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Abstract

Protein adduction is considered to be critical to the loss of cellular homeostasis associated with 

environmental chemicals undergoing metabolic activation. Despite considerable effort, our 

understanding of the key proteins mediating the pathologic consequences from protein 

modification by electrophiles is incomplete. This work focused on naphthalene-induced acute 

injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to 

define the initial cellular proteomic response and later protective actions related to tolerance. 

Airways and nasal olfactory epithelium from mice exposed to 15 ppm NA either for 4 hrs (acute) 

or for 4 hrs/day × 7 days (tolerant) were used for label free protein quantitation by LC/MS/MS. 

Cyp2f2 and secretoglobin 1A1 are decreased dramatically in airways of mice exposed for 4 hrs, a 

finding consistent with the fact that P450’s are localized primarily in Clara cells. A number of heat 

shock proteins and protein disulfide isomerases, which had previously been identified as adduct 

targets for reactive metabolites from several lung toxicants, were upregulated in airways but not 

olfactory epithelium of tolerant mice. Protein targets that are upregulated in tolerance may be key 

players in the pathophysiology associated with reactive metabolite protein adduction.
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Introduction

The introduction and wide spread application of methods for measuring the transcriptome in 

the 1990’s was hailed in the scientific community as a key step in understanding the 

differences between diseased and normal cells. Transcriptomic approaches also offered a 
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strategy for monitoring early stage disease and, along with it, the identification of potential 

therapeutic targets[1]. At this same time, substantial effort was directed toward 

understanding patterns of gene expression associated with the toxicity of chemicals with the 

expectation that a fingerprint of increased or decreased expression of certain genes could be 

used as markers for potential cellular injury and that these signatures would serve as a 

predictive screen to eliminate problem candidate compounds from the drug development 

pipeline [2]. While these broadscale transcriptomic approaches have provided important new 

information regarding disease targets and have generated useful methods for classifying the 

safety profile of some chemicals [3], they have not proven to be as predictive as once hoped. 

There are likely several reasons for this including the poor correlations between the 

transcriptome and the proteome (reviewed in [4]) and the fact that posttranslational 

modifications often modulate the functions of cellular proteins. Monitoring changes in the 

proteome, while technically more challenging, is likely to provide a better assessment of 

cellular changes that are more closely tied to phenotypic alterations in the cell. 

Understanding the proteomic response to chemical toxicants can provide important insights 

regarding the fundamental mechanisms by which these agents disrupt the cellular machinery 

and afford biomarker targets for further development as early disease markers.

Over the past several years, a number of laboratories including ours have focused on 

identifying proteins that are adducted by reactive metabolites generated via cytochrome 

P450 dependent activation of chemicals that produce cytotoxic injury in the respiratory tract. 

These chemicals include butylated hydroxytoluene [5, 6], 1-nitronaphthalene [7, 8] and 

naphthalene [9, 10]. The overall goal has been to probe fundamental mechanisms by which 

these agents disrupt cellular homeostasis. While many of the protein targets identified with 

reactive metabolites generated in the lung are the same as those reported in the liver with 

hepatotoxic agents [11], these studies serve only to provide a list of possible suspects 

associated with the disruption of cellular homeostasis. Although these studies have shown: 

1) that adduct formation is not limited only to the most abundant proteins [7, 12], 2) that the 

extent of modification is generally modest [13, 14] and 3) that there are multiple amino acid 

targets for most of the reactive metabolites [15, 16], they provide very little information on 

which protein or, more likely, group of proteins are intimately associated with the events 

that lead to cellular necrosis [17]. One strategy to begin to discriminate those adductions 

which occur on proteins which are critical to cell survival compared to bystander proteins is 

to understand alterations in the proteome of target cells during initial stages of injury and 

after multiple exposures where target cells become resistant to injury.

The work described here was done using naphthalene, a model, highly selective toxicant to 

the respiratory tract of mice where the cellular alterations in both the airway and nasal 

epithelial cells have been well characterized following exposure by the inhalation or 

parenteral routes of exposure. Acute 4 hr inhalation exposures to 15 ppm naphthalene 

resulted in swelling and vacuolization of Clara cells in the airway epithelium which were 

visible immediately at the end of the exposure and progressed to necrosis and exfoliation of 

airway epithelial Clara cells 24 hrs after the start of the exposure [18]. In comparison, the 

nasal olfactory epithelium appeared normal 0–4 hrs following the end of a 15 ppm exposure 

but at 20 hrs after the end of the exposure, olfactory epithelial cells were nearly completely 

absent from the nasal ethmoid tissue. Multiple doses of naphthalene, administered either 
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intraperitoneally or by inhalation daily for 7 days result in tolerance to large, challenge doses 

[19, 20]. The toxicity of naphthalene is dependent on the cytochrome P450-dependent 

metabolic activation of the parent substrate to electrophilic metabolites and the formation 

and disposition of these metabolites correlates with the extent of injury in the lung (see [21] 

for review).

In the current study, we applied highly sensitive LC/MS/MS approaches to samples from 

target areas of the respiratory tract to probe changes in expression profiles of proteins in the 

olfactory and intrapulmonary airway epithelium in response to both single and multiple 

naphthalene exposures. The data presented here focus primarily on those proteins which had 

previously been shown to be adducted by reactive metabolites of naphthalene although a 

complete database of the alterations in protein abundance observed in response to 

naphthalene is available online (http://www.ebi.ac.uk/pride/). We reasoned that adducted, 

critical proteins would be at higher levels in naphthalene tolerant animals and that those that 

were either at lower levels or remained the same are acting as bystander proteins.

Materials and Methods

Animals

All animal work was conducted under protocols approved by the University of California – 

Davis Animal Use and Care Committee (IACUC number 17103, AALAC number 

A3433-01). Male Swiss-Webster mice (25–30g) were purchased from Harlan (Livermore, 

CA) and allowed free access to food and water. Animals were housed in HEPA-filtered 

isolators in an AAALAC accredited facility for one week before use. All treated and control 

groups in this study contained 6 mice.

Inhalation exposures

Naphthalene was generated by passing filtered, compressed air through a column containing 

crystalline naphthalene as described in detail previously [22]. This was mixed with 

compressed air in a mixing chamber; vapor concentrations were monitored continuously by 

passing the samples through a UV flow cell using a wavelength of 211 nm. Mice (3 per 

cage) were exposed in all-glass metabolism chambers to 15 ppm naphthalene for 4 hrs; 

controls were exposed to filtered air. All exposures were concluded before 1 pm to avoid 

differences associated with the diurnal variations in glutathione levels. Two separate 

experiments with 6 control and 6 exposed mice were conducted with the short term 

exposures. In one case, animals were euthanized within 90 min of exposure to determine the 

effects of initial chemical insult where airway epithelium begins to show morphological 

changes but where the airway itself is not exfoliated. A second group of 6 control and 6 

treated animals was exposed for 4 hrs but animals were euthanized 24 hrs following the end 

of the exposure. This is a time point where moderately severe injury to the epithelium has 

occurred and many cells have exfoliated from the airways. A further group of 6 control and 

6 treated mice were exposed to naphthalene 4 hrs per day for 7 days to induce tolerance 

[20].
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Preparation of tissues for proteomic analysis

Mice were euthanized either 90 min or 24 hrs following the conclusion of the short term, 4 

hr exposure with an overdose of pentobarbital. The trachea was cannulated and lungs filled 

with low melting agarose for airway dissection as described previously [23]. The tolerant 

animals were euthanized 24 hrs after the seventh day of exposure to naphthalene. Airways 

were placed directly on dry ice for subsequent analysis. The head was removed, skinned, the 

lower jaw was excised and the skull divided along the longitudinal suture line. Olfactory 

epithelium was removed by dissection and placed immediately on dry ice.

Protein extraction and preparation of samples for LC/MS/MS analysis—
Procedures for the extraction of proteins from the sample and preparation for analysis have 

been described in detail in another manuscript [24]. Briefly, frozen tissues were pulverized 

at liquid nitrogen temperatures using a ceramic mortar and pestle. Proteins were washed at 

4°C with 10% TCA/0.2% DTT (90:10) overnight. Proteins were pelleted by centrifugation, 

washed twice with ice cold acetone containing 0.2% DTT and samples were dissolved in 7 

M urea, 2 M thiourea/0.2% DTT. Aliquots of the dissolved sample were assayed for protein 

using the Thermo-Pierce 660 nm kit with BSA as the standard. Samples were diluted to 1.5 

µg/µl, DTT was added, samples were incubated at 55°C and sulfhydryls were derivatized by 

the addition of iodoacetamide to a final concentration of 16 mM. Samples were digested 

with immobilized trypsin (Princeton Separations, Freehold Township, NJ) for 16 hrs at 

35°C, were concentrated on a vacuum centrifuge and redissolved in 0.1% formic acid.

LC/MS/MS analysis—A complete description of the separation, and MS/MS analysis of 

tryptic peptides for label free quantitative comparison of peptide/protein abundance of 

samples extracted from tissue has been provided in a separate paper [24]; an abbreviated 

description is provided here. Each sample was trapped for 3 min on a Waters Symmetry trap 

column (0.18 × 20 mm, 5µ) followed by elution to a BEH C18 column (250 mm × 75 µm) 

with 0.1% formic acid and acetonitrile as the eluting solvents. Tryptic peptides were eluted 

with a 70 min linear gradient from 3 to 35% ACN. A nanoAcquity solvent manager was 

used to deliver solvent at a flow rate of 300 nL/min. Column eluent was delivered to a nano-

ESI source and analysis performed on a Bruker Daltonics microQTOF II mass spectrometer. 

Data were processed using Hystar 3.2 software (Bruker) and peak lists were generated with 

Mascot Daemon and Distiller (Matrix Sciences). Mascot 2.2 (Matrix Science) and Phenyx 

2.6 (Geneva Bioinformatics) were used for protein identification and search results were 

combined in Proteinscape 3.1 (Bruker Daltonics). The complete mouse proteome containing 

42895 protein sequences was downloaded from UniProtKB on August 8, 2013 and for each 

protein sequence a randomly scrambled decoy sequence was generated using PEAKS 6 

(Bionformatics Solutions). This decoy database containing 85790 total entries, was used to 

search peak lists and false discovery rate was determined from the number of decoy 

sequences present in the search results. Using this decoy database, a false discovery rate 

(FDR) limit of 3% was applied to all protein IDs. Spectra were analyzed using the following 

parameters: maximum of 2 missed cleavages, Cys carbidomethylation, variable 

modifications including methionine oxidation, proline hydroxylation and N-terminal protein 

acetylation, a 20 ppm precursor ion tolerance and a fragment ion mass tolerance of 0.1 Da. 

Protein scores for the MS/MS spectra all exceeded a 5% threshold for the possibility of 
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incorrect identification. All data for this project are posted on the Pride web site (http://

www.ebi.ac.uk/pride/) which allows the user to review data on mass error distributions, 

missed cleavage frequencies and the number of identified peptides. The PRIDE project 

accession number is PRD000846, PRIDE experiment accession numbers are 30584 and 

30585.

Quantitative profiling was accomplished with the aid of ProfileAnalysis 2.0 and 

Proteinscape 3.1 from Bruker Daltonics. Alignment and integration of the chromatographic 

peaks relied on the ProfileAnalysis software wherein precursor ions with an intensity 

exceeding 103 counts for 10 consecutive MS scans were scored as positive. Positive matches 

were scored only if on multiple runs, retention time was within 1 min and the peptide mass 

deviated less than 20 ppm. Spectral counting was performed after importing the data into 

Scaffold 4.0 (Proteome Systems). A select group of proteins showing alterations in 

abundance in response to naphthalene either following a single dose or multiple (tolerance-

inducing) doses were selected for further analysis by accurate mass and time tag (AMT) 

analysis as previously described [24].

Detection of glycosylated peptides—Proteinscape 3.1 (Bruker Daltonics) was used to 

detect and annotate glycans and the corresponding glycoproteins. MS/MS spectra were first 

classified as glycopeptides using the following parameters: min m/z = 700, m/z signals = 

oxonium ions CID positive, mass tolerance = 0.02 Da, min. intensity coverage = 10%, min. 

# of consecutive m/z distances required = 2, distance tolerance = 0.02 Da, min. peptide mass 

= 1000 Da. Glycans were then detected on spectra classified as glycopeptides using the 

GlycomeDB database [25] as the reference and score, intensity coverage, and fragmentation 

coverage thresholds of 10%. Finally, glycan structures were assigned to glycoproteins by 

combining them with Mascot and Phenyx protein search results in Proteinscape 3.1.

Results and Discussion

Label Free Quantitative Analysis of Airway and Nasal Olfactory Proteins

These studies utilized dissected airways from 6 treated animals compared to 6 controls. 

Technical replicates were performed with animals exposed to naphthalene acutely to 

determine data consistency. A range of 2–84 peptides with an average of 12 peptides per 

identified protein that fit the criteria (retention time within 1 min, a 20 ppm precursor ion 

tolerance and at least 1000 counts on 10 consecutive scans) yielded data with an average 

FDR less than 3 %. As is common with proteomics data, not every protein was detected 

during each analysis.

Overall changes in the abundance of proteins in airways and nasal olfactory epithelium in 
response to naphthalene exposure

A number of airway and nasal olfactory epithelial proteins were up and down regulated 

following a single acute exposure to naphthalene and after 7 exposures that lead to tolerance 

(Figure 1). More proteins in the nasal epithelium respond to naphthalene exposure than 

airway proteins and this is consistent with the finding that nasal epithelium removes 50–60% 

of the inhaled naphthalene [26]. Forty to 50% of the proteins that were increased in nasal 
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olfactory epithelium following an acute exposure were also increased after 7 daily 

exposures. Nearly ¾ of the proteins down regulated by the acute exposure were also 

decreased following multiple exposures. Not only were fewer proteins modulated by both 

acute and 7 day naphthalene exposures in the airway than in the nasal olfactory epithelium 

but there was far less overlap of the same protein being either increased or decreased after 

both acute and 7 day exposures. A complete list of the proteins where the levels are altered 

is included in the pride data base.

Response of proteins identified as adduct targets to naphthalene exposure

Previous studies from our laboratory and others have identified more than 100 non 

redundant proteins that are adducted by reactive metabolites generated from lung toxicants 

including butylated hydroxytoluene, 1-nitronaphthalene, monocrotalin pyrrole, 1,4-

naphthoquinone, 1,4-benzoquinone and naphthalene (http://tpdb.medchem.ku.edu:8080/

protein_database/search.jsp). These are all chemicals with established cytotoxic effects in 

the lung either when tested in vivo or, in some cases, in cell preparations derived from the 

lung. Of the more than 100 different proteins which have been identified as adduct targets, 

nearly 20% are either up or down regulated in response to naphthalene treatment (Table 1). 

Of particular interest are those proteins associated with the unfolded protein response as well 

as antioxidant proteins. These included several of the heat shock proteins, protein disulfide 

isomerase A3 and calreticulin which were all at increased levels in the airways of 

naphthalene-tolerant animals in comparison to the air controls. Heat shock proteins are 

adduct targets for a number of bioactivated chemicals [27] including several that are lung 

selective (Table 1). Furthermore, recent studies have shown that several of the heat shock 

proteins are adducted by 4-hydroxynonenal, a reactive breakdown product of lipid 

peroxidation [28], and that siRNA knock down of the transcription factor, HSF1, whose 

translocation to the nucleus is controlled by several of the HSP’s markedly enhances the loss 

in cell viability associated with HNE exposure [29]. Likewise, brief treatment of A549 lung 

cells with heat altered the distribution of HSP 90 to intermediate filaments and this 

correlated well with protection from another Michael adducting carbonyl, acrolein [30]. 

Finally, HSP 70i knockout mice are considerably more susceptible to the hepatotoxic effects 

of acetaminophen, a bioactivated liver toxicant [31]. Taken together all of these findings 

show that 1) HSP’s are adducted by a wide variety of electrophiles 2) that alterations which 

either decrease (siRNA, knockout) or increase HSP’s (heat shock pretreatment, naphthalene 

tolerance) serve to alter the susceptibility of tissues/cells to toxicity associated with the 

presence of electrophilic intermediates. All of these studies are consistent with a detailed, 

recently published bioinformatics approach which considers the effects on protein 

interacting partners and which suggests that several of the strongest links to toxicity arise 

from the interactions of reactive metabolites with heat shock proteins [32].

Naphthalene-reactive proteins are glycosylated

Most proteins adducted by reactive naphthalene metabolites are N- or O-glycosylated in 

lung airway epithelium (LAE) (Fig 2, Table 2). This is not the case in nasal olfactory 

epithelium (NOE), superoxide dismutase being the exception. Overall protein and peptide 

coverage is roughly comparable between the tissues with 15,889 peptides mapped to 737 

proteins in LAE and 10,262 peptides mapped to 919 proteins in NOE (PRIDE Project 
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accession PRD000846). Nevertheless, sequence coverage (mean ± SEM for the set of 

proteins considered here) differs significantly between LAE (61.6 ± 3.3%) and NOE 

(47.2±3.9%, t-test p < 0.005, Supplemental Table 1). It is possible, but seems unlikely, that 

this relatively small difference in sequence coverage represents the main reason for the 

tissue-specific difference in protein glycosylation. That posttranslational protein 

glycosylation is a quantitatively significant modification is well established as are the roles 

for these modifications in protein folding, transport of modified proteins to the Golgi and 

other intracellular organelles. Glycosylated proteins appear to be excellent targets as 

biomarkers associated with lung cancer and recent global assessments of the glycoproteome 

suggest a functional role for these modifications in lung adenocarcinomas [33, 34]. There is 

emerging evidence that RAGE (receptor for advanced glycation end products), a member of 

the immunoglobulin superfamily of cell surface receptors in the lung, and its binding ligands 

(advanced glycation end products) are important in the downstream signaling associated 

with a number of inflammatory lung diseases including asthma and COPD (for review see 

[35, 36]).

Increases and decreases in levels of non adducted proteins in response to naphthalene 
exposure

The abundance of several proteins changed in response to naphthalene treatment (Figure 1) 

and several of these have been shown in other studies to be altered by exposure to various 

chemical insults or to be markers of human lung disease. Markedly increased levels of 

Chitinase 3 like protein 3 (also known as Ym1) in nasal olfactory epithelium were measured 

by accurate mass and time tags following an acute exposure to naphthalene with animals 

killed 24 hrs after exposure (Figure 1). Chitinase proteins are a family of glycosyl hydrolase 

proteins that are widely expressed in tissues of both pro- and eukaryotes. Ym1 and Ym2 

(chitinase 3 like protein 1) are murine proteins which are increased dramatically in the 

respiratory tract in response to a number of external challenges including inflammation, and 

oxidant-induced injury [37–39] and appear to be important in modulating the inflammatory 

and repair responses of the lung in animal models [40]. Levels of the human orthologous 

protein (YKL-40) correlate well with the incidence and severity of asthma [41]. Galectin 3 

was increased in nasal epithelium 24 hrs following acute naphthalene exposure and in nasal 

and lung airway epithelium following 7 daily exposures, a finding consistent with other 

studies showing increases in galectin-3 in response to pulmonary toxicants [42]. Studies in 

Gal-3 KO mice suggest that this galactoside binding lectin plays a role in the remodeling 

associated with allergic airway disease [43].

Although the studies reported in this manuscript were focused primarily on proteins that 

have been shown in previous studies to be targeted by reactive metabolites, the expression of 

a number of other proteins was altered dramatically by naphthalene exposure. These have 

not been connected previously to changes in protein expression in response to chemical 

insult but are discussed here to provide a baseline for further understanding of the functional 

role of these proteins in response to cellular perturbations. Clusterin/apolipoprotein J is a 

glycoprotein expressed in many tissues and the protein appears to play a role as a molecular 

chaperone during early stages of oxidative stress but then seems to protect tumor cells and 

enhance metastases in more advanced stages of tumorigenesis [44]. The expression of 
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mRNA for clusterin is markedly down regulated in sinonasal adenomas, a rare tumor 

primarily associated with exposure to wood dust [45]. In contrast, both single and multi day 

exposures to cytotoxic concentrations of naphthalene increased clusterin expression 3–4 fold 

in nasal epithelium (Fig 1), a result that is likely related to alterations of cellular redox 

balance. Similarly, annexin A1 was upregulated 2 fold in nasal olfactory epithelium 

following both single and multiple inhalation exposures to naphthalene. Substantial 

experimental evidence supports a role of annexin A1 as an anti-inflammatory protein [46]. 

Annexin-1 null mice are more sensitive than wild type controls to methacholine challenge in 

ova-sensitized and challenged animals [47]. Moreover, annexin 1 is present in much higher 

levels in BAL fluid obtained from individuals diagnosed with COPD and/or lung cancer 

than controls [48] and in smokers compared to non smokers. While the exact functional 

significance of increased levels of annexin A-1 in naphthalene-challenged mice is not clear, 

it appears that this protein is upregulated in several lung diseases and may serve in an 

overall protective capacity.

Two proteins were markedly decreased following acute exposure to naphthalene: Cyp 2f2 

and secretoglobin (1A1) (uterglobin, Clara cell secretory protein). Both of these proteins are 

highly localized in Clara cells [49, 50] and transcript for both are markedly downregulated 

following naphthalene treatment [51]. Likewise, immunohistochemical studies demonstrated 

a marked decrease in Cyp 2f2 signal in airway epithelium of naphthalene-tolerant mice [52], 

a finding consistent with a 4 fold decrease in protein levels measured in the current work. In 

naphthalene-tolerant animals (15 ppm 4 hrs × 7 days), Cyp2f2 remained at control levels in 

lung airway epithelium, a finding consistent with data showing no change in the rates of 

naphthalene metabolism in dissected airways of tolerant mice [53].

Glutathione peroxidase 6 is decreased in the olfactory regions of the nose after both acute (to 

less than 25% of untreated controls) and 7 day exposures (to approximately 50% of control). 

The glutathione peroxidases are considered important for the control of cellular H2O2 levels 

and it is becoming increasingly evident that cellular redox balance is intimately involved in 

various cellular signaling processes [54, 55]. However, there is little available information 

on the catalytic function of this protein, the role of GPx6 in maintaining cellular homeostasis 

or even the tissue distribution although it has been identified in Bowman’s gland [56]. 

Similarly, calretinin was expressed at less than 50% of the control level in nasal olfactory 

epithelium for animals exposed once as well as those exposed for 7 days. Calretinin is a 

calcium binding protein that is thought to have a role in odor discrimination. It is 

upregulated in mice pulse exposed to the odorant, octanal in mice [57].

In summary, these studies present a LC/MS/MS workflow which allows label free 

quantitation of several hundred proteins in well-defined compartments of the respiratory 

tract in response to a highly tissue selective, metabolically activated, cytotoxic agent, 

naphthalene. Earlier studies have identified more than 70 unique proteins which are 

posttranslationally modified by electrophiles generated from naphthalene but experimental 

approaches for determining which protein or group of proteins might be structurally or 

functionally impaired by these modifications and thus lead to cell death are lacking. A 

possible approach, presented here, was to determine which proteins posttranslationally 

modified by naphthalene electrophiles are upregulated in naphthalene tolerant mice. Several 
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of the heat shock proteins are increased 1.5 to 2 fold and this experimental finding is 

consistent with recent informatic analysis of the protein target data base for reactive 

chemicals which also suggests strong direct links for these proteins with cytotoxicity [58]. In 

addition, these studies showed dramatic decreases in the abundance of several proteins in 

nasal and airway epithelium. These may be excellent targets for biomarker development for 

lung lavage or nasal wash that could be useful across species and with other lung toxicants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Targeted quantitation of proteins with significant abundance changes in lung airway 

epithelium (LAE) and nasal olfactory epithelium (NOE) of mice exposed acutely or 

chronically to naphthalene. A) Extracted ion chromatograms of diagnostic peptides for 

secretoglobin from LAE of mice acutely exposed to naphthalene (blue) and controls (black). 

B) Ratios of EIC integrals for diagnostic secretoglobin peptides relative to the average in 

control mice (mean ± SEM of 6 biological replicates). The overall average of all diagnostic 

peptides in naphthalene-exposed mice represents the AMT abundance ratio of secretoglobin 

in LAE (0.249). Note that the y axis in panel B is plotted on a log2 scale.
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Fig. 2. 
AMT abundance ratio of proteins that are regulated in lung airway epithelium (LAE) and 

nasal olfactory epithelium (NOE) after acute (diamonds) and chronic (circles) naphthalene 

exposure of mice. Note that the y axis is plotted on a log2 scale. LAE data on acute exposure 

of mice are accompanied by separate technical (TR) and experimental/ biological (ER) 

replicates.
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Fig 3. 
Identification of enolase 1 alpha (P17182) glycopeptide m/z 990.7895
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