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Research and Applications

Machine learning classification of diagnostic accuracy in 
pathologists interpreting breast biopsies
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Los Angeles, CA 90095, United States
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Abstract 
Objective: This study explores the feasibility of using machine learning to predict accurate versus inaccurate diagnoses made by pathologists 
based on their spatiotemporal viewing behavior when evaluating digital breast biopsy images.
Materials and Methods: The study gathered data from 140 pathologists of varying experience levels who each reviewed a set of 14 digital 
whole slide images of breast biopsy tissue. Pathologists’ viewing behavior, including zooming and panning actions, was recorded during image 
evaluation. A total of 30 features were extracted from the viewing behavior data, and 4 machine learning algorithms were used to build classi-
fiers for predicting diagnostic accuracy.
Results: The Random Forest classifier demonstrated the best overall performance, achieving a test accuracy of 0.81 and area under the 
receiver-operator characteristic curve of 0.86. Features related to attention distribution and focus on critical regions of interest were found to be 
important predictors of diagnostic accuracy. Further including case-level and pathologist-level information incrementally improved classifier 
performance.
Discussion: Results suggest that pathologists’ viewing behavior during digital image evaluation can be leveraged to predict diagnostic accuracy, 
affording automated feedback and decision support systems based on viewing behavior to aid in training and, ultimately, clinical practice. They 
also carry implications for basic research examining the interplay between perception, thought, and action in diagnostic decision-making.
Conclusion: The classifiers developed herein have potential applications in training and clinical settings to provide timely feedback and support 
to pathologists during diagnostic decision-making. Further research could explore the generalizability of these findings to other medical domains 
and varied levels of expertise.
Key words: breast pathology; medical education; medical residency training; machine learning; diagnostic decision-making; medical image interpretation; 
diagnostic accuracy. 

Background and significance
Over 1 million breast biopsies are estimated to occur annu-
ally in the United States and are interpreted and diagnosed by 
pathologists.1–3 Accurate pathological diagnosis of biopsy tis-
sue is the linchpin for appropriate patient care, yet the per-
ceptual and cognitive mechanisms responsible for reaching a 
successful diagnosis remain somewhat elusive.4–7 When path-
ologists inspect biopsy tissue, they dynamically allocate their 
visual attention to different regions of the tissue, increasing 
magnification to afford perception of cellular histopathologi-
cal features and panning to different image regions.6,8–11

During this process, pathologists accumulate evidence to test 
emerging diagnostic hypotheses that will ultimately form the 
basis for a diagnostic decision.12–14 The visual interpretive 
behavior that pathologists exhibit during the evaluation of 
biopsy tissue may potentially predict whether they arrive at 

an accurate diagnosis.9–11,15 The present study used machine 
learning to explore this possibility, testing whether classifiers 
could be trained to distinguish accurate versus inaccurate path-
ologist diagnoses based only on information about the spatio-
temporal dynamics of pathologist viewing behavior. If so, 
behaviors associated with diagnostic accuracy could be rein-
forced during residency training programs, form the basis for 
advanced competency assessments, or be used to adaptively trig-
ger decision support tools (such as computer-aided diagnosis).

The advent of digital whole slide imaging in pathology has 
made it possible to record how pathologists interact with 
digitized biopsy images on their computer screens, including 
their zooming (magnification) and panning behavior as they 
evaluate each case. This was not feasible with traditional 
glass slides viewed with a microscope. These novel data 
recordings can be processed and analyzed to extract data fea-
tures that quantify spatiotemporal dynamics of pathologists’ 
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interpretive behavior. Critically, these features can be used as 
independent variables to train machine learning classifiers to 
distinguish accurate versus inaccurate diagnostic interpreta-
tions. To our knowledge, only one study has previously 
examined this possibility.16 In that study, radiology residents 
reviewed mammograms while wearing a head-mounted eye- 
tracking device, and 3 features derived from eye movement 
data were used to train a series of machine learning classifiers 
that also considered case-level characteristics and radiologist 
opinions. The models achieved high sensitivity to detect an 
accurate diagnosis (97.3%) but relatively low specificity 
(59%) overall. The authors discuss several reasons why the 
model’s specificity was low, including the small sample size 
(N¼20), small number of errors made by radiologists on 
their task, and a need for more features that characterize each 
physician’s unique behavior. The present study expands upon 
prior research to reveal viewing behaviors indicative of diag-
nostic accuracy in a relatively large sample of pathologists.

Objective
Herein, we collected a large dataset from 140 pathologists 
with varied experience levels; in general, larger sample sizes 
provide higher power to recognize patterns in data, particu-
larly as the number of features increases.17 Furthermore, we 
used a set of test cases that has been extensively validated, 
including establishing consensus reference diagnoses, consen-
sus regions of critical diagnostic importance, and normative 
accuracy data that shows high variability across patholo-
gists.18–20 Rather than relying on expensive and time- 
consuming eye-tracking devices that are difficult to transport 
and use, we focused our analysis on data from viewing logs 
that are relatively unobtrusive and easy to implement in digi-
tal slide viewing software. Finally, we used both a diverse set 
of features calculated from viewing behavior and trained a 
diverse set of machine learning algorithms to compare classi-
fication performance among several machine learning algo-
rithms including decision trees, random forest (RF), neural 
networks, and support vector machines (SVM). These models 
were trained with varying feature sets to help understand the 
generality of our findings to alternate contexts, cases, and 
pathologist expertise levels.

Materials and methods
For this analysis, we leveraged data from an ongoing study 
examining medical decision-making and diagnostic behavior 
in attending pathologists and residents training in pathology.

Participants
Data were collected from 140 (N¼140) participants at 9 dif-
ferent major university medical centers across the United 
States. Participants varied in experience, with 22 attending 
pathologists and 118 residents at varied levels of postgradu-
ate training. Specifically, there were 25 first-year residents, 
34 second-year residents, 25 third-year residents, and 14 
fourth-year residents. All methods were carried out in accord-
ance with the Declaration of Helsinki. Written informed con-
sent was obtained in accordance with Institutional Review 
Board approvals granted by the University of California Los 
Angeles.

Test cases and critical regions of interest
We selected 32 cases from a standardized test set of 240 hem-
atoxylin and eosin-stained digital whole slide images 
(WSI),18,19 each scanned at 40� objective using an iScan 
Coreo Au scanner. In our prior research, a consensus panel of 
3 expert fellowship-trained breast pathologists reached agree-
ment (using a modified Delphi technique) on a single consen-
sus reference diagnosis for each case. In addition to agreeing 
upon a diagnosis, the panel also identified a single slide that 
provided all necessary and sufficient histopathological details 
to afford a successful diagnosis of a case, and identified one 
or more consensus regions of interest (cROIs) that best repre-
sented the most advanced diagnosis for the case. While these 
cROIs are never displayed to participants in our research, 
they form an important foundation for data analysis.

Cases varied in consensus diagnostic category, with 2 
benign cases, 4 atypia cases, 4 low-grade ductal carcinoma in 
situ cases (lg-DCIS), 2 high-grade ductal carcinoma in situ 
cases (hg-DCIS), and 2 invasive cases. In the present research, 
diagnostic accuracy was operationalized as congruence (accu-
rate) or incongruence (inaccurate) with the expert consensus 
diagnosis. Please refer to our prior research for details on the 
methodology used to identify a consensus diagnosis and 
region(s) of interest for each case,18,19 or for details on how 
cases were parsed into low- versus high-grade DCIS.21

Design and procedures
Participating pathologists independently reviewed a single set 
of 14 digital WSI of breast biopsy tissue derived from a larger 
test set of 32 cases, with each image representing a single 
case. During a data collection session, an experimenter 
guided participants through the review of 14 cases, one at a 
time. After each case, the pathologist arrived at a diagnostic 
decision and recorded it on a histology form. A practice case 
was used to familiarize participants with the custom WSI 
review interface, including zooming and panning, and our 
histology form. Case review was done on a 2400 Dell liquid 
crystal display (LCD) monitor at 1920� 1080 resolution, 
attached to a Dell Precision workstation laptop.

While participants reviewed each case, our custom WSI 
review interface (built using HD View SL, Microsoft’s open- 
source Silverlight gigapixel image viewer; Microsoft, Inc., 
Redmond, WA, United States) continuously logged partici-
pant zooming and panning behavior (at �10 Hz) and saved it 
to a local SQL database. These files comprehensively repre-
sented case review behavior including zoom level and the 
location and size of the viewing area over time; each file rep-
resents a series of what we call viewing epochs, with each 
epoch describing a given zoom level, viewport size (ie, the 
dimensions of the viewable image region), and viewport loca-
tion (ie, the location of the viewable image region’s origin 
within the global image coordinate system) at a point in time.

The histology form included a categorical diagnosis, identi-
fication of histologic types (ie, ductal, lobular), histopatho-
logical features (eg, necrosis, nuclear grading, tubule 
formation, mitotic activity), and a rating of case difficulty 
and confidence in their diagnosis. After reviewing a series of 
14 cases, the participants were offered a gift card ($50USD). 
For resident pathologists, the experimenter returned on an 
annual basis to collect additional data; 50 of the 140 patholo-
gists returned for a second visit, and 13 returned for a third 
visit.
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Data processing and feature extraction
Data were processed using the Python programming lan-
guage (v3.11.2), including the numpy,22 scipy,23 pandas,24

sklearn,25 imblearn,26 and matplotlib27 packages. Our objec-
tive was to quantify a comprehensive set of features that char-
acterize temporal and spatial aspects of viewing behavior; 
these were largely motivated by features previously identified 
as correlated with diagnostic accuracy in extant research.6,28

Using a feature engineering approach, we calculated 30 
features. Some features were calculated using viewport data, 
including total viewing duration and proportion of viewing 
time spent at various zoom levels, whereas other features 
were derived from the distribution of attention over each 
case. To quantify the distribution of attention over each case, 
we plotted multivariate Gaussians to represent each viewing 
epoch, similar to eye-tracking data analysis methods that use 
fixation density maps derived from convolving eye fixation 
points with Gaussian filters centered upon each fixation 
point.29,30 This method assumes that visual attention is 
approximately normally distributed around a viewing cent-
roid and that the higher the zoom and longer the duration of 
region viewing, the more evidence we have that visual atten-
tion is focused on that region. Each multivariate (x, y, z) 
Gaussian was overlaid onto the image at the centroid of each 
viewing epoch, with x and y dimensions matching the dimen-
sions of the viewport size, and z (height) matching the dura-
tion (in seconds) of the viewing epoch. The series of 
Gaussians was convolved to represent a participant’s full 
probability distribution of attention over the image 
(Figure 1).

Each multivariate Gaussian map was printed to a table and 
standardized, resulting in a total of 3017 tables. Each table 
represented a single participant’s viewing behavior for a sin-
gle case, matching the overall XY dimensions of the original 
image and divided into 80� 80-pixel cells (ie, a 5� 5 pixel 
region of an �2.5 image scaled up 16� to 80�80 pixel 

region at 40�). Within each cell was a single value represent-
ing the height of the convolved multivariate Gaussians over-
laid onto the image. Because background (white space) was 
not informative to image interpretation, we zeroed all table 
cells that contained no tissue by using established image fore-
ground/background segmentation algorithms.31,32

We then used raw data and the resulting Gaussian tables to 
extract a set of 30 features detailed in Table 1. Note that all 
features were related to spatiotemporal characteristics of 
viewing behavior; no information regarding case consensus 
reference diagnostic category or pathologist characteristics 
were included in our primary analyses. This decision was 
made to increase the chances that our results might generalize 
to other cases and pathologists.

For features relying upon peak identification, we leveraged 
the multidimensional image processing package (scipy. 
ndimage) and methods for calculating multidimensional max-
imum filters (maximum_filter).23 For features relying upon 
clustering, we leveraged the Scikit-learn and k-means cluster-
ing packages (sklearn.cluster.KMeans) along with a knee- 
point detection algorithm (kneed) for identifying the optimal 
number of clusters characterizing each Gaussian table.33,34

All 30 features were printed to a single array alongside diag-
nostic accuracy relative to the consensus diagnosis (binary, 
1¼ accurate, 0¼ inaccurate); for the purposes of binary clas-
sification, the final dataset was moderately imbalanced, with 
1742 inaccurate and 1275 accurate exemplars.

Machine learning
We used 4 methods to develop initial classifiers, and then 
selected the method with the best overall performance for fur-
ther optimization:

1) Decision Trees (DT): These nonparametric supervised 
learning models logically test attributes against a threshold 
value to repeatedly divide instances into separate classes in 

Figure 1. A representative breast core biopsy case image (left) with an example multivariate Gaussian map overlaid (right). The x and y axes indicate the 
pixel coordinate space, and the z axis indicates the standardized height of the Gaussian map.
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Table 1. The 30 derived features and their respective descriptions, units, and descriptive statistics (mean, standard deviation).

Feature Description Units Mean (SD)  
for Accurate

Mean (SD)  
for Inaccurate

Mean (SD)

Temporal features
Viewing duration The amount of time, in seconds, that 

the participant spent reviewing the 
case.

Seconds 98.27 (52.0) 101.69 (57.02) 100.25 (54.9)

Time to first zoom The amount of time, in seconds, until 
the participant made their first zoom 
over 1�.

Seconds 5.97 (3.11) 5.09 (3.66) 5.92 (3.44)

Time per zoom 
quartile (Q1)

The amount of time that the participant 
spent in the first zoom quartile. 
Zoom quartile was used for data 
reduction purposes, reducing the pos-
sible number of zoom levels from 60 
to 4; for standardization purposes, 
the quartile calculation used data 
from all participants and cases (Q1: 
1-2, Q2: 3-6, Q3: 7-11, Q4: 12-60).

Seconds 22.69 (16.33) 23.26 (16.90) 23.02 (16.67)

Time per zoom 
quartile (Q2)

The amount of time that the participant 
spent in the second zoom quartile.

Seconds 28.14 (20.57) 30.04 (22.33) 29.24 (21.62)

Time per zoom 
quartile (Q3)

The amount of time that the participant 
spent in the third zoom quartile.

Seconds 18.57 (16.34) 20.45 (17.0) 19.66 (16.75)

Time per zoom 
quartile (Q4)

The amount of time that the participant 
spent in the fourth zoom quartile.

Seconds 28.87 (32.54) 27.93 (29.30) 28.33 (30.71)

Proportion time per 
zoom quartile (Q1)

The proportion of time in the first 
zoom quartile relative to viewing 
duration.

Proportion 0.26 (0.17) 0.26 (0.17) 0.26 (0.17)

Proportion time per 
zoom quartile (Q2)

The proportion of time in the second 
zoom quartile relative to viewing 
duration.

Proportion 0.30 (0.16) 0.30 (0.15) 0.30 (0.15)

Proportion time per 
zoom quartile (Q3)

The proportion of time in the third 
zoom quartile relative to viewing 
duration.

Proportion 0.19 (0.12) 0.20 (0.12) 0.19 (0.12)

Proportion time per 
zoom quartile (Q4)

The proportion of time in the fourth 
zoom quartile relative to viewing 
duration.

Proportion 0.26 (0.20) 0.24 (0.19) 0.25 (0.19)

Time to first cROI 
view

The amount of time, in seconds, until 
the cROI first occupied >50% of the 
viewport area. The >50% threshold 
was chosen because it ensures the 
likelihood that attention was on the 
cROI is greater than chance.

Seconds 50.83 (49.55) 41.97 (47.87) 45.71 (48.77)

cROI-related features
Proportion of time 
on first cROI view

The proportion of total review time 
when the cROI occupied >50% of 
the viewport area.

Proportion 0.26 (0.31) 0.18 (0.22) 0.22 (0.26)

Zoom level on first 
cROI view

The zoom level when the cROI first 
occupied >50% of the viewport 
area.

Zoom Level 7.13 (4.41) 8.32 (4.76) 7.82 (4.65)

Proportion of view-
port occupied by 
cROI on first cROI 
view

The proportion of the viewport that is 
occupied by the cROI when the cROI 
first occupied >50% of the viewport 
area. If the cROI never occupies 
>50% of viewport, 0 is entered.

Proportion 0.48 (0.32) 0.46 (0.29) 0.47 (0.30)

Proportion of cROI 
visible in viewport 
on first cROI view

The proportion of the cROI that is view-
able within the viewport when the 
cROI first occupies >50% of the view-
port area. If the cROI never occupies 
>50% of viewport, 0 is used.

Proportion 0.42 (0.34) 0.47 (0.35) 0.45 (0.35)

Proportion of time 
on cROI(s)

The cumulative amount of time spent 
viewing cROI(s), relative to viewing 
duration.

Proportion 0.39 (0.37) 0.24 (0.25) 0.30 (0.31)

Proportion of atten-
tion to cROI

The sum of Gaussian table values for 
the cROI area(s) relative to the sum 
of Gaussian table values.

Proportion 0.56 (0.41) 0.42 (0.34) 0.48 (0.38)

Peak-related features
Peak count The total number of peaks in the Gaus-

sian table identified using local 
maxima.

Frequency 1895.91 (1289.17) 1738.99 (1138.95) 1805.3 (1207)

(continued) 

Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 3                                                                                                      555 



a piecewise constant approximation, forming a structure 
resembling a tree.35 DTs are popular due to their relative 
intuitiveness, making processes and outputs relatively 
comprehensible. Herein, we applied the Classification and 
Regression Trees (CART) algorithm (DecisionTreeClassi-
fier), implemented in scikit-learn 1.2.2.25

2) Random Forests: These classifiers are extensions of deci-
sion trees, fitting decision tree classifiers on many sub- 
samples of the entire dataset; it then relies on the averaged 
prediction of each classifier for the ensemble prediction. 
RF approaches are powerful complements to traditional 
decision trees, especially with large datasets, however, 
they can be slow to train and more difficult to inter-
pret.36,37 Herein, we applied the RandomForestClassifier 
algorithm, a perturb-and-combine technique, implemented 
in scikit-learn 1.2.2.25

3) Artificial Neural Networks (ANN): These algorithms train 
on a dataset (using backpropagation) to learn one or more 
non-linear layers (hidden layers) that reside between the 
inputs and output.38 ANN models are very popular but 
they are also relatively difficult to interpret and are can be 
more sensitive than other algorithms to the presence of 
noise in training data.39 Herein, we applied the multilayer 
perceptron (MLP) algorithm (MLPClassifier), imple-
mented in scikit-learn 1.2.2. 

4) Support Vector Machines: These supervised learning algo-
rithms are kernel-based approaches that are intended to 
increase generalization (through the reduction of 

overfitting) and discriminative power, primarily for binary 
classification problems.40 While SVM is considered one of 
the most powerful classification algorithms available, it 
can be very computationally burdensome and sensitive to 
imbalanced datasets. Herein, we applied the SVC algo-
rithm in scikit-learn 1.2.2.25

All models were built using a stratified 70:30 train:test 
split. Our baseline models were trained using unbalanced 
classes and did not include hyperparameter tuning or cross- 
validation. The model with the best test performance (as 
measured by test AUC, area under the receiver-operator char-
acteristic [ROC] curve; see Table 2) was selected for further 
optimization through hyperparameter tuning and cross- 
validation approaches.

We then built separate models using undersampled and 
oversampled data. Oversampling and undersampling balan-
ces the representation of data in each class. There are several 
methods for balancing classes; herein, we used oversampling 
to randomly reproduce examples from the minority class, 
and undersampling to randomly remove data from the major-
ity class. We report both approaches.

To optimize our selected model, we used hyperparameter 
tuning and k-folds cross-validation procedures applied to the 
training set from the original 70:30 train:test split. We 
focused on the following 5 parameters: number of estimators, 
maximum features, maximum depth, minimum samples until 
a split, and minimum samples until a leaf node is formed. For 

Table 1. (continued) 

Feature Description Units Mean (SD)  
for Accurate

Mean (SD)  
for Inaccurate

Mean (SD)

Peak height mean The mean height of each peak in the 
Gaussian table.

z Heightstd 0.29 (0.47) 0.20 (0.28) 0.24 (0.37)

Peak height SD The standard deviation of peak heights 
in the Gaussian table.

z Heightstd 2.88 (1.81) 2.73 (1.56) 2.79 (1.67)

Peak height entropy The entropy of peak heights in the 
Gaussian table.

Natsstd 3.90 (1.48) 3.69 (1.39) 3.78 (1.43)

Peak height max The maximum peak height in the Gaus-
sian table.

z Heightstd 74.54 (50.01) 71.29 (46.97) 72.66 (48.30)

Peak pairwise dis-
tance mean

The mean pairwise Euclidean distance 
between peaks in the Gaussian table.

Pixels 458.11 (136.41) 487.05 (156.84) 474.82 (149.2)

Peak pairwise dis-
tance SD

The standard deviation of pairwise 
Euclidean distance between peaks in 
the Gaussian table.

Pixels 254.27 (74.05) 275.64 (94.02) 266.61 (86.78)

Peak pairwise dis-
tance max

The maximum pairwise Euclidean dis-
tance between peaks in the Gaussian 
table.

Pixels 1301.17 (397.24) 1285.82 (409.79) 1292.31 (404.5)

Peak positional 
entropy

The entropy of peak locations in x, y 
coordinate space in the Gaussian 
table.

Natsstd 13.39 (2.22) 13.38 (1.90) 13.38 (2.04)

Cluster-related features
Cluster count The optimal number of clusters 

included in a k-means cluster analysis 
of 3D point cloud data derived from 
the Gaussian table.

Frequency 3.96 (0.73) 3.78 (0.84) 3.86 (0.79)

Cluster max height 
mean

The mean of the maximum heights of 
each cluster identified in the cluster 
count process.

z Heightstd 29.47 (18.04) 29.61 (18.30) 29.55 (18.19)

Cluster max height 
SD

The standard deviation of the maxi-
mum heights of each cluster identi-
fied in the cluster count process.

z Heightstd 34.14 (25.58) 32.94 (24.03) 33.45 (24.7)

Cluster max height 
entropy

The entropy of the maximum heights of 
each cluster identified in the cluster 
count process.

Natsstd 0.81 (0.36) 0.77 (0.35) 0.78 (0.36)

Descriptives are also provided separately for accurate and inaccurate interpretations. Subscript std indicates standardized data.

556                                                                                                      Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 3 



each of the 5 parameters, we tested how variation in levels of 
the parameter (eg, for maximum depth, levels 1-30) affected 
training and testing AUCs, seeking to maximize test AUC. 
This process was repeated with successively granular (eg, for 
maximum depth, levels 5-10) approximations of the optimal 
value for each parameter, lessening computational power 
associated with a full search. The downselected set of param-
eter levels was moved forward to grid search (using the 
sklearn GridSearchCV function), which implements k-fold 
cross validation and evaluates all possible combinations of 
parameters to find the combination that maximizes AUC. 
The k-folds cross-validation process involves randomly divid-
ing the training data into k non-overlapping approximately 
equal sets (aka folds). The model is then trained k times for 
which k-1 folds are used to train the model while the remain-
ing fold is used to validate the model. At each iteration the 
model’s performance on the validation set is evaluated using 
AUC score. Once all k iterations are completed, the AUC 
results are averaged across the k folds to ascertain the per-
formance of the model and compare different hyperpara-
meter settings. The best performing model is then evaluated 
by inputting the testing set from the original 70:30 train:test 
split. This process supports model selection and hyperpara-
meter tuning and tests how well the model will generalize to 
new, unseen data.41

Because computing features related to cROIs requires each 
case to have undergone a consensus process to identify cROI 
locations, we also repeated all the above analyses after 
removing the 7 features that quantify attention towards the 
cROI. If the performance of the classifiers is similar to those 
built while including features related to the cROI, then that 
suggests our models may generalize favorably to novel cases 
that have not undergone analysis by a consensus panel. The 
results of these analyses are summarized herein but more 
thoroughly detailed in Supplementary Information.

Finally, we conducted exploratory analyses that included 3 
additional features: standardized case difficulty level, case 
consensus diagnostic category, and the experience level of 
participating pathologists (resident versus attending 
physician). The goal of these exploratory analyses was to 
understand whether having additional case-level and 
pathologist-level information available to the classifier would 
improve performance.

Results
The overall performance of the 4 baseline models, including 
accuracy, precision (sensitivity), recall (positive predictive 
value), F1, and AUC, is detailed in Table 2. The overall best- 
performing model was RF, with the highest AUC, test accu-
racy, precision, and F1.

Results from models developed on oversampled and under-
sampled datasets are detailed in Table 3. Because oversam-
pling did not consistently improve RF model performance 
relative to undersampling, and it can increase the odds of 
overfitting the model to training data and increase computa-
tional cost,42,43 we continued with only undersampled data.

After optimization, the final RF model produced margin-
ally higher overall test performance (Table 3). Specifically, 
while most measures of performance (ie, train accuracy, 
recall, F1, and AUC) remained similar to the unoptimized 
undersampled RF model, there was some improvement of 
test accuracy and precision. Note that the optimized model’s 
data correspond to an overall sensitivity of 0.74 and specific-
ity of 0.86. The confusion matrix of the optimized model is 
detailed in Table 4, and the ROC curve is depicted in  
Figure 2.

Overall, these results suggest that we can successfully pre-
dict with moderate accuracy whether a pathologist will accu-
rately or inaccurately diagnose a case based on only their 
viewing behavior. This model could be used in future training 
contexts to automatically monitor viewing behavior, proac-
tively guide attention to relevant features, or provide decision 
supports to help pathologists successfully recognize perceived 
histopathological features and link them to correct diagnostic 
categories.6,44

From the optimized RF model, we derived a feature impor-
tance list, calculated using Gini importance; higher Gini 
importance values (quantified as mean decrease in impurity) 
indicate that the feature plays a more significant role in the 
prediction process.25,36,37 The ranked feature importance for 
all 30 features is depicted in Figure 3. Features related to 
peak characteristics (especially relative to one another) 
tended to have higher Gini importance values. In other 
words, when building a classifier to predict diagnostic accu-
racy based on viewing behavior, the most important features 
of viewing behavior tend to be those quantifying the distance 
between regions receiving disproportionate levels of 
attention.

Results from our follow-up analyses omitting features 
related to cROIs can be found in the Supplementary Informa-
tion. In summary, the optimized models performed very simi-
larly to those detailed in Table 3, with the optimized RF 
model achieving an identical test AUC of 0.863. This is an 
important result because it suggests that our model could 
maintain its performance levels when generalized to cases 
that have not undergone analysis by a consensus panel and 
thus do not include identified cROIs.

The final exploratory analyses were conducted in 2 phases. 
First, we tested whether including case-level information (ie, 
case difficulty ratings and consensus diagnostic category: 
benign, atypia, lg-DCIS, hg-DCIS, invasive) would improve 
classifier performance. Following optimization, we were able 

Table 2. Model performance for the 4 model types (DT, RF, ANN, and SVM), at baseline.

Model Version Train accuracy Test accuracy Test precision Test recall Test F1 Test AUC

DT Baseline 1.0 0.75 0.70 0.73 0.71 0.749
RF Baseline 1.0 0.81 0.85 0.67 0.75 0.865
ANN Baseline 0.75 0.76 0.71 0.74 0.72 0.832
SVM Baseline 0.67 0.66 0.69 0.37 0.48 0.735

Accuracy ¼ (TP þ TN)/(All cases); Precision ¼ TP/(TP þ FP); Recall ¼ TP/(TP þ FN); F1¼ 2�((precision�recall)/(precision þ recall)).
Abbreviations: ANN ¼ artificial neural networks; DT ¼ decision trees; FN ¼ false negative; FP ¼ false positive; RF ¼ random forest; SVM ¼ support vector 
machines; TN ¼ true negative; TP ¼ true positive.
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to achieve test accuracy of 0.83 with an AUC of 0.88; the Pre-
cision was 0.88, Recall was 0.70, and F1 was 0.78. Second, 
we additionally included pathologist-level (ie, experience 
level: resident, attending) information. Following optimiza-
tion, we were able to achieve test accuracy of 0.84 with an 
AUC of 0.88; the Precision was 0.90, Recall was 0.70, and 
F1 was 0.79. Thus, inclusion of case- and pathologist-level 
features provided some marginal (3.7%, 2.3%) improvement 
to classifier test accuracy and AUC, respectively. Overall, 
given the marginal increase in performance, this result indi-
cates limited value to including additional case- and 
pathologist-level information in the model, and suggests 
potentially high generalizability of our results to other 
cohorts of pathologists and to cases with heterogeneous 
difficulty.

Discussion
Achieving accurate histopathological diagnoses is a challeng-
ing task involving a complex and dynamic interplay between 
perceived features of the tissue, specialized knowledge, and 
cognitive processing. Behavior, in this case zooming and pan-
ning, is a result of and contributor to those processes, and 
can give cognitive scientists a window into the mind.45–52

Specifically, we believe that pathologists’ dynamic viewing 
behavior can provide insights into the interpretive process as 
it unfolds, providing a glimpse into feature detection, recog-
nition, and decision-making. If so, viewing behavior might 
prove valuable for the automated prediction of whether a 
pathologist is likely to arrive at an accurate or inaccurate 
diagnosis, motivating automated feedback and decision sup-
port systems for use in training and possibly clinical practice. 
The present study examined this possibility by building a ser-
ies of machine learning classifiers that leveraged diverse fea-
tures calculated from pathologists’ viewing behavior data.

In this analysis, we identified a series of 30 features that 
characterized the spatiotemporal distribution of pathologists’ 
viewing behavior over the digital biopsy images. This 

included information about viewing duration, zoom behav-
ior, focused versus distributed attention, clusters of regional 
viewing, and attention toward critical image regions (ie, the 
cROIs). These features were used to train a series of classifiers 
including decision trees, RF, ANN, and SVM, with the crit-
ical dependent variable being the diagnostic accuracy of 140 
participating pathologists. Through the process of balancing 
our datasets and optimizing the RF classifier, we were able to 
achieve surprisingly high performance relative to prior 
research examining the classification of mental states, learn-
ing, and task accuracy from human viewing behavior.50–55

Specifically, the optimized model achieved test accuracy 
of 0.81 and an AUC of 0.863, with high precision, recall, 
and F1.

Theories of visual search in diagnostic decision-making 
suggest that goal-driven (rather than stimulus-driven) eye 
movements are more strongly associated with clinician expe-
rience and diagnostic accuracy.6,15,56 In our assessment of 
feature importance, we found evidence supporting this 
assumption: the distribution of viewing peaks and attention 
to cROIs were critically important features. Based on the 
descriptive statistics (Table 1) comparing feature means in 
accurate versus inaccurate classes, accurate diagnoses tended 
to show a higher proportion of attention toward the cROI 
relative to non-cROI regions of the image. In other words, 
rather than distributing attention relatively evenly across the 
tissue space, more accurate diagnoses tend to be associated 
with more focused attention on critical image regions,6,11

and our RF classifier was able to leverage these patterns 
(alongside other features) to dissociate accurate versus inac-
curate diagnoses. Perhaps more compelling, however, were 
the results found when excluding features related to cROIs 
entirely from our analysis; specifically, the model was able to 
maintain its performance levels without relying on cROI- 
related features (see Supplemental Information). This is a 
compelling result because it suggests our results may general-
ize to cases that have not been evaluated by an expert consen-
sus panel. Indeed, one potential barrier facing the eventual 
implementation of our models in training contexts is the 
resource-intensive process of gathering experts to identify 
ROIs that can be used to calculate features. Our results sug-
gest that this might not be necessary, with the models achiev-
ing identical overall performance (AUC) when relying 
primarily on features related to the distribution of focal atten-
tion over the entire image (ie, not just on the cROI).

The notion that pathologist viewing behavior reflects men-
tal states and may predict diagnostic outcomes is grounded 
in theories of perception-action coupling and embodied 

Table 3. Model performance for the 4 model types (DT, RF, ANN, and SVM), with the 2 sampling versions (undersampled, oversampled).

Model Version Train accuracy Test accuracy Test precision Test recall Test F1 Test AUC

DT Undersampled 1.0 0.74 0.68 0.75 0.71 0.837
DT Oversampled 1.0 0.73 0.66 0.71 0.69 0.760
RF Undersampled 1.0 0.80 0.78 0.74 0.76 0.868
RF Optimized 1.0 0.81 0.80 0.74 0.76 0.863
RF Oversampled 1.0 0.81 0.82 0.70 0.75 0.866
ANN Undersampled 0.77 0.76 0.71 0.73 0.72 0.830
ANN Oversampled 0.66 0.61 0.52 0.96 0.68 0.842
SVM Undersampled 0.70 0.68 0.59 0.84 0.69 0.724
SVM Oversampled 0.71 0.69 0.60 0.83 0.69 0.754

Final optimized RF model outcomes are provided.
Abbreviations: ANN: artificial neural networks; DT: decision trees; RF: random forest; SVM: support vector machines.

Table 4. Confusion matrix for testing data detailing classifier case counts 
for the 2 predicted labels and 2 true labels (0¼ inaccurate, 1¼ accurate), 
for the final optimized RF model.

Predicted labels

0 1

True labels 0 True negative: 452 False positive: 71
1 False negative: 101 True positive: 282
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cognition.45,57 In these theories, perception, thought, and 
action are reciprocally and inextricably bound as people 
interact with and understand the world around them. To 
guide movement in effective ways, we are continually gather-
ing and processing information that shapes our understand-
ing and motivates action; likewise, to effectively gather and 
process information we must move through our world in 
ways that facilitate those processes. This is generally consid-
ered a perception-action coupling cycle, which we believe can 
effectively characterize the way pathologists interact with 
microscopes and digital image viewers when interpreting 
biopsies. For example, pathologists change magnification 
(zoom) and pan to regions of visual salience, accumulate 
information, then change magnification again and pan to a 
new region that helps supplement, clarify, or refute emerging 
hypotheses.6,9,58 In this manner, patterns of visual behavior 
have shaped the pathologist’s thought process, and their 
thought processes have shaped their visual behavior; the 
result of this process is a full interpretation of the inspected 
tissue and a diagnostic decision. In support of this notion, 
several patterns of viewing behavior have been associated 
with diagnostic accuracy. For example, when pathologists 
view digital WSI of breast biopsies, the extent to which they 
find and focus visual attention on critical diagnostic regions 
(ie, consensus regions of interest) is positively associated with 
diagnostic accuracy.11 Similar results have been found with 
radiologists examining chest radiographs.59,60 Furthermore, 
we have found that visually scanning a whole slide image at a 
fixed plane of depth, rather than repeatedly zooming into 
regions, is positively associated with diagnostic accuracy.9

This result contrasts what has been found in radiology, 
wherein moving through images in depth (rather than 

scanning at a fixed depth) is positively associated with diag-
nostic accuracy.61 In both of these cases, the spatiotemporal 
patterns of interpretive behavior, including zooming and pan-
ning behavior, are associated with whether pathologists suc-
cessfully reach an accurate diagnosis.28

Complementing our main analyses, we also conducted 2 
exploratory analyses asking whether including case- or 
pathologist-level features could improve classifier perform-
ance. In the first analysis, we showed that including informa-
tion regarding the case diagnostic category and normative 
difficulty ratings improved classifier performance by �4%. 
This was an interesting finding from a pedagogical perspec-
tive: if standardized cases are systematically presented to 
trainees, and diagnostic category and difficulty ratings exist 
for the cases, the algorithm is slightly more accurate at classi-
fying whether viewing behavior is associated with an accurate 
or inaccurate diagnosis. In a training context, this could pro-
vide mentors with opportunities to provide in-the-moment 
feedback, trigger automated feedback, or prompt decision 
support systems that help direct attention to critical features, 
help students describe those features,44 and/or help map fea-
tures to diagnostic categories. In the second analysis, we 
showed that additionally including information regarding the 
experience level of pathologists further improved classifier 
performance by about 2%. While not necessarily of value in 
pedagogical contexts, if the model is aware of pathologist- 
level experience levels, this could improve classifier perform-
ance in clinical contexts. While we do not believe our models 
are ready for application in a clinical decision support tool, 
we do believe they provide a compelling first demonstration 
that monitoring viewing behavior may prove valuable for 
predicting diagnostic outcomes and guiding performance 

Figure 2. A receiver-operating characteristic curve for the final optimized RF model, with an empirical fit. Also plotted is the notional performance of a 
random (diagonal) classifier.
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training contexts. Continuing research will examine the 
potential utility of such tools for guiding visual attention and 
supporting the development diagnostic proficiency.

Strengths of our study include a larger sample size and 
more features than other studies in pathology or radiology, 
and an examination of more classification algorithms than 
any other study on this topic. Additional strengths include 
the examination of a medical diagnostic task of high clinical 
relevance and importance, and the analysis of diagnostic 
accuracy against case consensus reference diagnoses defined 
through comprehensive Delphi techniques.20 However, while 
the present results are found in the domain of breast pathol-
ogy, we recognize that they may not generalize to other areas 
of pathology or medicine, such as dermatopathology or radi-
ology. It is also possible that viewing behaviors observed in a 
research setting may differ from those observed during rou-
tine clinical case inspection, that experts’ viewing behaviors 
may differ considerably from residents’ viewing behavior, 
and that training expert viewing behavior may not confer 
accuracy advantages.6,62 Furthermore, whereas the current 
study relied upon pathologists reviewing a single slide 
that was wholly representative of the specimen, in practice 
pathologists have access to multiple slides representing 
individual tissue cross sections. While our expert consensus 
panel ensured that the case’s necessary histopathological 

information was always included on the single slide, our 
results may differ when pathologists have the opportunity to 
review multiple digital slides for a single case. Together, these 
questions provide compelling directions for future research.

Conclusion
In conclusion, we provide evidence that visual behavior 
assessed as pathologists review digital WSI can be used to 
successfully train classifiers to distinguish when the patholo-
gists will provide an accurate versus inaccurate diagnosis. We 
take these results to suggest that monitoring viewing behavior 
in the absence of high-fidelity eye tracking can provide suffi-
cient sensitivity to detect and leverage patterns of viewing 
behavior indicative of eventual diagnostic successes and fail-
ures. Classification algorithms developed for this purpose 
may hold potential in postgraduate training and clinical con-
texts, providing physicians with timely feedback and support 
during diagnostic decision-making.
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26. Lemâıtre G, Nogueira F, Aridas CK. Imbalanced-learn: a python 
toolbox to tackle the curse of imbalanced datasets in machine 
learning. J Mach Learn Res. 2017;18:559-563.

27. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci 
Eng. 2007;9(3):90-95.

28. Ghezloo F, Wang P-C, Kerr KF, et al. An analysis of pathologists’ 
viewing processes as they diagnose whole slide digital images. 
J Pathol Inform. 2022;13(100104):1-6.

29. Nemoto H, Hanhart P, Korshunov P, et al. Ultra-eye: UHD and 
HD images eye tracking dataset. In: 2014 Sixth International 
Workshop on Quality of Multimedia Experience (QoMEX). 
Singpore: IEEE; 2014. https://doi.org/10.1109/QoMEX.2014. 
6982284

30. Wang K, Wang S, Ji Q. Deep eye fixation map learning for 
calibration-free eye gaze tracking. In: Proceedings of the Ninth 
Biennial ACM Symposium on Eye Tracking Research & Applica-
tions. New York, NY, USA: Association for Computing Machi-
nery; 2016:47-55. https://doi.org/10.1145/2857491.2857515

31. Otsu N. A threshold selection method from gray-level histograms. 
IEEE Trans Syst Man Cybern. 1979;9(1):62-66.

32. Wu W, Mehta S, Nofallah S, et al. Scale-aware transformers for diag-
nosing melanocytic lesions. IEEE Access. 2021;9:163526-163541.

33. Satopaa V, Albrecht J, Irwin D, et al. Finding a “Kneedle” in a hay-
stack: detecting knee points in system behavior. In: 31st Interna-
tional Conference on Distributed Computing Systems Workshops, 
Minneapolis, MA, USA. IEEE; 2011:166-71. https://doi.org/10. 
1109/ICDCSW.2011.20

34. Arvai K. kneed. 2020. Accessed June 14, 2023. https://kneed.read-
thedocs.io/en/stable/

35. Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev. 
2013;39(4):261-283.

36. Parmar A, Katariya R, Patel V. A review on random forest: an 
ensemble classifier. In: Hemanth J, Fernando X, Lafata P, et al., 
eds. International Conference on Intelligent Data Communication 
Technologies and Internet of Things (ICICI) 2018. Cham: 
Springer International Publishing; 2019:758-63. https://doi.org/ 
10.1007/978-3-030-03146-6_86

37. Boulesteix A-L, Janitza S, Kruppa J, et al. Overview of random for-
est methodology and practical guidance with emphasis on compu-
tational biology and bioinformatics. WIREs Data Min Knowl. 
2012;2(6):493-507.

38. Lippmann R. An introduction to computing with neural nets. 
IEEE ASSP Mag. 1987;4(2):4-22.

39. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial 
neural network classification models: a methodology review. 
J Biomed Inform. 2002;35(5-6):352-359.

40. Cervantes J, Garcia-Lamont F, Rodr�ıguez-Mazahua L, et al. A 
comprehensive survey on support vector machine classification: 
applications, challenges and trends. Neurocomputing. 
2020;408:189-215.

41. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction. 2nd ed. 
Springer Publishing Company; 2009.

42. Thabtah F, Hammoud S, Kamalov F, et al. Data imbalance in clas-
sification: experimental evaluation. Inf Sci. 2020;513:429-441.

43. Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced 
datasets: a review. GESTS Int Trans Comput Sci Eng. 
2006;30:25-36.

44. Bruny�e TT, Balla A, Drew T, et al. From image to diagnosis: char-
acterizing sources of error in histopathologic interpretation. Mod 
Pathol. 2023;36(7):100162.

45. Warren WH. The perception-action coupling. In: Bloch H, Berten-
thal BI, eds. Sensory-Motor Organizations and Development in 
Infancy and Early Childhood. Dordrecht: Kluwer; 1990:23-37. 
Accessed May 9, 2023. https://link.springer.com/chapter/10.1007/ 
978-94-009-2071-2_2

46. Spivey MJ, Dale R. Continuous dynamics in real-time cognition. 
Curr Dir Psychol Sci. 2006;15(5):207-211.

47. Spivey M. The Continuity of Mind. Oxford University Press; 
2008.

48. Song J-H, Nakayama K. Target selection in visual search as 
revealed by movement trajectories. Vision Res. 2008;48 
(7):853-861.

49. Freeman JB, Ambady N. Motions of the hand expose the partial 
and parallel activation of stereotypes. Psychol Sci. 2009;20 
(10):1183-1188.

50. Borji A, Itti L. Defending Yarbus: eye movements reveal observers’ 
task. J Vis. 2014;14(3):29.

51. Henderson JM, Shinkareva SV, Wang J, et al. Predicting cognitive 
state from eye movements. PLoS One. 2013;8(5):e64937.

52. Kardan O, Berman MG, Yourganov G, et al. Classifying mental 
states from eye movements during scene viewing. J Exp Psychol 
Hum Percept Perform. 2015;41(6):1502-1514.

53. Greene MR, Liu T, Wolfe JM. Reconsidering Yarbus: a failure to 
predict observers’ task from eye movement patterns. Vision Res. 
2012;62:1-8.

54. Lemay DJ, Doleck T. Grade prediction of weekly assignments in 
MOOCS: mining video-viewing behavior. Educ Inf Technol. 
2020;25(2):1333-1342.

55. Aouifi HE, Hajji ME, Es-Saady Y, et al. Predicting learner’s per-
formance through video viewing behavior analysis using graph 
convolutional networks. In: 2020 Fourth International Conference 
On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco. 
IEEE; 2020:1-6. https://doi.org/10.1109/ICDS50568.2020. 
9268730

56. Al-Moteri MO, Symmons M, Plummer V, et al. Eye tracking to 
investigate cue processing in medical decision-making: a scoping 
review. Comput Hum Behav. 2017;66:52-66.

57. Wilson M. Six views of embodied cognition. Psychon Bull Rev. 
2002;9(4):625-636.

58. Bruny�e TT, Drew T, Kerr KF, et al. Zoom behavior during visual 
search modulates pupil diameter and reflects adaptive control 
states. PLoS One. 2023;18(3):e0282616.

59. Carmody DP, Nodine CF, Kundel HL. An analysis of perceptual 
and cognitive factors in radiographic interpretation. Perception. 
1980;9(3):339-344.

60. Kundel HL, Nodine CF. Studies of eye movements and visual 
search in radiology. In: Senders JW, Fisher DF, Monty RA, eds. 
Eye Movements and the Higher Psychological Processes. Hillsdale, 
NJ: Lawrence Erlbaum Associates; 1978:317-27.

61. Drew T, Vo ML-H, Olwal A, et al. Scanners and drillers: charac-
terizing expert visual search through volumetric images. J Vis. 
2013;13(10):1-13.

62. Gegenfurtner A, Lehtinen E, Jarodzka H, et al. Effects of eye move-
ment modeling examples on adaptive expertise in medical image 
diagnosis. Comput Educ. 2017;113:212-225.

562                                                                                                      Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 3 

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
https://doi.org/10.1109/QoMEX.2014.6982284
https://doi.org/10.1109/QoMEX.2014.6982284
https://doi.org/10.1145/2857491.2857515
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1109/ICDCSW.2011.20
https://kneed.readthedocs.io/en/stable/
https://kneed.readthedocs.io/en/stable/
https://doi.org/10.1007/978-3-030-03146-6_86
https://doi.org/10.1007/978-3-030-03146-6_86
https://link.springer.com/chapter/10.1007/978-94-009-2071-2_2
https://link.springer.com/chapter/10.1007/978-94-009-2071-2_2
https://doi.org/10.1109/ICDS50568.2020.9268730
https://doi.org/10.1109/ICDS50568.2020.9268730

	Active Content List
	Background and significance
	Materials and methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	Data availability
	References




