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Abstract

Background: Pregnancy is associated with improvement in immunoregulation that persists into 

the geriatric phase. Impaired immunoregulation is implicated in Alzheimer’s disease (AD) 

pathogenesis. Hence, we investigate the relationship between pregnancy and AD.

Methods: Cross-sectional cohort of British women (N = 95). Cox proportional hazards modeling 

assessed the putative effects of cumulative months pregnant on AD risk and the mutually adjusted 

effects of counts of first and third trimesters on AD risk.

Results: Cumulative number of months pregnant, was associated with lower AD risk (β = −1.90, 

exp(β) = 0.15, P = .02). Cumulative number of first trimesters was associated with lower AD risk 

after adjusting for third tri-mesters (β = −3.83, exp(β) = 0.02, P < .01), while the latter predictor 

had no significant effect after adjusting for the former.

Conclusions: Our observation that first trimesters (but not third trimesters) conferred protection 

against AD is more consistent with immunologic effects, which are driven by early gestation, than 

estrogenic exposures, which are greatest in late gestation. Results may justify future studies with 

immune biomarkers.
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Introduction

Inflammatory processes are implicated in the pathogenesis of Alzheimer’s disease (AD).1,2 

Reproductive life history is known to influence inflammatory pathways and affect 

inflammatory disease activity, both in terms of short-term symptomology (eg, asthma,3 

rheumatoid arthritis,4,5 multiple sclerosis6) and long-term risk (eg, allergies,7,8 systemic 

sclerosis,9,10 rheumatoid arthritis4,11,12). Pregnancy is an especially important modifier of 

women’s inflammatory activity. Inflammation as a possible link warrants an investigation of 

whether a woman’s pregnancy history influences her AD risk. Only a small number of 

studies have addressed the possibility that aspects of reproductive life history might 

influence AD risk, and authors largely ignore inflammation in discussing those results. We 

critically evaluate these studies and further discuss how reproductive life history affects risk 

of other maladies with similar etiologies. Using data collected from our cross-sectional study 

of British women, we explore the possibility that women’s pregnancy life history influences 

risk of Alzheimer’s-type dementia.

Alzheimer’s and Adaptive Immunity

There is abundant evidence to support the concept that AD is a systemic inflammatory 

disease.13,14 A full review of inflammation in AD is beyond the scope of this article, but 

given the ways in which pregnancy modifies the adaptive immune system, it is important to 

highlight the role of T-cells in AD etiology. T-cells are more numerous in the AD brain than 

healthy brains,15,16 potentially as a result of the blood– brain barrier dysregulation that is 

typical of AD neuropathy.17 Participants with AD exhibit more activated T-cells both in the 

periphery and the brain compared to age-matched controls.18 This increase in T-cells has 

been attributed to the CD4+ compartment,14,19 with greater concentrations of effector 

memory cells (CD45RA−CCR7−), specifically late differentiated cells (CD28−CD27−), and 

lower concentrations of early differentiated (CD28+CD27+) and naive CD4+ cells (CD45RA
−CCR7+).20,21

Characterization of the upregulated CD4+ cells in AD reveals that among individuals with 

AD, excessive inflammation is exhibited that is type 1 dominant, with elevated levels of 

TH1-associated cytokines.2,22–24 TH1 cells can influence AD pathogenesis both from within 

the brain and from the periphery: Pro-inflammatory cytokines secreted by activated TH1 

cells in the periphery can cross the blood–brain barrier and activate dendritic cells, 

microglia, and astrocytes, and amyloid-b has an activating effect on microglia and 

astrocytes, stimulating preferential TH1 proliferation.16 Importantly, while individuals with 

AD exhibit proliferation of effector CD4+ cells, this is not the case for the CD4+ cells with a 

suppressive phenotype, regulatory T-cells (TRegs; CD25+FoxP3+CD127low).21 In healthy 

individuals, sufficient TReg supply regulates effector T-cell activity and prevents excessive 

inflammation. It has been suggested that insufficient TReg repositories may contribute to AD 

pathogenesis.20,21

Converging evidence suggests that alterations in CD4+ subset concentrations may be an 

early hallmark of AD, potentially contributing to the pathological cascade.25,26 Upregulation 

of late differentiated T-cells and depletion of naive T-cells and TRegs are apparent during the 

preclinical (mild cognitive impairment [MCI]) and early stages of AD symptomology19 and 
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do not appear to change over the course of AD progression.21 Rodent models of AD support 

the notion that the immunological changes characteristic of AD occur before neurocognitive 

deterioration,26 and experimental amplification of TReg response delays onset27 and can 

even reverse AD-like cognitive impairment.28 These AD-characteristic immune profiles 

described here do not occur in individuals with other dementias,19,29 supporting the 

likelihood that this inflammatory profile is specific to AD. Individuals with AD do not 

exhibit greater degrees of immunosenescence than age-matched controls,30 suggesting that 

neurotypical “inflammaging” is not responsible for these changes. Inflammaging is a 

concept developed by Franceschi et al31 to describe typical, age-related, chronic, low-grade 

inflammation characterized by immunosenescence, but patients with AD do not exhibit 

higher concentrations of pro-inflammatory biomarkers C-reactive protein and interleukin 6 

compared to controls.30

Pregnancy and Adaptive Immunity

In a woman’s (postnatal) life span, the most dramatic increases in TRegs occur during the 

first trimester of pregnancy. Evidence suggests there are exponential TReg increases in pre- 

and early pregnancy, stable levels across late pregnancy, and mild increases postpartum, 

which plausibly could persist for the rest of the life span. Specifically, pregnancy is 

maintained by an increase in TReg cells that, some evidence suggests, could begin as early as 

coitus in response to seminal fluid exposure in preparation for embryo implantation.32–36 

The TReg levels rise further at implantation and during the first 2 pregnancy trimesters.32,37 

Pregnancy-induced TRegs are generated in the periphery38 and migrate to the fetal–maternal 

interface, leading to lower detectable levels of TRegs in the maternal periphery during 

pregnancy.6 In human pregnancy (unlike murine pregnancy38), elevated TReg levels are 

maintained postpartum.39,40 Somerset et al demonstrated that maternal TReg concentrations 

showed a significant increase from prepregnancy to 6 to 8 weeks postpartum (4.4% vs 7.5% 

of peripheral lymphocytes). The TReg levels continue to rise for a year throughout the 

postpartum phase at a rate of 4% increase per month,41 and so maternal peripheral TReg 

frequency is significantly higher postpartum compared with during pregnancy.6 There is 

evidence that within the TReg proliferation that occurs with pregnancy, the TRegs specific for 

fetal antigens are expelled with decidual tissue and those without such specificity are 

retained in the maternal body.39,42,43 It remains unknown how long these changes in T-cell 

subsets persist beyond 1 year postpartum.

While pregnancy induces increases in TRegs that suppress effector T-cells, there is still 

immune activity during pregnancy, and immunosuppression is not complete. The effector 

cells that are upregulated in pregnancy are TH2 dominant, suppressing TH1 inflammation. In 

addition to the maternal immune modifications, the conceptus secretes TH2 cytokines that 

downregulate TH1 cytokines,44 which may influence the maternal compartment.

In sum, the changes that occur in the CD4+ compartment during pregnancy (proliferation of 

TRegs, downregulation of type 1 inflammation) are in direct contrast with the typical profile 

of the CD4+ compartment in AD (depletion of TRegs, upregulation of type 1 inflammation). 

We speculate that if pregnancy’s immunologic alterations persist across the life span, we 
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might expect that women with more pregnancies should benefit from greater protection 

against AD pathogenesis.

Hypotheses

This study tests the overarching hypothesis that women who spend more cumulative time 

pregnant in their lives will experience reduction in AD risk via improvement in 

immunoregulation. To test this hypothesis, our study considers women’s cumulative number 

of months pregnant with relation to AD risk. If pregnancy were to protect against AD via 

greater repositories of TRegs, then cumulative number of months pregnant would be a better 

predictor of AD risk than parity. Cumulative number of first trimesters would be a better 

predictor than parity because the major changes in TReg concentrations during pregnancy 

occur in the early phase, so regardless of whether the pregnancy lasted to completion, the 

benefit from increased concentrations of TRegs might persist.

We acknowledge the possibility that even if we observe that cumulative time pregnant is 

correlated with AD risk, an alternative explanation for this relationship could be related to 

estrogen exposure. Cumulative months pregnant could be a proxy for duration of estrogen 

exposure (via longer reproductive span) or quantity of estrogen exposure (via pregnancy-

associated high concentrations of estrogen). Estrogen levels rise exponentially during 

pregnancy, with typical plasma concentrations during the third trimester of pregnancy 

approximately 85 times levels typical during an ovulatory menstrual cycle (calculated from 

Tulchinsky and Little45). Several in vitro and animal studies have demonstrated estrogen’s 

role in inhibiting and reversing AD-specific brain insults,46–50 and human studies have 

investigated how lifetime duration of endogenous estrogen exposure may influence later-life 

cognitive performance51–55 and AD risk.56–58 It could be hypothesized that this higher dose 

of estrogen exposure might confer reduction in AD risk.

We adopted 2 strategies for distinguishing between an immunologic versus estrogenic 

explanation for pregnancy’s hypothesized effect on AD risk. Firstly, more pregnancies could 

be associated with longer reproductive span, defined as the time between menarche and 

menopause, which has been used as a proxy measure of duration estrogen exposure.59,60 We 

addressed the possibility of cumulative time pregnant acting as a proxy for reproductive span 

by adjusting for reproductive span in all analyses. Secondly, more pregnancies could be 

associated with greater quantity of estrogen exposure. If pregnancy were to protect against 

AD via greater concentrations of estrogen, later pregnancy would exert a more potent anti-

AD effect than early pregnancy because of the exponential nature of estrogen’s increase 

across the course of pregnancy. We addressed the possibility of cumulative months pregnant 

acting as a proxy for high doses of estrogen exposure by conducting 2 separate analyses of 

the reliance of AD risk upon a woman’s cumulative number of first trimesters (proxy for 

immunoregulation) and the reliance of AD risk upon a woman’s cumulative number of third 

trimesters (proxy for estrogenic neuroprotection).

A summary of our hypotheses is that we anticipate (1) cumulative months pregnant will be 

negatively associated with AD risk, (2) cumulative months pregnant will be a better 

predictor of AD risk than parity, and (3) cumulative number of first trimesters will be a 

better predictor of AD risk than cumulative number of third trimesters.
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Methods

Cohort

Women aged 70 to 100 years along with family member(s) and/or carer(s) were recruited for 

participation through nursing homes, churches, community centers, the Alzheimer’s Society, 

and a retired employee community from 2010 to 2012. Participants received a modest gift 

voucher as incentive. The protocol had approval from the University of Cambridge Human 

Biology Research Ethics Committee. Participants were informed of research purpose, 

activities, and confidentiality. Proband, informant (family member or carer), and, when 

necessary, legally authorized representative provided written informed consent.

Procedures

Each session consisted of an interview collecting information about reproductive history and 

factors that would potentially confound the relationship of dementia status with reproductive 

history, including use of contraceptive and menopause hormone therapies. Information was 

collected through detailed interviews with probands, family members, carers, nursing home 

staff, and written records, when necessary and available. Exclusionary criteria included self, 

informant, or carer report of proband having non-Alzheimer’s-type dementia (eg, vascular, 

Parkinsonian) or any possible external injury to the brain (eg, head impact injury, brain 

tumor). Ten cases were excluded from the analysis because of these criteria (Table S1). A 

weakness in the study design was lack of information gathered about immunopathology. 

Dementia status was measured by the Clinical Dementia Rating (CDR) scale, consisting of a 

60- to 90-minute interview conducted in 2 parts, one with the proband and the other with an 

informant, that is, her relative or carer. In the CDR, probands are evaluated in 6 categories: 

memory, orientation, judgment and problem–solving, home and hobbies, community affairs, 

and personal care. The “sum of boxes (SOB)” was used as a continuous variable, as has 

become standard in clinical trials,61,62 computed from the sum of each category score 

creating a scale from 0 to 18. Cases and controls were not distinguished until CDR-SOB 

scores were calculated, at which time individuals scoring “0” were designated as controls. 

Details of the study protocol are described in previous publications.58,63

Variable Calculations

Age at Alzheimer’s onset.—For the purposes of the Cox model, the time-to-event was 

defined as years between age 50 and CDRSOB score turning from 0 to 0.5, indicating onset 

of AD symptoms. This was estimated based on CDR-SOB score at the time of interview. 

Using published AD progression norms64 (typical number of years spent in each dementia 

phase), a scale was created to estimate age at onset for each possible CDR-SOB score by 

interpolating CDR-SOB scores between the end points of other scales’ categories. Year at 

which CDR-SOB score would have progressed from 0 to 0.5 was back-extrapolated from the 

observed degree of dementia at the time of interview. Details of this methodology are 

described in Supplementary Methods.

Predictive variables.—Cumulative months pregnant was calculated in a comprehensive 

manner, such that all pregnancies including miscarriages and medical terminations were 

included. Information was collected about the trimester at which spontaneous and elective 
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abortions occurred. For calculating cumulative months pregnant, number of first trimesters 

and number of third trimesters, we considered a first-trimester pregnancy termination to be 

equivalent to 3 months spent pregnant, and second trimester was considered 6 months (there 

were no third-trimester terminations in this cohort). All child-yielding pregnancies, 

including stillbirths, were included in the variable calculation as 9 months. Parity was 

calculated as each woman’s total number of delivered births, including live births and 

stillbirths. Predictive variables were natural logarithm transformed to improve the symmetry 

of the distributions. Quantification of covariates follows standard procedures and is 

described in Table S2. When necessary, continuous covariates were transformed to improve 

symmetry of distribution. All effect size coefficients were back-transformed for 

interpretability (Figure 1).

Statistical Tests

In a main effects analysis, each predictive variable contributed into the Cox model a 

coefficient, “coef,” whose value is estimated on the basis of the data. When exponentiated, 

“exp(coef),” this parameter yields the ratio of hazards (probability of AD onset per unit 

time) between 2 hypothetical women who are identical except for a unit difference between 

their respective values of the predictive variable. “Alzheimer’s disease-free time” was 

defined as the retrospectively estimated number of years in excess of age 50, prior to the 

interview, during which the woman was free from AD. The AD-free time for those women 

who were judged to be free from AD at the time of the interview was treated as right 

censored, as is common practice in survival analysis. The dependency of AD-free time on 

the predictive variables was analyzed via Cox proportional hazards model. Plots of the 

martingale residuals revealed that the model fits were not unduly influenced by particular 

cases (Figures S1 and S2).

We undertook a 2-step process to select covariates for the Cox models. Firstly, we identified 

all variables that might confound the statistical relationship between pregnancy history and 

AD risk (Table S2). Each of these variables was independently tested for covariance with 

each predictive and outcome variable. Secondly, those variables that exhibited significant (P 
< .10) relationships with both a predictive and an outcome variable were included in models. 

Additionally, 2 interaction terms were included to investigate whether subsets of women 

exhibited different relationships between pregnancy history and AD risk based upon (1) 

whether or not they breastfed and (2) whether or not they had a first-degree relative with 

dementia. These 2 interaction terms were selected because of previously reported 

importance of breastfeeding history and family history of dementia with AD risk in this 

cohort.63

Additionally, for cases (CDR-SOB > 0), we performed a linear regression to check whether 

incomplete pregnancies were statistically related to the degree of dementia (CDRSOB score) 

at interview, in order to determine whether our ability to detect incomplete pregnancies was 

biased related to proband memory impairment.
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Results

Cohort Statistics

To investigate the role of pregnancy history on AD risk in a cohort of British women, a 

subset of 95 women from the total cohort of 133 women were included in the analyses. All 

women were of white British ethnic identity, currently residing in England. Ten probands 

from the initial cohort of 133 were excluded from analyses due to factors that would cause 

non-Alzheimer’s-type dementia (eg, stroke) or could obscure the effects of reproductive 

history (eg, ovarian cancer). Twenty-eight more participants were excluded due to missing 

information (Table S1).

Degree of dementia at the time of interview varied across the full range of possible CDR-

SOB scores, with some of the participants judged to have no sign of cognitive impairment 

(N = 56) and some assessed to have CDR-SOB scores of 0.5 or higher (N = 39) at interview 

(Table 1). Of the controls, 83% were born in England and 86% were educated to age 16 or 

less, and of the cases, 82% were born in England and 92% were educated to age 16 or less. 

Comparing reproductive patterns between the control group and the case group, we observed 

identical median ages at menarche, menopause, similar reproductive spans, and ages at first 

birth. No statistically significant differences existed between cases and controls for any 

reproductive life history variables (Table 1). We investigated potential detection bias in the 

case sample and found no significant relationship between severity of dementia and number 

of incomplete pregnancies in the subset of cases (linear model results: R2 = 0.0, F1,48 = 0.9, 

P = .34). This null result suggests that detection of incomplete pregnancies was not biased 

due to the memory loss associated with degree of dementia. Our methods involving 

interview of informants and consultation of written records may have contributed to greater 

accuracy than participants with dementia could have provided on their own. There were 

significant differences in age at interview, education, and occupation between the case and 

control subsets of the cohort (Table 1). Each of these variables was investigated for covariate 

status (Table S2). Education was found to be correlated with both predictive and outcome 

variables and was therefore included in multivariate models (Table S2).

Hypothesis 1: More Cumulative Months Pregnant Is Associated With Lower Alzheimer’s 
Risk

In a Cox proportional hazards model adjusting for age at first birth, reproductive span, and 

history of breastfeeding, marriages, and occupation, we found that AD risk had a significant 

dependence on cumulative months pregnant, with more months pregnant associated with 

lower AD risk (Table 2). For example, a woman who spent 3% more total months pregnant 

than another (otherwise identical) woman would have approximately 5.50% (25th-75th 

percentiles 3.9–7.0%) lower in AD risk (P = .02), i.e., this would apply to two (otherwise 

identical) women who had spent 34 versus 33 months pregnant. Similarly, 2.8% more total 

months pregnant was associated with 5.5% (25th-75th percentiles 0.5–10.3%) lower AD risk 

(P = .03). These results are consistent with our prediction that pregnancy may exert long-

term protective effects against AD risk potentially due to the benefits of pregnancy-induced 

TReg proliferation but does not rule out other plausible biomechanisms of neuroprotection.
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Hypothesis 2: Cumulative Months Pregnant Is a Better Predictor of AD Risk Than Parity

In a Cox proportional hazards model controlling for age at first birth, reproductive span, and 

history of breastfeeding, marriages, and occupation, we found that the number of births 

(both live childbearing and stillbirths, ie, “parity”) was not significantly associated with the 

risk of AD (P = .21, and P = .11 adjusted for cumulative months pregnant; Table 2). This 

metric, parity, is a less precise reflection of a woman’s full pregnancy history than 

cumulative months pregnant and has been the construct of interest in previous studies.

Hypothesis 3: Cumulative Number of First Trimesters Is a Better Predictor of AD Risk Than 
Third Trimesters

In separate Cox proportional hazards models, all controlling for age at first birth, 

reproductive span, and history of breastfeeding, marriages, and occupation, we assessed AD 

risk reliance on first trimesters alone and third trimesters alone, first while adjusting for third 

trimesters and third while adjusting for first trimesters. We found that AD risk had a 

significant dependence on cumulative number of first trimesters and no significant 

dependence on cumulative number of third trimesters (Table 3). For example, a woman who 

had 20% more first trimesters than another (otherwise identical) woman would have 

approximately 30% (25th-75th percentiles 22.4–36.4%) lower AD risk (P = .02) i.e., this 

would apply to two (otherwise identical) women who had 6 versus 5 total first trimesters. 

Models that measure the reliance of AD risk on first trimesters while adjusting for third 

trimesters, and vice versa, demonstrated similar results (Table 3). Furthermore, the 95% 

confidence interval for the exponentiated coefficients do not overlap (models 6 and 8 in 

Table 3), suggesting that the reduction in AD risk brought by the first 3 months of a new 

pregnancy is greater than that brought by the final 3 months of an ongoing pregnancy (Table 

3). These data provide evidence against the idea that greater quantity of estrogen exposure 

explains pregnancy’s protective effect against AD risk, which would be most dependent on 

third trimesters, and instead support the possibility of an immunoregulatory mechanism, 

which would be most dependent on first trimesters.

Discussion

We find that women who spent more months of life pregnant exhibited a significant, dose-

dependent reduction in AD risk. Our results support the possibility that pregnancy protects 

against later-life AD onset, potentially due to pregnancy’s characteristic increase in TReg 

proliferation. Previous studies found effects in the opposite direction, with higher parity 

associated with earlier onset of AD,55,65 and one study reported that women who had 3 or 

more pregnancies had triple the AD risk.55 It is possible that the inconsistent results for the 

reliance of AD risk between our study versus studies of parity could be due to those studies’ 

neglect of the considerable variation in breastfeeding rates and incomplete pregnancies.

Other studies have explored the relationship between women’s parity and geriatric cognitive 

performance (which may or may not be indicative of AD risk) with mixed results. One study 

found that higher parity was associated with better memory ability in elderly women,53 and 

others have observed that estrogen replacement therapy’s beneficial effect on cognitive 

function improved with increasing parity, although this effect was not statistically 
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significant.66 However, there has been more robust evidence for the opposite trend: One 

study found higher parity associated with worse cognitive function,54 and another found that 

women who had 5 or more pregnancies had worse cognitive impairment compared with 

those who had fewer pregnancies.51 It should be noted that pregnancy’s potential anti-AD 

effect due to improvement in immunoregulation may not be relevant for non-AD-related 

cognitive decline. Therefore, in these studies of non-AD cognitive decline,51,53,54,66 the 

mechanisms and pathways responsible for differences in cognitive performance may be 

considerably different and potentially variable between individuals and study cohorts. 

Further research is necessary to resolve whether failure to consider incomplete pregnancies 

and breastfeeding in studies of AD, as well as whether there may be contradictory risk 

factors for AD and non-AD cognitive decline, accounts for some inconsistencies in previous 

study results.

Immunoregulatory or Estrogenic Pathway?

Our observation that more cumulative months pregnant is associated with reduced AD risk 

could potentially be attributable to a number of explanations. We suggest the most likely 

explanation is related to immunoregulation. Other possible explanations could be that 

cumulative months pregnant is a proxy for duration of estrogen exposure (longer 

reproductive span) or quantity of estrogen exposure (pregnancy-associated high 

concentrations of estrogen). We address these possibilities in 2 ways. Firstly, we attended to 

duration of estrogen exposure by controlling for reproductive span in all models and still 

found that AD had a significant reliance on cumulative months pregnant (Table 2). Secondly, 

we compared cumulative number of first trimesters (mean [M] = 3.0, standard deviation 

[SD] = 1.8) to third trimesters (M = 2.5, SD 1.5). If pregnancy exerts its anti-AD effect via 

recruitment of TRegs, then first trimesters would be expected to exert the stronger effect 

because the most dramatic acceleration in TReg recruitment occurs from the nonpregnant to 

early pregnant state.40,41 Conversely, if pregnancy exerts its anti-AD effect via quantity of 

estrogen exposure, then third trimesters would be expected to exert the stronger effect 

because estrogen levels rise exponentially during pregnancy. Our results are more consistent 

with an immunologic explanation and less with an estrogenic mechanism.

Pregnancy and Autoimmunity

Alzheimer’s disease is characterized by a number of immuno-logic similarities with 

autoimmune diseases, including not only TH1 dominance and insufficient TRegs but also the 

presence of autoantibodies.67,68 There is abundant evidence that pregnancy induces 

protection and relief from autoimmune diseases. Such evidence is consistent with the idea 

that pregnancy induces increases in TRegs that suppress effector T-cells and mildly 

upregulates TH2 inflammation. It has been known since 1938 that pregnancy is associated 

with symptom relief in rheumatoid arthritis,4,5 with many people going into remission 

during pregnancy.9 While previous authors have interpreted this effect with relation to 

estradiol or cortisol, there has been no evidence for such an association,69,70 consistent with 

the possibility that proliferation of TRegs is responsible for the suppression of inflammation 

characteristic of rheumatoid arthritis.71 We posit the protective effect of TRegs in pregnancy 

may have long-term advantages in protection against developing rheumatoid arthritis due to 

increases in TReg cell quantity or activity that are sustained beyond pregnancy. Nulliparous 
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women have twice the risk of rheumatoid arthritis compared to parous women.4,11,12 In 

spondyloarthropathy, another form of inflammatory arthritis, as well as autoimmune 

hepatitis, pregnancy usually has beneficial effects.9,72,73 Additionally, nulliparas have 

increased risk of systemic sclerosis compared with parous women,9,10 representing further 

evidence for a long-term protective effect. Multiple sclerosis is a particularly relevant 

disease to consider in light of AD because it is characterized by neuroinflammation. There is 

significant symptom reduction during pregnancy among women with multiple sclerosis.6 A 

recent study found that individuals with amnesic MCI and multiple sclerosis exhibited 

similar levels of CD45+ T-cells and pro-inflammatory cytokines in cerebrospinal fluid, 

suggesting similar central inflammatory profiles that manifest before AD neurocognitive 

impairment.25

There is also evidence that pregnancy induces protection and relief from atopies, which are 

TH2 dominant. This evidence is consistent with the idea that pregnancy induces increases in 

TRegs that suppress effector T-cells. Pregnancy may induce relief from asthma and 

improvement in bronchial hyperresponsiveness.3 It is noteworthy that the improvement in 

asthma symptoms was observed from preconception through the second trimester, which is 

when TReg cells proliferate, and then there was no statistically significant change between 

the second and third trimester. Interpretation of this trend has not previously included 

discussion of TRegs but rather speculated on the role of sex steroids in asthma 

symptomology.74 There is evidence that increasing parity has a beneficial effect in 

diminishing maternal allergies,7,8 further evidence that pregnancy-induced change in 

adaptive immunity may have long-term effects for the mother.

Further evidence for pregnancy-induced long-term improvements in immunoregulation 

comes from studies of fetal microchimerism. Fetal cells are semi-allogeneic to the mother’s 

genetic identity, and after a pregnancy, fetal cells remain in the mother. It is thought that 

such cells persist in the mother’s body for the duration of her lifetime,75 and thus a woman 

with multiple pregnancies would carry fetal microchimeric cells of multiple genetic 

identities. It has been postulated that maternal lymph nodes might contain increased levels of 

TRegs in order to sustain an immunosuppressed environment to facilitate tolerance of these 

populations of semiallogeneic cells,75 as has been demonstrated in fetal lymph nodes to 

sustain tolerance of alloantigens.76

Research Considerations

Limitations of this study include the small sample size, potential for recall inaccuracies or 

biases which may be higher than in other cohorts due to this cohort’s age range and 

dementia status, lack of biomarker data, lack of full medical history, and lack of information 

on causes of miscarriage, although it would be nearly impossible to find causal information 

from miscarriages that occurred as early as the 1920s. Furthermore, our data cannot test (or 

rule out) the possibility that estrogenic neuroprotection requires merely a mild elevation in 

estrogen concentration, and so the extremely high concentrations of third-trimester estrogen 

may be irrelevantly above the necessary threshold for reduction of AD risk. We also cannot 

rule out the possibility that another unknown biological pathway connects pregnancy and 

AD etiology.
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The relationship between miscarriage and inflammation is unlikely to confound our model. 

Firstly, we address the issue of inflammation as a cause of incomplete pregnancies in this 

cohort. Sporadic miscarriage (occurring after a missed period and therefore known to the 

proband) is a common and normal part of a woman’s reproductive experience, affecting an 

estimated 1 in 4 pregnancy-attemptant women77 and 15% of pregnancies.78,79 There are 

myriad causes of sporadic miscarriage, most often and nonexclusively chromosomal 

abnormalities (observed in 75% of cases) and fetal malformation (observed in 85% of 

cases),80 in addition to uterine abnormalities, cervical compromise, endocrine dysregulation, 

and toxic exposure.79 In some cases, infection can cause inflammation that directly causes 

miscarriage, but there is no reason to suspect that women who experience inflammation-

induced miscarriage fail to benefit from the increase in TReg concentrations that occur with 

seminal fluid exposure,32–35 conception, and implantation,32,37 albeit insufficient 

immunosuppression to maintain the pregnancy to completion.

Recurrent miscarriage, defined as 3 or more consecutive miscarriages, is a rarer condition 

affecting an estimated 1% of pregnancy-attemptant women and can be caused by endocrine, 

autoimmune, or thrombotic abnormalities,77 with the latter, sometimes, possibly caused by 

cytokine degradation of vasculature.81 Because only 4% (N = 4) of the women in our cohort 

experienced a total of 3 or more miscarriages (Table 1), we suspect a low rate of recurrent 

miscarriage and thus a low degree to which incomplete pregnancy rates would be caused by 

the immunodysfunction associated with recurrent miscarriage. Similar to the argument 

above, there is no reason to suspect that women who experience inflammation-induced 

miscarriage fail to benefit from the increase in TReg concentrations that characterize the 

early stages of pregnancy, even if those changed are insufficient for successful gestational 

maintenance. The degree to which TReg proliferation occurs and is sustained in incomplete 

pregnancies is a question that requires further study. For now, there is no evidence to predict 

that experiencing a miscarriage would undermine our hypothesis of long-term 

immunoregulatory benefits of gestation.

Future research should expand upon our understanding of how reproductive history affects 

inflammatory mechanisms in the long term. More information is especially needed on the 

effects of pregnancy on T-cell activity in mothers with and without inflammatory diseases. It 

will be important for studies to consider the presence of pro-inflammatory alleles in 

understanding how immune system development, pregnancy, and other inflammation-related 

mechanisms affect AD risk. Further research is also needed to elucidate whether each 

pregnancy in a woman’s life history confers equivalent long-term changes to immune and 

endocrine systems.82

Conclusion

Using data from a cohort of elderly British women, we calculated cumulative time each 

woman spent pregnant and fit Cox models to test the statistical dependence of AD risk on 

pregnancy history. We found that more months pregnant in the lifetime was associated with 

reduced risk of AD. The more typically consulted but less comprehensive construct, parity 

(number of deliveries), exhibited no significant effect. Cumulative number of first—but not 

third—trimesters conferred a protective effect against AD risk. These observations are 
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consistent with a protective effect of pregnancy-induced proliferation of TRegs. Reproductive 

life history has an effect on maternal immune function, and there may be long-term impacts 

from immune cell proliferation that occurred during a woman’s reproductive years. 

Pregnancy is characterized by an immunosuppressive profile, and the increase in 

concentration of regulatory immune cells may have implications for inflammatory 

propensity in later life. We hope our findings prompt further study of this previously 

overlooked mechanism as a possible link between women’s reproductive life history and 

AD.
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Figure 1. 
Women with more cumulative months pregnant had lower AD risk. For each age, the plot 

reports the covariate-adjusted probability of being AD-free for women with total lifetime 

number of months pregnant below the cohort median (lower curve) and above the cohort 

median (upper curve). Pointwise 95% confidence bands are also shown. The purpose of this 

plot is to give a visual sense of the magnitude of the effect by dichotomizing the number of 

cumulative months pregnant variable. Cox regression of the reliance of AD risk on median-

split dichotomous characterization of cumulative months pregnant demonstrates that women 

above the cohort median exhibit 37.01% lower AD risk compared with women below the 

cohort median (β = −.99, exp(β) = .37, se(β) = .40, P =.01, 95% CI = 0.17–0.81). The Cox 

model reported in Table 2 represents a more meaningful analysis by utilizing the continuous 

cumulative months pregnant variable. AD indicates Alzheimer’s disease; CI, confidence 

interval.
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