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Abstract
We study the decays of the charmonium resonancesJ/ψ andψ(3686) to the final statesΞ−Ξ̄+, Σ(1385)∓Σ̄(1385)± based on a single

baryon tag method using data samples of(223.7 ± 1.4) × 106 J/ψ and (106.4 ± 0.9) × 106 ψ(3686) events collected with the BESIII
detector at the BEPCII collider. The decayψ(3686) → Σ(1385)∓Σ̄(1385)± is observed for the first time, and the measurements of the
other processes, including the branching fractions and angular distributions, are in good agreement with, and much more precise than, the

previously published results. Additionally, the ratiosB(ψ(3686)→Ξ−Ξ̄+)

B(J/ψ→Ξ−Ξ̄+)
, B(ψ(3686)→Σ(1385)− Σ̄(1385)+)

B(J/ψ→Σ(1385)−Σ̄(1385)+)
andB(ψ(3686)→Σ(1385)+ Σ̄(1385)−)

B(J/ψ→Σ(1385)+Σ̄(1385)−)
are

determined.

PACS numbers: 12.38.Qk, 13.25.Gv, 23.20.En

I. INTRODUCTION

The study ofψ [in the following,ψ denotes both charmo-
nium resonancesJ/ψ andψ(3686)] production ine+e− anni-
hilation and the subsequent two-body hadronic decays of the
ψ, such as baryon-antibaryon decays, provide a unique oppor-
tunity to test quantum chromodynamics (QCD) in the pertur-
bative energy regime and to study the baryonic properties [1].
These decays are expected to proceed via the annihilation of
cc̄ into three gluons or a virtual photon. This model also leads
to the prediction that the ratio of the branching fractions of
ψ decays to a specific final state should follow the so-called
“12% rule” [2]

B(ψ(3686) → hadrons)
B(J/ψ → hadrons)

≈
B(ψ(3686) → e+e−)

B(J/ψ → e+e−)
≈ 12%,

(1)
where the branching fractions probe the ratio of the wave
functions at their origins for the vector ground stateJ/ψ and
its first radial excitationψ(3686). This rule was first observed
to be violated in the processψ → ρπ, which is known as the
“ρπ puzzle,”and was subsequently further tested in a wide va-
riety of experimental measurements [3]. Recently, a review of
the theoretical and experimental results [4] concluded that the
current theoretical explanations are unsatisfactory, especially
for the baryon pair decays ofψ mesons. Therefore, more ex-
perimental measurements on baryon-antibaryon (BB̄) pair fi-
nal states, e.g.pp̄,ΛΛ̄,ΣΣ̄,ΞΞ̄,Σ(1385)Σ̄(1385), in the de-
cays ofψ are desirable. To date, the branching fractions of
the decaysψ → Ξ−Ξ̄+ and J/ψ → Σ(1385)∓Σ̄(1385)±

were previously measured with a low precision [5–9], and the
decayψ(3686) → Σ(1385)∓Σ̄(1385)± has not yet been ob-
served.

By using hadron helicity conservation, the angular distri-
bution for the processe+e− → ψ → BB̄ can be expressed
as

dN

d(cos θ)
∝ 1 + α cos2 θ, (2)

whereθ is the angle between the baryon and the positron-

beam direction in thee+e− center-of-mass (CM) system
andα is a constant. Various theoretical calculations based
on first-order QCD have made predictions for the value of
α. In the prediction of Claudsonet al. [10], the baryon
mass is taken into account as a whole, while the con-
stituent quarks inside the baryon are considered as mass-
less when computing the decay amplitude. The prediction
by Carimalo [11] takes the mass effects at the quark level
into account. Experimental efforts are useful to measure
α in order to test the hadron helicity conservation rule and
study the validity of the various theoretical approaches. In
the previous experiments, the angular distributions are mea-
sured with a few decays, such asψ(3686) → pp̄ [12] and
J/ψ → BB̄ [pp̄,ΛΛ̄,Σ0Σ̄0,Ξ−Ξ̄+,Σ(1385)Σ̄(1385)] [8,
13–15]. Among them, the angular distributions for the
J/ψ → Ξ−Ξ̄+,Σ(1385)∓Σ̄(1385)± decays are determined
with a low precision, while for the decaysψ(3686) → Ξ−Ξ̄+,
Σ(1385)∓Σ̄(1385)± have not yet been measured.

In this paper, we report the most precise measurements of
the branching fractions and angular distributions for the de-
caysψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)± based on(223.7 ±
1.4) × 106 J/ψ [17] and(106.4 ± 0.9) × 106 ψ(3686) [18]
events collected with the BESIII detector at BEPCII.

II. BESIII DETECTOR AND MONTE CARLO SIMULA-
TION

BEPCII is a double-ringe+e− collider that has reached a
peak luminosity of about8.5×1032 cm−2s−1 at a CM energy
of 3.773 GeV. The cylindrical core of the BESIII detector
consists of a helium-based main drift chamber (MDC), a
plastic scintillator time-of-flight (TOF) system, and a CsI(Tl)
electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet with a field strength
of 1.0 T. The solenoid is supported by an octagonal flux-
return yoke with resistive plate counter modules interleaved
with steel as muon identifier. The acceptance for charged
particles and photons is 93% over4π stereo angle, and the
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charged-particle momentum resolution at 1 GeV/c is 0.5%,
the photon energy resolution at 1.0 GeV is 2.5% (5%) in the
barrel (end caps). More details about the apparatus can be
found in Ref. [19].

The response of the BESIII detector is modeled with
Monte Carlo (MC) simulations using a framework based on
GEANT4 [20, 21]. The production ofψ resonances is simu-
lated with theKKMC generator [22], while the subsequent de-
cays are processed viaEVTGEN [23] according to the branch-
ing fractions provided by the Particle Data Group (PDG) [3],
and the remaining unmeasured decay modes are generated
with LUNDCHARM [24]. To determine the detection efficien-
cies forψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)±, one million MC
events are generated for each mode, corresponding to sam-
ples about20 ∼ 50 times larger than expected in data. The
events are generated for each channel with our measured an-
gular distribution parameter, which we will introduce in detail
later; theΞ andΣ(1385) decays in the signal modes are sim-
ulated inclusively according to the corresponding branching
fractions taken from PDG [3].

III. EVENT SELECTION

The selection ofψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)±

events via a full reconstruction of bothΞ−(Σ(1385)∓) and
Ξ̄+(Σ̄(1385)±) baryons suffers from low reconstruction ef-
ficiency. To achieve a higher efficiency, a single baryon
Ξ− (Σ(1385)∓) tag technique, which does not include
the antibaryon mode tag, is employed to select the signal
eventsψ → Ξ−Ξ̄+(Σ(1385)∓Σ̄(1385)±), where only the
Ξ−(Σ(1385)∓) is reconstructed in its decay toπ∓Λ with the
subsequent decayΛ → pπ−. Thus, we require that the events
contain at least one positively charged and two negatively
charged tracks for theΞ−Ξ̄+(Σ(1385)−Σ̄(1385)+) channel
and two positively charged and one negatively charged track
for theΣ(1385)+Σ̄(1385)− channel. Only tracks that are re-
constructed in the MDC with good helix fits and within the
angular coverage of the MDC (| cos θ| < 0.93, whereθ is the
polar angle with respect to thee+ beam direction) are consid-
ered. Information from the specific energy loss measured in
MDC (dE/dx) and from TOF are combined to form particle
identification (PID) confidence levels for the hypotheses ofa
pion, kaon, and proton, respectively. Each track is assigned
to the particle type that corresponds to the hypothesis withthe
highest confidence level. Events with at least two charged pi-
ons (π−π∓) and at least one proton (p) are kept for further
analysis.

In order to reconstructΛ baryons, a vertex fit is applied to
all pπ− combinations; the ones characterized byχ2 < 500
are selected. The invariant mass of thepπ− pair is required
to be within 6 MeV/c2 of the nominalΛ mass. Subsequently,
candidates forΞ− andΣ(1385)∓ baryons are built by com-
bining all reconstructedΛ with anotherπ∓. The combination
with the minimum|Mπ∓Λ−MΞ−/Σ(1385)∓ | is selected, where

MΞ−/Σ(1385)∓ is the nominal mass ofΞ− or Σ(1385)∓ from
PDG [3].

The partner of̄Ξ+ or Σ̄(1385)± is extracted from the mass
recoiling against the selectedπ∓Λ system,

M recoil
π∓Λ =

√

(ECM − Eπ∓Λ)2 − ~p2π∓Λ, (3)

whereEπ∓Λ and~pπ∓Λ are the energy and the momentum of
the selectedπ∓Λ system, respectively, andECM is thee+e−

CM energy. Figure1 shows the scatter plots ofMπ∓Λ versus
M recoil
π∓Λ for the J/ψ andψ(3686) data samples. Clear accu-

mulations of events are found for the signals ofψ → Ξ−Ξ̄+

(Σ(1385)∓Σ̄(1385)±) decays. To determine the signal yields,
the mass ofπ∓Λ is required to be in the interval[1.312, 1.332]
GeV/c2 for J/ψ → Ξ−Ξ̄+, and [1.308, 1.338] GeV/c2 for
ψ(3686) → Ξ−Ξ̄+, respectively, while we require|Mπ∓Λ −
MΣ(1385)∓ | < 0.035 GeV/c2 for ψ → Σ(1385)∓Σ̄(1385)±.
For the decayψ(3686) → Ξ−Ξ̄+ (Σ(1385)−Σ̄(1385)+), a
further requirement of|M recoil

π+π− −MJ/ψ| > 0.005 GeV/c2 is
applied to suppress the backgroundψ(3686) → π+π−J/ψ,
where theM recoil

π+π− is the recoil mass of allπ+π− combina-
tion, andMJ/ψ is the nominal mass ofJ/ψ according to the
PDG [3].

IV. BACKGROUND STUDY

Data collected at center-of-mass energies of 3.08 GeV (300
nb−1 [17]) and 3.65 GeV (44 pb−1 [18]) are used to esti-
mate the contributions from the continuum processese+e− →
Ξ−Ξ̄+,Σ(1385)∓Σ̄(1385)±. After applying the same event
selection criteria, only a few events survive, which do not form
any obvious peaking structures around theΞ̄+ or Σ̄(1835)±

signal regions in the correspondingM recoil
π∓Λ distribution. The

scale factor between the data atψ(3686) peak and that at 3.65
GeV is 3.677, taking into account the luminosity and CM en-
ergy dependence of the cross section. This implies that the
backgrounds from continuum processes are negligible.

The contamination from other background sources is stud-
ied by using MC simulated samples of genericψ decays
that contain the same number of events as data. After ap-
plying the same event selection criteria, it is found that
the channelsJ/ψ → γηc with ηc → Ξ−Ξ̄+, J/ψ →
π−ΛΣ(1385)+ (the branching fraction is preliminarily de-
termined with the data based on an iterative method), and
J/ψ → Σ(1385)−Σ̄(1385)+ are potential peaking back-
grounds forJ/ψ → Ξ−Ξ̄+. According to MC simulations of
these backgrounds, their yields are expected to be negligible
after normalization to the total number ofJ/ψ events. For the
J/ψ → Σ(1385)∓Σ̄(1385)± decay, backgrounds are found
to beJ/ψ → π∓ΛΣ̄(1385)±, J/ψ → Ξ(1530)−Ξ̄+ + c.c.
andJ/ψ → Ξ(1530)0Ξ̄0 + c.c.. For theψ(3686) → Ξ−Ξ̄+

decay, dominant backgrounds come fromψ(3686) → γχcJ ,
χcJ → Ξ−Ξ̄+, andψ(3686) → Σ(1385)−Σ̄(1385)+, which
are expected to populate smoothly in theM recoil

π−Λ spectrum.
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FIG. 1. Scatter plots ofMπ±Λ versusMrecoil
π±Λ for (a, c)J/ψ and (b, d)ψ(3686) data. The solid boxes are for theΞ−Ξ̄+ signal region, and

the dashed boxes are for theΣ(1385)∓Σ̄(1385)± signal region.

For theψ(3686) → Σ(1385)∓Σ̄(1385)± decay, the surviv-
ing backgrounds mainly come from the processψ(3686) →
π+π−J/ψ.

V. RESULTS

A. Branching fraction

The signal yields forψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)±

are determined by performing an extended maximum like-
lihood fit to M recoil

π∓Λ spectrum. In the fit, the signal shape
is represented by a simulated MC shape convoluted with a
Gaussian function taking into account the mass resolution dif-
ference between data and MC. The background shapes for
ψ → Ξ−Ξ̄+ andψ(3686) → Σ(1385)∓Σ̄(1385)± are repre-
sented by a second-order polynomial function since the peak-
ing backgrounds are found to be negligible and the remain-
ing backgrounds are expected to be distributed smoothly in
M recoil
π∓Λ . In the decayJ/ψ → Σ(1385)∓Σ̄(1385)±, the peak-

ing background is found to be significant and is included in the
fit. The shapes of the peaking backgrounds are represented by
the individual shapes taken from simulation, and the corre-
sponding number of background events is fixed accordingly.
The remaining backgrounds are described by a second-order
polynomial function. Figure2 shows the projection plots of
M recoil
π∓Λ for ψ → Ξ−Ξ̄+ andΣ(1385)∓Σ̄(1385)±.

The branching fractions are calculated by

B[ψ → X ] =
Nobs.

Nψ · ǫ
, (4)

whereX stands for theΞ−Ξ̄+ andΣ(1385)∓Σ̄(1385)± fi-
nal states,ǫ denotes the detection efficiencies taking into
account the product branching fraction of the tag mode of
Ξ−(Σ(1385)∓) decay and the values ofα measured in this
analysis,Nobs. is the number of signal events from the fit, and
Nψ is the total number ofJ/ψ or ψ(3686) events [17, 18].
Table I summarizes the number of observed signal events,
the corresponding efficiencies, and branching fractions for the
various decays of this measurement with the statistic uncer-
tainty only.

B. Angular distribution

The values ofα for the six decay processes are extracted
by performing a least-squares fit to thecos θ distributions
in the range of 0.8 to −0.8. The cos θ distributions are di-
vided into 8 equidistant intervals for the processψ(3686) →
Σ(1385)∓Σ̄(1385)± and into 16 intervals for the other four
decay modes.

The signal yield in eachcos θ bin is obtained with the afore-
mentioned fit method. The distributions of the efficiency-
corrected signal yields together with the curves of the fit are
shown in Fig.3. Theα values obtained from the fits based on
Eq. (2) are summarized in TableI.
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FIG. 2. Recoil mass spectra ofπ−Λ andπ+Λ. (a) J/ψ → Ξ−Ξ̄+, (b) J/ψ → Σ(1385)−Σ̄(1385)+, (c) J/ψ → Σ(1385)+Σ̄(1385)−,
(d) ψ(3686) → Ξ−Ξ̄+, (e)ψ(3686) → Σ(1385)−Σ̄(1385)+ and (f)ψ(3686) → Σ(1385)+Σ̄(1385)−. Dots with error bars indicate the
data, the solid lines show the fit results, the dashed lines are for the combinatorial background, and the hatched histograms are for the peaking
backgrounds.

TABLE I. The number of the observed eventsNobs., efficienciesǫ, α values, and branching fractionsB for ψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)±.
Only statistical uncertainties are indicated.

Channel Nobs. ǫ(%) α B(×10−4)
J/ψ → Ξ−Ξ̄+ 42810.7 ± 231.0 18.40 ± 0.04 0.58 ± 0.04 10.40 ± 0.06
J/ψ → Σ(1385)−Σ̄(1385)+ 42594.8 ± 466.8 17.38 ± 0.04 −0.58± 0.05 10.96 ± 0.12
J/ψ → Σ(1385)+Σ̄(1385)− 52522.5 ± 595.9 18.67 ± 0.04 −0.49± 0.06 12.58 ± 0.14
ψ(3686) → Ξ−Ξ̄+ 5336.7 ± 82.6 18.04 ± 0.04 0.91 ± 0.13 2.78± 0.05
ψ(3686) → Σ(1385)−Σ̄(1385)+ 1374.5 ± 97.8 15.12 ± 0.04 0.64 ± 0.40 0.85± 0.06
ψ(3686) → Σ(1385)+Σ̄(1385)− 1469.9 ± 94.6 16.45 ± 0.04 0.35 ± 0.37 0.84± 0.05

VI. SYSTEMATIC UNCERTAINTY

A. Branching fraction

Systematic uncertainties on the branching fractions are
mainly due to efficiency and resolution differences between
data and MC. They are estimated by comparing the efficien-
cies of tracking, PID,Λ andΞ− reconstruction, and theπ∓Λ
mass window requirement of the reconstructedΞ(Σ(1385)∓)
between the data and simulation. Additional sources of sys-
tematic uncertainties are the fit range, the background shape,
the angular distributions, and the mass shift inM recoil

π∓Λ . In
addition, the uncertainties of the decay branching fractions of
intermediate states and uncertainties of the total number of ψ
events are also accounted for in the systematic uncertainty. All
of the systematic uncertainties are discussed in detail below.

1. The uncertainties due to the tracking and PID efficien-
cies of theπ originating fromΣ(1385) decays are in-

vestigated with the control sampleJ/ψ → pp̄π+π−.
It is found that the efficiency difference between data
and MC is 1.0% per pion for track reconstruction and
PID, respectively, taking into account the relative low
momentum. These differences are taken as systematic
uncertainties.

2. The uncertainty of theΛ reconstruction efficiency in
Σ(1385) decays is estimated using the control sample
ψ → Ξ−Ξ̄+. A detailed description of this method can
be found in [25]. The differences ofΛ reconstruction
efficiency between data and MC are found to be 3.0%
and 1.0% in theJ/ψ andψ(3686) decay respectively,
which are taken into account as systematic uncertain-
ties.

3. The Ξ reconstruction efficiency, which includes the
tracking and PID efficiencies for the pion from theΞ de-
cay and theΛ reconstruction efficiency, is studied with
the control samplesψ → Ξ−Ξ̄+ reconstructed via sin-
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FIG. 3. Distributions ofcos θ for the signals of (a)J/ψ →

Ξ−Ξ̄+, (b) J/ψ → Σ(1385)−Σ̄(1385)+, (c) J/ψ →

Σ(1385)+Σ̄(1385)−, (d) ψ(3686) → Ξ−Ξ̄+, (e) ψ(3686) →

Σ(1385)−Σ̄(1385)+ and (f) ψ(3686) → Σ(1385)+Σ̄(1385)−.
The dots with error bars indicate the efficiency-corrected signal
yields in data, and the curves show the fit results.

gle and double tag methods. The selection criteria of
the charged tracks, and the reconstruction ofΛ andΞ
candidates are exactly the same as those described in
Sec.III . TheΞ− reconstruction efficiency is defined as
the ratio of the number of events from the double tag
Ξ−Ξ̄+ to that from the single tag. The difference in the
Ξ reconstruction efficiency between data and MC sam-
ples is taken as the systematic uncertainty.

4. Forψ → Σ(1385)−Σ̄(1385)+, a strict requirement for
the mass window ofπ∓Λ with 1 σ level is applied to

suppress backgrounds, where the widthσ of the charged
Σ(1385) mass is35 ∼ 40 MeV [3]. We vary the nom-
inal requirements by± 10 MeV/c2 and take the differ-
ence between the data and the MC as the systematic un-
certainty due to mass window ofπ∓Λ. For theΞ chan-
nels, the systematic uncertainty due to mass window of
π∓Λ is estimated to be negligible.

5. In the fits of theM recoil
π∓Λ spectrum, the uncertainty due

to the fit range is estimated by changing the fit range by
± 10 MeV/c2. The differences of the signal yields are
taken as the systematic uncertainties.

6. The uncertainty related to the shape of nonpeaking
backgrounds, which is described by a second-order
polynomial function in the fit, is estimated by repeat-
ing the fit with a first or a third-order polynomial. The
largest difference in the signal yield with respect to the
nominal yields is taken as the systematic uncertainty. In
the decayJ/ψ → Σ(1385)∓Σ̄(1385)±, the uncertainty
related to the peaking background is estimated by vary-
ing the normalized number of background events by1σ.
The signal yield changes are taken as the systematic un-
certainty related to the peaking background. The total
uncertainty related to the background are obtained by
adding the individual contributions in quadrature.

7. The uncertainty in the detection efficiency due to the
modeling of the angular distribution of the baryon pairs,
represented by the parameterα, is estimated by varying
the measuredα values by1σ. The relative change in the
detection efficiency is taken as a systematic uncertainty.

8. Due to the imperfection of the simulation of the mo-
mentum spectrum of the pion fromΞ or Σ(1385) de-
cays, a mass shift (∼2 MeV/c2) between data and MC
is observed in theM recoil

π∓Λ spectrum for theJ/ψ de-
cays (the mass shift inψ(3686) decay is negligible),
which may affect the signal yields since they are ob-
tained by fitting with the corresponding MC shape con-
voluted with a Gaussian function. To estimate the corre-
sponding effect, the shift of theM recoil

π∓Λ spectrum for the
simulated exclusive MC events is corrected, and then
the data are refitted with the same method as the nomi-
nal fit. The resulting changes in signal yields are taken
as the systematic uncertainty.

9. The uncertainties in the branching fractions of the
decays of the intermediate states,Ξ, Σ(1385) and
Λ, are taken from PDG [3] (0.8% for ψ → Ξ−Ξ̄+

and 1.9% forψ → Σ(1385)∓Σ̄(1385)±); they are
considered as systematic uncertainties.

10. The systematic uncertainties due to the total number of
J/ψ or ψ(3686) events are determined with inclusive
hadronicψ decays; they are 0.6% and 0.8% forJ/ψ
andψ(3686) [17, 18], respectively.
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The various contributions of the systematic uncertaintieson
the branching fraction measurements are summarized in Ta-
ble II . The total systematic uncertainty is obtained by sum-
ming the individual contributions in quadrature.

B. Angular distribution

Various systematic uncertainties are considered in the mea-
surement ofα values. These include the uncertainty of the
signal yield in the differentcos θ intervals, the uncertainty of
cos θ fit procedure, and the uncertainty related to the detection
efficiency correction curve as function ofcos θ bin. They are
summarized in TableIII and are discussed in detail below.

1. The signal yields in eachcos θ interval are extracted
from the fit to the correspondingM recoil

π∓Λ distribution.
The sources of the systematic uncertainty of the sig-
nal yield include the fit range, the background shape,
and the mass shift in theM recoil

π∓Λ distribution. To esti-
mate the systematic uncertainty related to the fit range
on M recoil

π∓Λ , we repeat the fit to theM recoil
π∓Λ by chang-

ing the fit range by± 10 MeV/c2. Then, theα values
are extracted by the fit with the changed signal yields,
and the resulting differences to the nominalα values are
taken as the systematic uncertainties. Analogously, the
uncertainties related to the background shape and the
mass shift inM recoil

π∓Λ distribution are evaluated with the
method described above.

2. The systematic uncertainties related to the fit proce-
dure of thecos θ distributions are estimated by re-
fitting thecos θ distribution with a different binning and
fit range. We dividecos θ into 8 intervals forψ →
Ξ−Ξ̄+, J/ψ → Σ(1385)∓Σ̄(1385)± and 16 intervals
for ψ(3686) → Σ(1385)∓Σ̄(1385)±. The changes of
theα values are taken as systematic uncertainties. We
also repeat the fit by changing the range to[−0.9, 0.9]
and[−0.7, 0.7] in cos θ, with the same bin size and dif-
ferent number of bins as the nominal fit. The largest dif-
ference inα with respect to the nominal value is taken
as the systematic uncertainty.

3. In the analysis, theα values are obtained by fitting the
cos θ distribution corrected for the detection efficiency.
To estimate the systematic uncertainty related to the im-
perfection of simulation of detection efficiency, the ratio
of detection efficiencies between data and MC simula-
tion is obtained based on the control sampleJ/ψ →
Ξ−Ξ̄+ with a full event reconstruction. Then, thecos θ
distribution corrected by the ratio of detection efficien-
cies is refitted. The resulting differences inα are taken
as the systematic uncertainty.

All the systematic uncertainties for theα measurement are
summarized in TableIII . The total systematic uncertainty is
the quadratic sum of the individual uncertainties, assuming
them to be independent.

VII. CONCLUSION AND DISCUSSION

Using (225.3 ± 2.8) × 106 J/ψ and (106.4 ± 0.9) ×
106 ψ(3686) events collected with the BESIII detector at
BEPCII, the branching fractions and the angular distribu-
tions forψ → Ξ−Ξ̄+ andΣ(1385)∓Σ̄(1385)± are measured.
A comparison of the branching fractions andα values be-
tween our measurements and previous experiments is sum-
marized in TablesIV and V, where the branching fractions
for ψ(3686) → Σ(1385)∓Σ̄(1385)± and the angular distri-
butions forψ(3686) → Ξ−Ξ̄+ andΣ(1385)∓Σ̄(1385)± are
measured for the first time. The branching fractions and an-
gular distributions forJ/ψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)±

and the branching fraction forψ(3686) → Ξ−Ξ̄+ are in good
agreement and much more precise compared to previously
published results. The measuredα values are also compared
with the predictions in theoretical models [10, 11]. As in-
dicated in TableV, most of our results disagree significantly
with the theoretical predictions, which implies that the naive
prediction of QCD suffers from the approximation that higher-
order corrections are not taken into account. The theoretical
models are expected to be improved in order to understand the
origin of these discrepancies.

To test the “12% rule,”the branching fraction ra-

tios B(ψ(3686)→Ξ−Ξ̄+)

B(J/ψ→Ξ−Ξ̄+)
, B(ψ(3686)→Σ(1385)−Σ̄(1385)+)

B(J/ψ→Σ(1385)−Σ̄(1385)+)
and

B(ψ(3686)→Σ(1385)+Σ̄(1385)−)

B(J/ψ→Σ(1385)+Σ̄(1385)−)
are calculated to be(26.73 ±

0.50 ± 2.30)%, (7.76 ± 0.55 ± 0.68)% and(6.68 ± 0.40 ±
0.50)%, respectively, taking into account common systematic
uncertainties. The ratios are not in agreement with 12%, es-
pecially for theΞ−Ξ̄+ mode.
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TABLE II. Systematic uncertainties on the branching fraction measurements (%).

Source J/ψ → ψ(3686) →
Mode Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)− Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)−

MDC tracking — 1.0 1.0 — 1.0 1.0
PID — 1.0 1.0 — 1.0 1.0
Λ reconstruction — 3.0 3.0 — 1.0 1.0
Ξ reconstruction 6.6 — — 4.4 — –
Mass window ofπΛ negligible 2.1 1.1 negligible 2.4 2.4
Fit range 0.2 2.3 1.5 0.2 3.5 1.5
Background shape 1.0 3.6 4.2 1.5 4.5 4.0
Angular distribution 1.0 2.0 1.5 1.2 3.0 2.6
Mass shift inMrecoil

π∓Λ 2.0 1.0 0.5 negligible negligible negligible
Branching fraction 0.8 1.9 1.9 0.8 1.9 1.9
Total number ofψ 0.6 0.6 0.6 0.8 0.8 0.8
Total 7.1 6.5 6.2 4.9 7.4 6.2

TABLE III. Systematic uncertainties onα value measurements (%).

Source J/ψ → ψ(3686) →
Mode Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)− Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)−

Mrecoil
π∓Λ fitting range 6.6 5.2 7.3 9.1 7.8 6.2

Background shape 5.7 5.2 5.9 7.7 28.0 11.0
Mass shift inMrecoil

π∓Λ 4.5 5.8 6.0 negligible negligible negligible
cos θ interval 1.5 2.0 4.0 5.6 16.0 15.0
cos θ fit range 5.3 10.5 8.2 6.6 25.0 20.0
Efficiency correction 6.9 5.1 5.5 5.4 6.1 6.7
Total 13.2 15.1 15.4 15.7 42.0 28.8

TABLE IV. Comparison of the branching fractions forψ → Ξ−Ξ̄+, Σ(1385)∓Σ̄(1385)± (in units of 10−4). The first uncertainties are
statistical, and the seconds are systematic.

Source J/ψ → ψ(3686) →
Mode Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)− Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)−

This work 10.40 ± 0.06± 0.74 10.96± 0.12± 0.71 12.58± 0.14± 0.78 2.78± 0.05 ± 0.14 0.85± 0.06± 0.06 0.84± 0.05± 0.05
MarkI [5] 14.00 ± 5.00 — — < 2.0 — —
MarkII [6] 11.40 ± 0.80± 2.00 8.60± 1.80± 2.20 10.3± 2.4± 2.5 — — —
DM2 [7] 7.00± 0.60± 1.20 10.00± 0.40± 2.10 11.9± 0.4± 2.5 — — —
BESII [8, 12] 9.00± 0.30± 1.80 12.30± 0.70± 3.00 15.0± 0.8± 3.8 3.03± 0.40 ± 0.32 — —
CLEO [9] — — — 2.40± 0.30 ± 0.20 — —
BESI [26] — — — 0.94± 0.27± 0.15 — —
PDG [3] 8.50± 1.60 10.30± 1.30 10.30± 1.30 1.80± 0.60 — —

TABLE V. Comparison ofα for ψ → Ξ−Ξ̄+ andΣ(1385)∓Σ̄(1385)±. The first uncertainties are statistical, and the second aresystematic.

Source J/ψ → ψ(3686) →
Mode Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)− Ξ−Ξ̄+ Σ(1385)−Σ̄(1385)+ Σ(1385)+Σ̄(1385)−

This work 0.58± 0.04± 0.08 −0.58± 0.05± 0.09 −0.49± 0.06± 0.08 0.91± 0.13± 0.14 0.64± 0.40± 0.27 0.35± 0.37± 0.10
BESII [8] 0.35± 0.29± 0.06 −0.54± 0.22± 0.10 −0.35± 0.25± 0.06 — — —
MarkIII [ 6] 0.13± 0.55 — — — — —
Claudson 0.16 0.11 0.11 0.32 0.29 0.29
et al. [10]
Carimalo [11] 0.27 0.20 0.20 0.52 0.50 0.50
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