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Summary

Buildings consume 75% of U.S. electricity; therefore, improving the efficiency and flexibil-
ity of building operations could increase the reliability and resilience of the rapidly-changing
electricity system. We estimate the technical potential near- and long-term impacts of best
available building efficiency and flexibility measures on annual electricity use and hourly de-
mand across the contiguous U.S. Co-deployment of building efficiency and flexibility avoids up
to 742 TWh of annual electricity use and 181 GW of daily net peak load in 2030, rising to 800
TWh and 208 GW by 2050; at least 59 GW and 69 GW of the peak reductions are dispatch-
able. Implementing efficiency measures alongside flexibility measures reduces the potential for
off-peak load increases, underscoring limitations on load shifting in efficient buildings. Over-
all, however, we find a substantial building-grid resource that could reduce future fossil-fired
generation needs while also reducing dependence on energy storage with increasing variable
renewable energy penetration.

Introduction1

The U.S. electricity system is undergoing rapid transformation. Electricity generation from renew-2

able sources surpassed coal-fired generation for the first time in the U.S. in April 2019 [1]. From3

2010–2019, the cost of utility-scale solar photovoltaics (PV) declined 82%, and the costs for on-4

shore and offshore wind declined 39% and 29%, respectively [2]. These continued decreases make5

solar and wind cost-competitive with conventional sources of electricity generation, even without6

including subsidies [3]. Accordingly, the U.S. Energy Information Administration (EIA) projects7

renewables will account for the largest share of electricity generation in the U.S. by 2050 [4], while8

other studies project this will happen as soon as 2035 [5, 6].9
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At high levels of renewable electricity penetration, the variability of renewable generation10

presents numerous technical and economic challenges to reliable operation of the electric system11

[7, 8]. Grid flexibility is an essential component of reducing the costs and ensuring the reliability of12

power systems in these contexts [9–15]. There exists a range of supply- and demand-side measures13

that can provide flexibility, such as construction of new flexible generation capacity, investment14

in expanded grid infrastructure, various forms of energy storage, greater conventional plant dis-15

patch flexibility, traditional demand-side management, and more sophisticated electricity demand16

management that reduces or shifts the timing of electric load. Of these measures, improved elec-17

tricity demand management has several distinct advantages, including lower capital and investment18

costs as well as reduced technical and environmental risks [16–20]. Indeed, demand management19

technologies can be beneficially deployed alongside energy storage to meet grid flexibility needs in20

a high renewable electricity future [15] while also deferring investments in new electricity genera-21

tion, transmission and distribution capacity [21]. The U.S. Federal Energy Regulatory Commission22

(FERC) Order 2222, which enables participation of aggregated distributed energy resources (DERs)23

in wholesale electricity markets, portends an important role for demand management technologies24

in future electricity systems [22].25

Residential and commercial buildings account for 75% of U.S. electricity consumption [4] and26

are therefore a primary demand management resource for the electric grid. Building technologies27

such as highly-efficient heating and cooling equipment, advanced windows, solid-state lighting,28

and variable speed motors offer substantial efficiency gains, while connected appliances and smart29

controls enable buildings to actively manage electric loads to provide flexibility services to the grid30

while still meeting occupant comfort and productivity requirements [23]. Previous studies of the31

U.S. building-grid resource at the national scale suggest that such building technologies can reduce32

more than 200 GW of summer peak load by 2030 [11, 24–27]; regional studies lend further support33

to these findings [28–36].34

While the importance of the U.S. buildings sector as a grid resource is well-established, the35

magnitude and breadth of this resource remain elusive due to key study limitations, including: nar-36

row focus on maximum peak demand reductions from specific technology measures and deployment37

scenarios; reliance on data sets that are out of date, limited in their geographic and temporal res-38

olution, or that do not include long-range projections; lack of results disaggregation to particular39

building types or electric end uses; and simplistic or missing consideration for the joint impacts40

of energy efficiency and flexibility technologies when deployed together (for example, total peak41

reductions from the adoption of more efficient HVAC and more flexible HVAC is not necessarily42

equal to the sum of these measures’ individual peak reductions). Furthermore, existing studies do43

not adopt a common and reproducible analytical framework for assessing the potential grid resource44

from buildings, which would enable more holistic and comparable analyses of the grid impacts from45

emerging building technologies and operational approaches.46

In this paper we conduct a comprehensive analysis of the near- and long-term technical potential47

bulk power grid resource offered by best available U.S. building efficiency and flexibility measures.48

We pair bottom-up modeling of measures’ building-level impacts with regional representations of49

the building stock and its projected electricity use to estimate the impacts of multiple building50

efficiency and flexibility scenarios on regional system loads across the contiguous U.S. in 2030 and51

2050. Results are communicated at both the national and regional scales and are disaggregated by52

building type and end use, facilitating a quantitative understanding of the role that buildings as a53

whole and specific building technologies or operational approaches can play in the future evolution54

of the U.S. electricity system.55
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Building efficiency and flexibility scenarios and grid metrics56

Table 1 provides an overview of key analysis assumptions. We estimate the technical potential57

impacts of three building measure sets—energy efficiency only (EE), demand flexibility only (DF),58

and packaged efficiency and flexibility (EE+DF)—on annual U.S. residential and commercial build-59

ing electricity use and seasonal peak and off-peak demand. Measure impacts in 2030 and 2050 are60

assessed within each of the 22 2019 U.S. Energy Information Administration (EIA) Electricity Mar-61

ket Module (EMM) regions, with certain outputs aggregated into the 10 2019 U.S Environmental62

Protection Agency (EPA) AVERT regions for simplicity of presentation (Figure 1). Throughout,63

we use hourly regional system loads less wind and solar generation to define net peak and off-peak64

demand periods, i.e., we consider variable renewable power resources to operate more like negative65

loads than generation in our analysis. Renewable electricity penetration levels vary on a regional ba-66

sis, but average to 30% nationally. Additionally, we focus on average daily non-coincident peak and67

off-peak hour impacts across the summer (Jun–Sep), winter (Dec–Mar) and intermediate (all other68

months) seasons. Additional detail on measure assumptions, analysis approach, and assessment69

metrics is available in the Experimental Procedures and Supplemental Information sections.70

(b)(a)

Figure 1: Regional boundaries used to generate and aggregate results. Scout measure impacts
are assessed within each of the 22 2019 U.S. EIA EMM regions shown in (a). Outputs can be aggregated
into the 10 2019 U.S. EPA AVERT regions shown in (b).

Results71

Baseline building electricity by end use and region72

First, we analyze the distribution of baseline annual electricity use and net peak demand in U.S.73

buildings across end uses and regions. Figure 2 presents the annual electricity use and average74

daily summer and winter net peak demand from U.S. buildings in 2030; 2050 results are shown in75

Supplemental Figure S1. In 2030, buildings are responsible for 2870 TWh of annual electricity use76

(71% of the contiguous U.S. annual total [37]) and 485 GW and 431 GW of summer and winter77

net peak demand, respectively. By 2050, these totals grow to 3249 TWh, 562 GW, and 478 GW,78

respectively. Residential buildings account for the largest share across each of these metrics, and79

differences between residential and commercial buildings are greater in the case of peak demand,80

where residential buildings contribute 1.4–1.5 times more peak summer and 1.7 times more peak81

winter demand than commercial buildings do.82
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Table 1: Overview of primary analysis components, assumptions, and data sources.
Analysis
Component

Summary Assumptions and Data Sources

Energy use sector U.S. residential and commercial buildings Consistent with sector definitions in the
U.S. EIA Annual Energy Outlook (AEO)
[4].

Assessment
metrics

Annual electricity use
Average net non-coincident peak demand
Average net non-coincident off-peak demand

Daily peak and off-peak periods are defined
by season (summer, winter, intermediate)
and region based on total system load net
renewable electricity generation (see SI sec-
tion 2.1); net system load profiles reflect
2050 renewable penetration in 2019 AEO
Reference Case [37]; averages are taken
across all net peak and off-peak hours in a
given season.

Baseline building
demand scenario

2019 EIA AEO Reference Case Projections between 2015–2050 from [37].

Alternative
building demand
scenarios

Best energy efficiency only (EE)
Best demand flexibility only (DF)
Best efficiency and flexibility (EE+DF)

Best available efficiency levels generally cor-
respond to those in the Scout Core Measures
data set [38]; best available flexibility levels
maximize intended reductions or increases
in hourly electricity demand without com-
promising minimum building service levels
(see Table 2 and SI section 4 for detailed
measure definitions and assumptions).

Technology
stock dynamics

100% annual stock turnover (technical poten-
tial diffusion); static snapshots in 2030/2050

Consistent with Technical Potential Sce-
nario assumptions in Scout [39, 40].

Geographic
boundary
and resolution

Contiguous U.S.
22 2019 EIA EMM regions
10 2019 EPA AVERT regions

Analysis is conducted at the geographic res-
olution of the 2019 EIA EMM regions; cer-
tain results are aggregated and presented
using the 2019 EPA AVERT regions for sim-
plicity (see Figure 1).

Time horizon
and resolution

2020–2050 model time horizon
Hourly temporal resolution

Time horizon is a subset of that used in the
2019 EIA AEO [37]; annual electricity pro-
jections are translated to an hourly basis us-
ing representative residential and commer-
cial end use load shapes simulated in Ener-
gyPlus (see SI section 2.2).
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Figures 2 and S1 show that thermal end uses—in particular, cooling—are key drivers of 203083

and 2050 annual electricity use in both residential and commercial buildings. Other end uses84

that make large contributions across the metrics shown include water heating, refrigeration, and85

home electronics in residential buildings and office electronics, refrigeration, and ventilation in86

commercial buildings. Notably, a sizeable portion of both residential and commercial loads fall87

into the “unclassified” or “non-building” categories, which include end uses that are not captured88

by EIA surveys [41] and commercial loads such as water distribution pumps, street lighting, and89

telecommunication; such categories are not readily addressed by building efficiency or flexibility90

measures and thus limit the potential magnitude of the building-grid resource.91

Geographically, U.S. building electricity use and peak demand are strongly concentrated in92

the Great Lakes/Mid-Atlantic and Southeast AVERT regions. These regions aggregate multiple93

EMM regions with high population density, building square footage, and annual electricity use94

(see Supplemental Figure S7) [41–43]; in the Southeast, annual electricity use and peak demand are95

further driven by significant cooling needs and a large installed based of electric heating [41, 43, 44].96

While baseline electricity use and demand tend to be highest in the Southeast, a notable exception97

is summer peak demand for commercial buildings, which is concentrated most strongly in the Great98

Lakes/Mid-Atlantic region. Summer peak periods in this region tend to fall into the afternoon hours99

(see Experimental Procedures and Supplemental Information section 2.1), which are more coincident100

with peaks in commercial building energy use profiles; by comparison, summer peak periods in the101

Southeast tend to occur later in the day, when commercial building loads are decreasing. Regional102

baseline electricity attributions in Figure 2 and S1 are therefore reflective of the size of the region’s103

building stock, energy intensity of required building services, and the seasonal net system peak104

periods assumed.105

National grid resource from building efficiency and flexibility106

Next, we analyze how adoption of energy efficiency, demand flexibility, or both measure types107

affects annual electricity use and net peak demand in U.S. buildings at the national scale. Figure 3108

presents the potential impacts of building efficiency and flexibility on annual U.S. electricity use and109

average daily summer and winter net peak and off-peak demand in 2030; 2050 results are shown110

in Supplemental Figure S2. Annual and net peak period reductions are highest in the scenario111

that deploys building efficiency and flexibility measures together (EE+DF), which avoids 742 TWh112

of annual electricity use and 181 and 119 GW of summer and winter net peak demand in 2030,113

respectively. By 2050, these reductions grow to 800 TWh annual and 208 and 121 GW summer114

and winter net peak, respectively. The annual reductions are 32% and 30% of total projected U.S.115

fossil-fired generation in 2030 and 2050, respectively, while the summer peak reductions in these116

years are 26% and 22% of total projected fossil-fired capacity and 122% and 50% of new capacity117

additions after 2020 [4]; this suggests that aggressive deployment of building efficiency and flexibility118

would substantially offset future needs for fossil-fired base and peak load generation. Moreover, at119

least 59 GW of summer peak reductions in the EE+DF scenario are attributed to dispatchable120

flexibility measures, growing to 69 GW by 2050; the dispatchable portion of the EE+DF reductions121

is calculated by subtracting efficiency–only scenario (EE) results from efficiency and flexibility122

scenario (EE+DF) results. In the flexibility–only scenario (DF), the dispatchable resource reaches123

96 GW in 2030 and 112 GW by 2050. By comparison, the EIA projects diurnal battery storage124

to grow to up to 98 GW by 2050 [4]; thus, the dispatchable resource we estimate from building125

flexibility in 2050 is 70%–114% of EIA’s most optimistic storage capacity projections for that year126
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(a) (b) (c)
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Figure 2: Baseline annual electricity use and net peak demand from U.S. buildings in 2030.
Baseline residential (a-c) and commercial (d-f) annual electricity use and peak summer and winter demand
are broken out by end use and the 10 2019 EPA AVERT regions (map at right), which are aggregations of
the 22 2019 EIA EMM regions (see Figure 1). Baseline projections are consistent with the 2019 EIA AEO
Reference Case. Seasonal peak periods are identified in each region based on total hourly system loads less
variable renewable energy supply; regional peak impacts are averaged across all weekday peak hours in the
season (Jun–Sep for summer, Dec–Mar for winter). Across regions in 2030, U.S. buildings are projected
to contribute 2870 TWh to annual electricity use and 485 GW and 431 GW to daily net peak demand in
summer and winter, respectively; baseline electricity use is most concentrated in the Southeast and Great
Lakes/Mid-Atlantic regions.
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and constitutes a significant alternative to energy storage deployment.127

Across measure scenarios and projection years, residential buildings drive both annual and128

peak reductions, primarily through measures that affect cooling, heating, and water heating. In129

commercial buildings, measures that affect office electronics show consistently high relative impacts130

across metrics—particularly annual and winter peak reductions—while cooling measures dominate131

reductions in summer peak demand. The relative attribution of annual and peak reductions to132

specific end uses and building types mirrors the baseline distributions in Figures 2 and S1, which133

are therefore key to understanding the prominence of particular efficiency and flexibility measure134

impacts.135

Increases in building demand during off-peak hours, those hours with the lowest net system136

loads, are muted in Figures 3 and S2, reaching totals of up to just 13 GW in 2030 and 14 GW in137

2050 in the DF scenario. The vast majority of the increases (up to 13 GW) comes from residential138

measures that shift water heating demand into the off-peak hours; ice storage measures for cooling139

in large commercial buildings contribute the second highest increase (up to 2 GW in summer).140

This finding highlights the challenges of marrying realistic building-level operational adjustments141

with regional system net load balancing needs. To maximize effectiveness, for example, precooling142

measures reduce set point temperatures in the hours preceding the peak hour window; however,143

the net utility load is only low for these hours in regions with high mid-day solar generation (see144

Supplemental Information Figure S8). Potential load increases from precooling would be more145

beneficial in a high-solar penetration case where regions’ low net system loads occur during mid-146

day hours (see the sensitivity analysis in Supplemental Information section 2.1.1). Thermal storage147

measures such as grid-responsive water heating and ice storage offer more potential for demand148

increases during off-peak periods, but concentrate these increases in just a few hours, far fewer than149

the total number of low net demand hours characteristic of many regional systems. Adding to these150

inherent limitations of the flexibility measures, the introduction of efficiency measures (EE+DF)151

counters additional off-peak demand by reducing the available load for flexibility measures to shift,152

thus reducing off-peak hour demand by up to 79 GW in 2030 and 88 GW in 2050.153

Spatio-temporal distribution of the building-grid resource154

Third, we attribute the impacts of building efficiency and flexibility to specific U.S. grid regions155

and sub-annual time periods. Figure 4 shows regional annual electricity use and average daily156

summer and winter net peak demand reduction potentials for the the EE+DF scenario in 2030;157

2050 results are shown in Supplemental Figure S3. Regional variation in annual electricity and158

peak demand reductions is mostly consistent with the baseline variations across regions in Figures159

2 and S1, again demonstrating the importance of baseline system characteristics in determining160

the technical potential impacts of our measure sets. In absolute terms, potential reductions are161

concentrated in the Southeast and the Great Lakes/Mid-Atlantic AVERT regions, following the162

concentration of baseline electricity in these regions. In relative terms, percentage reductions in163

Texas and the Southeast tend to be among the highest—particularly in residential buildings—due164

to the stronger influence of reductions in cooling, heating, and water heating electricity use in165

these regions. Relative summer peak reductions are also notably high from residential buildings in166

the Great Lakes/Mid-Atlantic region, where temporal coincidence between afternoon system peaks167

and the residential cooling peak results in large cooling electricity reductions relative to the total168

addressable summer peak load.169

Regional reduction percentages in Figures 4 and S3 tend to be higher and more variable between170
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Figure 3: National impacts of best available U.S. building efficiency and flexibility measure
sets on annual electricity use and net peak and off-peak demand in 2030. Technical potential
efficiency and flexibility impacts on residential annual electricity use (a), peak demand (b), and off-peak
demand (c) are broken out by end use and season alongside the same results for commercial buildings (d-f).
Impacts are aggregated across the 22 2019 EIA EMM regions (see Figure 1), and peak impacts are non-
coincident across these regions. Seasonal peak and off-peak periods are identified in each underlying region
based on total hourly system loads less variable renewable energy supply; regional peak and off-peak impacts
are averaged across all weekday peak and off-peak hours in the season (Jun–Sep for summer, Dec–Mar for
winter). When deployed together in 2030, U.S. building efficiency and flexibility measures (EE+DF) can
avoid up to 742 TWh annual electricity use and 181 GW daily peak demand, but also decrease off-peak
demand by up to 79 GW; flexibility without efficiency (DF) can add up to 13 GW to off-peak demand,
with most of the increase observed in residential buildings.
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regions in residential buildings than in commercial buildings. While the higher residential percent-171

ages stem from a number of factors including slower turnover in baseline equipment and building172

stock and higher load coincidence with system peaks, the difference in regional variability reflects173

the greater share of commercial reductions that are derived from non-thermal loads (e.g., lighting,174

refrigeration, office electronics), which are less influenced by location. Strikingly, annual and peak175

reductions from office electronics measures in 2030 are comparable to or greater than those of com-176

mercial cooling measures for many regions. Moreover, reductions from office electronics measures177

grow in magnitude by 2050, indicating the importance of future technology development to enable178

flexible operation of this commercial end use.179

Figure 5 further demonstrates the variability of building efficiency and flexibility impacts in 2030180

at a more granular level, both regionally and temporally, focusing on five EMM regions; 2050 results181

are shown in Supplemental Figure S4. In both 2030 and 2050, changes in hourly demand across182

regions and seasons are most pronounced in residential buildings, particularly for measure sets that183

include efficiency (EE, EE+DF). In these residential cases, demand reductions are typically largest184

in the morning hours in winter and the afternoon and evening hours in summer, owing to seasonal185

changes in baseline demand patterns. Across seasons, residential reductions are largest in ERCT186

(Texas), which has a larger building stock than the other regions, high cooling needs, and a large187

installed base of electric heating. Residential summer reductions are also sizeable in RFCW, one of188

the Great Lakes regions, which has an afternoon system peak in summer that coincides strongly with189

peaks in residential cooling demand. In commercial buildings, reductions under efficiency (EE) are190

smallest in the early morning, late evening, and weekend hours, when occupancy is low. Increases191

in commercial demand under flexibility (DF) are also more regionally consistent and temporally192

constrained than in residential, occurring mostly in the summer during the hours preceding the193

regional system peak period, when precooling occurs.194

Measures with large impacts on electricity demand by region195

Finally, we analyze which individual building efficiency (EE) or flexibility (DF) measures have196

the largest potential impacts on electricity demand in specific regions. Figure 6 identifies the five197

residential and commercial measures with the largest impacts on daily summer net peak demand198

intensity (W/ft2) in 2030 in each of the five EMM regions from Figure 5; 2050 results are shown in199

Supplemental Figure S5. In both figures, the measures’ net winter peak demand and annual electric-200

ity reductions are also shown to allow comparisons across metrics. In residential buildings, HVAC201

measures (controls and equipment) generally deliver the largest summer peak reductions across202

regions, led by preconditioning; preconditioning and other flexibility measures yield no change or a203

slight increase in annual energy use, however. Peak reductions from efficient air source heat pumps204

(ASHPs) are prominent in the South and Southeast (ERCT and SRSE), where ASHPs replace a205

large base of existing heat pumps and other electric heating; in the Northwest and Great Lakes206

(NWPP, RFCW), however, baseline heating is predominantly gas, so central air conditioners show207

more summer peak reduction potential. Outside of HVAC measures, heat pump water heaters208

(HPWH) yield high summer peak reductions across most regions and are the top measure in Cal-209

ifornia (CAMX), where the marine climate leads to comparatively lower residential cooling needs,210

and the summer peak occurring late in the day places it past the time when cooling demand is211

highest, thus reducing the potential for HVAC measures.212

In commercial buildings, plug load efficiency (more efficient management of loads from PCs and213

other office equipment) delivers the largest summer peak reduction potential in three of the five214
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Commercial, Peak Winter Savings
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Residential, Annual Savings
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Residential, Peak Summer Savings
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*Percentages show reduction 
relative to baseline loads 

minus non-building

*Percentages show reduction 
relative to baseline loads 

minus other (unclassified)

(a) (b) (c)

(d) (e) (f)

Figure 4: Regional impacts of best available U.S. building efficiency and flexibility measures
together on annual electricity use and net peak demand in 2030. The technical potential of building
efficiency and flexibility measures (EE+DF) on residential (a-c) and commercial (d-f) annual electricity use
and peak summer and winter demand are broken out by end use and the 10 2019 EPA AVERT regions
(map at right), which are aggregations of the 22 2019 EIA EMM regions (see Figure 1). Labels at the top
of each bar represent the percentage of total addressable baseline electricity that is avoided by the efficiency
and flexibility measure set for the given region and assessment metric; the “addressable” baseline excludes
unclassified residential loads and non-building commercial loads. Seasonal peak periods are identified in
each region based on total hourly system loads less variable renewable energy supply; regional peak impacts
are averaged across all weekday peak hours in the season (Jun–Sep for summer, Dec–Mar for winter).
The regional concentration of savings in the Southeast and Great Lakes/Mid-Atlantic regions mirror the
distribution of baseline building electricity demand in Figure 2. Reduction percentages are generally largest
for the summer peak metric, when they range from 43%–67% in residential buildings and from 43%–51%
in commercial buildings, and .
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Figure 5: Average change in sector-level hourly electricity demand from building efficiency
and flexibility measure sets for five U.S. grid regions in 2030. Technical potential demand change
profiles are shown for five of the 2019 EIA EMM regions (map at right) and three measure sets (DF,
EE, EE+DF) and reflect the average impacts of each measure set on hourly electricity demand across all
residential (a) and commercial (b) buildings in each region for a given day type (weekday, weekend) and
season (summer (Jun–Sep), winter (Dec–Mar), and intermediate (all other months)). Reductions in regional
hourly demand are highest for the efficiency and flexibility measure set (EE+DF) on summer weekdays,
reaching more than 12 GW and 10 GW in residential and commercial buildings in RFCW, respectively,
though weekday and weekend profiles are similar for residential buildings. Increases in regional hourly
demand are highest for the flexibility-only measure set (DF) on summer weekdays, reaching more than 5
GW in residential buildings in RFCW and 2 GW in commercial buildings in CAMX.
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regions. Savings from this measure are particularly pronounced in RFCW, a further demonstration215

of the stronger coincidence between this region’s afternoon system peak and commercial building216

load profiles. Other measures that consistently rank in the top five across regions include peak217

period global temperature adjustments (GTA) with and without precooling, lighting efficiency,218

and discharging of ice storage to meet peak cooling loads in large commercial buildings. As with219

residential preconditioning, commercial HVAC flexibility measures (precooling, ice storage) produce220

effectively no change or slight increases in annual electricity use across regions. In contrast with the221

residential results, however, commercial measure impacts for the CAMX region show greater parity222

with those of the other regions, as the larger commercial baseline load in California (see Figure 2)223

yields greater opportunity for peak reductions from efficiency and flexibility measures.224

Discussion225

Our assessment demonstrates a large potential grid resource from energy efficient and flexible build-226

ing operations that could be of high value to grid operators in avoiding future fossil-fired generation227

investments and relieving pressure on energy storage deployments to support variable renewable228

energy integration. Specifically, if one values technical potential annual electricity reductions from229

efficiency and flexibility in 2030 and 2050 as early retirements of remaining coal generation and230

assumes non-dispatchable and dispatchable net peak reductions from efficiency and flexibility avoid231

combined cycle gas and energy storage capacity additions, respectively, the total building-grid re-232

source is worth roughly $31 billion in 2030 and $42 billion in 2050. These estimates draw generation233

cost and capacity projections from the AEO 2020 “Low Oil and Gas Resource” side case [4, 45, 46]234

and do not include additional benefits to the grid such as avoided transmission and distribution235

infrastructure, reduced greenhouse gas emissions, and reduced air pollution [21, 47].236

Our analysis suggests that packaging efficiency and flexibility measures yields the largest reduc-237

tions in net peak electricity demand with comparable annual electricity savings to an efficiency-only238

case; such packages may be simpler and more cost-effective for utilities to market and can increase239

the value proposition of building efficiency and flexibility from a consumer perspective [48–50]. On240

the other hand, we find that packaging efficiency with flexibility limits the potential to shift de-241

mand into hours of low net system load, when increased electricity demand from buildings could242

improve the utilization of renewable energy supply. Efficiency generally reduces the load available243

to shift across the measure sets considered, though this may not be the case for individual efficiency244

and flexibility packages that comprise the measure sets [e.g., 51]. In a high renewable penetration245

future, load reductions from efficiency could help avoid increases in thermal generator cycling and246

ramping during low net system load periods, when the net load is more variable; undoubtedly, how-247

ever, avoiding renewable curtailment during these periods through load shifting will also be a key248

challenge [52]. Accordingly, emerging non-building loads such as electric vehicle charging [53] might249

need to be leveraged to supplement the limited load shifting resource we estimate from buildings.250

The magnitudes of our estimated demand reductions appear broadly consistent with existing251

studies at the regional level, though differences in approach and outputs preclude direct comparisons252

with previous work. For example, a study of the U.S. Eastern Interconnection estimates 97 GW peak253

demand reductions from efficiency and flexibility measures by 2030 (vs. 137 GW in corresponding254

regions in our study); however, this study is an estimate of achievable potential, not technical255

potential [35]. Another study of demand response (DR) potential in California finds that peak256

reductions in the state could reach 6–8 GW by 2025 (vs. 9 GW by 2030 in our results); however, this257

estimate includes the industrial sector and focuses on ‘cost-competitive’ DR [54]. In the Southeast258
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(a)

(b)

Figure 6: Individual efficiency and flexibility measures with the largest summer net peak
demand intensity reductions for five U.S. grid regions in 2030. The five individual efficiency (EE)
or flexibility (DF) measures with the largest technical potential reductions in residential (a) and commercial
(b) summer peak demand intensity are highlighted for five of the 2019 EIA EMM regions (map at right).
Measure impacts on summer peak demand (top row of each panel) are shown alongside their impacts on
winter peak demand (middle row) and annual electricity use (bottom row). Seasonal peak periods are
identified in each region based on total hourly system loads less variable renewable energy supply; regional
peak impacts are averaged across all weekday peak hours in the season (Jun–Sep for summer, Dec–Mar
for winter). Individual measures on the x-axes are grouped into general measure types shown in the plot
legends. Residential preconditioning and commercial precooling and plug load efficiency measures yield the
largest summer peak reductions; plug load efficiency also yields strong reductions across the winter peak
and annual metrics.
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region, Nadel [34] estimates up to 40 GW of summer and winter peak demand reductions from259

incremental efficiency improvements and DR in 2030 (vs. 53 GW summer and 40 GW winter260

peak reductions in our study); again, however, this study is not a technical potential analysis261

and it does not consider interactions across efficiency and DR measures. The Northwest Power262

and Conservation Council’s (NPCC) Seventh Power Plan [55] finds up to 9.9 GW summer and263

13.2 GW winter peak reduction potential from efficiency and DR in 2035 (vs. 10 GW summer264

and 7 GW winter peak reductions in our study’s Northwest region results for 2030); however, the265

NPCC territory excludes southern parts of our Northwest region, where cooling needs are greater.266

Importantly, all of these previous studies report peak reductions in terms of total system peak,267

where our analysis averages net peak hour impacts across all days in a season to estimate potential.268

Our results reflect a technical potential assessment of the building-grid resource, and introduc-269

ing realistic building and technology stock turnover and market penetration dynamics substan-270

tially reduces our impact estimates in the near-term (see Supplemental Information Figure S6 a-c).271

Important questions remain about which economic and policy levers would be most effective in272

accelerating adoption of the technology measures we consider; these might include include util-273

ity incentives, voluntary recognition programs (e.g., ENERGY STAR + Connected), codes and274

standards, and variable electricity tariffs, among others. Accordingly, while the current analysis275

establishes the potential size and distribution of the building-grid resource, future analyses are276

needed both to identify the most promising pathways for realizing this resource in the coming years277

and to guide the policy mechanisms that enable these pathways. Along these lines, future analyses278

should explore the sensitivity of our results to a wider range of projection scenarios, reflecting, for279

instance, more extreme warming trends or increased adoption of policies that accelerate renewable280

energy penetration or encourage electrification.281

Experimental Procedures282

Estimates of building efficiency and flexibility potential were generated using a hybrid building283

stock energy modeling approach [56] that incorporates both top-down and bottom-up elements.284

Development of potential estimates followed four steps: 1) definition of building efficiency and285

flexibility measures and scenarios, 2) determination of regional power system needs, 3) development286

of sub-annual end use load profiles for representative residential and commercial building types, with287

and without measures applied, and 4) scaling of baseline and measure end use load profiles across288

the building stock within each modeled region.289

Measures, as listed in Table 2, modify the baseline electricity demand profile of residential and290

commercial buildings by improving upon the efficiency of baseline building equipment, envelope, and291

controls (energy efficiency (EE) measure set), modifying baseline operational schedules in response292

to grid needs (demand flexibility (DF) measure set), or by packaging these two types of changes293

(efficiency and flexibility (EE+DF) measure set). Detailed measure definitions are provided in294

Supplemental Information section 4, and example building-level impacts from these three measure295

sets are shown in Supplemental Information Figure S17.296

All efficiency measures adhere to a “best commercially available” energy performance level. For297

residential buildings, this performance level is determined using the Scout Core Measures Scenario298

Analysis data set [38] and the National Residential Efficiency Measures Database [57]. For commer-299

cial buildings, best available performance is assumed to correspond to the 50% Advanced Energy300

Design Guides (AEDG) specifications. Where a 50% AEDG guideline is not available for a cer-301

tain building type, the most applicable 30% AEDG guideline is used instead (see Supplemental302
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Information Section 4.2.1).303

Efficiency measures cover all major end uses across the residential and commercial sectors (heat-304

ing/cooling, ventilation, lighting, refrigeration, and water heating), as well as home and office elec-305

tronics (TVs, personal and work computers, and related equipment)); residential efficiency measures306

additionally address several smaller electric appliance loads such as clothes washers, clothes dryers,307

dishwashers, and pool pumps. In both building types, envelope efficiency packages are assessed that308

implement higher performance opaque envelope components (walls, roof, floors), highly insulating309

windows, and air sealing; operational control measures are also represented (smart thermostats in310

residential, daylighting and occupancy controls in commercial).311

Flexibility measures implement load shedding (for example, dimming the lights) or load shifting312

(for example, decreasing cooling set points in the hours leading up to the peak demand period313

to enable “coasting” with higher set points during the peak period, or charging thermal energy314

storage overnight to use to meet cooling set points later in the day). All flexibility measures modify315

baseline loads in the most aggressive manner possible without compromising basic building service316

needs, where service thresholds are determined on a load-by-load basis as described further in317

Supplemental Information section 4.2.2. Specific operational schedules for the flexibility measures318

(e.g., hour ranges during which load shedding and shifting is required) are determined by regional319

power system needs, as described further below.320

Flexibility measures address the residential and commercial electric loads that are the largest321

contributors to total electric demand and can potentially be shed or shifted in response to hourly322

power system needs. In residential buildings, this includes heating, cooling, water heating, appli-323

ances (clothes washing, clothes drying, dishwashing, pool pumps) and electronics; in commercial324

buildings, this includes heating, cooling, ventilation, lighting, refrigeration, and office electronics325

(PCs and office equipment).326

Efficiency and flexibility measures are packaged to explore possible interactive effects between327

these measure types, for example: 1) efficiency measures reduce the available load shedding and328

shifting potential of all flexibility measures, and 2) efficiency measures enhance the effectiveness329

of thermal flexibility measures, for example through envelope upgrades that extend the effects of330

precooling or discharging of thermal energy storage. In developing the measure packages, respective331

efficiency and flexibility measures are combined without additional modifications. For example,332

when precooling measures are packaged with a more efficient envelope, we do not assume any333

additional thermostat setback potential for the packaged version of these measures.334
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Table 2: Residential and commercial measure definitions. See Supplemental Information section 4 for additional details.
Measure Set Name Building Type End Use(s) Description

EE

Envelope insulation and air sealing Res + Com Heating/Cooling

Current best available technology

HVAC equipment Res + Com Heating/Cooling
Lighting Res + Com Lighting

Electronics Res + Com Home/Office Electron-
ics

Refrigeration Res + Com Refrigeration
Appliances Residential Washing and Drying
Water heater Residential Water Heating (WH)
Pool pumps Residential Pools and Spas

Thermostat controls Residential Heating/Cooling Fixed increase or decrease of temperatures during unoc-
cupied and nighttime hours

DF

Global temperature adjustment (GTA) Commercial HVAC Increase or decrease zone temperature set points during
peak hours

GTA + precooling Res + Com Cooling (Res + Com),
Ventilation (Com)

Decrease zone set points in the 4 hours prior to peak pe-
riod, then float temperature setpoint during peak hours

GTA + pre-heating Residential Heating Increase zone set points prior to peak period then float
temperature setpoint during peak hours

GTA + precooling + thermal storage Commercial HVAC Charge ice storage overnight and discharge during peak
hours; limited to large commerical

Continuous dimming Commercial Lighting Dim lighting, and shut off lighting in unoccupied spaces
during peak hours

Low priority device switching Commercial Office Electronics Switch off low-priority devices (e.g., unused PCs, office
equipment) during peak hours

Appliance demand response Residential Washing and Drying Shift appliance loads before or after peak hours

Water heating demand response Residential Water Heating Pre-heat water heater setpoint during off-peak hours on
the grid

Electronics demand response Residential Home Electronics Shift a fraction of plug loads to before or after peak hours

Pool pumps demand response Residential Pools and Spas Shift peak-hour pool pump loads to off-peak hours on the
grid

EE + DF

GTA + pre-cool/heat + efficient envelope &
HVAC equip.; daylighting controls + dimming Commercial HVAC, Lighting Combine DF HVAC/lighting strategies with more efficient

envelope/equipment, daylighting, and controls
Thermostat controls + pre-cool/heat + effi-
cient envelope & HVAC equipment Residential Heating/Cooling Combine DF heating/cooling strategies with more effi-

cient envelope/equipment

Non-thermostat DR + EE Residential

WH, Lighting, Home
Electronics, Refrig.,
Washing and Drying,
Pools and Spas

Shift WH and appliance loads outside of peak hours, up-
grade appliances and WHs to best available efficient tech-
nology

Device switching + efficient electronics Commercial Office Electronics Combine DF electronics strategy with the most efficient
PCs/office equipment

All remaining EE ECMs Commercial Refrigeration, WH Account for efficiency measures that are not a part of the
packaged EE+DF measures above
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When scaled across the building stock, each of the efficiency and flexibility measure sets con-335

sidered in our analysis has a collective impact on total electric demand at the regional electricity336

system level. Accordingly, measure impacts are assessed relative to regional system needs, namely:337

1) reduce electricity demand during times of high total electricity demand with low renewable elec-338

tricity supply; and 2) shift peak electricity demand into times when renewable electricity supply is339

abundant. These needs are best assessed by examining the net regional system load shape in a given340

region, which subtracts total hourly variable renewable electricity generation across a system region341

from the total hourly electricity demand in that region. Measure sets that address system peak342

reduction and load shifting needs yield a net system load shape that is both lower and flatter than343

that of a baseline demand scenario. Such load shapes are desirable for utility operators because344

they reduce the need for peak load capacity investment, reduce curtailment of renewable electricity345

supply, and avoid the need to bring generators on and offline rapidly to meet sudden changes in346

net demand.347

We assess our measure sets’ potential to affect net regional system load shapes in the 22 2019348

EIA EMM regions [58]. Using EMM system load and generation data from the 2019 AEO Reference349

Case, we first develop a normalized net system load profile for each region under relatively high350

renewable electricity penetration. Specifically, we use projection data from the year 2050—the last351

in EIA’s modeling time horizon, in which renewable penetration is at its highest level of roughly352

30% electricity generation—and normalize net hourly regional system loads by the maximum net353

peak system load (across all hours of the year). In the EIA data, hourly system load shapes and354

renewable generation profiles are provided for each region for three day types in each month—peak355

day, weekday, and weekend—yielding a total of 36 unique daily net load profiles per EMM system356

region. Load shedding and shifting objectives for building flexibility measures are determined by357

the summer (June–Sep) and winter (Dec–Mar) net system load shapes, when cooling and heating358

needs are at their highest, respectively.359

Figure 7 shows an example of the daily net load profiles developed for summer and winter360

months in the California (CAMX) EMM region. On top of these profiles, we establish two periods361

of focus—peak and off-peak—as shown in Figure 7, with the maximum and minimum net load hours362

also denoted. These peak and off-peak periods are determined based on all monthly net load profiles363

that fall into the given season. Peak load hours are defined as the four hour range surrounding the364

maximum seasonal load hour; in regions with large ramps in net system load between the afternoon365

and evening hours (e.g., CAMX), the four hour peak range is weighted towards the ramping hours,366

while in all other regions the four hour peak range is symmetric around the maximum net load367

hour. Off-peak load hours are defined as all hours in which normalized net system load is within368

ten percentage points of the minimum net system load for that season.369

Net regional system profiles as plotted in Figure 7 appear similar across certain subsets of the 22370

EMM regions. To reduce the complexity of our measure definitions and assessment, we downselect371

14 representative EMM region profiles to establish the full range of peak and low net system demand372

periods that measure impacts are assessed against (see Supplemental Information Section 2.1). The373

net system profiles for these representative utility regions and seasons are provided in Supplemental374

Information Figure S8. As mentioned, building efficiency and flexibility measures are assessed by375

their ability to reduce building demand during the net system peak period that is germane to a376

certain location and—in the case of flexibility measures—shift demand into the low net system load377

period(s) for that location.378

Assessment of efficiency and flexibility measure impacts begins at the building-level, where379

EnergyPlus [60] simulations of hourly building energy loads under baseline operations and with the380
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Figure 7: Peak-normalized total system loads net variable renewable energy generation for
the California (CAMX) grid region. Typical daily net load shapes are shown for all months in the
summer (a) and winter (b) seasons. Seasonal peak and off-peak net load periods are constructed for this and
all representative utility regions in our analysis (see Supplemental Information Figure S8); CAMX is used to
define grid conditions in ASHRAE climate region 3C as indicated by the plot titles. The peak load period
is defined as four hours surrounding the maximum net load hour, while the off-peak window is defined as all
hours in which the normalized net system load is within ten percentage points of the minimum net system
load for the given season. Peak and off-peak hour ranges are represented as horizontal line segments on the
plots, with maximum and minimum load hours (averaged across all load shapes for the season) marked as
single points on the plots. All normalized net load profiles are based on the year with the highest projected
renewable penetration in EIA EMM modeling for the 2019 Annual Energy Outlook, 2050 [59]. In CAMX,
the large mid–day trough in the net load shapes reflect the high degree of solar generation projected for
this region, which pushes net peak loads later into the evening hours.
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measure sets applied are used to develop hourly load savings shapes for each measure in the analysis.381

Baseline load simulations in EnergyPlus capture the effects of changes in weather (using typical382

meteorological year (TMY3) data [61]), building occupancy, and equipment operation schedules in383

constraining the available load for efficiency and flexibility measures to affect in a particular hour of384

the year, building type, and location. Building simulation models are developed for a representative385

city [62] in each of the 14 contiguous U.S. ASHRAE 90.1-2016 climate zones, for six building types386

(1 residential and 5 commercial) that are chosen to represent the variations in typical end use load387

shape patterns across the residential and commercial building stock (see Supplemental Information388

Section 2.2).389

For residential buildings, EnergyPlus serves as the engine for baseline and measure load simu-390

lations in the ResStockTM analysis tool, which allows for characterization and energy modeling of391

diverse single-family detached homes in the United States. ResStock generates baseline EnergyPlus392

building energy models through a sampling routine that assigns region-specific home characteristics393

and accounts for the diversity in vintage, construction properties, installed equipment, appliances,394

and occupant behavior within a region. Data for the baseline home properties come from numerous395

sources, including the 2009 Residential Energy Consumption Survey (RECS) [63]. After generat-396

ing the baseline building models, ResStock leverages physics-based energy modeling in EnergyPlus397

and high-performance computing to simulate each baseline home, as well as homes with upgrades398

applied, as described in Table 2. Approximately 10,000 residential building models are generated399

for each representative city. By modeling many homes, we capture the diversity in the existing res-400

idential building stock, and provide a highly granular view of residential energy usage with energy401

efficiency and demand flexibility measures applied. ResStock outputs hourly end use load data for402

each home in the baseline and upgrade scenarios. For each measure, the relevant end use loads403

are averaged within a given representative city and written with average baseline loads from the404

same set of homes to a CSV file. Further details regarding the methodology behind the ResStock405

analysis tool can be found in [64].406

Commercial baseline and measure loads are calculated using the Commercial Prototype Models407

that the U.S. Department of Energy publishes to support assessment and compliance with local408

building codes [65]. The Commercial Prototype Models are generated using the OpenStudioR○
409

Standards Measure, Create DOE Prototype Building [66]. Using the Measure, we generate mod-410

els for five representative commercial building types (Large Hotel, Large Office Detailed, Medium411

Office Detailed, Retail Stand Alone, and Warehouse; see Section 2.2.1) across each representative412

city. With the building models in the OpenStudioR○ format, application of energy efficiency, de-413

mand flexibility, and packaged efficiency and flexibility Measures is highly customizable within the414

OpenStudioR○ environment [67]. Including the baseline cases, we generate a total of 1,540 scenario415

runs. As with the residential modeling, baseline and measure end use load profiles are written for416

each building type and location to a CSV file for further use in regional stock-level simulations.417

To scale the effects of building-level measure application to the utility region level, we use418

Scout [40], an openly-available modeling software originally developed to estimate the short- and419

long-term annual impacts of building energy efficiency on U.S. national primary energy use, CO2420

emissions, and operating costs. Scout’s general analysis approach is covered in detail elsewhere421

[39]; here, we focus on the methodological modifications that were required to enable assessment422

of the sub-annual (hourly) energy impacts of both energy efficiency and energy flexibility measures423

for the EMM region geographical resolution. These modifications build upon previous conceptual424

advances in methods for time-sensitive building efficiency and flexibility assessment [68].425

First, Scout’s annual projections of baseline buildings sector electricity use between 2015–2050,426
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which reflect the outputs of EIA’s 2019 AEO Reference Case [37], are translated from the Census427

Division breakdown that Reference Case buildings module data are provided with to the EMM428

region breakdown that EIA uses for its electricity system analysis. This translation uses EIA429

electricity sales data for the buildings sector to determine the fraction of residential and commercial430

building electricity sales reported for a given Census Division that falls into each of the EMM regions431

covered by that Census Division [59, 69]. In Scout, we apply resultant mapping fractions [70–73]432

directly to the raw Reference Case data by Census Division to yield alternate versions of the Scout433

baseline annual building end use electricity [74] and technology characteristics [75] projections that434

are resolved by EMM region.435

Next, projections of EMM-resolved annual end use electricity are apportioned across all 8760436

hours of the year using end use load shapes from the building-level baseline and measure simulations437

described above (see Supplemental Figure S10 for an overview of the dimensions across which these438

load shapes are simulated at the building level). Raw hourly end use load outputs from these439

building-level simulations, which are reported in units of Joules or KWh, are normalized by each440

building’s total annual building-level electricity use, yielding the fractions of annual loads that fall441

into each hour of the year under either baseline operations or operations given measure application.442

Multiplying these building-level baseline and measure hourly load fractions by Scout’s total443

annual end use electricity projections at the region level yields the final attribution of the annual444

projections to a sub-annual, hourly basis for the baseline and measure cases. This calculation re-445

quires mapping from the ASHRAE climate zone and EnergyPlus building type breakdown of the446

hourly load fractions to the EMM region and AEO building type breakdown of the annual electricity447

use data in Scout. Here, ASHRAE climate zones are mapped to EMM regions using county-level448

population data collected from the U.S. Census Bureau [76]; the ResStock single family home build-449

ing type is mapped 1:1 to all three AEO residential building types; and the Commercial Prototype450

Building types are mapped to AEO building types using EnergyPlus Reference Building litera-451

ture [77] and square footage data from the EIA Commercial Building Energy Consumption Survey452

(CBECS) [43]. Resultant ASHRAE-EMM region and EnergyPlus-AEO building type mapping453

percentages are reported in Supplemental Information Section 3.454

Analysis limitations455

Key methodological limitations are grouped into those concerning building-level measure simula-456

tions and those concerning the representation of regional electricity system needs.457

At the building scale, our analysis relies on simulated baseline end use load shapes and measure458

impacts rather than electricity meter data or device-level measured electricity use data, which are459

not available across the broad array of measure types and locations considered in this study. Insights460

from ongoing work to validate simulated end use load profiles with electricity meter data in both461

residential and commercial buildings will be incorporated into future iterations of this analysis462

[78]. Additionally, we use a representative subset of building types to account for variations in463

baseline load profiles across the building stock (see Supplemental Information section 2.2), which464

may miss some of the diversity in these load profiles; for commercial buildings, this issue may465

be further compounded by our reliance on single prototype models to represent the baseline load466

profiles of each commercial building type. Future work can leverage improvements to building467

stock modeling tools, including the expansion of commercial prototypes [79], to better assess the468

significance of baseline load diversity to simulated measure impacts. Along similar lines, our analysis469

uses a single representative city in each climate zone to capture the impacts of weather variation470
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on simulated measure impacts; previous research has shown that in some cases, use of multiple471

representative cities within each climate region is warranted to improve the accuracy of estimated472

electricity use patterns [80]. Moreover, the TMY3 weather inputs to our building-level simulations473

do not encompass the most extreme variations in hourly weather patterns within a given year or474

represent the effects of current warming trends [61] or the expectation that those warming trends475

will continue in the future. Finally, our analysis holds hourly distributions of baseline end use loads476

and the relative load impacts of best available building efficiency and flexibility constant across the477

simulated time horizon (2015–2050). In practice, changes to these load distributions and relative478

measure impacts could be expected—for example, with new patterns of building use as more people479

work from home, or decreasing differences between “typical” and best available building technologies480

on the market over time.481

At the utility scale, our use of high and low net system load periods as a proxy for grid needs482

has its own limitations. First, this approach does not directly address load ramping, which is best483

defined by the steepness of the load curve rather than its absolute minimum and maximum. Second,484

net load shape magnitudes alone do not fully encapsulate the many factors that can drive temporal485

variations in the value of efficiency and flexibility to the electric grid, including fuel supply con-486

straints, power plant availability, and regulatory factors [81]. Third, the spatio-temporal granularity487

of our net system load shapes is limited to a subset of representative regions (Supplemental Table488

1) and typical day types within each season, which may miss some of the variation in these net load489

shapes that would be captured by a higher spatio-temporal resolution. Future work can assess grid490

needs more directly and precisely by drawing from newly available 8760 wholesale electricity cost491

projections [82] across a larger number of representative regions. Future work might also expand492

the focus of our grid impact metrics to include changes in hourly and annual emissions alongside493

changes in electricity loads and costs.494
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Supplemental Information

1 Additional results
Figures S1–S5 show the same information as Figures 2–6 for the year 2050 instead of 2030. Overall,
the distribution of baseline electricity and measure impacts across buildings, regions, and end uses
in 2050 is similar to 2030, while the magnitude of results increases. These increases are driven
by cooling in residential buildings, and by office electronics and cooling end uses in commercial
buildings. A notable decrease in annual residential heating reduction potential is observed, as are
slight decreases in the winter peak reduction potential of residential heating and decreases in the
influence across metrics of commercial lighting measures.

Figure S6 shows how the technical potential impacts of the three efficiency and flexibility measure
sets for 2030 and 2050 (shown in Figures 6 and S5) are reduced when realistic baseline technology
stock turnover rates and a cap on long-run technology market penetration are introduced. Stock
turnover rates are consistent with the "Max adoption potential" assumptions from Scout [1], and a
long-run cap of 85% market penetration is assumed to be met over a period of 20 years, consistent
with previous analyses of "achievable" potential for buildings sector efficiency programs [2, 3]. The
effects of introducing these adoption dynamics are most notable in the near-term: considering
realistic stock turnover alone reduces technical potential impacts in 2030 by 19–21% across metrics,
while adding a market penetration cap reduces 2030 impacts by 65–67% across metrics. By 2050,
baseline stock turnover reaches 100% and the 85% market penetration cap is reached, thus reducing
technical potential impacts by 15% across metrics.

Finally, Figure S7 further disaggregates the prominent baseline annual electricity use and peak
demand results in Figure 2 for the Great Lakes/Mid-Atlantic and Southeast EPA AVERT regions
by Electricity Market Module (EMM) sub-region. These AVERT regions combine multiple EMM
regions with high electricity use, topped by the RFCW sub-region in the Great Lakes/Mid-Atlantic
and SRVC sub-region in the Southeast, each of which consumes more annual electricity than all
other AVERT regions shown in Figure 2 aside from Texas.

2 Representative regional system and building load shapes

2.1 Representative regional system load shapes
Table S1 shows the subset of the 22 EIA EMM regions that are used to establish representative
regional system conditions (peak, off-peak hours) for the building-level simulations in each of the 14
contiguous ASHRAE 90.1-2016 climate zones. For smaller ASHRAE climate zones that do not span
many EMM regions (2A, 2-6B, 2-6C, 7), system load data from one representative EMM region are
used to establish grid-level conditions, while in larger climate zones that span several EMM regions
(3-6A), system data from two representative EMM regions are used to establish these conditions.
In all, normalized net system load shapes from 14 unique representative EMM regions are generated
as in Figure S8 and used to determine regional peak- and off-peak periods for the analysis. Here,
"net" refers to the total hourly load on a system minus variable solar and wind energy generation,
and net loads are normalized by the overall net peak hour load for the year. The normalized shapes
in Figure S8 are based on EIA EMM projections for the year 2050 to best reflect regional system
needs under the highest projected penetration of variable renewables in EIA’s 2019 Annual Energy
Outlook Reference Case data, or roughly 30% of total electricity generation [4]. Net system load
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Residential, Peak Winter
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Commercial, Peak Summer

D
ai

ly
 A

vg
. P

ea
k 

Pe
rio

d 
D

em
an

d 
(G

W
), 

N
et

So
ut

he
as

t
La

ke
s/

M
id
−A

tl.
Te

xa
s

N
or

th
ea

st
U

pp
er

 M
id

we
st

C
al

ifo
rn

ia
N

or
th

we
st

Lo
we

r M
id

we
st

So
ut

hw
es

t
R

oc
ky

 M
ou

nt
ai

ns

0

10

20

30

40

50

60

70
Total: 226 GW

Commercial, Peak Winter
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Figure S1: Baseline annual electricity use and net peak demand from U.S. buildings in 2050.
Base-case residential (a-c) and commercial (d-f) annual electricity use and peak summer and winter demand
are broken out by end use and the 10 2019 EPA AVERT regions (map at right), which are aggregations
of the 22 2019 EIA EMM regions (see Figure 1). Base-case projections are consistent with the 2019 EIA
Annual Energy Outlook Reference Case. Seasonal peak periods are identified in each region based on total
hourly system loads net variable renewable energy supply; regional peak impacts are averaged across all
weekday peak hours in the season (Jun–Sep for summer, Dec–Mar for winter). Across regions in 2050, U.S.
buildings are projected to contribute 3249 TWh to annual electricity use and 562 GW and 478 GW to
daily net peak demand in summer and winter, respectively; as in 2030, base-case annual electricity use and
demand is most strongly concentrated in the Southeast and Great Lakes/Mid-Atlantic regions.
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Figure S2: National impacts of best available U.S. building efficiency and flexibility measure
sets on annual electricity use and net peak and off-peak demand in 2050. Technical potential
efficiency and flexibility impacts on residential annual electricity use (a), peak demand (b), and off-peak
demand (c) are broken out by end use and season alongside the same results for commercial buildings (d-f).
Impacts are aggregated across the 22 2019 EIA EMM regions (see Figure 1), and peak impacts are non-
coincident across these regions. Seasonal peak and off-peak periods are identified in each underlying region
based on total hourly system loads net variable renewable energy supply; regional peak and off-peak impacts
are averaged across all weekday peak and off-peak hours in the season (Jun–Sep for summer, Dec–Mar for
winter). When deployed together in 2050, U.S. building efficiency and flexibility measures (EE+DF) can
avoid up to 800 TWh annual electricity use and 208 GW daily peak demand, but also decrease off-peak
demand by up to 88 GW; flexibility without efficiency (DF) can add up to 14 GW to off-peak demand,
with most of the increase observed in residential buildings.
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Figure S3: Regional impacts of best available U.S. building efficiency and flexibility measure
sets on annual electricity use and net peak demand in 2050.. Technical potential impacts of building
efficiency and flexibility measures (EE+DF) on residential (a-c) and commercial (d-f) annual electricity use
and peak summer and winter demand are broken out by end use and the 10 2019 EPA AVERT regions
(map at right), which are aggregations of the 22 2019 EIA EMM regions (see Figure 1). Labels at the
top of each bar represent the percentage of total addressable base-case electricity that is avoided by the
efficiency and flexibility measure set for the given region and assessment metric. Seasonal peak periods are
identified in each region based on total hourly system loads net variable renewable energy supply; regional
peak impacts are averaged across all weekday peak hours in the season (Jun–Sep for summer, Dec–Mar for
winter). Regional concentration of savings in the Southeast and Great Lakes/Mid-Atlantic regions mirror
the distribution of base-case building electricity in Figure S1. Reduction percentages range from 31–69%
in residential buildings and from 30–51% in commercial buildings, and are generally largest for the summer
peak metric.
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Figure S4: Typical change in sector–level electricity demand from building efficiency and
flexibility measure sets for 5 U.S. grid regions in 2050. Technical potential demand change profiles
are shown for 5 of the 2019 EIA EMM regions (map at right) and three measure sets (DF, EE, EE+DF)
and reflect the impacts of each measure set on typical daily electricity demand across all residential (a) and
commercial (b) buildings in each region. Profiles are broken out further by day type (weekday, weekend) and
season (summer (Jun-Sep), winter (Dec-Mar), and intermediate (all other months)). Reductions in regional
hourly demand are highest for the efficiency and flexibility measure set (EE+DF) on summer weekdays,
reaching more than 15 GW and 11 GW in RFCW residential and commercial buildings, respectively, though
weekday and weekend profiles are similar for residential buildings. Increases in regional hourly demand are
highest for the flexibility–only measure set (DF) on summer weekdays, reaching more than 5 GW in RFCW
residential buildings and 2 GW in CAMX commercial buildings.
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(a)

(b)

Figure S5: Individual efficiency and flexibility measures with the largest summer net peak
demand intensity reductions for five U.S. grid regions in 2050. The five individual efficiency (EE)
or flexibility (DF) measures with the largest technical potential reductions in residential (a) and commercial
(b) summer peak demand intensity are highlighted for five of the 2019 EIA EMM regions (map at right).
Measure impacts on summer peak demand (top row of each panel) are shown alongside their impacts on
winter peak demand (middle row) and annual electricity use (bottom row). Seasonal peak periods are
identified in each region based on total hourly system loads net variable renewable energy supply; regional
peak impacts are averaged across all weekday peak hours in the season (Jun–Sep for summer, Dec–Mar
for winter). Individual measures on the x axes are grouped into general measure types shown in the plot
legends. Residential preconditioning and commercial precooling and plug load efficiency measures yield the
largest summer peak reductions; plug load efficiency also yields strong reductions across the winter peak
and annual metrics.
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Figure S6: National impacts of best available U.S. building efficiency and flexibility measure
sets on annual electricity use and net peak and off-peak demand in 2030 and 2050 considering
baseline stock turnover and market penetration dynamics. Total technical potential building
efficiency and flexibility impacts (shown as gray outlines) are re-estimated for 2030 (a-c) and 2050 (d-
f) given additional consideration for realistic baseline stock turnover and sales penetration. Two alternate
adoption cases are explored: the first assumes realistic, measure-specific rates of turnover in the comparable
baseline technology stock with 100% sales penetration ("Max adoption (100% sales/y)"); while the second
combines realistic stock turnover with annual sales penetration of 85% over 20 years ("Adjusted adoption
(85% sales by y20)"). All measures enter the market in 2021. Interpretation of the peak and off-peak
metrics is the same as in Figures 3 and S2. In 2030, adding realistic stock turnover decreases annual and
peak electricity reductions from co-deployment of efficiency and flexibility by 19–21%, while adding both
stock turnover and reduced sales penetration decreases these reductions by 65–67%. By 2050, only the 85%
sales penetration cap affects the technical potential reductions (reducing them by 15%).
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Figure S7: Attribution of 2030 baseline annual electricity use and net peak demand from
buildings in the Great Lakes/Mid-Atlantic and Southeast AVERT regions to EIA EMM
sub-regions. Base-case residential (a-c) and commercial (d-f) annual electricity use and peak summer and
winter demand are broken out by end use and the 2019 EIA EMM sub-regions (map at right) that aggregate
into the Great Lakes/Mid-Atlantic and Southeast AVERT regions (see Figure 1). Base-case projections are
consistent with the 2019 EIA Annual Energy Outlook Reference Case. Seasonal peak periods are identified
in each region based on total hourly system loads net variable renewable energy supply; regional peak
impacts are averaged across all weekday peak hours in the season (Jun–Sep for summer, Dec–Mar for
winter). Both the Great Lakes/Mid-Atlantic and Southeast regions combine multiple EMM regions with
high electricity use, topped by RFCW in the Great Lakes/Mid-Atlantic and SRVC in the Southeast, each of
which consumes more annual electricity than all other AVERT regions shown in Figure 2 aside from Texas.
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shapes and associated peak/off-peak periods in Figure S8 are determined by EMM region, season
(summer, winter, intermediate), and day type (weekday, weekend).

Table S1: Summary of representative EMM utility regions that are used to establish regional system
conditions (e.g., peak, off-peak hours) for the building-level simulations conducted in each of the ASHRAE
90.1-2016 climate zones, as well as the full set of EMM regions that each represents.

ASHRAE 90.1-
2016 Region

Representative
EMM Region

Represented EMM Regions

2A FRCC FRCC, ERCT, SRDA, SRSE, SPSO
2B AZNM AZNM, ERCT
3A-1 SRVC SRVC, ERCT, SRDA
3A-2 SPSO SPSO, SRSE, SRCE, SPNO
3B ERCT ERCT, SPSO, AZNM, CAMX, NWPP
3C CAMX CAMX
4A-1 NYCW NYCW, NYLI, RFCE, RFCW
4A-2 SPNO SPNO, SPSO, SRDA, SRGW, SRSE, SRCE, SRVC
4B AZNM AZNM, SPSO, CAMX, RMPA
5A-1 NYUP NYUP, MROW, SRGW, SRCE, SRVC, SPNO
5A-2 RFCW RFCW, MROE, NEWE, NYCW, RFCE, RFCM, RMPA
5B RMPA RMPA, NWPP, AZNM
5C NWPP NWPP
6A-1 MROW MROW, NYUP, RMPA
6A-2 NEWE NEWE, MROE, RFCE, RFCM, RFCW
6B NWPP NWPP, RMPA
7 MROW MROW, MROE, RMPA

2.1.1 Sensitivity analysis of peak and off-peak impacts by region

Estimates of daily net peak and off-peak period impacts from the measure sets examined in this
paper may be influenced by the particular regional peak and off-peak period definitions chosen
for the analysis (Figure S8). To further explore this sensitivity, we assess how the regional peak-
and off-peak demand impacts from the residential preconditioning and commercial precooling DF
measures change under a generic 4–8PM Local Standard Time (LST) peak and 10AM–2PM LST
off-peak period assumption across regions. We focus on these two measures because they are among
the most impactful in the residential and commercial measure sets (see Figures 7 and S6); pertain
to thermal end uses, which are most variable across different hours of the day; and cover both on-
peak demand decreases from thermostat setbacks and off-peak demand increases from preheating
or precooling. The generic peak and off-peak periods reflect a net system load shape that would
result from a high degree of solar electricity penetration across regions (CAMX is the closest proxy
in the net load shapes of Figure S8). When using the generic peak definition, we assume that each
of the DF measures increase or decrease the thermostat set point during the peak period (4–8PM)
and preheat or precool in the 4 hours preceding the peak period (12–4PM), as is assumed for the
regionally-adjusted peak and off-peak case.

Figure S9 compares EMM region-resolved measure impacts in 2030 under regionally adjusted
peak and off-peak periods (x axis) to the same under generic peak and off-peak periods (y axis);
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Figure S8: Peak-normalized total system loads net variable renewable energy generation for
14 representative EMM grid regions. Representative load shapes dictate peak and off-peak hours
that building-level operations in a given ASHRAE climate zone are assessed against; the climate zone-to-
representative EMM region mapping is indicated by the plot titles. Each line on the plots represents the
total system load shape for that region net solar and wind energy supply for a given month of the year
and day type (weekday/weekend), normalized by maximum peak net load across all months/day types.
Maximum and minimum net load hours (averaged across months/day types) are indicated by triangle and
circle points on the plots, respectively, while peak and off-peak hour ranges around these points are indicated
by horizontal lines. The peak period is defined as the four hours surrounding the maximum net load hour,
while the off-peak period is defined as all hours in which the normalized net system load is within ten
percentage points of the minimum net system load for the given season. All normalized net load profiles
are based on the year with the highest projected renewable penetration in EIA Electricity Market Module
(EMM) modeling for the 2019 Annual Energy Outlook (AEO), 2050 [5].
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a perfect match would fall on the 1:1 line shown on each plot, which would indicate the results do
not vary for that region given varying peak/off-peak period definitions. Across regions and building
types, the change to generic peak and off-peak periods has the most notable affect on potential
demand increases from DF—particularly in the summer, when use of the generic approach adds
7 GW and 9.3 GW to these increases for residential preconditioning and commercial precooling,
respectively. This result reflects the tendency for summer off-peak periods to occur overnight under
the regionally-adjusted approach, which misses the effects of pre-peak cooling in the afternoon.
On the residential side, the change to the generic approach also has notable effects on winter off-
peak demand increases in some regions—in particular, the Great Lakes RFCW, RFCE, and RFCM
regions, which again have overnight low net load periods under the regionally-adjusted approach
that do not capture preheating effects. Aggregated across regions, however, the effects of using
generic winter off-peak periods on residential preheating are relatively small—adding only 1 GW
in potential—as many regions’ winter off-peak periods already occurred around mid–day under the
regionally-adjusted approach.

In comparison to using regionally-adjusted peak and off-peak period definitions, using generic
definitions has relatively minimal effects on peak reductions from the DF measures overall, adding
6 GW and 1 GW to summer and winter peak reductions from residential preconditioning across
regions and shaving 0.7 GW off both the summer and winter peak reductions from commercial
precooling across regions. Examining the results by region, most regions show similar peak im-
pacts between the regionally-adjusted and generic approach to defining the peak period. Notable
exceptions on the residential side include Texas (ERCT) and Florida (FRCC), where the generic
peak setting is less coincident with later evening peaks in the residential heating load shape—thus
removing 0.6 GW from the peak reduction potential of the residential preconditioning measure in
these regions. On the commercial side, notable discrepancies occur for the Great Lakes RFCW
and RFCE regions in the summer, which have an afternoon summer system peak period that is
moved out of coincidence with the mid-day peak in commercial building loads under the generic
setting—thus decreasing the peak reduction potential of the commercial precooling measure by 0.8
GW and 1 GW, respectively.

In summary, this sensitivity analysis suggests that even if more regions had net system load
shapes with mid–day troughs and evening peaks—as might be expected under stronger penetration
of solar generation than is assumed in our analysis—the effects would not be large enough to change
our key conclusions regarding the size and distribution of the building–grid resource. Even the
relatively dramatic increase in summer load building potential from preconditioning and precooling
DF under the mid–day off–peak period—16 GW in total—would still not outweigh the off-peak
load decreases from introducing building efficiency, which reach 75 GW for the EE+DF scenario in
summer in Figure 3. Nevertheless, at the EMM region level, the effects of changes to the peak and
off-peak period assumptions could be large enough to change the hierarchy of measure impacts in
some cases—for example, in Figure S9 summer peak reductions from commercial precooling in the
RFCE and RFCW (Great Lakes) regions are moved below that of the SRVC (Southeast) region
given the assumption of a generic 4–8PM peak period. Accordingly, future work should carefully
consider revisions to the regional net system load shapes assumed in this analysis as needed to
remain current with projected electricity generation mixes in each region.
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Figure S9: Residential preconditioning and commercial precooling DF impacts in 2030 under
fixed vs. regionally adjusted peak and off-peak periods. Residential preconditioning DR summer
and winter peak demand reductions (a-b) and off-peak demand increases (c-d) are shown alongside com-
mercial precooling DF summer and winter peak reductions (e-f) and summer off-peak increases (g) in 2030.
The DF measures shed cooling and heating demand during the four hour peak period and precool or preheat
(residential only) in the four hours preceding the peak period. Each plot compares the given measure’s
impact on the given metric assuming either the regionally–adjusted peak and off-peak periods that were
used to generate the main results (x-axis, and see Supplemental Figure S8), or generic 4-8PM peak and
10AM-2PM off-peak periods across all regions (y axis). Each plot shows a 1:1 reference line that is based
on measure impacts under the regionally–adjusted periods. Estimated off-peak summer load increases from
preconditioning/precooling are most sensitive to the change from regionally–adjusted to generic peak/off-
peak period definitions, which adds 7 GW and 9 GW in load increase potential in residential buildings (c)
and commercial building (g), respectively across regions.
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2.2 Representative building load shapes
Figure S10 summarizes the five dimensions across which representative normalized building-level
load shapes are developed via EnergyPlus simulations. Normalized load shapes take the cumulative
hourly load consumed by each hour of the year and divide by the total load across all hours of
the year; resultant hourly fractions of annual load are applied to annual energy use estimates to
reapportion these estimates across all hours of the year.

The representative load shapes suggested by Figure S10 are developed as a "minimum set" that
captures the variation in normalized load patterns across the residential and commercial building
stock. A total of more than 11,000 load shapes were simulated for residential buildings (roughly
100 million hourly data points) and more than 8,000 load shapes were simulated for commercial
buildings (roughly 70 million hourly data points) to represent the impacts of the combined EE, DF,
and EE+DF measure sets. Many more simulations were run to represent the individual measure
impacts shown in Figures 6 and S5. The five dimensions that dictate the representative load shape
simulations are further described here.

• Measure scenario. 8 measure scenarios are considered: a baseline residential and commercial
case in which no measures are implemented; and the three residential and three commercial
measure set deployments summarized in Tables 1 and 2 and described in detail in Supple-
mental Information section 4.

• Building type. 6 building types are considered: single family homes are modeled for residential
buildings, and 5 building types are modeled for commercial buildings. In 2020, single family
homes represent 84% of residential square footage [6] and were thus deemed to be a suitable
building type to represent the normalized load shape characteristics of the residential stock as
a whole. Commercial building use types and normalized load patterns are more diverse than
residential and therefore require a larger set of representative building types, as described
further in Section 2.2.1.

• End use. 12 end uses are considered: 7 end uses (heating, cooling, lighting water heating,
refrigeration, plug loads, and miscellaneous/other) are common to the residential and com-
mercial models; 4 end uses (clothes washing, clothes drying, dishwashing, and pool heaters
and pumps) are unique to the residential models; and 1 end use (ventilation) is unique to the
commercial models.

• Climate location. The 14 contiguous U.S. ASHRAE 90.1-2016 climate zones are considered
through simulations in representative cities for each climate zone [7]. Note that in com-
mercial buildings, only thermally-related load shapes (cooling, ventilation, and heating) are
distinguished by climate zone, as is further described in Section 2.2.1.

• Electricity system. 14 unique regional system (EIA Electricity Market Module (EMM) region)
conditions are considered as described in Supplemental Information section 2.1 and summa-
rized in Table S1 and Figure S8. Figure S10 shows that certain EMM regions are used to
represent the regional system conditions of multiple ASHRAE climate zones (AZNM, NWPP,
and MROW).
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9

Figure S10: Simulated building end use load shape dimensions. Variations across five analysis di-
mensions are captured. Measure scenarios encompass a baseline case where no measures are implemented as
well as deployment of the three residential and commercial measure sets outlined in Table 2. Building types
encompass single family homes for residential and five commercial building types that capture variations in
hourly end use profiles across the full commercial building stock (see Section 2.2.1). Major end uses (heat-
ing, cooling, lighting, water heating, refrigeration, ventilation) are covered alongside miscellaneous (‘other’)
loads, plug loads, and several smaller residential end uses (e.g., clothes washing/drying, pool pumps). The
14 contiguous U.S. ASHRAE 90.1-2016 climate zones are covered by simulation in representative cities [7];
measures simulated within each of these representative cities respond to local regional system conditions
(e.g., system peak and off-peak periods) based on normalized net load shapes from up to two representative
EIA Electricity Market Module (EMM) regions (see Supplementation Information section 2.1)
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2.2.1 Determining representative commercial building load shapes

Commercial building use types are more diverse and variable than are residential building uses, as
can be seen by comparing the 16 building type categories in the EIA’s Commercial Building Energy
Consumption Survey [8] to the 5 categories used in the same survey for residential buildings [9].
Accordingly, a "minimum set" of representative load shapes for the commercial building stock should
reflect a larger number of building types than for the residential stock, capturing the comparatively
larger variation in use types across commercial buildings.

To determine this minimum set of representative commercial building types for the current anal-
ysis, we analyze a large existing dataset [10] of EnergyPlus-simulated hourly load shapes that cover
the 16 DOE Commercial Reference Building Models [11] across all TMY3 weather locations [12] in
the U.S. A subset of hourly load shapes for the 14 contiguous ASHRAE 90.1-2016 representative
city locations [7] is selected, and the hourly load shapes are normalized such that each data point
represents the fraction of annual load consumed for a given end use and Reference Building type
by a given hour of the year. The normalized load shapes are then plotted across all building types,
end uses, and representative cities.

Figure S11 shows the normalized load shape plots for climates 3B (El Paso, TX), 5A (Buffalo,
NY), and 3C (San Diego, CA); Figure rows break out the plots by end use, and each plotted line
represents the normalized load shape for a single Commercial Reference Building type. Examined
qualitatively, the normalized load shapes in Figure S12 show substantial variation by building type
and climate for the cooling end use, a small degree of variation for the ventilation and heating end
uses, and essentially no variation for the lighting and plug loads end uses. The Figure therefore
suggests that a single representative commercial building type/location combination is sufficient
to represent the variation in normalized lighting and plug load shapes, while normalized heating
and ventilation load shapes should at least be broken out further by climate zone, and normalized
cooling shapes should be broken out by both climate zone and building type.

Figure S12 shows the results of a K-means cluster analysis that was conducted on the normalized
cooling load shapes from Figure S11 to determine the minimum number of building type groupings
needed to capture the variation in these cooling load shapes.1 Elbow plots (left column in the Figure)
show that across climates, little information is gained by organizing the cooling load profiles into
more than 5 building type groupings. Moreover, when the cooling load profiles for the 5 groups are
projected onto the original 16 cooling load shapes in each location (right column in the Figure),
the grouped profiles appear to capture the full range of variation in the original profiles, and the
assignment of Reference Building types to groups is relatively consistent across climates.

Table S2 reports the five building types that were ultimately chosen to represent variation in
both cooling and ventilation load profiles across the full set of 16 Commercial Reference Building
types. The selections (LargeHotel, LargeOfficeDetailed, MediumOfficeDetailed, RetailStandalone,
and Warehouse) pull one building type from each of the five Figure S12 groups for climate 3B, the
climate in the Figure with the largest cooling load. In our analysis, each of these representative
building types is simulated using the Commerical Prototype Building Models [14], which are derived
from the Reference Building Models.

1The approach to clustering building end use load profiles is based on methods devised in [13].
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Figure S11: Cumulative hourly end use load profiles for the DOE Commercial Reference
Buildings. Each profile in the figure represents the cumulative fraction of annual load consumed (y
axis) by a given hour of the year (x axis). All data for the profiles are drawn from [10]. Hourly cooling
load profiles range from being highly concentrated in the summer months (e.g., hours 4000-6000 for the
Warehouse building type) to being more evenly spread across all hours of the year (e.g., the Hospital
building type). Cooling profiles also differ by climate, with more cooling pushed earlier in the year in warm
(3B-El Paso) vs. cool (5A-Buffalo) climates. Ventilation loads are spread evenly across the year with the
exception of the Midrise Apartment building type, which serves a residential usage pattern. Few of the
Reference Buildings have substantial electric heating loads; the profiles for those that do (Medium Office,
Out Patient, Standalone Retail) appear similar across climates.
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Figure S12: Results from K-Means cluster analysis on DOE Commercial Reference Building
cooling end use profiles. Elbow plots (left) show that little information is gained by organizing building
types and load profiles into more than 5 groups; overlaying the resultant cooling profiles for the 5 groups on
the original cooling plots from Figure S11 (right) demonstrates that the group profiles capture the full range
of variation in cooling load profiles across the larger set of commercial building types. Group membership
(legends in the right-hand plots) is relatively stable across climates—particularly for the extreme profiles
(1 and 5), which consistently include hospitals, large hotels, and warehouses.
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Table S2: Summary of the five EnergyPlus Commercial Prototype Buildings that are used to represent
variations in cooling and ventilation load patterns across the full set of commercial building types and climate
locations in the building-level simulations. All other end uses are represented by the normalized load shape
for MediumOfficeDetailed; for the heating end use, representative MediumOfficeDetailed load shapes are
broken out by climate location, while for the remaining end uses, representative MediumOfficeDetailed load
shapes are not broken out by climate location (the shapes for 2A are always used).

Representative Energy-
Plus Building Type

Represented Energy-
Plus Building Types

LargeHotel LargeHotel
Hospital

LargeOfficeDetailed LargeOfficeDetailed
OutpatientHealthcare
SmallHotel

MediumOfficeDetailed MediumOfficeDetailed
PrimarySchool
SecondarySchool

RetailStandalone RetailStandalone
RetailStripmall
QuickServiceRestaurant
FullServiceRestaurant
Supermarket
SmallOffice

Warehouse Warehouse
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3 Mapping from building-level (EnergyPlus) to stock-level
(Scout) simulations

Tables S3 and S4 report mapping percentages that are used to translate building-level demand
estimates in EnergyPlus (resolved by ASHRAE 90.1-2016 climate zone and EnergyPlus building
type) to stock-level demand estimates in Scout (resolved by EIA EMM region and Annual Energy
Outlook (AEO) building type). ASHRAE climate zones are mapped to EMM regions using county-
level population data collected from the U.S. Census Bureau [15]; the ResStock single family home
building type is mapped 1:1 to all three AEO residential building types; and the prototypical
commercial building types are mapped to AEO building types using EnergyPlus Reference Building
literature [16] and square footage data from the EIA Commercial Building Energy Consumption
Survey (CBECS) [8].

Table S3: Mapping [17] between ASHRAE 90.1-2016 regions (used for the building-level EnergyPlus
simulations) and EIA Electricity Market Module (EMM) regions (used for the stock-level Scout simulations).
Shown is the percentage of a given EMM region’s population that falls into a given ASHRAE region (note:
not all rows sum to 100 due to rounding).

EMM/Scout Region
ASHRAE 90.1-2016 Region

2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 5C 6A 6B 7

ERCT 60 2 34 4 - - - - - - - - - -
FRCC 76 - - - - - - - - - - - - -
MROE - - - - - - - - 3 - - 88 - 9
MROW - - - - - - - - 36 - - 52 - 11
NEWE - - - - - - - - 84 - - 16 - -
NYCW - - - - - 97 - - 3 - - - - -
NYLI - - - - - 100 - - - - - - - -
NYUP - - - - - - - - 70 - - 30 - -
RFCE - - - - - 62 - - 36 - - 1 - -
RFCM - - - - - - - - 92 - - 8 - -
RFCW - - - - - 17 - - 75 - - 8 - -
SRDA 60 - 38 - - 2 - - - - - - - -
SRGW - - - - - 71 - - 29 - - - - -
SRSE 16 - 78 - - 6 - - - - - - - -
SRCE - - 21 - - 79 - - 1 - - - - -
SRVC - - 44 - - 56 - - - - - - - -
SPNO - - 4 - - 90 - - 5 - - - - -
SPSO 9 - 75 8 - 1 8 - - - - - - -
AZNM - 43 - 43 - - 8 - - 7 - - - -
CAMX - - - 75 23 - 1 - - - - - - -
NWPP - - - 1 - - - 50 - 35 1 - 13 -
RMPA - - - - - - 1 - 1 88 - 3 4 3
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Table S4: Mapping [18] between EnergyPlus building types (used for the building-level EnergyPlus simu-
lations) and EIA Annual Energy Outlook (AEO) building types (used for the stock-level Scout simulations).
Shown is the percentage of a given AEO/Scout building type’s square footage that is represented by a given
EnergyPlus building type.

AEO/Scout Building Type EnergyPlus Building Type Weight (%)

single family home
ResStock Single Family Home 100mobile home

multi family home
assembly Hospital 100

education Primary School 26
Secondary School 74

food sales Supermarket 100

food service QuickServiceRestaurant 31
FullServiceRestaurant 69

health care Hospital 100

lodging SmallHotel 26
LargeHotel 74

large office LargeOfficeDetailed 90
MediumOfficeDetailed 10

small office SmallOffice 12
OutpatientHealthcare 88

mercantile/service RetailStandalone 53
RetailStripmall 47

warehouse Warehouse 100
other MediumOfficeDetailed 100
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4 Measure definition details

4.1 Residential Measures
4.1.1 Residential Energy Efficiency (EE) Measures

HVAC

• Central Air Conditioning: SEER 18 Central AC
Applied To: Homes with lower SEER AC (8, 10, 13, 14, 15) and electric baseboard or non-
electric heating.

• Air Source Heat Pump: SEER 22, 10 HSPF ASHP
Applied To: Any lower performance ASHP and all homes with electric furnaces (forced air).

Appliances

• Refrigerator/Freezers: EF 22.2 refrigerator
Applied To: Any lower performance refrigerator

• Clothes Washer: ENERGY STAR Most Efficient (IMEF 2.92)
Applied To: All homes with clothes washers

• Clothes Dryer: Ventless Heat Pump (CEF = 3.65)
Applied To: All homes with electric clothes dryers

• Dishwasher: Rated 199 kWh/year
Applied To: All homes with dishwashers

Water Heating

• Heat Pump Water Heater: 80-gal HPWH, 2.4 COP at rated conditions
Applied To: All homes with lower performance electric water heaters

Lighting

• Interior Lights: LEDs, 112 lumens/Watt
Applied To: All Homes

Pool Pumps

• Pool Pumps: 0.75 hp pump (annual energy use = 1688 kWh)
Applied To: Homes with 1.0 hp pool pumps (annual energy use = 2250 kWh)

Plug Loads

• Plug Loads: Reduce plug loads usage level by half to represent high efficiency device
Applied To: All homes
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Thermostat Controls
Applied setbacks and schedules that follow the 2019 ENERGY STAR programmable thermostat
guidelines [19], further described below and shown in Figure S13.

• Cooling daytime setup: Increase setpoint by 7◦F, 8AM to 6PM
Applied To: Homes with no occupants during the day on weekdays, homes without an existing
cooling setup, and homes with an existing setpoint that would not be increased beyond the
maximum cooling setpoint [20]

• Cooling nighttime setup: Increase setpoint by 4◦F, 10PM to 6AM
Applied To: Homes without an existing cooling setup and homes with an existing setpoint
that would not be increased beyond the maximum cooling setpoint [20]

• Heating daytime setback: Decrease setpoint by 8◦F, 8AM to 6PM
Applied To: Homes with no occupants during the day on weekdays, homes without an existing
heating setback, and homes with an existing setpoint that would not be decreased beyond the
minimum heating setpoint [20]

• Heating nighttime setback: Decrease setpoint by 8◦F, 10PM to 6AM
Applied To: Homes without an existing heating setback and homes with an existing setpoint
that would not be decreased beyond the minimum heating setpoint [20]

Envelope

• Attic Insulation: R-49 loose fill insulation
Applied To: Homes with unfinished attics with any insulation level below R-49 (Uninsulated,
R-7, R-13, R-19, R-30, R-38)

• Air Sealing: 1 ACH50 with added mechanical ventilation compliant with ASHRAE 62.2
Applied To: All homes

Wall Insulation:

• R-13 cavity + R-20 XPS
Applied To:wood frame exterior walls with lower existing insulation performance (Uninsu-
lated, R-7, R-11, R-13)

• R-20 XPS
Applied To wood frame exterior walls with existing R-19 cavity insulation; concrete masonry
walls with existing furring insulation (R-7, R-11, R-15, R-19)

• R-5.5 furring insulation with R-20 XPS
Applied To: uninsulated concrete masonry walls

Foundation Insulation:

• R-30 crawlspace ceiling
Applied To: vented crawlspaces in AIA climate zones 1-2 with existing insulation below R-30
(uninsulated, R-13, R-19)
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Figure S13: Example thermostat setback and setup schedules for residential cooling and
heating. The "Day and Night Setback" schedules apply to homes that are unoccupied during the daytime,
while the "Night Setback" schedules apply to homes occupied during the day.
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• R-13 crawlspace wall
Applied To: unvented crawlspaces in AIA climate zones 1-2 with existing insulation below
R-13 (uninsulated, R-5, R-10)

• R-19 basement ceiling
Applied To: unfinished basements in AIA climate zone 1-2 with existing insulation below
R-19 (uninsulated, R-13)

• R-15 basement wall cavity
Applied To: finished basements in AIA climate zones 1-2 with existing insulation below R-15
(uninsulated, R-5)

Windows:

• 0.17 U-factor, 0.49 SHGC
Applied To: AIA climate zone 1

• 0.17 U-factor, 0.42 SHGC
Applied To: AIA climate zone 2

• 0.17 U-factor, 0.27 SHGC
Applied To: AIA climate zone 3

• 0.17 U-factor, 0.25 SHGC
Applied To: AIA climate zones 4 and 5

4.1.2 Residential Demand Flexibility (DF) Measures

Water Heater Setpoint

• The water heater setpoint is pre-heated to 140◦F at the start of the take period and maintains
this setpoint up to the start of the peak period, when it is returned to the initial setpoint
of 125◦F, as shown in S14. DR schedules are designed for peak and take hours and seasons
specific to each EMM region. If an EMM region has two take periods, pre-heating begins at
the start of the second take period. Schedule inputs are in the form of hourly schedules for
an entire year (i.e., 8760 schedules).
Applied To: All electric water heaters

Notes: Current demand response programs with communicating water heaters (compliant with
ANSI/CTA-2085) are limited to taking advantage of the deadband to time heating such that it
occurs before the peak period; CTA-2085 does not support setpoint adjustments. The approach used
in this measure is therefore more aggressive than what is possible today—incorporating setpoint
adjustments to substantially lengthen acceptable interruption duration.

Thermostat Setpoint
Relaxed the setpoint by 3◦F (increased in the cooling season, decreased in the heating season) dur-
ing the peak period, preceded by a precooling or pre-heating period of 3◦F (reduced in the cooling
season, increased in the heating season) that starts 4 hours before the beginning of the peak period,
as described below and shown in Figure S15

Cooling:
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Figure S14: Example pre-heating schedule for residential water heating.

• Before peak: -3◦F (relative to original setpoint), starting 4 hours before peak
Applied To: Homes with an existing setpoint that would not be decreased beyond the mini-
mum cooling setpoint (lowest cooling setpoint in the sampling data—RECS 2009 [20]); applied
regardless of daytime occupancy

• During peak: +3◦F
Applied To: Homes with an existing setpoint that would not be increased beyond the max-
imum cooling setpoint (highest cooling setpoint in the sampling data—RECS 2009 [20]);
applied regardless of daytime occupancy

Heating:

• Before peak: +3◦F, starting 4 hours before peak
Applied To: Homes with an existing setpoint that would not be increased beyond the max-
imum heating setpoint (highest heating setpoint in the sampling data—–RECS 2009 [20]);
applied regardless of daytime occupancy

• During peak: -3◦F
Applied To: Homes with an existing setpoint that would not be decreased beyond the mini-
mum heating setpoint (lowest heating setpoint in the sampling data—RECS 2009 [20]); ap-
plied regardless of daytime occupancy

Example Logic: If the maximum heating setpoint is 80◦F, homes with an existing setpoint of 78◦F
would not be subject to a preheating period increasing the setpoint to 81◦F.
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Figure S15: Example residential precooling and pre-heating schedules.

Notes: Several utilities currently operate smart thermostat demand response programs. These
programs vary in their exact implementation; not all utilities document the typical timing and
magnitude of setpoint adjustments, but among those that do, they typically have the following
characteristics:

• Precooling, pre-heating setpoint adjustment: 2◦-–3◦F

• Precooling, pre-heating duration: 60—90 minutes before peak

• Peak (DR event) period setpoint adjustment: 3◦–4◦F

• Peak (DR event) period duration: 2—4 hours

The setpoint temperatures in this measure are thus based on these setpoint adjustments. The
preconditioning duration is longer to account for the longer (4 hour) duration of the peak periods
modeled; a longer preconditioning period will cool the thermal mass of the building more, which
will help endure the longer peak period. We looked at (among others), Nest Rush Hour Rewards,
ecobee Smart Savings Rewards (e.g., NYSEG and RG&E), Broad River Electric Co-op’s smart
thermostat program, and the Arizona Public Service Cool Rewards program.

Appliances
Appliances considered for demand flexibility include clothes washers, clothes dryers, and dishwash-
ers, which follow the Building America house simulation protocols for schedule generation [21]. The
schedule of the appliance is modified by shifting their operation away from the peak period. To
do that, first the cluster of schedules that falls during the peak is identified. A cluster is defined
as a set of run schedules that are separated by no more than 30 minutes of idle time. Once the
cluster is identified, it will be attempted to be moved ahead of the peak, if possible. It might not be
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possible to move ahead if there is no room because there are already existing schedules or another
peak period. If it is not possible to shift the cluster ahead in time from the peak, the cluster will be
attempted to be shifted backward in time, provided there is room before the peak. If the cluster can
neither be shifted forward or backward, the schedule is left as-is. In any of these cases, the annual
energy consumption of the appliance remains unchanged, since we are only shifting the schedule.

Plug Loads
Plug loads also follow hourly varying usage level schedules like the pool pump. But instead of
shifting the whole usage during the peak period, a fraction (11%) of the usage during the peak
period is shifted uniformly to two hours after the peak. Another fraction (4%) of the usage during
the peak is simply removed, which signifies turning off stand-by plug loads. Because 4% of the plug
loads are turned off during the peak, total energy use decreases. These load shift and shed quantities
are derived from the 2011 Building America Analysis Spreadsheets [22]. These spreadsheets were
used to obtain 1) total plug load energy use, 2) total “shiftable” plug load energy use, 3) total
standby/idle energy use (except in cases where operating power levels were lower than off/standby
power plus idle power levels), and 4) the sum of the shiftable and standby energy use. The shiftable
load is the difference between (1) and (2), and the sheddable load is the difference between (1) and
(3). The load differences in (2) and (3) add to the load difference in (4).

Pool Pumps
The pool pump follows an hourly varying usage level schedule. The time integration of the usage
during the peak period is uniformly added on top of the usage during the first take period for each
EMM region. The total energy use remains unchanged.

4.1.3 Residential Combined EE and DF Measures

Thermostat Setpoint
When the thermostat DF measure is applied alongside the best thermostat (EE) measure, the set-
points based on DR operation (preconditioning setpoint, and setback/setup during the peak hours)
take priority over the setbacks in the EE measure. If no DR operation applies, the setbacks/setups
will match from the EE measure. Figure S16 shows an example of cooling season operation when
both the EE and DF measures are applied.

4.2 Commercial measures
4.2.1 Commercial energy efficiency (EE) measures

Envelope
Envelope measures for the Medium and Large Office Detailed building prototypes follow Advanced
Energy Design Guidelines (AEDG) 50% Medium Office guidelines for opaque envelope (roof, walls,
and floor) with details given in Table S5 and fenestration for each climate zone as described in Table
S10 [23]. Regarding envelope efficiency measures in non-office building prototypes, the Warehouse
prototype follows AEDG 30% for small warehouses and self-storage (no AEDG 50% is available
for this building type) (see Table S7); the Retail Stand-Alone prototype follows AEDG 50% for
medium to big-box retail (see Table S6) [24], and the Large Hotel prototype follows AEDG 50%
for highway lodging (see Table S8) [25].
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Figure S16: Example residential combined EE and DF thermostat setpoint schedule. The DF
schedule (precooling) is applied when there is overlap with the EE setpoint offset schedule.

Table S5: Envelope for the Advanced Case in Office Buildings (Reference: AEDG 50%, Medium Office).
Roof Above-Grade Steel-Framed Walls

Climate Zone U-Factor R-value U-Factor R-value
1 0.048 R-20 c.i. 0.064 R-13 + R-7.5 c.i.
2 0.039 R-25 c.i. 0.064 R-13 + R-7.5 c.i.
3 0.039 R-25 c.i. 0.064 R-13 + R-7.5 c.i.
4 0.039 R-25 c.i. 0.064 R-13 + R-7.5 c.i.
5 0.032 R-30 c.i. 0.042 R-13 + R-15.6 c.i.
6 0.032 R-30 c.i. 0.037 R-13 + R-18.8 c.i.
7 0.028 R-35 c.i. 0.037 R-13 + R-18.8 c.i.
8 0.028 R-35 c.i. 0.037 R-13 + R-18.8 c.i.

Table S6: Envelope for the Advanced Case in Retail Building (Reference: AEDG 50% Big Box Retail).
Steel-Framed Exterior Wall Mass Exterior Wall Roof

Climate Zone U-Factor R-value U-Factor R-value U-Factor R-value
1 (A) U-0.064 R-13.0 + R-7.5 c.i. U-0.580 NR* U-0.048 R-20.0 c.i.
2 (A,B) U-0.064 R-13.0 + R-7.5 c.i. U-0.151 R-5.7 c.i. U-0.039 R-25.0 c.i.
3 (A,B,C) U-0.064 R-13.0 + R-7.5 c.i. U-0.123 R-7.6 c.i. U-0.039 R-25.0 c.i.
4 (A,B,C) U-0.057 R-13.0 + R-10.0 c.i. U-0.104 R-9.5 c.i. U-0.039 R-25.0 c.i.
5 (A,B) U-0.049 R-13.0 + R-12.5 c.i. U-0.090 R-11.4 c.i. U-0.032 R-30.0 c.i.
6 (A,B) U-0.043 R-13.0 + R-15.0 c.i. U-0.071 R-15.4 c.i. U-0.032 R-30.0 c.i.
7 U-0.037 R-13.0 + R-18.8 c.i. U-0.067 R-17.0 c.i. U-0.028 R-35.0 c.i.
8 U-0.037 R-13.0 + R-18.8 c.i. U-0.063 R-19.0 c.i. U-0.028 R-35.0 c.i.

Lighting
Lighting efficiency measures follow AEDG guidelines using the same building type mapping as
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Table S7: Envelope for the Advanced Case in Warehouse (Reference: AEDG 30% for Small Warehouse
and Self-Storage Buildings).

Roof Exterior Walls Interior Walls
R-value R-value R-value

Zone 1 - office R-15 NR R-13
Zone 2 - fine storage R-20 R-5.7 c.i. R-13
Zone 3 - bulk storage R-20 R-7.6 c.i. R-13

Table S8: Envelope for the Advanced Case in Large Hotel (Reference: AEDG 50%, Highway Lodging).
Roof Above-Grade Mass Walls Floor

Climate Zone U-Factor R-value U-Factor R-value U-Factor R-value
1 0.039 R-25 c.i. 0.151 R-5.7 c.i. 0.73 NR
2 0.039 R-25 c.i. 0.123 R-7.6 c.i. 0.73 NR
3 0.039 R-25 c.i. 0.09 R-11.4 c.i. 0.54 R-10 for 24 in.
4 0.032 R-30 c.i. 0.08 R-13.3 c.i. 0.52 R-15 for 24 in.
5 0.032 R-30 c.i. 0.047 R-19.5 c.i. 0.51 R-20 for 24 in.
6 0.032 R-30 c.i. 0.047 R-19.5 c.i. 0.434 R-20 for 48 in.
7 0.028 R-35 c.i. 0.047 R-19.5 c.i. 0.434 R-20 for 48 in.
8 0.028 R-35 c.i. 0.047 R-19.5 c.i. 0.424 R-25 for 48 in.

Table S9: Fenestration U-Factor and SHGC values for the Advanced Case in Large Hotel.
Target Modeled

Climate Zone U-Factor SHGC U-Factor HGC
1 0.56 0.25 0.51 0.28
2 0.45 0.25 0.44 0.24
3A,3B 0.41 0.25 0.4 0.24
3C 0.41 0.25 0.4 0.24
4 0.38 0.26 0.4 0.24
5 0.35 0.26 0.38 0.23
6 0.35 0.35 0.31 0.38
7 0.33 0.4 0.31 0.38
8 0.25 0.4 0.26 0.37

presented for the envelope efficiency measure; performance specifications are indicated by lighting
power density (LPD), with details given in Tables S12-S15. The lighting LPD is reduced by an
additional 15% from the base lighting schedule to represent occupancy controls (per AEDGmodeling
guidance).The daylighting controls in the perimeter zones also set at 300 lux setpoint to meet the
AEDG as detailed in Table S12 [23].

Plug Loads
Plug load efficiency measures follow AEDG guidelines using the same building type mapping as
presented for the envelope efficiency measure; performance specifications are indicated by equipment
power density (EPD), with details given in Tables S12-S15. Note: for data center spaces in the Large
Office Detailed building type, the EPD is reduced by 30%, suggested to be feasible by previous DOE
reports [26, 27]. The schedules for plug loads are consistent with the advanced case assumption in
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Table S10: Fenestration U-Factor and SHGC values for the Advanced Case in Office Buildings.
Target Modeled

Climate Zone U-Factor SHGC U-Factor SHGC
1 0.65 0.25 0.51 0.28
2 0.65 0.25 0.51 0.28
3A,3B 0.6 0.25 0.51 0.28
3C 0.6 0.25 0.51 0.28
4 0.44 0.26 0.44 0.24
5 0.44 0.26 0.44 0.24
6 0.42 0.35 0.42 0.39
7 0.34 0.4 0.31 0.38
8 0.34 0.4 0.31 0.38

Table S11: Fenestration U-Factor and SHGC values for the Advanced Case in Retail Building.
Climate Zone U-Factor SHGC VLT
1(A) 1.2 0.25 0.25
2(A,B) 0.7 0.25 0.25
3(A,B) 0.6 0.25 0.32
3(C) 0.6 0.34 0.32
4(A,B,C) 0.5 0.39 0.51
5(A,B) 0.45 0.39 0.51
6(A,B) 0.45 0.39 0.51
7 0.4 0.49 0.45
8 0.4 0.49 0.45

Table S12, representing plug loads controls [28].

Table S12: Electric Equipment Power Density and Lighting Power Density for the Advanced Case in
Office Buildings (Reference: AEDG 50%, Medium Office).
Space Type EPD (W/ft2) LPD (W/ft2)
Break room 4.46 0.73
Closed Office 0.64 0.885
Conference 0.37 0.77
Corridor 0.16 0.5
IT room 1.56 0.64
Lobby 0.07 1.09
Elec./Mech. room 0.07 1.24
Open office 0.71 0.68
Print room 2.79 0.64
Rest room 0.07 0.82
Stair 0 0.6
Storage 0 0.64
Vending 3.85 0.73
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Table S13: Electric Equipment Power Density and Lighting Power Density for the Advanced Case in
Large Hotel (Reference: AEDG 50%, Highway Lodging).
Space Type EPD (W/ft2) LPD (W/ft2)
Guest room 0.97 0.71
Corridor 0 0.5
Lobby 1.83 0.77
Stairs 0 0.57
Office 0.71 0.85
Laundry n/a 0.52
Meeting room 0.57 1.14
Exercise room 1.53 0.78
Storage n/a 0.62
Employee lounge 1.95 0.82
Restroom 0 0.74
Mechanical room n/a 1.24

Table S14: Electric Equipment Power Density and Lighting Power Density for the Advanced Case in
Retail Building (Reference: AEDG 50% Big Box Retail).
Space Type EPD (W/ft2) LPD (W/ft2)
Sales floor 0.3 0.9
Vestibule 0 0.45
Corridor 0 0.54
Restroom 0.08 0.86
Stock room 0.56 0.86
Office 0.56 0.81
Meeting room 0.56 0.81
Break room 1.95 0.45
Mechanical room 0 0.86

Table S15: Electric Equipment Power Density and Lighting Power Density for the Advanced Case in
Warehouse (Reference: AEDG 30% for Small Warehouse and Self-Storage Buildings).
Space Type LPD (W/ft2)
Zone 1 - office 0.9
Zone 2 - fine storage 0.9
Zone 3 - bulky storage 0.6
Total 0.7

HVAC
This measure makes upgrades based on the specific HVAC components available in the buildings.
When the measure is applied to the Large Office Detailed building prototype model, the measure
upgrades the existing water-cooled centrifugal chiller with 5.5 COP to a chiller of the same type
with 7.0 COP. The Large Hotel building type already has an efficient air-cooled chiller; this existing
chiller has a 5.5 COP and there is no available reference air-cooled chiller with a higher COP within
the EnergyPlus chiller library. On all other building types, e.g., Medium Office Detailed, Retail
Stand-Alone, and Warehouse, the measure increases their COP of their two-speed DX Cooling Unit
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from 3 to 4. The burner efficiency of the heating coil in these buildings is also increased from 0.8
to 0.99. These advancements follow the AEDG for the medium office buildings on the two HVAC
components [28].

Refrigeration
This measure was simulated entirely in Scout, i.e., no savings shape was calculated using Energy-
Plus prototype simulations. Accordingly, measure relative reductions are consistent across all hours
and total hourly reductions follow the baseline refrigeration shape (which is defined from Energy-
Plus simulations). The Scout measure is published[29] and replaces all categories of commercial
refrigeration technology with the best performing alternative. Best available performance levels are
anchored on the year 2017 in data published by EIA [30] and summarized in the Scout baseline
technology characteristics data [31] (in units of Btu out/Btu in):

• Commercial reach-in freezers: 2.4

• Commercial reach-on refrigerators: 5.4

• Commercial supermarket display cases: 3.85

• Commercial walk-in freezers: 2.7

• Commercial walk-in refrigerators:3.5

Water Heating
This measure was simulated entirely in Scout, i.e., no savings shape was calculated using EnergyPlus
prototype simulations. Accordingly, measure relative reductions are consistent across all hours and
total hourly reductions follow the baseline refrigeration shape (which is defined from EnergyPlus
simulations). The Scout measure is published [32] and replaces all electric commercial water heating
technologies with the best available heat pump water heater as an add-on to existing storage units.
Best available performance level is anchored on the year 2017 in data published by EIA [33] (in
units of Btu out/Btu in):

• Heat pump water heater: 3.9

4.2.2 Commercial demand flexibility (DF) measures

HVAC
There are two DR measures that adjust zone thermostat setpoints for both cooling and heating. The
first is a global temperature adjustment (GTA) measure, which adjusts zone cooling temperatures
upwards and zone heating temperatures downwards during the peak hours for the utility region that
is associated with the representative city (see Figure 6). The second is a precooling measure that
adjusts zone cooling temperatures downwards for the 4 hours preceding the peak period [34]. In
simulations where we included all measures together to explore interactions, the precooling measure
applies only to the Medium Office Detailed, Retail Stand-Alone, and Warehouse representative
building types, while larger prototype building models (Large Office Detailed and Large Hotel)
implement ice storage for active precooling (see below), which does not modify zone temperature
set points. However, when running the precooling measure in isolation, we apply this measure
across all of the commercial building types.

GTA and precooling zone temperature adjustments and their basis are summarized as follows.
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• Summer adjustments

– Comfort range of 73◦F–80◦F based on ASHRAE Standard 55-2017, calculated using the
Berkeley Center for the Built Environment (CBE) Thermal Comfort Tool [35].

– Assumptions: 50% relative humidity, 20 fpm air movement (uncontrolled by occupant),
1.1 metabolic rate (standard office work), adaptive clothing range of 0.5–0.7 (trousers
with short/long-sleeve shirt).

– Accordingly, set point temperature increases from 75◦F to 80◦F (GTA) during the peak
period, and decreases from 75◦F to 73◦F (precooling) for the four hours preceding the
peak period.

• Winter adjustment

– Comfort range of 68◦F–78◦F based on ASHRAE Standard 55-2017, calculated using the
Berkeley Center for the Built Environment (CBE) Thermal Comfort Tool.

– Assumptions: 30% relative humidity, 20 fpm air movement (uncontrolled by occupant),
1.1 metabolic rate (standard office work), adaptive clothing range of 0.8–1.1 (trousers
with long-sleeve shirt and jacket/sweater)

– Accordingly, set point temperature decreases from 70◦F to 68◦F (GTA) during the peak
period. No pre-heating is assumed since the risk of discomfort at 68◦F is low, particularly
given that the peak period begins in the evening hours, when most commercial buildings
have low occupancy.

Lighting
When the lighting DR measure is applied, the lighting loads are reduced by 30% for occupied spaces
and 60% for unoccupied spaces during the peak hours for the utility region that is associated with
the representative city. The occupied threshold is the average of the low- and high-daylight dimming
thresholds at which occupants reported noticing dimming during DR events in[36] and supported by
other studies, while the unoccupied threshold is the average of the low- and high-daylight dimming
thresholds that were reported as still acceptable by occupants. Acceptability is used as a criterion
for unoccupied spaces for safety reasons, as these spaces may relate to occupant movement around
the building (e.g., hallways, stairwells).

Plug Loads
When the plug loads DR measure is applied, the plug loads are reduced by 20% for occupied spaces
and 100% for unoccupied spaces during the peak hours for the utility region that is associated with
the representative city. The 20% occupied reduction threshold represents the low end of the range
found by previous studies in offices, in which reductions were achieved by improved software power
management, hardware control (e.g., advanced power strips), and behavioral feedback[37, 38]. It
is assumed that during peak periods, plug loads can be completely turned off in spaces without
regular occupancy. Data centers are excluded from the DF plug loads measure.

4.2.3 Commercial combined EE and DF measures

The commercial combined EE and DF measures package the EE and DF measure sets described
above without additional modification. For example, when precooling and GTA measures are
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packaged with the more efficient envelope measure, we do not assume any additional thermostat
setback potential. Similarly, for lighting and plug loads, no additional adjustment to the power
densities are reflected in the measures when packaged.

5 Building-level impacts of measure sets
Figure S17 shows example building-level impacts of the three aggregated measure sets detailed
in section 4 on baseline loads for single family homes and medium offices, across four different
representative cities/ASHRAE climate zones. Peak and off-peak periods for the grid for each
location, which correspond to those shown in Figure S8, are overlayed on top of the various load
shapes. The figure shows varying degrees of coincidence between building-level loads and measure
impacts and grid-level peak and off-peak periods, when decreases and increases in building demand
have the greatest assumed value, respectively. Building-level load increases, driven in the summer
by precooling measures that are constrained to the hours just preceding the peak window, appear
particularly non-coincident with off-peak periods on the grid, which often do not occur during the
mid-day to early afternoon hours for these locations.
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