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The multiple colliding laser pulse concept formulated by Bulanov et al. (2010b) is
beneficial for achieving an extremely high amplitude of coherent electromagnetic field.
Since the topology of electric and magnetic fields oscillating in time of multiple colliding
laser pulses is far from trivial and the radiation friction effects are significant in the
high field limit, the dynamics of charged particles interacting with the multiple colliding
laser pulses demonstrates remarkable features corresponding to random walk trajectories,
limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity
conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in
the charged particle trajectory being located within narrow regions and in the occurrence
of a new class of regular patterns made by the particle ensembles.
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1. Introduction

Recent progress in laser technology has lead to a dramatic increase of laser power
and intensity. The lasers are capable of producing electromagnetic field intensities well
above 1018W/cm2, which corresponds to the relativistic quiver electron energy, and in
the near future their radiation may reach intensities of 1024W/cm2 and higher Mourou
et al. (2011). As a result the laser-matter interaction will happen in the radiation friction
dominated regimes Mourou et al. (2006); Marklund & Shukla (2006); Di Piazza et al.
(2012). In a strong electromagnetic field, electrons can be accelerated to such high
velocities that the radiation reaction starts to play an important role Zel’dovich (1975);
Zhidkov et al. (2002); Bulanov et al. (2004b); Di Piazza (2008); Harvey et al. (2011);
Heinzl et al. (2015); Thomas et al. (2012). Moreover, previously unexplored regimes of
the interaction will be entered, in which quantum electrodynamics (QED) effects such
as vacuum polarization, pair production and cascade development can occur Di Piazza
et al. (2012); Bell & Kirk (2008).

The electromagnetic field intensity of the order of 1024W/cm2 can be achieved in the
focus of a 1µm wavelength laser of ten petawatt power. For 30 fs, i.e. for a ten wave
period duration, the laser pulse energy is about 300 J. Within the framework of the
multiple colliding laser pulses (MCLP) concept formulated in Ref. Bulanov et al. (2010b)
(see Refs. Bulanov et al. (2010a); Gonoskov et al. (2012, 2013); Gelfer et al. (2015) for
development of this idea), the laser radiation with given energy Elas is subdivided into
several beams each of them having 1/N of the laser energy, where N is the number of the
beams. If the beams interfere in the focus in a constructive way, i.e. their electric fields
are summed, the resulting electric field and the laser intensity are equal to EN =

√
NElas

and to IN = NIlas, respectively. Here Elas and Ilas are the electric field and the intensity
of the laser light. For a large number of beams there is a diffraction constraint on the
electric field amplitude in the focus region. In the limit N →∞ the electromagnetic field
can be approximated by the 3D dipole configurations (see Bulanov et al. (2010a)) for
which the electric field maximum is given by Bassett (1986)

Em = 8π

√
Plas
3cλ2

, (1.1)

where Plas, λ, and c are the laser power, wavelength, and speed of light in vacuum,
respectively.

Since the radiation friction and QED processes both depend on the particle’s momen-
tum, the strength of the present electromagnetic field, and on their mutual orientation, it
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is crucial in understanding the dynamics of charged particles in the electromagnetic field
in the regime of radiation dominance. Even in the simpliest MCLP case, two counter-
propagating plane waves, the particle behavior in the standing wave is quite complicated.
It demonstrates regular and chaotic motion, random walk, limit circles and strange
attractors as is shown by Mendonca (1983); Bauer et al. (1995); Sheng et al. (2002);
Lehmann & Spatschek (2012, 2016); Gonoskov et al. (2014); Bashinov et al. (2015);
Bulanov et al. (2015); Esirkepov et al. (2015); Jirka et al. (2016); Kirk (2016). As is
well known, the standing wave configuration is widely used in classical electrodynamics
and in QED theory. This is due to the fact that in the planes where the magnetic
field vanishes, the charged particle may be considered interacting with an oscillating
pure electric field. This provides great simplification of the theoretical description. In
addition, as has been noted above, in a standing wave formed by two colliding laser
pulses, the resulting EM field configuration facilitates QED effects (see Bulanov et al.
(2010b, 2004a, 2006)). Computer simulations presented in Refs. Vranic et al. (2017); Gong
et al. (2016b); Gonoskov et al. (2016) show that the MCLP concept can be beneficial for
realizing such important laser-matter interaction regimes as, for example, the electron-
positron pair production via the Breit-Wheeler process Vranic et al. (2017) and the
high efficiency gamma-ray flash generation due to nonlinear Thomson or multi-photon
Compton scattering Gong et al. (2016b); Gonoskov et al. (2016). Another configuration
for the generation of a gamma-flash is a single laser pulse irradiating an overdense plasma
target Ridgers et al. (2012); Nakamura et al. (2012); Levy et al. (2016). The applications
of the laser based gamma-ray sources are reviewed in Ref. Gales et al. (2016). The
radiation friction effects on ion acceleration, on magnetic field self-generation, and on
high-order-harmonics in laser plasmas have been studied in Refs. Tamburini et al. (2010),
Liseykina et al. (2016), and Tang et al. (2016), respectively.

It is not surprising that the dynamics of the electron interacting with three-, four-, etc.
colliding pulses is even more complicated and rich with novel patterns.

The present paper contains the theoretical analysis of the electron motion in the stand-
ing electromagnetic (EM) wave generated by two-, three-, and four colliding focused EM
pulses. The paper is organized as follows. In next section we introduce the notations used,
describe the field configurations and equations of motion and present the dimensionless
parameters characterizing the charged particle interaction with a high intensity EM
field. Then, in section 3 we briefly recover the main features of the electron motion
in two counter-propagating plane waves. In section 4 we formulate a simple theoretical
model of the stabilization of the particle motion in the oscillating field due to nonlinear
dissipation effects, which explains the radiative electron trapping revealed earlier in Refs.
Gonoskov et al. (2012, 2013); Bulanov et al. (2015); Esirkepov et al. (2015); Jirka et al.
(2016); Kirk (2016); Ji et al. (2014). Section 5 relates to the regular and chaotic electron
motion in three s-polarized laser pulses. The radiating electron dynamics in the four s-
and p-polarized colliding EM pulses is discussed in section 6. Section 7 summarizes the
conclusions.

2. Field configurations, dimensionless parameters and equations of
motion

2.1. N colliding EM waves

Consider N monochromatic plane waves in vacuum with the same frequencies ω0 and
equal amplitudes an. We assume that the wave vectors kn are in the (x, y) plane. The
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wave vector of the nth wave is equal to

kn = k0[sin(θn)ex + cos(θn)ey], (2.1)

where k0 = ω0/c, θn = 2π(n− 1)/N , n = 1, 2, 3, ...N , and ex and ey are unit vectors in
the x and y directions.

It is convenient to describe the s-polarized EM waves with the electric field normal to
the (x, y) plane, i.e. E = Ezez with the unit vector ez along the z direction, in terms of
Ez(x, y, t) equal to

Ez = En

N∑
n=1

sin

{
ω0

[
t− sin(θn)x− cos(θn)y

c

]}
. (2.2)

Here the amplitude of the nth wave is En = E0/
√
N where E0 = Elas. The magnetic field

can be expressed by using Maxwell’s equations: (1/c)∂tBx = −∂yEz and (1/c)∂tBy =
∂xEz.

In the case of p-polarized EM waves with the magnetic field normal to the (x, y) plane,
B = Bzez, the Bz field of colliding N pules is given by

Bz = Bn

N∑
n=1

cos

{
ω0

[
t− sin(θn)x− cos(θn)y

c

]}
(2.3)

with Bn = Elas/
√
N and the electric field components expressed via Maxwell’s equations

as (1/c)∂tEx = ∂yBz and (1/c)∂tEy = −∂xEz, respectively.

2.2. Dimensionless parameters characterizing interaction of laser radiation with charged
particles

Introducing the normalized variables, we change the space and time coordinates to
x/λ→ x and tω/2π → t.

The interaction of charged particles with intense EM fields is characterized by several
dimensionless and relativistic invariant parameters (Di Piazza et al. (2012); Bulanov et al.
(2015); Nikishov & Ritus (1964a)).

The first parameter is

a =
e
√
AµAµ

mec2
, (2.4)

where Aµ is the 4-potential of the electromagnetic field with µ = 0, 1, 2, 3, 4. Here and
below summation over repeating indexes is assumed. This parameter is relativistically
invariant for a plane EM wave. It is related to the wave normalized amplitude introduced
above. When it is equal to unity, i.e. the intensity of a linearly polarized EM wave is
IR = 1.37× 1018(1µm/λ)2W/cm2, the quiver electron motion becomes relativistic.

The ratio, eE/meωc, the dimensionless EM field amplitude, measures the work in
units of mec

2 produced by the field on an electron over the distance equal to the field
wavelength. Here, e and me are the charge and mass of an electron, E and ω are the EM
field strength and frequency, and c is the speed of light.

The second dimensionless parameter is εrad:

εrad =
4πre
3λ

= 1.18× 10−8
(

1µm

λ

)
, (2.5)

which is proportional to the ratio of the classical electron radius re = e2/mec
2 = 2.8 ×

10−13cm to the laser radiation wavelength, λ. It essentially determines the strength of
the radiation reaction effects for an electron radiating an EM wave.
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When one micron wavelength laser intensities exceed 1023 W/cm2, the nonlinear quan-
tum electrodynamics effects begin to play a significant role in laser plasma interactions
(e.g. see Ref. Bulanov et al. (2015) and literature cited therein). These effects manifest
themselves through multi-photon Compton and Breit-Wheeler effects Nikishov & Ritus
(1964a,b); Ritus (1985) (see Refs.: Narozhnyi & Fofanov (1996); Boca & Florescu (2009);
Ehlotzky et al. (2009); Heinzl et al. (2010a,b); Mackenroth & Di Piazza (2011); Titov
et al. (2012); Krajewska & Kamiński (2012); Harvey et al. (2009) for recent studies),
i.e., through either photon emission by an electron or positron, or electron-positron pair
production by a high energy photon, respectively. The multi-photon Compton and Breit-
Wheeler processes are characterized in terms of two dimensionless relativistic and gauge
invariant parameters Nikishov & Ritus (1964a):

χe =

√
|Fµνpν |2
ESmec

and χγ =
λC
√
|Fµνkν |2
ES

. (2.6)

where pν and ~kν denote the 4-momenta of an electron or positron undergoing the
Compton process and a photon undergoing the Breit-Wheeler process, the 4-tensor of
the electromagnetic field is defined as Fµν = ∂µAν−∂νAµ, with the critical QED electric
field

ES =
m2
ec

3

e~
. (2.7)

This field is also known as the “Schwinger field” Beresteskii et al. (1982). Its amplitude is
about 1018V/cm, which corresponds to the radiation intensity ≈ 1029 W/cm2. The work
produced by the field ES on an electron over the distance equal to the reduced Compton
wavelength, λC = ~/mec = 3.86 × 10−11cm equals mec

2. Here ~ is the reduced Planck
constant.

In 3D notation the parameter χe given by Eq. (2.6) reads

χe =
γe
ES

√(
E +

pe ×B

mecγe

)2

−
(

pe ·E
mecγe

)2

. (2.8)

For the parameter χγ defined by Eq. (2.6) we have

χγ =
~

ESmec

√(ωγ
c

E + kγ ×B
)2
− (kγ ·E)

2
. (2.9)

Here γe, pe, ωγ and kγ correspond to the representation of the electron 4-momentum pν
and of the photon 4-wavenumber kν as pν = (γemec,p) and kν = (ωγ/c,kγ), respectively.
The parameter χe can also be defined as the ratio of the electric field to the critical
electric field of quantum electrodynamics, ES , in the electron rest frame. In particular,
it characterizes the probability of the gamma-photon emission by an electron with 4-
momentum pν in the field of the electromagnetic wave, in the Compton scattering process.

The parameter χγ characterizes the probability of the electron-positron pair creation
by the photon with the momentum ~kν interacting with a strong EM wave in the Breit-
Wheeler process.

The probabilities of the Compton scattering and of the Breit-Wheeler processes depend
strongly on χe and χγ , reaching optimal values when χe ∼ 1 and χγ ∼ 1 (Nikishov &
Ritus (1964a)).

In the case of an electron interaction with a plane EM wave propagating along the
x-axis with phase and group velocity equal to speed of light in vacuum the parameters
of the interaction can be written in terms of EM field strength, normalized by the QED
critical field given by Eq. (2.7), and either the electron γe-factor or the photon energy
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~ωγ :

χe =
E

ES

(
γe −

px
mec

)
(2.10)

and

χγ =
E

ES

~(ωγ − kγ,xc)
mec2

. (2.11)

For an electron interacting with the EM wave the linear combination of the electron
energy and momentum,

he = γe − px/mec, (2.12)

on r.h.s. of Eq. (2.10) is an integral of motion (Landau & Lifshitz (1982)). Its value is
determined by initial conditions.

If an electron/positron or a photon co-propagates with the EM wave, then in the former
case the parameter χe is suppressed by a factor (2γe,0)−1, i.e χe ' (2γe,0)−1(E/ES),
where γe,0 is the electron gamma-factor before interaction with the laser pulse. In the
later case, when the gamma-photon co-propagates with the EM wave, the parameter χγ
is equal to zero, χγ = 0, because ωγ = kγ,xc. On the contrary, the parameter χe can
be enhanced to approximately 2γe,0E/ES , when the electron interacts with a counter-
propagating laser pulse. Therefore the head-on collision configuration has an apparent
advantage for strengthening the electron-EM-wave interaction and, in particular, for
enhancing the γ ray production due to nonlinear Thomson or/and Compton scattering.

Depending on the energy of charged particles and field strength the interaction happens
in one of the following regimes parametrized by the values of a, χe, and χγ :

(i) a > 1, the relativistic interaction regime (Mourou et al. (2006)),

(ii) a > ε
−1/3
rad , the interaction becomes radiation dominated (Zhidkov et al. (2002);

Bulanov et al. (2004b); Bashinov & Kim (2013)),
(iii) χe > 1 the quantum effects begin to manifest themselves (Di Piazza et al. (2010);

Bulanov et al. (2011a, 2015)), and
(iv) χe > 1, χγ > 1 marks the condition for the EM avalanche (Bulanov et al.

(2010a); Fedotov et al. (2010); Elkina et al. (2011); Nerush et al. (2011); Bulanov et al.
(2013)), which is the phenomenon of exponential growth of the number of electron-
positrons and photons in the strong EM field, being able to develop. These conditions
can be supplemented by αa > 1, which indicates that the number of photons emitted
incoherently per laser period can be larger than unity as has been noted by Di Piazza
et al. (2010). Here the parameter εrad is given by Eq. (2.5) and α = e2/~c ≈ 1/137 is
the fine structure constant.

As one can see two dimensionless parameters, a and χe, can be used to subdivide the
(a, χe) plane into four domains shown in Fig. 1 a) (see also Refs. Bulanov et al. (2015);
Bulanov (2017)). The χe = 1 line divides the plane into the radiation reaction description
of the interaction domain (χe < 1) and QED description of interaction domain (χe > 1).

The a = ε
−1/3
rad line divides the plane into radiation dominated (a > ε

−1/3
rad ) and particle

dominated (a < ε
−1/3
rad ) regimes of interaction domains. We note that the a = ε

−1/3
rad

threshold comes from the requirement for an electron to emit the amount of energy per
EM wave period equal to the energy gain from the EM wave during the wave period.
If one takes into account the discrete nature of the photon emission, then the same
condition will take the form amec

2 = ~ωγ(λ/LR) Ritus (1985),where LR is the radiation

length is of the order of 2λ/a for χe << 1 and λγ
1/3
e /a2/3 for χe >> 1 Nikishov & Ritus

(1964a,b); Ritus (1985); Bolotovskii & Voskresenskii (1966). This condition in the limit

χe → 0 tends to the classical limit a = ε
−1/3
rad .
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Figure 1. Regimes of electromagnetic field interaction with matter on the plane of parameters:

a) the normalized EM wave amplitude aε
1/3
rad and the parameter χe; b) accordingly the

(ln(E/E∗), ln(ω/ω∗)) plane, where E∗ and ω∗ are given by Eqs. (2.14) and (2.15), respectively.
The parameter planes are subdivided into 4 domains: (I) Electron - EM field interaction in the
particle dominated radiation reaction domain; (II) Electron - EM field interaction is dominated
by the radiation reaction; (III) Electron - EM field interaction is in the particle dominated QED
regime; (IV) Electron - EM field interaction is in the radiation dominated QED regime.

The intersection point, where arad = ε
−1/3
rad and the parameter χe is equal to unity,

determines critical values of the EM wave amplitude κaa∗ with

a∗ =

(
3c

2reω∗

)1/3

=
~c
e2

=
1

α
, (2.13)

i. e. the wave electric field is κaκωE∗, where

E∗ = ESα, (2.14)

and the wave frequency κωω∗ with ω∗ given by

ω∗ =
e4me

~3
=
mec

2

~α2
. (2.15)

Here α = 1/137 is the fine structure constant, and κa and κω are constants of the order of
unity. The normalized EM wave amplitude equals a∗ = 137 with corresponding the wave
intensity I∗ = 2.6× 1022W/cm2. The corresponding photon energy is ~ω∗ = mec

2/α2 ≈
27 eV. We note that the value of a∗ = 1/α corresponds to the one of conditions for the
charged particle interaction with EM field to be in the QED regime, αa > 1 (see also
Di Piazza et al. (2010)).

Concrete values of the coefficients κa and κω depend on the specific electromagnetic
configuration. For example, in the case of a rotating homogeneous electric field (it can
be formed in the antinodes of an electric field in the standing EM wave) analyzed in Ref.
Bulanov et al. (2015), they are κa = 3 and κω = 1/18, respectively, which gives κaa∗ =
411, with the intensity equal to 2.3× 1023W/cm2, and κω~ω∗ = mec

2α2/18 ≈ 1.5 eV.
Here we would like to attract attention to the relationship between the well known

critical electric field of classical electrodynamics Ecr, the critical electric field of quantum
electrodynamics ES and the electric field E∗. They can be written as Ecr = e/r2e , ES =
e/reλC , and E∗ ≈ e/λ2C , respectively. In other words we have ES = Ecrα, and E∗ =
Ecrα

2.
Using the relationships obtained above we find that on the line aε

1/3
rad = 1 the wave
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electric field is proportional to the frequency in the 2/3 power, i. e. E/E∗ = (ω/ω∗)2/3,
and on the line χe = 1 we have E/E∗ = (ω/ω∗)1/2.

Fig. 1 b) shows the (ln(E/E∗), ln(ω/ω∗)) plane with 4 domains. The lines intersect
each other at the point (0, 0), i.e. at the point where E = E∗ and ω = ω∗.

2.3. Radiation friction force with the QED form-factor

In order to describe the relativistic electron dynamics in the electromagnetic field we
shall use the equations of electron motion:

dp

dt
= e

(
E +

v

c
×B

)
+ Frad, (2.16)

dx

dt
=

p

meγ
, (2.17)

where the radiation friction force, Frad = Gefrad, is the product of the classical radiation
friction force, frad, in the Landau-Lifshitz form (Landau & Lifshitz (1982)):

frad =
2e3

3mec3γ

{
(∂t + (v∇) E +

1

c
[v × (∂t + (v∇)B])

}

+
2e4

3m2
ec

4

{
E×B +

1

c
[B× (B× v) + E (v ·E)]

}
(2.18)

− 2e4

3m2
ec

5
γ2v

{(
E +

1

c
v ×B

)2

− 1

c2
(v ·E)

2

}
and a form-factor Ge, which takes into account the quantum electrodynamics weakening
of the radiation friction Beresteskii et al. (1982); Sokolov et al. (1952); Schwinger (1954);
Erber (1966); Sokolov et al. (2010). Discussions of the relationship between the Landau-
Lifshitz and Lorentz-Abraham-Dirac forms of the radiation friction force and what form
of the force follows from the QED calculation, can be found in Refs. Bulanov et al.
(2011b); Zhang (2013); Ilderton & Torgrimsson (2013) and in the literature cited therein.

As we have noted above, the threshold of the QED effects is determined by the
dimensionless parameter χe given by Eq. (2.8). For example, if an electron moves in the
magnetic field B, the parameter is equal to χe ≈ γe(B/BS), where BS = m2

ec
3/e~ is the

QED critical magnetic field (see also Eq. (2.7)). The energy of the emitted synchrotron
photons is

~ωγ = mec
2γe

χe
2/3 + χe

. (2.19)

In the limit χe � 1 the frequency ωγ is equal to (3/2)ωBeγ
2
e in accordance with classical

electrodynamics (see Landau & Lifshitz (1982)). Here ωBe = eB/mec is the Larmor
frequency. If χe � 1 the photon energy is equal to the energy of the radiating electron:
~ωγ = mec

2γe.
The radiation friction force in the limit γe → ∞, i.e. the last term on the r.h.s. of

Eq. (2.18) retained, can be written in the following form (see also Refs. Bulanov et al.
(2015); Sokolov et al. (1952); Schwinger (1954); Erber (1966); Sokolov et al. (2010) and
literature cited therein)

frad = −2α cGe(χe)χ
2
e

3λC
p. (2.20)

Here the QED effects are incorporated into the equations of the electron motion by using
the form-factor Ge(χe) (see Ref. Sokolov et al. (1952)), which is equal to the ratio of
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full radiation intensity to the intensity of the radiation emitted by a classical electron. It
reads

Ge(χe) =
3

4

∫ ∞
0

[
4 + 5χex

3/2 + 4χ2
ex

3(
1 + χex3/2

)4
]
Φ′(x)xdx, (2.21)

where Φ(x) is the Airy function (Abramovitz & Stegun (1964)). In Eq. (2.20) we neglect
the effects of the discrete nature of the photon emission in quantum electrodynamics
(see Thomas et al. (2012); Bashinov et al. (2015); Bulanov et al. (2013); Esirkepov et al.
(2015); Jirka et al. (2016); Duclous et al. (2011); Brady et al. (2012)).

In the limit χe � 1 the form-factor G(χe) tends to unity as

Ge(χe) = 1− 55
√

3

16
χe + 48χ2

e + ... (2.22)

≈ 1− 5.95χe + 48χ2
e + ... .

For χe � 1 it tends to zero as

Ge(χe) =
32π

27 35/6Γ (1/3)χ
4/3
e

− 1

χ2
e

+ ... (2.23)

≈ 0.5564

χ
4/3
e

− 1

χ2
e

+ ... .

However expression (2.21) and the asymptotical dependences (2.23) and (2.24) are not
convenient for implementing them in the computer codes. For the sake of calculation
simplicity we shall use the following approximation

GR(χe) ≈
1

(1 + 8.93χe + 2.41χ2
e)

2/3
. (2.24)

Within the interval 0 < χe < 10 the accuracy of this approximation is better than 1%.

3. Electron motion in the standing EM wave formed by two
counter-propagating EM pulses

3.1. EM field configuration

An electron interaction with an EM field formed by two counter-propagating waves was
addressed a number of times in high field theory using classical quantum electrodynamics
approaches because it provides one of the basic EM configurations where important
properties of a radiating electron can be revealed (e.g. see above cited publications
Di Piazza et al. (2012); Gonoskov et al. (2013); Mendonca (1983); Lehmann & Spatschek
(2012, 2016); Gonoskov et al. (2014); Bashinov et al. (2015); Bulanov et al. (2015);
Esirkepov et al. (2015); Lobet et al. (2015); Jirka et al. (2016); Kirk (2016); Bashinov
et al. (2016); Grismayer et al. (2016)). Here we present the results of the analysis of
an electron motion in a standing EM wave in order to compare them below with the
radiating electron behavior in a more complicated EM configuration formed by three
and four waves with various polarizations.

Here we consider an electron interaction with the electromagnetic field corresponding
to two counter-propagating linearly polarized waves of equal amplitudes, (a0/2) cos(t+x)
and (a0/2) cos(t−x), forming a standing wave. The field is given by the electromagnetic
4-potential

A = a0 cos t cosx ez. (3.1)
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This is a standing electromagnetic wave with zero magnetic and electric field nodes
located at the coordinates x = ±πn and x = ±π(n+1/2) with n = 0, 1, 2, ..., respectively.

Numerical integration of the electron motion equations with the radiation friction force
in the form (2.20) shows different features of the electron dynamics depending on the
electromagnetic wave amplitude and the dissipation parameter εrad.

3.2. Relatively weak intensity limit

In the limit of relatively weak dissipation, which corresponds to the domain I in Fig. 1,
the electron trajectory wanders in the phase space and in the coordinate space as shown
in Fig. 2. In this case the wave amplitude is a0 = 618. The dissipation parameter equals
εrad = 2 × 10−8. The normalized critical QED field is aS = eES/meωc = mec

2/~ω =
4×105. The parameter values correspond to the vicinity of the point (a/a∗ = 1, ω/ω∗ = 1)
in Fig. 1 b). The integration time equals 75.

Fig. 2 demonstrates a typical behavior of the electron in the limit of relatively low EM
wave amplitude. Fig. 2 a) and b) show that the electron performs a random-walk-like
motion for a long time being intermittently trapped and untrapped in the vicinities of the
zero-electric field nodes, where the electric field vanishes. For this parameter choice the
equilibrium trajectory at the electric field antinodes is unstable according to Ref. Bulanov
et al. (2010a) (see also Gong et al. (2016a)). The maximum value of the electron gamma-
factor, γe, whose dependence on the coordinate x is plotted in Fig. 2 c), reaches 700. In
the oscillating electric field of amplitude a = 618 it would be equal to 618. The parameter
χe (see Fig. 2 d)) changes between zero and approximately 0.7, which corresponds within
an order of magnitude to (a0/aS)γe. The particle coordinates z versus time space in Fig.
3 for initial coordinates x(0) = 0.01–1, 0.2–2, 0.49–3 with other parameters the same as
in Fig. 2 show their wandering along the coordinate z. The particle over-leaping from
one field period to another with small scale oscillations in between seen in Fig. 3 may
correspond to Lévy flights Lévy (1954); Metzler & Klafter (2000); Zaslavsky (2002);
Metzler et al. (2007).

Fig. 4, shows the Poincaré section for the motion of the particle with x(0) = 0.01
positions in the phase plane (px, pz) at discrete times with the time step equal to the
period of the driving force. The parameters are the same as in Fig. 2. The Poincaré
section demonstrates that this process is stochastic.

3.3. Random walk

Now we analyze the time dependence of the random walk, assuming that the particle
coordinates x(t) and z(t) are random variables, i.e. the particle displacement in the
(x, z) plane equal to r =

√
x2 + z2 is also a random variable. As is known in statistics

the behavior of the random variable f is characterized by the expectation µ = E[f ] and
variance σ2 = Var[f ] defined as

E[f ] = lim
t→∞

1

t

∫ t

f(t)dt (3.2)

and

Var[f ] = E[(f − E[f ])2]. (3.3)

The definition of an expectation in the form (3.2) implies that the probability density
function is taken to be a continuous uniform distribution equal to 1/t within the interval
[0, t]. We assume here that the ergodicity of the processes is expected.

If the random walk process is a Wiener process, which also called “Brownian motion”,
the variance of the walker’s coordinate r(t) is proportional to time (e.g. see Durrett
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Figure 2. a) Electron trajectories in the (x, z) plane for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0. b) Trajectory in the phase space x, px, pz;
c) Electron gamma-factor γe versus the coordinate x; d) Parameter χe versus the coordinate
x, for the same initial conditions. The electromagnetic field amplitude is a0 = 617 and the
dissipation parameter is εrad = 1.2× 10−8. The coordinates, time and momentum are measured
in the 2πc/ω, 2π/ω and mec units.

Figure 3. Electron coordinate z versus time space for initial coordinates x(0) = 0.01–1, 0.2–2,
0.49–3, other parameters are the same as in Fig. 2.

(1991)). To examine whether or not the random walk seen in Figs. 2 and 3 is a Wiener
process we plot in Fig. 5 the dependences of Log(Var[r]/tq) on Log(t) for 0 < q < 1.75.
For the Wiener process the parameter q should be equal to 1. As we can see, in our case
random walk process the variance is proportional to tq with q ≈ 1.

3.4. Moderate intensity regime

The situation qualitatively changes, when the dissipation becomes more significant.
In Fig. 1 this corresponds to the domain II. This case is illustrated in Fig. 6, for which
the radiation friction parameter is εrad = 6× 10−9, the normalized critical QED field is
aS = 8× 105, and the normalized laser field equals a0 = 778. In Fig. 6 we present three
trajectories for particles with initial conditions: x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) =
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Figure 4. The Poincaré sections showing the particle positions in the phase plane (px, pz) at
discrete times with the time step equal to the period of the driving force. The parameters are
the same as in Fig. 2 for x(0) = 0.01.

Figure 5. Dependences of Log(Var[r]/tq) on Log(t) for 0 < q < 1.25 for the parameters
corresponding to Fig. 2.

0 (red); x(0) = 0.2, z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) =
0, pz(0) = 0 (green). As seen in Fig. 6 a), where the trajectories in the x, z plane are
shown, independent of the initial position all three trajectories end up in the vicinity of
the plane x = 0.25. Here the EM wave electric field vanishes.

At the coordinate x = 0.25 the ponderomotive potential has a minimum. It is defined
as

Π(x) =
1

2π

∫ π

−π
(
√

1 +A(x, t)2 − 1)dt (3.4)

with the vector potential A(x, t) given by Eq. (3.1). The dashed curve in Fig. 6 a) presents
the ponderomotive potential (3.4) dependence on the x coordinate. In Fig. 6 b) electron
trajectories in the (x, px, pz) space show the attractors, which have been analyzed in
details in Ref. Esirkepov et al. (2015) (see Fig. 7, where the Poincaré section is presented
for this case). Electron gamma-factors γe versus the coordinate x presented in Fig. 6 c)
correspond to the case when the dissipation limits the particle energy, which does not
exceed the value determined by the amplitude of the EM wave being of the order of a.
Since the parameter χe(x) plotted in Fig. 6 d) is less than unity for all three trajectories,
the equation of an electron motion with the radiation friction force is still valid for this
parameter range.
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Figure 6. Electron motion in the standing EM wave for εrad = 6 × 10−9, aS = 8 × 105,
and a0 = 778 for initial conditions: x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red);
x(0) = 0.2, z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) = 0, pz(0) = 0
(green). a) Trajectory in the x, z plane. Dashed line is the ponderomotive potential (3.4) vs the x
coordinate; b) Electron trajectories in the (x, px, pz) space. c) Electron gamma-factor γe versus
the coordinate x. d) Parameter χe versus the coordinate x, for the same initial conditions.

Figure 7. The Poincaré sections showing the particle positions in the phase plane (x, px) at
discrete times with the time step equal to the period of the driving force. The parameters are
the same as in Fig. 6 for x(0) = 0.01.

In Fig. 7, we plot the Poincaré section for the particle with the same parameters as
in Fig. 6 for x(0) = 0.01. Here are the particle positions in the phase plane (x, px) at
discrete times with the time step equal to the period of the driving force. The map
pattern corresponds to the stochastic regime developed in the particle motion.

3.5. High intensity regime

If we choose the parameters in a such the way that the dissipation becomes even more
significant, when we approach the domain IV in Fig. 1, the particle behavior becomes
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Figure 8. Electron motion in the standing EM wave for εrad = 1.2 × 10−9, aS = 4 × 106,
a = 1996 for initial conditions: x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red);
x(0) = 0.2, z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) = 0, pz(0) = 0
(green). a) Trajectory in the x, z plane. Inset shows zoomed trajectory for x(0) = 0.2. Dashed
line is the ponderomotive potential (3.4) vs the x coordinate; b) Electron trajectories in the
(x, px, pz) space. Inset shows zoomed trajectory for x(0) = 0.2 corresponding to a strange
attractor Esirkepov et al. (2015). c) Electron gamma-factor γe versus the coordinate x. Inset
shows zoomed γe(x) for x(0) = 0.2 d) Parameter χe versus the coordinate x, for the same initial
conditions.

counterintuitive, as can be seen in Fig. 8, for which the radiation friction parameter is
εrad = 1.2× 10−9, the normalized critical QED field is aS = 4× 106, and the normalized
laser field equals a0 = 1996. There we present three electron trajectories for the same
initial conditions as in Fig. 4: x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red); x(0) =
0.2, z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) = 0, pz(0) = 0
(green). Trajectories in the x, z plane (Fig. 6 a)) are principally different depending on
where the particle has been initially localized. For x(0) = 0.2 the trajectory remains
in the vicinity of the ponderomotive potential minimum similarly to the case discussed
above (Fig. 6). The dashed line is the ponderomotive potential (3.4) vs the x coordinate.
In contrast, particles with initial coordinates near the maximum of the ponderomotive
potential are trapped there (similar behavior was noted in Ref. Gonoskov et al. (2014)).

In Fig. 8 b) the electron trajectories in the (x, px, pz) space show behaviour typical
for limit circles and attractors. The inset shows the zoomed trajectory for x(0) = 0.2
corresponding to a strange attractor Esirkepov et al. (2015). The trajectories with
x(0) = 0.01 and x(0) = 0.49 demonstrate regular limit circles. It follows from Fig. 8
c) that the electron gamma-factor γe has a moderate value for the electron trapped near
the ponderomotive potential minimum (the inset shows zoomed γe(x) for x(0) = 0.2),
and the particles are efficiently accelerated when they are trapped in the region at the
ponderomotive potential maximum. For the parameters chosen χe(x) plotted in Fig. 8
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Figure 9. The Poincaré sections showing the particle positions in the phase plane (x, px) at
discrete times with the time step equal to the period of the driving force. The parameters are
the same as in Fig. 8 for x(0) = 0.49.

d) remains less than unity for all three trajectories, i. e. the QED effects are finite but
relatively weak.

In Fig. 9, we plot the Poincaré section showing the particle with x(0) = 0.49 positions
in the phase plane (x, px) at discrete times with the time step equal to the period of the
driving force. The parameters are the same as in Fig. 8 for x(0) = 0.49. Although the
map pattern is pretty complicated it does not contain curve broadening, i.e. does not
indicate a stochastic regime of the particle motion.

In the next Section we propose the mechanism of dissipative particle trapping in the
vicinity of the ponderomotive potential maximum, which can explain the observed effects.

4. Simple model of the stabilization of the particle motion in an
oscillating field due to the nonlinear friction

Let us consider a particle motion in a fast oscillating field in a way similar to Landau
& Lifshitz (1976). As in Ref. Landau & Lifshitz (1976) for the sake of simplicity of
calculations we assume non-relativistic electron motion in one dimension, when the
force acting on the particle depends on the coordinate x and time t. In contrast to
the consideration in Ref. Landau & Lifshitz (1976), we take into account the effects of
the friction. The equation of particle motion is

ẍ+ κ(F )ẋ = F. (4.1)

Here a dot stands for the time derivative and κ(F ) is the friction coefficient. It is assumed
to depend on the rapidly oscillating driving force,

F (x, t) = f1(x) cosωt+ f2(x) sinωt. (4.2)

We seek a solution of Eq. (4.1), assuming that it can be written down as a sum of two
parts,

x(t) = X(t) + ξ(t) , (4.3)

where X(t) slowly varies with time and ξ(t) is a small fast oscillating periodic function,
|ξ| � |X|.

We also assume that the time average of the function ξ(t) over the oscillation period
2π/ω is zero. Introducing the notation

〈x〉 =
ω

2π

∫ 2π/ω

0

x(t)dt , (4.4)
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we obtain

〈ξ〉 =
〈
ξ̇
〉

=
〈
ξ̈
〉

= 0 . (4.5)

Therefore, we have 〈x〉 = X(t), i.e. the function X(t) describes the slow particle motion
averaged over the fast oscillations, 〈X〉 ≈ X(t).

Substituting (4.3) into the equation of particle motion (4.1) and expanding the func-
tions κ(x, t) and F (x, t) in powers of ξ, i. e. writing κ(x, t) ≈ κ(X, t) + ξ∂Xκ(X, t) and
F (x, t) ≈ F (X, t) + ξ∂XF (X, t), we obtain

Ẍ + ξ̈ + κẊ + κξ̇ + ξẊ∂Xκ+ ξξ̇∂Xκ = F + ξ∂XF, (4.6)

where ∂X is the partial derivative with respect to the first argument of functions κ(X, t)
and F (X, t). This equation contains slowly varying and fast oscillating terms, which
apparently should be separately equal to each other. In the zeroth order approximation
with respect to small function ξ and the time derivatives of the slow function X, we find
the equation for the fast oscillating term

ξ̈ + κξ̇ = F . (4.7)

Here we neglect the terms proportional to ξ. The time derivatives ξ̈ and ξ̇ are not small,
being proportional to ω2 and ω, respectively. They are assumed to be much greater than
Ẍ and Ẋ. The friction coefficient κ is not necessarily small.

Integration of Eq. (4.7), assuming X to be constant, yields

ξ = ξ0 +

∫ t

0

dτ
[
e−K(X,τ)ξ̇0+∫ τ

0

eK(X,τ ′)−K(X,τ)F (X, τ ′)dτ ′
]
, (4.8)

K(X, t) =

∫ t

0

κ(X, τ)dτ . (4.9)

Assuming that K(X, t) can be approximated by K(X, t) ≈ 〈κ〉 t, where 〈κ〉 is the time-
averaged friction coefficient, in the limit t� 1/ 〈κ〉 we obtain

ξ =
(〈κ〉 f1 − ωf2) sinωt− (〈κ〉 f1 + ωf2) cosωt

ω(〈κ〉2 + ω2)

= − 1

〈κ〉2 + ω2

(
F +

〈κ〉
ω2

∂tF

)
(4.10)

with ∂tF = ∂F (X, t)/∂t|X=const. Here we assumed the initial condition ξ0 = −(f2 +

ωξ̇0)/(〈κ〉ω).
Averaging Eq. (4.6) over time and taking into account that 〈F (X, t)〉 ≈ 0 for nearly

constant X(t), we obtain

Ẍ + (〈κ〉+ 〈ξ∂Xκ〉)Ẋ = 〈ξ∂XF 〉 −
〈
ξξ̇∂Xκ

〉
. (4.11)

Substituting expression (4.10) into the r.h.s. of Eq. (4.11), for the first term we obtain

〈ξ∂XF 〉 = −∂X(f21 + f22 )

4(〈κ〉2 + ω2)
− 〈κ〉 (f2∂Xf1 − f1∂Xf2)

2ω(〈κ〉2 + ω2)
. (4.12)

The first term on the r.h.s. of Eq. (4.12) is the well known ponderomotive force Landau
& Lifshitz (1976) where the friction effect is taken into account. The last term on the
r.h.s., proportional to the friction coefficient, can change signs for f2∂Xf1 6= f1∂Xf2
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depending on whether f2∂Xf1 > f1∂Xf2 or f2∂Xf1 < f1∂Xf2. It vanishes if f2∂Xf1 =
f1∂Xf2, f1 6= 0, f2 = 0 or f2 6= 0, f1 = 0.

The actual form of the last term on the r.h.s. of Eq. (4.11) is determined by the specific
dependence of the friction coefficient κ on the driver force. As an example, we consider
the case when this dependence is quadratic, i.e. κ = νF 2, with a constant ν. Then we
obtain

−
〈
ξξ̇∂Xκ

〉
=
ν 〈κ〉 ∂X(f21 + f22 )2

8(〈κ〉2 + ω2)2
+

ν(〈κ〉2 − ω2)(f21 + f22 )(f2∂Xf1 − f1∂Xf2)

4ω(〈κ〉2 + ω2)2
(4.13)

and the time-averaged friction coefficient becomes 〈κ〉 = ν(f21 + f22 )/2. In addition,
〈ξ∂Xκ〉 = 0.

For the sake of simplicity we further assume that f2 = 0 in expression (4.2) for the
driver force. Then, Eqs. (4.12) and (4.13) are simplified and we finally obtain the equation
for the slowly varying function X(t):

Ẍ +
νf21
2
Ẋ = − ∂Xf

2
1

ν2f41 + 4ω2
+

2ν2∂Xf
6
1

3(ν2f41 + 4ω2)2
. (4.14)

The first term on the r.h.s. corresponds to the ponderomotive force, the last term is the
drag force induced by the friction.

As we can see, the ponderomotive force (4.12) and the drag force due to the friction
(4.13) have different signs in Eq. (4.14). If |ν| > 2ω/f21 , the drag force exceeds in
magnitude the ponderomotive force.

Numerical integration of the equation of motion (4.1) with F (x, t) = f0 exp(−(x/l0)2) cosωt
and κ = νF 2 reveals the main features of the behavior predicted within the framework
of the simple model approximation. The solutions for the cases of relatively weak and
relatively strong driver force are plotted in Fig. 10. The parameters are as follows. The
driver frequency and the friction coefficient values are ω = 1 and ν = 0.1, respectively.
The driver width equals l0 = 5. The initial coordinate and velocity are x0 = 3 and
ẋ0 = 1, in both cases. The driver amplitude is equal to f0 = 5

√
2ω/ν in the case of the

weak driver, and is equal to f0 = 15
√

2ω/ν in the case of the strong driver. As we see in
Fig. 10 a) and b), in the case of weak nonlinearity, the particle being pushed outwards
by the ponderomotive force having performed several oscillations leaves the region where
the driver force is localized. In contrast, in the limit of strong nonlinearity, the friction
drag force prevents the particle from leaving the driver localization region resulting in
its slow drift inwards (Fig. 10 c) and d)).

On a trajectory corresponding to a quasi-periodic particle motion seen in Fig. 10, the
particle feels an almost constant driving force. This situation can be described in the
approximation

F (x, t) = f0 cosωt, κ = νf20 cos2 ωt. (4.15)

Substituting this driving force and friction coefficient into Eq. (4.1), we change variables
to (τ, y(τ)), t = τ/ω, x(t) = (f0/ω

2)y(τ) and introduce the constant

σ = νf20 /ω. (4.16)

Thus, we obtain

y′′(τ) + σ cos2(τ)y′(τ) = cos τ . (4.17)

Here a prime denotes a differentiation with respect to the variable τ . Using Eq. (4.9) and
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Figure 10. The solutions of Eq. (4.1) in the case of relatively weak driver force ( a and b),
and for the case of relatively strong driver force (c and d). a) and c) Dependence of the particle
coordinate on time. b) and d) The particle trajectory in the phase plane (x, ẋ).

the generating function for the modified Bessel functions of the first kind, Ik, one can
cast the general solution to Eq. (4.17) in the form

y′(τ) = exp
(
−στ

2
− σ

4
sin(2τ)

)
[y′(0)− YLC(0)] + YLC(τ) , (4.18)

where the function YLC(τ) is given by

YLC(τ) = exp
(
−σ4 sin(2τ)

) ∞∑
k=−∞

(−i)k+1Ik
(
σ
4

)
×
{

exp [i(2k − 1)τ ]

4k − 2− iσ
+

exp [i(2k + 1)τ ]

4k + 2− iσ

}
. (4.19)

As one can see, any solution at τ →∞ tends to the limit cycle described by the function
YLC and determined by the constant y′(0) = YLC(0).

The function describing the limit cycle, Eq. (4.19), can be represented as a Fourier
series in terms of odd harmonics of the driving force frequency

YLC(τ) =

∞∑
n=1

[exp (i(2n− 1)τ)Cn(σ)

+ exp (−i(2n− 1)τ)C1−n(σ)] (4.20)

with

Cn(σ) = in
∞∑

k=−∞

(−1)k+1

4k+2−iσ
[
Ik
(
σ
4

)
− iIk+1

(
σ
4

)]
Ik+1−n

(
σ
4

)
. (4.21)

This gives the spectrum of the limit cycle trajectory. For the particle velocity (corre-
sponding to y′(τ)), the spectral density is |2Cn(σ)|2, Fig. 11.
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Figure 11. The spectral density of the particle velocity for several harmonics of the driving
force frequency as a function of the friction parameter σ.

5. Regular and chaotic electron motion in three s- and p-polarized
colliding laser pulses

5.1. EM field configuration

Let us consider three s(p)-polarized waves, which z-component of the electric (mag-
netic) field is given by (

Ez
Bz

)
= − 1√

3

(
E0

B0

){
sin
[
ω0

(
t+

y

c

)]

+2 sin
[
ω0

(
t− y

2c

)]
cos

(
ω0

√
3x

2c

)}
. (5.1)

The x and y components of the magnetic (electric) field of the s(p)-polarized wave are(
Bx
Ex

)
=

1√
3

(
E0

−B0

){
− sin

[
ω0

(
t+

y

c

)]

+ sin
[
ω0

(
t− y

2c

)]
cos

(
ω0

√
3x

2c

)}
(5.2)

and (
By
Ey

)
=

1√
3

(
E0

−B0

)
cos
[
ω0

(
t− y

2c

)]
sin

(
ω0

√
3x

2c

)
. (5.3)

The wave orientation is illustrated in Fig. 12. As an example in Fig. 13 a) we show the
magnetic (electric) field Bn = Bxex + Byey (En = Exex + Eyey) and in Fig. 13 b) the
isocontours of the electric (magnetic) field Ez (Bz) in the (x, y) plane at time t = π/4
for the case of three colliding s-polarized (p-polarized) EM waves.
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Figure 12. Wave vectors of three colliding waves.

Figure 13. Three s-polarized (p-polarized) EM waves: a) magnetic (electric) field; b)
isocontours of the electric (magnetic) field in the (x, y) plane at time t = π/4.

5.2. Electron interaction with three s-polarized EM waves

5.2.1. Particular solutions

Due to the symmetry of the EM field given by Eqs. (5.2, 5.3), there are particular
solutions of the equations of motion, when the particle moves straight in the (x, y) plane
along the direction of one of the waves propagation. If we let x = 0 in Eqs. (5.2, 5.3),
the electromagnetic field formally corresponds to a superposition of two EM waves one
of which propagates with the velocity equal to −c and another has the velocity 2c.

The integration of the equations of electron motion yields the particle trajectories
presented in Fig. 14 for initial conditions: x(0) = 0, y(0) = 0.05, z(0) = 0, px(0) =
0, py(0) = 0, pz(0) = 0. The normalized electromagnetic field amplitude is a0 = 436
(each of the colliding waves has the amplitude equal to a0/3), the dissipation parameter
is εrad = 1.2× 10−8, and the normalized critical QED field is aS = 4× 105. The electron
trajectory in the (y, z) plane plotted in Fig. 14 a) and the trajectory in the phase (y , pz)
plane shown in Fig. 14 b) look similar to the trajectories presented in Fig. 2 a) and b).
The particle is trapped for a finite time within the EM field period performing relatively
small scale oscillations. Then after some time it over-leaps to the next EM field period.
This is also clearly seen in Fig. 14 c), where its y-coordinate is plotted versus time. From
the Poincaré sections in Fig. 14 d), which show the particle positions in the phase plane
(pz, py) at discrete times with the time step equal to the period of the driving force, we
may see that this process is stochastic. The particle over-leaping from one field period to
another with small scale oscillations in between (see Figs. 2, 3 and 14) may be interpreted
in terms of Lévy flights Lévy (1954); Metzler & Klafter (2000); Zaslavsky (2002); Metzler
et al. (2007).

The case of high laser amplitude is presented in Fig. 15 for initial conditions: x(0) =
0, y(0) = −0.0001, z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. The normalized elec-
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Figure 14. a) Electron trajectory in the (y, z) plane for initial conditions:
x(0) = 0, y(0) = 0.05, z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. b) Trajectory in the
phase (y , pz) plane; c) Electron y-coordinate versus time; d) The Poincaré sections showing
the particle positions in the phase plane (pz, py) at discrete times with the time step equal to
the period of the driving force. The electromagnetic field amplitude is a0 = 436, the dissipation
parameter is εrad = 1.2 × 10−8, and the normalized critical QED field is aS = 4 × 105. The
coordinates, time and momentum are measured in the 2πc/ω, 2π/ω and mec units.

tromagnetic field amplitude is a0 = 4700 (each of the colliding waves has the amplitude
equal to a0/3), the dissipation parameter is εrad = 1.2×10−9, and the normalized critical
QED field is aS = 4× 106. The electron trajectory in the (y, z) plane plotted in Fig. 15
a) and the trajectory in the phase (y , py) plane shown in Fig. 15 b) clearly demonstrate
the particle trapping into the limit circle after an initial phase corresponding to the
particle motion in the vicinity of the electric field node, y = 0. Since the motion here is
unstable, the particle leaves this region. This is also distinctly seen in Fig. 15 d) showing
the electron trajectory in the (py, pz) plane. In the plane (y, z) (Fig. 15 a)) as we see,
when particle moves along the limit circle, its trajectory has the “figure eight” form. It
performs regular oscillations (see Fig. 15 c), where the particle coordinate y is plotted
versus time) with the double frequency for oscillations along the y axis compared with
the frequency of oscillation along the z axis.

5.2.2. Random-walk and regular patterns of the particle trajectories in the field of three
3 s-polarized EM waves

Results of integrations of the motion equations for the electron interacting with three
3 s-polarized EM waves in the limit of relatively low radiation intensity are presented in
Fig. 16. Fig. 16 a) shows 8 electron trajectories in the (x, y) plane for initial conditions:
x(0) and y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) =
0, pz(0) = 0. In Fig. 16 b) we plot a close up of the trajectories in the vicinity of the
coordinate origin superimposed with the isocontours of the electromagnetic potential
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Figure 15. a) Electron trajectory in the (y, z) plane for initial conditions:
x(0) = 0, y(0) = −0.0001, z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. b) Trajectory in
the phase plane (y , py); c) Electron y-coordinate versus time; d) Electron trajectory in the
(py, pz) plane. The electromagnetic field amplitude is a0 = 4700, the dissipation parameter is
εrad = 1.2× 10−9, and the normalized critical QED field is aS = 4× 106. The coordinates, time
and momentum are measured in the 2πc/ω, 2π/ω and mec units.

averaged over a half period of the field oscillations. It is proportional to the ponderomotive
potential in the high field amplitude limit, a0 � 1. As we see the typical trajectories are
comprised of long range Lévy-flight-like excursions and short range rambling motion,
which changes the direction of succeeding flight. The combination of the long range
excursions and short range rambling is also seen in the dependence of the electron y
coordinate on time in Fig. 16 d). The corresponding particle trajectory in the px, py, pz
momentum space for x(0) = −0.125 and y(0) = 0.125 is presented in Fig. 16 c). What
is remarkable is that during the Lévy-like flights the electron moves almost along the
direction of one of the three waves propagation (compare Figs. 12 and Fig. 16 a) ). This
stage of the particle motion can be described by the particular solution analyzed above
and illustrated in Fig. 14.

Qualitatively different patterns formed by the trajectories of particles interacting with
the field of three 3 s-polarized EM waves are observed in the high intensity and low
frequency limit. These patterns are shown in Fig. 17 a) and in Fig. 17 b) presenting a
close up of the trajectories in the vicinity of the coordinate origin, where the trajectories
in the (x, y) plane of an electron ensemble make a tracery striking the imagination
reminding one of a parquetry or window frost. Either an individual trajectory or their
ensemble appear to be confined in the lower measure sub-domain periodic in the x and
y directions. In Fig. 17 c) the electron trajectory in the px, py, pz momentum space for
x(0) = −0.125 and y(0) = 0.125 demonstrates that the particle energy remains finite.
The electron y coordinate dependence on time for x(0) = −0.001 and y(0) = −0.001
plotted in Fig. 17 c) shows that the particle motion is comprised of relatively long over-
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Figure 16. a) 8 electron trajectories in the (x, y) plane for initial conditions: x(0) and y(0)
are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0.
b) Close up of the trajectories in the vicinity of the coordinate origin. c) Electron trajectory
in the px, py, pz space for x(0) = −0.125 and y(0) = 0.125. d) Electron y coordinate versus
time for x(0) = −0.125 and y(0) = 0.125. The electromagnetic field amplitude is a0 = 756, the
dissipation parameter is εrad = 1.2×10−8, and the normalized critical QED field is aS = 4×105.
The coordinates, time and momentum are measured in the 2πc/ω, 2π/ω and mec units.

leaps interlaced with small-scale oscillations. In Fig. 17 e) we present the corresponding
Poincaŕe sections, i. e. we plot the particle positions in the phase plane (px, py) at discrete
times with the time step equal to the period of the driving force. The Poincaŕe sections,
in this case, indicate that the particle motion is pretty regular. Here the parameters of
the EM field and of the electrons are as follows. The electromagnetic field amplitude
is a0 = 4764 (the amplitude of each colliding waves is equal to 1588), the dissipation
parameter is εrad = 6 × 10−9, and the normalized critical QED field is aS = 8 × 105,
which corresponds to the wave frequency a factor two smaller than in the case shown in
Fig. 16. The integration time equals 200× 2π/ω

5.2.3. Ergodization or not?

The attractor trajectory pattern in Fig. 17 a) and b) is made by an ensemble of
electrons. The single electron trajectory shown in Fig. 18 demonstrates that having been
moving for a long enough time it could cover the whole attractor. In view of this, there
are two questions. The first one being is there an analogy of the ergodic hypothesis
saying that over long periods of time, the time spent in some region of the attractor is
proportional to the attractor measure? The second one being is there an analogy of the
Poincaré recurrence theorem Arnol’d (1989) saying that the particle, after a sufficiently
long but finite time, returns to a point very close to the initial point? A similar question
occurs in the case of the particle random walk on whether the results of well known
random walk theory Kac (1961) can be used in our case.
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Figure 17. a) Ensemble of electron trajectories in the (x, y) plane for initial conditions: x(0) and
y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0.
b) Close up of the trajectories in the vicinity of the coordinate origin. c) Electron trajectory in
the px, py, pz space for x(0) = −0.125 and y(0) = 0.125. d) Electron y coordinate versus time
for x(0) = −0.001 and y(0) = −0.001. e) The Poincaŕe sections: the particle positions in the
phase plane (px, py) at discrete times with the time step equal to the period of the driving force.
The electromagnetic field amplitude is a0 = 4764, the dissipation parameter is εrad = 6× 10−9,
and the normalized critical QED field is aS = 8 × 105. The coordinates, time and momentum
are measured in the 2πc/ω, 2π/ω and mec units. The integration time equals 200× 2π/ω.

Figure 18. Trajectory of the electron migrating over a long time in the (x, y) plane.
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Figure 19. a) Ensemble of electron trajectories in the (x, y) plane for initial conditions: x(0) and
y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. b)
Electron trajectories in the (px, py) plane. c) The Poincaŕe sections: the particle positions in the
phase plane (px, py) at discrete times with the time step equal to the period of the driving force.
The electromagnetic field amplitude is a0 = 1383, the dissipation parameter is εrad = 1.2×10−6,
and the normalized critical QED field is aS = 4.1× 105. d) Ensemble of electron trajectories in
the (x, y) plane for initial conditions: x(0) and y(0) are in the vicinity of the coordinate origin,
and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. e) Electron trajectories in the (px, py) plane. f)
The Poincaŕe sections: the particle positions in the phase plane (px, py) at discrete times with
the time step equal to the period of the driving force. The electromagnetic field amplitude is
a0 = 7.2× 103, the dissipation parameter is εrad = 1.2× 10−8, and the normalized critical QED
field is aS = 4.1× 105.

5.3. Electron interaction with three p-polarized EM waves

In the case of three p-polarized EM waves the EM configuration is described by Eqs.
(5.1), (5.2), (5.3). As in the s-polarization case, in the limit of relatively low EM wave
intensity the electron performs the random walk motion comprised of short scale-length
oscillations interleaved by long scale-length Lévy-like flights. An example of such the
trajectory is shown in Fig. 19 a) for the EM field amplitude of a0 = 4764, the dissipation
parameter of εrad = 6 × 10−9, and the normalized critical QED field of aS = 8 × 105.
For the high intensity EM wave case the electrons migrate along the paths confined in
narrow valleys as can be seen in Fig. 19 b), where the ensemble of the electron trajectories
is plotted for the EM field amplitude of 7.2 × 103, the dissipation parameter of εrad =
1.2× 10−8, and the normalized critical QED field of aS = 4.1× 105.

6. Electron dynamics in four s- and p-polarized colliding EM pulses

The orientation of four colliding waves is illustrated in Fig. 20. Fig. 21 a) shows
magnetic (electric) field and b) isocontours of the electric (magnetic) field in the (x, y)
plane at time t = π/4 of four s-polarized (p-polarized) colliding EM waves.
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Figure 20. Wave vectors of four colliding EM waves.

Figure 21. Four s-polarized (p-polarized) EM waves: a) magnetic (electric) field; b)
isocontours of the electric (magnetic) field in the (x, y) plane at time t = π/4.

6.1. S-polarized 4 colliding EM waves

6.2. EM field configuration

In the EM configuration of four colliding s(p)-polarized waves the z-components of the
electric (magnetic) field can be written(
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respectively.

6.2.1. Particular solutions

As in the above considered case of three s-polarized EM waves the equations of electron
motion admit particular solutions, in the first of which the particle moves either along
one of the axis, i.e. x = ncπ/ω or y = ncπ/ω with n = 0,±1,±2, ..., and in the second
it moves along straight lines x = ±y + ncπ/ω.

First type solution. For the first class of particular solutions with x = ncπ/ω
(without loss of generality we may take n = 0, i. e. consider x = 0), formally the
particle moves in a superposition of the fields of two counter-propagating s-polarized
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EM waves and a homogeneous oscillating electric field directed along the z axis. As in
the above considered cases of two and three colliding EM waves, in the limit of weak
nonlinearity and dissipation (εrad = 1.2× 10−9, aS = 4× 106, a = 94, ω = 0.1, for initial
conditions: y(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); y(0) = 0.23, z(0) =
0, px(0) = 0, pz(0) = 0 (blue,-2); y(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3))
the particle motion can be described as a random walk, for which the trajectories consist
of the relatively small amplitude fast oscillating parts and of the long scale length Lévy
flights (see Fig. 22 a) and b)). The Poincaŕe sections, the particle positions in the phase
plane (py, pz) at discrete times with the time step equal to the period of the driving
force, presented in Fig. 22 c) show that the electron motion is stochastic.

In the case of lower frequency, ω = 0.02, and higher dimensionless EM field amplitude
a = 8 × 103, when εrad = 2.4 × 10−10, aS = 2 × 107, a0 = 8 × 103, ω = 0.02, the
electron trajectories in the the (y, z) plane (see Fig. 22 d)) show that the particles
are trapped within narrow regions moving along regular limit circles (Fig. 22 e)). The
attractor geometry is distinctly seen in Fig. 22 f), where the trajectories in the (y, py, pz)
space are presented. As well seen, after a relatively short initial time interval the particles
are trapped into stable limit circles performing periodic motion. We note that for the
parameters chosen although the particle energy is ultrarelativistic the value of χe remains
below unity, i.e. the QED effect of the recoil is not significant.

Second type solution. The particle behavior under the conditions corresponding to
the second class of particular solutions of the equations of motion (x = y) is illustrated
in Figs. 23 and 24. Here the coordinate s(t) is equal to s = x = y.

In Fig. 23 we present electron trajectories in the case corresponding to the motion
along the x = y direction in the field of four colliding EM waves for εrad = 1.2 × 10−8,
aS = 4 × 105, a0 = 44, ω = 1 for initial conditions: x(0) = 0.01, z(0) = 0, px(0) =
0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0 (blue,-2); x(0) =
0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). Fig. 23 a) shows electron trajectories in
the (s, z) plane, which demonstrate random walks with intermittent short scale length
oscillations and long range Lévy flights. The same behavior is distinctly seen in Fig.
23 b) with three dependences of the s coordinates on time. Stochastic character of the
particle motion is demonstrated in Figs. 23 b) and f) by the behavior of trajectories in
the (s, ps, pz) space and by the particle positions in the phase plane (ps, pz) at discrete
times with the time step equal to the period of the driving force, respectively. According
to Fig. 23 d), where the particle Lorentz factor γ is plotted versus time, the normalized
electron energy is of the order of the dimensionless EM field amplitude, i. e. γ ≈ a0.
From the dependence of the parameter χ on time in Fig. 23 e) it follows that, in this
case, the QED effect of the recoil is not significant.

The electron interaction with four colliding EM waves in the case of the second type
particular solution corresponding to the motion along the x = y direction is illustrated
in Fig. 24 for εrad = 1.2 × 10−8, aS = 4 × 105, a0 = 874, ω = 1 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) =
0, pz(0) = 0 (blue,-2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). The
particle independently of the initial conditions becomes trapped by a strange attractor
performing stochastic motion. Frame Fig. 24 a) shows trajectories in the (s, z) plane. As
we see the electrons become trapped in the region of the ponderomotive force minimum.
From Figs. 25 b) and c) with dependences of the s coordinates on time and with the
trajectories in the (s, ps , pz) space it follows that the trapped particle motion with all the
three initial conditions is irregular. As we may see in Fig. 24 d), where the Lorentz factor
γ versus time for x(0) = 0.23 is presented, the normalized particle energy is of the order
of the dimensionless EM wave amplitude. The QED parameter χe, whose dependence on
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Figure 22. Electron trajectories in the case of the first type particular solution corresponding
to the motion along the y axis (at x = 0) in the field of four colliding EM waves
for εrad = 1.2 × 10−9, aS = 4 × 106, a = 94, ω = 0.1 for initial conditions:
y(0) = 0.01, z(0) = 0, py(0) = 0, pz(0) = 0 (red,-1); y(0) = 0.23, z(0) = 0, py(0) = 0, pz(0) = 0
(blue,-2); y(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). a) Trajectories in the (y, z)
plane. b) Dependences of the y coordinates on time. c) The Poincaŕe sections: the particle
positions in the phase plane (py, pz) at discrete times with the time step equal to the period
of the driving force. For lower frequency, ω = 0.02, when εrad = 2.4 × 10−10, aS = 2 × 107,
a0 = 8 × 103, they are shown d) trajectories in the (y, z) plane, e) dependences of the y
coordinates on time, and f) trajectories in the (y, py, pz) space for the same initial conditions as
in the frames a,b,c).

time for x(0) = 0.23 is shown in Fig. 24 e) is lower than unity, i. e. the QED effect of
the recoil is weak. The Poincaŕe sections are shown in Fig. 24 e): the particle positions
in the phase plane (ps, pz) at discrete times with the time step equal to the period of
the driving force for x(0) = 0.01. As we see, the particle motion is stochastic.

Electron interaction with four colliding EM waves in the case of the second type
particular solution corresponding to the motion along the x = y direction is illustrated
in Fig. 25 for εrad = 3× 10−9, aS = 1.6× 106, a0 = 3466, ω = 0.25 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) =
0, pz(0) = 0 (blue,-2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). In this
case the EM wave frequency is lower than in the above discussed case and the EM wave
amplitude is higher. As a result the particle is trapped performing either regular or
stochastic motion. Frame Fig. 25 a) shows trajectories in the (s, z) plane. As we see
depending on the initial conditions the electron becomes trapped either in the region of
the ponderomotive force maximum or in the region of its minimum. From Figs. 25 b)
and c) with dependences of the s coordinates on time and with the trajectories in the
(s, ps , pz) space it follows that the trapped particle motion with the initial conditions
x(0) = 0.01 and x(0) = 0.45 along the limit circles is regular. As one can see in Fig. 25
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Figure 23. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad = 1.2 × 10−8, aS = 4 × 105, a0 = 44, ω = 1 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0
(blue,-2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). a) Trajectories in the (s, z)
plane. b) Dependences of the s coordinates on time. c) Trajectories in the (s, ps, pz) space. d)
The particle Lorentz factor γ versus time. e) Parameter χ versus time. f) The Poincaŕe sections:
the particle positions in the phase plane (ps, pz) at discrete times with the time step equal to
the period of the driving force.

d), where the Lorentz factor γ versus time for x(0) = 0.23 is presented, the normalized
particle energy is substantially lower than the dimensionless EM wave amplitude. The
QED parameter χe, whose dependence on time for x(0) = 0.23 is shown Fig. 25 e)
is significantly lower than unity, i. e. the QED effect of the recoil is negligibly weak.
The Poincaŕe sections are shown in Fig. 25 e): the particle positions in the phase plane
(ps, pz) at discrete times with the time step equal to the period of the driving force for
x(0) = 0.23. As we see, the particle motion along the trajectories of the attractor plotted
in the inset in Fig. 25 c) with the close-up of trajectories in the (s, ps , pz) for x(0) = 0.23
is stochastic.

6.2.2. General case

The results of integration of the motion equations for the electron interacting with four
s-polarized EM waves in the limit of relatively low radiation intensity are presented in
Fig. 26. Fig. 26 a) shows 11 electron trajectories in the (x, y) plane for initial conditions
as follows. The initial coordinates x(0) and y(0) are chosen to be in the vicinity of the
coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. In Fig. 26 b) we show
a close up of the trajectories in the vicinity of the coordinate origin superimposed with
the isocontours of the electromagnetic potential averaged over a half period of the field
oscillations. It is proportional to the ponderomotive potential in the high field amplitude
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Figure 24. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad = 1.2 × 10−8, aS = 4 × 105, a0 = 874, ω = 1 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0
(blue,-2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). a) Trajectories in the (s, z)
plane. b) Dependences of the s coordinates on time. c) Trajectories in the (s, ps , pz) space. d)
Lorentz factor γ versus time for x(0) = 0.45. e) Parameter χe versus time for x(0) = 0.45. f)
The Poincaŕe sections: the particle positions in the phase plane (ps, pz) at discrete times with
the time step equal to the period of the driving force for x(0) = 0.01.

limit, a0 � 1. As we see, the typical trajectories are comprised of long range Lévy-flight-
like excursions and of short range rambling motion, which changes the direction of the
succeeding flight. Corresponding particle trajectory in the (px, py, pz) momentum space
for x(0) = −0.125 and y(0) = 0.125 is presented Fig. 26 c). According to the dependence
of the parameter χe on time plotted in Fig. 26 d) the QED recoil effects are weak under
the conditions of consideration. The Poincaŕe sections, the particle positions in the phase
plane (px, py) at discrete times with the time step equal to the period of the driving force,
in Fig. 26 e), show that the particle motion is stochastic.

Fig. 27 illustrates the particle dynamics in the EM field formed by four s-polarized
EM waves for the radiation intensity higher than that intensity which corresponds to
the interaction regime shown in Fig. 26. Here the electromagnetic field amplitude is a0 =
2823, the dissipation parameter is εrad = 1.2×10−9, the normalized critical QED field is
aS = 4×106, and the EM field frequency equals ω0 = 0.1. From Fig. 27 a) and b) it follows
that the the typical trajectories form a pretty regular pattern in the (x, y) plane. They are
comprised of long range Lévy-flight-like excursions and of short range rambling motion,
which changes the direction of the succeeding flight. The combination of the long range
excursions and short range rambling is also seen in the behavior of the electron trajectory
in the (x, y, z) space presented in Fig. 27 d). The corresponding particle trajectory in the
(px, py, pz) momentum space for x(0) = −0.125 and y(0) = 0.125 is presented in Fig. 27
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Figure 25. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad = 3 × 10−9, aS = 1.6 × 106, a0 = 3466, ω = 0.25 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red,-1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0
(blue,-2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green,-3). a) Trajectories in the (s, z)
plane. b) Dependences of the s coordinates on time. c) Trajectories in the (s, ps , pz) space. The
inset shows a close-up of trajectories in the (s, ps , pz) for x(0) = 0.23. d) Lorentz factor γ versus
time for x(0) = 0.23. e) Parameter χe versus time for x(0) = 0.23. f) The Poincaŕe sections: the
particle positions in the phase plane (ps, pz) at discrete times with the time step equal to the
period of the driving force for x(0) = 0.23.

c). What is remarkable is that during the Lévy like flights the electron moves almost
along the electric node region, i.e. performing the motion described by the second type
particular solution discussed above (see Figs. 24). The particle normalized energy changes
from 200 to approximately 1200. The value of the QED dimensionless parameter χe (not
shown here) is less than unity. The Poincaŕe sections (also not shown here) are similar
to those sections which are presented in Fig. 26 e) indicating stochasticity in the electron
dynamics.

Further increasing the EM field intensity and/or decreasing the field frequency lead
to an intriguing change in the trajectory pattern (see Fig. 28, where an ensemble of the
electron trajectories in the (x, y) plane is presented). The results presented in Figs. 28
and 29 have been obtained for the electromagnetic field amplitude of a0 = 11856, for
the dissipation parameter of εrad = 6 × 10−10, for the normalized critical QED field
of aS = 8 × 106, and for the EM field frequency equal to ω0 = 0.05. The trajectory
topology can be subdivided into two classes depending on the particle initial conditions.
If the particle is initially close to the bottom of the ponderomotive potential, i.e. close
to the lines x = ±y = πn, n = ... ,−2,−1, 0, 1, 2, ... in the (x, y) plane, it remains there.
The particle trajectory, in this case, is similar to those shown in Figs. 27 a) and b). The
second class trajectories are realized for the initial particle positions in the vicinity of the



32 S. V. Bulanov, T. Zh. Esirkepov, J. K. Koga, et al.

Figure 26. a) 11 electron trajectories in the (x, y) plane for initial conditions: x(0) and y(0)
are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0.
b) Close up of the trajectories in the region (−7.5 < x < 7.5;−7.5 < y < 7.5). c) Trajectory
in the (px, py , pz) space. d) Parameter χe versus time. e) The Poincaŕe sections: the particle
positions in the phase plane (px, py) at discrete times with the time step equal to the period of
the driving force. The electromagnetic field amplitude is a0 = 218, the dissipation parameter is
εrad = 1.2×10−8, the normalized critical QED field is aS = 4×105, and the EM field frequency
equals ω0 = 1.

ponderomotive potential maximum, where the magnetic field of the colliding EM waves
vanishes. The second class trajectories are trapped within one of the sectors, 0 < θ < π/4,
π/4 < θ < π/2, etc. Oscillating along the radial direction they drift relatively slowly
towards the lines either x = 0 or y = 0. In both the cases of the first and second topology
classes the particles move also along the z axis as seen from the results presented in Fig.
29. The first class particle dynamics is stochastic: the trajectory in the (px, py, pz) space
plotted in Fig. 29 d) corresponds to a strange attractor while Fig. 29 b) shows that the
second class dynamics is regular.

6.3. Electron interaction with four p-polarized EM waves

In the case of four p-polarized colliding laser pulses the EM configuration is described
by Eqs. (6.1), (6.2), (6.3). As in the s-polarization case, in the limit of relatively low EM
wave intensity the electron performs the random walk motion comprised of short scale-
length oscillations interleaved by long scale excursions. An example of such trajectories is
shown in Fig. 30 a) for the EM field amplitude a0 = 1.6× 103, the dissipation parameter
equal to εrad = 1.2 × 10−8, and the normalized critical QED field of aS = 4.12 × 105.
The curve marked by red color and the number “1” corresponds to the initial coordinates
x(0) = 0.001 and y(0) = 0.01. Fig. 30 b) presents a close-up of trajectory (1) the (x, y)
plane overlaid with the isocontours of the EM field ponderomotive potential. Electron
oscillations in the (px, py) plane (Fig. 30 c)) and dependence of the y coordinate on time
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Figure 27. a) 11 electron trajectories in the (x, y) plane for initial conditions: x(0) and y(0)
are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. b)
Close up of the trajectories in the region (−10 < x < 10;−20 < y < 0) superimposed with the
isocontours if the electromagnetic potential averaged over a half period of the field oscillations.
c) Trajectory in the (px, py , pz) space. d) Trajectory in the (x, y , z) space. The electromagnetic
field amplitude is a0 = 2823, the dissipation parameter is εrad = 1.2 × 10−9, the normalized
critical QED field is aS = 4× 106, and the EM field frequency equals ω0 = 0.1.

Figure 28. Ensemble of the electron trajectories in the (x, y) plane. The particles with the initial
coordinates in the region close to the B = 0 point are trapped inside the sectors, where their
trajectories asymptotically approach the lines x = 0 or y = 0. For the initial coordinates close
to the bottoms of the ponderomotive potential valleys, x = ±y = πn, n = ... ,−2,−1, 0, 1, 2, ...
the particles move along the trajectories which are similar to those shown in Figs. 27 a) and
b). The EM field amplitude is a0 = 11856, the dissipation parameter is εrad = 6 × 10−10, the
normalized critical QED field is aS = 8× 106, and the EM field frequency equals ω0 = 0.05.
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Figure 29. a) Electron trajectory in the (x, y, z) space and b) trajectory in the (px, py, pz) space
for the second class topology. c) Electron trajectory in the (x, y, z) space and d) trajectory
in the (px, py, pz) space for the first class topology. The electromagnetic field parameters are
the same as in Fig.28.

plotted in Fig. 30 d) demonstrate that the particle motion is irregular. The stochastic
character of the particle dynamics is also distinctly seen in the Poincaŕe sections in the
plane (px, py), which is presented in Fig. 30 d).

For ten times higher EM field amplitude, when a0 = 1.6 × 104, the particle motion
becomes regular as seen in Fig. 31. In the (x, y) plane the electron performs long
range Lévy-like-flights along the lines x = ±y + ±πn, which end up in the localized
attractors, where the particle oscillates pretty regularly (see Figs. 31 a) and b)) . This
electron behavior is well seen in Figs. 31 c) – e) presenting the electron trajectory in the
(px, py) plane, the time dependence of the y coordinate and the Poincaŕe mapping in the
momentum plane (px, py), respectively. Broadening of the trajectories in the Poincaŕe
mapping Figs. 31 e) also indicates stochastic properties present in the particle motion.

Further ten times increase of the EM field amplitude, a0 = 1.6 × 105, results in the
particle trapping within narrow stripes localized at the bottoms of the ponderomotive
potential (Figs. 32 a) and b)). A combination of regular and stochastic aspects of the
particle dynamics in this case too is seen from the behavior of the electron trajectory in
the (px, py) plane (Figs. 32 c) ), from the time dependence of the y coordinate (Figs. 32
d) ), and from the broadening of the trajectories in the Poincaŕe mapping (Figs. 32 d) ).

7. Conclusions

As is well known, the multiple colliding laser pulse concept Bulanov et al. (2010b) is
beneficial for achieving extremely high amplitude of coherent electromagnetic field (see
also Refs. Bulanov et al. (2010a); Gonoskov et al. (2012, 2013); Gelfer et al. (2015)).
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Figure 30. Electron interaction with 4 colliding p-polarized EM waves in the low intensity limit
for the electromagnetic field amplitude equal to a0 = 1.6× 103, the dissipation parameter equal
to εrad = 1.2× 10−8, and the normalized critical QED field of aS = 4.12× 105. a) Ensemble of
electron trajectories in the (x, y) plane. Red color (1) curve corresponds to x(0) = 0.001 and
y(0) = 0.01. b) Close-up of trajectory (1) the (x, y) plane overlaid with the isocontours of the
EM field ponderomotive potential. c) Electron trajectory in the (px, py) plane. d) Coordinate
y versus time t. e) The Poincaŕe sections: the particle positions in the phase plane (px, py) at
discrete times with the time step equal to the period of the driving force.

The complexity of the topology of the time-dependent EM field of colliding laser pulses
results in the high complexity of the trajectories of charged particles interacting with
these fields. In the high field limit, when the radiation friction effects become significant,
the charged particle behavior demonstrates remarkable features corresponding to random
walk trajectories, Lévy flights, limit circles, attractors, and regular patterns.

In contrast to the standard theory of Lévy flights, which can be found in Ref. Lévy
(1954); Metzler & Klafter (2000); Zaslavsky (2002); Metzler et al. (2007), in the case
under consideration in the present paper, the Lévy-like flights occur along the directions
determined by the landscape of the ponderomotive potential determined in its turn by the
geometry of the EM field of the colliding waves. Typically the particle performs short
space scale (high frequency) oscillations intermittent with the long range leaps. This
oscillation frequency appears to be significantly higher than the frequency of the driver
EM wave due to the nonlinearity of the radiation friction force (see also discussion in
Refs. Esirkepov et al. (2015); Jirka et al. (2016)). The length of the long range flight can
be found from consideration of the charged particle momentum losses due to radiation
friction as in Ref. Bulanov et al. (2011a).

Under certain conditions (in the high intensity and/or low frequency limit) the non-
linear dissipation mechanism stabilizes the particle motion causing the particle trapping
within a narrow region located near the electric field maximum. In high intensity limit
the particle can be trapped in the vicinity of the EM field ponderomotive potential
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Figure 31. The same as in Fig. 30 for a0 = 1.6× 104.

Figure 32. The same as in Fig. 30 for a0 = 1.6× 105.
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performing regular motion there. The particle trajectory makes regular patterns shown
in Figs. 17 and 28.

We have proposed the underlying physical mechanism of the radiating charge particle
trapping in the regions of the electric field maximum. As elucidated within the framework
of the simple model formulated in the present paper the particle trapping is explained
by the friction drag originating from the nonlinear dependence of the radiation friction
on the EM field.

The attractor trajectory patterns in Figs. 17, 19 and 27 are made by an ensemble of
electrons. The single electron trajectory shown in Fig. 18 demonstrates that having been
moving for a long enough time it could cover the whole attractor. In view of this, there are
two questions. The first one being is there an analogy of the ergodic hypothesis saying that
over long periods of time, the time spent in some region of the attractor is proportional
to the attractor measure? The second one being is there an analogy of the Poincaré
recurrence theorem (Arnol’d (1989)) saying that the particle, after a sufficiently long but
finite time, returns to a point very close to the initial point? A similar question occurs in
the case of the particle random walk on whether the results of the well known random
walk theory (see Kac (1961)) can be used in our case. Since finding the answers to these
questions requires additional thorough consideration, we leave this to the forthcoming
publications.

One of the most important findings of the present work is a revealing of a new
class of regular distributions made by ensembles of the particle trajectories. They are
structurally determinate patterns, as if made by tiles, formed in the high field amplitude
limit when the radiation friction force drastically modifies the charged particle dynamics
in the electromagnetic field as can be distinctly seen in Figs. 18, 20, 27, and 28. As
for the possible practical implications of these findings, these “crystal-like” patterns are
expected to be seen in the spatial distribution of the gamma-rays emitted by the electrons
irradiated by the multiple high power laser pulses, which has been noticed in Refs. Vranic
et al. (2017) and Gong et al. (2016b).
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