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Flavor Aversion Learning Based on Running: A Review 
 
 

Sadahiko Nakajima 

 
Department of Psychological Science, Kwansei Gakuin University, Japan 

 
 
Wheel running establishes aversion in rats to a flavored solution consumed shortly before the running. Many studies have shown that this is a 
case of Pavlovian conditioning, in which the flavor and running respectively act as the conditioned stimulus (CS) and the unconditioned stimulus 
(US). The present article introduces some procedural variables of this running-based flavor aversion learning (FAL), including subjects, CS 
agents, US agents, and drive operations. This article also summarizes various behavioral features of Pavlovian conditioning demonstrated in 
running-based FAL, including the law of contiguity despite long-delay learning, extinction, spontaneous recovery, CS-preexposure effect, remote 
and proximal US-preexposure effects, degraded contingency effect, inhibitory learning by backward conditioning, stimulus overshadowing, 
associative blocking, and higher-order contextual control. Also reviewed are several hypotheses proposed for the underlying 
psychophysiological causes of running-based FAL (i.e., activation of mesolimbic dopamine system, gastrointestinal discomfort, motion sickness, 
energy expenditure, general stress, and anticipatory contrast). At the end of the article, we visit the question of most general interest about 
running-based FAL: why the pleasurable activity of voluntary running yields aversive learning in rats. 
 
Keywords: conditioned taste aversion, rats, running, swimming 
 

Wheel running seems pleasurable for many species of rodents, including laboratory rats and mice. They not 
only voluntarily run in activity wheels (see Novak et al., 2012; Richter et al., 2014; Sherwin, 1998, for reviews) but 
also emit operant behavior (e.g., bar pressing) in order to run in the wheels (e.g., Belke, 1997; Belke & Garland, 2007; 
Collier & Hirsh, 1971; Iversen, 1993; Kagan & Berkun, 1954). Access to a wheel also serves as a reward for maze 
performance (Livesey et al., 1972). Rats running in the wheels (or approaching the wheels) make 50-kHz ultrasonic 
chirps (Heyse et al., 2015), which is an expression of joyful emotions (Panksepp, 2007). Activity wheels are 
frequently introduced to rodent cages for environmental enrichment, and their salubrious effects are well documented 
(e.g., Brandão & Mayer, 2011; Goodrick, 1980; Maniam & Morris, 2010; Olson et al., 2006; Van Praag et al., 2000). 
These findings are consistent with the general view that wheel running is pleasurable and beneficial for rats and mice. 
However, it also works as an agent to establish conditioned flavor aversion. 

 
In 1996, Bow Tong Lett and Virginia Grant discovered that rats gradually learn to avoid a flavored solution 

consumed before voluntary running in activity wheels, indicating an apparently aversive nature of wheel running (Lett 
& Grant, 1996). This somewhat counterintuitive finding has been successfully replicated not only in their laboratory 
(e.g., Lett et al., 1998, 2001; Sparkes et al., 2003) but also in other research labs (e.g., Heth et al., 2001; Nakajima et 
al., 2000). These studies differ in procedural details (e.g., rat strains, flavors, characteristics of running activity, and 
deprivation levels), indicating the robustness and generality of the phenomenon. Because a positive correlation of a 
target flavor and running is necessary for this learning phenomenon, we can regard it as Pavlovian conditioning with 
the target flavor as the conditioned stimulus (CS) and wheel running as the unconditioned stimulus (US). In other 
words, as in conventional flavor aversion learning (FAL) based on poisonous drugs such as lithium chloride (LiCl), 
running-based FAL has been discussed in the framework of Pavlovian conditioned flavor aversion. 

 
Figure 1 gives an example of running-based FAL of mildly water-deprived rats in an unpublished study 

conducted in my laboratory. Daily training began with a 15-min access to either a strawberry- or a melon-flavored 
solution, which was prepared daily by mixing 24 g artificial fruit juice powder (Matsuyama Confectionery, Nagoya, 
Japan) and 1 L tap water. The sequence of the two solutions employed over 20 days of training was 
SMSMSMSMMSSMSMSMSMMS (S = strawberry, M = melon) for all 16 rats used as subjects in the study. The 
target solution (CS+) was strawberry-flavored and the nontarget solution (CS−) was melon-flavored for 8 rats, while 
the combinations were reversed for the remaining 8 rats. Immediately after drinking the target solution, the rats were 
confined to individual activity wheels, where they remained for 30 min of voluntary running. On the nontarget days, 
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the rats were directly returned to the home cages after the drinking period. We see successful differential conditioning 
in Figure 1, implying that a positive taste–running correlation is necessary for establishing flavor aversion. 
 
Figure 1  
 
Mean Consumption of Target (CS+) and Nontarget (CS−) Solutions in Differential Conditioning of Rats (n = 16) 

 
 
Note: The data were shown in 10 blocks of 2 training days, consisting of 1 day each for target and nontarget intakes. The bars indicate standard 
errors. Only the target intake was followed by wheel running. The rats were male Wistar and 12 weeks old when they entered the study. Tap 
water was available for 10 min in the home cages 3 hours before each daily session. Unpublished data. 
 
 

Methodologies 
 
As mentioned above, running-based FAL has been demonstrated in multiple laboratories with various 

procedures. Herein, I summarize some procedural variables used in these studies. 
 
Subjects 
 
 Running-based FAL has been demonstrated in many strains of rats. Sprague-Dawley rats were employed by 
Lett and Grant (1996; see also, e.g., Lett et al., 1998, 2001; Sparkes et al., 2003), while Wistar rats have been 
conventionally used in my laboratory (e.g., Hayashi et al., 2002; Nakajima et al., 2000). In another laboratory, the 
major subjects were JCR:LA-cp rats (e.g., Heth et al., 2001; Salvy, Heth, et al., 2004), a strain developed for the study 
of metabolic syndrome. Some studies have used two strains: Wistar and hooded Wistar rats (Baysari & Boakes, 2004), 
and Wistar and Lister rats (Dwyer et al., 2008). However, these studies did not investigate the strain differences. 
Notably, there are several reports on rats' strain differences in conventional, drug-based FAL (see Cunningham et al., 
2009, for a review). Nakajima (2014b) compared the performances of Sprague-Dawley, Wistar, Long-Evans, Lewis, 
and Fischer rats using sweet (saccharin) and salty (NaCl+MSG) solutions as CSs. No reliable strain differences were 
obtained in terms of the strength of running-based flavor aversion despite wide variations in their body sizes and 
running activities. 
 
 Running-based FAL has also been demonstrated in humans (Havermans et al., 2009) with flavored syrup CSs 
and a treadmill-running US. A demonstration of running-based FAL in golden hamsters was reported in a conference 
article (Masaki, 2009), but attempts to reproduce the effect in my laboratory have been met with very limited success. 
Further exploration is needed to establish the standard procedures to obtain a reliable effect in hamsters. 
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After several failures to obtain a reliable effect in mice, we successfully demonstrated it (Nakajima & Oi, 
2018): Water-deprived mice were given a 15-min access to 0.2% saccharin solution in the drinking chambers followed 
by a 30-min confinement in the wheels (Group Run, n = 4) or by a 30-min stay in the drinking chambers (Group No-
Run, n = 4). After a 4-day training period, the saccharin solution and tap water were presented concurrently for 15 min 
to test the saccharin preference. Figure 2 summarizes the results of 2 test days. Saccharin avoidance in Group Run 
compared with Group No-Run is evident in the absolute intakes (the left panel) as well as in the saccharin preference 
ratio (the right panel), which was calculated by dividing the intake of saccharin solution by the combined intake of the 
saccharin solution and tap water. Group Run showed saccharin avoidance, while Group No-Run showed saccharin 
preference. Although this study did not control nonassociative factors, subsequent studies (Nakajima, 2019b, 2019c) 
controlled them and expanded the generality to solid CSs (cheese, chocolates, marshmallows, and raisins). 
 
 
Figure 2  
 
Choice Test Performance of Two Groups of Mice (each n = 4) after the Training Phase 

 
 
Note. Left panel: Mean fluid consumptions. Right panel: Mean saccharin preference ratios. Half of the mice (Group Run) had been trained with 
saccharin-running trials, while the others (Group No-Run) had been directly returned to the home cages after the saccharin intake. The bars 
indicate standard errors. The mice were male ICR and 9 weeks old when they entered the study. Tap water was available for 15 min in the home 
cages after each training or test session. Adapted from Nakajima and Oi (2018). 
 
 
CS Agents 
 
 The earliest studies on running-based FAL (Lett et al., 1998; Lett & Grant, 1996) employed complex flavor 
solutions as the target and control stimuli: a cocktail of sodium chloride (NaCl) and monosodium glutamate (MSG) 
and a cocktail of citric acid and saccharin. In later studies, however, much simpler flavored solutions, such as NaCl 
and saccharin solutions without added solutes were conventionally used (e.g., Hayashi et al., 2002; Nakajima et al., 
2000). Some studies used solid CSs, such as flavored food pellets (Aoyama, 2007), dog biscuits (Sparkes et al., 2003), 
and cheese and raisins (Nakajima, 2019a). 
 
 It is notable that the word “flavor” includes not only gustatory sensation (i.e., taste) but also olfactory 
sensation (i.e., odor) and somatosensation (i.e., texture and temperature). As in poison-based FAL studies, a majority 
of research on running-based FAL does not explicitly distinguish these sensory components of the flavors, but we 
implicitly expect the primary cue to be gustatory in many cases especially when the target flavor provides little 
olfactory and somatosensory cues (e.g., saccharin solution at room temperature). Gustatory and olfactory cues were 
equally effective in the aforementioned human study (Havermans et al., 2009), but this issue has not been tested in 
rats. 
  
 Voluntary wheel running establishes aversion not only to a paired flavor but also to a paired chamber, if rats 
are confined to the chamber immediately before the running (Masaki & Nakajima, 2008). In this study, the two 
adjacent chambers used were visually and textually unique: One had horizontally-striped walls and a stainless wire 
mesh floor, while the other had vertically-striped walls and a perforated aluminum floor. Differential conditioning was 
executed for 8 days with the physical identities of the target chamber (CS+) and the nontarget chamber (CS−) being 



 
4 

 

counterbalanced across subjects. In the post-training choice test, the rats avoided the target chamber and stayed in the 
nontarget chamber, implying that running established aversion to the visual and/or textual cues of the running-paired 
chamber. 
 
 Despite this finding, as in radiation- or drug-based aversion learning (Garcia et al., 1968; Miller & Domjan, 
1981), flavor cues are more dominant than visual cues in running-based aversion learning. Figure 3 provides an 
example (Nakajima, 2008b). Water-deprived rats (n = 16) were given flavored solutions (F1 and F2: 0.2% saccharin 
and 0.3% NaCl, counterbalanced) in colored nozzles (V1 and V2: black and white, counterbalanced) for 12 days. Daily 
training began with a 15-min access to either an F1V1 or an F2V2 bottle (6 days each, intermixed). On the F1V1 days, 
the rats were allowed to run for 15 min immediately after drinking from the bottle. On the F2V2 days, the rats were 
directly returned to the home cages after the drinking period. This 12-day differential compound conditioning was 
followed by a 2-day element test, in which the rats chose between F1 and F2 (flavor-cue testing with neutral silver-
colored nozzles) and between V1 and V2 (visual-cue testing with neutral tap water). As shown in Figure 3, the rats 
avoided F1 compared to F2, suggesting conditioned flavor aversion, while the consumption from the V1 and V2 bottles 
was equivalent, implying no conditioned color aversion. 
 
 
Figure 3  
 
Mean Fluid Consumption of Rats (n = 16) in the Element Test Executed after Differential Compound Conditioning 
 

 
 
Note. The rats had been trained in 6 blocks of 2 training days, consisting of 1 day each for the F1V1 compound followed by running and the F2V2 
compound followed by non-running. In the element test, the rats chose between F1 and F2 (flavor cue testing), and between V1 and V2 (visual cue 
testing). The bars indicate standard errors. The rats were male Wistar and 8 weeks old when they entered the study. Tap water was available for 
15 min in the home cages after each training or test session. Adapted from Nakajima (2008b). 
 
 
US Agents 
 
 Many studies on running-based FAL employed closed and freely moving activity wheels for creating flavor 
aversion in the rats. Confinement in the locked wheels had no effect (Hayashi et al., 2002; Heth et al., 2001). An 
example is depicted in Figure 4 (Nakajima, 2014a). Mildly-water-deprived rats (n = 7) were given a 15-min access to 
a melon-flavored solution. Immediately after the drinking period, 4 rats were confined to locked wheels for 30 min, 
while the remaining 3 rats were in unlocked wheels for the same period. Only the latter rats acquired aversion to the 
target flavor as illustrated in the conditioning performance and in the post-training choice test performance. 
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Figure 4  
 
Mean Fluid Consumption of the Rats Confined to the Locked (n = 4) or Unlocked (n = 3) Wheels after Consumption 
of the Flavored Solution  

 
 
Note. Left panel: Performance of the two groups of rats in the conditioning phase. Right panel: Two-choice test data. The bars indicate standard 
errors. The rats were male Wistar and 9–10 weeks old when they entered the study. Tap water was available for 15 min in the home cages 3 
hours before each training session. Adapted from Nakajima (2014a). 
 
  

The degree of running-based flavor aversion is a positive function of the length of time (duration) that rats are 
confined to unlocked wheels. This claim comes from the results of Hayashi et al. (2002) who compared multi-trial 
FAL based on 5-, 15-, and 30-min running opportunities and of Masaki and Nakajima (2006) who assessed one-trial 
FAL based on 15-, 30-, 60-, and 120-min running opportunities (see the second section of Figure 5). 

 
 
Figure 5  
 
Mean Saccharin Preference Ratios of 12 Groups of Rats (Each n = 8) Calculated from the Choice Test after a Single 
Conditioning Trial  

 
 
 
Note. Swim-5, Swim-15, Swim-30, and Swim-60 = forced swimming for 5, 15, 30, and 60 min, respectively. Run-15, Run-30, 
Run-60, and Run-120 = voluntary running for 15, 30, 60, and 120 min, respectively, in closed wheels. F. Run = forced running for 
60 min, O. Run = voluntary running for 120 min in open wheels. LiCl = an injection of 0.15 M LiCl at 2% bodyweight. Control = 
directly retuning to the home cages. The bars indicate standard errors. The rats were male Wistar and 9–10 weeks old when they 
entered the study. Tap water was available for 60 min in the home cages 3 hr after the session. Adapted from Masaki and 
Nakajima (2006). 
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Flavor aversion can be established not only by voluntary running in an unlocked closed wheel, but also by 
forced running in a motor-driven closed wheel (Eccles et al., 2005; Forristall et al., 2007; Masaki & Nakajima, 2006). 
Although the comparison of Groups Run-60 and F. Run in Figure 5 gives an impression that forced running appears 
slightly more effective than voluntary running, the distance travelled by the forced running rats (Group F.Run) was 
twice as long as that by the voluntary running rats (Group Run-60) in this study. Forristall et al. (2007) reported that 
voluntary running produced greater flavor aversion than forced running when the distance travelled was matched 
between the groups. 
 
 Some studies have employed an open wheel with an adjacent cage (Wahmann wheel) to demonstrate running-
based FAL in rats (e.g., Dobek et al., 2012; Salvy, Pierce, et al., 2004; Satvat & Eikelboom, 2006). Salvy, Heth, et al. 
(2004) failed to obtain a reliable difference in multitrial FAL between 20- and 60-min running opportunities in 
Wahmann wheels. Direct comparison between open and closed wheels (O. Run and Run-120 respectively in Figure 5) 
suggests the superiority of closed wheels. This is also the case in mice (Nakajima, 2019c). 
 
 Notably, there is a single report of FAL based on confinement in a flat circular alley for 30 min (Lett et al., 
1999), implying that the curved surface structure of the activity wheel is not a necessary condition for establishing 
aversion. Future research needs to replicate this finding and clarify what kind of physical activities in the alley are 
critical to yield aversion to a paired flavor. 
 
 Swimming in a water pool also works as a US for FAL in rats. A series of studies conducted in my laboratory 
(Masaki & Nakajima, 2004a, 2004b, 2005, 2006, 2010; Nakajima, 2004, 2015b, 2018b; Nakajima & Masaki, 2004) 
have revealed several critical factors for this swimming-based FAL. First, water levels (i.e., the necessity of 
swimming) determine the degree of flavor aversion. Second, being wet is not effective in itself; a water shower yields 
no flavor aversion. Third, the degree of swimming-based flavor aversion is a positive function of the length of time 
(duration) that rats are confined to pools (see the first section of Figure 5). Fourth, 22°C water effectively establishes 
flavor aversion, while the aversion based on swimming in 30°C or 38°C water is weak and ambiguous. Fifth, 
swimming-based flavor aversion is establishable with a 30-min delay between CS and US. Finally, simultaneous 
conditioning procedures (swimming in flavored water) yield a very weak flavor aversion. 
 
Drive Operations 
 
 Lett and Grant (1996) employed rats undergoing food and water deprivation, while Lett et al. (1998) used rats 
that were nondeprived. A majority of the later studies have employed water-deprived but not food-deprived rats as 
subjects in order for rats to drink a target solution. However, water deprivation prevents easy detection of FAL when 
deprivation-induced thirst overcomes conditioned aversion of a flavored solution. This is frequently the case in 
running-based FAL because the acquired aversion is conventionally weak. This difficulty is solved in two ways: (1) 
using mildly water-deprived rats as subjects in the studies (see, e.g., Figure 1 and the left panel of Figure 4), and (2) 
assessing FAL in post-training two choice testing (see, e.g., Figure 2 and the right panel of Figure 4). It is noteworthy 
that a brief access to tap water 4- or 6-hr before the daily sessions yields clear acquisition and extinction curves of 
running-based FAL (Figure 6). 
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Figure 6  
 
Mean Fluid Consumption of 4 Groups of Rats (Each n = 4)  

 
Note. All rats were given a 15-min access to an NaCl+MSG solution before confinement in activity wheels or plastic cases for 30 min. Rats were 
given access to tap water for 15 min in the home cages either 6 or 4 hr before the session. In the extinction phase, all rats were directly returned 
to the home cage after the NaCl+MSG solution intake. The bars indicate standard errors. The rats were male Long-Evans and 24 weeks old when 
they entered the study. Adapted from Nakajima and Hashimoto (2013). 
 

 
Parallels with Other Pavlovian Conditioning Preparations Including Poison-based FAL 

 
Although the running-based flavor aversion is weak in effect compared with poison-based flavor aversion, 

many behavioral features of Pavlovian conditioning have been demonstrated in this preparation as shown in Table 1 
(see also Boakes & Nakajima, 2009, for an early review). All of the features shown in this table have been also 
demonstrated in poison-based FAL: law of contiguity despite long-delay learning (e.g., Garcia et al., 1966; Nachman, 
1970), extinction and spontaneous recovery (e.g., Berman et al., 2003; Rosas & Bouton, 1996), CS-preexposure effect 
(e.g., Fenwick et al., 1975; Nagaishi & Nakajima, 2008), remote US-preexposure effect (see Riley & Simpson, 2000, 
for a review), proximal US-preexposure effect (see Best, 1982, for a review), degraded contingency effect (Monroe & 
Baker, 1979), inhibitory learning by backward conditioning (e.g., Green & Garcia, 1971; Hasegawa, 1981), stimulus 
overshadowing (e.g., Bond, 1983; Lindsey & Best, 1973), associative blocking (e.g., Gillan & Domjan, 1977; 
Revusky, 1977), and higher-order contextual control (e.g., Loy & López, 1999; Nakajima et al., 1995). Some of these 
have been reported in swimming-based FAL. For example, previous swimming experience strongly alleviates 
swimming-based flavor aversion (remote US pre-exposure effect; Masaki & Nakajima, 2004a, 2010). 
 
 

Table 1  

Features of Pavlovian Conditioning Demonstrated in Running-based Flavor Aversion Learning (FAL) in Rats  

Features of Pavlovian conditioning Running-based FAL studies 
Conditioning is strong when the CS-US interval is 
short (law of contiguity)a 

Hayashi et al., 2002 

Conditioned responding disappears by presentation 
of the CS without the US (extinction) and 
reappearance of responding after a rest period 
(spontaneous recovery) 

Nakajima, 2018c 

Familiarization with a CS interferes with 
subsequent conditioning (CS-preexposure effect, 
latent inhibition) 

Heth & Pierce, 2007; Satvat & Eikelboom, 2006; 
Sparkes et al., 2003 
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Features of Pavlovian conditioning Running-based FAL studies 

Familiarization with a US interferes with 
subsequent conditioning (remote US-preexposure 
effect) 

Baysari & Boakes, 2004; Hughes & Boakes, 2008; 
Nakajima, 2015a; Nakajima et al., 2006; Salvy et al., 
2002 

Pretrial presentation of a US interferes with 
conditioning (proximal US-preexposure effect) 

Nakajima, 2020a 

Presentation of an extra US between the trials 
interferes with conditioning (degraded contingency 
effect) 

Nakajima, 2008a  

The US-then-CS trial sequence yields negative 
conditioned responding (inhibitory learning by 
backward conditioning) 

Dobek et al., 2012; Hughes & Boakes, 2008; Salvy, 
Pierce, et al., 2004 

An added cue interferes with conditioning to a 
target CS (stimulus overshadowing) 

Nagaishi & Nakajima, 2010 

A separately trained cue (CS1) interferes with 
conditioned responding to CS2, which is always 
presented with CS1 in conditioning (associative 
blocking) 

Pierce & Heth, 2010 

Background cues modulate responding evoked by a 
target CS (higher-order contextual control) 

Hashimoto & Nakajima, 2013 

Note. a Long-delay conditioning is also available as in poison-based FAL. 
 

 
 

Hypotheses 
 

Several hypotheses have been proposed for the underlying psychophysiological process of running-based 
FAL. This section introduces them and discusses their validation and/or invalidation. 
 
Activation of Mesolimbic Dopamine System 
 

It is well documented that physical exercise influences the mesolimbic dopamine system in humans and 
animals (see Meeusen & Piacentini, 2001, for a review). Lett and Grant (1996) proposed, in their original report on 
running-based FAL, that running acts like rewarding drugs, such as amphetamine and morphine on the brain system. 
Because there is vast literature on FAL based on rewarding drugs (see Lin et al., 2014, 2017; Verendeev & Riley, 
2012, for reviews), it is straightforward to conjecture that the same or at least a similar process operates in running-
based FAL. Support for the mesolimbic dopamine hypothesis comes from conditioned place preference studies. Rats 
and mice learn to prefer the chamber paired with rewarding drugs (see Tzschentke, 1998, 2007, for reviews). The 
reports that rats come to prefer the place paired with wheel running (Belke & Wagner, 2005; Lett et al., 2000, 2001, 
2002) appear to validate the mesolimbic dopamine hypothesis. However, all of these reports employ a trial sequence 
of running-then-chamber, which is a procedure of backward conditioning (i.e., US-CS pairing). In contrast, forward 
pairings (i.e., chamber-then-running) yield aversion to the paired chamber (Masaki & Nakajima, 2008). Backward 
pairings sometimes cause conditioning of a process which is opposite of the process primarily elicited by the US 
(Schull, 1979; Solomon, 1980; Wagner, 1981; Wagner & Larew, 1985). Acquisition of the opponent process by the 
backward conditioning procedure has been demonstrated in poison-based FAL in rats (i.e., conditioned taste 
preference rather than taste aversion), if the poison-then-flavor trial was repeated in training (e.g., Green & Garcia, 
1971; Hasegawa, 1981). In running-based FAL, Dobek et al. (2012), Salvy, Pierce, et al. (2004), and Hughes and 
Boakes (2008) reported conditioned flavor preference when wheel running preceded target flavor intake (i.e., 
backward conditioning; see the seventh feature of Table 1). Notably, a study reports conditioned place preference in 
golden hamsters by a simultaneous conditioning procedure (Antoniadis et al., 2000). However, this is explicable in 
terms of the opponent process theory (Solomon, 1980), as these hamsters had a prior running experience in the home 
cages (E. A. Antoniadis, personal communication, August 8, 2007), which would have fostered a pleasant sensation of 



 
9 

 

relief from the aversive property of running. Hence, such a post-running pleasant state would condition preference for 
the running chamber (see Masaki & Nakajima, 2008, for a detailed account).  
  

Another inconvenient fact for the mesolimbic dopamine hypothesis comes from microstructure analysis of 
fluid-licking behavior conducted by Dwyer et al. (2008). These researchers revealed that running-based flavor 
aversion differs from amphetamine-based flavor aversion in the palatability change of the target flavor, implying that 
these aversions do not share a common psychophysiological state (Dwyer et al., 2008). A more recent study, however, 
found similar palatability changes between running- and amphetamine-based flavor aversions (Lin et al., 2012). 
 
Gastrointestinal Discomfort 
  

In a personal communication to Lett et al. (1999), John Garcia ascribed the psychophysiological cause of FAL 
to gastrointestinal discomfort (e.g., nausea) induced by running. Unfortunately, we are unable to directly measure 
nausea in rats because they cannot vomit due to neuroanatomical reasons (Horn et al., 2013). Nevertheless, we have at 
least five positive pieces of evidence for this hypothesis. First, Eccles et al. (2005) reported that an anti-emetic drug 
(granisetron) injection prevented running-based FAL, implying that nausea plays a major role in establishing running-
based FAL. Second, Nakajima et al. (2006) demonstrated that running-based FAL is alleviated not only by 
preexposure to running (remote US-preexposure effect; see the fourth section of Table 1) but also by prior injection of 
emetic LiCl (cross-US familiarization effect), suggesting that a common process (presumably nausea) is 
physiologically habituated by preexposure.  
  

Third, Dwyer et al. (2008) found a reduction in taste palatability, reflected in the microstructure of fluid-
licking behavior, for running-based FAL as well as for LiCl-based FAL, concluding that running- and LiCl-based 
flavor aversions are commonly caused by nausea. Fourth, negative orofacial and somatic reactions, such as gaping, 
chin rubbing, and paw treading (Grill & Norgren, 1978) are evoked by the flavor paired with running, at least when 
the running is accompanied with a rocking movement of the wheel (Grant et al., 2012). Because similar disgust 
reactions are evoked by the flavor paired with emetics such as LiCl but not the flavor paired with rewarding drugs 
(Parker, 2014), we straightforwardly deduce that running-based FAL and emetic-based FAL share the same 
psychophysiological state (i.e., nausea). 
  

Finally, rats consume kaolin clay in the home cages after running in wheels (Nakajima, 2016a, 2018d, 2019a; 
Nakajima & Katayama, 2014) or swimming in water pools (Nakajima, 2016b, 2020b). Because kaolin clay intake is 
generated by a variety of nausea-inducing treatments, including the administration of irradiation (Yamamoto et al., 
2002, 2011) and emetic drugs such as LiCl (e.g., Mitchell et al., 1976; Nakajima, 2018a; Watson & Leitner, 1988; 
Yamamoto et al., 2004), it has been regarded as indicative of nausea in rats (Andrews & Horn, 2006). Running- and 
swimming-generated kaolin consumptions, hence, indicate that these activities induce nausea in rats. 
  

These findings, taken together, strongly suggest that the psychophysiological state responsible for running-
based FAL is gastrointestinal discomfort. However, there is a negative piece of evidence against this hypothesis. The 
amount of gastrointestinal discomfort reported by human participants after treadmill running did not predict the size of 
acquired flavor aversion (Havermans et al., 2009). 
 
Motion Sickness 
  

The gastrointestinal discomfort hypothesis does not specify which characteristics of wheel running cause 
nausea in rats. Forristal et al. (2007), however, have argued that motion sickness induced by the collateral back-and-
forth “rocking” movements of free wheels results in nausea in rats. We consider this conjecture here. It is well 
documented that motion sickness induced by rotation of a turn table works as an effective US agent for establishing 
FAL in rats (e.g., Braun & McIntosh, 1973; Green & Rachlin, 1973, 1976; Haroutunian & Riccio, 1975). Rotation-
induced motion sickness also produces disgust reactions (Ossenkopp et al., 2003) and kaolin clay intake (e.g., 
McCaffrey, 1985; Mitchell, Krusemark, et al., 1977; Mitchell, Laycock, et al., 1977). Therefore, the motion sickness 
hypothesis seems to be a reasonable explanation for running-based FAL. Furthermore, Grant et al. (2012), who 
carefully manipulated the rocking movements of the wheels, demonstrated that reduction of rocking movements 
reduced the disgust reactions. 
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It is notable, however, that reduction of rocking movements had little effect on running-based FAL, suggesting 
that the major psychophysiological cause of running-based FAL is not gastrointestinal discomfort. As mentioned 
earlier, FAL has been reported with motorized wheels, which had no rocking movements (Eccles et al., 2005; 
Forristall et al., 2007; Masaki & Nakajima, 2006). According to Forristall et al. (2007), wheel running activates the 
mesolimbic dopamine system, which is the major factor of FAL, and rocking movements add another US agent 
(nausea) to augment the FAL. Contrary to this claim, running in a motorized wheel itself appears to induce nausea 
because it also generates kaolin clay consumption in rats (Nakajima, 2016a). Another shortcoming of the motion 
sickness hypothesis is that it cannot explain FAL based on running in a circular alley (Lett et al., 1999) or a treadmill 
(Havermans et al., 2009). Swimming-based FAL (e.g., Nakajima & Masaki, 2004) is also inexplicable according to the 
motion sickness hypothesis. Thus, another psychophysiological process is needed for these types of learning. 
 
Energy Expenditure 
 

In concluding our first article on running-based FAL in rats, we proposed another possibility as follows: “Rats 
learn to prefer flavors that are associated with caloric restoration (Fedorchak, 1997). Conceivably, they can also learn 
to avoid the tastes that are associated with energy expenditure, a result of wheel running” (Nakajima et al., 2000, pp. 
40–41). If energy expenditure resulting from wheel running works as a US for FAL, other physical activities or motor 
exercises should also create flavor aversion in rats. Indeed, our initial research on swimming-based FAL (Nakajima & 
Masaki, 2004) was driven by this hypothesis. Successful demonstration of swimming-based FAL, thus, is a good piece 
of evidence for the energy- expenditure hypothesis. However, there are two rebuttals to this hypothesis. First, energy 
supply by glucose, which is expected to compensate energy expenditure, did not alleviate running-based FAL in rats 
(Nakajima, 2011). Second, conspecific fighting, which is another exhausting activity, failed to work as an effective US 
for establishing flavor aversion in rats (Nakajima et al., 2012). 
 
General Stress 
  

Mainly drawing on his cross-US familiarization studies of drugs and motion sickness (e.g., Braveman 1975), 
Braveman (1977) claimed that flavor aversions caused by a variety of USs have a common underlying process that he 
ascribed to certain stress-induced physiological changes such as the elevation of plasma corticosterone levels (e.g., 
Ader, 1976; Hennessy et al., 1976; Smotherman et al., 1976). Following this line of speculation, we proposed that the 
underlying psychophysical cause of running- and swimming-based flavor aversions is general stress (Nakajima et al., 
2006). The aforementioned failure to demonstrate fighting-based FAL (Nakajima et al., 2012), however, makes this 
hypothesis improbable because conspecific fighting is highly stressful (see Blanchard et al., 2001; Caldwell, 2006; 
Martinez et al., 1998, for reviews). 
 
Anticipatory Contrast 
 

All of the aforementioned hypotheses are based on the aversive property of running. However, voluntary 
wheel running is a pleasurable activity for rats and mice, as discussed in detail in the next section. It is noteworthy that 
Grigson (1997, 2008) has interpreted FAL based on rewarding drugs in the theoretical framework of anticipatory 
contrast developed by Flaherty (1982, 1996), namely, anticipation of the availability of a highly preferred drug lowers 
the hedonic valence of a target solution. For example, saccharin–morphine pairings lead to a reduction in rats' 
saccharin intake, which is accompanied by a conditioned blunting of the accumbens’ dopamine response (i.e., 
pleasurable neural reaction) to the saccharin cue (Grigson & Hajnal, 2007). The same process might be at work for 
running-based FAL: Rats gradually become reluctant to consume a target solution because they favorably anticipate 
wheel running. This possibility, recently proposed by Nakajima (2019b), should be evaluated in future research. 
 

Why Rats Voluntarily Run in Activity Wheels to Acquire a Flavor Aversion 
  

As noted in the introduction of this article, wheel running is pleasurable and beneficial for rats and mice. 
However, it is a physical stressor: It activates both the sympathetic nervous system, resulting in epinephrine 
production, and the hypothalamic-pituitary-adrenal (HPA) axis, resulting in glucocorticoid production and HPA axis 
feedback (Mul, 2018). Wheel running also induces gastrointestinal discomfort, as mentioned earlier. Thus, these 
negative effects may serve as a US for FAL in rats and mice. 
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The hedonically bivalent nature of wheel running might be related to the biphasic nature of running: The onset 
of running is pleasurable, but the aversive property of running gradually overtakes its pleasant nature. In short, 
running has a delightful start with a distressful ending. More than half a century ago, Hundt and Premack (1963) 
argued that all self-initiated behaviors, including wheel activity, are self-terminated, and the “on–off systems” of these 
behaviors are capable of generating both positive and negative reinforcement. In the framework of this argument, the 
US agent of running-based FAL should be the secondary, aversive property of wheel running. 
 

Running and Swimming 
  

Running- and swimming-based flavor aversions have been addressed in the same framework, because these 
are both physical activities (Boakes & Nakajima, 2009). However, rats do not voluntarily swim in water pools, and, 
thus, the forced procedure is employed in swimming-based FAL studies. Forced swimming evokes many stress-related 
physiological, endocrine, and immune changes including elevation of plasma corticosterone and alterations in 
monoamine levels in a variety of brain regions (e.g., Abel, 1993, 1994; Connor et al., 1997). There seems to be no 
pleasurable period of activity in the case of swimming. In other words, swimming is hedonically monophasic and not 
biphasic, as wheel running is.  
  

Prior swimming does not hinder subsequent running-based FAL in rats (Nakajima, 2015a). This failure to 
demonstrate cross-familiarization from swimming to running provides another piece of evidence that these activities 
cause FAL via different psychophysiological processes. Lack of cross-familiarization from LiCl to swimming 
(Nakajima, in press, Experiments 1A and 1B), despite cross-familiarization from LiCl to running (Nakajima et al., 
2006), also implies the disparity in the psychophysiological states induced by swimming and running, only the latter 
of which has similarities with LiCl. The claim that swimming and LiCl induce qualitatively different 
psychophysiological states is also supported by the finding that sucrose aversion is stronger than saccharin aversion 
with the swimming US, while the opposite is the case when the US is LiCl (Nakajima, in press, Experiment 2). This 
CS–US suitability implies selective associations or sensitization (Bevins, 1992; Domjan, 1982), suggesting that the 
psychophysiological states induced by swimming and LiCl are qualitatively different. 
  

On the other hand, the similarity of running- and LiCl-based aversions shown in the cross-familiarization test 
suggests that the underlying processes of these aversions share a common physiological process as already noted in 
the section on gastrointestinal discomfort in the "Hypotheses" section of this article. 
 

Closing Remarks 
 
Running-based FAL has attracted attention of researchers mainly because of its hedonically bivalent nature; 

rats and mice voluntarily run to acquire a flavor aversion. Although its underlying psychophysiological processes have 
not yet been well clarified, accumulating pieces of evidence will in time make it possible. To my best knowledge, 
there have been no neurobiological investigations in this field of research. Future research on the neurobiological basis 
of running-based FAL will help in understanding the nature of this learning. Other topics to be explored are the age 
and sex of the animals, not only because the amount and pattern of wheel running largely depends on these variables 
(e.g., Eikelboom & Mills, 1988; Jakubczak, 1973; Mondon et al., 1985; Tokuyama et al., 1982), but also because these 
variables affect conventional, drug-based FAL (e.g., Chambers et al., 1981; Hurwitz et al., 2013; Misanin et al., 1988, 
2002; Randall-Thompson & Riley, 2003). 
  

The running-based FAL paradigm provides a convenient tool for studying aversive conditioning with minimal 
discomfort in laboratory rats (Nakajima, 2019a). Although aversive conditioning research has greatly contributed to 
our understanding of behavioral and neural mechanisms of learning and memory (Archer & Nilsson, 1989), recent 
concerns for laboratory animal welfare (Bayne & Turner, 2014) lead us to seek and use more humane experimental 
techniques than the conventional ones. In this sense, running-based FAL is a good experimental paradigm. One might 
argue that wheel running shares many features with pathological behavior, such as stereotypy and addiction (Richter et 
al., 2014; Sherwin, 1998), and that long-term exposure to wheels may cause activity anorexia under some conditions 
(Epling & Pierce, 1996). However, because the period of wheel confinement is brief in most studies of running-based 
FAL, any health problem arising from wheel running is minimal. 
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