) \otimes_k \det(I)$$

for $i \ge m$ and $C_m(X)(Y)_i = 0$ for i < m. Then

$$C_m(X)(Y) = \bigoplus_{(I,\alpha)} \underline{\mathcal{C}}(X, Y \setminus I) \otimes_k \det(I)$$

= $\bigoplus_{(I,\alpha)} \bigoplus_{i \ge m} \bigoplus_{\substack{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y \setminus I) \\ |P_f| = i - m}} k(f, P_f, \alpha_f) \otimes_k \det(I)$
= $\bigoplus_{i \ge m} C_m(X)(Y)_i.$

So $C_m(X)(Y)$ is a graded k-vector space living in degrees $\geq m$. This completes the definition of $C_m(-)(Y)$ on objects.

For any morphism $(g, P_g, \alpha_g) \in \underline{C}(X, X')$, we define a map $C_m(X')(Y) \to C_m(X)(Y)$ on direct summands corresponding to (I, α) by k-linear extension of the assignment

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto (f, P_f, \alpha_f)(g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m I_j.$$

In other words, a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ in a direct summand $\underline{\mathcal{C}}(X', Y \setminus I) \otimes_k \det(I)$ of $C_m(X')(Y)$ corresponding to (I, α) gets sent to the basis element $(f, P_f, \alpha_f)(g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m I_j$ in the direct summand $\underline{\mathcal{C}}(X, Y \setminus I) \otimes_k \det(I)$ of $C_m(X)(Y)$ corresponding to (I, α) .

To see that $C_m(X')(Y) \to C_m(X)(Y)$ is a morphism of graded k-vector spaces, let $(g, P_g, \alpha_g) \in \underline{C}(X, X')_j$ be a morphism of degree $j \ge 0$, and $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ be in the degree $i \ge m$ component of $C_m(X')(Y)$. Then $|P_g| = j$ and $|P_f| = i - m$, which implies $|P_{fg}| = |f(P_g)| + |P_f| = (i+j) - m$. So $(f, P_f, \alpha_f)(g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m I_j$ is in the degree i + j component of $C_m(X)(Y)$, hence $C_m(X')(Y) \to C_m(X)(Y)$ is homogeneous of degree j. This completes the definition of $C_m(-)(Y) : \underline{C} \to k$ -gMod on morphisms.

So $C_m(-)(Y) : \underline{\mathcal{C}} \to k$ -gMod is a degree-preserving k-linear functor that is contravariant. Thus, we have a graded right $\underline{\mathcal{C}}$ -module $C_m(-)(Y)$ for each $m \in \mathbb{N}_0$. In particular, $C_0(-)(Y) = \underline{\mathcal{C}}(-,Y)$.

Before we define a differential $\partial : C_m(-)(Y) \to C_{m-1}(-)(Y)$, we need the notion of an inclusion morphism in \mathcal{C} .

Definition 4.1.1. Let $X, Y \in \mathcal{C}$ with $X \subseteq Y$ such that $\{Y \setminus X\}$ is a partition of type t. We say that $(\iota, P_{\iota}, \alpha_{\iota}) \in \mathcal{C}(X, Y)$ is an *inclusion morphism* if $\iota(x) = x$ for all $x \in X$, $P_{\iota} = \{Y \setminus X\}$, and $\alpha_{\iota}(x) = 0$ for all $x \in X$.

Note 4.1.2. In order to completely describe an inclusion morphism, one still needs to specify $\alpha_{\iota}(Y \setminus X) \in A$. Thus, there may be many inclusion morphisms from X to Y. Also, since inclusion morphisms are of degree 1, we shall write them as $(\iota, Y \setminus X, \alpha_{\iota})$.

Remark 4.1.3. Inclusion morphisms "commute" in the following sense. Let $Y \in C$ and $I_1, I_2 \subset Y$ be two disjoint nonempty subsets such that $\{I_1\}, \{I_2\}$ are partitions of type t. Suppose we have inclusion morphisms

$$(\iota_1, I_1, \alpha_{\iota_1}) \in \mathcal{C}(Y \setminus I_1, Y), (\iota_2, I_2, \alpha_{\iota_2}) \in \mathcal{C}(Y \setminus I_2, Y)$$

and

$$(j_1, I_1, \alpha_{j_1}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_2), (j_2, I_2, \alpha_{j_2}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_1)$$

such that $\alpha_{\iota_1}(I_1) = \alpha_{\jmath_1}(I_1)$ and $\alpha_{\iota_2}(I_2) = \alpha_{\jmath_2}(I_2)$. Then

$$(\iota_1, I_1, \alpha_{\iota_1})(j_2, I_2, \alpha_{j_2}) = (\iota_2, I_2, \alpha_{\iota_2})(j_1, I_1, \alpha_{j_1})$$

because

$$\iota_1 j_2(y) = y = \iota_2 j_1(y) \text{ for } y \in Y \setminus (I_1 \sqcup I_2),$$
$$P_{\iota_1 j_2} = \iota_1(\{I_2\}) \sqcup \{I_1\} = \{I_1, I_2\} = \iota_2(\{I_1\}) \sqcup \{I_2\} = P_{\iota_2 j_1},$$

 and

$$\alpha_{\iota_{1}j_{2}}(y) = 0 = \alpha_{\iota_{2}j_{1}}(y) \text{ for } y \in Y \setminus (I_{1} \sqcup I_{2}),$$

$$\alpha_{\iota_{1}j_{2}}(I_{1}) = \alpha_{\iota_{1}}(I_{1}) = \alpha_{j_{1}}(I_{1}) = \alpha_{\iota_{2}j_{1}}(I_{1}),$$

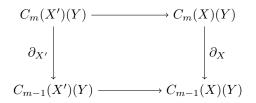
$$\alpha_{\iota_{1}j_{2}}(I_{2}) = \alpha_{j_{2}}(I_{2}) = \alpha_{\iota_{2}}(I_{2}) = \alpha_{\iota_{2}j_{1}}(I_{2}).$$

For every $m \in \mathbb{N}$, we define a graded \underline{C} -module homomorphism $\partial : C_m(-)(Y) \to C_{m-1}(-)(Y)$ as follows. For any $X \in \mathcal{C}$, let $\partial_X : C_m(X)(Y) \to C_{m-1}(X)(Y)$ be defined on each direct summand corresponding to (I, α) by k-linear extension of the assignment

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m,$$

where $(\iota_j, I_j, \alpha_j) \in \mathcal{C}(Y \setminus I, (Y \setminus I) \sqcup \{I_j\})$ is the inclusion morphism defined by $\alpha_j(I_j) = \alpha(I_j) \in A$. Note that for each $j = 1, ..., m, (\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$ is in the direct summand of $C_{m-1}(X)(Y)$ corresponding to $(I \setminus I_j, \alpha|_{\{I_1, ..., I_m\} \setminus \{I_j\}})$.

To see that ∂ is a natural transformation, let $(g, P_g, \alpha_g) \in \mathcal{C}(X, X')$. Then we get a commutative diagram:



because

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto (f, P_f, \alpha_f)(g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m I_j$$
$$\mapsto \sum_{j=1}^m (-1)^{j-1}(\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f)(g, P_g, \alpha_g) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$

around the top right corner, while

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$
$$\mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) (g, P_g, \alpha_g) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$

around the bottom left corner.

To see that ∂ is degree-preserving, let $X \in \mathcal{C}$ and $i \geq m$. We must show that $\partial_X(C_m(X)(Y)_i) \subseteq C_{m-1}(X)(Y)_i$. If $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ is a basis element in a direct summand $\underline{\mathcal{C}}(X, Y \setminus I) \otimes_k \det(I)$ of $C_m(X)(Y)_i$ corresponding to (I, α) , then $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y \setminus I)$ with $|P_f| = i - m$. For each j = 1, ..., m, we have $(\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \in \mathcal{C}(X, (Y \setminus I) \sqcup \{I_j\})$ with

$$|P_{\iota_j f}| = |\iota_j(P_f) \sqcup \{I_j\}| = |P_f| + 1 = i - (m - 1)$$

 \mathbf{So}

$$\partial_X((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j) = \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$

belongs to $C_{m-1}(X)(Y)_i$. Thus, $\partial : C_m(-)(Y) \to C_{m-1}(-)(Y)$ is a graded $\underline{\mathcal{C}}$ -module homomorphism for each $m \in \mathbb{N}$.

For any $X \in \mathcal{C}$, observe that

$$(\partial_X)^2((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j) = \sum_{j=1}^m (-1)^{j-1} \partial_X((\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m)$$

$$= \sum_{i < j} (-1)^{i+j-2} (\iota_i, I_i, \alpha_i)(\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_i} \cdots \widehat{I_j} \cdots \wedge I_m$$

$$+ \sum_{i > j} (-1)^{i+j-1} (\iota_i, I_i, \alpha_i)(\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \widehat{I_i} \cdots \wedge I_m$$

$$= 0$$

after switching *i* and *j* in the third line and using the fact that the inclusion morphisms (ι_i, I_i, α_i) and (ι_j, I_j, α_j) commute, by Remark 4.1.5. So $\partial^2 = 0$ and hence ∂ is a differential.

By putting $C_m(-)(Y) = 0$ for all m < 0, we obtain a complex $C_{\bullet}(-)(Y)$ of graded right \underline{C} -modules.

Remark 4.1.4. For any $m \in \mathbb{N}_0$, $C_m(-)(Y)$ can be viewed as a direct sum $\bigoplus_{(I,\alpha)} \underline{\mathcal{C}}(-,Y\setminus I) \otimes_k \det(I)$ of graded right $\underline{\mathcal{C}}$ -modules $\underline{\mathcal{C}}(-,Y\setminus I) \otimes_k \det(I)$. By Remark 2.2.5, $C_m(-)(Y)$ is projective as a graded right $\underline{\mathcal{C}}$ -module.

Proposition 4.1.5. For any $m \in \mathbb{N}_0$, $C_m(-)(Y)$ is generated in degree m.

Proof. Let M be a right \underline{C} -submodule of $C_m(-)(Y)$ containing $\bigcup_{X \in \mathcal{C}} C_m(X)(Y)_m$. We must show $M(X) = C_m(X)(Y)$ for all $X \in \mathcal{C}$. Let $X \in \mathcal{C}$ and $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ be a basis element in a direct summand of $C_m(X)(Y)$ corresponding to (I, α) . We will show $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \in M(X)$ by factorizing $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y \setminus I)$ as follows. Choose $Y' \in \mathcal{C}$ and an isomorphism $(g, \emptyset, 0) \in$ $\mathcal{C}(Y', Y \setminus I)$ (in which $g \in \mathcal{FI}^n(Y', Y \setminus I)$ is a bijection, $P_g = \emptyset$, and $\alpha_g : Y' \to A$ is the zero map). Then $(g, \emptyset, 0) \otimes \bigwedge_{j=1}^m I_j$ belongs to the direct summand of $C_m(Y')(Y)_m$ corresponding to (I, α) . Define $f' = g^{-1}f$, $P_{f'} = g^{-1}(P_f)$, and $\alpha_{f'} : X \amalg P_{f'} \to A$ by $\alpha_{f'}(x) = \alpha_f(x)$ for all $x \in X$, $\alpha_{f'}(S) = \alpha_f(g(S))$ for all $S \in P_{f'}$. This defines a morphism $(f', P_{f'}, \alpha_{f'}) \in \mathcal{C}(X, Y')$ such that $gf' = f, P_{gf'} = g(P_{f'}) = P_f$, and

$$\alpha_{gf'}(x) = \alpha_{f'}(x) + \alpha_g(f'(x)) = \alpha_f(x) \text{ for } x \in X,$$

$$\alpha_{gf'}(g(S)) = \alpha_{f'}(S) + \sum_{y' \in S} \alpha_g(y') = \alpha_f(g(S)) \text{ for } S \in P_{f'}.$$

Hence, $(g, \emptyset, 0)(f', P_{f'}, \alpha_{f'}) = (f, P_f, \alpha_f)$. Since M is a right $\underline{\mathcal{C}}$ -submodule of $C_m(-)(Y)$,

$$M((f', P_{f'}, \alpha_{f'})) : M(Y') \to M(X)$$

is the restriction of $C_m(Y')(Y) \to C_m(X)(Y)$ to M(Y'). Because M contains $\bigcup_{X \in \mathcal{C}} C_m(X)(Y)_m$, we have $(g, \emptyset, 0) \otimes \bigwedge_{j=1}^m I_j \in C_m(Y')(Y)_m \subseteq M(Y')$. So

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j = (g, \emptyset, 0)(f', P_{f'}, \alpha_{f'}) \otimes \bigwedge_{j=1}^m I_j = M((f', P_{f'}, \alpha_{f'}))((g, \emptyset, 0) \otimes \bigwedge_{j=1}^m I_j) \in M(X).$$

Hence, $C_m(-)(Y)$ is generated in degree m.

We therefore have a complex $C_{\bullet}(-)(Y)$ of graded right \underline{C} -modules

$$\cdots \to C_m(-)(Y) \to C_{m-1}(-)(Y) \to \cdots \to C_1(-)(Y) \to \underline{\mathcal{C}}(-,Y) \to 0$$

in which $C_m(-)(Y)$ is projective and generated in degree m for all $m \in \mathbb{N}_0$.

4.2. Exactness of $C_{\bullet}(-)(Y)$ in positive degrees.

In this subsection, we will show that $H_m(C_{\bullet}(-)(Y)) = 0$ for all $m \in \mathbb{N}$. First, we will prove that $H_1(C_{\bullet}(-)(Y)) = 0$ with the aid of the following lemma.

Lemma 4.2.1. Let $X, Y \in C$ and $I_1, I_2 \subset Y$ be distinct nonempty subsets such that $\{I_1\}, \{I_2\}$ are partitions of type t. For i = 1, 2, let $(f_i, P_{f_i}, \alpha_{f_i}) \in C(X, Y \setminus I_i)$ be morphisms and $(\iota_i, I_i, \alpha_{\iota_i}) \in C(Y \setminus I_i, Y)$ be inclusion morphisms. If

$$(\iota_1, I_1, \alpha_{\iota_1})(f_1, P_{f_1}, \alpha_{f_1}) = (\iota_2, I_2, \alpha_{\iota_2})(f_2, P_{f_2}, \alpha_{f_2}),$$

then $I_1 \cap I_2 = \varnothing$ and there exists a morphism $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y \setminus (I_1 \sqcup I_2))$ and inclusion morphisms $(j_1, I_1, \alpha_{j_1}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_2), (j_2, I_2, \alpha_{j_2}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_1)$ such that

$$(j_1, I_1, \alpha_{j_1})(f, P_f, \alpha_f) = (f_2, P_{f_2}, \alpha_{f_2})$$

 and

$$(j_2, I_2, \alpha_{j_2})(f, P_f, \alpha_f) = (f_1, P_{f_1}, \alpha_{f_1}).$$

Proof. From $(\iota_1, I_1, \alpha_{\iota_1})(f_1, P_{f_1}, \alpha_{f_1}) = (\iota_2, I_2, \alpha_{\iota_2})(f_2, P_{f_2}, \alpha_{f_2})$, we get $\iota_1 f_1 = \iota_2 f_2$, $P_{f_1} \sqcup \{I_1\} = P_{f_2} \sqcup \{I_2\}$, and $\alpha_{\iota_1 f_1} = \alpha_{\iota_2 f_2}$. These respectively imply that $f_1(x) = f_2(x)$ for all $x \in X$, $P_{f_1} \setminus \{I_2\} = P_{f_2} \setminus \{I_1\}$, and

$$\alpha_{f_1}(x) = \alpha_{\iota_1 f_1}(x) = \alpha_{\iota_2 f_2}(x) = \alpha_{f_2}(x) \text{ for } x \in X,$$

$$\alpha_{f_1}(S) = \alpha_{\iota_1 f_1}(S) = \alpha_{\iota_2 f_2}(S) = \alpha_{f_2}(S) \text{ for } S \in P_{f_1} \setminus \{I_2\} = P_{f_2} \setminus \{I_1\}.$$

In particular, $I_1 \in P_{f_2}$ and $I_2 \in P_{f_1}$ are disjoint because they are distinct elements of the same partition $P_{f_1} \sqcup \{I_1\} = P_{f_2} \sqcup \{I_2\}$. Define $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y \setminus (I_1 \sqcup I_2))$ by setting $f(x) = f_1(x) = f_2(x)$ for all $x \in X$, $P_f = P_{f_1} \setminus \{I_2\} = P_{f_2} \setminus \{I_1\}$, and $\alpha_f = \alpha_{f_1} \mid_{X \amalg P_f} = \alpha_{f_2} \mid_{X \amalg P_f}$. Let $(j_1, I_1, \alpha_{j_1}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_2)$ and $(j_2, I_2, \alpha_{j_2}) \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_1)$ be the inclusion morphisms defined by $\alpha_{j_1}(I_1) = \alpha_{f_2}(I_1)$ and $\alpha_{j_2}(I_2) = \alpha_{f_1}(I_2)$. Then $j_1f(x) = f_2(x)$ for all $x \in X$, $P_{j_1f} = P_f \sqcup \{I_1\} = P_{f_2}$,

and

$$\alpha_{j_1f}(x) = \alpha_f(x) = \alpha_{f_2}(x) \text{ for } x \in X,$$

$$\alpha_{j_1f}(S) = \alpha_f(S) = \alpha_{f_2}(S) \text{ for } S \in P_f = P_{f_2} \setminus \{I_1\},$$

$$\alpha_{j_1f}(I_1) = \alpha_{j_1}(I_1) = \alpha_{f_2}(I_1).$$

So $(j_1, I_1, \alpha_{j_1})(f, P_f, \alpha_f) = (f_2, P_{f_2}, \alpha_{f_2})$. Similarly, $j_2 f(x) = f_1(x)$ for all $x \in X$, $P_{j_2 f} = P_f \sqcup \{I_2\} = P_{f_1}$, and

$$\begin{aligned} \alpha_{j_2f}(x) &= \alpha_f(x) = \alpha_{f_1}(x) \text{ for } x \in X, \\ \alpha_{j_2f}(S) &= \alpha_f(S) = \alpha_{f_1}(S) \text{ for } S \in P_f = P_{f_1} \setminus \{I_2\}, \\ \alpha_{j_2f}(I_2) &= \alpha_{j_2}(I_2) = \alpha_{f_1}(I_2). \end{aligned}$$

So $(j_2, I_2, \alpha_{j_2})(f, P_f, \alpha_f) = (f_1, P_{f_1}, \alpha_{f_1}).$

Remark 4.2.2. Let $X, Y \in C$ and $I \subseteq Y$ be a subset such that $\{I\}$ is a partition of type t. For i = 1, 2, let $(f_i, P_{f_i}, \alpha_{f_i}) \in C(X, Y \setminus I)$ be morphisms and $(\iota_i, I, \alpha_{\iota_i}) \in C(Y \setminus I, Y)$ be inclusion morphisms. If

$$(\iota_1, I, \alpha_{\iota_1})(f_1, P_{f_1}, \alpha_{f_1}) = (\iota_2, I, \alpha_{\iota_2})(f_2, P_{f_2}, \alpha_{f_2}),$$

then $f_1(x) = f_2(x)$ for all $x \in X$, $P_{f_1} = P_{f_2}$, $\alpha_{f_1}(x) = \alpha_{f_2}(x)$ for all $x \in X$, and $\alpha_{f_1}(S) = \alpha_{f_2}(S)$ for all $S \in P_{f_1} = P_{f_2}$. So $(f_1, P_{f_1}, \alpha_{f_1}) = (f_2, P_{f_2}, \alpha_{f_2})$.

Proposition 4.2.3. $H_1(C_{\bullet}(-)(Y)) = 0.$

Proof. Let us abbreviate morphisms (f, P_f, α_f) in \mathcal{C} simply as f, while keeping in mind the remaining data P_f and α_f that define them. Let $X \in \mathcal{C}$ and consider the tail of the complex $C_{\bullet}(X)(Y)$:

$$\cdots \to C_2(X)(Y) \xrightarrow{\partial_2} C_1(X)(Y) \xrightarrow{\partial_1} \underline{\mathcal{C}}(X,Y) \to 0.$$

Recall that

$$C_1(X)(Y) = \bigoplus_{(I,\alpha)} \underline{\mathcal{C}}(X, Y \setminus I) \otimes_k \det(I),$$

where $I \subseteq Y$ such that $\{I\}$ is a partition of type t, $\alpha(I) \in A$, and $\det(I) = kI$. Thus, an arbitrary element of $C_1(X)(Y)$ is of the form

$$u = \left(\sum_{i_1} c_{i_1} f_{i_1}\right) \otimes I_1 + \dots + \left(\sum_{i_s} c_{i_s} f_{i_s}\right) \otimes I_s$$

where the $I_j \subseteq Y$ are distinct and equipped with an element $\alpha_j(I_j) = a_j \in A$ (j = 1, ..., s), the $f_{i_j} \in \mathcal{C}(X, Y \setminus I_j)$ are all distinct, and $c_{i_j} \in k$. For simplicity, we reindex this sum as

$$u = \sum_{i} c_i f_i \otimes I_i,$$

in which the I_i are no longer distinct, yet the f_i remain distinct. Suppose $u \in \ker(\partial_1)$. Then

$$\partial_1(u) = \sum_i c_i \iota_i f_i = 0,$$

where the ι_i are the inclusion morphisms $(\iota_i, I_i, \alpha_i) \in \mathcal{C}(Y \setminus I_i, Y)$ defined by $\alpha_i(I_i) = a_i \in A$. Now, some of the $\iota_i f_i$ may have composed to the same element in $\mathcal{C}(X, Y)$. By grouping together all such terms in the sum $\partial_1(u)$, we see that the sum of the corresponding c_i is zero in each group. By reindexing if necessary, we get

$$c_1 + \dots + c_{i_1} = c_{i_1+1} + \dots + c_{i_2} = \dots = c_{i_{r-1}+1} + \dots + c_{i_r} = 0$$

for some r, and so

 $c_1 = -c_2 - \dots - c_{i_1}, c_{i_1+1} = -c_{i_1+2} - \dots - c_{i_2}, \dots, c_{i_{r-1}+1} = -c_{i_{r-1}+2} - \dots - c_{i_r}.$

Hence, the sum u can be rearranged to

$$c_{2}(f_{2} \otimes I_{2} - f_{1} \otimes I_{1}) + \dots + c_{i_{1}}(f_{i_{1}} \otimes I_{i_{1}} - f_{1} \otimes I_{1}) + c_{i_{1}+2}(f_{i_{1}+2} \otimes I_{i_{1}+2} - f_{i_{1}+1} \otimes I_{i_{1}+1}) + \dots + c_{i_{2}}(f_{i_{2}} \otimes I_{i_{2}} - f_{i_{1}+1} \otimes I_{i_{1}+1}) + \dots + c_{i_{r-1}+2}(f_{i_{r-1}+2} \otimes I_{i_{r-1}+2} - f_{i_{r-1}+1} \otimes I_{i_{r-1}+1}) + \dots + c_{i_{r}}(f_{i_{r}} \otimes I_{i_{r}} - f_{i_{r-1}+1} \otimes I_{i_{r-1}+1})$$

Each of the terms $f_i \otimes I_i - f_j \otimes I_j$ in this sum result from morphisms for which $\iota_i f_i = \iota_j f_j$ in

the sum $\partial_1(u)$. If $I_i = I_j$, then by Remark 4.2.2, we must have $f_i = f_j$, contradicting that the f_i are distinct. Thus, $I_i \neq I_j$ for each of the terms $f_i \otimes I_i - f_j \otimes I_j$. In particular, $\iota_1 f_1 = \iota_2 f_2$ and $I_1 \neq I_2$, so by Lemma 4.2.1, there exists a morphism $f \in \mathcal{C}(X, Y \setminus (I_1 \sqcup I_2))$ and inclusion morphisms $j_1 \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_2), j_2 \in \mathcal{C}(Y \setminus (I_1 \sqcup I_2), Y \setminus I_1)$ such that $j_1 f = f_2$ and $j_2 f = f_1$. Let $I = I_1 \sqcup I_2$ and define $\alpha : \{I_1, I_2\} \to A$ by $\alpha(I_1) = \alpha_{j_1}(I_1), \alpha(I_2) = \alpha_{j_2}(I_2)$. Then $f \otimes I_1 \wedge I_2$ belongs to the direct summand of $C_2(X)(Y)$ corresponding to (I, α) , and

$$\partial_2(f \otimes I_1 \wedge I_2) = j_1 f \otimes I_2 - j_2 f \otimes I_1 = f_2 \otimes I_2 - f_1 \otimes I_1.$$

Hence, $f_2 \otimes I_2 - f_1 \otimes I_1 \in \operatorname{im}(\partial_2)$. Likewise, every term in the above sum u belongs to $\operatorname{im}(\partial_2)$. Therefore, $\operatorname{ker}(\partial_1) \subseteq \operatorname{im}(\partial_2)$ and so $H_1(C_{\bullet}(X)(Y)) = 0$.

Theorem 4.2.4. $H_m(C_{\bullet}(-)(Y)) = 0$ for all $m \ge 2$.

Proof. We proceed by induction on |Y|. If |Y| = 0, then $Y = \emptyset$ implies $C_m(-)(\emptyset) = 0$ for all $m \ge 1$, so $H_m(C_{\bullet}(-)(Y)) = 0$ for all $m \ge 2$ in the base case. Let N > 0 and assume $H_m(C_{\bullet}(X)(Y)) = 0$ for all $m \ge 2$ and $X, Y \in \mathcal{C}$ for which |Y| < N. Let $X, Y \in \mathcal{C}$ with |Y| = N. We must show $H_m(C_{\bullet}(X)(Y)) = 0$ for all $m \ge 2$. We may assume $X = ([x_1], ..., [x_n])$ and $Y = ([y_1], ..., [y_n])$, where $\sum_{i=1}^n y_i = N$. Since N > 0, we must have $y_i > 0$ for some i. Fix the element $y_i \in Y$.

Define a subcomplex $S_{\bullet}(X)(Y)$ of $C_{\bullet}(X)(Y)$ as follows. For each $m \in \mathbb{N}_0$, let $S_m(X)(Y)$ be the k-submodule of $C_m(X)(Y)$ spanned by the direct summands $\underline{C}(X, Y \setminus I) \otimes_k \det(I)$ such that $y_i \notin I$. Then for a typical basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \in S_m(X)(Y)$ in a direct summand corresponding to (I, α) , we have $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y \setminus I)$, $I = I_1 \sqcup \cdots \sqcup I_m$, $\alpha : \{I_1, ..., I_m\} \to A$, and $y_i \notin I_j$ for any j. Because $y_i \notin I$ implies $y_i \notin I \setminus I_j$ for every j = 1, ..., m, we see that ∂_X maps $S_m(X)(Y)$ into $S_{m-1}(X)(Y)$ for each $m \in \mathbb{N}$. Hence, $S_{\bullet}(X)(Y)$ is a subcomplex of $C_{\bullet}(X)(Y)$.

For any $m \in \mathbb{N}_0$, given a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ in a direct summand of $S_m(X)(Y)$ corresponding to (I, α) , we have either $y_i \in f(X)$ or $y_i \notin f(X)$. If $y_i \in f(X)$, then $f(x) = y_i$ for some unique $x \in [x_i]$ and $\alpha_f(x) \in A$. By restricting the domain of f to $X \setminus \{x\}$ and the domain of α_f to $X \setminus \{x\} \amalg P_f$, we can regard $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ as an element of $\bigoplus_{x \in [x_i]} C_m(X \setminus \{x\})(Y \setminus \{y_i\})^{\oplus |A|}$, by identifying it with $(f \mid_{X \setminus \{x\}}, P_f, \alpha_f \mid_{(X \setminus \{x\}) \amalg P_f}) \otimes \bigwedge_{j=1}^m I_j$. On the other hand, if $y_i \notin f(X)$, then $y_i \in S$ for some unique $S \in P_f$ and $\alpha_f(S) \in A$. By restricting the codomain of f to $Y \setminus S$ and the domain of α_f to $X \amalg (P_f \setminus \{S\})$, we can regard $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ as an element of $\bigoplus_{S} C_m(X)(Y \setminus S)^{\oplus |A|}, \text{ where the direct sum is over all } S \subseteq Y \text{ such that } \{S\} \text{ is a partition of type } t$ and $y_i \in S$, by identifying it with $(f, P_f \setminus \{S\}, \alpha_f \mid_{X \amalg(P_f \setminus \{S\})}) \otimes \bigwedge_{j=1}^m I_j$. This gives a map

$$S_m(X)(Y) \to \bigoplus_{x \in [x_i]} C_m(X \setminus \{x\})(Y \setminus \{y_i\})^{\oplus |A|} \oplus \bigoplus_S C_m(X)(Y \setminus S)^{\oplus |A|}.$$

The inverse map

$$\bigoplus_{x \in [x_i]} C_m(X \setminus \{x\}) (Y \setminus \{y_i\})^{\oplus |A|} \oplus \bigoplus_S C_m(X) (Y \setminus S)^{\oplus |A|} \to S_m(X) (Y)$$

is defined as follows. Given a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ of a direct summand $C_m(X \setminus \{x\})(Y \setminus \{y_i\})$ corresponding to both $x \in [x_i]$ and $a \in A$, we identify it with $(\overline{f}, P_f, \overline{\alpha_f}) \otimes \bigwedge_{j=1}^m I_j$ in $S_m(X)(Y)$, where \overline{f} extends f by $\overline{f}(x) = y_i$, and $\overline{\alpha_f}$ extends α_f by $\overline{\alpha_f}(x) = a$. On the other hand, given a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ of a direct summand of $C_m(X)(Y \setminus S)$ corresponding to both $S \subseteq Y$ (where $\{S\}$ is a partition of type t and $y_i \in S$) and $a \in A$, we identify it with $(\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes$ $\bigwedge_{j=1}^m I_j$ in $S_m(X)(Y)$, where $(\iota_S, S, \alpha_S) \in \mathcal{C}((Y \setminus S) \setminus I, Y \setminus I)$ is the inclusion morphism defined by $\alpha_S(S) = a$.

Therefore, we identify the subcomplex $S_{\bullet}(X)(Y)$ with

$$\bigoplus_{x \in [x_i]} C_{\bullet}(X \setminus \{x\}) (Y \setminus \{y_i\})^{\oplus |A|} \oplus \bigoplus_{S} C_{\bullet}(X) (Y \setminus S)^{\oplus |A|}.$$

Consider the quotient complex $C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y)$. Since $S_0(X)(Y) = \underline{C}(X,Y) = C_0(X)(Y)$, we have $C_0(X)(Y)/S_0(X)(Y) = 0$. If $m \in \mathbb{N}$, then a typical basis element in the quotient $C_m(X)(Y)/S_m(X)(Y)$ is represented by $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ in $\underline{C}(X, Y \setminus I) \otimes \det(I)$, with $y_i \in I$. So if

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j + S_m(X)(Y) \in C_m(X)(Y)/S_m(X)(Y),$$

then $y_i \in I_j$ for exactly one j. By removing I_j from I, along with its associated element $\alpha(I_j) \in A$, we can regard $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j + S_m(X)(Y)$ as an element of $\bigoplus_S C_{m-1}(X)(Y \setminus S)^{\oplus |A|}$, the direct sum being over all $S \subseteq Y$ such that $\{S\}$ is a partition of type t and $y_i \in S$, by identifying it with

$$\operatorname{sgn}(\sigma)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m \in \underline{\mathcal{C}}(X, (Y \setminus I_j) \setminus (I \setminus I_j)) \otimes_k \det(I \setminus I_j),$$

where $\sigma = (1, 2, ..., j - 1, j)$ is the permutation that moves I_j to the leftmost position in the wedge product and preserves the order of the remaining wedge factors. This gives a map

$$C_m(X)(Y)/S_m(X)(Y) \to \bigoplus_S C_{m-1}(X)(Y \setminus S)^{\oplus |A|}.$$

The inverse map

$$\bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|} \to C_m(X)(Y)/S_m(X)(Y)$$

is defined as follows. Given a basis element $(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \wedge I_{m-1}$ of a direct summand $C_{m-1}(X)(Y \setminus S)$ corresponding to both $S \subseteq Y$ (where $\{S\}$ is a partition of type t and $y_i \in S$) and $a \in A$, we identify it with

$$(f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \dots \wedge I_{m-1} + S_m(X)(Y) \in C_m(X)(Y)/S_m(X)(Y).$$

Here, if $(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \wedge I_{m-1}$ belongs a direct summand of $C_{m-1}(X)(Y \setminus S)$ corresponding to $(I_1 \sqcup \cdots \sqcup I_{m-1}, \alpha)$, then the representative $(f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \cdots \wedge I_{m-1}$ belongs to the direct summand of $C_m(X)(Y)$ corresponding to $(I_1 \sqcup \cdots \sqcup I_{m-1} \sqcup S, \overline{\alpha})$, where $\overline{\alpha}$ extends α by $\overline{\alpha}(S) = a$. Therefore, we identify the quotient complex $C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y)$ with

$$\left(\bigoplus_{S} C_{\bullet}(X)(Y \backslash S)^{\oplus |A|}\right) [-1],$$

where [-1] is the shift functor on complexes defined by $(K[-1])_m = K_{m-1}$ for any complex K_{\bullet} .

Thus, we have a short exact sequence of complexes

$$0 \to S_{\bullet}(X)(Y) \to C_{\bullet}(X)(Y) \to C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y) \to 0,$$

which gives a long exact sequence in homology:

$$\cdots \to H_m(S_{\bullet}(X)(Y)) \to H_m(C_{\bullet}(X)(Y)) \to H_m(C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y)) \to \cdots$$
$$\to H_2(S_{\bullet}(X)(Y)) \to H_2(C_{\bullet}(X)(Y)) \to H_2(C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y)) \to \cdots .$$

By the subcomplex identification and the induction hypothesis, we get $H_m(S_{\bullet}(X)(Y)) = 0$ for all $m \ge 2$. By the quotient complex identification, the induction hypothesis, and since $H_1(C_{\bullet}(X)(Y)) =$

0 for all $X, Y \in \mathcal{C}$, we obtain $H_m(C_{\bullet}(X)(Y)/S_{\bullet}(X)(Y)) = 0$ for all $m \ge 2$. By exactness of the homology sequence, we arrive at $H_m(C_{\bullet}(X)(Y)) = 0$ for all $m \ge 2$.

Remark 4.2.5. We will show that $C_{\bullet}(X)(Y)$ is the mapping cone of a certain morphism of chain complexes, with the same notation of Theorem 4.2.4. For any $m \in \mathbb{N}_0$, consider the direct summand $\bigoplus_S C_m(X)(Y \setminus S)^{\oplus |A|}$ in the degree m part of the subcomplex identification:

$$S_m(X)(Y) = \bigoplus_{x \in [x_i]} C_m(X \setminus \{x\})(Y \setminus \{y_i\})^{\oplus |A|} \oplus \bigoplus_S C_m(X)(Y \setminus S)^{\oplus |A|}$$

Under this identification, $\bigoplus_{S} C_m(X)(Y \setminus S)^{\oplus |A|}$ is the k-subspace of $S_m(X)(Y)$ spanned by the elements $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ for which $y_i \notin f(X)$. Since $y_i \notin f(X)$ implies $y_i \notin \iota_j f(X)$ for every inclusion morphism $\iota_j \in \mathcal{FI}^n(Y \setminus I, (Y \setminus I) \sqcup \{I_j\})$ $(1 \leq j \leq m), \bigoplus_{S} C_{\bullet}(X)(Y \setminus S)^{\oplus |A|}$ is a subcomplex of $S_{\bullet}(X)(Y)$. For any $m \in \mathbb{N}_0$, let

$$i_m: \bigoplus_S C_m(X)(Y \backslash S)^{\oplus |A|} \hookrightarrow S_m(X)(Y)$$

be the inclusion map. Recall that a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ in a direct summand $C_m(X)(Y \setminus S)$ corresponding to both $S \subseteq Y$ (where $\{S\}$ is a partition of type t and $y_i \in S$) and $a \in A$, gets identified with $(\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$ in $S_m(X)(Y)$ (where $(\iota, S, \alpha_S) \in \mathcal{C}((Y \setminus S) \setminus I, Y \setminus I)$ is the inclusion morphism defined by $\alpha_S(S) = a$). So

$$i_m((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j) = (\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$$

for all $m \in \mathbb{N}_0$. The diagram

commutes since

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$
$$\mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_S, S, \alpha_S) (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$

around the top right corner, while

$$(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j \mapsto (\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^m I_j$$
$$\mapsto \sum_{j=1}^m (-1)^{j-1} (\iota_j, I_j, \alpha_j) (\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \widehat{I_j} \cdots \wedge I_m$$

around the bottom left corner, and the inclusion morphisms (ι_S, S, α_S) , (ι_j, I_j, α_j) commute by Remark 4.1.3. Thus,

$$i: \bigoplus_S C_{\bullet}(X)(Y \backslash S)^{\oplus |A|} \hookrightarrow S_{\bullet}(X)(Y)$$

is a morphism of complexes.

The mapping cone of -i is the complex

$$\left(\bigoplus_{S} C_{\bullet}(X)(Y \setminus S)^{\oplus |A|}\right) [-1] \oplus S_{\bullet}(X)(Y)$$

whose differential d in degree m is given by

$$d(u', u) = (-\partial(u'), \partial(u) + i_{m-1}(u'))$$

for $u' \in \bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|}$ and $u \in S_m(X)(Y)$. By the quotient complex identification, we have an isomorphism of k-vector spaces

$$\alpha_m : \bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|} \cong C_m(X)(Y)/S_m(X)(Y),$$

in which a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j$ in a direct summand $C_{m-1}(X)(Y \setminus S)$ corresponding

to $S \subseteq Y$ and $a \in A$ gets identified with

$$(f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \dots \wedge I_m + S_m(X)(Y)$$

in $C_m(X)(Y)/S_m(X)(Y)$. Also, there is a k-vector space isomorphism

$$\beta_m : (C_m(X)(Y)/S_m(X)(Y)) \oplus S_m(X)(Y) \cong C_m(X)(Y)$$

given by

$$\beta_m(v + S_m(X)(Y), u) = v + u$$

for $v \in C_m(X)(Y)$ and $u \in S_m(X)(Y)$. For any $m \in \mathbb{N}_0$, we define the k-vector space isomorphism

$$e_m : \bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|} \oplus S_m(X)(Y) \xrightarrow{\sim} C_m(X)(Y)$$

to be

$$e_m(u',u) = \rho_m \alpha_m(u') + u$$

for $u' \in \bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|}$ and $u \in S_m(X)(Y)$, where $\rho_m : C_m(X)(Y)/S_m(X)(Y) \to C_m(X)(Y)$ is the splitting map $\rho_m(v + S_m(X)(Y)) = v$.

Observe that for any $m \in \mathbb{N}_0$, we have

$$e_{m-1}d(u',u) = e_{m-1}(-\partial(u'),\partial(u) + i_{m-1}(u')) = -\rho_m \alpha_m \partial(u') + \partial(u) + i_{m-1}(u')$$

and

$$\partial e_m(u', u) = \partial(\rho_m \alpha_m(u') + u) = \partial \rho_m \alpha_m(u') + \partial(u)$$

for $u' \in \bigoplus_S C_{m-1}(X)(Y \setminus S)^{\oplus |A|}$ and $u \in S_m(X)(Y)$. So $e_{m-1}d = \partial e_m$ provided that

$$\partial \rho_m \alpha_m(u') = -\rho_m \alpha_m \partial(u') + i_{m-1}(u')$$

for $u' \in \bigoplus_{S} C_{m-1}(X)(Y \setminus S)^{\oplus |A|}$. Take a basis element $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j$ in a direct summand

of $C_{m-1}(X)(Y \setminus S)$ corresponding to $S \subseteq Y$ and $a \in A$. Then

$$\partial \rho_m \alpha_m ((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j) = \partial ((f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \dots \wedge I_{m-1})$$
$$= (\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j$$
$$+ \sum_{j=1}^{m-1} (-1)^j (\iota_j, I_j, \alpha_j)(f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \dots \widehat{I_j} \dots \wedge I_{m-1}.$$

On the other hand,

$$-\rho_m \alpha_m \partial((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j) = -\rho_m \alpha_m (\sum_{j=1}^{m-1} (-1)^{j-1} (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes I_1 \wedge \cdots \hat{I_j} \cdots \wedge I_{m-1})$$
$$= \sum_{j=1}^{m-1} (-1)^j (\iota_j, I_j, \alpha_j) (f, P_f, \alpha_f) \otimes S \wedge I_1 \wedge \cdots \hat{I_j} \cdots \wedge I_{m-1}$$

 and

$$i_{m-1}((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j) = (\iota_S, S, \alpha_S)(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{m-1} I_j.$$

It follows that $e_{m-1}d = \partial e_m$ for all $m \in \mathbb{N}_0$, which means the diagram

commutes. Hence, $\left(\bigoplus_{S} C_{\bullet}(X)(Y \setminus S)^{\oplus |A|}\right)[-1] \oplus S_{\bullet}(X)(Y)$ and $C_{\bullet}(X)(Y)$ are isomorphic as complexes of k-vector spaces. Therefore, $C_{\bullet}(X)(Y)$ is the mapping cone of -i.

4.3. $C_{\bullet}(-)(Y)$ is a resolution of $\underline{C}(Y,Y)$.

We have a complex of graded right \underline{C} -modules

$$\cdots \to C_m(-)(Y) \to C_{m-1}(-)(Y) \to \cdots \to C_1(-)(Y) \to \underline{\mathcal{C}}(-,Y) \to 0$$

which is exact at each $m \in \mathbb{N}$, and in which $C_m(-)(Y)$ is projective and generated in degree m for all $m \in \mathbb{N}_0$.

Consider the augmented sequence

$$\cdots \to C_m(-)(Y) \to C_{m-1}(-)(Y) \to \cdots \to C_1(-)(Y) \xrightarrow{\partial} \underline{\mathcal{C}}(-,Y) \xrightarrow{\varepsilon} \underline{\mathcal{C}}(Y,Y) \to 0$$

in which $\varepsilon : \underline{\mathcal{C}}(-,Y) \to \underline{\mathcal{C}}(Y,Y)$ is the graded right $\underline{\mathcal{C}}$ -module homomorphism defined for each $X \in \mathcal{C}$ by

$$\varepsilon_X = \begin{cases} 1_{\underline{\mathcal{C}}(Y,Y)} & \text{if } X = Y \\ 0 & \text{if } X \neq Y. \end{cases}$$

The augmented sequence is exact at $\underline{\mathcal{C}}(Y, Y)$ because ε_X is surjective for each $X \in \mathcal{C}$.

Proposition 4.3.1. The augmented sequence is exact at $\underline{\mathcal{C}}(-, Y)$.

Proof. Let $X \in \mathcal{C}$. We must show that $\operatorname{im}(\partial_X) = \ker(\varepsilon_X)$.

For (\subseteq) , take a basis element $(f, P_f, \alpha_f) \otimes I$ in a direct summand of $C_1(X)(Y)$ corresponding to (I, α) , with $\emptyset \neq I \subseteq Y$ and $\alpha(I) \in A$. Then $\partial_X((f, P_f, \alpha_f) \otimes I) = (\iota, I, \alpha_\iota)(f, P_f, \alpha_f)$, where $(\iota, I, \alpha_\iota) \in \mathcal{C}(Y \setminus I, Y)$ is the inclusion morphism defined by $\alpha_\iota(I) = \alpha(I)$. Since $\underline{\mathcal{C}}$ is directed, we have $X \subseteq Y \setminus I \subseteq Y$. But then $X \neq Y$, because otherwise $Y \setminus I = Y$ contradicts $I \neq \emptyset$. So $(\iota, I, \alpha_\iota)(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ with $X \neq Y$, hence $\varepsilon_X((\iota, I, \alpha_\iota)(f, P_f, \alpha_f)) = 0$. Thus, $\operatorname{im}(\partial_X) \subseteq \operatorname{ker}(\varepsilon_X)$.

For (\supseteq) , let $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ be a basis element such that $\varepsilon_X((f, P_f, \alpha_f)) = 0$. If X = Y, then ε_X is the identity map on $\underline{\mathcal{C}}(Y, Y)$, which forces $(f, P_f, \alpha_f) = 0$ and contradicts that (f, P_f, α_f) was a basis element. So $X \neq Y$ and hence $X \subset Y$ because $\underline{\mathcal{C}}$ is directed. We claim that (f, P_f, α_f) has a preimage in $C_1(X)(Y)$ under ∂_X . Since $X \subset Y$, there exists $I \in P_f$ and $\alpha_f(I) \in A$. By restricting the codomain of $f: X \to Y$ to $Y \setminus I$ and the domain of $\alpha_f : X \amalg P_f \to A$ to $X \amalg (P_f \setminus \{I\})$, we get a morphism $(f, P_f \setminus \{I\}, \alpha_f \mid_{X \amalg (P_f \setminus \{I\})}) \in \mathcal{C}(X, Y \setminus I)$. Then $(f, P_f \setminus \{I\}, \alpha_f \mid_{X \amalg (P_f \setminus \{I\})}) \otimes I$ belongs to the direct summand of $C_1(X)(Y)$ corresponding to $(I, \alpha_f \mid_{\{I\}})$ and

$$\partial_X((f, P_f \setminus \{I\}, \alpha_f \mid_{X \amalg (P_f \setminus \{I\})}) \otimes I) = (\iota, I, \alpha_\iota)(f, P_f \setminus \{I\}, \alpha_f \mid_{X \amalg (P_f \setminus \{I\})}) = (f, P_f, \alpha_f),$$

where $(\iota, I, \alpha_{\iota}) \in \mathcal{C}(Y \setminus I, Y)$ is the inclusion morphism defined by $\alpha_{\iota}(I) = \alpha_f(I)$. So $(f, P_f, \alpha_f) \in im(\partial_X)$, and hence $im(\partial_X) \supseteq ker(\varepsilon_X)$.

Therefore, $\operatorname{im}(\partial_X) = \operatorname{ker}(\varepsilon_X)$ and the augmented complex is exact at $\underline{\mathcal{C}}(-, Y)$.

This completes the construction of our linear projective resolution

$$\cdots \to C_m(-)(Y) \to C_{m-1}(-)(Y) \to \cdots \to C_1(-)(Y) \to \underline{\mathcal{C}}(-,Y) \to \underline{\mathcal{C}}(Y,Y) \to 0$$

of $\underline{\mathcal{C}}(Y,Y)$ in $\underline{\mathcal{C}}$ -gMod. We conclude that the category $\underline{\mathcal{C}}$ is Koszul, summarized in the Corollary below.

Corollary 4.3.2. Let $n \in \mathbb{N}$, t be a partition type, A be a finite abelian group, and k be a field of characteristic 0. Then the k-linearization of $\mathcal{FI}_{t,A}^n$ is Koszul.

Remark 4.3.3. If we only allow left modules in the definition of Koszulity, then what we have proven is that the k-linearization of $(\mathcal{FI}_{t,A}^n)^{op}$ is Koszul. By [GL, Proposition 3.5], the k-linearization of $\mathcal{FI}_{t,A}^n$ is Koszul.

5. The Quadratic Dual

5.1. Preliminaries.

Let \mathcal{C} be a category such that $\mathcal{C}(X, X)$ is a group for any $X \in \mathcal{C}$ (in other words, \mathcal{C} is an EI category, one whose endomorphisms are isomorphisms). Let k be a field, and $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} . Assume that $\underline{\mathcal{C}}$ is a directed graded k-linear category.

Remark 5.1.1. Let $X, Y \in \mathcal{C}$. If V is a $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule, then V^* is a $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Y,Y))$ bimodule with left action given by k-linear extension of $(\sigma \cdot v^*)(v') = v^*(v'\sigma)$ for $\sigma \in \mathcal{C}(X,X)$, and right action given by k-linear extension of $(v^* \cdot \tau)(v') = v^*(\tau v')$ for $\tau \in \mathcal{C}(Y,Y)$, where $v^* \in V^*$ and $v' \in V$. If $\phi : V \to W$ is a $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule homomorphism, then $\phi^* : W^* \to V^*$ defined by $\phi^*(w^*) = w^*\phi$ is a $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Y,Y))$ -bimodule homomorphism. In particular, $\underline{C}(X,Y)_1$ is a $(\underline{C}(Y,Y),\underline{C}(X,X))$ -bimodule by composition of morphisms, so $\underline{C}(X,Y)_1^*$ is a $(\underline{C}(X,X),\underline{C}(Y,Y))$ -bimodule. Also, for any $X, Y, Z \in \mathcal{C}$, the composition map

$$\gamma_{XYZ}: \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1 \to \underline{\mathcal{C}}(X,Z)_2$$

is a $(\underline{\mathcal{C}}(Z,Z),\underline{\mathcal{C}}(X,X))$ -bimodule homomorphism, thus

$$\gamma^*_{XYZ}: \underline{\mathcal{C}}(X,Z)_2^* \to (\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^*$$

is a $(\underline{\mathcal{C}}(X, X), \underline{\mathcal{C}}(Z, Z))$ -bimodule homomorphism.

Remark 5.1.2. Let $X, Y \in \mathcal{C}$, and V be a $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule that is finite dimensional as a k-vector space. Let $\{e_1, ..., e_n\}$ be a basis of V, and $\{e_1^*, ..., e_n^*\}$ be the dual basis of V^* , so that $V \cong V^*$ as k-vector spaces by the correspondence $e_i \leftrightarrow e_i^*$. Then V^* is a $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Y,Y))$ bimodule in the following way. Define the left action of $\underline{\mathcal{C}}(X,X)$ on V^* by k-linear extension of $\sigma \cdot v^* = (v\sigma^{-1})^*$ for $\sigma \in \mathcal{C}(X,X)$, and the right action of $\underline{\mathcal{C}}(Y,Y)$ on V^* by k-linear extension of $v^* \cdot \tau = (\tau^{-1}v)^*$ for $\tau \in \mathcal{C}(Y,Y)$, where $v \leftrightarrow v^*$ correspond under the isomorphism $V \cong V^*$. These actions are compatible since

$$(\sigma \cdot v^*) \cdot \tau = (v\sigma^{-1})^* \cdot \tau = (\tau^{-1}(v\sigma^{-1}))^* = ((\tau^{-1}v)\sigma^{-1})^* = \sigma \cdot (\tau^{-1}v)^* = \sigma \cdot (v^* \cdot \tau).$$

Note 5.1.3. If $X, Y \in \mathcal{C}$ and V is a $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule that is finite dimensional over k, then in order to distinguish between the two ways in which V^* is a $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Y,Y))$ -bimodule, let us call the bimodule action of Remark 5.1.1 the "natural" action, and the bimodule action of Remark 5.1.2 the "inverse" action.

Proposition 5.1.4. Let $X, Y, Z \in \mathcal{C}$. Suppose V is a $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule and W is a $(\underline{\mathcal{C}}(Z,Z), \underline{\mathcal{C}}(Y,Y))$ -bimodule, both of which are finite dimensional over k. Then $(W \otimes_{\underline{\mathcal{C}}(Y,Y)} V)^* \cong V^* \otimes_{\mathcal{C}(Y,Y)} W^*$ as $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Z,Z))$ -bimodules under the inverse action.

Proof. Define

$$\varphi: (W \otimes_{\underline{\mathcal{C}}(Y,Y)} V)^* \to V^* \otimes_{\underline{\mathcal{C}}(Y,Y)} W^*$$

by k-linear extension of the assignment $(w \otimes v)^* \mapsto v^* \otimes w^*$. To see that φ is well defined, note that

$$\varphi((w\alpha \otimes v)^*) = v^* \otimes (w\alpha)^* = v^* \otimes \alpha^{-1} \cdot w^* = v^* \cdot \alpha^{-1} \otimes w^* = (\alpha v)^* \otimes w^* = \varphi((w \otimes \alpha v)^*)$$

for any $\alpha \in \mathcal{C}(Y,Y)$. To see that φ is a $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -bimodule homomorphism, observe that

$$\sigma \cdot (w \otimes v)^* = ((w \otimes v)\sigma^{-1})^* = (w \otimes v\sigma^{-1})^* \mapsto (v\sigma^{-1})^* \otimes w^* = (\sigma \cdot v^*) \otimes w^* = \sigma \cdot (v^* \otimes w^*)$$

for any $\sigma \in \mathcal{C}(X, X)$, and

$$(w \otimes v)^* \cdot \tau = (\tau^{-1}(w \otimes v))^* = (\tau^{-1}w \otimes v)^* \mapsto v^* \otimes (\tau^{-1}w)^* = v^* \otimes (w^* \cdot \tau) = (v^* \otimes w^*) \cdot \tau$$

for any $\tau \in \mathcal{C}(Z, Z)$. Next, define

$$\psi: V^* \otimes_{\mathcal{C}(Y,Y)} W^* \to (W \otimes_{\mathcal{C}(Y,Y)} V)^*$$

by k-linear extension of the assignment $v^* \otimes w^* \mapsto (w \otimes v)^*$. Then ψ well defined since

$$\psi((v^* \cdot \alpha) \otimes w^*) = \psi((\alpha^{-1}v)^* \otimes w^*) = (w \otimes \alpha^{-1}v)^* = (w\alpha^{-1} \otimes v)^* = \psi(v^* \otimes (w\alpha^{-1})^*) = \psi(v^* \otimes (\alpha \cdot w^*))$$

for any $\alpha \in \mathcal{C}(Y,Y)$. Also, ψ is a $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -bimodule homomorphism because

$$\sigma \cdot (v^* \otimes w^*) = (\sigma \cdot v^*) \otimes w^* = (v\sigma^{-1})^* \otimes w^* \mapsto (w \otimes v\sigma^{-1})^* = ((w \otimes v)\sigma^{-1})^* = \sigma \cdot (w \otimes v)^*$$

for any $\sigma \in \mathcal{C}(X, X)$, and

$$(v^* \otimes w^*) \cdot \tau = v^* \otimes (w^* \cdot \tau) = v^* \otimes (\tau^{-1}w)^* \mapsto (\tau^{-1}w \otimes v)^* = (\tau^{-1}(w \otimes v))^* = (w \otimes v)^* \cdot \tau$$

for any $\tau \in \mathcal{C}(Z, Z)$. Thus, $(W \otimes_{\underline{\mathcal{C}}(Y,Y)} V)^* \cong V^* \otimes_{\underline{\mathcal{C}}(Y,Y)} W^*$ as $(\underline{\mathcal{C}}(X,X), \underline{\mathcal{C}}(Z,Z))$ -bimodules under the inverse action.

Remark 5.1.5. In particular, for any $X, Y, Z \in C$, $(\underline{C}(Y, Z)_1 \otimes_{\underline{C}(Y,Y)} \underline{C}(X,Y)_1)^* \cong \underline{C}(X,Y)_1^* \otimes_{\underline{C}(Y,Y)} \underline{C}(Y,Z)_1^*$ as $(\underline{C}(X,X), \underline{C}(Z,Z))$ -bimodules under the inverse action. Moreover, it follows by induction that

$$(\underline{\mathcal{C}}(Y_i, Z)_1 \otimes_{\underline{\mathcal{C}}(Y_i, Y_i)} \cdots \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \underline{\mathcal{C}}(X, Y_1)_1)^* \cong \underline{\mathcal{C}}(X, Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_i, Y_i)} \underline{\mathcal{C}}(Y_i, Z)_1^*$$

as $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -bimodules under the inverse action, for any $X, Y_1, ..., Y_i, Z \in \mathcal{C}, i \geq 1$.

Proposition 5.1.6. Let $X, Y, Z \in C$. Then $\underline{C}(Y, Z)_1 \otimes_{\underline{C}(Y,Y)} \underline{C}(X,Y)_1$ is a $(\underline{C}(Z,Z), \underline{C}(X,X))$ bimodule that is finite dimensional over k, and the natural and inverse actions on $(\underline{C}(Y,Z)_1 \otimes_{\underline{C}(Y,Y)} \underline{C}(X,Y)_1)^*$ coincide.

Proof. $\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$ is spanned by the finite set

 $S = \{g \otimes f : g \in \mathcal{C}(Y, Z), f \in \mathcal{C}(X, Y) \text{ are morphisms of degree } 1\},\$

so S contains a basis of $\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$. To show the natural and inverse actions on $(\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^*$ coincide, it is enough to check this on basis elements. Let $g, g' \in \mathcal{C}(Y,Z)$, $f, f' \in \mathcal{C}(X,Y)$ be morphisms of degree 1 and let $\sigma \in \mathcal{C}(X,X)$, $\tau \in \mathcal{C}(Y,Y)$. Under the natural action, we have

$$(\sigma \cdot (g \otimes f)^*)(g' \otimes f') = (g \otimes f)^*(g' \otimes f'\sigma) = \delta_{g \otimes f, g' \otimes f'\sigma}$$

 and

$$((g \otimes f)^* \cdot \tau)(g' \otimes f') = (g \otimes f)^*(\tau g' \otimes f') = \delta_{g \otimes f, \tau g' \otimes f'}$$

On the other hand, under the inverse action, we have

$$(\sigma \cdot (g \otimes f)^*)(g' \otimes f') = (g \otimes f\sigma^{-1})^*(g' \otimes f') = \delta_{g \otimes f\sigma^{-1}, g' \otimes f'}$$

 and

$$((g \otimes f)^* \cdot \tau)(g' \otimes f') = (\tau^{-1}g \otimes f)^*(g' \otimes f') = \delta_{\tau^{-1}g \otimes f, g' \otimes f'}.$$

But $\delta_{g\otimes f,g'\otimes f'\sigma} = \delta_{g\otimes f\sigma^{-1},g'\otimes f'}$ and $\delta_{g\otimes f,\tau g'\otimes f'} = \delta_{\tau^{-1}g\otimes f,g'\otimes f'}$, so the natural and inverse actions coincide.

Therefore, we may unambiguously identify $\operatorname{im}(\gamma_{XYZ}^*)$ as a $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -subbimodule of $\underline{\mathcal{C}}(X,Y)_1^* \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*$, where

$$\gamma^*_{XYZ}: \underline{\mathcal{C}}(X,Z)_2^* \to (\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^* \cong \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*.$$

5.2. The category $\underline{C}^!$.

Definition 5.2.1. Let \underline{C} be a directed graded k-linear category. Recall that $A = \bigoplus_{i \ge 0} \underline{C}_i$ is a graded k-algebra, where $\underline{C}_i = \bigoplus_{X,Y \in \underline{C}} \underline{C}(X,Y)_i$. Note that \underline{C}_0 is a ring, with multiplicative identity $\sum_{X \in \underline{C}} 1_X$ if and only if $|Ob(\underline{C})|$ is finite. Since \underline{C}_1 is a $(\underline{C}_0, \underline{C}_0)$ -bimodule, we can form the graded k-algebra

$$T = \underline{\mathcal{C}}_0 \oplus \underline{\mathcal{C}}_1 \oplus (\underline{\mathcal{C}}_1 \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1) \oplus \cdots$$

Let $\gamma : T \to A$ be the map induced by composition of morphisms. It is a graded k-algebra homomorphism, and is surjective by condition (A6). Let $K = \ker(\gamma)$, which is a graded ideal of T. If K is generated by its degree 2 component $K_2 = K \cap (\underline{\mathcal{C}}_1 \otimes \underline{\mathcal{C}}_0 \underline{\mathcal{C}}_1)$, then we call $\underline{\mathcal{C}}$ a quadratic category.

Remark 5.2.2. If a directed graded k-linear category \underline{C} is Koszul, then it is quadratic by [GL, Proposition 3.10].

Remark 5.2.3. Let $R = \bigoplus_{i \ge 0} R_i$ be a graded ring, and $a, b \in R_0$. Then $aRb = \bigoplus_{i \ge 0} aR_i b$ is a graded subring of R. Let $S \subseteq R_i$ for some $i \ge 0$, and I be the ideal of R generated by S. Then $I = \bigoplus_{i \ge 0} (I \cap R_i)$ is a graded ideal of R. Put $I_i = I \cap R_i$ for each $i \ge 0$. Then $aIb = \bigoplus_{i \ge 0} aI_i b$ is a graded ideal of aRb, and hence admits a graded quotient ring $aRb/aIb = \bigoplus_{i \ge 0} (aR_ib/aI_ib)$.

Let \mathcal{C} be an EI category, and $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} . Assume that $\underline{\mathcal{C}}$ is a directed graded k-linear category. Recall that $\underline{\mathcal{C}}$ is skeletal, by Note 2.1.2.

Definition 5.2.4. Let $\underline{\mathcal{C}}_1^* = \bigoplus_{X,Y \in \mathcal{C}} \underline{\mathcal{C}}(X,Y)_1^*$. Since $\underline{\mathcal{C}}(X,Y)_1^*$ is a $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Y,Y))$ -bimodule for any $X,Y \in \mathcal{C}$, it follows that $\underline{\mathcal{C}}_1^*$ is a $(\underline{\mathcal{C}}_0,\underline{\mathcal{C}}_0)$ -bimodule. So we can form the graded k-algebra

$$R = \underline{\mathcal{C}}_0 \oplus \underline{\mathcal{C}}_1^* \oplus (\underline{\mathcal{C}}_1^* \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1^*) \oplus \cdots$$

Put $R_0 = \underline{\mathcal{C}}_0$ and $R_i = \underline{\mathcal{C}}_1^* \otimes_{\underline{\mathcal{C}}_0} \cdots \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1^*$ (*i* factors) for i > 0, so that $R = \bigoplus_{i \ge 0} R_i$. Note that $R_0 = \bigoplus_{X \in \mathcal{C}} \underline{\mathcal{C}}(X, X)_0$ by condition (A3), and $\underline{\mathcal{C}}(X, X) = \underline{\mathcal{C}}(X, X)_0$ for any $X \in \mathcal{C}$ by condition (A4). So for any $X, Z \in \mathcal{C}$, we have $1_X, 1_Z \in R_0$. Hence, $1_X R 1_Z = \bigoplus_{i \ge 0} 1_X R_i 1_Z$ is a graded *k*-subalgebra of *R*. Notice that

$$1_X R_0 1_Z = \begin{cases} \underline{\mathcal{C}}(X, X) & \text{if } X = Z\\ 0 & \text{if } X \neq Z, \end{cases}$$
$$1_X R_1 1_Z = \underline{\mathcal{C}}(X, Z)_1^*,$$
$$1_X R_2 1_Z = \bigoplus_{Y \in \mathcal{C}} \underline{\mathcal{C}}(X, Y)_1^* \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(Y, Z)_1^*, \end{cases}$$

and for i > 2, we have

$$1_X R_i 1_Z = \bigoplus_{Y_1, \dots, Y_{i-1} \in \mathcal{C}} \underline{\mathcal{C}}(X, Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \dots \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1}, Z)_1^*.$$

Let $S = \bigcup_{X,Y,Z \in \mathcal{C}} \operatorname{im}(\gamma^*_{XYZ})$. Since

$$R_2 = \bigoplus_{X,Y,Z \in \mathcal{C}} \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*$$

we have $S \subseteq R_2$. Let I be the ideal of R generated by S. Then $I = \bigoplus_{i \ge 0} I_i$ is a graded ideal of R, where $I_i = I \cap R_i$ for all $i \ge 0$; in particular, $I_0 = I_1 = 0$. So $1_X I 1_Z = \bigoplus_{i \ge 0} 1_X I_i 1_Z$ is a graded ideal of $1_X R 1_Z$, and hence admits a graded quotient k-algebra $1_X R 1_Z / 1_X I 1_Z = \bigoplus_{i \ge 0} (1_X R_i 1_Z / 1_X I_i 1_Z)$.

The quadratic dual of \underline{C} is the k-linear category $\underline{C}^!$ having the same objects as \underline{C} and morphisms defined by

$$\underline{\mathcal{C}}^!(Z,X) = \mathbf{1}_X R \mathbf{1}_Z / \mathbf{1}_X I \mathbf{1}_Z = \bigoplus_{i \ge 0} (\mathbf{1}_X R_i \mathbf{1}_Z / \mathbf{1}_X I_i \mathbf{1}_Z)$$

for any $X, Z \in \mathcal{C}$. For any $X, Y, Z \in \mathcal{C}$, the composition map $\underline{\mathcal{C}}^!(Y, X) \otimes_k \underline{\mathcal{C}}^!(Z, Y) \to \underline{\mathcal{C}}^!(Z, X)$ is

defined by

$$(1_X r 1_Y + 1_X I 1_Y)(1_Y s 1_Z + 1_Y I 1_Z) = 1_X r s 1_Z + 1_X I 1_Z.$$

To see this is well-defined, suppose

$$1_X r 1_Y + 1_X I 1_Y = 1_X r' 1_Y + 1_X I 1_Y$$
 and $1_Y s 1_Z + 1_Y I 1_Z = 1_Y s' 1_Z + 1_Y I 1_Z$.

Then

$$1_X r 1_Y - 1_X r' 1_Y = 1_X (r - r') 1_Y \in 1_X I 1_Y$$
 and $1_Y s 1_Z - 1_Y s' 1_Z = 1_Y (s - s') 1_Z \in 1_Y I 1_Z$

implies $r - r', s - s' \in I$. So

$$1_X r s 1_Z - 1_X r' s' 1_Z = 1_X r s 1_Z - 1_X r s' 1_Z + 1_X r s' 1_Z - 1_X s s' 1_Z$$
$$= 1_X r (s - s') 1_Z + 1_X (r - r') s' 1_Z$$

belongs to $1_X I 1_Z$, and hence $1_X r s 1_Z + 1_X I 1_Z = 1_X r' s' 1_Z + 1_X I 1_Z$. For any $X \in \mathcal{C}$, the identity morphism in $\underline{\mathcal{C}}^!(X, X)$ is $1_X + 1_X I 1_X$.

Proposition 5.2.5. $\underline{C}^!$ is a directed graded k-linear category. *Proof.* Let $X, Z \in \mathcal{C}$. Recall that

$$\underline{\mathcal{C}}^!(Z,X) = \mathbf{1}_X R \mathbf{1}_Z / \mathbf{1}_X I \mathbf{1}_Z = \bigoplus_{i \ge 0} (\mathbf{1}_X R_i \mathbf{1}_Z / \mathbf{1}_X I_i \mathbf{1}_Z).$$

Put $\underline{\mathcal{C}}^!(Z,X)_i = 1_X R_i 1_Z / 1_X I_i 1_Z$ for each $i \ge 0$. Then

$$\underline{\mathcal{C}}^!(Z,X) = \bigoplus_{i \ge 0} \underline{\mathcal{C}}^!(Z,X)_i$$

is a graded k-vector space. Notice that

$$\underline{\mathcal{C}}^!(Z,X)_0 = \begin{cases} \underline{\mathcal{C}}(X,X) & \text{if } X = Z\\ 0 & \text{if } X \neq Z, \end{cases}$$

$$\underline{\mathcal{C}}^{!}(Z,X)_{1} = \underline{\mathcal{C}}(X,Z)_{1}^{*},$$
$$\underline{\mathcal{C}}^{!}(Z,X)_{2} = \bigoplus_{Y \in \mathcal{C}} (\underline{\mathcal{C}}(X,Y)_{1}^{*} \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_{1}^{*}/\operatorname{im}(\gamma_{XYZ}^{*}))$$

and for i > 2,

$$\underline{\mathcal{C}}^{!}(Z,X)_{i} = \bigoplus_{Y_{1},\ldots,Y_{i-1}\in\mathcal{C}} \left((\underline{\mathcal{C}}(X,Y_{1})_{1}^{*} \otimes_{\underline{\mathcal{C}}(Y_{1},Y_{1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_{1}^{*}) / W_{i} \right)$$

with

$$W_{i} = \sum_{j=1}^{i-1} \underline{\mathcal{C}}(X, Y_{1})_{1}^{*} \otimes_{\underline{\mathcal{C}}(Y_{1}, Y_{1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{j-1}, Y_{j-1})} \operatorname{im}(\gamma_{Y_{j-1}Y_{j}Y_{j+1}}^{*}) \otimes_{\underline{\mathcal{C}}(Y_{j+1}, Y_{j+1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1}, Z)_{1}^{*}$$

in which $X = Y_0$ and $Z = Y_i$. For any $X, Y, Z \in \mathcal{C}$, the composite of a degree *i* morphism $1_X r_i 1_Y + 1_X I_i 1_Y$ in $\underline{\mathcal{C}}^!(Y, X)_i$ and a degree *j* morphism $1_Y r_j 1_Z + 1_Y I_j 1_Z$ in $\underline{\mathcal{C}}^!(Z, Y)_j$ is the degree i+j morphism $1_X r_i r_j 1_Z + 1_X I_{i+j} 1_Z$ in $\underline{\mathcal{C}}^!(Z, X)_{i+j}$. Hence, the composition map $\underline{\mathcal{C}}^!(Y, X) \otimes_k \underline{\mathcal{C}}^!(Z, Y) \to \underline{\mathcal{C}}^!(Z, X)$ is a morphism in *k*-gMod. It follows that $\underline{\mathcal{C}}^!$ is a graded *k*-linear category.

Since \underline{C} is directed, $\operatorname{Ob}(\underline{C})$ is partially ordered by \subseteq such that whenever $\underline{C}(X,Y) \neq 0$, we have $X \subseteq Y$. We partially order $\operatorname{Ob}(\underline{C}^!)$ by \supseteq , and claim that whenever $\underline{C}^!(Z,X) \neq 0$, we have $Z \supseteq X$. To show this, let $X, Z \in \mathcal{C}$ and suppose $\underline{C}^!(Z,X) \neq 0$. Then we must have a nonzero morphism $u \in \underline{C}^!(Z,X)_i$ for some $i \ge 0$. If i = 0, then $\underline{C}^!(Z,X)_0 \neq 0$ forces X = Z, so $Z \supseteq X$. If i = 1, consider $\underline{C}^!(Z,X)_1 = \underline{C}(X,Z)_1^*$. Since $\underline{C}(X,Z)_1$ is finite dimensional as a k-vector space by condition (A1), $\underline{C}(X,Z)_1^* \cong \underline{C}(X,Z)_1$ as k-vector spaces. Hence, $\underline{C}(X,Z) \neq 0$ implies $X \subseteq Z$, so $Z \supseteq X$. If $i \ge 2$, then there exist $Y_1, ..., Y_{i-1} \in \mathcal{C}$ and nonzero morphisms $u_1 \in \underline{C}(X,Y_1)_1^* \cong \underline{C}(X,Y_1)_1, ..., u_i \in \underline{C}(Y_{i-1},Z)_1^* \cong \underline{C}(Y_{i-1},Z)_1$. So the composite $u_i \cdots u_1 \in \underline{C}(X,Z)_i$ is nonzero. Hence, $\underline{C}(X,Z) \neq 0$ implies $X \subseteq Z$, so $Z \supseteq X$. Thus, $\underline{C}^!$ is directed.

It remains to verify conditions (A1)-(A7) for $\underline{C}^!$.

(A1) Let $X, Z \in \mathcal{C}$. We must show that $\underline{\mathcal{C}}^!(Z, X)$ is finite dimensional as a k-vector space. Define the graded k-linear category $\underline{\mathcal{C}}^*$ by setting $\operatorname{Ob}(\underline{\mathcal{C}}^*) = \operatorname{Ob}(\underline{\mathcal{C}})$ and $\underline{\mathcal{C}}^*(Y, W) = 1_W R 1_Y$ for any $W, Y \in \mathcal{C}$, where

$$R = \underline{\mathcal{C}}_0 \oplus \underline{\mathcal{C}}_1^* \oplus (\underline{\mathcal{C}}_1^* \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1^*) \oplus \cdots$$

It suffices to show that $\underline{\mathcal{C}}^*(Z, X)$ is finite dimensional. $\underline{\mathcal{C}}^*$ is directed by \supseteq in the same way as $\underline{\mathcal{C}}^!$.

Let $\underline{\mathcal{D}}$ be the convex hull of $\{X, Z\}$ in $\underline{\mathcal{C}}^*$. Then $\underline{\mathcal{D}}(Z, X) = \bigoplus_{i \ge 0} \underline{\mathcal{D}}(Z, X)_i$, where

$$\underline{\mathcal{D}}(Z,X)_0 = \begin{cases} \underline{\mathcal{C}}(X,X) & \text{if } X = Z\\ 0 & \text{if } X \neq Z, \end{cases}$$

$$\underline{\mathcal{D}}(Z,X)_1 = \underline{\mathcal{C}}(X,Z)_1^*,$$

and for $i \geq 2$,

$$\underline{\mathcal{D}}(Z,X)_i = \bigoplus_{Y_1,\dots,Y_{i-1}\in\underline{\mathcal{D}}} ((\underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^*).$$

For any finite set $S \subseteq \operatorname{Ob}(\mathcal{C})$, the convex hull of S in $\underline{\mathcal{C}}^*$ is the same as the convex hull of S in $\underline{\mathcal{C}}$. By condition (A7) for $\underline{\mathcal{C}}$, $\underline{\mathcal{D}}$ has only finitely many objects. Hence, each $\underline{\mathcal{D}}(Z,X)_i$ is finite dimensional and $\underline{\mathcal{D}}(Z,X)_i = 0$ for all $i > |\operatorname{Ob}(\underline{\mathcal{D}})| + 1$. Thus, $\underline{\mathcal{C}}^*(Z,X) = \underline{\mathcal{D}}(Z,X)$ is finite dimensional.

(A2) Let $X \in \mathcal{C}$. By condition (A4) for $\underline{\mathcal{C}}^!$ below, $\underline{\mathcal{C}}^!(X,X)_i = 0$ for all i > 0. Thus, $\underline{\mathcal{C}}^!(X,X) = \underline{\mathcal{C}}^!(X,X)_0 = \underline{\mathcal{C}}(X,X)$. Hence, $\underline{\mathcal{C}}^!(X,X)$ is semisimple as a k-algebra by condition (A2) for $\underline{\mathcal{C}}$.

(A3) $\underline{\mathcal{C}}^!(Z,X)_0 = 0$ if $X \neq Z$ by definition.

(A4) Let $X \in \mathcal{C}$. We will show that $\underline{\mathcal{C}}^{!}(X,X)_{i} = 0$ for all i > 0. For i = 1, we have $\underline{\mathcal{C}}^{!}(X,X)_{1} = \underline{\mathcal{C}}(X,X)_{1}^{*} \cong \underline{\mathcal{C}}(X,X)_{1}$ as k-vector spaces. Hence, $\underline{\mathcal{C}}^{!}(X,X)_{1} = 0$ by condition (A4) for $\underline{\mathcal{C}}$. Next suppose $\underline{\mathcal{C}}^{!}(X,X)_{i} \neq 0$ for some $i \geq 2$, for sake of contradiction. Then there exist $Y_{1}, ..., Y_{i-1} \in \mathcal{C}$ such that $\underline{\mathcal{C}}(X,Y_{1})_{1}^{*} \cong \underline{\mathcal{C}}(X,Y_{1})_{1}, ..., \underline{\mathcal{C}}(Y_{i-1},X)_{1}^{*} \cong \underline{\mathcal{C}}(Y_{i-1},X)_{1}$ are nonzero. Since $\underline{\mathcal{C}}$ is directed, this implies $X \subseteq Y_{1} \subseteq \cdots \subseteq Y_{i-1} \subseteq X$, which gives $X = Y_{1} = \cdots = Y_{i-1}$. But then $\underline{\mathcal{C}}(X,Y_{1})_{1}^{*}, ..., \underline{\mathcal{C}}(Y_{i-1},X)_{1}^{*}$ are all isomorphic to $\underline{\mathcal{C}}(X,X)_{1}$ as k-vector spaces. Hence, $\underline{\mathcal{C}}(X,Y_{1})_{1}^{*}, ..., \underline{\mathcal{C}}(Y_{i-1},X)_{1}^{*} = 0$ by condition (A4) for $\underline{\mathcal{C}}$. This is a contradiction, so we must have $\underline{\mathcal{C}}^{!}(X,X)_{i} = 0$ for all $i \geq 2$. Therefore, $\underline{\mathcal{C}}^{!}(X,X)_{i} = 0$ for every $X \in \mathcal{C}$ and i > 0.

(A5) Let $X \in \mathcal{C}$. By condition (A5) for $\underline{\mathcal{C}}$, there are only finitely many $Y \in \mathcal{C}$ such that $\underline{\mathcal{C}}^!(Y,X)_1 \cong \underline{\mathcal{C}}(X,Y)_1 \neq 0$ or $\underline{\mathcal{C}}^!(X,Y)_1 \cong \underline{\mathcal{C}}(Y,X)_1 \neq 0$.

(A6) We must show that $\underline{\mathcal{C}}_{1}^{!} \cdot \underline{\mathcal{C}}_{i}^{!} = \underline{\mathcal{C}}_{i+1}^{!}$ for every $i \geq 0$, where $\underline{\mathcal{C}}_{i}^{!} = \bigoplus_{X,Z \in \mathcal{C}} \underline{\mathcal{C}}^{!}(Z,X)_{i}$ for each $i \geq 0$. Note that $\underline{\mathcal{C}}_{1}^{!} = \bigoplus_{X,Z \in \mathcal{C}} \underline{\mathcal{C}}(X,Z)_{1}^{*}$ by definition, and $\underline{\mathcal{C}}_{0}^{!} = \bigoplus_{Z \in \mathcal{C}} \underline{\mathcal{C}}(Z,Z)_{0}$ by condition (A3) for $\underline{\mathcal{C}}_{1}^{!}$. Let $X, Z \in \mathcal{C}$. If $f^{*} \in \underline{\mathcal{C}}^{!}(Z,X)_{1} = \underline{\mathcal{C}}(X,Z)_{1}^{*}$, then $1_{Z} \in \underline{\mathcal{C}}^{!}(Z,Z)_{0} = \underline{\mathcal{C}}(Z,Z)$ and $f^{*} = f^{*} \cdot 1_{Z}$. It follows that $\underline{\mathcal{C}}_{1}^{!} \cdot \underline{\mathcal{C}}_{0}^{!} = \underline{\mathcal{C}}_{1}^{!}$. If $f_{1}^{*} \otimes \cdots \otimes f_{i+1}^{*} + W_{i+1}$ belongs to a direct summand of $\underline{\mathcal{C}}^{!}(Z,X)_{i+1}$ corresponding to some $Y_{1}, \dots, Y_{i} \in \mathcal{C}$, $i \geq 1$, then $f_{1}^{*} \otimes \cdots \otimes f_{i}^{*} + W_{i}$ is in the direct summand of

 $\underline{\mathcal{C}}^{!}(Z,X)_{i}$ corresponding to $Y_{1},...,Y_{i-1} \in \mathcal{C}$ and $f_{i+1}^{*} \in \underline{\mathcal{C}}(Y_{i},Z)_{1}^{*}$. So

$$f_1^* \otimes \cdots \otimes f_{i+1}^* + W_{i+1} = (f_1^* \otimes \cdots \otimes f_i^* + W_i) \cdot f_{i+1}^*,$$

and it follows that $\underline{C}_{i+1}^! = \underline{C}_1^! \cdot \underline{C}_i^!$ for $i \ge 1$.

(A7) Since $\operatorname{Ob}(\underline{\mathcal{C}}^!) = \operatorname{Ob}(\underline{\mathcal{C}})$ and $Z \supseteq Y \supseteq X$ if and only if $X \subseteq Y \subseteq Z$, the convex hull of any finite set $S \subseteq \operatorname{Ob}(\underline{\mathcal{C}}^!)$ contains only finitely many objects, by condition (A7) for $\underline{\mathcal{C}}$.

Therefore, $\underline{\mathcal{C}}^!$ is a directed graded k-linear category.

Remark 5.2.6. Let $A^!$ be the graded k-algebra $\bigoplus_{i\geq 0} \underline{C}_i^!$, where $\underline{C}_i^! = \bigoplus_{X,Z\in\mathcal{C}} \underline{C}^!(Z,X)_i$ for each $i\geq 0$. Because $\underline{C}_0^! = \bigoplus_{X\in\mathcal{C}} \underline{C}(X,X)$ and $\underline{C}_1^! = \bigoplus_{X,Z\in\mathcal{C}} \underline{C}(X,Z)_1^*$, $\underline{C}_1^!$ is a $(\underline{C}_0^!, \underline{C}_0^!)$ -bimodule. So we can form the graded k-algebra

$$T^{!} = \underline{\mathcal{C}}_{0}^{!} \oplus \underline{\mathcal{C}}_{1}^{!} \oplus (\underline{\mathcal{C}}_{1}^{!} \otimes_{\mathcal{C}_{0}^{!}} \underline{\mathcal{C}}_{1}^{!}) \oplus \cdots$$

and let $\gamma^{!} : T^{!} \to A^{!}$ be the graded k-algebra homomorphism induced by composition of morphisms in $\underline{C}^{!}$. Then $\gamma^{!}$ is surjective by condition (A6) for $\underline{C}^{!}$, and $K^{!} = \ker(\gamma^{!})$ is generated by its degree 2 component $K_{2}^{!} = K^{!} \cap (\underline{C}_{1}^{!} \otimes_{\underline{C}_{0}^{!}} \underline{C}_{1}^{!})$ by construction of morphisms in $\underline{C}^{!}$. Thus, $\underline{C}^{!}$ is quadratic.

5.3 The category \underline{C}^{tw} .

Let $n \in \mathbb{N}$, t be a partition type, and A be a finite abelian group. Let C be the skeletal subcategory of $\mathcal{FI}_{t,A}^n$ on objects $X = ([x_1], ..., [x_n])$. Let $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} , where k is a field of characteristic 0. Then C is an EI category and $\underline{\mathcal{C}}$ is a directed graded k-linear category, by Proposition 3.2.3.

Definition 5.3.1. The *twist* of \underline{C} is the *k*-linear category \underline{C}^{tw} having the same objects as \underline{C} , and morphisms defined by

$$\underline{\mathcal{C}}^{tw}(X,Y) = \bigoplus_{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y)} k(f,P_f,\alpha_f) \otimes_k \det(P_f)$$

for any $X, Y \in \mathcal{C}$, where $\det(P_f) = \bigwedge^{|P_f|} k P_f$. The composite of two morphisms $(g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m S_j$

in $\underline{\mathcal{C}}^{tw}(Y,Z)$ and $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^l R_j$ in $\underline{\mathcal{C}}^{tw}(X,Y)$ is defined to be

$$(gf, P_{gf}, \alpha_{gf}) \otimes g(R_1) \wedge \cdots \wedge g(R_l) \wedge S_1 \wedge \cdots \wedge S_m$$

in $\underline{\mathcal{C}}^{tw}(X, Z)$. Composition in $\underline{\mathcal{C}}^{tw}$ is associative because if

$$(h, P_h, \alpha_h) \otimes \bigwedge_{j=1}^p T_j \in \underline{\mathcal{C}}^{tw}(Y, Z), \ (g, P_g, \alpha_g) \otimes \bigwedge_{j=1}^m S_j \in \underline{\mathcal{C}}^{tw}(X, Y), \ (f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^l R_j \in \underline{\mathcal{C}}^{tw}(W, X),$$

then

$$((h, P_h, \alpha_h) \otimes \bigwedge_{j=1}^p T_j)((gf, P_{gf}, \alpha_{gf}) \otimes \bigwedge_{j=1}^l g(R_j) \wedge \bigwedge_{j=1}^m S_j)$$

 and

$$((hg, P_{hg}, \alpha_{hg}) \otimes \bigwedge_{j=1}^{m} h(S_j) \wedge \bigwedge_{j=1}^{p} T_j)((f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^{l} R_j)$$

both equal

$$(hgf, P_{hgf}, \alpha_{hgf}) \otimes \bigwedge_{j=1}^{l} hg(R_j) \wedge \bigwedge_{j=1}^{m} h(S_j) \wedge \bigwedge_{j=1}^{p} T_j$$

The identity morphism in $\underline{\mathcal{C}}^{tw}(X, X)$ is $(1_X, \emptyset, 0) \otimes 1$, where $0: X \to A$ is the zero map.

Proposition 5.3.2. \underline{C}^{tw} is a directed graded k-linear category.

Proof. For any $X, Y \in \mathcal{C}$, define the degree $i \ge 0$ part of $\underline{\mathcal{C}}^{tw}(X, Y)$ by

$$\underline{\mathcal{C}}^{tw}(X,Y)_i = \bigoplus_{\substack{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y)\\|P_f|=i}} k(f,P_f,\alpha_f) \otimes_k \det(P_f).$$

Then $\underline{\mathcal{C}}^{tw}(X,Y) = \bigoplus_{i \ge 0} \underline{\mathcal{C}}^{tw}(X,Y)_i$ is a graded k-vector space, such that $\underline{\mathcal{C}}^{tw}(Y,Z)_j \otimes_k \underline{\mathcal{C}}^{tw}(X,Y)_i \to \underline{\mathcal{C}}^{tw}(X,Z)_{i+j}$ for every $i,j \ge 0$. It follows that $\underline{\mathcal{C}}^{tw}$ is a graded k-linear category. Also, $\underline{\mathcal{C}}^{tw}$ is directed by the same partial order \subseteq on $\underline{\mathcal{C}}$. We now verify conditions (A1)-(A7) for $\underline{\mathcal{C}}^{tw}$ below.

(A1) Let $X, Y \in \mathcal{C}$. Since det (P_f) is 1-dimensional for any $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y), \underline{\mathcal{C}}^{tw}(X, Y) \cong \underline{\mathcal{C}}(X, Y)$ as k-vector spaces. By condition (A1) for $\underline{\mathcal{C}}, \underline{\mathcal{C}}^{tw}(X, Y)$ is finite dimensional as a k-vector space.

(A2) Let $X \in \mathcal{C}$. Then

$$\underline{\mathcal{C}}^{tw}(X,X) = \bigoplus_{(f,\emptyset,\alpha_f)\in\mathcal{C}(X,X)} k(f,\emptyset,\alpha_f) \otimes_k k$$

is isomorphic to $\underline{\mathcal{C}}(X, X)$ as a k-algebra. So $\underline{\mathcal{C}}^{tw}(X, X)$ is semisimple as a k-algebra for any $X \in \mathcal{C}$, by condition (A2) for $\underline{\mathcal{C}}$.

(A3) If $X \neq Y$, then there is no $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ for which $|P_f| = 0$. Hence, $\underline{\mathcal{C}}^{tw}(X, Y)_0 = 0$ if $X \neq Y$.

(A4) If $X \in \mathcal{C}$ and i > 0, then there is no $(f, P_f, \alpha_f) \in \mathcal{C}(X, X)$ for which $|P_f| = i$. Thus, $\underline{\mathcal{C}}^{tw}(X, X)_i = 0$ for every $X \in \mathcal{C}$ and i > 0.

(A5) For any $X, Y \in \mathcal{C}$,

$$\underline{\mathcal{C}}^{tw}(X,Y)_1 = \bigoplus_{\substack{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y)\\|P_f|=1}} k(f,P_f,\alpha_f) \otimes_k kP_f$$

is isomorphic to $\underline{\mathcal{C}}(X,Y)_1$ as a k-vector space. So for any $X \in \mathcal{C}$, there are only finitely many $Y \in \mathcal{C}$ such that $\underline{\mathcal{C}}^{tw}(X,Y)_1 \neq 0$ or $\underline{\mathcal{C}}^{tw}(Y,X)_1 \neq 0$, by condition (A5) for $\underline{\mathcal{C}}$.

(A6) Let $X, Y \in \mathcal{C}$. If $(f, P_f, \alpha_f) \otimes R \in \underline{\mathcal{C}}^{tw}(X, Y)_1$ is a morphism of degree 1, where $P_f = \{R\}$, then the identity morphism $(1_X, \emptyset, 0) \otimes 1 \in \underline{\mathcal{C}}^{tw}(X, X)_0$ is a morphism of degree 0, and

$$(f, P_f, \alpha_f) \otimes R = ((f, P_f, \alpha_f) \otimes R) \circ ((1_X, \emptyset, 0) \otimes 1).$$

It follows that $\underline{C}_1 \cdot \underline{C}_0 = \underline{C}_1$. Next, let $(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^i T_j \in \underline{C}^{tw}(X, Y)_i$ be a morphism of degree i > 1. By condition (A6) for \underline{C} , $(f, P_f, \alpha_f) = (g', P_{g'}, \alpha_{g'})(f', P_{f'}, \alpha_{f'})$ for some morphisms $(f', P_{f'}, \alpha_{f'}) \in \mathcal{C}(X, Y'), (g', P_{g'}, \alpha_{g'}) \in \mathcal{C}(Y', Y)$, of degrees i-1 and 1, respectively, for some $Y' \in \mathcal{C}$. Let $P_{f'} = \{R_1, ..., R_{i-1}\}$ and $P_{g'} = \{S\}$. Then $\{T_1, ..., T_i\} = P_f = P_{g'f'} = \{g'(R_1), ..., g'(R_{i-1}), S\}$. So $(f', P_{f'}, \alpha_{f'}) \otimes \bigwedge_{j=1}^{i-1} R_j \in \underline{C}^{tw}(X, Y')_{i-1}$ and $(g', P_{g'}, \alpha_{g'}) \otimes S \in \underline{C}^{tw}(X, Y')_1$ with

$$((g', P_{g'}, \alpha_{g'}) \otimes S) \circ ((f', P_{f'}, \alpha_{f'}) \otimes \bigwedge_{j=1}^{i-1} R_j) = (f, P_f, \alpha_f) \otimes g'(R_1) \wedge \ldots \wedge g'(R_{i-1}) \wedge S,$$

which equals $\pm(f, P_f, \alpha_f) \otimes \bigwedge_{j=1}^l T_j$. It follows that $\underline{\mathcal{C}}_1 \cdot \underline{\mathcal{C}}_i = \underline{\mathcal{C}}_{i+1}$ for every $i \ge 0$.

(A7) The convex hull of any finite set $S \subseteq \operatorname{Ob}(\underline{\mathcal{C}}^{tw})$ contains only finitely many objects, by condition (A7) for $\underline{\mathcal{C}}$.

Therefore, $\underline{\mathcal{C}}^{tw}$ is a directed graded k-linear category.

Note 5.3.3. For any $X \in \mathcal{C}$, we have $\underline{\mathcal{C}}(X,X) = \underline{\mathcal{C}}(X,X)_0$ and $\underline{\mathcal{C}}^{tw}(X,X) = \underline{\mathcal{C}}^{tw}(X,X)_0$ by condition (A4) for $\underline{\mathcal{C}}$ and $\underline{\mathcal{C}}^{tw}$, respectively. Let us identify $\underline{\mathcal{C}}(X,X)_0 \cong \underline{\mathcal{C}}^{tw}(X,X)_0$ as k-algebras under the correspondence $(f, \emptyset, \alpha_f) \leftrightarrow (f, \emptyset, \alpha_f) \otimes 1$. Since $\underline{\mathcal{C}}_0 = \bigoplus_{X \in \mathcal{C}} \underline{\mathcal{C}}(X,X)_0$ and $\underline{\mathcal{C}}_0^{tw} = \bigoplus_{X \in \mathcal{C}} \underline{\mathcal{C}}^{tw}(X,X)_0$ by condition (A3) for $\underline{\mathcal{C}}$ and $\underline{\mathcal{C}}^{tw}$, respectively, we shall identify $\underline{\mathcal{C}}_0^{tw} \cong \underline{\mathcal{C}}_0$ as kalgebras. Then for any $X, Y \in \mathcal{C}, \underline{\mathcal{C}}^{tw}(X,Y)_1$ is $(\underline{\mathcal{C}}(Y,Y), \underline{\mathcal{C}}(X,X))$ -bimodule with left action given by k-linear extension of

$$(\tau, \emptyset, \alpha_{\tau}) \cdot ((f, P_f, \alpha_f) \otimes R) = (\tau f, P_{\tau f}, \alpha_{\tau f}) \otimes \tau(R)$$

for $(\tau, \emptyset, \alpha_{\tau}) \in \mathcal{C}(Y, Y)$, and right action given by k-linear extension of

$$((f, P_f, \alpha_f) \otimes R) \cdot (\sigma, \emptyset, \alpha_{\sigma}) = (f\sigma, P_{f\sigma}, \alpha_{f\sigma}) \otimes R$$

for $(\sigma, \emptyset, \alpha_{\sigma}) \in \mathcal{C}(X, X)$, where $P_f = \{R\}$.

Notation 5.3.4. Given a group G, let X be a right G-set and Y be a left G-set. Define an equivalence relation ~ on $X \times Y$ be declaring that $(x, y) \sim (x', y')$ if and only if there exists $g \in G$ such that x = x'g and gy = y'. Let $X \times_G Y = X \times Y/ \sim$ denote the set of equivalence classes. For any $X, Y \in C$, let $\mathcal{C}(X, Y)_1$ be the set of morphisms in $\mathcal{C}(X, Y)$ of degree 1. Then for any $X, Y, Z \in C$, $\mathcal{C}(Y, Z)_1$ is a right $\mathcal{C}(Y, Y)$ -set and $\mathcal{C}(X, Y)_1$ is a left $\mathcal{C}(Y, Y)$ -set, so we can form the set $\mathcal{C}(Y, Z)_1 \times_{\mathcal{C}(Y,Y)} \mathcal{C}(X,Y)_1$.

Proposition 5.3.5. \underline{C}^{tw} is quadratic.

Proof. Let $A^{tw} = \bigoplus_{i \ge 0} \underline{C}_i^{tw}$, where $\underline{C}_i^{tw} = \bigoplus_{X,Y \in \mathcal{C}} \underline{C}^{tw}(X,Y)_i$. Then A^{tw} is a graded k-algebra with multiplication given by composition of morphisms in \underline{C}^{tw} . Since \underline{C}_1^{tw} is a $(\underline{C}_0, \underline{C}_0)$ -bimodule, we can form the graded k-algebra

$$T^{tw} = \underline{\mathcal{C}}_0^{tw} \oplus \underline{\mathcal{C}}_1^{tw} \oplus (\underline{\mathcal{C}}_1^{tw} \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1^{tw}) \oplus \cdots$$

Let $\gamma^{tw}: T^{tw} \to A^{tw}$ be the graded k-algebra homomorphism induced by composition of morphisms in $\underline{\mathcal{C}}^{tw}$. It is surjective by condition (A6) for $\underline{\mathcal{C}}^{tw}$. Let $K^{tw} = \ker(\gamma^{tw})$, which is a graded ideal of T^{tw} . We must show that K^{tw} is generated by its degree 2 component $K_2^{tw} = \ker(\gamma^{tw}) \cap (\underline{\mathcal{C}}_1^{tw} \otimes_{\underline{\mathcal{C}}_0} \underline{\mathcal{C}}_1^{tw})$.

Let us abbreviate morphisms (f, P_f, α_f) in C simply by f. Also, for any morphism f, pick an ordering of the elements of P_f and write \wedge_f for the basis element of det (P_f) .

We define a graded k-algebra $\tilde{T}^{tw} = \bigoplus_{i>0} \tilde{T}^{tw}_i$ as follows. Let $\tilde{T}^{tw}_0 = \underline{\mathcal{C}}_0$ and for $i \ge 1$, let

$$\tilde{T}_i^{tw} = \bigoplus_{X, Y_1, \dots, Y_{i-1}, Z \in \mathcal{C}} \bigoplus_{(f_i, \dots, f_1)} k(f_i, \dots, f_1) \otimes_k \det(P_{f_i \cdots f_1}),$$

where the inner direct sum is over all

$$(f_i, ..., f_1) \in \mathcal{C}(Y_{i-1}, Z)_1 \times_{\mathcal{C}(Y_{i-1}, Y_{i-1})} \cdots \times_{\mathcal{C}(Y_1, Y_1)} \mathcal{C}(X, Y_1)_1.$$

The product of two basis elements

$$(g_j, ..., g_1) \otimes \wedge_{g_j \cdots g_1} \in \tilde{T}_j^{tw}$$
 and $(f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1} \in \tilde{T}_i^{tw}$

is defined to be

$$(g_j, ..., g_1, f_i, ..., f_1) \otimes \wedge_{g_j \cdots g_1 f_i \cdots f_1} \in \tilde{T}_{i+j}^{tw}.$$

Let $i \geq 2$ and $X, Y_1, ..., Y_{i-1}, Z \in \mathcal{C}$. For any

$$(f_i, ..., f_1) \in \mathcal{C}(Y_{i-1}, Z)_1 \times_{\mathcal{C}(Y_{i-1}, Y_{i-1})} \cdots \times_{\mathcal{C}(Y_1, Y_1)} \mathcal{C}(X, Y_1)_1,$$

choose the ordering $(f_i \cdots f_2(R_1), \dots, R_i)$ of the elements of $P_{f_i \cdots f_1}$, where $P_{f_l} = \{R_l\}$ for each $1 \le l \le i$.

Define $\tilde{\gamma}^{tw}: \tilde{T}^{tw} \to A^{tw}$ in degree $i \ge 1$ by k-linear extension of the assignment

$$(f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1} \mapsto f_i \cdots f_1 \otimes \wedge_{f_i \cdots f_1},$$

where $\wedge_{f_i \cdots f_1} = f_i \cdots f_2(R_1) \wedge \cdots \wedge R_i$. To see that $\tilde{\gamma}^{tw}$ is a k-algebra homomorphism, take basis elements

$$(g_j, ..., g_1) \otimes \wedge_{g_j \cdots g_1} \in \tilde{T}_j^{tw}$$
 and $(f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1} \in \tilde{T}_i^{tw}$.

Then

$$\tilde{\gamma}^{tw}(((g_j, ..., g_1) \otimes \wedge_{g_j \cdots g_1})((f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1})) = \tilde{\gamma}^{tw}((g_j, ..., g_1, f_i, ..., f_1) \otimes \wedge_{g_j \cdots g_1 f_i \cdots f_1})$$

$$= g_j \cdots g_1 f_i \cdots f_1 \otimes \wedge_{g_j \cdots g_1 f_i \cdots f_1}$$

$$= ((g_j \cdots g_1) \otimes \wedge_{g_j \cdots g_1})((f_i \cdots f_1) \otimes \wedge_{f_i \cdots f_1})$$

$$= \tilde{\gamma}^{tw}((g_j, ..., g_1) \otimes \wedge_{g_j \cdots g_1})\tilde{\gamma}^{tw}((f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1})$$

where

$$\wedge_{g_j \cdots g_1 f_i \cdots f_1} = g_j \cdots g_1 f_i \cdots f_2(R_1) \wedge \cdots \wedge g_j \cdots g_1(R_i) \wedge g_j \cdots g_2(S_1) \wedge \cdots \wedge S_j$$

for $P_{f_l} = \{R_l\} \ (1 \le l \le i)$ and $P_{g_p} = \{S_p\} \ (1 \le p \le j).$

Recall that $\gamma: T \to A$ is a graded k-algebra homomorphism given by composition of morphisms in \underline{C} , where $A = \bigoplus_{i \ge 0} \underline{C}_i$ and $T = \underline{C}_0 \oplus \underline{C}_1 \oplus (\underline{C}_1 \otimes_{\underline{C}_0} \underline{C}_1) \oplus \cdots$. Note that $\tilde{T}^{tw} \cong T$ as graded k-algebras by k-linear extension of the correspondence

$$(f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1} \leftrightarrow f_i \otimes \cdots \otimes f_1$$

in degree $i \geq 1$.

For any $i \ge 2$, an arbitrary element in a direct summand of \tilde{T}_i^{tw} corresponding to $X, Y_1, ..., Y_{i-1}, Z \in \mathcal{C}$ is of the form

$$\tilde{x} = \sum_{j} c_{i_j,\dots,1_j}(f_{i_j},\dots,f_{1_j}) \otimes \wedge_{f_{i_j}\cdots f_{1_j}}.$$

Then

$$\tilde{\gamma}^{tw}(\tilde{x}) = \sum_{j} c_{i_j,\dots,1_j} f_{i_j} \cdots f_{1_j} \otimes \wedge_{f_{i_j} \cdots f_{1_j}}$$

belongs to the direct summand of A_i^{tw} corresponding to $X, Z \in \mathcal{C}$. Let

$$x = \sum_{j} c_{i_j, \dots, 1_j} f_{i_j} \otimes \dots \otimes f_{1_j}$$

be the image of \tilde{x} under the isomorphism $\tilde{T}^{tw} \cong T$. Then

$$\gamma(x) = \sum_{j} c_{i_j,\dots,1_j} f_{i_j} \cdots f_{1_j}$$

belongs to the direct summand of A_i corresponding to $X, Z \in \mathcal{C}$. Group together like terms in both of the sums $\tilde{\gamma}^{tw}(\tilde{x})$ and $\gamma(x)$, i.e. those for which the composite $f_{i_j} \cdots f_{1_j}$ is the same element in $\mathcal{C}(X, Z)$. If $\tilde{x} \in \ker(\tilde{\gamma}^{tw})$, then

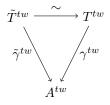
$$\tilde{\gamma}^{tw}(\tilde{x}) = \sum_{j} c_{i_j,\dots,1_j} f_{i_j} \cdots f_{1_j} \otimes \wedge_{f_{i_j} \cdots f_{1_j}} = 0$$

implies that the sum of the corresponding scalars is 0 in each group, and hence $x \in \ker(\gamma)$. Since \underline{C} is quadratic by Remark 5.2.2, x is generated by the degree 2 component of $\ker(\gamma)$. Because $\tilde{T}^{tw} \cong T$ as graded k-algebras, \tilde{x} is generated by the degree 2 component of $\ker(\tilde{\gamma}^{tw})$. It follows that $\ker(\tilde{\gamma}^{tw})$ by its degree 2 component.

Observe that $\tilde{T}^{tw} \cong T^{tw}$ as graded k-algebras by k-linear extension of the correspondence

$$(f_i, ..., f_1) \otimes \wedge_{f_i \cdots f_1} \leftrightarrow (f_i \otimes R_i) \otimes \cdots \otimes (f_1 \otimes R_1)$$

in degree $i \ge 1$, where $P_{f_l} = \{R_l\}$ for each $1 \le l \le i$. Hence, we get a commutative diagram



because

$$\tilde{\gamma}^{tw}((f_i,...,f_1)\otimes\wedge_{f_i\cdots f_1})=f_i\cdots f_1\otimes\wedge_{f_i\cdots f_1}=\gamma^{tw}((f_i\otimes R_i)\otimes\cdots\otimes(f_1\otimes R_1)).$$

Since $\ker(\tilde{\gamma}^{tw})$ is generated by its degree 2 component and $\tilde{T}^{tw} \cong T^{tw}$ as graded k-algebras, $\ker(\gamma^{tw})$ is generated by its degree 2 component. Therefore, $\underline{\mathcal{C}}^{tw}$ is quadratic.

5.4. Description of $\underline{C}^!$.

Let $n \in \mathbb{N}$, t be a partition type, and A be a finite abelian group. Let \mathcal{C} be the skeletal subcategory of $\mathcal{FI}_{t,A}^n$ on objects of the form $X = ([x_1], ..., [x_n])$, where $x_i \in \mathbb{N}_0$, $1 \leq i \leq n$. Let k be a field of characteristic 0, and $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} . Then $\underline{\mathcal{C}}$ is Koszul by Corollary 4.3.2 and hence quadratic by [GL, Proposition 3.10].

In this section we will show that $\underline{\mathcal{C}}^!$ and $(\underline{\mathcal{C}}^{tw})^{op}$ are isomorphic categories (Corollary 5.4.10), provided that we make a further assumption on the partition type t (Remark 5.4.2). To prove $\underline{\mathcal{C}}^! \cong (\underline{\mathcal{C}}^{tw})^{op}$, we need to show that $\underline{\mathcal{C}}^!(Z, X)_i \cong \underline{\mathcal{C}}^{tw}(X, Z)_i$ as k-vector spaces for any $X, Z \in \mathcal{C}$ and $i \ge 0$.

Note 5.4.1. For i = 0, 1, this is immediate. For any $X, Z \in \mathcal{C}$, recall that

$$\underline{\mathcal{C}}^!(Z,X)_0 = \begin{cases} \underline{\mathcal{C}}(X,X) & \text{if } X = Z\\ 0 & \text{if } X \neq Z \end{cases}$$

 and

$$\underline{\mathcal{C}}^!(X,Z)_1 = \underline{\mathcal{C}}(X,Z)_1^*.$$

On the other hand,

$$\underline{\mathcal{C}}^{tw}(X,Z)_0 = \begin{cases} \underline{\mathcal{C}}(X,X) \otimes_k k & \text{if } X = Z \\ 0 & \text{if } X \neq Z \end{cases}$$

and

$$\underline{\mathcal{C}}^{tw}(X,Z)_1 = \bigoplus_{\substack{(f,P_f,\alpha_f) \in \mathcal{C}(X,Y)\\|P_f|=1}} k(f,P_f,\alpha_f) \otimes_k \det(P_f).$$

Thus, $\underline{\mathcal{C}}^!(Z,X)_i \cong \underline{\mathcal{C}}^{tw}(X,Z)_i$ as k-vector spaces for i = 0, 1.

Remark 5.4.2. For $i \ge 2$, we must make a further assumption on the partition type t. There are two cases depending on n. If n = 1, then fix $m \in \mathbb{N}$ and assume t is partition type m; if n > 1, then assume t is partition type n^* .

Proposition 5.4.3. Let $X, Z \in C$ and $i \ge 2$. If $\underline{C}(X, Z)_i \ne 0$, then there is a unique sequence of objects $Y_1, ..., Y_{i-1} \in C$ such that $\underline{C}(X, Y_1)_1, ..., \underline{C}(Y_{i-1}, Z)_1$ are nonzero.

Proof. Recall that any morphism of degree $i \ge 2$ factors into a composite of degree 1 morphisms by condition (A6) for \underline{C} . Let $X = ([x_1], ..., [x_n])$ and $Z = ([z_1], ..., [z_n])$. If n = 1, then we must have $[z_1] = [x_1 + im]$, so $Y_1 = [x_1 + m], ..., Y_{i-1} = [x_1 + (i-1)m]$ are the only objects in C for which $\underline{C}(X, Y_1)_1, ..., \underline{C}(Y_{i-1}, Z)_1$ are nonzero. On the other hand, if n > 1, then we must have $([z_1], ..., [z_n]) =$ $([x_1 + i], ..., [x_n + i])$, so $Y_1 = ([x_1 + 1], ..., [x_n + 1]), ..., Y_{i-1} = ([x_1 + (i-1)], ..., [x_n + (i-1)])$ are the only objects in C for which $\underline{C}(X, Y_1)_1, ..., \underline{C}(Y_{i-1}, Z)_1$ are nonzero. \Box

Corollary 5.4.4. Let $X, Z \in \mathcal{C}$ and $i \geq 2$. Suppose $\underline{\mathcal{C}}(X, Z)_i \neq 0$, and let $Y_1, ..., Y_{i-1} \in \mathcal{C}$ be the unique objects such that $\underline{\mathcal{C}}(X, Y_1)_1, ..., \underline{\mathcal{C}}(Y_{i-1}, Z)_1$ are nonzero. Then

$$\underline{\mathcal{C}}^{!}(Z,X)_{i} = (\underline{\mathcal{C}}(X,Y_{1})_{1}^{*} \otimes_{\underline{\mathcal{C}}(Y_{1},Y_{1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_{1}^{*})/W_{i},$$

where

$$W_{i} = \sum_{j=1}^{i-1} \underline{\mathcal{C}}(X, Y_{1})_{1}^{*} \otimes_{\underline{\mathcal{C}}(Y_{1}, Y_{1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{j-1}, Y_{j-1})} \operatorname{im}(\gamma_{Y_{j-1}Y_{j}Y_{j+1}}^{*}) \otimes_{\underline{\mathcal{C}}(Y_{j+1}, Y_{j+1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1}, Z)_{1}^{*},$$

in which $X = Y_0$ and $Z = Y_i$.

To show $\underline{\mathcal{C}}^!(Z,X)_i \cong \underline{\mathcal{C}}^{tw}(X,Z)_i$ as k-vector spaces for any $X, Z \in \mathcal{C}$ and $i \ge 2$, we will exhibit a surjection

$$\phi: \underline{\mathcal{C}}(X, Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1}, Z)_1^* \twoheadrightarrow \underline{\mathcal{C}}^{tw}(X, Z)_i$$

whose kernel is W_i . The map ϕ is constructed as follows.

By Remark 5.1.5, we have an isomorphism of $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -bimodules

$$\underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^* \cong (\underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1)^*.$$

Since

$$\underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1$$

is finite dimensional as a k-vector space, we have an isomorphism of k-vector spaces

$$(\underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1)^* \cong \underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1.$$

 Let

$$\alpha: \underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^* \xrightarrow{\sim} \underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1$$

be the composite of the above two k-vector space isomorphisms.

Recall that $\underline{\mathcal{C}}^{tw}(X,Y)_1 \cong \underline{\mathcal{C}}(X,Y)_1$ as $(\underline{\mathcal{C}}(Y,Y),\underline{\mathcal{C}}(X,X))$ -bimodules for any $X,Y \in \mathcal{C}$. It follows by induction that

$$\underline{\mathcal{C}}^{tw}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}^{tw}(X,Y_1)_1 \cong \underline{\mathcal{C}}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}(X,Y_1)_1$$

as $(\underline{\mathcal{C}}(Z,Z),\underline{\mathcal{C}}(X,X))$ -bimodules. Let

$$\beta: \underline{\mathcal{C}}(Y_{i-1}, Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \underline{\mathcal{C}}(X, Y_1)_1 \xrightarrow{\sim} \underline{\mathcal{C}}^{tw}(Y_{i-1}, Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \underline{\mathcal{C}}^{tw}(X, Y_1)_1$$

be this isomorphism as k-vector spaces.

Let

$$\gamma^{tw}: \underline{\mathcal{C}}^{tw}(Y_{i-1}, Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \underline{\mathcal{C}}^{tw}(X, Y_1)_1 \twoheadrightarrow \underline{\mathcal{C}}^{tw}(X, Z)_i$$

be the composition map in $\underline{\mathcal{C}}^{tw}$, which is surjective by condition (A6) for $\underline{\mathcal{C}}^{tw}$.

Thus, we define

$$\phi: \underline{\mathcal{C}}(X, Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1}, Z)_1^* \twoheadrightarrow \underline{\mathcal{C}}^{tw}(X, Z)_i$$

as the composite $\gamma^{tw}\beta\alpha$.

Notation 5.4.5. For arbitrary $X, Y, Z \in \mathcal{C}$, let us denote by $\phi_{XYZ} : \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^* \twoheadrightarrow \underline{\mathcal{C}}^{tw}(X,Z)_2$ the composite $\gamma_{XYZ}^{tw} \beta_{XYZ} \alpha_{XYZ}$, where

$$\alpha_{XYZ} : \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^* \xrightarrow{\sim} \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1,$$

$$(f,P_f,\alpha_f)^* \otimes (g,P_g,\alpha_g)^* \qquad \mapsto \qquad (g,P_g,\alpha_g) \otimes (f,P_f,\alpha_f),$$

$$\begin{split} \beta_{XYZ} &: \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1 \quad \stackrel{\sim}{\to} \quad \underline{\mathcal{C}}^{tw}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}^{tw}(X,Y)_1 \\ (g,P_g,\alpha_g) \otimes (f,P_f,\alpha_f) & \mapsto \quad ((g,P_g,\alpha_g) \otimes S) \otimes ((f,P_f,\alpha_f) \otimes R), \\ \gamma_{XYZ}^{tw} &: \underline{\mathcal{C}}^{tw}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}^{tw}(X,Y)_1 \quad \twoheadrightarrow \quad \underline{\mathcal{C}}^{tw}(X,Z)_2 \\ ((g,P_g,\alpha_g) \otimes S) \otimes ((f,P_f,\alpha_f) \otimes R) & \mapsto \quad (gf,P_{gf},\alpha_{gf}) \otimes g(R) \wedge S, \end{split}$$

with $P_g = \{S\}, P_f = \{R\}.$

Since \underline{C}^{tw} is quadratic by Proposition 5.3.5, ker (γ^{tw}) equals

$$\sum_{j=1}^{i-1} \underline{\mathcal{C}}^{tw}(Y_{i-1},Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{j+1},Y_{j+1})} \ker(\gamma_{Y_{j-1}Y_jY_{j+1}}^{tw}) \otimes_{\underline{\mathcal{C}}(Y_{j-1},Y_{j-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \underline{\mathcal{C}}^{tw}(X,Y_1)_1,$$

in which $X = Y_0$ and $Z = Y_i$. Because α, β are k-vector space isomorphisms, we get $\ker(\phi) = \alpha^{-1}\beta^{-1}(\ker(\gamma^{tw}))$. Hence, $\ker(\phi)$ equals

$$\sum_{j=1}^{i-1} \underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{j-1},Y_{j-1})} \ker(\phi_{Y_{j-1}Y_jY_{j+1}}) \otimes_{\underline{\mathcal{C}}(Y_{j+1},Y_{j+1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^*.$$

Thus, it suffices to show that $\ker(\phi_{XYZ}) = \operatorname{im}(\gamma^*_{XYZ})$, where $X, Z \in \mathcal{C}$ are arbitrary and Y is the unique object in \mathcal{C} such that $\underline{\mathcal{C}}(X,Y)_1, \underline{\mathcal{C}}(Y,Z)_1 \neq 0$.

Definition 5.4.6. Let $X, Z \in \mathcal{C}$ and $i \geq 0$. Given a morphism $(g, P_g, \alpha_g) \in \underline{\mathcal{C}}(X, Z)_i$, there is a unique sequence of objects $Y_1, ..., Y_{i-1} \in \mathcal{C}$ such that $\underline{\mathcal{C}}(X, Y_1)_1, ..., \underline{\mathcal{C}}(Y_{i-1}, Z)_1$ are nonzero. We call an element

$$(f_i, P_{f_i}, \alpha_{f_i}) \otimes \cdots \otimes (f_1, P_{f_1}, \alpha_{f_1}) \in \underline{\mathcal{C}}(Y_{i-1}, Z)_1 \otimes_{\underline{\mathcal{C}}(Y_{i-1}, Y_{i-1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_1, Y_1)} \underline{\mathcal{C}}(X, Y_1)_1$$

a factorization of (g, P_g, α_g) if

$$(f_i, P_{f_i}, \alpha_{f_i}) \cdots (f_1, P_{f_1}, \alpha_{f_1}) = (g, P_g, \alpha_g).$$

Lemma 5.4.7. If $X, Z \in C$, then any basis element $(h, P_h, \alpha_h) \in \underline{C}(X, Z)_2$ has exactly two factorizations in $\underline{C}(Y, Z)_1 \otimes_{\underline{C}(Y, Y)} \underline{C}(X, Y)_1$, where Y is the unique object in C such that $\underline{C}(X, Y)_1, \underline{C}(Y, Z)_1 \neq 0$.

Proof. By the proof of condition (A6) for \underline{C} , we know that (h, P_h, α_h) factors into a composite of two degree 1 morphisms $(f, P_f, \alpha_f) \in \underline{C}(X, Y)_1$ and $(g, P_g, \alpha_g) \in \underline{C}(Y, Z)_1$. We shall reproduce that argument here for future reference.

Since (h, P_h, α_h) is a degree 2 morphism, we have $P_h = \{T_1, T_2\}$ for some disjoint nonempty subsets $T_1, T_2 \subset Z$. Then there is a bijection $\tau_1 \in \mathcal{FI}^n(Y, Z \setminus \{T_1\})$. Let $\iota_1 \in \mathcal{FI}^n(Z \setminus \{T_1\}, Z)$ be the inclusion map. Define $g_1 = \iota_1 \tau_1 \in \mathcal{FI}^n(Y, Z)$, $P_{g_1} = \{T_1\}$, and $\alpha_{g_1}(y) = 0$ for $y \in Y$, and $\alpha_{g_1}(T_1) = \alpha_h(T_1)$. Then $(g_1, P_{g_1}, \alpha_{g_1}) \in \mathcal{C}(Y, Z)$ is a morphism of degree 1. Let $h' \in \mathcal{FI}^n(X, Z \setminus \{T_1\})$ be the morphism obtained by restricting the codomain of $h \in \mathcal{FI}^n(X, Z)$ to $Z \setminus \{T_1\}$. Define $f_1 = \tau_1^{-1}h' \in \mathcal{FI}^n(X, Y)$, $P_{f_1} = \{\tau_1^{-1}(T_2)\}$, and $\alpha_{f_1}(x) = \alpha_h(x)$ for $x \in X$, and $\alpha_{f_1}(\tau_1^{-1}(T_2)) = \alpha_h(T_2)$. Then $(f_1, P_{f_1}, \alpha_{f_1}) \in \mathcal{C}(X, Y)$ is a morphism of degree 1.

 \mathbf{So}

$$g_1 f_1 = \iota_1 \tau_1 \tau_1^{-1} h' = \iota_1 h' = h,$$

$$P_{g_1f_1} = g_1(P_{f_1}) \sqcup P_{g_1} = \{\iota_1\tau_1\tau_1^{-1}(T_2)\} \sqcup \{T_1\} = \{T_1, T_2\} = P_h,$$

$$\alpha_{g_1f_1}(x) = \alpha_{f_1}(x) + \alpha_{g_1}(f(x)) = \alpha_h(x) \text{ for } x \in X,$$

$$\alpha_{g_1f_1}(T_2) = \alpha_{g_1f_1}(g_1(\tau_1^{-1}(T_2))) = \alpha_{f_1}(\tau_1^{-1}(T_2)) + \sum_{y \in \tau_1^{-1}(T_2)} \alpha_{g_1}(y) = \alpha_h(T_2),$$

$$\alpha_{g_1f_1}(T_1) = \alpha_{g_1}(T_1) = \alpha_h(T_1).$$

Thus, $(g_1, P_{g_1}, \alpha_{g_1})(f_1, P_{f_1}, \alpha_{f_1}) = (h, P_h, \alpha_h)$. So

$$(g_1, P_{g_1}, \alpha_{g_1}) \otimes (f_1, P_{f_1}, \alpha_{f_1}) \in \underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1$$

is a factorization of (h, P_h, α_h) such that $P_{g_1} = \{T_1\}$ and $g_1(P_{f_1}) = \{T_2\}$.

Similarly, we can find a bijection $\tau_2 \in \mathcal{FI}^n(Y, Z \setminus \{T_2\})$ and construct two degree 1 morphisms $(f_2, P_{f_2}, \alpha_{f_2}) \in \mathcal{C}(X, Y), (g_2, P_{g_2}, \alpha_{g_2}) \in \mathcal{C}(Y, Z)$ such that $(h, P_h, \alpha_h) = (g_2, P_{g_2}, \alpha_{g_2})(f_2, P_{f_2}, \alpha_{f_2}),$ so that

$$(g_2, P_{g_2}, \alpha_{g_2}) \otimes (f_2, P_{f_2}, \alpha_{f_2}) \in \underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1$$

is a factorization of (h, P_h, α_h) such that $P_{g_2} = \{T_2\}$ and $g_2(P_{f_2}) = \{T_1\}$. Hence, $(h, P_h, \alpha_h) \in \mathcal{C}(X, Z)$ has at least two factorizations $(g_i, P_{g_i}, \alpha_{g_i}) \otimes (f_i, P_{f_i}, \alpha_{f_i})$ (i = 1, 2) in $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1$.

We now show that these are the only two factorizations of (h, P_h, α_h) in $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X, Y)_1$. Suppose $(h, P_h, \alpha_h) = (g, P_g, \alpha_g)(f, P_f, \alpha_f)$ for some degree 1 morphisms $(f, P_f, \alpha_f) \in \mathcal{C}(X, Y)$ and $(g, P_g, \alpha_g) \in \mathcal{C}(Y, Z)$. Say $P_g = \{S\}$ and $P_f = \{R\}$. Then $\{T_1, T_2\} = P_h = g(P_f) \sqcup P_g = \{g(R), S\}$ implies that either $T_1 = g(R)$ and $T_2 = S$, or $T_1 = S$ and $T_2 = g(R)$. Without loss of generality, assume $T_1 = S$ and $T_2 = g(R)$. We claim that $(g, P_g, \alpha_g) \otimes (f, P_f, \alpha_f) = (g_1, P_{g_1}, \alpha_{g_1}) \otimes (f_1, P_{f_1}, \alpha_{f_1})$ in $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X, Y)_1$. To prove this, we must find $(\sigma, \emptyset, \alpha_\sigma) \in \mathcal{C}(Y, Y)$ such that $(g, P_g, \alpha_g) = (g_1, P_{g_1}, \alpha_{g_1})(\sigma, \emptyset, \alpha_\sigma)$ and $(\sigma, \emptyset, \alpha_\sigma)(f, P_f, \alpha_f) = (f_1, P_{f_1}, \alpha_{f_1})$.

Let $g' \in \mathcal{FI}^n(Y, Z \setminus \{T_1\})$ be the morphism obtained by restricting the codomain of $g \in \mathcal{FI}^n(Y, Z)$ to $Z \setminus \{T_1\}$. Recall that $(g_1, P_{g_1}, \alpha_{g_1}) \in \mathcal{C}(Y, Z)$ was defined by $g_1 = \iota_1 \tau_1 \in \mathcal{FI}^n(Y, Z), P_{g_1} = \{T_1\}$, and $\alpha_{g_1}(y) = 0$ for $y \in Y$, $\alpha_{g_1}(T_1) = \alpha_h(T_1)$, where $\iota_1 \in \mathcal{FI}^n(Z \setminus \{T_1\}, Z)$ is inclusion and $\tau_1 \in \mathcal{FI}^n(Y, Z \setminus \{T_1\})$ is a bijection. Define $(\sigma, \emptyset, \alpha_{\sigma}) \in \mathcal{C}(Y, Y)$ by $\sigma = \tau_1^{-1}g' \in \mathcal{FI}^n(Y, Y)$ and

and

 $\alpha_{\sigma}(y) = \alpha_g(y)$ for $y \in Y$. Then

$$g_1 \sigma = \iota_1 \tau_1 \tau_1^{-1} g' = g$$

 and

$$\alpha_{g_1\sigma}(T_1) = \alpha_{g_1}(T_1) = \alpha_h(T_1) = \alpha_{g_f}(T_1) = \alpha_g(T_1),$$

so $(g_1, P_{g_1}, \alpha_{g_1})(\sigma, \emptyset, \alpha_{\sigma}) = (g, P_g, \alpha_g)$. On the other hand, recall that $(f_1, P_{f_1}, \alpha_{f_1}) \in \mathcal{C}(X, Y)$ was defined by $f_1 = \tau_1^{-1}h' \in \mathcal{FI}^n(X, Y)$, $P_{f_1} = \{\tau_1^{-1}(T_2)\}$, $\alpha_{f_1}(x) = \alpha_h(x)$ for $x \in X$ and $\alpha_{f_1}(\tau_1^{-1}(T_2)) = \alpha_h(T_2)$, where $h' \in \mathcal{FI}^n(X, Z \setminus \{T_1\})$ is the morphism obtained by restricting the codomain of $h \in \mathcal{FI}^n(X, Z)$ to $Z \setminus \{T_1\}$. Then

$$\sigma f = \tau_1^{-1} g' f = \tau_1^{-1} h' = f_1,$$

$$\sigma(P_f) = \tau_1^{-1} g'(\{R\}) = \{\tau_1^{-1}(T_2)\} = P_{f_1},$$

and

$$\alpha_{\sigma f}(x) = \alpha_f(x) + \alpha_{\sigma}(f(x)) = \alpha_f(x) + \alpha_g(f(x)) = \alpha_h(x) = \alpha_{f_1}(x) \text{ for } x \in X,$$

$$\alpha_{\sigma f}(\sigma(R)) = \alpha_f(R) + \sum_{y \in R} \alpha_{\sigma}(y) = \alpha_f(R) + \sum_{y \in R} \alpha_g(y) = \alpha_h(g(R)) = \alpha_h(T_2) = \alpha_{f_1}(\tau_1^{-1}(T_2)).$$

So $(\sigma, \emptyset, \alpha_{\sigma})(f, P_f, \alpha_f) = (f_1, P_{f_1}, \alpha_{f_1})$, and hence

$$(g, P_g, \alpha_g) \otimes (f, P_f, \alpha_f) = (g_1, P_{g_1}, \alpha_{g_1}) \otimes (f_1, P_{f_1}, \alpha_{f_1})$$

in $\underline{C}(Y,Z)_1 \otimes_{\underline{C}(Y,Y)} \underline{C}(X,Y)_1$.

Similarly, if we had assumed $T_1 = g(R)$ and $T_2 = S$, we would get

$$(g, P_g, \alpha_g) \otimes (f, P_f, \alpha_f) = (g_2, P_{g_2}, \alpha_{g_2}) \otimes (f_2, P_{f_2}, \alpha_{f_2})$$

in $\underline{C}(Y,Z)_1 \otimes_{\underline{C}(Y,Y)} \underline{C}(X,Y)_1$.

Therefore, $(h, P_h, \alpha_h) \in \underline{\mathcal{C}}(X, Z)_2$ has exactly two factorizations $(g_1, P_{g_1}, \alpha_{g_1}) \otimes (f_1, P_{f_1}, \alpha_{f_1})$ and $(g_2, P_{g_2}, \alpha_{g_2}) \otimes (f_2, P_{f_2}, \alpha_{f_2})$ in $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1$, such that $P_{g_1} = \{T_1\}, g_1(P_{f_1}) = \{T_2\}$ and $P_{g_2} = \{T_2\}, g_2(P_{f_2}) = \{T_1\}.$

Proposition 5.4.8. ker (ϕ_{XYZ}) is the span of all elements of the form

$$f_1^* \otimes g_1^* + f_2^* \otimes g_2^* \in \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*$$

for which $f_1^* \otimes g_1^* \neq f_2^* \otimes g_2^*$ and $g_1 f_1 = g_2 f_2$.

Proof. Recall that

$$\phi_{XYZ}: \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^* \to \underline{\mathcal{C}}^{tw}(X,Z)_2$$

is defined as the composite $\gamma_{XYZ}^{tw}\beta_{XYZ}\alpha_{XYZ}$, where

$$\alpha_{XYZ}((f, P_f, \alpha_f)^* \otimes (g, P_g, \alpha_g)^*) = (g, P_g, \alpha_g) \otimes (f, P_f, \alpha_f),$$

$$\beta_{XYZ}((g, P_g, \alpha_g) \otimes (f, P_f, \alpha_f)) = ((g, P_g, \alpha_g) \otimes S) \otimes ((f, P_f, \alpha_f) \otimes R),$$

with $P_g = \{S\}, P_f = \{R\}$, and

$$\gamma_{XYZ}^{tw}(((g, P_g, \alpha_g) \otimes S) \otimes ((f, P_f, \alpha_f) \otimes R)) = (gf, P_{gf}, \alpha_{gf}) \otimes g(R) \wedge S.$$

 \mathbf{So}

$$\phi_{XYZ}((f, P_f, \alpha_f)^* \otimes (g, P_g, \alpha_g)^*) = (gf, P_{gf}, \alpha_{gf}) \otimes g(R) \wedge S,$$

where $P_f = \{R\}$ and $P_g = \{S\}$.

Consider the composite of the second and third map:

$$\gamma_{XYZ}^{tw}\beta_{XYZ}: \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1 \xrightarrow{\sim} \underline{\mathcal{C}}^{tw}(Y,Z)_1 \otimes_{\mathcal{C}(Y,Y)} \underline{\mathcal{C}}^{tw}(X,Y)_1 \twoheadrightarrow \underline{\mathcal{C}}^{tw}(X,Z)_2.$$

For simplicity, we shall abbreviate degree 1 morphisms (f, P_f, α_f) in \mathcal{C} as f. Then an arbitrary element of $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$ is of the form $x = \sum a_{ij}(g_j \otimes f_i)$, where $a_{ij} \in k$ and $f_i \in$ $\mathcal{C}(X,Y), g_j \in \mathcal{C}(Y,Z)$ are degree 1 morphisms, say with $P_{f_i} = \{R_i\}, P_{g_j} = \{S_j\}$. We may assume that all $g_j \otimes f_i$ in x are distinct. Thus, x is a k-linear combination of distinct factorizations in $\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$ of various degree two morphisms $h \in \mathcal{C}(X,Z)$. By Lemma 5.4.7, each degree two morphism $h \in \mathcal{C}(X, Z)$ has exactly two factorizations in $\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$. So for each $h \in \mathcal{C}(X, Z)$, at most 2 of its factorizations are present in x. Suppose $x \in \ker(\gamma_{XYZ}^{tw}\beta_{XYZ})$. Then

$$\gamma_{XYZ}^{tw}\beta_{XYZ}(x) = \sum a_{ij}(g_j f_i \otimes g_j(R_i) \wedge S_j) = 0$$

 $_{\mathrm{in}}$

$$\underline{\mathcal{C}}^{tw}(X,Z)_2 = \bigoplus_{\substack{h \in \mathcal{C}(X,Z) \\ |P_h|=2}} kh \otimes_k \det(P_h).$$

Fix a direct summand corresponding to $h \in C(X, Z)$, $|P_h| = 2$. Then there are at most two terms in $\gamma_{XYZ}^{tw}\beta_{XYZ}(x)$ that belong to $kh \otimes_k \det(P_h)$, and the sum of those terms is 0. If there is only one such term $a(gf \otimes g(R) \wedge S)$, then $a(gf \otimes g(R) \wedge S) = 0$ implies a = 0. If there are two such terms $a_1(g_1f_1 \otimes g_1(R_1) \wedge S_1)$ and $a_2(g_2f_2 \otimes g_2(R_2) \wedge S_2)$, then

$$0 = a_1(g_1f_1 \otimes g_1(R_1) \wedge S_1) + a_2(g_2f_2 \otimes g_2(R_2) \wedge S_2) = (a_1 - a_2)(g_1f_1 \otimes g_1(R_1) \wedge S_1),$$

since $g_1f_1 = g_2f_2$ and $g_1(R_1) = S_2$, $g_2(R_2) = S_1$. Hence, $a_1 - a_2 = 0$ implies $a_1 = a_2$. Because this holds for each direct summand, it follows that $\ker(\gamma_{XYZ}^{tw}\beta_{XYZ}) \subseteq \operatorname{span}(U)$, where

$$U = \{g_1 \otimes f_1 + g_2 \otimes f_2 \in \underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1 : g_1 \otimes f_1 \neq g_2 \otimes f_2 \text{ and } g_1 f_1 = g_2 f_2 \}.$$

Conversely, if $g_1 \otimes f_1, g_2 \otimes f_2 \in \underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$ are distinct elements such that $g_1 f_1 = g_2 f_2$, then

$$\gamma_{XYZ}^{tw}\beta_{XYZ}(g_1\otimes f_1+g_2\otimes f_2)=g_1f_1\otimes g_1(R_1)\wedge S_1+g_2f_2\otimes g_2(R_2)\wedge S_2=0,$$

again since $g_1 f_1 = g_2 f_2$ and $g_1(R_1) = S_2$, $g_2(R_2) = S_1$. Thus, $\ker(\gamma_{XYZ}^{tw} \beta_{XYZ}) = \operatorname{span}(U)$.

Looking back at our isomorphism

$$\alpha_{XYZ}: \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^* \xrightarrow{\sim} \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1,$$

we conclude that $\ker(\phi_{XYZ})$ is the span of all elements of the form

$$f_1^* \otimes g_1^* + f_2^* \otimes g_2^* \in \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*$$

for which $f_1^* \otimes g_1^* \neq f_2^* \otimes g_2^*$ and $g_1 f_1 = g_2 f_2$.

Proposition 5.4.9. $\operatorname{im}(\gamma^*_{XYZ})$ is the span of all elements of the form

$$f_1^* \otimes g_1^* + f_2^* \otimes g_2^* \in \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*,$$

where $f_1^* \otimes g_1^* \neq f_2^* \otimes g_2^*$ and $g_1 f_1 = g_2 f_2$.

Proof. Recall that

$$\gamma^*_{XYZ} : \underline{\mathcal{C}}(X,Z)_2^* \to (\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^*$$

is the $(\underline{\mathcal{C}}(X, X), \underline{\mathcal{C}}(Z, Z))$ -bimodule homomorphism obtained by dualizing the composition map

$$\gamma_{XYZ}: \underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1 \to \underline{\mathcal{C}}(X,Z)_2.$$

For simplicity, we again write morphisms (f, P_f, α_f) in \mathcal{C} as f. Then for any dual basis element $h^* \in \underline{\mathcal{C}}(X, Z)_2^*$ and for any basis elements $g \in \underline{\mathcal{C}}(Y, Z)_1$, $f \in \underline{\mathcal{C}}(X, Y)_1$, we have

$$\gamma^*_{XYZ}(h^*)(g\otimes f) = h^*(gf) = \begin{cases} 1 & \text{if } h = gf \\ 0 & \text{else.} \end{cases}$$

Fix a dual basis element $h^* \in \underline{\mathcal{C}}(X, Z)_2^*$. Let $\gamma^*_{XYZ}(h^*) = \sum a_{ij}(g_j \otimes f_i)^*$ in $(\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^*$, where $a_{ij} \in k$ and the $g_j \otimes f_i$ are distinct and range over all basis elements in

 $\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$. If $g_j f_i = h$, then

$$a_{ij} = \gamma^*_{XYZ}(h^*)(g_j \otimes f_i) = 1.$$

If $g_j f_i \neq h$, then

$$a_{ij} = \gamma^*_{XYZ}(h^*)(g_j \otimes f_i) = 0.$$

By Lemma 5.4.7, h has exactly two factorizations in $\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1$, both of which are present within the sum $\gamma^*_{XYZ}(h^*)$. If $g_1 \otimes f_1$ and $g_2 \otimes f_2$ are these factorizations, then

$$\gamma_{XYZ}^*(h^*) = (g_1 \otimes f_1)^* + (g_2 \otimes f_2)^*.$$

Since this holds for each $h^* \in \underline{\mathcal{C}}(X, Z)_2^*$, it follows that $\operatorname{im}(\gamma^*_{XYZ}) \subseteq \operatorname{span}(V)$, where

$$V = \{ (g_1 \otimes f_1)^* + (g_2 \otimes f_2)^* \in (\underline{\mathcal{C}}(Y, Z)_1 \otimes_{\underline{\mathcal{C}}(Y, Y)} \underline{\mathcal{C}}(X, Y)_1)^* : (g_1 \otimes f_1)^* \neq (g_2 \otimes f_2)^* \text{ and } g_1 f_1 = g_2 f_2 \}.$$

Conversely, if $(g_1 \otimes f_1)^*$, $(g_2 \otimes f_2)^*$ are distinct elements of $(\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^*$ for which $g_1f_1 = g_2f_2$, let $h = g_1f_1$. Then $h^* \in \underline{\mathcal{C}}(X,Z)_2^*$ and

$$\gamma_{XYZ}^*(h^*) = (g_1 \otimes f_1)^* + (g_2 \otimes f_2)^*.$$

Thus, $\operatorname{im}(\gamma_{XYZ}^*) = \operatorname{span}(V)$. By identifying $\operatorname{im}(\gamma_{XYZ}^*)$ under the $(\underline{\mathcal{C}}(X,X),\underline{\mathcal{C}}(Z,Z))$ -bimodule isomorphism $(\underline{\mathcal{C}}(Y,Z)_1 \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(X,Y)_1)^* \cong \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*$, we conclude that $\operatorname{im}(\gamma_{XYZ}^*)$ is the span of all elements of the form

$$f_1^* \otimes g_1^* + f_2^* \otimes g_2^* \in \underline{\mathcal{C}}(X,Y)_1^* \otimes_{\underline{\mathcal{C}}(Y,Y)} \underline{\mathcal{C}}(Y,Z)_1^*,$$

where $f_1^* \otimes g_1^* \neq f_2^* \otimes g_2^*$ and $g_1 f_1 = g_2 f_2$.

By Propositions 5.4.8 and 5.4.9, $\ker(\phi_{XYZ}) = \operatorname{im}(\gamma^*_{XYZ})$ for any $X, Z \in \mathcal{C}$ and Y being the unique object in \mathcal{C} for which $\underline{\mathcal{C}}(X, Y)_1, \underline{\mathcal{C}}(Y, Z)_1 \neq 0$. So $\ker(\phi)$ equals

$$\sum_{j=1}^{i-1} \underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{j-1},Y_{j-1})} \operatorname{im}(\gamma_{Y_{j-1}Y_jY_{j+1}}^*) \otimes_{\underline{\mathcal{C}}(Y_{j+1},Y_{j+1})} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^*,$$

in which $X = Y_0$ and $Z = Y_i$. Hence, ker (ϕ) is precisely W_i . Therefore,

$$\underline{\mathcal{C}}^{tw}(X,Z)_i \cong (\underline{\mathcal{C}}(X,Y_1)_1^* \otimes_{\underline{\mathcal{C}}(Y_1,Y_1)} \cdots \otimes_{\underline{\mathcal{C}}(Y_{i-1},Y_{i-1})} \underline{\mathcal{C}}(Y_{i-1},Z)_1^*) / W_i = \underline{\mathcal{C}}^!(Z,X)_i$$

as k-vector spaces for any $X, Z \in \mathcal{C}$ and $i \geq 0$. This proves that $\underline{\mathcal{C}}^!(Z, X) \cong \underline{\mathcal{C}}^{tw}(X, Z)$ for all $X, Z \in \mathcal{C}$. It follows that $\underline{\mathcal{C}}^!$ and $(\underline{\mathcal{C}}^{tw})^{op}$ are isomorphic categories, summarized in the Corollary below.

Corollary 5.4.10. Let $n \in \mathbb{N}$, t be a partition type, A be a finite abelian group, and k be a field of characteristic 0. Let \mathcal{C} be the skeletal subcategory of $\mathcal{FI}_{t,A}^n$ on objects of the form $X = ([x_1], ..., [x_n])$ for $x_i \in \mathbb{N}_0$ $(1 \leq i \leq n)$. Let $\underline{\mathcal{C}}$ be the k-linearization of \mathcal{C} . If t is partition type m for some $m \in \mathbb{N}$ when n = 1, or if t is partition type n^* when n > 1, then $\underline{\mathcal{C}}! \cong (\underline{\mathcal{C}}^{tw})^{op}$.

$\operatorname{References}$

[BGS] Alexander Beilinson, Victor Ginzburg, Wolfgang Soergel; Koszul Duality Patterns in Representation Theory; J. Amer. Math. Soc. Vol. 9 Num. 2, April 1996, 473-527.

[DPS] Elizabeth Dan-Cohen, Ivan Penkov, Vera Serganova; A Koszul Category of Representations of Finitary Lie Algebras; arXiv: 1105.3407v2, 25 May 2012.

[GL] Wee Liang Gan, Liping Li; Koszulity of Directed Categories in Representation Stability Theory; arXiv: 1411.5308v2, 21 Nov 2014.

[GL2] Wee Liang Gan, Liping Li; A Remark on FI-Module Homology; arXiv: 1505.01777v4, 11 May 2016.

[GS] Dimitar Grantcharov, Vera Serganova; Tensor Representations of $q(\infty)$; arXiv: 1605.02389v1, 8 May 2016.

[SS] Steven V. Sam, Andrew Snowden; Stability Patterns in Representation Theory; arXiv:1302.5859v1, 24 Feb 2013.