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Cyberattacks have risen in recent 
times. The attack on Sony Pictures 
by hackers, allegedly from North 

Korea, received worldwide attention. 
U.S. President Barack Obama issued a 
statement and “vowed a U.S. response 
after North Korea’s alleged cyberattack” 
[1]. This dangerous malware, termed 
wiper, could overwrite data and stop 
important execution processes. An analy-
sis by the U.S. Federal Bureau of Investi-
gation showed distinct similarities 
between this attack and the code used to 
attack South Korea in 2013, thus con-
firming that hackers reuse code from 
already existing malware to create new 
variants. This attack, along with other 
recently discovered attacks such as Regin 
and Opcleaver, give one clear message: 
current cybersecurity defense mecha-
nisms are not sufficient enough to thwart 
these sophisticated attacks. 

Today’s defense mechanisms, such 
as commercial antivirus (AV) software, 
is based on scanning systems for suspi-
cious or malicious activity. If such an 
activity is found, the files under suspect 
are either quarantined or the vulnerable 
system is patched with an update. In turn, 
the AV software is also updated with new 
signatures to identify such activities in the 
future. The scanning methods are based on 
a variety of techniques such as static anal-
ysis-, dynamic analysis-, and other heu-
ristics-based techniques, which are often 
slow to react to new attacks and threats. 

Static analysis is based on analyz-
ing an executable without executing 

it. These techniques include searching 
for specific strings, computing crypto-
graphic hashes, and disassembling the 
executable to extract features. On the 
other hand, dynamic analysis executes 
the binary executable and studies its 
behavioral characteristics in a vir-
tual sandboxed environment. Some of 
the methods include system-call-level 
monitoring and memory snapshot com-
parison. Hackers are familiar with these 
standard methods and come up with 
ways to evade the current defense mech-
anisms. They produce new malware 
variants that easily evade the detection 
methods. These variants are created 
from existing malware using inexpen-
sive, easily available “factory tool kits” 
in a virtual factory-like setting, which 
then spread and infect more systems. 
Once a system is compromised, it either 
quickly loses control and/or the infec-
tion spreads to other networked systems. 

While security techniques constant-
ly evolve to keep up with new attacks, 
hackers too change their ways and con-
tinue to evade defense mechanisms. 
As this never-ending billion dollar “cat 
and mouse game” continues, it may be 
useful to look at avenues that can bring 
in novel alternative and/or orthogo-
nal defense approaches to counter the 
ongoing threats. The hope is to catch 
these new attacks using complementary 
methods that may not be well known 
to hackers, thus making it more dif-
ficult and/or too expensive for them to 
evade all detection schemes. This article 
focuses on such orthogonal approaches 
from signal and image processing that 
complement standard approaches. 

Malware landscape
Malware—malicious software—is any 
software that is designed to cause dam-
age to a computer, server, network, 
mobile phones, and other devices. 
Based on their specific function such as 
stealing data, spying, keylogging or 
others, malware are classified into dif-
ferent types such as trojans, backdoors, 
virus, worm, spyware, adware, and 
more. Malware are also identified by 
which platform they belong to, such as 
Windows, Linux, AndroidOS, and oth-
ers. While most malware are geared 
toward the Windows platform, they are 
also quickly expanding to other plat-
forms such as AndroidOS, Linux, and 
MAC OS X. Malware are further classi-
fied into families, which in turn, have 
many variants that perform almost the 
same function (Figure 1). According to 
the Computer Antivirus Research 
Organization (CARO) convention for 
naming malware, a malware is repre-
sented by Type:Platform/Family.Vari-
ant. For example, PWS:Win32/Zbot.
gen denotes a password-stealer mal-
ware of the generic Zbot family that 
attacks 32-bit Windows platforms. 

Malware variants are created either 
by making changes to the malware 
code or by using executable packers. 
In the former case, a simple mutation 
occurs by changing small parts of the 
code. These are referred to as unpacked 
malware variants. In the latter case, a 
more complex mutation occurs either 
by compressing or encrypting (usually 
with different keys) the main body of 
the code and appending a decompres-
sion/decryption routine, which during 
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runtime decompresses/decrypts the 
encrypted payload. The new variants 
are called packed malware variants, 
and they perform the same function as 
the original malware but their attributes 
would be so different that AV software, 
which use traditional signature-based 
detection, would not be able to detect 
them. The tools used for obfuscation 
are called executable packers, available 
both as freeware and commercial tools. 
There are hundreds of packers that exist 
today that make it very easy for mal-
ware writers to create new variants. 

Malware analysis
Malware classification deals with identi-
fying the family of an unknown malware 
variant from a malware data set that is 
divided into many families. The level of 
risk of a particular malware is determined 
by its function, which is in turn reflected 
in its family. Hence, identifying the fami-
ly of an unknown malware is crucial in 
understanding and stopping new mal-
ware. It is usually assumed that an 
unknown malware variant belongs to a 
known set of malware families (super-
vised classification). Having a high clas-
sification accuracy (the number of 
correctly classified families) is desirable. 
A closely related problem is malware 
retrieval, where the objective is to retrieve 
similar malware matches for a given 
query from a large database of malware. 
In malware detection, the objective is to 
determine if an unknown executable is 
malicious, benign, or unknown. This 
problem is more challenging than mal-

ware classification, where all samples are 
known to be malicious. In the following, 
we will focus on malware classification 
and malware retrieval. 

A common way to defeat static 
analysis is by using packers on an 
executable, which compress and/or 
encrypt the executable code and cre-
ate a new packed executable that mim-
ics the previous executable in function 
but reveals the actual code only upon 
execution runtime. Dynamic analysis 
is agnostic to packing but is slow and 
time consuming. Furthermore, today’s 
malware are designed to be virtual 
machine (VM) aware, which either 
do not do any malicious activity in the 
presence of VM or attempts a “suicide” 
when a VM is detected. 

In this context, the challenge is 
to develop complementary methods 
that are able to quickly identify mal-
ware without the need for disassembly, 
unpacking, or execution. Alternative 
representations of malware data as one-
dimensional (1-D) or two-dimensional 
(2-D) signals have patterns that are not 
captured by standard methods. 

Malware images
A common method of viewing and edit-
ing malware binaries is by using Hex 
Editors, which display the bytes of the 
binaries in hexadecimal representation 
from “00” to “FF.” Effectively, these are 
8-bit numbers in the range of 0–255. 
Grouping these 8-bit numbers results in 
a 8-bit vector, from which we construct 
a signal or an image as shown in 

Figure 2. For an image, the width is 
fixed and the height is allowed to vary 
depending on the file size. To ensure 
that a small file does not appear hori-
zontally stretched and a large file does 
not look vertically elongated, we pro-
vide some recommended image widths 
for different file sizes based on empiri-
cal observations [6]. Figure 3 shows an 
example image of a common Windows 
Trojan downloader, Dontovo.A, which 
downloads and executes arbitrary files. 
We can see that different sections of 
this malware exhibit distinctive image 
patterns. The .text section, which con-
tains the executable code, has a fine-
grained texture. It is followed by a black 
block (zeros), indicating zero padding at 
the end of this section. The .data section 
contains both uninitialized code (black 
patch) and initialized data (fine-grained 
texture). The final .rsrc section contains 
all the resources of the module, includ-
ing the icon of the executable. 

Visualizing these malware variants 
as images, one could make an empirical 
observation that there is visual similarity 
among malware variants of the same fam-
ily (Figure 4). At the same time, the vari-
ants are also distinct from those belonging 
to other families. This is because the vari-
ants are created using either simple code 
mutations or packing. It is easy to iden-
tify the variants for unpacked malware 
since the structure of the variants are very 
similar. In the case of packed malware, 
the executable code is compressed and/
or encrypted. During runtime, this code 
is then unpacked and executed. When two 
unpacked variants belonging to a specif-
ic malware family are using a packer to 
obtain packed variants of the same fam-
ily, their structure no longer remains the 
same as that of the unpacked variants. 
However, the structure within the packed 
variants are still similar though the actual 
bytes may vary due to compression and/
or encryption. This is because most of 
the current packers use weak encryption 
schemes [2]. The visual similarity of mal-
ware images motivated us to look at mal-
ware classification using techniques from 
computer vision, where image-based 
classification has been well studied. We 
use global image similarity descriptors 
and obtain compact  signatures for these 
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figuRE 1. The malware landscape: malware are categorized by their type, families, and variants.
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malware, which are then used to identify 
their families. 

Classification
Once the malware binary is converted to 
an image, an image similarity descriptor 
is computed on the image to characterize 
the malware. The descriptor that we use 
is the GIST feature [3], which is com-
monly used in scene classification [3], 
object recognition [4] and large-scale 
image search [5]. Every image location is 
represented by the output of filters tuned 
to different orientations and scales. A 
steerable pyramid with four scales and 
eight orientations is used. The local rep-
resentation of an image is then given by 

( ) ( ) ,V x V x ..
L

k k N1= =  where N 20=  is 
the number of subbands. To capture the 
global image properties while retaining 
some local information, the mean value 
of the magnitude of the local features is 
computed and averaged over large spatial 
regions: ( ) ( ) ( ),m x V x W x x

x
= -l l

l
/  

where ( )W x  is the averaging window. 
The resulting representation is downsam-
pled to have a spatial resolution of 
M M#  pixels (here we use M 4= ). 
Thus, the feature vector obtained is of 
size .M M N 320# # =   For faster pro-
cessing, the images are usually resized to 
a smaller size (we use ) .64 64#  Our 
experiments showed that our initial 
choice of image width and the width of 
the resized image does not significantly 
affect our performance. 

To identify malware families, we 
use the nearest neighbor (NN) classifier, 
which assigns the family of the near-
est malware to an unknown malware. 
We obtained four data sets: Malimg 
data set (Windows) [8], Malheur data 
set (Windows) [9], MalGenome data 
set (Android) [7], and VxShare ELF 
data set (Linux) [10]. On all four data 
sets we performed supervised classifi-
cation with tenfold cross validation and 
obtained a high-classification accuracy 
(Table 1). Furthermore the accuracy of 
this method (95.14%) is comparable 
to that of the state-of-the-art dynamic 
analysis (98.12%), but 4,000 times faster 
[11]. In [12], we extend our approach to 
separate malware from benign software. 
To get a richer discrimination between 
benign and malicious samples, we adopt 

a section-aware approach and compute 
GIST descriptors on the entire binary as 
well as the top two sections of the binary 
thatcould contain the code. With more 
than 99% precision, this approach out-
performed other static similarity features. 

Search and retrieval
We developed search and retrieval of 
malware (SARVAM) [13] (http://sarvam.
ece.ucsb.edu), an online system for large-
scale malware search and retrieval 
(Figure 5). It is one of the few systems 
available to the public where researchers 
can upload or search for a sample and 
retrieve similar malware matches from a 
large database. As in [6], we use GIST 
descriptors for content-based search and 
retrieval of malware. For fast search and 
retrieval, we use a scalable Balltree-based 
NN searching technique. 

During the initial training phase of 
building SARVAM, we obtained a large 
corpus of malware samples from various 
sources. The image fingerprints for all the 
samples in the corpus are then computed 
and stored in a database. Simultaneous-
ly, we obtained the AV labels for all the 
samples from Virustotal [14], an online 
system that maintains a database of AV 
labels. These labels act as a ground truth 
and are later used to describe the nature of 
a sample, i.e., how malicious or benign a 
sample is. During the query phase, the fin-
gerprint for the new sample is computed 
and matched with the existing fingerprints 
in the database to retrieve the top matches. 

The initial database consisted of more 
than seven million samples comprising 
mostly malware and a few benign sam-
ples. For a new query, SARVAM finds a 
match in about six seconds.  SARVAM 
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figuRE 2. Malware can be represented as a 1-D signal or as a 2-D image.

figuRE 3. Visualizing a malware as a digital image: different sections of the executable are visible in 
the image.
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has been operational since May 2012, and 
we have received more than 440,000 sam-
ples since then. Nearly 60% of the sam-
ples we received are variants of already 
existing malware from our database. 

Sparsity-based malware analysis
In this section, we explore sparse repre-
sentation-based classification (SRC) 
methods to classify malware variants into 
families. Such methods have been previ-
ously applied to problems where samples 
belonging to a class have small variations 
in them, such as face recognition [16] 
and iris recognition [18]. We developed 
sparsity inspired classification of mal-
ware variants (SATTVA) [15], where 
we model a malware variant belonging to 
a particular malware family as a linear 
combination of variants from that family. 
Since variants of a family have small 
changes in the overall structure and differ 
from variants of other families, projec-
tions of malware in lower dimensions 
preserve this “similarity.” 

Given a data set of N  labeled malware 
belonging to L  different malware fami-
lies with P  malware per family, the task 

is to identify the family of an unknown 
malware u.  We represent a malware as a 
digital signal x  of range [ , ],0 255  where 
every entry of x  is a byte value of the 
malware. Since each malware sample can 
have a different code-length, we normal-
ize all vectors to a maximum length (M) 
by zero-padding. 

The entire data set can now be repre-
sented as an M N#  matrix ,A  where every 
column represents a malware. Further, for 
every family k  , , ...,( ),k L1 2=  we define 
an M P#  matrix [ , , ]A x x xk k k kP1 2 f=  
where x {.}k  represents a malware sam-
ple belonging to family .k  Now, ,A  can 
be expressed as a concatenation of block-
matrices Ak  

 [ .. ]A A A A RL
M N

1 2 != #  (1)

Let u RM!  be an unknown malware 
whose family is to be determined, with 
the assumption that u  belongs to one of 
the families in the data set. Then, follow-
ing [16], we represent u  as a sparse linear 
combination of the training samples as 

 ,x Au ij
j

P

i

L

ij
11

a a= =
==

//  (2)

where [ , , ], ,L P
T

1 1 fa a a=  represents 
the N 1#  sparse coefficient vector 

.( )N LP=  a  will have nonzero values 
only for samples that are from the same 
family as .u  The sparsest solution to (2) 
can be obtained using basis pursuit [18] 
by solving an l -1 norm minimization 
problem. Estimating the family of u  is 
done by computing residuals for every 
family in the training set and then select-
ing the family that has minimum residue. 

Random projections
When a malware binary is represented 
as a numerical vector by considering 
every byte, the dimensions of that vec-
tor can be very high. For example, a 
1-megabyte malware has around 1 mil-
lion bytes and this could make the cal-
culations computationally expensive. 
Hence, we project the vectors to lower 
dimensions using random projections 
(RPs). This also removes dependency 
on any particular feature extraction 
method. Previous works have demon-
strated that SRC is effective in lower-
dimensional RPs as well; see [16]–[18]. 
Let R RD M! #  be the matrix that pro-
jects u  from signal space M  to w  of a 
lower-dimensional space D ( )D M11

 .w Ru RAa= =  (3)

The entries of R  are drawn from a 
zero-mean normal distribution. The 
above system of equations is under-
determined and sparse solutions  
can be obtained by reduced l -1 norm 

(a) (b) (c) (d)

figuRE 4. Visual similarity among malware variants of four different families. (a) Adialer.C, (b) Dialplatform.B, (c) Fakerean, and (d) Yuner.A.

Table 1. Accuracy on malware data sets from different operating systems:  
Windows, Linux, and Android.

Data Set Size Number of Families Accuracy 
Malimg (Win) 9,339 25 97.4 
Malheur (Win) 3,131 24 98.37 
VxShare (Linux) 568 8 83.27 
Malgenome (Android) 1,094 13 84.55 
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 minimization. The overall approach is 
shown in Figure 6. 

We test our technique on two pub-
lic malware data sets: the Malimg data 
set [8] and the Malheur data set [9]. On 
both data sets, we select equal number 
of samples to reduce any bias toward a 
particular family. For comparison, we 
use GIST descriptors, which we had 

previously applied for malware clas-
sification. We use the SRC framework 
to identify the malware family of a test 
sample and compare it with NN classi-
fication that we previously used in [6]. 
We vary the projected dimensions from 
48 to 512, which are consistent for both 
RP and GIST. In our experiments, we 
choose 80% of a data set for training and 

20% for testing. On both the Malimg 
data set  [Figure 7(a)] and the Malheur 
data set [Figure 7(b)], the best accuracy 
is obtained for the combination of RPs 
and the SRC classification framework 
(92.83% for Malimg and 98.55% for 
Malheur). The projected dimension is 
512 from higher dimensions of 840,960 
(Malimg) and 3,364,864 (Malheur). 
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figuRE 5. The block schematic of SARVAM: In the initial phase, the image similarity descriptors and AV labels are computed and stored in a database. In 
the query phase, the NNs along with their corresponding AV labels are retrieved.
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The accuracies for GIST for both clas-
sifiers are almost the same. In [15], we 
extend this approach using a simple 
thresholding scheme to reject potential 
outliers in a data set. 

Future directions
While we explored signal- and image-
based analysis of malware data, a natu-
ral complement is to treat the malware 
as audio-like 1-D signals and leverage 
automated audio descriptors. Another 
possible approach is computing image 
similarity descriptors and/or random 
projections on all the sections and rep-
resent a malware as a bag of descrip-
tors, which can then be used for better 
characterization of malware. Using the 
error model in the sparse representa-
tion-based malware classification 
framework, we can determine the exact 
positions in which the malware variant 
differs from another variant. This 
approach can also be used to find the 
exact source from which a malware var-
iant evolves. Patched malware that 
attaches to benign software can be iden-
tified using this method. 

Conclusions
In this article, we explored orthogonal 
methods to analyze malware motivated 
by signal and image processing. Malware 
samples are represented as images or sig-
nals. Image- and signal-based features are 
extracted to characterize malware. Our 
extensive experiments demonstrate the 
efficacy of our methods on malware clas-
sification and retrieval. We believe that 
our techniques will open the scope of sig-
nal- and image-based methods to broader 
fields in computer security. 
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imaging is the capability of imaging at 
a frame rate of up to tens of thousands 
frames/second [5]. While such ultrafast 
imaging technology offers great 
opportunities for the improvement of 
US imaging, especially for fast moving 
objects such as a beating heart, arterial 
flow, or a shear wave within the tissue 
(based on which the tissue elasticity 
can be quantified), it also raises signif-
icant challenges. Techniques to make 
full use of the GB of data acquired per 
second are required. There are oppor-
tunities to take advantage of the prior 
knowledge in both the underlying 
imaging physics and target tissue/
organ physiology, and to generate in 
real-time clinically relevant informa-
tion that are yet to be fully exploited. 

In addition, the complex nonlinear 
signals generated by MBs provide 
another avenue for research, as the MB 
signals can be influenced by many varia-
bles related to the in vivo environment, 
such as blood pressure, proximity to ves-
sel wall, gas saturation, and the mechan-
ical properties of the surrounding tissue. 
A better understanding of the physics 
and advanced modeling and signal pro-
cessing techniques could lead to extract-
ing this clinically relevant information 
from the MB signals. Additionally, while 
most clinical US imaging is still in two 
dimensions, three-dimensional US 
imaging is arriving and will create fur-
ther opportunities and challenges for 
data postprocessing. Finally, molecular 
imaging using targeted MBs is another 
exciting area of further development, 
where more advanced signal processing 
could help detect and evaluate patholo-
gies at their earliest stage.  
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