
UC Berkeley
UC Berkeley Previously Published Works

Title
The nuclear-quadrupole-induced dipole moment of HD

Permalink
https://escholarship.org/uc/item/1d6615qw

Journal
Chemical Physics Letters, 147(5)

ISSN
0009-2614

Authors
Grayce, Christopher J
Harris, Robert A
Hahn, Erwin L

Publication Date
1988-06-01

DOI
10.1016/0009-2614(88)85006-1

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, availalbe at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1d6615qw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Volume 147, number 5 CHEMICAL PHYSICS LETTERS 17 June 1988 

THE NUCLEAR-QUADRUPOLE-INDUCED DIPOLE MOMENT OF HD 

Christopher J. GRAYCE, Robert A. HARRIS 
Department of Chemistry, University of California, Berkeley, CA 94720, U&i 

and 

Erwin L. HAHN 
Department of Physics, University of Cal$ornia, Berkeley, CA 94720, USA 

Received I1 March 1988 

We calculate in a simple MO way the dipole moment induced in HD by the nuclear quadrupole of the deuteron, as a function 
of the internuclear separation. We find a reversal of the direction of the dipole with increasing internuclear separation, for which 
we note indirect experimental evidence. As a check on the accuracy of our result we also calculate the electric field gradient 
induced at the D nucleus by an external electric field, per unit external field, which for exact theory would be exactly the same 
function. The form of the function so obtained is indeed similar - although not identical - to that for the dipole moment. The 
dipole moment at the equilibrium internuclear separation is z 0.075 atomic units per unit quadrupole moment, directed H- +D+. 
(For the measured quadrupole moment of the deuteron, this is %2x lo-” D.) However, we find the induced field gradient at 
the deuteron for this separation to be 0.094 atomic units per unit external field, in the opposite direction. 

1. Introduction 

The ground state of the deuteron in HD has nuclear spin I= 1, so the electric potential of which it is the 
source can and does have a quadrupolar component. The potential felt by the two electrons in the molecule 
is thus not symmetric under exchange of the two nuclei, and we expect a corresponding asymmetry in the dis- 
tribution of electron density. The lowest-order moment of the asymmetry is a slight dipole moment, which, 
because of the cylindrical symmetry of the molecule, is directed along the internuclear axis. We have calculated 
this nuclear-quadrupole-induced dipole moment, using a simple molecular orbital (MO) approach, to first or- 
der in the strength of the quadrupole. 

Formally the induced dipole moment is given, by ordinary second-order perturbation theory, as 

(14Qa)>=2~;~ (OIPIW <NQDIO> E(O)_,$N) ' (1) 

The states 1 N) are the electronic states of H2 within the Born-Oppenheimer approximation, and the energies 
ZV) are the corresponding energies. ( IO> is the ground state and E (‘) the ground state energy.) Because of 
the cylindrical symmetry of the molecule, the only non-zero component of the dipole moment will be that along 
the internuclear axis. Therefore cc is the operator for the component of the dipole moment along the inter- 
nuclear axis. QI1 is the electric potential produced by the quadrupole of magnitude Q. located at the deuteron, 
and R is the internuclear separation. (Note that the breakdown of the BO approximation in HD gives rise to 
a well-known [l-6] dipole moment in HD, approximately lo5 times larger than that which we calculate to be 
induced by the nuclear quadrupole. First predicted by Wick [ 11, the rotational-vibrational spectrum due to 
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this larger moment was first observed by Herzberg [ 21. Note that the quadrupole-induced dipole would persist 
even were the nuclei in fact of infinite mass. 

2. MO calculation of the induced dipole 

We first calculate the ground-state wavefunctions of the separate deuterium and hydrogen atoms in the pres- 
ence of the quadrupole lo first order in the magnitude of the quadrupole. This we do using ordinary time- 
independent perturbation theory, in a manner similar to the calculation of long-distance forces by Dalgamo 
and Lewis [7]. The resulting atomic orbitals (AOs) we label &(rrr), wh(rH, R, Qo), &ro), &(a, Q,), 
where w$ and !& are the unperturbed ground-state wavefunctions of the hydrogen and deuterium atoms, and 
w/, and !& are the first-order corrections to them, rH is the distance of the electron from the proton, rb the 
distance from the deuteron, R the internuclear separation, and Q,, the magnitude of the quadrupole. 

We now construct the physical space part of our molecular orbital (MO) out of the simplest possible linear 
combination of the AOs: 

~(r,R,~~)=~~(lt-~o)l-‘~2[~OH+~/OD+u/~<Qo)+u/~(Qo)l~ 

where S,, is the usual HZ overlap integral: 

(2) 

S,-,= d3r!&t&=e-R(1tR+fR2). 
s (3) 

Note that this wavefunction is normalized correctly only to zeroth order in Q,. This serves in this case because 
the expectation value of the dipole moment operator is zero to zeroth order in QO. Thus the unnormalized 
quantity ( !P] p I Y) contains no terms less than first order in QO, and the normalization factor we divide it by 
need contain no terms higher than zeroth order in Qo. 

Our complete MO is then 

y~O(rl,r2,6,,62,R,QO)=Y(r,,R,Qo) Vr,,R,Q~)x(a~,ad, (4) 

where r,, 6, are the space and spin coordinates of the first electron and r,, a2 those of the second. x is the usual 
singlet (antisymmetric) spin eigenstate. 

The symmetry of the molecule and quadrupole assures us that the dipole moment will lie along the inter- 
nuclear axis. So we let that be the z axis of our coordinate system, and use for the magnitude of dipole moment 
operator (in atomic units): 

pu=(fR-z,)t(fR-2,). (5) 

The z, and zz refer to the z coordinates of the two electrons. Note that we are measuring the moment from 
midway between the two nuclei. This simplifies the calculation. We locate the proton at the origin and the 
deuteron on the positive z axis at distance R. 

Using eqs. (5), (4) and (2) the expectation value of the dipole moment operator, keeping no terms higher 
than first order in QoO; is 

(P(R, Qo) > 

= & s d3r ]&,(tR-z) vh(Qo)+v%tR-2) &(Qo)+dXtR-z) &(Qo)+v%4R-z) vhCQo>l 3 

(6) 

where we have summed over spin, dropped the superfluous subscripts on the z’s, and used the normalization 
of the physical space component of the MO given in eq. (2) above. The leading factor of 2 in eq. (6 ) is due 

444 



Volume 147, number 5 CHEMICAL PHYSICS LETTERS 17 June 1988 

to the presence of two electrons. Let the four integrals in eq. (6) be denoted, in order, !I, pII, pIII, and pIv. 
Because of the cylindrical symmetry of the molecule, only the part of the quadrupole proportional to Y% will 

couple to the dipole moment operator. So our perturbation is given explicitly by 

QD=Qo& f%&) $3 (7) 

where czo= a (5/lc)‘/* is the numerical factor in YS. Ordinary first-order perturbation theory then gives the 
following differential equation that I&,( Q,) must satisfy: 

(HOD-Eg)ylf,(Q,>=(E~-e~,vl~, (8) 

where U”, is the Hamiltonian for the electron in a deuterium atom and EL is the corresponding ground-state 
energy. EL is the first-order energy shift, which is clearly zero. We try the solution 

‘yL(r,, Qo)=f(r~) Qo&- Y:(h) WE (9) 

and upon substituting this and the right-hand side of eq. (7) into eq. (8) obtain the following differential 
equation for f( rD ) : 

A particular solution of this suited to our needs is 

f(rD)=- (++;). 
D 

Thus 

v&(~D, Qo)=-Qo& EC&> 

(10) 

(11) 

(12) 

Note that this is orthogonal to the ground state. By this and the orthogonality of the Y;l (in particular fi to 
Y?), we see immediately that 

Prv=O. (13) 

Using eq. ( 12 ) we calculate pII; it is 

~~1=-4Qo{Ei(2R)(coshRD,-sinhRD~)-e~~[iEi(2R) (DI+D2)tD3]}, 

where D,, D2, and D, are the following polynomials in R: 
(14) 

D,(R)++; 420 25R 80 440 420 840 tR3, D~(R)&#$), D~(R)=g+J+3Rt~+R3. (15) 

The two non-elementary functions, similar to the usual exponential-integral function, are defined as follows: 

Ei(u)= ydl?, iEi(u)= jdiy. (16) 
u 0 

We use the same approach to calculate pI. The formal representation of &(Qo) is 

IwkQo,,= C I IU%“) > ( V/OH(~) I QD I &To) > 
!I#0 

E(n) _E’o’ (17) 
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Therefore 

PI = 
c (W”n’“‘It~-zlYO,c”)~~YO,c”)lQDIWo,(o’~ 

n#O 
E(“)_E(O) (1s) 

or, going back to wavefunctions: 

PI = s d3rddho) QDY”, , (19) 

where yL( ~0) is the first-order correction to I&?, due to a perturbation k( tR-z). We put in for the strength 
of the perturbation b - here equal exactly to 1 - to emphasize the complementarity of wi!i to u/b. Using the 
same method as before, we solve for t,uj., ( po), obtaining 

WidrH, PO) = 

where ~,~=f(3/n)‘/~ is the numerical factor in G. Using this, we calculate pI, and get 

p, = -Qo[$ -e-zR(UR2+6R+9+ f + $ + $&)I . 

(20) 

(21) 

This leaves p,,i, for which we must find & ( QO). Again we use the same approach, but this time there is no 
obvious form to try for the solution to the first-order differential equation 

(@i -EOH)V/~(QO)=(E~-QD>~~. (22) 
However, we note that Q,, can fortuitously be written as 

QD=Qo$-&& (23) 

Substituting this for Q, in eq. (22), we then expand both it and &( Qo) in Y?, using the usual expansion of 
1 / ) r, -R I. We exchange the order of summation and all other operators. Equating coefficients of the Y;l on 
both sides of the equation then produces second-order differential equations in ru for the coefficients in the 
expansion of wh( Qo) . These we solve using truncated power series. (A log term is needed for the z term). 
It then turns out that we can contract the expansion of WA ( QO) to 

Note that the integral is indefinite, thus ambiguous. The best form of the integral for our purposes is 

[dr.(l+-!-)&=- (rHir,)zD +g-$-$ln(z). 

(24) 

(25) 

Using the right-hand side of eq. (25) in the right-hand side of eq. (24) makes the latter solve eq. (22). 
ryh ( Qo) is not a well-behaved function. It has a strong infinity at the location of the deuteron, a logarithmic 

singularity between the two nuclei along the internuclear axis, and a pole of order one at the location of the 
proton. The latter two do not appear to be problems, since wh( Qo) times the three-dimensional volume ele- 
ment is finite everywhere. The first singularity demands more care. Because of it, strictly speaking no integrals 
involving wk( Qo) exist, but one can obtain principal values for the integrals if one is careful when integrating 
near the singularity to do so in a spherically symmetric fashion. One must be similarly careful in evaluating 
Eh(R, Qo), for the integrand here has the same bad infinity at the deuteron. (It is particularly easy in this 
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case to get a wrong answer,) These “conductionally convergent” integrals have been dealt with in a more gen- 
eral way by Pitzer [ 81. 

When R is taken to zero in vk( QO), we obtain a result similar in form to that for wb ( Qo), as one would 
expect, but the two answers are not identical. Both solve eq. (8), the perturbation theory differential equation. 

cyk( Q0 ) is not a priori orthogonal to the ground state, but with our choice of dipole moment operator 
this does not matter, as any component of &(QO) proportional to the ground state will not contribute to 
<PCQO>>- 

With wA(Q,) in hand we calculate pIII, which is 

P,~~=~~EL(R,Q~){E~(~R) (coshRT,-sinhRT,)-e+R[iEi(2R) (T,+r2)-T3]} 

-Qo{Ei(2R) (coshRS, - sinhRS,)+e-R[iEi(2R) (&+&)-&I}} (26) 

with 

15 R 
T,(R)=jg+g, 

R 55 210 
$(R)=?+z+~j> s,(R)=S+s+%, 

95 235 210 420 
&(R)c~R+~+~+~+~, 

Eb(R,Qo)=Qo[$-2e-2R(~+~+$+$)]. (27) 

Using the right-hand sides of eqs. (21), (14), (26), and (13) in eq. (6) gives (p(R, Qo)) explicitly. 

3. A check: MO calculation of the induced field gradient 

The error inherent in our usage of the MO approximation can be roughly quantified by consideration of a 
simplified version of a measurement of the Stark effect in a nuclear quadrupole resonance (NQR) experiment 
[ 91. We imagine there exists a constant electric field of strength E directed along the internuclear axis of HD. 
It interacts indirectly via the electrons of the molecule with the nuclear quadrupole moment of the deuteron, 
and this interaction energy is given formally by 

E(Qo,E)=2 C <Ol@IN) (Nl%Qo 10) 
N#O EW_EVO ’ (28) 

where q, is the electric field gradient operator evaluated at the deuteron. This is ordinarily a tensor, but we 
use a scalar notation because only the zz component of the tensor contributes. (This is because the electric 
field is directed along the z (internuclear) axis, and the molecule has cylindrical symmetry about that axis.) 
Furthermore, in this case qDQo= QD, as we have defined the latter in eq. ( 1 1 ), and the right-hand side of eq. 
(28) is then identical with the right-hand side of eq. ( 1) if we divide the former by E. We can interpret this 
energy as arising from induced moments in two complementary ways: Either (q,,(E) ), an electric field gra- 
dient at the nucleus, resulting from an externally induced electronic dipole moment, interacts with the nuclear 
quadrupole moment Qo; or (p(Qo) ), the electronic dipole moment induced by the nuclear quadrupole, in- 
teracts with the external field E. 

Thus we will obtain exactly the same result if we calculate ( qD(E) > /E and (p( Q,) ) /Q. by any exact method 
(or any one-electron approximation thereof that satisfies the Hellmann-Feynman theorem). If we use an ap- 
proximate method to calculate them, the discrepancy between the two quantities can be looked upon as a rough 
guide to the accuracy of the method. Accordingly, we used our MO approach to calculate (q,,(E) ) just as we 
did ( p ( Qo) > . The calculation proceeds in precisely the same manner. The equivalent of eq. (6)) above, is 
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2 
(q&&E))= l+S, - d3r[V/OHqDW~(E)+WOHqDdV~(E)+V/~q~W~(E)+Yg%W$(E)l 3 s (29) 

We have already calculated WL (E) (it is given by eq. (20) by setting h=E), and t&(E) is of exactly the same 
form. (This wavefunction is in ref. [lo], p. 264.) The evaluation of the four integrals in eq. (29) is then 
straightforward. 

4. Discussion 

The solid line in fig. 1 shows our final result for ( p( Q,,) ) /QO plotted versus internuclear separation R. (Since 
we place the origin of our coordinate system at the proton, a positive (h) indicates a dipole moment in the 
sense H-D+, a shift of electron density toward the proton.) The dashed line in fig. 1 shows our final result 
for (q,,(E) ) /E plotted versus R. The vertical bar in fig. 1 indicates the equilibrium HD bond distance ( 1.402 
atomic units). The value of the induced dipole moment at this separation is O.O75Q,, atomic units. Using for 
Q0 the value of 0.002738x 10mz4 cm* given by Ramsey [ 111, this corresponds to 1.9x 10-l’ D. Integrating 
( P( R, Qo) ) over the ground-state vibrational wavefunction of HD gives an average dipole moment of 0.078Q0 
atomic units, which is also about 1.9 x 1 O- ’ ’ D for Ramsey’s Q,,. The value of the induced field gradient at 
the equilibrium internuclear separation is -0.094E atomic units. 

Note the change in sign of the dipole moment as R gets larger. We offer a simple, intuitive (semantically 
loose) explanation of this sign change: The angular part of the quadrupolar potential field looks like a dZ2 or- 
bital, with two positive lobes sticking out directly toward and away from the proton, and a negative donut- 
shaped lobe girdling the deuteron with the “hole” in the “donut” facing the proton. When R is big, the electrons 

Fig. 1. Our calculations plotted versus internuclear separation, 
R, in atomic units: The solid line is the MO calculation of the 
quadrupole-induced dipole per unit quadrupole moment. The 
dotted line is the “ball and stick” calculation of the same quan- 
tity. The dashed line is the MO calculation of the induced electric 
field gradient at the deuteron per unit external electric field. The 
vertical bar indicates the equilibrium HD bond distance. At this 
distance the value of the induced dipole is about O.O75Q,, atomic 
units when calculated using the MO approach, and about - 7.0(& 
atomic units (and therefore below the graph) when calculated 
using the “ball and stick” model. The field gradient at this dis- 

2.0 3.0 4.0 5.0 tance is -0.094E atomic units. The inset shows the behaviour of 
R, a.u. the three functions at large R. 
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are primarily affected by the positive lobe of the quadrupole sticking out toward the proton. They therefore 
tend to remain closer to the deuteron than they would in the absence of the perturbation, leading to a negative 
dipole moment. At smaller R, however, the positive lobe is more of a “background” field, and the electrons 
are more affected by the negative lobe of the quadrupole, which looks roughly like a cone opening toward the 
proton. The electrons are then “squeezed’ toward the proton, resulting in a positive dipole moment. In support 
of this interpretation we note that the sign change in the dipole moment is due solely to the term in our expres- 
sion for the dipole moment which describes the dipole induced on an H atom by a naked quadrupole. (This 
is p,, given by eq. (21).) 

At internuclear separations, R, much larger than the size of the H atom, it is possible to treat this system 
with a “ball and stick” model, where we consider the H atom as a dielectric “ball” of uniform isotropic po- 
larizability ~1 and negligible radius, separated by a rigid “stick” of length R from another such “ball” repre- 
senting the D atom. The electric field E produced by the quadrupole is -VQ,, which at the proton points along 
the internuclear axis towards the deuteron, and has magnitude 

a 2 6 -__ E=QoaRR,--Qq. (30) 

The magnitude of the dipole moment induced on the H atom “ball” by this electric field is then aE. The quad- 
rupole induces no dipole on the D atom “ball” because of the spherical symmetry and the orthogonality of 
dipole and quadrupole moments, It is easily shown that the effect on the D atom “ball” of the induced dipole 
on the H atom “ball” is proportional to the ordinary HZ overlap integral. This itself is proportional to e-2R, 
and so for large R negligible. The polarizability of the H atom is known to be exactly $. (See, for example, 
ref. [ lo], p. 265). So the “ball and stick” model predicts that the total magnitude of the induced dipole mo- 
ment on HD is 

(31) 

The result is plotted versus R as the dotted line in fig. 1. As you can see, our MO result approaches the “ball 
and stick” result asymptotically, as it must. (This can be see algebraically by noting that when R is large, the 
only significant part of our result for ( p (R, Q,, ) ) is the non-exponential, leading term of pI, given in eq. ( 17 ) , 
times 2/ ( 1 +S,), where S,, is the H2 overlap integral. But & is nearly zero, so the MO result gives at large R 
exactly the same algebraic expression for the induced dipole moment as does the “ball and stick” model.) 

Note that the “ball and stick” model fails to predict the sign change in (c((Q,,, R) > at small separations that 
is predicted by the MO theory. At the equilibrium HD bond distance, for example, the dipole moment pre- 
dicted by the “ball and stick” model is - 7.0Q0 atomic units, or - 1.7 x 10m9 D - opposite in sign to the MO 
result. This sign difference is helpful, because unfortunately the magnitude of ( p( QO) is far too small to mea- 
sure experimentally, and we must look for indirect evidence that our prediction is correct. We find some such 
evidence in the results of measurements made recently by Sleator et al. [ 121 #’ of the electric dipole moment 
induced by the 35C1 nuclear quadrupole moment in the covalently bonded oxygen atoms in a single crystal of 
NaC103. (This is the reciprocal to the NQR Stark effect experiment considered above. ) These experimenters 
made estimates of the dipole moments they measured using a “ball and stick” model similar to that described 
above, but including the Stemheimer anti-shielding factor in Q. (see next paragraph). This model is certainly 
valid at large separations. But they found that in one case (that of the Yf2 components of the 35C1 quadrupole) 
the induced dipole moment predicted was opposite in sign from that measured, indicating that the dipole mo-. 
ment induced at the small separations characteristic of the experiment was opposite in sign to that which would 
have been induced at much larger separations. This is an encouraging sign that the sign change in (1(( QO) > 
that we predict actually exists. 

#I A fuller report of this effect will be published shortly by Sleator et al. [ 131. 

449 



Volume 147, number 5 CHEMICAL PHYSICS LETTERS 17 June 1988 

The chief source of error in our approach is that it is a one-electron calculation, and so no shielding from 
the quadrupole of one electron by the other is treated. (Such shielding for quadrupolar interactions was first 
treated by Sternheimer [ 14 J . ) However, as mentioned before, the factor in ( p( Q,) > responsible for the di- 
rection change in the moment, pI, is that which describes a hydrogen atom perturbed by a naked quadrupole 
at a distance R. So we can get a rough idea of how the shielding that would appear in a many-electron cal- 
culation would affect our results by the following procedure: First, we calculate the electric potential due to a 
quadrupole inside an isolated deuterium atom. We write it as 

Qb=Q~[l+s(r>l, (32) 

where QD is, as before, the potential due to a naked quadrupole at the deuteron, and S(r) is a function of the 
radial distance r from the deuteron. S(r) is easily calculated for the deuterium atom. It is (in atomic units) 

S(r)=~-~e-2’(~r4+~r3+1r2+lr+t)-~14e-2’+~r5Ei(2r), (33) 

where the non-elementary function Ei( 2r) is defined in eq. ( 16) above, (The asymptotic limit of this function, 
$, is the usual Sternheimer anti-shielding factor Ye. This is what would be used in a shielded ball and stick 
model, like that used by Sleator et al. [ 12,131. ) Now in the key term pI we substitute for QO, the strength of 
the quadrupole, the expression Q0 [ 1 + S( R ) 1, where R is the internuclear separation. This takes into account 
in an average way the shielding of the quadrupole by the deuterium electron. The result of such a calculation 
is, however, only a trivial change from the results shown in fig. 1. This gives us some confidence that our results 
would be qualitatively reproduced by a full many-electron calculation. 

5. Conclusion 

The discrepancy we see between ( p( Q,,) ) /QO and (q,,(E) ) /E in fig. 1, taken as a rough indicator of the 
precision of our result, is why we give the magnitude of the induced dipole at the equilibrium separation to 
so few significant figures, although of course we could calculate it within the limits of the theory to arbitrary 
precision. Even the direction of the dipole moment at equilibrium is open to question, since this distance falls 
so close to where ( ,D( Qo) ) /QO and (qn(E) ) /E change sign. We have no obvious reason to consider either 
of the two MO calculations a priori more accurate, and since they indicate opposite directions, we really cannot 
say in which direction the dipole moment points. However, we feel that the importance of this work is not in 
the actual value of the dipole moment at the equilibrium separation (which could be obtained with consid- 
erably greater accuracy via traditional numerical methods), but in the prediction of the quqlitatiw form of the 
moment as a function of internuclear separation, as indicated in the two curves in fig. 1, and the insight this 
may give about experiments on much more complicated systems, such as the NaCIOJ experiments mentioned. 
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