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ABSTRACT OF THE DISSERTATION
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by

Mayank Chadha
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Professor Michael D. Todd, Chair

There are many systems such as beams, pipelines, coordinated drones swarm, DNA, etc.,

for which the configuration may be described by a framed space curve characterized by a single

parameter. This research, therefore, utilizes the application of differential geometry and mechanics

to investigate such systems. This work leads to the development of kinematically enhanced

geometrically-exact beam theory, shape reconstruction of slender structures, path-estimation of a

moving object, and computational geometry and graphics method.

The evolution of the system can be mathematically defined by a state space. An approach to

approximate the state space of a single-manifold characteristic system using discrete material linear
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and angular velocity data is proposed. The methodology of path-estimation can be successfully

applied to reconstruct the shape of deformed slender structures that captures the effect of curvature,

shear, torsion, Poisson’s deformation, warping, and axial deformation. The relationships are

applied to generate some complicated structures like a double helix intertwined about a space

curve, a leaf, and an entire plant.

Room for further improvisation of geometrically-exact beam theory was realized. A

comprehensive kinematics of geometrically-exact beam subjected to a large deformation and finite

strain is obtained. Among other deformation effects, the proposed kinematics also capture a fully

coupled Poisson’s and warping effects. The developed kinematics are ultimately used to establish

a measurement model of discrete and finite length strain gauges attached to the beam.

The weak and strong form, Hamiltonian form, and Poisson bracket form of balance laws

considering the enhanced kinematics of the beam are derived. The finite element model of

the geometrically-exact beam with linear material properties is developed. Modal analysis is

performed for a small deformation case.

The geometrically exact formulation discussed can be used to develop a reduced finite

element model for DNA and bio-polymers. The shape sensing method has the potential to serve

in the medical industry by helping in the location of surgical tubing, developing smart tethers that

would help in the study of ocean surfaces, etc. Finally, the state-space estimation technique can

be further extended to higher-order manifold problems like shape reconstruction of composite

panels, membranes, distortion in space-time fabric, etc.
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Chapter 1

Framed Space Curves

1.1 Introduction to various curve framing techniques

The space curves are the simplest structures in the theory of differential geometry because

they are manifolds of dimension one. The interest in space curves dates back to the 17th century.

The idea of a tangent to the curve is attributed to Pierre De Fermat that was first mentioned

in 1629 in a letter to M. Despagnet. It seemingly was invented as a side product of Fermat’s

investigation on maxima and minima (refer to [1]). In 1637, Descartes was the first to define the

algebraic curve in his famous work [2]. In 1748, Euler used the parametric representation of

curves in his renowned work [3]. The idea of curve framing using tangent, normal, and binormal

vectors are attributed to Frenet [4] and Serret [5]. Darboux [6] exploited the moving frame

technique to study surfaces, which was further generalized by Cartan (refer to: for example, [7]

and [8]) and it was used to develop tetrad theory of general relativity [9]. Under the Frenet-Serret

curve framing technique, the curve is geometrically characterized by means of coordinate system

invariant quantities: curvature κ and torsion τ. A unique Frenet frame exists for a regular, at least

C3 continuous and non-degenerate curve.

Despite the fact that a Frenet–Serret formulation is at the heart of curve framing, it has
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limitations for certain practical problems and applications including, but not limited to, graphics

generation, shape reconstruction from finite strain measurements, modeling the trajectory and

motion of certain classes of moving objects, defining the configuration of object swarms, modeling

the continuum mechanics of Cosserat beams, and so forth. These applications demand the

existence of a continuously varying frame along the curve, even if the curvature vanishes at a

certain point on the curve. The principal normal of the curve is discontinuous at the point where

the curvature is 0 (point of inflection or when the curve straightens momentarily), rendering a

limitation to the use of the Frenet frame for these applications.

Bishop [10] proposed an alternative framing methodology called Relatively Parallel

Adapted Frame (RPAF). RPAF can be used to frame a regular, minimally C2 continuous curve

using two invariants, say (κ1, κ2), that can be uniquely defined if we specify the orthogonal

vectors spanning the normal plane of such a curve at a particular point on it. Bishop called

the invariants (κ1, κ2) as the normal development of the curve. Like the Frenet frame, we only

have two invariants in RPAF that define the curve. The curve still needs to be regular, but the

requirements of continuity and the non-degeneracy condition of the curve are relaxed.

The benefit of RPAF has been proven since its proposal in 1975. The application of

RPAF in computer graphics to create ribbons, tubes from 3D space curves, and the generation

of forward-facing camera orientation was investigated by Hanson and Ma [11]. The RPAF has

successfully been used to develop trajectory tracking and auto-pilot control system for UAVs

(refer to figure 1 in Xargay et al. [12] and references therein). The work by Zahradová [13] used

RPAF to construct waveguides for curves that did not possess unique Frenet frames.

The Frenet frames and RPAF are intrinsic to the curve itself. Therefore, the curvature

terms (κ, τ) in case of Frenet frame and the terms (κ1, κ2) in case of a unique RPAF are frame

invariants and depend solely on the properties of the curve. However, in multiple practical

applications where a physical system can be modeled through a framed curve, it is convenient to

frame the curve using the material frame (MF). The evolution of the MF along the curve depends
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on the configuration-dependent parameters. When MF includes the tangent vector of the curve, it

is called a material-adapted frame (MAF). The curvatures related to such frames usually have a

physical meaning associated with the change of state of the system.

In this chapter, we discuss various framing techniques spanning from intrinsic frames to

system-dependent material frames. We systematically elucidate the construction of the MAF and

establish the relationship between MAF, Frenet frame, and RPAF. We finally detail the general

material frame.

Note on Notations: The n dimensional Euclidean space is represented by Rn, with R1 ≡ R.

The dot product, ordinary vector product and tensor product of two Euclidean vectors v1 and v2

are defined as v1 · v2, v1 × v2, and v1 ⊗ v2 respectively. The Euclidean norm is represented by ‖.‖

or the un-bolded version of the symbol (for example, ‖v‖ ≡ v). Secondly, nth (with n ≥ 0) order

partial derivative with respect to a scalar quantity, ξ for instance, is given by the operator ∂n

∂ξn = ∂
n
ξ .

For n = 1, we define ∂1
ξ ≡ ∂ξ and note that for n = 0, ∂0

ξ is an identity operator. A vector, tensor

or a matrix is represented by bold symbol and their components are given by indexed un-bolded

symbols. The action of a tensor A onto the vector v is represented by Av ≡ A.v. We note that the

centered dot “·” is meant for dot product between two vectors, whereas the action of a tensor onto

the vector, the matrix multiplication or product of two scalars, a scalar to a matrix (or a vector) is

denoted by a lower dot “.”.

1.2 Frenet-Serret and Relatively Parallel Adaptive Frames

1.2.1 Frenet-Serret Frame

Consider a fixed orthonormal Cartesian frame {Ei} in Euclidean spaceR3. Consider a non-

degenerate and at least C3 continuous space curve ϕ : [0, L] −→ R3, such that, ϕ(ξ) = ϕi(ξ)Ei,

with the arclength ξ ∈ [0, L]. Uniquely framing a curve using Frenet frame requires a continuously
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varying Frenet triad consisting of tangent T (ξ), principal normal N (ξ), and binormal vectors B(ξ)

defined as:
T (ξ) = ∂ξϕ;

N (ξ) =
∂2
ξ ϕ

‖∂2
ξ ϕ‖

;

B(ξ) = T (ξ) × N (ξ).

(1.1)

The vector triad {T (ξ),N (ξ),B(ξ)} as given in Eq. (1.1) defines the Frenet frame. Before we

mention the Frenet formula that governs the evolution of the Frenet triad, we make the following

remarks that are required to understand the unique existence and continuity requirement of the

frame.

Remarks:

Remark 1.1: A parametrized C1 continuous curve ϕ(ξ) is called a regular curve if it has a

non-vanishing derivative. This guarantees the existence of non-zero and continuous tangent

vector field T (ξ). A regular curve parametrized by the arc-length ξ gives a unit tangent vector, i.e.

‖∂ξϕ‖ = 1.

Remark 1.2: For a parametrized C2 continuous curve ϕ(ξ), we define the scalar curvature

κ(ξ) = ‖∂2
ξ ϕ‖. The point on the curve at which the curvature vanishes κ = 0, is called as the

inflection point. The point with κ , 0 on a regular curve is called as a strongly regular point. At

the point of inflection, the curve is momentarily straight and the normal vector is not uniquely

defined. Thus, the Frenet frame consisting of unique principal normal does not exist at the point

of inflection.

Remark 1.3: At a strongly regular point of C2 continuous curve with κ(ξ) , 0, the tangent T

and the principal normal vector N are linearly independent (orthonormal) and spans the osculating

plane. This condition is called as non-degeneracy. The normal vector points towards the center of
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curvature. The circle on the osculating plane centered at the center of curvature with the radius 1
κ

is called as the osculating circle. A regular C2 curve with κ(ξ) , 0 (implying linear independence

of T and N ) is called as non-degenerate curve. The curvature κ(ξ) measures the rate of change of

the tangent when moving along the curve. It represents the deviation of the curve at a point from

a straight line (along the tangent at a point) in the neighborhood of the point in consideration.

Remark 1.4: The binormal vector B as defined in Eq. (1.1) is perpendicular to the osculating

plane. The plane spanned by the vectors T and B is called as the rectifying plane. For the Frenet

frame to be continuous along the curve, the osculating plane must change continuously along

the curve. This brings us to the definition of torsion τ(ξ). The deviation of the osculating plane

is obtained from the derivative of the binormal vector, which can be obtained as ∂ξB = −τN

(refer Chapter II of Kreyszig [14]). The continuity of the Frenet frame along the curve requires

the vector ∂ξB to be at least C0 continuous, implying the curve ϕ(ξ) to be at least C3 continuous.

The C2 continuity of a non-degenerate curve implies the existence of osculating circle (curvature

continuity) and the C3 continuity of such curve implies that osculating circle or osculating plane

changes smoothly (torsion continuity).

The Frenet-Serret formulas represent the first derivatives of vectors ∂ξT , ∂ξN and ∂ξB as

a linear combination of the Frenet triad as is shown below
T ,ξ

N ,ξ

B,ξ


=


0 κ 0

−κ 0 τ

0 −τ 0



T

N

B


. (1.2)

The Frenet triad continuously moves along the curve. If the Frenet triad is obtained by finite

rotation of the fixed triad {Ei}, we have,

Qf = T ⊗ E1 + N ⊗ E2 + B ⊗ E3. (1.3)

The tensor Qf(ξ) represents the family of orthogonal tensors belonging to the SO(3) rotational
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Lie group (discussed later in section 1.3.2.1). From Eq. (1.3), the following holds

∂ξT = ∂ξQf.Q
T
f T = κf ×T ;

∂ξN = ∂ξQf.Q
T
f N = κf × N ;

∂ξB = ∂ξQf.Q
T
f B = κf × B.

(1.4)

For an orthogonal matrix Qf, it can be proven that Qf,ξQ
T
f is an anti-symmetric matrix. Therefore,

there exists a corresponding axial vector κf such that Eq. (1.4) holds. The vector κf = τT + κB

is called as the Darboux vector (refer Chapter II of Kreyszig [14]). It can also be interpreted

as a rotation vector of the Frenet triad for a non-degenerate C3 continuous curve ϕ(ξ) causing

infinitesimal rotation of the triad as we move along the curve. Finally, we present the formula for

the frame invariants (κ, τ) as,

κ(ξ) =
‖∂ξϕ × ∂

2
ξ ϕ‖

‖∂ξϕ‖3
;

τ(ξ) =

(
∂ξϕ × ∂

2
ξ ϕ

)
·

(
∂3
ξ ϕ

)
‖∂ξϕ × ∂2

ξ ϕ‖
2

.

(1.5)

Figure 1.1 illustrates the construction discussed above.

1.2.2 Relatively Parallel Adapted Frame (RPAF): Bishop’s frame

As explained in the last section, a curve may be uniquely framed by Frenet triad if it is

non-degenerate and at least C3 continuous. Richard L. Bishop [10] proposed an alternative curve

framing approach that relaxes the continuity requirement among others. For a curve to be framed

by RPAF, it needs to be at least C2 continuous and regular. We present an argument that justifies

the construction of RPAF.

Let us consider a regular and at least C2 continuous curve. Such a curve guarantees a

non-zero tangent vector. The idea is to device a method to span the plane perpendicular to the

tangent vector (normal plane) such that the two vector fields spanning the normal plane and the
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Figure 1.1: Frenet-Serret frame.

tangent vector forms an orthonormal triad that is continuously varying along the curve. Therefore,

we first define a normal vector field as the vector field that is perpendicular to the tangent vector

T (ξ) of the curve ϕ(ξ). Let χ represent set of all the continuous normal vector field. The aim is

to obtain a unique pair of orthonormal vector fields N1(ξ),N2(ξ) ∈ χ spanning the normal plane.

For the construction of the triad, we assume that the normal vector fields N1(ξ) and N2(ξ) are

perpendicular to each other. Bishop proposed that the normal vector fields N i(ξ) can be obtained

if the total derivative dN i

dξ = ∂ξN i is parallel to the tangent vector field T (ξ) for i = 1,2. Here we

assume that N i is function of the arc-length ξ only. The uniqueness of this field can be guaranteed

by fixing the normal vectors at a fixed arclength ξ10 such that N i(ξ10) = N i0 (called as generators).

Let us call this as the uniqueness criterion and the vector N i0 as the generator.

The vector field N i(ξ) ∈ χ is called as relatively parallel normal field if ∂ξN i is parallel to

the tangent vectorT (ξ). Theorem 1 in Bishop [10] gives continuity and uniqueness requirement of

relatively parallel normal fields. The frame consisting of the tangent vector T (ξ) and two unique
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relatively parallel orthonormal fields N1(ξ),N2(ξ) ∈ χ is called as relatively parallel adapted

frame (RPAF). Theorem 2 in Bishop [10] defines the family of RPAF (we can obtain a unique

frame by invoking the uniqueness criterion). If {T,N1,N2} is a RPAF, we have,
∂ξT

∂ξN1

∂ξN2


=


0 κ1 κ2

−κ1 0 0

−κ2 0 0



T

N1

N2


. (1.6)

It is thus clear that if the regular curve ϕ is Cr continuous with r ≥ 2, the tangent vector is

Cr−1 continuous. Using Eq. (1.6), this fact implies that the normal fields are Cr−1 continuous

(refer Theorem 1 in Bishop [10]). The parameters (κ1, κ2) governs the evolution of the RPAF

and are determined uniquely up to rotation (for properly oriented frame). These parameters

can be determined uniquely by invoking the uniqueness criterion defined above and are called

as the normal development of the curve ϕ. The Darboux vector corresponding to RPAF is

κb = κ1N2 − κ2N1.

For a regular non-degenerate and at least C3 curve, the relationship between Frenet frame

and the RPAF can be summarized as (refer Bishop [10]),

κ2 = κ2
1 + κ

2
2; (1.7a)

τ = ∂ξη; (1.7b)

η = arctan
κ2
κ1
. (1.7c)

Here, η represents the angular deviation of the vectors N and B from the vectors N1 and N2

respectively measured in clockwise direction (refer Fig. 1.2).

Remarks:

Remark 1.5: An arbitrary vector field is relatively parallel if its tangential component is a

constant multiple of the unit tangent field T (ξ) and its normal component is relatively parallel in
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the sense discussed above.

Remark 1.6: In differential geometry, there is a notion of parallel-transport, in which, a

geometric object (say a vector) is said to be parallel transported along a curve in a manifold if

its covariant derivative vanishes (refer chapter 2 of Do Carmo [15]). Two parallel-transported

vector fields do preserve length and relative orientation in Riemannian manifold. However, it must

be noted that the relatively parallel vector field, say M(ξ), is not obtained by parallel-transport

of the normal vector M(ξ10) = M10 along the curve. Therefore, in the author’s opinion, it is

inappropriate and misleading to call RPAF as parallel-transport frame.

1.3 Material frames and finite rotations

1.3.1 Motivation

In numerous practical applications, the idea of curve framing is very useful to model the

geometry of the system. Many times, the frame is required to be attached to the system, thus

justifying the word material in Material frames (MF). The configuration of such a system is

defined by a curve and the frame attached to it. If the frame consists of the tangent vector of the

curve as one of three orthogonal vectors, it is called as an adapted frame. We shall see in a while

that there are systems that require a more general frame that is attached to the curve but do not

contain a tangent vector as a part of the triad (for example, a general director triad). Those are

still material frames, but not material-adapted frames. Unlike the Frenet frame or the RPAF, the

orientation of these frames depends on the parameters defining the configuration of the system

under consideration. Let us explain the idea of the material-adapted frame with some examples.

Consider the non-linear large deformation of a cantilever beam subjected to pure bending

(no shear deformation) and elongation. Such a structure may be modeled by a curve (called the

mid-curve, obtained by joining the cross-sectional centroidal loci along the rod) and the family of
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rigid cross-sections. Euler-Bernoulli beam theory assumes bending as the predominant cause of

deformation and ignores shear and other in-plane and out-of-plane deformations. For such a case,

bending guarantees that the cross-sections of the rod are perpendicular to the tangent vector of

the mid-curve, or in other words, the cross-sections lie on the normal plane of the curve at any

deformed configuration. This is also valid for non-linear Kirchhoff-Love beams that constraints

the cross-section to be perpendicular to the mid-curve. Thus, we need a material-adapted frame

to model such a rod (as we shall see later, this frame will be called as special material adapted

frame SMAF). Todd et al. [16] in their first work on shape reconstruction used SMAF because

bending curvatures and elongation dominate the overall contributions to deformation in case of

slender rods.

Consider a similar rod subjected to torsion along with the bending and elongation. The

cross-sections still lie on the normal plane but they are subjected to rotation about the tangent

vector. Consider another example of a fixed-wing airplane that has three degrees of freedom in

rotation. The configuration of an airplane can be modeled by a curve parametrized with time.

The normalized tangent vector of such curve is along the roll axis, whereas the pitch axis and yaw

axis span the normal plane. We call these kinds of frames as general material adapted frame

(GMAF). If the roll angle in case of an airplane and the torsion deformation in case of rods vanish,

the GMAF reduces to SMAF. In other words, GMAF can be obtained from SMAF by orthogonal

rotation about the tangent vector.

Finally, consider a general example of rod deformation. Let us subject the rod to shear

deformation along with all the other effects discussed before. The inclusion of shear deformation

relaxes the constraint of the cross-section to lie on the normal plane. Therefore, to model such a

structure, we need a frame that contains a vector perpendicular to the cross-section (need not be

along the tangent vector of the curve) and a pair of orthogonal vectors to span the cross-section

(that need not lie on the normal plane but still is subjected to rigid cross-section assumption).

Chadha and Todd [17] and [18] (discussed later in chapter 4) used this framing technique (in
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this case we used Cosserat frame) to generalize the theory of shape sensing to include shear

deformations and Poisson’s in-plane cross-sectional deformation among other effects. In general,

we call this frame as material frame (MF) and not MAF because the tangent vector is not a part of

the triad anymore.

Another interesting application of MF can be realized in the design of a spiral staircase. If

the central column is straight (which is usually the case in practical designs), the tread falls on

the normal plane of the column and the handrail is perfectly spiral, thus MAF is apt to describe

such geometry. However, if the central column is slightly deviated or inclined due to construction

requirements, the tread may no longer be on the normal plane and secondly, the handrail will not

be a perfect spiral anymore. We would need MF to address such geometries.

1.3.2 Finite rotations

In practical applications, the material frames are obtained by finite rotation of the triad

{Ei}. For instance, the Inertial Measurement Unit (IMU) of a dynamic system is always initially

calibrated with respect to some fixed triad, say {Ei}. Before we construct various material frames,

we briefly describe the finite rotation of a vector and an orthonormal triad.

1.3.2.1 Rotation of a vector: Rotation tensor

Finite rotations are represented by an element of a proper orthogonal rotation group SO(3).

The SO(3) manifold is a non-linear compact Lie group that has a linear skew-symmetric matrix

as its Lie algebra, so(3). The Lie algebra to SO(3) represents its tangent plane at the identity

I3 ∈ SO(3). The SO(3) manifold and its Lie algebra so(3) are defined as

SO(3) := {Q : R3 −→ R3 | QTQ = I3, and det Q = 1}; (1.8a)

so(3) := {θ̂ : R3 −→ R3 | θ̂ is linear, and θ̂ + θ̂T
= 03}. (1.8b)
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In the equation above, 03 represents 3× 3 zero matrix, whereas I3 = Ei ⊗ Ei is the identity tensor

with respect to which the director frame field is calibrated. The anti-symmetric tensor θ̂ ∈ so(3)

is equivalent to the associated axial vector θ ∈ R3 in the sense that for any vector v ∈ R3, we

have θ̂.v = θ × v. Therefore, there exist an isomorphism between R3 and so(3). The action of θ̂

onto the vector v (yielding θ̂.v) results into an infinitesimal rotation of the vector v about the unit

vector θ
‖θ‖ by an amount ‖θ‖ (referred to as rotation about θ vector; hence, θ is called an axial

vector). From here on, any matrix quantity with a hat on it (.̂) represents an anti-symmetric matrix.

For later use, we define zero vector as 01 = [0,0,0]T . At this point, we define the Lie-bracket

of two anti-symmetric matrix as [., .] : so(3) × so(3) −→ R3, such that for any â, b̂ ∈ so(3) with

corresponding axial vectors a, b ∈ R3 respectively and any vector v ∈ R3, we have,[
â, b̂

]
= (â. b̂ − b̂. â); (1.9a)[

â, b̂
]
.v = (a × b) × v. (1.9b)

We note two important properties of Lie-bracket:

[â, â] = 03; (1.10a)[
â, b̂

]
= −

[
b̂, â

]
. (1.10b)

Consider a vector V i that is to be rotated to V f by a proper orthogonal tensor Q ∈ SO(3)

such that, V f = Q.V i. The component of the tensor Q represented by the matrix [Q]Ei⊗E j =

Qi j(Ei ⊗ E j) has three independent entries because of the orthogonality constraint: QT .Q = I3.

Therefore, Q can be parametrized by three parameters or a vector in R3. There are multiple ways

for the parametrization of the rotation tensor. We focus on three of them: the Euler Angles, the

quaternions and the Rodrigues rotation formula. We omit the description of Euler angles (that

deals with sequential rotations) for they are straight forward and common. However, we briefly

describe the quaternion approach and Rodrigues rotation formula.
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Rodrigues rotation formula: We first describe Rodrigues rotation approach for finite rotations.

The vector V f can be obtained by rotation of the vector V i about the unit vector nθ = nθiEi by an

angle θ. This enables us to parametrize the rotation tensor Q by means of a vector θ = θnθ , such

that θ = ‖θ‖ and V f = Q(θ).V i. By Rodrigues formula,

V f = (V i + nθ × nθ × V i) + sin θ (nθ × V i) − cos θ (nθ × nθ × V i) . (1.11)

If θ̂ ∈ so(3) represents the spin matrix with the corresponding axial vector θ = θ(nθiEi) = θiEi,

we have,

θ̂ = θ


0 −nθ3 nθ2

nθ3 0 −nθ1

−nθ2 nθ1 0


. (1.12)

We state a useful property associated with Eq.(1.12) as

θ
2 = θ · θ =

1
2
θ̂ : θ̂ =

1
2
Tr

(
θ̂

2)
. (1.13)

The definition of SO(3) in Eq. (1.8a) allows rotation tensor to be parameterized by a rotation

vector θ ∈ R3 (with corresponding anti-symmetric matrix θ̂ ∈ so(3)). The rotation tensor can be

derived using Rodrigues formula (1.11) using the fact that V f = Q(θ).V i, nθ ×V i =
(

1
θ

)
θ̂.V i and

using the MacLaurin expansion of sin θ and cos θ (refer Eq. (29) in Argyris [19]). This brings us

to the definition of exponential map exp : so(3) −→ SO(3) such that,

Q(θ) = I3 +
sin θ
θ

θ̂ +
(1 − cos θ)

θ2 θ̂
2
=

∑
i≥0

θ̂
i

i!
= exp

(
θ̂
)

; (1.14a)

QT (θ) = Q−1(θ) = I3 −
sin θ
θ

θ̂ +
(1 − cos θ)

θ2 θ̂
2
= exp

(
−θ̂

)
. (1.14b)

Here θ̂0
= I3. Subtracting Eq. (1.14b) from (1.14a), we obtain the associated anti-symmetric

matrix θ̂ as,

θ̂ =
θ

2 sin θ

(
Q − QT

)
. (1.15)
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Taking trace of Q in Eq. (1.14a) and using the result in Eq. (1.13), we get another important

relation:

cos θ =
trace(Q) − 1

2
. (1.16)

The exponential map is a local homeomorphism in the neighborhood of identity I3 ∈ SO(3)

for θ ∈ [0, π). The local homeomorphism of exp map guarantees the existence of a unique

inverse of exponential map in the neighborhood of I3 ∈ SO(3), called the logarithm map

log : SO(3) −→ so(3), such that

log (Q(θ)) = log(exp(θ̂)) = θ̂ ∈ so(3). (1.17)

The norm of logarithm map is defined as the Euclidean norm of the associated rotation vector as

‖log (Q(θ)) ‖ = θ =
√

1
2
Tr

(
θ̂.θ̂

)
. (1.18)

Equation 1.18 above defines a metric that is useful in measuring errors in the director triad. The

rotation tensor can also be represented by means of unit quaternion. For a detailed discussion

on finite rotation, refer to Argyris [19], Ibrahimbegovic [20] and Diebel [21]. Section 1.3.2.2

discusses local homeomorphism of exponential maps.

Unit quaternions Another approach to capture finite rotations is by using unit quaternions. In

general, a quaternion is a 4-tuple q = q0 + q1i + q2 j + q3k, where qi ∈ R, such that,

i2 = j2 = k2 = i j k = −1;

i j = k, ji = −k;

j k = i, k j = −i;

ki = j, ik = − j .

(1.19)

The first of the equations mentioned above has a special significance in the history of mathematics

(refer to [22]). The relationship between a complex number and plane geometry inspired William
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Rowan Hamilton to find a higher dimensional number that can be associated with 3D geometry.

Hamilton realized need of 4-tuple (not a triplet) to establish a 4D algebra that can be related to 3D

geometry, that he called quaternions.

The multiplication between two quaternion (called Hamilton product) can be carried

in a way similar to the complex numbers using the properties in Eq. (1.19). Unlike complex

numbers, the multiplication of quaternion is non-commutative. The conjugate, norm and inverse

of a quaternion are defined as:

conjugate : q∗ = q0 − q1i − q2 j − q3k;

norm : ‖q‖ =
√

qq∗ =
√

q2
0 + q2

1 + q2
2 + q2

3;

inverse : q−1 =
q∗

‖q‖2
.

(1.20)

To establish the relationship between a quaternion and 3D geometry, Hamilton suggested

considering quaternion to be consisting of a scalar and a vector (the terms that he proposed), such

that q = (q0, q). For two quaternion q = (q0, q) and a = (a0, a), the quaternion sum, Hamilton

product, conjugate and norm are then given by:

q + a = (q0 + a0, q + a);

qa = (q0a0 − q · a,q0a + a0q + q × a);

q∗ = (q0,−q);

‖q‖ =
√

q2
0 + q · q.

(1.21)

We can consider a vector V i as a pure quaternion Vinitial = (0,V i). A unit quaternion qu = (q0, q)

with ‖qu‖ = 1 can be used to rotate vector V i to V f (with the associated pure quaternion

Vfinal = (0,V f)), such that,

Vfinal = qu.Vinitial.q∗u = (0,Q(qu).V i);

V f = Q(qu).V i.

(1.22)
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The rotation tensor Q can be parametrized by a unit quaternion qu. If V i = Vi jE j and q = qiEi,

then using Eq. (1.22), we get

[Q(qu)]Ei⊗E j = 2


q2

0 + q2
1 − 0.5 q1q2 − q0q3 q0q2 + q1q3

q0q3 + q1q2 q2
0 + q2

2 − 0.5 q2q3 − q0q1

q1q3 − q0q2 q0q1 + q2q3 q2
0 + q2

3 − 0.5


. (1.23)

We can parametrize the unit quaternion using the rotation vector θ. Notice from Eq. (1.23) that

the trace (Q(qu)) = 4q2
0 − 1. A trace being an invariant of a tensor implies (from Eq.(1.16)) that

4q2
0 − 1 = 2 cos θ + 1;

q0 =

√
cos θ + 1

2
.

(1.24)

Thus, there exist two possible and equivalent qu leading towards same rotation. The qu with

q0 > 0 implies 0 < θ ≤ π about the axis nθ and the one with q0 < 0 represents rotation about the

axis −nθ with the magnitude 2π − θ, representing same rotation. We call this property as the

equivalence of the unit quaternion and its negative or double cover.

Lets consider q0 = cos
(
θ
2

)
. The unity quaternion constraint implies

qu(θ) =
(
cos

(
θ

2

)
, sin

(
θ

2

)
nθ

)
. (1.25)

This representation, sometimes called as rotation vector representation, satisfies the unit quaternion

constraint and is same as the Rodrigues rotation.

The equivalence of the unit quaternion and its negative in representing rotation was

exploited by Klumpp [23] to extract the quaternion from the component of rotation tensor without

any singularity. Spurrier [24] recognized the Klumpp’s algorithm to be sensitive to numerical

imprecision and proposed a modified algorithm, now popularly known as Spurrier’s algorithm.

The primary disadvantage of representing the rotation using Euler angle formulation is

its dependence on the sequence of angles considered and singularities arising due to gimbal
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lock. Unit quaternion approach completely gets rid of this singularity but is subjected to the unit

quaternion constraint. There is plenty of excellent literature to which one may refer for further

understanding of rotations (for example, [19], [20], [25] and [21]). The work by Diebel [21]

serves as an excellent resource that describes all these approaches and establishes relationships to

obtain one form from the other.

1.3.2.2 On many-to-one nature and local homeomorphism of exponential map

As discussed in section 1.3.2.1, the exponential map is a mapping from Lie algebra so(3)

to Lie group SO(3). However, the exponential map is not bijective. For a given θ̂ ∈ so(3), there is

a unique Q(θ) = exp(θ̂) ∈ SO(3) (thus surjective), however, for a given Q(θ) = exp(θ̂) ∈ SO(3),

there are many possible θ̂ ∈ so(3) (hence not injective). For example, for θ1 = θnθ and

θ2 = (θ + 2nπ)nθ with n being an integer, Q(θ1) = Q(θ2). However, if we restrict θ ∈ [0, π), we

obtain a local homeomorphism in the exponential map as explained below.

Let us start our discussion by restricting θ ∈ [−π, π). For this case every rotation tensor

identifies a unit vector as ±nθ (unique up to a multiple of ±1) except at θ = −π, in which case

nθ is unique. Thus, the rotation angle and unit vector combination (θ, nθ) and (−θ,−nθ) defines

same rotation vector. This fact looks trivial because θ = θnθ, however, it forbids us to uniquely

define a unit rotation vector nθ.

To uniquely define the unit rotation vector nθ, we restrict θ to positive value θ ∈ [0, π).

At θ = 0, the unit vector nθ can be any arbitrary vector but θ = 0 and the corresponding

rotation tensor is Q = I3. At θ = π, there are two possible unit vectors ±nθ (thus, the map

is not homeomorphic for θ = π). Thus the exponential map is local homeomorphism in the

neighborhood of I3 such that θ ∈ [0, π).

From equation (1.16), Tr(Q) = −1 at θ = π. Therefore, the logarithmmap is a well-defined

continuous map if Tr(Q) , −1 and θ ∈ [0, π). Equation (1.15) can be used to obtain logarithm

of rotation tensor (the associates spin matrix), however, as θ approaches 0 and π radians, Eq
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(1.15) becomes unstable as sin θ vanishes. Spurrier’s algorithm [24] can be used to extract

the quaternions and the associated rotation vector. Spurrier’s algorithm gives θ ∈ [0, π] and

restricts quaternion component q0 ≥ 0. However, at q0 = 0 or equivalently θ = π, there are two

possible unit vectors. The quaternions are related to the rotation vector θ = θnθ by the following

relationships:

θ = 2 arcsin
(√

q2
1 + q2

2 + q2
3

)
= 2 arccos(q0);

nθi =
qi√

q2
1 + q2

2 + q2
3

.
(1.26)

1.3.2.3 Rotation of a triad: rotation matrix

The entity Q discussed in previous section, transforms one vector to another. Therefore, it

is a tensor. However, consider a properly orthonormal triad {di} such that di = Q.Ei. We can

then obtain direction cosine matrix R such that, [d1, d2, d3]
T = R.[E1,E2,E3]

T . The component

of matrix Ri j = di · E j = Q ji. Here, Q ji represents E j ⊗ Ei component of the rotation tensor Q.

It can be observed that R = [Q]TEi⊗E j
. Notice that R is a matrix whereas Q is a tensor.

1.3.3 Construction of material-adapted and material frames

In this section, we construct these frames by carrying finite rotations of the fixed orthogonal

triad {Ei} using Euler angle approach. We use the following notations: cos θ = cθ and sin θ = sθ,

for any angle θ.

1.3.3.1 Special material adapted frame: SMAF

Consider a regular and at least C2 continuous curve ϕ(ξ). Let Qs ∈ SO(3) be the

rotation tensor that generates SMAF consisting of orthonormal triad {T,Y s,Ps}, such that

Ps · E2 = 0. This can be obtained by first rotating the frame {Ei} about E2 by an angle φy

(yaw angle) and then rotating about the updated E3 by an angle φp (pitch angle). Thus, if,
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Qs = T ⊗ E1 + Y s ⊗ E2 + Ps ⊗ E3, then,


T

Y s

Ps


=

[Qs]
T
Ei ⊗E j︷                           ︸︸                           ︷

cφpcφy sφp −cφp sφy

−sφpcφy cφp sφp sφy

sφy 0 cφy



E1

E2

E3


. (1.27)

Here, Y s and Ps represent the yaw and pitch axis respectively.

The fact that Ps(ξ) · E2 = 0 or Ps(ξ) lies in E1 − E3 plane is advantageous in practical

standpoint. This is because Ps(ξ) acts as a reference vector in the normal plane with respect to

which, the torsion angle or the roll angle and the shear angles can be defined to obtain GMAF and

MF. Note that we can define another special case in which only one angle is non-zero (either pitch

or yaw angle). However, that would define a curve in the 2D plane, hence it is not desirable for

spatial curves.

1.3.3.2 General material adapted frame: GMAF

Rotating SMAF about the tangent vector by an angle φr (roll angle) gives us GMAF

consisting of orthonormal triad {T ,Y g,Pg}, obtained by finite rotation of {Ei} by the rotation

tensor Qg, such that Qg = T ⊗ E1 + Yg ⊗ E2 + Pg ⊗ E3. Thus,


T

Y g

Pg


=

[Qg]
T
Ei ⊗E j︷                                                                 ︸︸                                                                 ︷

cφpcφy sφp −cφp sφy

−cφr cφy sφp + sφr sφy cφpcφr cφy sφr + cφr sφp sφy

cφy sφp sφr + cφr sφy −cφp sφr cφr cφy − sφp sφr sφy



E1

E2

E3


. (1.28)

This sequence of rotations falls under Tiat-Bryan intrinsic rotation with the sequence yaw first,

pitch second, and roll third.
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1.3.3.3 Material frames: MF

As discussed in section 1.3.1, we might encounter a situation in which the plane of interest

need not be normal to the curve. Consider a general orthogonal triad {di} such that the vector d1

is not along the tangent vector of the curve T and the vectors {d2, d3} spans a plane normal to d1.

For instance, a cross-section of a beam subjected to shear is not normal to the tangent vector or a

rigid swarm of drones need not be perpendicular to the direction of motion. In such instances,

MF are desirable.

Consider a general orthonormal frame {di} with its origin at some point on the curve. It

can be obtained from finite rotation of the frame {Ei} such that di = Qm.Ei or from any other

triad, say SMAF using the rotation tensor Qms (the subscript“ms” implies material-frame relative

to special material adapted frame) such that,

Qm =

3∑
i=1

di ⊗ Ei;

Qms = d1 ⊗ T + d2 ⊗ Y s + d3 ⊗ Ps;

Qm = Qms.Qs.

(1.29)

1.4 Curvature of an evolving frame

1.4.1 Curvatures of a general material frame

Let us consider the material frame {di}. The frame is a function of the quantity

parameterizing the curve under consideration. The choice of parameter is problem-dependent.

For instance, the frame attached to a UAV is evolving with time. Similarly, a frame representing

the orientation of a cross-section of a beam varies along the arclength of the deformed beam or

the frame attached at a fixed cross-section of a cable changes with time when the cable undergoes

dynamic deformation. The change of directors relative to the parameter gives local information
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about the deviation of the configuration of the system at a point. For instance, the curvature κ of

the Frenet frame gives the deviation of the curve from its tangent vector at the given arclength.

The derivative of the director triad {di} with respect to the arclength parameter ξ is

obtained using the Eq. (1.29) as,

∂ξ d = ∂ξQm.Ei = ∂ξQm.Q
T
m.di = κ̂ .di = κ × di . (1.30)

Since QT
m.Qm = I3, it can be proved that κ̂ = ∂ξQm.Q

T
m is anti-symmetric with corresponding

axial vector κ. Here, κ = κiEi = κidi, represents the Darboux vector of the frame when

parameterized by the arclength ξ. Note that the overline on the components κi represents the

component of the Darboux vector in the MF. In matrix form,


∂ξ d1

∂ξ d2

∂ξ d3


=

κ̂T︷                 ︸︸                 ︷
0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0



d1

d2

d3


. (1.31)

1.4.1.1 Curvature terms of Frenet frame

The fact that the tangent vector T (ξ) depends on the pitch φp and yaw angle φy, enables

us to represent the Frenet frame in terms of these functions. With the rotation about E2 first

followed by the rotation about the updated E3, and using the results discussed in section 1.2.1, the

following results can be obtained:

ϕ(ξ) = ϕ(0) +
∫ ξ

0
T (s) ds; (1.32a)

κ2 = (∂ξφp)
2 + (∂ξφy)

2c2
φp

; (1.32b)

τ =

(
1
κ2

) (
∂ξφy .

(
2sφp (∂ξφp)

2 + cφp
(
cφp sφp (∂ξφy)

2 + ∂2
ξ φp

))
− cφp .∂ξφp.∂

2
ξ φy

)
; (1.32c)
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[Qf]
T
Ei⊗E j

=

(
1
κ

) 
κcφpcφy κsφp −κcφp sφy

−cφy sφp .∂ξφp − cφp sφy .∂ξφy cφp .∂ξφp sφp sφy .∂ξφp − cφpcφy .∂ξφy

sφy .∂ξφp − cφpcφy sφp .∂ξφy c2
φp
.∂ξφy cφy .∂ξφp + cφp sφp sφy .∂ξφy


.

(1.32d)

1.4.1.2 Curvature terms of SMAF and GMAF

From Eqs. (1.27) and (1.30), we arrive at the Darboux vector for the SMAF κs =

κs1T + κs2Y s + κs3Ps such that,

κs1 = sφp .∂ξφy; κs2 = cφp .∂ξφy; κs3 = ∂ξφp. (1.33a)

‖κs‖
2 = (∂ξφp)

2 + (∂ξφy)
2; (1.33b)

κ2 = κ2
s2 + κ

2
s3. (1.33c)

Similarly, from Eqs. (1.28) and (1.31), we arrive at the Darboux vector for the GMAF,

κg = κg1T + κg2Y g + κg3Pg such that,

κg1 = ∂ξφr + sφp .∂ξφy = ∂ξφr + κs1; (1.34a)

κg2 = cφpcφr .∂ξφy + sφr .∂ξφp = κs2cφr + κs3sφr ; (1.34b)

κg3 = cφrφp,ξ − cφp sφrφy,ξ = −κs2sφr + κs3cφr ; (1.34c)

‖κg‖
2 = (∂ξφ

2
p + ∂ξφ

2
y + ∂ξφ

2
r ) + 2sφp .∂ξφr .∂ξφy . (1.34d)

It is interesting to note from above relations that
κg1

κg2

κg3


=


1 0 0

0 cφr sφr

0 −sφr cφr



κs1

κs2

κs3


+


∂ξφr

0

0


. (1.35)
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The expression for the curvature can be obtained in terms of unit quaternion using Eq. (1.23).

κg1 = 2
(
−q1.∂ξq0 + q0.∂ξq1 + q3.∂ξq2 − q2.∂ξq3

)
; (1.36a)

κg2 = 2
(
−q2.∂ξq0 − q3.∂ξq1 + q0.∂ξq2 + q1.∂ξq3

)
; (1.36b)

κg3 = 2
(
−q3.∂ξq0 + q2.∂ξq1 − q1.∂ξq2 + q0.∂ξq3

)
. (1.36c)

Similarly, the expression of curvature vector can be expressed in terms of Rodriguez parameters

by using Eqs. (1.12) and (1.14a) or alternatively by substituting q0 = c(θ/2),qi = s(θ/2)nθi where

i = 1 − 3, in equations (1.36a), (1.36b) and (1.36c).

κg1 = sθ.∂ξnθ1 + (1 − cθ)(nθ3.∂ξnθ2 − nθ2.∂ξnθ3) + nθ1.∂ξθ; (1.37a)

κg2 = sθ.∂ξnθ2 + (1 − cθ)(nθ1.∂ξnθ3 − nθ3.∂ξnθ1) + nθ2.∂ξθ; (1.37b)

κg3 = sθ.∂ξnθ3 + (1 − cθ)(nθ2.∂ξnθ1 − nθ1.∂ξnθ2) + nθ3.∂ξθ. (1.37c)

1.4.2 RPAF and Frenet frame as GMAF

The RPAF can be considered as GMAF with φr = ρb representing the rotation of the

normal vectors N1 and N2 from the vector Y s and Ps respectively, in a constrained fashion. It is

clear from Eqs. (1.6) and (1.31) that the constraint over RPAF is κg3 = 0. With this constraint in

mind, we can obtain the roll angle field ρb(ξ) for the RPAF by using Eq. (1.34a). We have

ρb(ξ) = ρb(0) −
∫ ξ

0
κs1(k)dk . (1.38)

Fixing the value of ρb(0) provides uniqueness to the RPAF. From Eqs. (1.34b) and (1.34c), we

can arrive at the expression of the normal development (or curvatures) of RPAF in terms of the

Euler angles associated with the GMAF as

κ1 = −κg2 |(φr=ρb) = −κs3sρb − κs2cρb; (1.39a)

κ2 = κg3 |(φr=ρb) = κs3cρb + κs2sρb . (1.39b)
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Substituting for κ1 and κ2 from the results obtained in Eqs. (1.39a) and (1.39b) into the Eq. (1.7a)

yields the result in Eq. (1.33c). Using equations (1.39a) and (1.39b) along with the result in

(1.7c), we arrive at an important relationship between the angle ρb and η, thus enabling us to

express Frenet frame as a GMAF (refer Fig. 1.2).

tan ρb = −
(
κs2 + κs3 tan η
κs3 + κs2 tan η

)
. (1.40)

We can independently arrive at the angle (φr = ρf) subtended by the vectors N and B with Y s and

Ps respectively by imposing a constraint κg2 = 0 on GMAF such that,

tan ρf = −
κs2
κs3
= tan (η + ρb). (1.41)

We note that the results obtained in Eqs. (1.40) and (1.41) are consistent. Figure 1.3 shows a curve

Figure 1.2: The orientation of various adapted frames in the normal plane.

with the point of inflection marked by a dot, the red vectors representing the tangent vector field

and the circles representing the normal plane to the curve. In Fig. 1.3a, the solid green and blue

arrows represent Y s and Ps field, whereas the dotted green and blue vectors stand for N1 and N2

respectively. Similarly, the green and blue vectors in Fig. 1.3b show N and B respectively. Figure

1.3a and 1.3b shows that the SMAF and RPAF (obtained using Eq. (1.38) and setting ρb(0) = 0)
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are continuous whereas the Frenet frame is not uniquely defined at the point of inflection and the

normal vector (binormal vector as well) abruptly changes its orientations at the inflection point.

(a) SMAF and RPAF (dashed arrows) (b) Frenet frame

Figure 1.3: Example of a curve with the point of inflection (marked by a black dot), SMAF,
RPAF, and Frenet frames.

1.5 Summary

This chapter details various approaches to curve framing. After a brief discussion on

Frenet and RPAF frame and their continuity requirements, the construction of general material

frame MF is delineated. Three approaches to parameterize finite rotations: Euler angle approach,

unit quaternion, and Rodrigues rotation formula are discussed. The relationship between the

curvature tensor of various frames is obtained.

This chapter is fundamental to the forthcoming chapters. The curve framing techniques

discussed here are directly used in chapter 2 to develop path estimation methodology and to

investigate applications of framed space curves in computer graphics. Chapter 3 is the theoretical

extension of the current chapter, dealing with higher-order derivatives of curvature of material

frames. We exploit the material frames discussed in this chapter to develop generalized kinematics
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of geometrically-exact beams in chapters 4 and 5. The shape reconstruction technique detailed in

chapter 6 uses the results presented in this chapter and chapter 4. Chapters 7–10 establishes the

mechanics of geometrically-exact beams modeled using a material-framed space curve.

The discussion carried out in this chapter has been published in Computers & Structures

Journal, Mayank Chadha and Michael D. Todd [26], 2019. The title of this paper is “On the

material and material-adapted approaches to curve framing with applications in path estimation,

shape reconstruction, and computer graphics”. The dissertation author is the primary investigator

and the author of this paper.
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Chapter 2

Path Estimation and Computer Graphics

2.1 Introduction

In this chapter, we investigate the configuration and state space of a single-manifold

characterized system, that can be modeled using framed space curves. We derive the evolution

equations of the material frames and illustrate an algorithm to estimate a smooth framed curve

using a limited set of curvature data. This estimation technique is very useful for structural

monitoring of slender structures like pipelines (discussed in chapter 6) or for path estimation

of underwater drones, where the data is scarce due to challenges associated with underwater

communication. We illustrate various interpolation approaches here. One of the approaches that

have a closed-form solution is smooth patch estimation and gluing technique (SPEG) that involves

C−1 estimation of the material linear and angular velocity data (or equivalently cross-sectional

strain and curvature in case of a beam). We develop curvature-dependent local shape functions

(for a given segment or patch of the curve) and “glue” these patches together such that the global

solution obtained is smooth. Another higher-order interpolation of the input curvature data to

numerically obtain the configuration space is also discussed. The accuracy of the estimated

curve depends on the quality of the curvatures data set and the interpolation method that was
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used to estimate the path. We illustrate the application of this algorithm to estimate the path of

a moving object or swarm of drones using a limited set of data obtained from the sensors (like

Inertial Measurement Units (IMU), strain gauges, etc.). We illustrate the application of the frames

discussed in chapter 1 towards the generation of certain structures: double helix intertwining a

space curve (like DNA), a leaf and a plant.

2.2 Configuration and state space of single-manifold charac-

terized systems

2.2.1 Tangent space and tangent bundle of the configuration space

Consider a rigid body, the configuration of which is defined by a space curve ϕ and the

vector triad field {di} that defines the orientation of the rigid body under motion. Thus, the

configuration space C := R3 × SO(3) ≡ SE(3) defines such systems and is parameterized by a

single-parameter (time in case of rigid body motion). Here SE(3) is the special Euclidean group,

that defines rigid body motion. Thus,

Φ(t) :=
{
(ϕ(t),Q(t)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)

}
⊂ C. (2.1)

In the equation above, R+ represents set of non-negative real number. If ξ(t) ∈ R+ represents the

total distance travel at time t ∈ R+, the linear velocity is defined as ∂tξ = v(t).

Consider the curve parameterized by the arc length ξ. For any Φ(ξ) ∈ C, we define the

tangent space TΦC as,

TΦC :=
{(
∂ξϕ, ∂ξQ

)
| ∂ξϕ : R+ −→ R3, ∂ξQ = κ̂ .Q : R+ −→ TQSO(3)

}
. (2.2)

Here, TQSO(3) refers to the tangent plane of the non-linear manifold SO(3) at Q such that

∂ξQ ∈ TQSO(3). We recall that κ̂ = ∂ξQ.QT is an anti-symmetric matrix with the axial vector
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κ(ξ). If the rotation tensor Q is parameterized by the rotation vector θ = θnθ as shown in the

section 1.3.2, then using Eq.(1.14b) the following relationship can be obtained,

κ̂ = ∂ξexp(θ̂).exp(−θ̂) =
(
sin θ
θ

)
∂ξ θ̂ +

(
1 − cos θ

θ2

) [
θ̂, ∂ξ θ̂

]
+ (θ.∂ξθ)

(
θ − sin θ
θ3

)
θ̂. (2.3)

Using Eq. (2.3) and the definition of Lie bracket in Eq. (1.9), we obtain the corresponding axial

vector (the curvature vector) as:

κ = Tθ.∂ξθ;

Tθ =

(
sin θ
θ

)
I3 +

(
1 − cos θ

θ2

)
θ̂ +

(
θ − sin θ
θ3

)
θ ⊗ θ.

(2.4)

similarly, we have,

∂ξθ = T
−1
θ
.κ;

T−1
θ
=

(
1
2

θ

tan θ
2

)
I3 −

θ̂

2
+

1
θ2

(
1 −

1
2

θ

tan θ
2

)
θ ⊗ θ.

(2.5)

Readers can refer to Ibrahimbegovic et al. [20] for the derivation of T−1
θ
. In the above equations θ̂

and θ̂ represents the spin matrix associated with the vector ∂ξθ and θ respectively.

Therefore, with slight abuse of notation, we define an abused but equivalent tangent space

as,

TΦC ≡
{
Φ̃ =

(
∂ξϕ,κ

)
| ∂ξϕ : R+ −→ R3, κ : R+ −→ R3} ⊂ R3 × R3. (2.6)

A one-to-one correspondence between R3 and so(3) justifies this abuse of notation. The state

space of the problem is defined by the tangent bundle TC of the configuration space C defined as,

TC :=
{(
Φ, Φ̃

)
| Φ ∈ C, Φ̃ ∈ TΦC

}
. (2.7)

From Eqs. (2.6) and (2.7) it is clear that the state space is defined by the set
(
ϕ, {di}, ∂ξϕ,κ

)
.

It is interesting to interpret the curvature vector κ and the derivative of the rotation vector

∂ξθ from a physical viewpoint. At an arc-length ξ, the director triad {di(ξ)} rotates about the
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vector κ(ξ).dξ to yield the triad at {di(ξ +dξ)}. The triad {di(ξ)} and {di(ξ +dξ)} are obtained by

finite rotation of the frame {Ei} about the rotation vector θ(ξ) and θ(ξ + dξ) = θ(ξ) + ∂ξθ(ξ).dξ

respectively. In terms of the exponential map,

Q(ξ + dξ) = exp(κ̂(ξ).dξ).Q(ξ) = exp(κ̂(ξ).dξ).exp(θ̂(ξ));

Q(ξ + dξ) = Q(θ(ξ + dξ)) = exp(θ̂(ξ) + ∂ξ θ̂(ξ).dξ).
(2.8)

2.2.2 Material and spatial representation of curvature (or equivalently

angular velocity and the associated spin tensor)

We define the quantity κ̂ = QT .κ̂ .Q ∈ TI3 SO(3) := so(3) obtained by parallel transport

of κ̂ .Q from TQSO(3) −→ so(3). Thus, if Q = di ⊗ di, such that di = Q.Ei, then Q represents

the finite rotation, whereas κ̂ represents an infinitesimal rotation with respect to the calibrating

frame of reference {Ei}. Whereas, Q.κ̂ = κ̂ .Q represents infinitesimal rotation with respect to

{di} frame. In the physical context of rotation, the tangent vector Q.κ̂ and κ̂ .Q performs an

infinitesimal rotation with respect to {di} frame but the quantity Q.κ̂ is obtained by left translation

of the quantity κ̂ ∈ so(3) to Q.κ̂ ∈ TQSO(3), whereas, κ̂ .Q represents the superimposition of

infinitesimal rotation contributed by K onto the finite rotation contributed by Q (this is also called

as right translation of κ̂ ∈ so(3) to the tangent vector κ̂ .Q ∈ TQSO(3)). The former kind of tangent

vector fields are known as left-invariant and the later as right-invariant fields. We also observe

that,

[κ̂]di⊗d j
=

[
κ̂
]
Ei⊗E j

=


0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0


. (2.9)

Let κ and κ represent the axial vector corresponding to the anti-symmetric matrix κ̂ and κ̂

respectively. It can then be proved that κ = QT .κ such that if κ = κidi, then κ = κiEi. As in

continuum mechanics, we call the quantities κ̂ and κ as material representation; and κ̂ and κ are

30



the spatial representation of the curvature tensor and the curvature vector respectively. Figures

2.1 and 2.2 provide a physical and geometric interpretation of the discussions carried out in this

section.

Figure 2.1: Finite and infinitesimal rotations and the flowchart of various transformations.

2.2.3 Linear and angular velocity of rigid body

A regularCr continuous curve ϕ(ξ) parametrized by the arclength ξ can be re-parametrized

by another variable t (say time) such that ξ = ξ(t) is at least C1 continuous and dξ
dt , 0. We define

linear velocity of the curve as,

∂tϕ =
∂ϕ

∂ξ

dξ
dt
=

dξ
dt
T = v(t)T = vidi . (2.10)

The scalar v(t) = dξ
dt =

√
v2

1 + v
2
2 + v

2
3 gives the magnitude of linear velocity vector at time t.

The angular velocity vector ω is related to the evolution of the frame when the curve is

parameterized by time. Let us consider the derivative of the director triad {di(t)} with respect to

time t. From Eq. (1.29), we have,

∂tdi = ∂tQ.Ei = ∂tQ.Q
T .di = ω̂(t).di = ω(t) × di(t). (2.11)
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Figure 2.2: Geometric representation of the finite and infinitesimal rotations, curvature tensor κ̂,
and the projection from the tangent plane TQSO(3) to the manifold SO(3) using the exponential
map.

The fact that κ̂ = ∂tQ.Q
T implies that ω̂(t) = v(t)κ̂(ξ(t)) or ω(t) = v(t)κ(ξ(t)). Thus,

∂td1

∂td2

∂td3


= v(t)


0 κ3(ξ(t)) −κ2(ξ(t))

−κ3(ξ(t)) 0 κ1(ξ(t))

κ2(ξ(t)) −κ1(ξ(t)) 0



d1

d2

d3


=


0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)

ω2(t) −ω1(t) 0



d1

d2

d3


.

(2.12)

Note that ω = ωidi = ωiEi, we have [ω1,ω2,ω3]
T = [Q]Ei⊗E j .[ω1,ω2,ω3]

T . Similar to the

curvature tensor discussed in section 2.2.2, we summarize following relationship associated with

the angular velocity vector ω and the tensor ω̂:

ω̂ = −εi j kωk(di ⊗ d j);

ω̂ = QT .ω̂.Q = −εi j kωk(Ei ⊗ E j); ω = QT .ω

ω.Q ∈ TQSO(3) and ω̂ ∈ so(3).

(2.13)
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2.3 Estimating global framed curve from limitedmaterial cur-

vature and velocity data

We motivate the problem statement by a real-life example. Consider a moving rigid body

with mid-curve and director triad parametrized with time. From section 2.2.3, the system is

governed by the following set of differential equations

∂tϕ

∂td1

∂td2

∂td3


= v(t)



0 T · d1 T · d2 T · d3

0 0 κ3 −κ2

0 −κ3 0 κ1

0 κ2 −κ1 0





ϕ

d1

d2

d3


=



0 v1 v2 v3

0 0 ω3 −ω2

0 −ω3 0 ω1

0 ω2 −ω1 0





ϕ

d1

d2

d3


. (2.14)

In this section, we attempt to obtain estimated state space from discrete linear velocity (equivalently

axial strain in case of beams) and angular velocity (or equivalently Darboux or curvature vector in

case of beams). This would involve integrating equation 2.14. We assume the initial condition at

t = 0 as ϕ(0) = 0 and di(0) = di0 = Ei . There is no loss of generality in considering the initial

condition di0 as our reference frame. We assume that we have the data for linear and angular

velocity expressed in {di} frame at time steps tn such that v(tn) = vn, ω(tn) = ωn (with ω̂n being

corresponding material spin matrix) and n = 1,2,3, ...,N . The frame {di} is to be approximated

using Eq. (2.14). However, knowing the component of spatial quantity in current frame {di}

naturally gives the associated material quantity as is clear in Eqs. (2.9) and (2.13). This is the

key observation that is exploited to develop the estimation algorithm discussed in the upcoming

section.

The idea is to approximate the material linear and angular velocity (recall R3 and so(3)

are linear spaces). We use these interpolated quantities to estimate our state space. From here on,

the component of any material quantity will be expressed in {Ei} frame. Thus, for simplicity, we

write
[
ω̂

]
Ei⊗E j

= ω̂.
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2.3.1 Smooth Patch Estimation and Gluing technique (SPEG)

In this approach, we discretized the total time span into N patches (n = 1,2, ...,N) or

segments with center of the segment n being at tn (except for the first and last segment). We

consider the co-rotated derivatives of linear velocity and the angular velocity to vanish for each

patch. Equivalently, we truncate the Taylor series expansion of the velocity fields about tn to zeroth

order, thereby reducing the system of differential equations (2.14) into a constant-coefficient

system such that the solution of the differential equation gives an approximated configuration

Φh
n = (ϕ

h
n,Q

h
n) ≡ (ϕ

h
n, {d

h
in}) ∈ C valid in the patch n. Therefore, N segments would involve

solving for 12N constants of integration. Imposing continuity in the (ϕ, {di}) fields at the boundary

between the segments gives 12(N − 1) constraints, and an appropriate boundary condition gives

the additional 12 conditions. We obtain a solution for nth segment as

ϕh
n(t) = An1 + An2t + An3 sinωnt + An4 cosωnt;

dh
in(t) = Bni1 + Bni2t + Bni3 sinωnt + Bni4 cosωnt.

(2.15)

In the above equation ωn = ‖ωn‖. We represent the vector coefficients in Eq. (2.19) in a more

desirable form given below,[
[An1]{Ei}, [An2]{Ei}, [An3]{Ei}, [An4]{Ei}

]
3×4 = [Cn]3×4[An]4×4; (2.16a)[

[Bni1]{Ei}, [Bni2]{Ei}, [Bni3]{Ei}, [Bni4]{Ei}

]
3×4 = [Cn]3×4[Bin]4×4. (2.16b)

In the equation above, the notation [Anj]{Ei} = [Anj · E1, Anj · E2, Anj · E3]
T , represents the

component of the coefficient vector [Anj]{Ei} in {Ei} frame. Therefore, the approximated solution

is expressed in {Ei} frame (note that the boundary conditions were expressed in {Ei} frame).

The matrix [Cn] represents the 12 constants of integration corresponding to nth patch and is

determined using continuity conditions or the boundary conditions. The matrices [An] and [Bin]

(for i = 1,2,3) contains coefficients that are function of the discrete velocity data vn and ωn and
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are given as,

[An] =



(ωn×vn)·E1
ω2
n

(vn·ωn).(ωn·E1)

ω2
n

−
(ωn×ωn×vn)·E1

ω3
n

−
(ωn×vn)·E1

ω2
n

(ωn×vn)·E2
ω2
n

(vn·ωn).(ωn·E2)

ω2
n

−
(ωn×ωn×vn)·E2

ω3
n

−
(ωn×vn)·E2

ω2
n

(ωn×vn)·E3
ω2
n

(vn·ωn).(ωn·E3)

ω2
n

−
(ωn×ωn×vn)·E3

ω3
n

−
(ωn×vn)·E3

ω2
n

1 0 0 0


; (2.17)

[Bin] =



(di0+ωn×ωn×di0)·E1
ω2
n

0 (di0×ωn)·E1
ωn

−
(ωn×ωn×di0)·E1

ω2
n

(di0+ωn×ωn×di0)·E2
ω2
n

0 (di0×ωn)·E2
ωn

−
(ωn×ωn×di0)·E2

ω2
n

(di0+ωn×ωn×di0)·E3
ω3
n

0 (di0×ωn)·E3
ωn

−
(ωn×ωn×di0)·E3

ω2
n

0 0 0 0


. (2.18)

Equation (2.15) yields a helix (which is smooth). This is commensurate with Mozzi–

Chasles’s theorem, the equivalent statement of which for this case would be: ‘the motion of a

rigid body with the co-rotational derivative of linear and angular velocity vanishing, is a screw

(or helix) motion’.

We glue the solution of each patch using heavy side function (as shown in (2.19)) such

that the global approximated configuration Φh = (ϕh, {dh
i }) ∈ C is continuous at the point of

gluing, thus justifying the name smooth patch estimation and gluing technique (SPEG).

ϕh(t) =
N∑

n=1
ϕh

n(t)
[
H(t − t̂n−1) − H(t − t̂n)

]
;

dh
i (t) =

N∑
n=1

dh
in(t)

[
H(t − t̂n−1) − H(t − t̂n)

]
.

(2.19)

In the equation above H(.) represents Heaviside function and t̂n represents the right boundary of

nth segment (such that t̂n−1 < t̂n), with t̂0 = 0.

Interestingly, a closed-form solution of the director triads can be arrived without solving

the differential Eq. (2.14), by using our understanding of SO(3) manifold as discussed in section

1.3.2.
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To carry out the discussion further, let Qh(t) ∈ SO(3) represent the approximated rotation

tensor with respect to I3 = Ei ⊗ Ei = d0i ⊗ d0i. For the first segment n = 1, the approximated

director dh
i(n=1) = dh

i1 is obtained by rotating the prescribed boundary di0 = Ei by an angle∫ t
0 ω1dt = ω1t (with t̂0 ≤ t ≤ t̂1) about the unit vector ω1

ω1
such that,

dh
i1(t) = exp

(
ω̂1t

)
.di0 = Qh

1(t).di0 with t̂0 ≤ t < t̂1. (2.20)

The director triad at the right end of patch 1 becomes the boundary for the patch n = 2. For

patch 2 with t̂1 ≤ t ≤ t̂2 the approximate director triad dh
i2(t) can be obtained by rotating dh

i1(t̂1)

(obtained in Eq. (2.20)). However, ω̂2 ∈ TI3 SO(3) is a material tensor whose corresponding

spatial counterpart associated with TQh
1 (t̂1)

SO(3) is given by ω̂h
2 = Qh

1(t̂1).ω̂2.Q
hT
1 (t̂1) such that

ω̂h
2 .Q

h
1(t̂1) ∈ TQh

1 (t̂1)
SO(3). We observe that ω̂h

2 .Q
h
1(t̂1) is a right translated vector field. Similarly,

we can obtain left translated vector field as Qh
1(t̂1).ω̂2 ∈ TQh

1 (t̂1)
SO(3). Equation (2.21a) and

(2.21b) gives the approximated director field for patch 2 by using right invariant and left invariant

vector fields, respectively as,

dh
i2(t) = exp

(
ω̂h

2 .(t − t̂1)
)
dh

i1(t̂1) = exp
(
ω̂h

2 .(t − t̂1)
)
.Qh

1(t̂1).di0

= Qh
2(t).di0 with t̂1 ≤ t ≤ t̂2;

(2.21a)

dh
i2(t) = Qh

1(t̂1).exp
(
ω̂2.(t − t̂1)

)
.di0 with t̂1 ≤ t ≤ t̂2. (2.21b)

Similarly, for the third patch with ω̂h
3 = Qh

2(t̂2).ω̂3.Q
hT
2 (t̂2), we have,

dh
i3(t) = exp

(
ω̂h

3 .(t − t̂2)
)
.Qh

2(t̂2).di0 = Qh
3(t).di0 with t̂2 ≤ t ≤ t̂3; (2.22a)

dh
i3(t) = Qh

2(t̂2).exp
(
ω̂3.(t − t̂2)

)
.di0 with t̂2 ≤ t ≤ t̂3. (2.22b)

Along similar lines of reasoning, the solution for nth patch is given by

dh
in(t) = Qh

n(t).di0. (2.23)
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where,

Using right invariant vector field : Qh
n(t) = exp

(
ω̂h

n .(t − t̂n−1)
)
.Qh

n−1(t̂n−1) with t̂n−1 ≤ t ≤ t̂n;

(2.24a)

Using left invariant vector field : Qh
n(t) = Qh

n−1(t̂n−1).exp.
(
ω̂n.(t − t̂n−1)

)
with t̂n−1 ≤ t ≤ t̂n.

(2.24b)

The spatial curvature tensor ω̂h
n in Eq. (2.24a) is given as,

ω̂h
n = Qh

n−1(t̂n−1).ω̂n.Q
hT
n−1(t̂n−1). (2.25)

Note that ω̂h
n is not a function of time for a given patch n and unlike the material tensor ω̂n, the

spatial curvature tensor is an approximated quantity. The global approximated rotation tensor is

then given by,

Qh(t) =
N∑

n=1
Qh

n(t)
(
H(t − t̂n−1) − H(t − t̂n)

)
. (2.26)

From Eqs. (2.14) and (2.24b), the approximated position vector for patch n is obtained as,

ϕh
n(t) =

(∫ t

t̂n−1

exp
(
ω̂nt

)
dt

)
.vn +

n−1∑
k=1

(∫ t̂k

t̂k−1

exp
(
ω̂k t

)
dt

)
.vk . (2.27)

Figure 2.3 gives geometric interpretation of the discussion so far. The following remarks details

few noteworthy geometric interpretations on the interpretation approach discussed above:

Remark 2.1: Consider the nth patch where the approximated configurationΦh
n is parametrized

by t ∈ [tn−1, tn]. The co-rotated derivative of angular velocity being zero implies that the

angular velocity is parallel-transported along a curve Qh
n(t) on the manifold SO(3) such that the

approximated angular velocity ωh
n at time t is given as,

ωh
n(t) = Qh

n(t)ωn = Qh
n(t).Q

hT
n (t̂n).ω

h
n . (2.28)
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Figure 2.3: Geometric representation of SPEG.

The vector ωh
n is the associated axial vector for the spatial tensor ω̂h

n . From the equation above

and Eq. (2.25), we observe that the spatial angular velocity ωh
n = Qh

n(tn).ωn and the associ-

ated spin tensor ω̂h
n are approximate quantities. It is interesting to observe that ‖ωh

n ‖ = ‖ωn‖ = ωn.

Remark 2.2: The solution obtained above is free of singularity (unlike Frenet frame). If

the angular velocity measurement for the nth patch is zero (implying point of inflection), we have

the solution of the form,

lim
ωn→0

ϕh
n(t) =

(
Cni4 + t(Cni jvnj)

)
Ei; (2.29a)

lim
ωn→0

dh
in(t) = CnjiE j = dh

i(n−1)(t̂n−1). (2.29b)

Solution of the form above suggests a local linear solution for the approximated position vector

and a constant solution for the approximated director triads. However, if vn = 0 and ωn = 0, the

approximated local solution is a point (the object is stationary) with a fixed director triad given by
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Eq. (2.29b) and the position vector reduces to,

lim
vn→0
ωn→0

ϕh
n(t) = Cni4Ei = ϕ

h
n−1(t̂n−1). (2.30)

Similarly, the limiting case of solution with vn = 0 represents a rotating rigid body with no

translation. In case where vn , 0 and ωn , 0, the solution represented by Eq. (2.15) is a helix.

Thus, if the moving object follows a helix exactly with constant speed, we need only one data

point along with the prescribed boundary condition to give exact state space (provided there is no

noise in the data). Lastly, the accuracy of global solution depends on the nature of data. If the

data is representative of the local configuration of a patch, a good approximation is obtained.

2.3.2 Higher order approximation techniques

In the SPEG technique discussed above, the approximated linear and angular velocity

fields were C−1 continuous. The advantage of the SPEG technique lies in the existence of a

closed-form solution, making it a desirable approach provided the linear and angular velocity data

(or equivalently, strain and curvature data in case of shape sensing of rods) does not vary too much

along with the patch. Todd et al. [16] and Chadha and Todd [17], [18] used SPEG to develop

shape reconstruction (refer to chapter 5) of rods and observed that a fairly accurate solution is

obtained in such case. However, if the system is more dynamic (like a UAV), a higher-order

approximation of linear and angular velocity field is desirable. We can approximate these fields

using Lagrangian polynomial, cubic splines, Hermite polynomial interpolation, and moving least

square (MLS), to name a few.

Note that the data for linear and angular velocity are obtained in {di} frame, which is time

dependent. However, to numerically integrate Eq. (2.14), we utilize the approximated fields of the

components vh
i and ωh

i (we do not approximate the spatial linear velocity and the angular velocity

vectors). Equivalently, we are interpolating the material linear velocity v(t) = viEi and the

material angular velocity ω(t) = ωiEi. Let vh
(t) and ωh

(t) (with ω̂
h
(t) being the corresponding
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spin tensor) represent the approximated material linear and angular velocity. The estimated

configuration is obtained as

Qh(t) = exp
(∫ t

0
ω̂

h
(t) dt

)
;

ϕh(t) =
∫ t

0
Qh(t).vh

(t) dt,
(2.31)

with, ∫ t

0
ω̂

h
(t) dt ∈ so(3). (2.32)

2.3.3 Error quantification

We quantify the error eϕ(t) in the position vector by the usual Euclidean norm of difference

in the exact and estimated position vector,

eϕ(t) = ‖ϕ(t) − ϕh(t)‖; (2.33a)

RMSϕ =

√∑M
k=1 e2

ϕ(tk)

M
. (2.33b)

Similarly, we define error in each director as,

edi (t) = ‖di(t) − dh
i (t)‖; (2.34a)

RMSdi =

√∑M
k=1 e2

di
(tk)

M
. (2.34b)

Local homeomorphism (refer to section 1.3.2.2) of exponential map allows us to define

Reimannian metric on SO(3) that evaluates the deviation between the approximated rotation tensor

Qh(t) and the exact rotation tensor Q(t) by measuring the length of geodesic between them. The

error is associated with the amount of rotation Qerror(t) required to align Qh(t) with Q(t) such

that,

Q(t) = Qerror(t).Q
h(t). (2.35)
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Let Qerror(t) be parametrized by θe = θenθe such that θe ∈ [0, π). We define the error eQ as,

eQ(t) =
〈
Q,Qh〉 = θe(t) = ‖log(Qerror(t))‖ ∈ [0, π); (2.36a)

RMSQ =

√∑M
k=1 eQ(tk)

2

M
. (2.36b)

In the equation above, 〈., .〉 : SO(3) × SO(3) −→ [0, π) defines a bi-invariant (refer to Eqs. 2.38e

and 2.38f below) Reimannian metric such that for any Q1,Q2 ∈ SO(3),

〈Q1,Q2〉 = ‖log(Q1.Q
T
2 )‖. (2.37)

For any Q1,Q2,Q3 ∈ SO(3) the metric defined above has following properties:

Non-negativity : 〈Q1,Q2〉 ∈ [0, π) (2.38a)

Identity of indiscernibles : 〈Q1,Q2〉 = 0⇔ Q1 = Q2 (2.38b)

Symmetry : 〈Q1,Q2〉 = 〈Q2,Q1〉 (2.38c)

Triangle inequality : 〈Q1,Q2〉 ≤
〈
Q1,Q3

〉
+

〈
Q3,Q2

〉
(2.38d)

Right invariant :
〈
Q1.Q3,Q2.Q3

〉
= 〈Q1,Q2〉 (2.38e)

Left invariant :
〈
Q3.Q1,Q3.Q2

〉
= 〈Q1,Q2〉 (2.38f)

Refer to Park [27] for more details on this metric. The paper by Huynh [28] serves as a great

reference to understand various kinds of metric on SO(3). Huynh [28] also provides proof for the

properties stated above.
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2.3.4 Illustration and simulation

We simulate the path of a moving rigid body like UAV. We consider the pitch, yaw and

roll angle fields parametrized by t ∈ [0, t] calibrated with respect to {Ei} frame,

φp(t) = 0.5 sin(0.7t) +
π

2

[
cos

(
πt
t

)
+ sin

(
πt
t

)
.

(
1 − sin

(
3.5πt

t

))]
;

φy(t) = 4 +
1
25
(t − t) + sin(t) + π sin

(
4πt

t

)
;

φr(t) = 0.1
(
π sin

(
4πt

t

)
+ sin(t)

)
;

v1(t) = 1 + 0.15 sin (0.3t) + 0.2 cos
(
4πt
2t

)
;

v2(t) = v3 = 0.

(2.39)

Figure 2.4: Estimated trajectory and the orientation of the rigid body.

The rigid-body motion defined by (2.39) is similar to Kirchhoff beam kinematics. A

GMAF is sufficient to frame this path because v2(t) = v3(t) = 0. Thus, we obtain the angular
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Table 2.1: Various approach to interpolate the material linear and angular velocity data

Cases Interpolation method
Case 1 C−1 approximation (constant over the patch n of SPEG)
Case 2 Cubic Hermite
Case 3 C0 approximation
Case 4 Moving least square approximation (MLS)
Case 5 Cubic B-Spline
Case 6 Quadratic B-Spline

velocity components ωi from the assumed Euler angles in Eq. (2.39) using the results obtained

in section 1.4.1.2 (except that the independent parameter here is time t). We can equivalently

consider unit quaternion field and obtained the angular velocity using equations (1.36a), (1.36b)

and (1.36c). The exact rotation tensor is obtained by using Eq. (1.28). Note that for this example

{d1, d2, d3} ≡ {T,Y g,Pg}. At t = 0, the initial conditions are di(0) = di0 = Ei. The exact

position vector is then obtained as,

ϕ(t) =
∫ t

0
v1(k)d1(k) dk . (2.40)

We consider t0 = 100s and number of discrete data points as N with tn representing the time

corresponding to nth data point. We assume t1 = 0.25s and tN = (t − 0.25)s. The time steps in

between t1 and tn are uniformly spaced. We use 6 different interpolation techniques listed in table

2.1 to approximate the material linear and angular velocity.

Consider the following points:

1. In case 1, the data vn and ωn are assumed constant over the patch n as described in section

2.3.1. The estimated configuration space using SPEG is the same as the configuration

space obtained using equation (2.31) with vh
n and ωh

n being C−1 approximation of the data

over the patch n. This technique will be deployed in later chapter to develop shape sensing

algorithm for beams.

2. Readers can refer to chapter 3 of Bartels et al. [29] for more information on Cubic Hermite

and B-Spline interpolation. Case 3 represents the data being linearly interpolated between
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two time steps tn and tn+1.

3. We briefly describe the MLS approach here. Let P(t) = {1, t, t2, ..., tm}T represent set of

mth order polynomial set and W(t − tn) represent the moving weight function, then the

approximate linear velocity component vh
i (t) is given as,

vh
i (t) = PT (tn).M−1.

N∑
n=1

P(tn).vni .W(t − tn);

M := Moment matrix =
N∑

n=1
P(tn).PT (tn).W(t − tn).

(2.41)

We have used cubic B-spline weight function, such that,

W(t − tn) = W(zn) =



2
3 − 4z2

n + 4z3
n, for 0 ≤ zn ≤ 0.5

4
3 − 4zn + 4z2

n −
4
34z3

n, for 0.5 ≤ zn ≤ 1

0 otherwise

;

zn =
|t − tn |

a
.

(2.42)

The term a in the equation above is the support size. For mth order basis set, the weight

function must be spread enough to cover at least (m + 1) data points. This fact is used to

evaluate the support size. The accuracy of MLS approach depends on the choice of support

size and the order of polynomial. In a similar fashion, the approximate angular velocity

fields ωh
i (t) is obtained. Interested readers can refer to the landmark paper on interpolation

of surface using MLS approach by Lancaster and Salkauskas [30]. A paper by Levin [31]

discusses how MLS is the near-best approach towards interpolation. MLS approximation

became popular in the field of applied mechanics after it was used to develop Meshfree

finite element analysis (refer Belytschko et al. [32] and Chen et al. [33]).

We consider N=20, 50, 75, 100, 300 and 500 to compare various approaches. The idea is

to estimate the configuration space (ϕh(t),Qh(t)) using Eq. (2.31) (for all cases except Case 1)

44



(a) N=100 (b) N=300

Figure 2.5: RMS error in the estimated material linear and angular velocity fields approximated
by various approaches.

(a) N=100 (b) N=300

Figure 2.6: RMS error in the estimated Q and di approximated by various approaches.
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(a) N=100 (b) N=300

Figure 2.7: RMS error in the estimated ϕ approximated by various approaches.

and (2.19) (for Case 1). The spatial linear and angular velocity is estimated by left translating

approximated material linear and angular velocity as,

vh(t) = Qh.vh
(t);

ωh(t) = Qh.ωh
(t).

(2.43)

Figure 2.4 demonstrates the estimated configuration (the trajectory and the orientation of object at

20 uniformly spaces time steps) for N=50, 75, 100 and 300 obtained using interpolation methods

mentioned in Table 2.1. The estimated shape converges with the increase of data points as

expected. Figure 2.5 shows RMS errors in the approximated material linear and angular velocity

(vh,ωh
) and the estimated position vector, director triads and rotation tensor for N=100 and

300, calculated using M=500 in equations (2.33b), (2.34b) and (2.36b). Excellent estimates are

obtained for N=100 with the error: RMSQ = {0.386,0.216,0.516,0.226,0.141,0.148} radian and

RMSϕ = {2.237,0.570,4.193,0.669,0.309,0.326} m for case 1 to 6 respectively. The RMS error

further reduces with increase of data points, as observed in Fig. 2.6. Figure 2.6 and 2.7 show the

error fields eϕ(t), eQ(t) and edi (t) obtained using the error definition in equations (2.33a), (2.34a)

and (2.36a). Figure 2.8 shows comparison of RMS error in the configuration space for different

interpolation approaches with increasing number of sensors.

Here are the important observations:
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Figure 2.8: Error eϕ and eQ for N = 100 and N = 300.

1. As is clear from figure 2.10, the algorithm is convergent.

2. The MLS (case 4) and Cubic spline interpolation (case 5 and 6) are amongst the best

approaches to estimate the state space. This is because Case 4 and 5 (and 6) interpolated

the input data better than other approaches.

3. Proper choice of support size and polynomial order in MLS method can drastically reduce

the error. In this case, we have used polynomial of 2nd order with support size of a=15.7,

5.08, 3.09, 2.5 and 0.998; for N=20, 50, 75, 100 and 300 respectively.

4. Linear interpolation of input data (case 3) is the worst performer in terms of the configuration

space estimate.

5. Despite having highest RMS error in estimating the input data, SPEG technique (case

1) performs fairly well (better than case 3 that gives highest error) at the estimation of

configuration. The advantage of SPEG is existence of a closed form solution as discussed
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Figure 2.9: Error edi for N = 100 and N = 300.

in section 2.3.1 whereas other higher order approaches (case 2-5) includes numerical

integration (equation (2.31)) to obtain the configuration space. We also observe that the

error propagates along the trajectory of object attaining maximum value at the farthest end

from the point of initial condition.

6. Cubic and quadratic B-splines gives nearly same result. With increase in number of data,

B-spline approximation and Cubic Hermite approximations converges.

7. The error discussed here is purely due to the numerical algorithm used to estimate the

configuration space. However, in real time, the noise in the measurement must be considered.

Another source of error might be in the uncertainty of initial condition (especially in shape

sensing of beams: refer to Chadha and Todd[17]).
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(a) RMS error in the position vector (b) RMS error in the rotation tensor

Figure 2.10: RMS error in the approximated configuration space considering no noise in the
data obtained from the sensors.

2.4 Applications in computer graphics

Theory of curves and moving frames have found a dominant place in generating computer

graphics, including but not limited to ribbons, orientation of camera frames and quantumwaveguide

construction, CAD-CAM modeling and animations (refer [11], [13] and [29]). Extruding a cross-

section along a straight center line has long been used in CAD modeling. In this section, we

present a few applications of various types of framed space curves discussed so far in computer

graphics.

2.4.1 Double helix intertwining a space curve

We elucidate the construction of double helix using GMAF. Consider the pitch φp(ξ) and

yaw angle φy(ξ) field corresponding to the space curve ϕ(ξ) with total length L, parameterized by

the arc-length ξ ∈ [0, L] such that,

ϕ(ξ) =

∫ ξ

0
T (k) dk . (2.44)

In the above equation, T (ξ) represents the tangent vector field of the curve, the component of

which can be obtained from either Eq. (1.27) or (1.28) (note than T (ξ) is sufficient to define
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the mid-curve). Let r and c represent the radius and the total number of windings (that can

be fractional) of double helix respectively. We can obtain the position vectors of two curves

constituting the double helix as ϕ1(ξ) and ϕ2(ξ) as,

ϕ1(ξ) = ϕ(ξ) + rY g(ξ);

ϕ2(ξ) = ϕ(ξ) − rY g(ξ).

(2.45)

In the equation above, Y g(ξ) represents the constituent vector of GMAF as defined in (1.28), with

the roll angle field given by,

φr(ξ) = 2πc
(
ξ

L

)
. (2.46)

This formulation can be used to generate graphics and defining the reduced geometry of DNA

molecule with the curves ϕ1(ξ) and ϕ2(ξ) representing the sugar-phosphate backbone and the

vector rY g(ξ) and −rY g(ξ) showing the nitrogenous base pairs.

Figure 2.11 shows two examples of double helix intertwining a space curve ϕ(ξ). The

dotted black curve represents the curve ϕ(ξ), the green and red strand (with n being number of

strands per cycle) represents the vectors rY g(ξ) and −rY g(ξ) respectively. The blue curves shows

the curves ϕ1(ξ) (connected to green strands) and ϕ2(ξ) (connected to red strands). Following are

the parameters required to obtain the structures in Fig 2.11a,

L = 500, r = 40, c = 6, n = 16;

φp(ξ) =
π

2
sin

(
πξ

L

)
.

(
1 − 0.5 sin

(
3.5π

L

))
;

φy(ξ) = π sin
(
πξ

L

)
.

(2.47)

Following are the parameters required to obtain Fig 2.11b,

L = 500, r = 35, c = 3, n = 12;

φp(ξ) =
π

8
sin

(
2πξ

L

)
;

φy(ξ) =
π

8
sin

(
2πξ

L

)
.

(2.48)
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(a) Example 1 (b) Example 2

Figure 2.11: Double helix intertwining a space curve.

The winding and unwinding effects can be obtained by making φr(ξ) dynamic. Figure 2.12 shows

a 3D printed model of double helix. The beads in the left figure mark the center curve ϕ(ξ)

(absent in 3D printed model).

2.4.2 Leaf like structure using RPAF

To obtain a leaf like structure that bears a single manifold character, we first consider a

leaf with node at origin (node is the point of contact of stem and leaf). The midrib of leaf (vein

running from the node to the leaf tip) is given by the curve ϕ(ξ), obtained using the pitch and yaw

angle fields φp(ξ) and φy(ξ) with ξ ∈ [0, L]. Here, L gives the length of midrib.

We generate the lamina of leaf as a mesh obtained using relatively parallel normal vector

field and the inner and outer margins of the leaf. We divide the leaf surface into two parts: lamina

1 and lamina 2. The relatively parallel normal vector field M1(ξ) and M2(ξ) with the generators
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Figure 2.12: 3D printed model of double helix.

M10 and M20, used to define lamina 1 and 2 respectively, are given as

M i(ξ) = M i0 +
[
Y g

]
φr (ξ)=ρbi(ξ)

; (2.49a)

ρbi(ξ) = ρbi(0) −
∫ ξ

0
κs1(k) dk = ρbi(0) −

∫ ξ

0
∂kφy sin (φp(k)) dk; (2.49b)

M i0 = Qg(0)
����
(φr (0)=ρbi(0))

.E2, with i = 1,2. (2.49c)

In Eq. 2.49b, ρbi(ξ) is obtained using the results (1.33a) and (1.38). It represents the roll angle

field required to obtain a relatively normal vector field (refer section 1.4.2). The predefined angle

ρbi(0) are used to obtain the generator M i0 using Eq. (2.49c).

Leaf margin essentially represents the outer boundary of the lamina. We call that as an

outer margin, with Γ1outer and Γ2outer representing outer margin for lamina 1 and 2 respectively. In

order to mesh the lamina, we define inner margins with Γ1innerI and Γ
2
innerI representing I th inner

margin for lamina 1 and 2 respectively. The position vectors representing these curves are given

by,

ϕΓiouter = ϕ + rW(ξ)M i for outer margin of lamina i; (2.50a)
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Figure 2.13: Geometry of leaf obtained using RPAF.

ϕΓiinnerI
= ϕ + rW(ξ)ΨIM i for I th inner margin of lamina i. (2.50b)

In the equation above, r represents the width parameter of the lamina, W(ξ) represents the

weight function for the outer margin and ΨI ∈ (0,1) is additional weight for the I th inner margin.

Note that if max(W(ξ)) = 1, then r represents the maximum width of lamina, similarly, if

W(ξ) = constant, then all the inner and outer margins transforms to relatively parallel curves to

the midrib. Therefore, the width of lamina at the arclength ξ is given by rW(ξ). Figure 2.13

demonstrates the construction discussed so far.

Any other orientation of the leaf defined by L, φp(ξ), φy(ξ), ρbi(0), can be obtained by

rotating the leaf pivoted at the origin and then translating it as required. The stem of the leaf can

be obtained by extruding the cross-sections along a space curve.

Figure 2.14 shows three different leaves constructed using same L, φp(ξ), φy(ξ), ρbi(0)
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but different weights W1(ξ), W2(ξ) and W3(ξ) and widths r as,

L = 6, ρb1(0) = 0.7, ρb2(0) = 0.7 +
5π
9

;

r1 = r2 =
L

3.5
, r3 = 0.4;

φp(ξ) = φy(ξ) =
π

8
sin

(
πξ

L

) (2.51)

W1(ξ) = 0.5
(
1 + sin

(
2πξ

L
−
π

2

))
;

W2(ξ) = W1(ξ) +
2
75

sin2
(
4πξ

L
− π

)
;

W3(ξ) = f (ξ) +



14ξ
3 0 ≤ ξ ≤ 0.75
−4ξ

3 + 4.5 0.75 ≤ ξ ≤ 1.5
5ξ
6 + 1.25 1.5 ≤ ξ ≤ 3
−3ξ

5 + 3.6 3.5 ≤ ξ ≤ L

.

(2.52)

In the equation for the weight, W3 of leaf 3, the function f (ξ) represents the triangular wave with

a period of 0.16 and an amplitude of 0.084. This is used to generate corrugation and irregularity

in the outer margin of the leaf 3 (Figure 2.14).

An entire plant can be generated as shown in figure 2.15. The stems are obtained by

extruding circular cross-section varying smoothly along the curves. Leaves of different sizes and

orientations are obtained as discussed before.

The dynamic motion in the leaf (say due to wind load) can be graphically obtained by

making φp(ξ), φy(ξ), ρbi(0) dynamic.
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(a) Leaf 1 (b) Leaf 2

(c) Leaf 3

Figure 2.14: Leaves obtained using same midrib but different weight functions.
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(a) View 1

(b) View 2

Figure 2.15: Computer generated plant with varying sizes and orientation of leaves.
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2.5 Summary

This chapter is essentially the application of concepts discussed in chapter 1 in the

area of path-estimation and computer graphics. An algorithm to estimate the state space of

a single manifold characterized system using a limited set of material curvature and velocity

data is elucidated. The idea is to estimate the material linear and angular velocity data using

various consistent interpolation approaches. The approximated fields (vh
(ξ1), ωh

(ξ1)) are first

used to estimate the configuration space (ϕh(ξ1),Q
h(ξ1)) and then the tangent space (vh,ωh)

is approximated. Among all the interpolation approaches suggested, the C−1 interpolation of

material data is special because it results in a closed-form solution to the estimated configuration,

and because it leads to the development of curvature dependent shape functions that may be glued

together to obtain a smooth global configuration. We call this approach Smooth Patch Estimation

and Gluing technique (SPEG). An interesting method to obtain the solution of SPEG merely by

using the idea of parallel-transport is presented. The estimation methods discussed are convergent

and free of singularity. An illustration that compares all the approaches and demonstrates the

error analysis is presented. The SPEG and other higher-order interpolation techniques of framed

space curves discussed here are used in developing the shape-reconstruction technique detailed in

chapter 6.

The applications of framed space curves are numerous. Finally, the ability of the

framed space curve to develop computer graphics is demonstrated. This is done by presenting

the construction of double helix intertwining a space curve using GMAF. A second example

demonstrating the construction of leaves and plants using RPAF is illustrated.

The discussion carried out in this chapter has been published in Computers & Structures,

Mayank Chadha and Michael D. Todd [26], 2019. The title is “On the material and material-

adapted approaches to curve framing with applications in path estimation, shape reconstruction,

and computer graphics”. The dissertation author is the primary author of this paper.
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Chapter 3

On the Derivatives of Curvature and their

Linearized Updating Scheme

3.1 Introduction:

This chapter is an extension of the theory of the rotational Lie group discussed in chapter

1. In this chapter, we discuss the higher-order derivatives, variations, and co-rotational derivatives

of the curvature tensor. We realize that parameterizing rotation tensor using the Gibbs vector is

effective in deriving a closed-form formula to obtain any order derivative of the curvature tensor

as the summation of functions of the parameterizing quantity and its derivatives. We use these

results for formulating a linearized updating algorithm for curvature and its derivatives when the

configuration of the curve acquires a small increment.

We have presented the need for obtaining higher-order derivatives of curvature while

investigating higher-order geometrically-exact beam/rod theory. The kinematics of beam/rods

under arbitrarily-large deformations defined in Chadha and Todd [34] (and later discussed in

chapter 4) renders the deformation map not only to be a function of curvature but also a function

of its higher-order derivatives. The numerical solution of such problems using Finite Element
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Analysis needs updating of these kinematic quantities. In such problems, derivatives of the

curvature tensor gain importance. Apart from a practical viewpoint, the fact that the Lie proper

orthogonal rotational group SO(3) and its Lie Algebra so(3) constitute a central role in the area of

Lie group theory makes it worthwhile to investigate the higher-order partial and co-rotational

derivatives of curvature and the associated quantities.

Note onNotations: We conclude this introductory sectionwith a note on notation and definitions.

The n dimensional Euclidean space is represented by Rn, with R1 ≡ R. The space of real numbers

and integers is denoted by R and Z, with R+ and Z+ giving the set of positive real numbers and

integers (including 0) respectively. The dot product, ordinary vector product and tensor product

of two Euclidean vectors v1 and v2 are defined as v1 · v2, v1 × v2, and v1 ⊗ v2 respectively.

The Euclidean norm is represented by ‖·‖ or the un-bolded version of the symbol (for example,

‖v‖ ≡ v). Secondly, nth (with n ∈ Z+) order partial derivative with respect to a scalar quantity,

ξ for instance, is given by the operator ∂n

∂ξn = ∂
n
ξ . For n = 1, we define ∂1

ξ ≡ ∂ξ and note that

for n = 0, ∂0
ξ is an identity operator. A vector, tensor or a matrix is represented by bold symbol

and their components are given by indexed un-bolded symbols. For i, j ∈ Z+, the Kronecker

delta function is defined as δi j =


0 if i , j

1 if i = j
. The action of a tensor A onto the vector v is

represented by Av ≡ A.v. We note that the centered dot “·” is meant for dot product between

two vectors, whereas the action of a tensor onto the vector, the matrix multiplication or product

of a scalar to a matrix (or a vector) is denoted by a lower dot “.”. For n, i ∈ Z+ and n ≥ i ≥ 0,

the binomial coefficient is defined as Cn
i =

n!
i!(n−i)! . We note two useful properties of binomial

coefficient in Theorem 3.0.

Theorem 3.0: For i,n ∈ Z+ and i ≤ n, the following holds

Cn
i = Cn

(n−i); (3.1a)
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Cn
i =


1 if i = 0 or i = n;

C(n−1)
(i−1) + C(n−1)

i otherwise.
(3.1b)

Proof: Result (3.1a) follows from the definition of binomial coefficient. The recurrence-formula

(3.1b) is obtained from the result C(n+1)
(i+1) = Cn

i + Cn
(i+1), that is easily provable using the definition

of binomial coefficient. �

3.2 Material and spatial quantities and their derivatives

To begin with, consider a framed space curve, parameterized by the arc-length ξ ∈ [0, L],

is defined by the position vector ϕ(ξ) ∈ R3 and the orthonormal material frame field {di(ξ)}. Let

{Ei} define a fixed orthonormal reference frame such that we may define the orthogonal rotation

tensor Q(ξ) as:

di(ξ) = Q(ξ).Ei; Q(ξ) =
3∑

i=1
di(ξ) ⊗ Ei;

[Q]Ei⊗E j =

3∑
i,j=1

Qi jEi ⊗ E j ; Qi j = Ei · d j .

(3.2)

As we have defined the material and spatial forms of the curvature vector (and tensor)

in section (2.2.2), it is rather useful to define a vector v ∈ R3 in its material and spatial form.

Consider a spatial and material vector v = vidi and v = viEi, respectively, such that v = Q.v.

Figure 3.1 illustrates the idea of material and spatial form of a vector. The derivative of these

vectors are obtained as:
∂ξv = ∂ξvi .di + vi .∂ξ di = ∂̃ξv + κ × v;

∂ξv = ∂ξvi .Ei = QT .∂̃ξv.

(3.3)

In the equation above, ∂̃ξv defines co-rotational derivative of spatial vector v. It essentially gives

the change in components of the vector v, provided the frame of reference is assumed to be fixed.

Geometrically, it is obtained by parallel-transport (left translation) of the vector ∂ξv.
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Figure 3.1: Illustration of the material and spatial form of a vector.

Along similar lines, consider a spatial and material tensor A =
∑3

i,j=1 Ai j di ⊗ d j and

A =
∑3

i,j=1 Ai jEi ⊗ E j respectively, such that A = Q.A.QT (or equivalently, A = QT .A.Q).

Realizing ∂ξQ = κ̂ .Q and ∂ξQT = −QT .κ̂, we have the following:

∂ξA = Q.∂ξA.Q
T + ∂ξQ.A.Q

T + Q.A.∂ξQ
T

= Q.∂ξA.Q
T + κ̂ .(Q.A.QT ) − (Q.A.QT ).κ̂

= ∂̃ξA + κ̂ .A − A.κ̂ .

(3.4)

In the equation above, we define the co-rotational derivative of the tensor A as ∂̃ξA = Q.∂ξA.Q
T .

Physically, it gives the change in components of tensor A setting the reference frame constant.

From here on, ∂̃x(.) represents the co-rotational derivative of some quantity (.) with respect to the

variable x. We now present some propositions describing higher order co-rotational derivatives.

Proposition 3.1: For any vector v ∈ R3, define the operator ∂̂ξ such that ∂̂n
ξ v = κ̂

n.v, where, for

example κ̂3 = κ̂ .κ̂ .κ̂. The nth order co-rotational derivative ∂̃n
ξ is then given by (∂ξ − ∂̂ξ)n such
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that the order of operations are not commutative (for example, ∂ξ ∂̂ξ , ∂̂ξ∂ξ) and ∂̃0
ξ = (∂ξ − ∂̂ξ)

0

is an identity operator.

Proof: We prove the above proposition by using the principle of mathematical induction.

Consider a vector v ∈ R3, assuming that ∂̃n
ξ v = (∂ξ − ∂̂ξ)

nv, for n = 1,2 and 3, we have

∂̃1
ξ ≡ ∂̃ξ = (∂ξ − ∂̂ξ);

∂̃2
ξ = (∂ξ − ∂̂ξ)

2 = ∂2
ξ − ∂ξ ∂̂ξ − ∂̂ξ∂ξ + ∂̂

2
ξ ;

∂̃3
ξ = (∂ξ − ∂̂ξ)

3 = ∂3
ξ − ∂

2
ξ ∂̂ξ − ∂ξ ∂̂ξ∂ξ + ∂ξ ∂̂

2
ξ − ∂̂ξ∂

2
ξ + ∂̂

2
ξ ∂ξ + ∂̂ξ∂ξ ∂̂ξ − ∂̂

3
ξ ;

(3.5)

such that

∂̃ξv = ∂ξv − ∂̂ξv = ∂ξv − κ̂ .v; (3.6a)

∂̃2
ξ v = ∂

2
ξ v − ∂ξ ∂̂ξv − ∂̂ξ∂ξv + ∂̂

2
ξ v = ∂

2
ξ v − ∂ξ(κ̂ .v) − κ̂ .∂ξv + κ̂ .κ̂ .v

= ∂2
ξ v + (κ̂ .κ̂ − ∂ξ κ̂).v − 2κ̂ .∂ξv;

(3.6b)

∂̃3
ξ v = ∂

3
ξ v − ∂

2
ξ (κ̂ .v) − ∂ξ(κ̂ .∂ξv) + ∂ξ(κ̂ .κ̂ .v) − κ̂ .∂

2
ξ v + κ̂ .κ̂ .∂ξv + ∂̂ξ∂ξ(κ̂ .v)

− κ̂ .κ̂ .κ̂ .v = ∂3
ξ v − 3κ̂ .∂2

ξ v + (∂ξ κ̂ .κ̂ + 2κ̂ .∂ξ κ̂ − ∂2
ξ κ̂ − κ̂ .κ̂ .κ̂).v

+ (3κ̂ .κ̂ − 3∂ξ κ̂).∂ξv.

(3.6c)

We now prove that the equation set (3.6) may be derived using the definition of co-rotational

derivatives in Eq. (3.3). Equation (3.6a) is true by definition (refer to Eq. (3.3)). Taking the

derivative of Eq. (3.6a) yields

∂ξ ∂̃ξv = ∂
2
ξ v − ∂ξ κ̂ .v − κ̂ .∂ξv. (3.7)

We note from the definition of co-rotational derivative in Eq. (3.3) that

∂ξ ∂̃ξv = ∂̃
2
ξ v + κ̂ .∂̃ξv = ∂̃

2
ξ v + κ̂ .(∂ξv − κ̂ .v) = ∂̃

2
ξ v + κ̂ .∂ξv − κ̂ .κ̂ .v. (3.8)
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From Eq. (3.7) and (3.8), we have,

∂̃2
ξ v = ∂ξ ∂̃ξv − κ̂ .∂ξv + κ̂ .κ̂ .v = ∂

2
ξ v + (κ̂ .κ̂ − ∂ξ κ̂).v − 2κ̂ .∂ξv. (3.9)

Expression obtained in (3.9) is same as (3.6b). Similarly, to derive the expression for ∂̃3
ξ v, we

consider

∂ξ ∂̃
2
ξ v = ∂

3
ξ v − 2κ̂ .∂2

ξ v + (κ̂ .κ̂ − 3∂ξ κ̂).∂ξv + (∂ξ κ̂ .κ̂ + κ̂ .∂ξ κ̂ − ∂2
ξ κ̂).v. (3.10)

From (3.3), we have,

∂̃3
ξ v = ∂ξ ∂̃

2
ξ v − κ̂ .(∂ξ ∂̃

2
ξ v). (3.11)

Using the results in Eq. (3.10) and (3.11), we arrive at the expression of ∂̃3
ξ v as obtained in (3.6c).

We can continue the process explained above and realize that for any n, ∂̃n
ξ = (∂ξ−∂̂ξ)(∂ξ−∂̂ξ)

(n−1) =

(∂ξ − ∂̂ξ)
n. Using binomial theorem, we can also write

(∂ξ − ∂̂ξ)
n =

n∑
i=0
(−1)(n−i)Cn

i ∂
n
ξ ∂̂
(n−i)
ξ . (3.12)

This completes the proof. �

Proposition 3.2: For any Â ∈ so(3) with the corresponding axial vector A ∈ R3, the recurrence

formula for the nth order co-rotational derivative ∂̃n
ξ Â ∈ so(3) and ∂̃n

ξ A ∈ R
3 is given as

∂̃n
ξ Â = ∂

n
ξ Â − (1 − δn0)

n∑
i=1

∂
(i−1)
ξ

[
κ̂, ∂̃(n−i)

ξ Â
]

; (3.13a)

∂̃n
ξ A = ∂

n
ξ A − (1 − δn0)

n∑
i=1

∂
(i−1)
ξ (κ × ∂̃(n−i)

ξ A). (3.13b)

Proof: From definition of co-rotational derivatives and Lie-bracket in Eq. (3.4) and (1.9a)

respectively, we have,

∂̃ξ Â = ∂ξ Â − κ̂ .Â + Â.κ̂ = ∂ξ Â −
[
κ̂, Â

]
. (3.14)
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Since, ∂m
ξ Â ∈ so(3) for any m ∈ Z+, the result above can be used to obtain the recurrence-relation

for nth order co-rotational derivative. For n ∈ Z+ − {0}, we have,

∂̃n
ξ Â =∂ξ

(
∂̃
(n−1)
ξ Â

)
−

[
κ̂, ∂̃(n−1)

ξ Â
]

=∂ξ

(
∂ξ

(
∂̃
(n−2)
ξ Â

)
−

[
κ̂, ∂̃(n−2)

ξ Â
] )
−

[
κ̂, ∂̃(n−1)

ξ Â
]

=∂2
ξ

(
∂ξ

(
∂̃
(n−3)
ξ Â

)
−

[
κ̂, ∂̃(n−3)

ξ Â
] )
− ∂ξ

[
κ̂, ∂̃(n−2)

ξ Â
]
−

[
κ̂, ∂̃(n−1)

ξ Â
]

=∂n
ξ Â −

[
κ̂, ∂̃(n−1)

ξ Â
]
− ∂ξ

[
κ̂, ∂̃(n−2)

ξ Â
]
− ... − ∂

(n−1)
ξ

[
κ̂, Â

]
=∂n

ξ Â −
n∑

i=1
∂
(i−1)
ξ

[
κ̂, ∂̃(n−i)

ξ Â
]
.

(3.15)

We note that for n = 0, we have ∂̃0
ξ Â = ∂

0
ξ Â = Â. Thus, the sum part in the equation above vanish

for n = 0, justifying the use of (1 − δn0) factor in Eq. (3.13a). Result (3.13b) follows from above

derivation using Eq. (1.9b). This completes the proof. �

Corollary 3.1: The Proposition 3.2 can be extended for any tensor B (not necessarily an element

of so(3)) as:

∂̃n
ξ B = ∂

n
ξ B − (1 − δn0)

n∑
i=1

∂
(i−1)
ξ

(
κ̂ .∂̃(n−i)

ξ B − ∂̃(n−i)
ξ B.κ̂

)
(3.16)

Proof: This extension is possible because Lie-brackets follow chain-rule just like product of

two scalar or dot product except for the fact that Lie-brackets are non-commutative (which is a

stronger condition) as observed in Eq. (3.26). �

Proposition 3.3: For spatial vector and tensor v and A respectively, with corresponding material

quantities v and A, the nth order co-rotational derivative ∂̃n
ξ v and ∂̃n

ξ A can be obtained by

left-translation of the nth order derivative of the respective material quantities such that,

∂̃n
ξ v = Q.∂n

ξ v; (3.17a)

∂̃n
ξ A = Q.∂n

ξ A.Q
T . (3.17b)
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Proof: This proposition can be easily proved using product rule on v = QT .v and A = QT .A.Q

and substituting for ∂ξQT = −QT .κ̂. The result obtained after such computations (say for

n = 1,2,3) when compared with the results obtained Proposition 3.1 and Corollary 3.1, proves

the intended result. �

3.3 Variation and linearization of rotation tensor

We obtain the virtual rotation tensor field by superimposing an admissible variation field

δQ to the rotation field Q. The varied configuration is then defined by Qε such that for ε > 0, we

have
Qε = Q(θ + εδθ) = Q(εδα).Q(θ);

δQ = ∂εQε |ε=0.

(3.18)

The fact that SO(3) is a non-linear manifold makes it difficult to geometrically understand and

obtain the variation of rotation tensor. We also note that it is advantageous to express the

virtual rotation tensor by means of virtual rotation vector in current state δα (that is saying

δα̂.Q ∈ TQSO(3)) contrary to the variation of total rotation vector δθ (δθ̂ ∈ so(3)). The varied

director field is then given by

diε = Qε .Ei = Q(εδα).di (3.19)

The rotation tensor Qε = Q(θ + εδθ) transforms the vector Ei to diε in a single step, whereas, the

tensor Qε = Q(εδα).Q(θ) performs the same transformation in two steps: Ei
Q(θ)
−−−→ di

Q(εδα)
−−−−−→ diε .

From Eq. (7.26b), we arrive at the expression of varied rotation tensor and director field:

δQ = ∂ε

(
exp(εδα̂).exp(θ̂)

)
|ε=0 =

(
δα̂.exp(εδα̂).exp(θ̂)

)
|ε=0 = δα̂.Q(θ); (3.20a)

δdi = δQ.Ei = δα̂.di . (3.20b)
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Here, δα̂ represents the anti-symmetric matrix associated with the vector δα. We define the

material form of incremental rotation δα̂ (with δα being the associated axial vector) as,

δα̂ = QT .δα̂ = QT .δQ; δα = QT .δα. (3.21)

Like the variation, we define the linearized part of rotation tensor Q, linearized at exp(θ̂) in the

direction of ∆α̂.Q ∈ TQSO(3) as,

∆Q = ∂εQε |ε=0 with Qε = Q(ε∆α).Q(θ). (3.22)

It follows from the discussion above that ∂ξQ, δQ,∆Q ∈ TQSO(3), and δα̂, δθ̂,∆θ̂ ∈ so(3).

Like the relationship between κ and ∂ξθ, we arrive at the relation between δα (or ∆α) and δθ (or

∆θ). We utilize the results in Eq. (7.26b) and obtain

∂εexp(εδα̂)|ε=0 = ∂ε

(
exp(θ̂ + εδθ̂).exp(−θ̂)

)
|ε=0. (3.23)

Simplifying Eq. (3.23), we get,

δα = Tθ.δθ; δθ = T−1
θ .δα. (3.24)

Proposition 3.3 also holds for the variation and mix of derivatives and variation, for example:

δnv = QT .δ̃nv and δk(∂n
ξ v) = QT .δ̃k(∂̃n

ξ v), where δ̃
k = (δ − δ̂)k such that δ̂ = δα̂.

In figure 3.2, we originate three vectors (the reference vector Ei, the vector di(ξ) obtained

by finite rotation of Ei, and the vector di(ξ + dξ)) at a point to illustrates the concept of curvature

and the incremental (or variation) current rotation vector.
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Figure 3.2: The physical interpretation of the curvature κ (left figure) and the variation of
rotation vector δα (right figure) resulting in an infinitesimal rotation.

3.4 On derivatives

3.4.1 Useful results on derivatives of Lie-bracket and higher-order product

rule

Proposition 3.4: For any â, b̂ ∈ so(3) with corresponding axial vectors a, b ∈ R3 respectively,

the following formula for derivatives hold:

∂n
ξ

[
â, b̂

]
=

n∑
i=0

Cn
i

[
∂
(n−i)
ξ â, ∂(i)ξ b̂

]
=

n∑
i=0

Cn
i

[
∂
(i)
ξ â, ∂(n−i)

ξ b̂
]

; (3.25a)

∂n
ξ (a × b) =

n∑
i=0

Cn
i (∂
(n−i)
ξ a × ∂(i)ξ b) =

n∑
i=0

Cn
i (∂
(i)
ξ a × ∂(n−i)

ξ b). (3.25b)

Proof: Using the definition of Lie-bracket in Eq. (1.9a), we have,

∂ξ
[
â, b̂

]
= (∂ξ â. b̂ + â.∂ξ b̂) − (∂ξ b̂. â + b̂.∂ξ â) =

[
∂ξ â, b̂

]
+

[
â, ∂ξ b̂

]
. (3.26)

Higher-order derivatives of the Lie-bracket derived using the above result yields an

expression given by Eq. (3.25a). Using the definition of axial vector corresponding to the

Lie-bracket in Eq. (1.9b), Eq. (3.25b) follows from Eq. (3.25a). The first and second equality in
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(3.25a) and (3.25b) holds by virtue of result (3.1a) in Theorem 3.0. This completes the proof. �

Corollary 3.2: For scalars functions f (ξ),g(ξ); vectors u(ξ), v(ξ); and a second order tensors

A(ξ),B(ξ), the nth order product rule is given by the following:

∂n
ξ ( f g) =

n∑
i=0

Cn
i ∂
(n−i)
ξ f .∂(i)ξ g =

n∑
i=0

Cn
i ∂
(i)
ξ f .∂(n−i)

ξ g; (3.27a)

∂n
ξ ( f u) =

n∑
i=0

Cn
i ∂
(n−i)
ξ f .∂(i)ξ u =

n∑
i=0

Cn
i ∂
(i)
ξ f .∂(n−i)

ξ u; (3.27b)

∂n
ξ ( f A) =

n∑
i=0

Cn
i ∂
(n−i)
ξ f .∂(i)ξ A =

n∑
i=0

Cn
i ∂
(i)
ξ f .∂(n−i)

ξ A; (3.27c)

∂n
ξ (v · u) =

n∑
i=0

Cn
i ∂
(n−i)
ξ v · ∂(i)ξ u =

n∑
i=0

Cn
i ∂
(i)
ξ v · ∂(n−i)

ξ u; (3.27d)

∂n
ξ (A.u) =

n∑
i=0

Cn
i ∂
(n−i)
ξ A.∂(i)ξ u =

n∑
i=0

Cn
i ∂
(i)
ξ A.∂(n−i)

ξ u. (3.27e)

∂n
ξ (A.B) =

n∑
i=0

Cn
i ∂
(n−i)
ξ A.∂(i)ξ B =

n∑
i=0

Cn
i ∂
(i)
ξ A.∂(n−i)

ξ B. (3.27f)

Proof: The result above follows directly from proposition 3.4. This is because, from Eq. (3.26),

we see that Lie-brackets follow the chain rule just like the product of two scalars or a dot product

except for the fact that Lie-brackets are non-commutative (which is a stronger condition). �

Proposition 3.5: For any â(ξ) ∈ so(3), the following holds:

∂m
ξ

[
â, ∂ξ â

]
=

jmax
m∑
j=0

bmj

[
∂
( j)
ξ â, ∂

(m− j+1)
ξ â

]
. (3.28)

where m, j, jmax
m , bmj ∈ Z

+, such that the coefficient jmax
m , and bmj are given as

jmax
m =


floor

(
m+1

2

)
, if m+1

2 < Z
+;

m+1
2 − 1, if m+1

2 ∈ Z
+.

(3.29a)

bmj = Cm
j − Cm

(m− j+1) = Cm
j

(
m − 2 j + 1
m − j + 1

)
. (3.29b)
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Proof: Using the result (3.25a) of Proposition 3.4, we get,

∂m
ξ [â, ∂ξ â] =

m∑
j=0

Cm
j

[
∂
( j)
ξ â, ∂

(m− j+1)
ξ â

]
= Cm

0

[
â, ∂(m+1)

ξ â
]

︸              ︷︷              ︸
Term 0

+

m∑
j=1

Cm
j

[
∂
( j)
ξ â, ∂

(m− j+1)
ξ â

]
︸                           ︷︷                           ︸

Term 1

.
(3.30)

The terms in the expansion of Term 1 with j = m+1
2 vanishes (refer to Eq. (1.10a)). Keeping that

in mind, we note that the expansion of Term 1 can be written in two correct possible ways: the first

possibility is when j > m+1
2 , and the second option is considering j < m+1

2 . In the first option, the

coefficient of all the terms in the sum will be negative, whereas, for second case, the coefficients

will be positive. This owes to the anti-commutative property of Lie-brackets mentioned in Eq.

(1.10b). We consider the second case in our derivation.

We can further simplify Term 1. The total number of terms present in the expanded form

of Term 1 is less than m. This is because the terms with interchanged order of derivatives in

Lie-bracket can be reduced to one term. For instance:

c1

[
∂x
ξ â, ∂

y
ξ â

]
+ c2

[
∂
y
ξ â, ∂

x
ξ â

]
= (c1 − c2)

[
∂x
ξ â, ∂

y
ξ â

]
.

Thus, the maximum value of j is restricted by the fact that j < m+1
2 and j ∈ Z+ − {0}. Combining

these two constraints yields max( j) = jmax
m given by Eq. (3.29a). However, such a reduction or

simplification of Term 1 changes the coefficient by which each term in the sum is weighed. The

discussion presented so far may be demonstrated, for example, for m = 4 as:

Term 1|m=4 =

4∑
j=1

C4
j

[
∂
( j)
ξ â, ∂

(5− j)
ξ â

]
= 3

[
∂ξ â, ∂

4
ξ â

]
+ 2

[
∂2
ξ â, ∂

3
ξ â

]
= −3

[
∂4
ξ â, ∂ξ â

]
− 2

[
∂3
ξ â, ∂

2
ξ â

]
= ‖C4

1 − C4
4 ‖

[
∂ξ â, ∂

4
ξ â

]
+ ‖C4

2 − C4
3 ‖

[
∂2
ξ â, ∂

3
ξ â

]
(3.31)
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=

jmax
4 =2∑

j=1
(C4

j − C4
(4− j+1))

[
∂
( j)
ξ â, ∂

(5− j)
ξ â

]
.

For a general case, if jmax
m ≥ 1, Term 1 can be written as:

Term 1 =
jmax
m∑
j=1

bmj

[
∂
( j)
ξ â, ∂

(m− j+1)
ξ â

]
. (3.32)

The modified coefficient bmj = (Cm
j − Cm

(m− j+1)) is defined in Eq. (3.29b). From the second

equality in Eq. (3.29b), we also note that bm0 = Cm
0 = 1. Therefore, combining Term 0 and Term

1 proves the proposition. Table 3.1 gives the value of coefficient jmax
m for 1 ≤ m ≤ 6. �

Table 3.1: jmax
m for 0 ≤ m ≤ 6

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
m = 0 0 - - - - - -
m = 1 0 0 - - - - -
m = 2 1 0 0 - - - -
m = 3 1 1 0 0 - - -
m = 4 2 1 1 0 0 - -
m = 5 2 2 1 1 0 0 -
m = 6 3 2 2 1 1 0 0

3.4.2 Derivatives of curvature tensor

The derivative of the curvature tensor may be obtained using Eq. (2.3) deploying a

straightforward application of the chain rule. However, deriving the expression of higher-order

derivatives using Eq. (2.3) is cumbersome because of the involvement of trigonometric functions.

Instead, we realize that the reparametrization of the rotation tensor by the Gibbs vector (the

components of which are called as Gibbs or Rodriguez parameters in the literature) yields the

formula of curvature tensor that is beneficial in obtaining the derivative of curvature tensor in the

form of a single summation-formula. Consider a rotation tensor Q(θ) = exp(θ̂) ∈ SO(3). We
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define the Gibbs vector φ and the associated quantities as:

φ̂ =
tan

(
θ
2

)
θ

θ̂; φ =
tan

(
θ
2

)
θ

θ; φ = ‖φ‖ = tan
(
θ

2

)
; φ = 2 cos2

(
θ

2

)
=

2
φ2 + 1

. (3.33)

The result defined in Eq. 1.14a may be manipulated using the definition given above as:

Q(φ̂) = I3 + 2 cos2
(
θ

2

)
.

(
1
θ

tan
(
θ

2

)
θ̂ +

(
1
θ

tan
(
θ

2

))2
θ̂

2
)
= I3 + φ(φ̂ + φ̂

2
);

Q(φ̂)T = Q(−θ) = I3 + φ(−φ̂ + φ̂
2
).

(3.34)

Proposition 3.6: φ̂ ∈ so(3) and n ∈ Z+ − {0}, the following formulae hold true:

φ̂
2n−1
= (−1)n−1φ2(n−1)φ̂; φ̂

2n
= (−1)n−1φ2(n−1)φ̂

2; (3.35a)

φ̂.∂ξ φ̂.φ̂ = −(φ · ∂ξφ)φ̂; φ̂.∂ξ φ̂.φ̂
2
= −(φ · ∂ξφ)φ̂

2
. (3.35b)

Proof: Refer to Eq. [30] of Argyris [19] for identity (3.35a) that describes the recurrence

formula for the power of anti-symmetric matrix. The identity (3.35b) can be proved by considering

the action of tensor on left hand side of equation on to a vector, say v ∈ R3 and using the vector

triple product identity, such that

(φ̂.∂ξ φ̂.φ̂).v = φ × (∂ξφ × (φ̂.v)) = (φ · (φ̂.v))∂ξφ − (φ · ∂ξφ)φ̂.v. (3.36)

Noting that (φ · (φ̂.v)) = φ · (φ × v) = 0, we prove the first part of identity (3.35b). Along the

similar lines, the second part can be proven. �

The curvature tensor can then be obtained using Eq. (3.34) and proposition 3.6 as:

κ̂ = ∂ξQ.Q
T = φ

(
∂ξ φ̂ + [φ̂, ∂ξ φ̂]

)
. (3.37)

This expression is much simpler than the one presented in Eq. (2.3).
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Proposition 3.7: The following holds:

∂n
ξ κ̂ =

n∑
i=0

Cn
i ∂
(i)
ξ φ

©­«∂(n−i+1)
ξ φ̂ +

jmax
(n−i)∑
j=0

b(n−i) j

[
∂
( j)
ξ φ̂, ∂(n−i+1− j)

ξ φ̂
]ª®¬ ; (3.38a)

∂n
ξ κ =

i=n∑
i=0

Cn
i ∂
(i)
ξ φ

©­«∂(n−i+1)
ξ φ +

jmax
(n−i)∑
j=0

b(n−i) j

(
∂
( j)
ξ φ × ∂(n−i+1− j)

ξ φ
)ª®¬ . (3.38b)

where, n, i, j, jmax
(n−i),C

n
i , b(n−i) j ∈ Z

+. Replacing m −→ (n − i) in (3.29a) and (3.29b) yields jmax
(n−i),

and b(n−i) j .

Proof: We utilize Eq.(3.27c) of Corollary 3.2 and the expression of curvature tensor in Eq.

(3.37) and obtain

∂n
ξ κ̂ =

n∑
i=0

Cn
i ∂
(i)
ξ φ.

(
∂
(n−i)
ξ

(
∂ξ φ̂ +

[
φ̂, ∂ξ φ̂

] ))
=

n∑
i=0

Cn
i ∂
(i)
ξ φ.

(
∂
(n−i+1)
ξ φ̂ + ∂(n−i)

ξ

[
φ̂, ∂ξ φ̂

] ) (3.39)

Using Proposition 3.5 and replacing m −→ (n − i), we get,

∂
(n−i)
ξ

[
φ̂, ∂ξ φ̂

]
=

jmax
(n−i)∑
j=0

b(n−i) j

[
∂
( j)
ξ φ̂, ∂((n−i)− j+1)

ξ φ̂
]
. (3.40)

The equation above when substituted into Eq. (3.39) proves the result (3.38a). The axial vector

corresponding to ∂n
ξ κ̂, given by Eq. (3.38b), is obtained using the formula (1.9b). �

Note: Define θ
θ
= e. We can use Eq. (3.34) and (3.38) to obtain Q and ∂n

ξ κ̂ for small

rotations (when ‖θ‖ → 0), by setting ∂n
ξ φ = limθ→0 ∂

n
ξ tan

(
θ
2

)
, ∂n

ξ φ̂ =
(
limθ→0 ∂

n
ξ tan

(
θ
2

))
. ê

and ∂n
ξ φ = 2 limθ→0 ∂

n
ξ cos2

(
θ
2

)
. Here, e is the fixed unit vector about which the rotation occurs.
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Corollary 3.3: The following holds:

∂̃n
ξ κ̂ = ∂

n
ξ κ̂ − (1 − δn0)

n−1∑
i=1

∂
(i−1)
ξ

[
κ̂, ∂̃(n−i)

ξ κ̂
]

= ∂n
ξ κ̂ − (1 − δn0)

n−1∑
i=1

i−1∑
j=0

C(i−1)
j

[
∂
( j)
ξ κ̂, ∂(n−i− j)

ξ ∂̃
(n−i)
ξ κ̂

]
;

(3.41a)

∂̃n
ξ κ = (∂ξ − ∂̂)

nκ = ∂n
ξ κ − (1 − δn0)

n−1∑
i=1

∂
(i−1)
ξ (κ × ∂̃(n−i)

ξ κ)

= ∂n
ξ κ − (1 − δn0)

n−1∑
i=1

i−1∑
j=0

C(i−1)
j (∂

( j)
ξ κ × ∂(n−i− j)

ξ ∂̃
(n−i)
ξ κ).

(3.41b)

∂n
ξ κ̂ = QT .∂̃n

ξ κ̂ .Q. (3.41c)

Proof: This corollary follows from the Proposition 3.1, 3.2, 3.3 and 3.4. We also note that in

the sums presented above, max(i) = (n − 1), because
[
κ̂, ∂̃(n−i)

ξ κ̂
] ��
(n=i) = 03. �

The nth order derivative of rotation tensor Q can be derived as a function of Gibbs vector

and the associated parameters using Eq. (3.34). However, computationally, a much simpler

approach would be to derive a recurrence formula for ∂n
ξ Q using the fact that ∂ξQ = κ̂ .Q and

Proposition 3.7. The recurrence formula for ∂n
ξ Q yields the formula to obtain nth order derivative

of director vectors dm(ξ) with m ∈ {1,2,3}.

Proposition 3.8: For n ≥ 0, the following holds:

∂n
ξ Q = δn0Q + (1 − δn0)

n−1∑
i=0

C(n−1)
i ∂i

ξ κ̂ .∂
(n−1−i)
ξ Q; (3.42a)

∂n
ξ dm = δn0dm + (1 − δn0)

n−1∑
i=0

C(n−1)
i ∂i

ξ κ̂ .∂
(n−1−i)
ξ dm. (3.42b)

Proof: From the definition of curvature tensor, we have ∂ξQ = κ̂ .Q. Therefore, for n > 0, we

have ∂n
ξ Q = ∂

(n−1)
ξ (κ̂ .Q), which when simplified using Eq. (3.27f) yields the result (3.42a). The

result (3.42b) follows from Eq. (3.42a) and the fact that ∂n
ξ dm = ∂

n
ξ

(
Q.Em = ∂

n
ξ Q.Em

)
. �
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Corollary 3.4: Alternate to Proposition 3.1 and Corollary 3.3, the quantities ∂n
ξ κ and ∂̃n

ξ κ can

be obtained using the relationship κ = QT .κ as:

∂n
ξ κ =

n∑
i=0

Cn
i ∂

i
ξQ

T .∂
(n−i)
ξ κ for n ≥ 0; (3.43a)

∂̃n
ξ κ = Q.∂n

ξ κ for n > 0. (3.43b)

Corollary 3.4 can be used to obtain co-rotational derivatives, material curvature and its derivatives,

provided ∂n
ξ κ and ∂n

ξ Q are known.

3.5 Updating the curvature and its derivatives

In this section, we shall address the situation where the space curve is evolving with time in

steps, such that the transformed curve is also parameterized spatially by ξ. At time t, let the initial

rotation tensor field be Q(ξ, t) = Qi(ξ) ∈ SO(3) and in the next time step (t + 1), the updated

(or final) rotation tensor field is Q(ξ, t + 1) = Qf(ξ) ∈ SO(3). We assume Eulerian updating of

rotation tensor field, i.e. the change in rotation tensor field from discrete time step t to (t + 1)

is given by an incremental current rotation vector field ∆α, such that ∆α̂.Qi ∈ TQiSO(3). We

are given the derivative fields ∂n
ξ∆α (or ∂n

ξ∆α̂) and ∂
n
ξ Qi up to order n (or equivalently, ∂(n−1)

ξ κ̂ i,

where κ̂ i = ∂ξQi.Q
T
i ). The question posed is thus: “How do we obtain the updated curvature

tensor, its spatial, material and co-rotational derivatives up to order (n − 1)?” It is clear from

(3.38) that the nth-order derivative of the curvature tensor requires up to the (n + 1)th derivative of

the corresponding rotation vector. To proceed, we first present the updated rotation tensor as

Qf = exp(∆α̂).Qi = Q+.Qi where, Q+ = exp(∆α̂). (3.44)
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We define the curvature corresponding to incremental current rotation vector ∆α and the transport

operator TQ as:

κ̂+ = ∂ξexp(∆α̂).exp(−∆α̂) = ∂ξQ+.QT
+;

TQ[Â] = Q.Â.QT ∈ so(3), ∀ Q ∈ SO(3), Â ∈ so(3).
(3.45)

We observe that TQ[κ̂] = κ̂ and TQT [κ̂] = κ̂.

Proposition 3.9: The nth order derivative of the transport operator TQ[Â] is given by

∂n
ξTQ[Â] = TQ[∂

n
ξ Â] + (1 − δn0)

n∑
k=1

n−k∑
i=0

C(n−k)
i

[
∂
(i)
ξ κ̂, ∂

(n−k−i)
ξ TQ[∂

(k−1)
ξ Â]

]
. (3.46)

Proof: Consider

∂ξTQ[Â] = Q.∂ξ Â.Q
T + κ̂ .TQ[Â] − TQ[Â].κ̂ = TQ[∂ξ Â] + [κ̂,TQ[Â]]. (3.47)

Using the above result along with Proposition 3.4, for n ≥ 1, we have

∂n
ξTQ[Â] =∂

(n−1)
ξ .(∂ξTQ[Â]) = ∂

(n−1)
ξ .

(
TQ[∂ξ Â] + [κ̂,TQ[Â]]

)
=∂
(n−1)
ξ TQ[∂ξ Â] +

(n−1)∑
i=0

C(n−1)
i

[
∂
(i)
ξ κ̂, ∂

(n−1−i)
ξ TQ[Â]

]
=∂
(n−2)
ξ (∂ξTQ[∂ξ Â]) +

(n−1)∑
i=0

C(n−1)
i

[
∂
(i)
ξ κ̂, ∂

(n−1−i)
ξ TQ[Â]

]
=∂
(n−2)
ξ TQ[∂

2
ξ Â] +

(n−2)∑
i=0

C(n−2)
i

[
∂
(i)
ξ κ̂, ∂

(n−2−i)
ξ TQ[∂ξ Â]

]
+

(n−1)∑
i=0

C(n−1)
i

[
∂
(i)
ξ κ̂, ∂

(n−1−i)
ξ TQ[Â]

]
=TQ[∂

n
ξ Â] +

(
(n−1)∑
i=0

C(n−1)
i

[
∂
(i)
ξ κ̂, ∂

(n−1−i)
ξ TQ[Â]

]
(n−2)∑
i=0

C(n−2)
i

[
∂
(i)
ξ κ̂, ∂

(n−2−i)
ξ TQ[∂ξ Â]

]
+ ... +

0∑
i=0

C0
i

[
∂
(i)
ξ κ̂, ∂

(n−i)
ξ TQ[∂

(n−1)
ξ Â]

] )
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=TQ[∂
n
ξ Â] +

n∑
k=1

n−k∑
i=0

C(n−k)
i

[
∂
(i)
ξ κ̂, ∂

(n−k−i)
ξ TQ[∂

(k−1)
ξ Â]

]
. (3.48)

Noting that at n = 0, the sum in equation (3.46) vanishes justifies the factor (1 − δn0). �

Figure 3.3: Geometric interpretation of the curvature updating: κ̂f = κ̂+ + TQ+[κ̂ i].

Proposition 3.10: Let κ̂ i = ∂ξQi.Q
T
i and κ̂f = ∂ξQf.Q

T
f denote the curvature field corresponding

to the initial and final configurations respectively. The updated curvature tensor and its derivatives

are given by the recurrence-formula,

∂n
ξ κ̂f = ∂

n
ξ κ̂+ + TQ+[∂

n
ξ κ̂ i] + (1 − δn0)

n∑
k=1

n−k∑
i=0

C(n−k)
i

[
∂
(i)
ξ κ̂+, ∂

(n−k−i)
ξ TQ+[∂

(k−1)
ξ κ̂ i]

]
. (3.49)

Proof: Using the Eq. (3.44) and (3.45), we obtain updated curvature as:

κ̂f = ∂ξ(Q+.Qi).(Q+.Qi)
T = ∂ξ(Q+).Q

T
+ + Q+.κ̂ i.Q

T
+ = κ̂+ + TQ+[κ̂ i]. (3.50)

Therefore,

∂n
ξ κ̂f = ∂

n
ξ κ̂+ + ∂

n
ξTQ+[κ̂ i]. (3.51)
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Substituting Eq. (3.46) obtained in Proposition 3.9 in the above result proves this proposition. �

The curvatures κ̂+ and their derivatives may be obtained using Proposition 3.7. Once

the spatial curvature and its derivatives are obtained, the derivative of material curvature and

co-rotational derivative can be obtained using Proposition 3.1 or Corollary 3.3 or Corollary 3.4.

The reader should refer to Fig. 3.3 for a geometric interpretation of curvature updating.

3.6 Summary

The current chapter is a theoretical extension of chapter 1. Despite this fact, the current

chapter is placed third because chapter 2 presents an immediate application of chapter 1. The

curvature tensor and its derivatives associated with any space curve framed by a general material

frame are dealt with. Therefore, the results presented here are valid for any frame, including

the Frenet-Serret and Bishop frames. In addition to discussing the spatial and material forms of

the curvature tensor, the higher-order derivatives and co-rotation derivatives of these quantities

are investigated. A closed-form formula for all higher-order derivative of the spatial curvature

tensor is presented. Finally, a time-updating algorithm for curvature (both spatial and material)

and its derivatives (partial and co-rotational) was presented, which is particularly useful in

practical problems like finite element formulation of geometrically-exact beams, among many

other applications. The results presented in this chapter are used to develop finite element code

for geometrically exact beams in chapter 10 (refer to section 10.4).

The chapter has been published in Applied Mathematics Letters Journal, Mayank Chadha

and Michael D. Todd [35], 2019. The title of this paper is “On the derivatives of curvature of

framed space curve and their time-updating scheme”. An extended version of the same paper

[36], with MATLAB code, is published in arXiv of Mathematics (Differential Geometry). The

dissertation author is the primary investigator and author of these papers.
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Chapter 4

Enhanced Kinematics of

Geometrically-Exact Cosserat beam

4.1 Introduction to generalized kinematics

This chapter deals with the development of a geometrically-exact non-linear kinematic

model to capture warping (out-of-plane deformation), fully coupled Poisson’s transformation

(in-plane deformation) along with axial deformation of the mid-curve, multiple curvatures, torsion

and finite shear deformations in a Cosserat beam subjected to finite deformation and finite

strain. This approach does not make the usual Euler-Bernoulli rigid cross-section assumption

(plane cross-section remains plane after deformation). Instead, we propose a refined approach to

capture various cross-sectional deformation (in-plane and out-of-plane) and coupling between

them. We discuss the challenges associated with coupling Poisson’s effect and warping. The

proposed fully-coupled Poisson’s effect captures the in-plane deformation of the cross-section.

However, the fully-coupled Poisson’s transformation presented in this work does not model the

in-plane deformation due to local buckling, which is a prominent phenomenon in the case of

thin-walled beam cross-sections. The work by Fang Yiu [37] describes the in-plane cross-sectional
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distortion of thin-walled beam theory. Apart from this buckling limitation, the kinematics and the

measurement model developed in this chapter is completely general.

For a Cosserat beam subjected to the Euler-Bernoulli rigid cross-section assumption, the

configuration of the beam is defined by the mid-curve and the orthogonal body-centered director

triad attached to the cross-section. The rigid cross-section assumption restricts the inclusion of

Poisson’s and warping effects. The problem of warping for various levels of complexities, from a

simple Saint Venant problem (refer [38]) to a complicated non-uniform asymmetric case (refer to

[39], [40], [41], [42], [43], [44], [45], [46] and [47]), has been previously explored.

Per our survey of the literature, an investigation on the geometric coupling between

the Poisson’s effect and warping has not been attempted before. We believe that fully-coupled

Poisson’s and warping effect for a single-manifold beam problem will capture the in and out of the

cross-sectional deformation with enhanced accuracy which is beneficial for both forward modeling

analyses and solving inverse problems like shape sensing. The first step of this investigation

aims at obtaining a simplified governing differential equation of warping from an assumed small

displacement field. This step attempts to extend the theory of warping proposed by Brown et

al. [42] to incorporate the contribution of axial deformation and Poisson’s effect on warping.

We define a small displacement field including axial, bending, torsion and Poisson’s effects for

an asymmetric cross-section. We include the contribution due to bending because, in a general

asymmetric cross-section, the bending also contributes to warping. In general, the proposed

warping function captures the non-linear bending-induced shear strain distribution across the

cross-section, unlike Timoshenko’s theory which assumes a constant shear distribution thereby

preventing any out-of-plane deformation. The effect of warping due to non-linear shear induced

by bending is quite significant in deep beams.

The governing differential equations for warping are obtained. However, the governing

equation and the boundary condition at the periphery of the cross-section reflect an inconsistency

if the axial strain is included in the deformation field. We propose a solution to this inconsistency.
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Elimination of the observed inconsistency suggests a solution that does not include the effect of

axial strain on warping explicitly, but we obtain a consistently modified differential equation for

warping. We suggest two different solution approaches that have a separable variable form.

The solution for the warping functions is assumed to be known to develop the fully-coupled

Poisson’s effect and establish the beam kinematics. Prior knowledge of the warping function

guarantees the single manifold nature of the problem and allows us to obtain important parameters

such as deformation gradient tensor and Cauchy Green tensor (or Pull-back Riemannian metric)

for the beam. Assuming that we know the solution to these differential equations, we propose a

fully-coupled Poisson’s effect that incorporates the effects of axial strain across the cross-section

due to axial deformation, bending curvatures and warping. Henceforth, we call the effect attributed

to the cross-sectional deformation (including in- and out-of-plane) a fully-coupled Poisson’s and

warping effect.

The strain vectors and the deformation gradient tensor of the deformed configuration

referenced to both an initially straight beam configuration and an initially curved reference beam

configuration are obtained. The contribution to each of these strain vectors due to different

deformation effects are discussed in great detail. The kinematics of various restraint cases

is obtained. In the view of the author, the kinematics developed herein establishes the most

comprehensive geometry of the Cosserat beam that still preserves the simplicity of the single-

manifold nature of the problem. The notations mentioned at the end of section 3.1 are valid for

this chapter.

4.2 Geometric description of various beam configurations

In the wake of proposing the fully-coupled Poisson’s and warping effect within our

presentation of the kinematics, we define the following configurations of the beam:

1. Ωc: Curved reference beam configuration.
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2. Ω0: Mathematically straight beam configuration.

3. Ω1: Deformed configuration of the beam assuming Euler-Bernoulli’s rigid cross-section.

4. Ω2: Deformed configuration of the beam allowing the cross-section to undergo out-of-plane

warping only (no in-plane deformation).

5. Ω3: Deformed configuration of the beam including fully-coupled Poisson’s and warping

effect.

These configurations will be described in the subsequent sections.

4.2.1 Description of the director frame and the mid-curve of beam

Let an open set Ω0 ⊂ R
3 and Ω3 ⊂ R

3 with at least piecewise smooth boundariesS0 and

S3 represent the undeformed and deformed configuration of the beam respectively. The beam

configuration is described by the mid-curve and a family of cross-sections. To start with the

kinematic description of the beam, we assume the straight undeformed configuration Ω0.

Let the fixed orthonormal reference basis (material basis) be represented by {Ei} with

origin at (0,0,0). We choose to have coincidental material and spatial reference axes to avoid

unnecessary definition of additional fixed spatial frame. The regular curve ϕ0 : [0, L] −→ R3

represents the mid-curve associated with Ω0. It is parameterized by the arc-length (curvilinear

coordinate along the mid-curve) ξ1 ∈ [0, L]. We assume that the undeformed configuration is

made up of continuously varying plane family of cross-sections B0(ξ1), such that ϕ0 = ξ1E1 is

the locus of geometric centroid of the family of cross-sections B0(ξ1). The cross-section B0(ξ1)

is spanned by the vectors E2 − E3 originating at ϕ0(ξ1) such that (ξ2, ξ3) ∈ B0(ξ1). Let Γ0(ξ1)

represent the peripheral boundary of B0(ξ1), such that S0 = B0(0) ∪ B0(L) ∪∀ξ1 Γ0(ξ1). Any

material point in the beam is defined by its material coordinate (ξ1, ξ2, ξ3) with a position vector

R0 = ξiEi.

In order to proceed further, we first define the deformed configuration Ω1 of the beam
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restrained by rigid cross-section constraint. Numerous seminal works addressing geometrically

exact Cosserat beam with rigid cross-section exist (refer to [48], [49], [50], [51], [52], and [53]).

The configuration Ω1 is defined by a regular mid-curve ϕ(ξ1) and a family of plane cross-sections

B1(ξ1), parameterized by the undeformed arc-length ξ1. Equivalently, the mid-curve ϕ(s(ξ1))

and a family of plane cross-sections B1(s(ξ1)) are reparametrized by the deformed arc-length

s (curvilinear coordinate along the mid-curve of deformed configuration) such that ξ1 = ξ1(s)

is at least C1 continuous and dξ1
ds , 0. The director frame field {di} (also known as moving

frame, body frame or material frame) defines the orientation of family of cross-section B1(s(ξ1)).

We have, B1(ξ1) = {(ξ2, ξ3) ∈ R
2
ξ1
}, where R2

ξ1
is 2D Euclidean space spanned by the directors

d2(ξ1) − d3(ξ1), with origin at ϕ(ξ1). We define the deformation map φ1 : R0 ∈ Ω0 7−→ R1 ∈ Ω1,

such that,

φ1(R0) = R1 = ϕ(ξ1) + r1; (4.1a)

r1 = ξ2d2 + ξ3d3; (4.1b)

ϕ(ξ1) = ϕiEi; (4.1c)

di(ξ1) = di jE j . (4.1d)

The initially curved reference beam Ωc is defined by the director triad dci (ξ1) = dci jE j

and the mid-curve position vector ϕc(ξ1). Any point in Ωc is defined by the vector Rc =

ϕc + ξ2dc2 + ξ3dc3 .

The triad {Ei}, {dci } and {di} are related to each other by means of the orthogonal rotation

tensor,

di = Q.Ei; dci = Qc.Ei; di = Qr .dci, (4.2)

such that the following relationships hold,

Q = Qr .Qc,

Q = di ⊗ Ei; Qr = di ⊗ dci ; Qc = dci ⊗ Ei .

(4.3)
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4.2.2 Finite strain parameters defining the configuration Ω1

The deformed configuration Ω1 is subjected to axial deformation of the mid-curve, shear

deformations of the cross-section, torsion, and the bending curvatures. We define the deformed

arc-length as s, the axial strain as e(ξ1), and the three shear angles as γ11(ξ1), π2 − γ12(ξ1) and
π
2 − γ13(ξ1) subtended by the directors d1, d2 and d3 with the tangent vector ∂sϕ respectively,

such that,
e =

ds − dξ1
dξ1

⇒
dξ1
ds
=

1
1 + e

;

∂sϕ · di =


cos γ1i, for i = 1

sin γ1i, for i = 2,3

 .
(4.4)

Therefore,

∂ξ1ϕ = (1 + e)(cos γ11d1 + sin γ12d2 + sin γ13d3). (4.5)

The shear angles defined above are not unique and require construction of another moving frame

to establish their uniqueness. However, by themselves, the shear angles are not of much use to us.

The components of axial strain vector are rather more meaningful. We define the axial strain

vector ε and its material form ε representing the strain due to shear and mid-curve strain such that

ε = ∂ξ1ϕ − d1 = εidi;

ε = QT .ε = QT .∂ξ1ϕ − E1 = εiEi .

(4.6)

Mathematically, the curvatures in the beam are captured by the derivative of the director with

respect to the arc-length, such that

∂ξ1di = ∂ξ1Q.Q
T .di = κ̂ .di = κ × di . (4.7)

The component κ1 represents the torsional curvature about the director d1. The curvature terms

κ2 and κ3 represent the curvature due to bending about the director d2 and d3, respectively. As

defined in section 2.2.2, κ = QT .κ and κ̂ = QT .κ̂ .Q represents the material form of the curvature
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Figure 4.1: Geometric interpretation of derivative of director triad and curvature.

vector and tensor respectively. For the configuration Ω1, ϕ(ξ1) ∈ R
3 is sufficient to define the

mid-curve, whereas the orientation of the cross-section is fully described by the director triad.

Therefore, R3 × SO(3) is the configuration space for Ω1.

Assume that the left end of the beam is fixed, implying di(0) = Ei and θ(ξ1) = 0. These

also serve as the three vector boundary conditions to solve Eq. (4.7). The curvature vector,

κ = κidi, may be interpreted as the rotation of the director frame per unit arc length at ξ1 by an

angle ‖κ‖ =
√
κ2

1 + κ
2
2 + κ

2
3. Since the left end of the beam is fixed, the director frame {di(ξ1)}

can be obtained by rotating the vectors Ei about the rotation vector θ(ξ1) =
∫ ξ1
0 κ(ξ1) dξ1.

Figure (4.2) geometrically explains the concept described above using a simplified 2D

beam fixed at left end. The director d3(ξ1) = E3 remains same throughout the mid-curve for

the problem being planar in nature. Since the torsion is assumed to be zero, κ(ξ1) = κ3d3. This

scenario simplifies the unit vector about which rotation occurs at any arc-length as nθ(ξ1) = E3

and the angle of rotation of directors d1(ξ1) and d2(ξ1) with respect to the vectors E1 and E2

respectively as, θ(ξ1) =
∫ ξ1
0 κ3(ξ1)dξ1. Note that this is a special case where the vector nθ(ξ1) = E3

is constant for all ξ1. Therefore, a general rotation tensor Q, such that di(ξ1) = Q(ξ1).Ei, for a

beam fixed at left end, is then expressed in terms of the curvatures as,

Q(ξ1) = exp
(∫ ξ1

0
κ̂(ξ1) dξ1

)
. (4.8)
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Figure 4.2: Geometric interpretation of curvature for a 2D plane beam.

The geometric description of more general configurations Ω2 −Ω3 comprises of different

families of cross-sections obtained by further transformation of the cross-section B1. Therefore,

before we continue to describe the configurations Ω2 −Ω3, we will first obtain the fully-coupled

Poisson’s and warping effect in the next few sections.

4.2.3 An introductory remark on warping

The simplest non-trivial case of warping is Saint-Venant’s uniform torsion problem (refer

p. 113 of Sokolnikoff [38]) on a doubly symmetric prismatic bar subjected to a constant curvature

κ1(ξ1) = κ1. If the cross-section is not doubly symmetric, the torsion and bending are uncoupled

by using the idea of shear-center. Elter [40] describes two formulations of shear-center, the first

obtained using Saint-Venant’s principle and the second attributed to Trefftz [39]. In Saint-Venant’s
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principle, the distributed forces at the end-section (sayB(L)) are replaced by a statically equivalent

concentrated force and couple. Trefftz [39] proposed that the work done by the distributed forces

at the end-section is equal to the work done by statically equivalent concentrated force and couple,

thereby proposing equivalence in energy. Note that both the approaches are meant for uniform

torsion.

Let the straight asymmetric beam be subjected to uniform torsion with constant curvature

κ1. Let n = n2E2+n3E3 be the normal vector to the boundary Γ(ξ1) of the deformed cross-section

B(ξ1). Due to linear and small deformation nature of the problem, we express the displacement

field in {Ei} frame. Let the position vector of the shear center from the centroid be S2E2 + S3E3.

The corresponding linear displacement field us measured about the shear center can be obtained

as:

us = κ1ξ1 (E1 × ((ξ2 − S2)E2 + (ξ3 − S3)E3)) + κ1Ψs(ξ2, ξ3)E1. (4.9)

The warping function may then be obtained by solving the following Neumann boundary value

problem,

∇2
Ψs = ∂

2
ξ2
Ψs + ∂

2
ξ3
Ψs = 0 on B(ξ1);

∂nΨs = ∂ξ2Ψsn2 + ∂ξ3Ψsn3 = − (((ξ2 − S2)E2 + (ξ3 − S3)E3) × n) · E1 on Γ(ξ1).

(4.10)

The second last equation in Elter [40] gives formula for the shear center, when the displacement

field is expressed at any arbitrary point A other than the centroid. Considering the arbitrary point

A to be the shear center S of the beam, we arrive at the following two conditions:∫
B

ξ2Ψs dξ2dξ3 =

∫
B

ξ3Ψs dξ2dξ3 = 0. (4.11)

Equations (4.10) and (4.11) can be solved to obtain S2, S3 and Ψs, unique to a constant. Therefore,

an additional normalization condition (that is also required for the axial force to vanish) can be

invoked to solve for the constant, ∫
B

Ψs dξ2dξ3 = 0. (4.12)
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Equations (4.10)-(4.12) gives a unique solution to the warping function Ψs for uniform torsion.

Simo and Vu-Quoc [43] use the warping function Ψs weighted by the warping amplitude p(ξ1) to

consider non-uniform torsion in finite deformation problem. This adds an additional finite strain

parameter p(ξ1), introducing the idea of bi-shear and bi-moment.

As indicated in Elter [40], it is interesting to note that the warping function depends on

the choice of origin. Consider the displacement field u defined with respect to the centroid,

which may be written as u = κ1ξ1 (E1 × (ξ2E2 + ξ3E3)) + κ1Ψ(ξ2, ξ3)E1. The warping function

Ψ(ξ2, ξ3) is then obtained by solving the following differential equation

∇2
Ψ = 0 on B(ξ1);

∂nΨ = −t on Γ(ξ1);

t = ((ξ2E2 + ξ3E3) × n) · E1.

(4.13)

The location of the shear center can be obtained using a general Eq. (29) or Eq. (2) (for single

and multi-connected regions), in Elter [40].

Burgoyne et al. [41] presents a detailed theory of warping for non-uniform torsion

considering symmetric cross-section. The assumed displacement field, where W(ξ1, ξ2, ξ3)

represents the warping deformation, is written as:

u = θ(ξ1) (E1 × (ξ2E2 + ξ3E3)) +W(ξ1, ξ2, ξ3)E1,

θ(ξ1) = θ(0) +
∫ ξ1

0
κ1(ξ1) dξ1.

(4.14)

Here, θ represents the total twist angle. The governing differential equations for linear elasticity
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with Poisson’s ratio ν = 0 then become,

∇2W +
E
G
.∂2
ξ1

W = 0 on B(ξ1);

∂nW = −∂ξ1θt on Γ(ξ1), such that,

∂ξ1W = 0 or ∂r
ξ1
θ = 0 if the end is unrestrained in warping, where r = 0,2,4,6, ...

W = 0 or ∂r
ξ1
θ = 0 if the end is restrained in warping, where r = 1,3,5, ...

(4.15)

The parameters E and G are the Young’s modulus and shear modulus, respectively. One of the

two solution approaches proposed by Burgoyne et al. [41] is to use infinite series sum of the form

W(ξ1, ξ2, ξ3) =

∞∑
r=0

∂r
ξ1
θ(ξ1).Ψr(ξ2, ξ3). (4.16)

The idea is to solve for the functions Ψr , provided the twist angle θ(ξ1) is known. This involves

solving for Ψr that satisfies the following set of equations:

Ψr = 0 if r is even or zero;

∇2
Ψ1 = 0 on B(ξ1) and ∂nΨ1 = −t on Γ(ξ1);

∇2
Ψr +

E
G
Ψr−2 = 0 on B(ξ1) and ∂nΨ1 = 0 on Γ(ξ1) for r ≥ 3.

(4.17)

Knowing the functions Ψr(ξ2, ξ3), we can estimate the warping deformation for large deformation

beam problem as a finite sum

W(ξ1, ξ2, ξ3) =

n∑
r=1

∂
(r−1)
ξ1

p(ξ1).Ψr(ξ2, ξ3), r is odd. (4.18)

The weighting parameter p(ξ1), is an additional unknown finite strain parameter known as the

warping amplitude.

Particularly notable work on the warping of a thin-walled open section for pure (non-

uniform) torsion was presented by Vlasov [44]. Vlasov’s theory considers the primary warping (or

contour warping) but ignores the secondary warping (or thickness warping) of the cross-section.

In Vlasov’s theory, the line perpendicular to the contour remains perpendicular to the contour

88



and undeformed in the deformed state (assuming Kirchhoff’s thin plate assumption). Goodier

[45] and Gjelsvik [46] incorporated the warping of walls of the beam relative to the contour.

The contour is defined as the intersection of the mid surface of the wall with the cross-section

(refer to Gjelsvik [46]). Lin et al. [47] serves as an insightful reference to a complete derivation

of torsional warping that includes both primary and secondary warping for a thin-walled open

section beam subjected to pure torsion.

The idea of shear-center, the center of twist, and their synonymic nature is debatable. The

work by Brown et al. [42] ignores the concept of shear-center and develops the coupled linear

theory for torsion and flexure. They propose a trigonometric series solution for the governing

equations to obtain the warping functions. As mentioned in Brown et al. [42], the wide adaptation

of the idea of the shear center by engineers can probably be attributed to its convenience. Their

work critically reviews the idea of shear center and center of twist.

We now present our approach to model the coupling between the Poisson’s effect and

warping deformation. In section 4.2.4 we attempt to extend the warping theory proposed

by Burgoyne and Brown [41] and [42] to incorporate the effect of axial strain and Poisson’s

deformation into the warping. Therefore, section 4.2.4 along with chapter 5 elucidates the first

stage of this coupling. In section 4.2.5, we further refine the coupling by defining the fully-coupled

Poisson’s transformation.

4.2.4 Coupling between axial strain, Poisson’s effect and warping

As discussed before, the warping function is obtained for the linear elastic case and suitably

modified to capture non-linear cases. Motivated from the work of Brown and Burgoyne [42], we

assume a linear small deformation field including non-uniform torsion, bending, axial deformation

and Poisson’s effect for an asymmetric problem. For a general asymmetric cross-section, bending

induces warping, causing a coupling between bending and torsion. The incorporation of axial

deformation helps us to investigate the influence of Poisson’s effect and axial strain on warping
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(but not vice-versa, that is taken care of by the second stage of coupling, as we shall see later).

We consider an asymmetric cross-section subjected to bending, axial deformation of mid-curve,

torsion, and warping in the sense of small deformation. Consider a displacement field:

u1 = W(ξ1, ξ2, ξ3) − ξ2

( ∫
κ3(ξ1) dξ1 + C1

)
+ ξ3

( ∫
κ2(ξ1) dξ1 + C2

)
+

( ∫
e(ξ1)dξ1 + C3

)
;

u2 =

( ∫ ∫
κ3(ξ1) dξ1dξ1 + C1ξ1 + C4

)
− ξ3

( ∫
κ1(ξ1) dξ1 + C5

)
− νe(ξ1)ξ2;

u3 = −

( ∫ ∫
κ2(ξ1) dξ1dξ1 + C2ξ1 + C6

)
+ ξ2

( ∫
κ1(ξ1) dξ1 + C5

)
− νe(ξ1)ξ3.

(4.19)

Here, C1 −C6 are the constants that depend on the boundary conditions and the initial undeformed

state of the beam. The non-zero components of isotropic elastic stress tensor including the

Poisson’s effect can be obtained from Eq. (4.19) as,

σ11 = λ̃(∂ξ1W + ξ3κ2 − ξ2κ3) + (λ̃ − 2λν)e;

σ12 = σ21 = G
(
∂ξ2W − ξ3κ1 − νξ2.∂ξ1e

)
;

σ13 = σ31 = G
(
∂ξ3W + ξ2κ1 − νξ3.∂ξ1e

)
;

σ22 = λ(∂ξ1W + ξ3κ2 − ξ2κ3) − (νλ̃ + λ(ν − 1))e;

σ33 = λ(∂ξ1W + ξ3κ2 − ξ2κ3) − (νλ̃ + λ(ν − 1))e.

(4.20)

Here, λ = νE
(1+ν)(1−2ν) and λ̃ = 2G + λ. The parameters E,G and ν are Young’s modulus, shear

modulus and Poisson’s ratio respectively. Note that limν→0
e→0

σ22 = 0 and limν→0
e→0

σ33 = 0. We

restrict ourselves to stress-equilibrium in the E1 direction, as we are interested in solving for the

warping function. Therefore, the governing differential equations are

∂ξjσ1 j = 0⇒ ∇2W +
λ̃

G
(
∂2
ξ1

W − ξ2.∂ξ1κ3 + ξ3.∂ξ1κ2
)
+ λ.∂ξ1e = 0 on B(ξ1); (4.21a)

∂nW = κ1

−t︷                             ︸︸                             ︷
((n × (ξ2E2 + ξ3E3)) · E1)+ν.∂ξ1e

t̃︷                   ︸︸                   ︷
(n · (ξ2E2 + ξ3E3)) on Γ(ξ1). (4.21b)
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Here, λ = λ̃+2ν(G−λ̃)
G . As Eq. (1) in Brown et. al. [42], we define the stress resultants for axial

force, bending moment and torsion at the centroid as follows:

P1(ξ1) =

∫
B(ξ1)

σ11 dξ2dξ3 = (λ̃ − 2λν)Ae + λ̃
∫
B(ξ1)

∂ξ1W dξ2dξ3

T(ξ1) =

∫
B(ξ1)
(ξ2σ13 − ξ3σ12) dξ2dξ3 = GI11κ1 + G

∫
B(ξ1)

(
ξ2.∂ξ3W − ξ3.∂ξ2W

)
dξ2dξ3;

M2(ξ1) =

∫
B(ξ1)

ξ3σ11 dξ2dξ3 = λ̃

(∫
B(ξ1)

ξ3.∂ξ1W dξ2dξ3 + I22κ2 − I23κ3

)
;

M3(ξ1) =

∫
B(ξ1)

ξ2σ11 dξ2dξ3 = λ̃

(
−

∫
B(ξ1)

ξ2.∂ξ1W dξ2dξ3 + I33κ3 − I23κ2

)
,

(4.22)

where A(ξ1) =
∫
B
dξ2dξ3, Ii j =

∫
B
ξiξ jdξ2dξ3 for i = 2,3 and I11 = I22 + I33.

The warping differential equation (4.21a) across the cross-section B(ξ1) is inconsistent

with the peripheral boundary condition (4.21b). To avoid a sharp deviation in the primary focus

pf this chapter (“comprehensive kinematics of Cosserat beams”), we dedicate chapter 5 to discuss

these inconsistency, solution procedure, and challenges associated with solving for the function

W(ξ1, ξ2, ξ3).

To complete the description of the configurations Ω2 and Ω3, we assume that the warping

function W(ξ1, ξ2, ξ3) can be expressed in a variable separable form (for instance, of form

p(ξ1)Ψ(ξ2, ξ3)) and the cross-sectional dependence of warping function (the function Ψ(ξ2, ξ3)) is

known. Prior knowledge of Ψ(ξ2, ξ3) guarantees the single manifold nature of the kinematics. In

section 5.3.2.2 of chapter 5, we propose a simplified form of the warping function W(ξ1, ξ2, ξ3)

that can be used to capture bending-induced shear warping and torsion warping in the beams

subjected to large deformations. To understand the second stage of coupling, we need to define

the deformed cross-sections Ω2 and Ω3.
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4.2.5 Description of the configuration Ω2 and Ω3

We describe the deformed configuration Ω2 of the beam allowing cross-sections to

undergo out of plane warping only (no in-plane deformation). It is defined by the mid-curve

ϕ(ξ1) and non-planar family of warped cross-section B2(ξ1) ⊂ R
3
ξ1
, where R3

ξ1
is the 3D

Euclidean space spanned by the director triad {di(ξ1)} originating at ϕ(ξ1). The deformation map

φ2 : R0 ∈ Ω0 7−→ R2 ∈ Ω2 is then defined as,

φ2(R0) = R2 = ϕ(ξ1) + ξ2d2(ξ1) + ξ3d3(ξ1) +W(ξ1, ξ2, ξ3)d1(ξ1). (4.23)

This brings us to the description of final deformed state Ω3 ≡ Ω defined by the mid-curve ϕ and

a family of cross-section B(ξ1) =
{(

W(ξ1, ξ2, ξ3), ξ̂2, ξ̂3

)
∈ R3

ξ1

}
. It incorporates a fully coupled

Poisson’s and warping effect. The deformation map for Ω is given by φ3 : R0 ∈ Ω0 7−→ R3 ∈ Ω

such that,
φ3(R0) = R3 = ϕ(ξ1) + r ;

r = ξ̂2d2(ξ1) + ξ̂3d3(ξ1) +Wd1(ξ1).

(4.24)

Here, the vector r gives the position vector of a material point (ξ2, ξ3) in the deformed cross-section

B3(ξ1) with respect to the point ϕ(ξ1). Let Γ3(ξ1) represent the boundary of cross-section B3(ξ1),

such thatS3 = B3(0)∪B3(L)∪∀ξ1 Γ3(ξ1). We define the planar cross-sectionB4 =
{
(ξ̂2, ξ̂3) ∈ R

2
ξ1

}
subjected to only in-plane Poisson’s deformation. The coordinates (ξ̂2, ξ̂3) are obtained by Poisson’s

transformation Pξ1 : B1(ξ1) −→ B4(ξ1), such that,

Pξ1 : (ξ2, ξ3) 7−→ (ξ̂2, ξ̂3);

ξ̂i = (1 − ν(λ2
1 · d1))ξi for i = 2,3.

(4.25)

In the equation above, ν represents Poisson’s ratio and is assumed to be a constant (homogeneous

material). The quantity λ2
1 is the first strain vector of the deformed configuration Ω2 defined in

equation (4.42). Therefore, λ2
1 · d1 essentially gives the longitudinal strain along d1 at the material

point (ξ1, ξ2, ξ3) in the deformed state Ω2.
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Figure 4.3: Schematic diagram illustrating the geometric description of various deformed
configurations.

In general, the mid-curve need not necessarily be the locus of the geometric centroid of

the beam. It can also be the locus of the center of mass or the shear-center. In this chapter, we

assume locus of geometric centroid constituting the mid-curve. For homogeneous material with

constant mass density, the geometric and mass centroid coincides, vanishing the first geometric

and mass moment. This simplifies the computations. Figure 4.3 illustrates various configurations

described so far.

4.3 Kinematics

4.3.1 Deformation gradient tensor and strain vectors

For a point p ∈ Ω0, and φ j(p) ∈ Ω j , consider an infinitesimal tangent vectors dR0 =

dξi .Ei ∈ TpΩ0 and dR j ∈ Tφ j (p)Ω j . Since the configurations Ω0 and Ω j are subset of R3, their

associated tangent space TpΩ0 and Tφ(p)Ω j are identical to R3. The two point deformation gradient
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tensor F j are given by the differential map dφ j : dR0 7−→ dR j , such that,

dφ j(dR0) = F j .dR0 = dR j . (4.26)

Using the result above,

dR j = F j .(dξi .Ei) =⇒
dR j

dξi
= F j .Ei;

F j = ∂ξiR j ⊗ Ei .

(4.27)

The deformation gradient tensor consists of two parts: change in infinitesimal tangent vector by

virtue of rotation (change in direction) and straining (change in magnitude). For j = 1, the first

component of infinitesimal vector dR0 strains, whereas the other two components just experience

rotation because of Euler-Bernoulli’s rigid cross-section assumption in the configuration Ω1 (refer

section 3.1.1 of Chadha and Todd [53]). For j , 1, the second and the third component of the

infinitesimal vector dR0 strains as well, owing to the coupled Poisson’s and warping effect. Thus,

we define,

∂ξiR j = λ
j
i + di . (4.28)

Here, λ j
i represents ith strain vector in the Ω j configuration. The deformation tensor in Eq. (4.27)

referenced to the straight beam Ω0 can be re-written as,

F j = λ
j
i ⊗ Ei + di ⊗ Ei = H j + Q. (4.29)

The material form of strain vectors λi and the deformation gradient tensor F are given by the

following,

λ
j
i = QT .λ j

i = QT .∂ξ1R j − Ei; (4.30a)

F j = λ
j
i ⊗ Ei + I3 = H j + I3 = Q.F j .I3 = Q.F j . (4.30b)
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Note that H j = λ
j
i ⊗ Ei and H = λ

j
i ⊗ Ei in Eq. (4.29) and (4.30b) gives spatial and material

form of strain tensor respectively. The deformation gradient tensor F j can also be written as

F j = V j .Q = Q.U j ;

V j = λ
j
i ⊗ di + I3 = H j .Q

T + I3;

U j = λ
j
i ⊗ Ei + I3 = H j .

(4.31)

The vector V j and U j represent the left stretch tensor and right stretch tensor, respectively, for

the deformed state Ω j referenced to the configuration Ω0. In component form, the deformation

gradient tensor and the stretch tensors can be written as,[
F j

]
dp⊗Eq

=
[
F j

]
Ep⊗Eq

=
[
U j

]
Ep⊗Eq

=
[
V j

]
dp⊗Eq

=
[
∇Ω0u j

]
dp⊗Eq

+ I3;[
Fjpq

]
dp⊗Eq

= λ j
q · dp + δpq;

[
∇Ω0u j

]
dp⊗Eq

=


λ j

1 · d1 λ j
2 · d1 λ j

3 · d1

λ j
1 · d2 λ j

2 · d2 λ j
3 · d2

λ j
1 · d3 λ j

2 · d3 λ j
3 · d3


.

(4.32)

The notation [F j]dp⊗Eq
implies that in the operation F j .dR0 = dR j , the component of the vector

dR0 is expressed in {Ei} frame and the components of the vector dR j obtained after the operation

is in {di} frame. The displacement gradient tensor for the configuration Ω j referenced to Ω0 is

given by ∇Ω0u j , where u j = R j − R0.

We are now in the position to elaborate on the fully-coupled Poisson’s effect. For the

deformed configuration Ω2, the strain vectors may be obtained using Eq. (4.23) and Eq. (4.28)

λ2
1 · d1 =

(
ε1 + ξ3κ2 − ξ2κ3 + ∂ξ1W

)
. (4.33)

Intuitively, λ2
1 · d1 is the axial strain field across the cross-section due to mid-curve axial strain,

bending and warping. Therefore, we can write the Poisson’s transformed coordinates defined in
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Eq.(4.25) as,

ξ̂i =
(
1 − ν

(
ε1 + ξ3κ2 − ξ2κ3 + ∂ξ1W

) )
ξi for i=2,3. (4.34)

The strain vectors for the final deformed state Ω3 can be obtained by substituting Eq. (4.24) in Eq.

(4.28), yielding

λ3
1 =

(
ε + ξ̂3.∂ξ1d3 + ξ̂2.∂ξ1d2 + ∂ξ1 ξ̂3.d3 + ∂ξ1 ξ̂2.d2 + ∂ξ1W .d1 +W .∂ξ1d1

)
=

©­­­«
ε1=ε .d1︷                   ︸︸                   ︷

((1 + e) cos γ11 − 1)+ξ̂3κ2 − ξ̂2κ3 + ∂ξ1W
ª®®®¬ d1 +

©­­­«
ε2=ε .d2︷           ︸︸           ︷

(1 + e) sin γ12 −ξ̂3κ1 + ∂ξ1 ξ̂2 +Wκ3

ª®®®¬ d2

+

©­­­«
ε3=ε .d3︷           ︸︸           ︷

(1 + e) sin γ13 +ξ̂2κ1 + ∂ξ1 ξ̂3 −Wκ2

ª®®®¬ d3;

(4.35a)

λ3
2 = ∂ξ2W .d1 +

(
∂ξ2 ξ̂2 − 1

)
d2 + ∂ξ2 ξ̂3.d3; (4.35b)

λ3
3 = ∂ξ3W .d1 + ∂ξ3 ξ̂2.d2 +

(
∂ξ3 ξ̂3 − 1

)
d3. (4.35c)

Remark 4.1: It is interesting to note that the language that reads-“The action of a tensor...onto

the vector...”- is acceptable in the field of engineering. However, it would not make much sense in

differential geometry. This is because a tensor in differential geometry is defined as multi-linear

function that take other tensors, vectors, one-forms etc. as its argument. However, as a matter of

convenience, we have accepted this abuse of notations. For instance, in the language of differential

geometry, a two-point deformation gradient tensor is defined as F : T∗
φ(p)Ω × TpΩ0 −→ R. Here,

T∗
φ(p)Ω is a cotangent space of the deformed configuration Ω, that is dual to the tangent space

Tφ(p)Ω. If the tangent space Tφ(p)Ω is spanned by the vector triad {Ei} (this is because Ω ⊂ R3),

then the cotangent space Tφ(p)Ω is spanned by the corresponding one-form {E∗i } such that,

E∗j (Ei) = E j · Ei = δ ji. As such, the expression of deformation gradient tensor would then be
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F = (λi + di) ⊗ E∗i , such that Fi j = F(λ j + d j,E
∗
i ) = E∗i (λ j + d j) = (λ j + d j) · Ei. We carefully

note that in this chapter, we have conveniently gotten away with the idea of one-form by using dot

product. This was possible because the Reimannian metric associated with R3 is identity matrix

(refer section 3.5 of Schutz [54] to see how a metric acts as a mapping of vectors into one-form

and vice-versa).

4.3.2 Physical interpretation of the strain vector λ j
i

Consider an infinitesimal vector dξ1E1 in the undeformed state Ω0 joining two material

points (ξ2, ξ3) ∈ B0(ξ1) and (ξ2, ξ3) ∈ B0(ξ1 + dξ1). Similarly, consider an infinitesimal vector

dξ2E2 connecting two material points (ξ2, ξ3) ∈ B0(ξ1) and (ξ2 + dξ2, ξ3) ∈ B0(ξ1). Finally,

consider an infinitesimal vector dξ3E3 connecting two material points (ξ2, ξ3) ∈ B0(ξ1) and

(ξ2, ξ3 + dξ3) ∈ B0(ξ1). These three vectors transform to the following in the deformed state Ω j

F j .(dξiEi) = dξi(λ
j
i + di) for i = 1 − 3 and j = 1 − 3. (4.36)

The Einstein summation is suppressed in the above equation. The index i represent the infinitesimal

vectors. Therefore, for a unit arc length element

λ j
1 = F j .E1 − d1. (4.37)

For the unit vectors E2 and E3, (along the direction of dξ2E2 and dξ3E3, respectively), we see

that

λ j
2 = F j .E2 − d2; λ j

3 = F j .E3 − d3. (4.38)

Therefore, λ j
i represents the strain vector in the deformed state Ω j corresponding to the vector Ei

in the undeformed state Ω0. The action of deformation gradient tensor on an infinitesimal vector

dR0 can be understood from Eq. (4.29). The vector dR0 is subjected to rigid body rotation (the

contribution due to Q in Eq. (4.29)) and change in magnitude (the contribution due to λ j
i ⊗ Ei,

sum implied over i). The outer product λ j
i ⊗ Ei filters out the ith component of the vector dR0
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(for each i) and strains it along the vector λ j
i .

4.3.3 Deformation of infinitesimal vector along the reference unit vectors

Ei

It is insightful to observe the deformation of vectors Ei (not necessarily at the centroid)

with i = 1 − 3 in the deformed state Ω3. Consider the infinitesimal vectors dξ1E1, dξ2E2 and

dξ3E3 as described in section 4.3.2. As explained before, the deformation gradient tensor F3 maps

an infinitesimal vector dR0 to dR3. One might wonder as to what the deformation of a unit length

vectors Ei, which is not infinitesimally small, means. The idea is that if the deformation gradient

tensor deforms the vector, say dR0 = dξiEi ∈ TpΩ0 (no sum on i) to some vector dR3 ∈ Tφ3(p)Ω3,

then the vector Ei ∈ TpΩ0 deforms to dR3
dξi ∈ Tφ3(p)Ω3. Mathematically, for a point p ∈ Ω0 the fact

F j .(dξ1E1) ∈ Tφ j (p)Ω j implies F j .E1 ∈ Tφ j (p)Ω j and F j .(dξ1E1) ‖ F jE1. One must understand

that this deformation is different from the real deformed state of a finite length vector (which may

be some curve!).

This idea of deformation of the unit vector or a unit arc length element is useful to

understand the strain vectors and to interpret the contributions to the strain due to various finite

strain parameters. Section [4.1] of Schutz [54] is an excellent read on the idea of element in

continuum mechanics.

4.3.3.1 Deformation of the unit vector E1

It is clear from Eq. (4.35) and (4.37) that

F3.E1 = λ
3
1 + d1

=
(
(1 + e) cos γ11 + ξ̂3κ2 − ξ̂2κ3 + ∂ξ1W

)
d1 +

(
(1 + e) sin γ12 − ξ̂3κ1 + ∂ξ1 ξ̂2 +Wκ3

)
d2

+
(
(1 + e) sin γ13 + ξ̂2κ1 + ∂ξ1 ξ̂3 −Wκ2

)
d3.

(4.39)
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The Fig. 4.4 demonstrates straining of the vector E1 (not necessarily along the midcurve). Each

subsequent step in the flowchart does not represent superimposition; rather, each step represents

the inclusion of various deformation effects, as indicated.

Figure 4.4: Flowchart showing the deformation of the unit vector E1 in the configuration Ω3
referenced to the configuration Ω0.

Certain points interpreting various deformation effects described in Fig. 4.4 are discussed

below,

1. Fig. 4.4 is an improved version of Fig. 3 in Chadha and Todd [55] that considers the final

deformed state to be Ω1 (constraint by rigid cross-section assumption). The transformation

of the vector E1 as showed in Fig. 4.4 considers the final deformed state as Ω3 that

incorporates fully-coupled Poisson’s and warping effect.

2. Effects 1 and 2 represent the strain due to finite shear and midcurve axial deformation.

Effect 1 is special case of effect 2, when there is no shear. The vector E1 transforms to the

vector ε + d1 if we consider effect 1 and 2 only. Figure 4.5 illustrates the effects 1 and 2.
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Figure 4.5: Geometric description of effects 1 and 2: deformation of the vector E1 considering
elongation followed by shear.

3. Effect 3 addresses the strain in the vector E1 for a unit arc length element (dξ1 = 1) due to

differential Poisson’s deformation. Fig. 4.7 gives a geometric description of effect 1 and 3.

4. Effects 4, 5 and 6 represent the strain due to bending and torsion about the vectors d3, d2 and

d1 respectively (refer Fig. 4.6). Unlike the description in Chadha and Todd [53] that utilizes

the point (ξ2, ξ3) to define bending and torsion strains, we use (ξ̂2, ξ̂3) to capture bending

and torsion strains (notice the terms like ξ̂2κ1, ξ̂2κ2, ξ̂2κ3 etc.). This is direct consequence of

the fully-coupled Poisson’s effect.

5. Effect 7 represents axial strain in E1 due to differential warping deformation causing an

additional axial strain of ∂ξ1W along d1.

6. Effect 8 describes the strain W .∂ξ1d1 = W(κ3d2 − κ2d3). Note that effect 7 and 8 are

obtained by realizing the strain contribution due to the quantity ∂ξ1(Wd1). In effect 7, the
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Figure 4.6: Geometric description of effects 4 and 5: deformation of the vector E1 under pure
bending (no Poisson’s deformation).

director d1 is kept constant but the change in the warping function is considered. Whereas,

in effect 8, the warping deformation remains unchanged but the change in the orientation

of director d1 is considered (attributed to bending about d2 and d3). Figure 4.9 describes

effect 7 and 8.

4.3.3.2 Deformation of the unit vector E2 (or E3)

The deformation of the vector E2 is explored considering the deformation of the cross-

section B0(ξ1). Consider an infinitesimal vector dξ2E2 ∈ B0(ξ1) that deforms to dξ2(F3.E2) in

the deformed configuration Ω3. From Eq. (4.29) and (4.38),

F3.E2 =

Effect b︷  ︸︸  ︷
∂ξ2Wd1 +

Effect a︷                  ︸︸                  ︷
∂ξ2 ξ̂2.d2 + ∂ξ2 ξ̂3.d3 (4.40)
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Figure 4.7: Geometric description of effects 1 and 3: deformation of the vector E1 considering
differential Poisson’s deformation.

It is observed that there are two effects that governs the deformation in this case. Effect a

represents the straining in the vector dξ2E2 due to in-plane deformation of the cross-section from

B0(ξ1) → B3(ξ1) attributed to the fully-coupled Poisson’s transformation Pξ1 . Effect b represents

the straining due to the out of plane deformation of the cross-section attributed to warping. Figure

4.10 illustrates the deformation of the vector E2.

It is clear from Eq. (4.29) that the deformation gradient tensor F j in the configuration

Ω j referenced to the undeformed state Ω0 can be obtained if the expression of λ j
i is known (for

i = 1 − 3). The expressions of λ j
i for the deformed states Ω2 and Ω3 are described below:
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Figure 4.8: Geometric description of effect 6: deformation of the vector E1 under pure torsion
(no out-of-plane warping).

For the deformed state Ω1 :

λ1
1 = (((1 + e) cos γ11 − 1) + ξ3κ2 − ξ2κ3) d1 + ((1 + e) sin γ12 − ξ3κ1) d2

+ ((1 + e) sin γ13 + ξ2κ1) d3;

λ1
2 =λ

1
3 = 0.

(4.41)

For the deformed state Ω2 :

λ2
1 =

(
((1 + e) cos γ11 − 1) + ξ3κ2 − ξ2κ3 + ∂ξ1W

)
d1 + ((1 + e) sin γ12 − ξ3κ1 +Wκ3) d2

+ ((1 + e) sin γ13 + ξ2κ1 −Wκ2) d3;

λ2
2 =∂ξ2W .d1; λ2

3 = ∂ξ3W .d1.

(4.42)
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Figure 4.9: Geometric description of effects 7 and 8.

4.3.4 Deformation gradient tensor of the curved undeformed state refer-

enced to the straight configuration

Consider that the curved reference beam configuration Ωc is obtained by straining Ω0

such that the total length of the mid-curve remains the same and there is no shear or torsion in

the cross-sections. Consider an infinitesimal vector dR0 in the straight configuration Ω0 that

transforms to dRc in the curved reference state Ωc such that,

Fc =
dRc

dR0
= (ξ2.∂ξ1dc2 + ξ3.∂ξ1dc3) ⊗ E1 + dci ⊗ Ei = λc ⊗ E1 + Qc;

λc =

λc1︷            ︸︸            ︷
(ξ3κc2 − ξ2κc3) dc1 .

(4.43)

The vector λc represents the strain vector associated with the curved reference configuration.

The parameters κc2(ξ1) and κc3(ξ1) represents the finite bending curvature field for the curved
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Figure 4.10: Deformation of the infinitesimal vector dξ2E2.

reference state Ωc. The corresponding material form Fc and λc is given as,

Fc = QT
c .Fc.I3 = λc ⊗ E1 + I3;

λc = QT
c .λc.

(4.44)

The strain vector λc comprises of strain due to curvatures only because there is no shear

γ1i = 0 and elongation e(ξ1) = 0 in the curved reference configuration Ωc. This ensures that the

director dc1 is tangent vector of the mid-curve such that ∂ξ1ϕ = dc1 . Therefore, the axial strain

vector εc = ∂ξ1ϕ − dc1 = 0. From Eq. (4.43) and (4.44), it is observed that

Fc.Ei =


λc + d1 = λci di + d1, for i = 1

di, for i = 2,3

 ;

Fc.Ei =


λc + E1 = λciEi + E1, for i = 1

Ei, for i = 2,3

 .
(4.45)
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From the above equation, det(Fc) is obtained as

det(Fc) = det(QT
c ).det(Fc).det(I3) = det(Fc) = 1 + λc1 . (4.46)

Using equation (4.45), the first component of the vector dR0 in the straight configuration dξ1E1

gets strained to Fc.(dξ1E1) =
(
1 + λc

1

)
dξ1d

c
1. This means that a fiber of unit length parallel to

E1 in the configuration Ω0 has length of det(Fc) in the configuration Ωc along the director dc1 .

In terms of classical continuum mechanics, det(Fc) is associated with volumetric strain

det
(
Fc

)
=

dΩc

dΩ0
=
ρ0
ρc
. (4.47)

where ρ0 and ρc represents the density field in the configuration Ω0 and Ωc, respectively.

4.3.5 Deformation gradient tensor referenced to curved undeformed state

The deformation gradient tensor Fr
j of the deformed state Ω j referenced to an initially

curved (but unstrained) reference configuration Ωc can be obtained using the expression Fr
j =

F j .F
−1
c . However, the quantity F−1

c is yet to be determined. It can be found by using the theorem

for inverse of sum of matrices (refer to Miller [56]) as,

F
−1
c =

(
λc ⊗ E1 + I3

)−1
= I−1

3 −
I−1

3 .(λc ⊗ E1).I
−1
3

1 + trace(λc ⊗ E1)
= I3 −

(λc ⊗ E1)

1 + λc1

= −
1

det (Fc)
(λc ⊗ E1) + I3.

(4.48)

Note that the displacement gradient matrix [∇Ω0uc]dcl⊗Em
, with uc = Rc − R0, has rank 1 and

is non-singular if λc , 0 (it is zero along the mid-curve in the configuration Ωc). This property

allowed us to obtain Eq.(4.48) using the result Eq. (1) in Miller [56]. The tensor F−1
c can be
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found as,

F−1
c =

(
−

1
det (Fc)

(λc ⊗ E1) + I3

)
.QT

c =

(
−

1
det (Fc)

.
(
(QT

c .λc) ⊗ (Q
T
c .dc1)

)
+ I3

)
.QT

c

= QT
c .

(
I3 −

1
det (Fc)

(λc ⊗ dc1)

)
.

(4.49)

This brings us to the point of evaluating the deformation gradient tensor Fr
j of the deformed state

Ω j referenced to an initially curved (but unstrained) reference configuration Ωc as,

Fr
j = F j .F

−1
c =

(
(λ j

i ⊗ Ei) + Q
)
.QT

c .

(
I3 −

1
det (Fc)

(λc ⊗ dc1)

)
=

(
(λ j

i ⊗ dci ) + Qr

)
−

(
λc · dc1

det (Fc)

(
λ j

1 ⊗ dc1

)
+

1
det (Fc)

(Qr .λc) ⊗ dc1

)
= (λ

rj
i ⊗ dci ) + Qr .

(4.50)

In the above equation, the relative strain vectors λrj
i are given as,

λ
rj
1 =

1
det (Fc)

(
λ j

1 − Qr .λc

)
;

λ
rj
2 = λ

j
2; λ

rj
3 = λ

j
3.

(4.51)

In component form,

[Fr
jpq ]dp⊗dcq = λ

rj
q · dp + δpq. (4.52)

Physically, λrj
i represents the strain vector in the deformed state Ω j corresponding to the

vector dci in the undeformed state Ωc. The equation set below elaborates the vector λrj
1 for various

deformed configurations Ω j .

λr1
1 =

(
1

ξ3κc2 − ξ2κc3

) (
((1 + e) cos γ11 − 1) + ξ3(κ2 − κc2) − ξ2(κ3 − κc3)

)
d1

+ ((1 + e) sin γ12 − ξ3κ1) d2 + ((1 + e) sin γ13 + ξ2κ1) d3.

(4.53a)

λr2
1 =

(
1

ξ3κc2 − ξ2κc3

) (
((1 + e) cos γ11 − 1) + ξ3(κ2 − κc2) − ξ2(κ3 − κc3) + ∂ξ1W

)
d1

+ ((1 + e) sin γ12 − ξ3κ1 +Wκ3) d2 + ((1 + e) sin γ13 + ξ2κ1 −Wκ2) d3.

(4.53b)
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λr3
1 =

(
1

ξ3κc2 − ξ2κc3

) (
((1 + e) cos γ11 − 1) + ξ̂3κ2 − ξ3κc2 − ξ̂2κ3 + ξ2κc3 + ∂ξ1W

)
d1

+
(
(1 + e) sin γ12 − ξ̂3κ1 +Wκ3

)
d2 +

(
(1 + e) sin γ13 + ξ̂2κ1 −Wκ2

)
d3.

(4.53c)

Figure 4.11 illustrates the relationship between the mathematically straight beam Ω0, the curved

Figure 4.11: Deformed (Ω1) and undeformed configurations (Ω0, Ωc) of Cosserat rod, material
adapted frames, and deformation gradient tensors.

reference state Ωc, and the deformed beam Ω1. The next section 4.3.6 discusses the procedure to

obtain deformation gradient tensor of a deformed configuration with respect to another deformed

state.

4.3.6 Deformation gradient tensor referenced to another deformed state

We consider a deformation of class Ω3. Suppose F3p and F3q represent the deformation

gradient tensor of a deformed state Ω3p and Ω3q respectively, referenced to the undeformed state

Ω0. If {dpi } and {dqi } represent the director triad for the configurations Ω3p and Ω3q , we have,

Qp = dpi ⊗ Ei and Qq = dqi ⊗ Ei (sum on i). We obtain the deformation gradient tensor F3qp of
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the state Ω3q referenced to Ω3p as,

F3qp = F3q .F
−1
3p

(4.54)

where,

F3p = λ
3p
i ⊗ Ei + Qp;

F3q = λ
3q
i ⊗ Ei + Qq.

(4.55)

In the equation above, λ3p
i and λ3q

i represent the strain vectors related to the configuration Ω3p

and Ω3q respectively.

It is interesting to note that unlike the deformation gradient matrix [∇Ω0u0]dpl⊗Em
, the

matrix [∇Ω0up]dpl⊗Em
= [λ3p

1 ⊗ E1]dpl⊗Em
+ [λ3p

2 ⊗ E2]dpl⊗Em
+ [λ3p

3 ⊗ E3]dpl⊗Em
has maximum

rank 3. It has rank 3 and is non-singular if λ3p
1 · dp1 , 0, λ3p

2 · dp2 , 0 and λ3p
3 · dp3 , 0. Here

the index l and m are used to represent the frames. Therefore, the expression for F−1
3p

can not

be obtained from Eq. [1] in Miller [56]. Consider the case where the matrix [∇Ω0up]dpl⊗Em
has

rank 3 and is non-singular. The fact that the matrix [λ3p
1 ⊗ E1]dpl⊗Em

, [λ3p
2 ⊗ E2]dpl⊗Em

and

[λ3p
3 ⊗ E3]dpl⊗Em

are rank 1 and non-singular allows us to use the theorem in page 69 of Miller

[56] to arrive at the expression for F−1
3p
.

4.4 Summary

This chapter details the development of an enhanced kinematics of geometrically-exact

beams, that incorporates not only traditional deformation effects like curvature, shear and axial

strains (as developed in Simo et al. [48]) and Saint Venant’s uniform warping (refer to Simo

et al. [43]), but also includes a fully-coupled warping and Poisson’s deformation. This chapter

addresses the coupling between Poisson’s and warping effect and obtains a fully-coupled Poisson’s

transformation to develop comprehensive kinematics of Cosserat beams. The kinematics developed

is not restricted to the Euler-Bernoulli rigid cross-section assumption, and it is simultaneously
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maintaining the single manifold nature of the problem. The idea of having prior knowledge

of the cross-sectional dependence of the warping function (a function of the form Ψ(ξ2, ξ3)) is

certainly desirable for maintaining the single manifold nature of the kinematics, but it yields

only an approximate solution. The primary reason to investigate the coupling between Poisson’s

and warping effect (along with the contribution to warping due to torsional and bending induced

shear) and develop a fully-coupled Poisson’s transformation, is to further refine the kinematics

of the Cosserat beam model. This is beneficial for both forward modeling analyses and solving

inverse problems like shape reconstruction from strain measurements.

Three different deformed configurations of the beam are detailed, with Ω3 representing

the most general configuration and Ω1 − Ω2 constituting more constrained cases. The coupled

Poisson’s andwarping are developed in a two-stage process. The governing differential equations to

capture warping in an asymmetric beam cross-section subjected to curvatures and axial strains for

the linear elastic case are arrived at. The inclusion of axial strain and Poisson’s effect on the small

displacement field leads to an inconsistent governing differential equation for warping. Chapter

5 is dedicated to investigating the inconsistencies in the differential equation for warping and

arriving at a simplified warping function. To proceed further with the investigation, the warping

functions are assumed to be known. In stage two, the fully-coupled Poisson’s transformation

is proposed by considering the axial strain contributions due to mid-curve strain, finite shear,

bending curvatures, and out of plane warping. This yields fully coupled Poisson’s and warping

effect.

The deformation gradient tensor and strain vector in a general deformed stateΩ j referenced

to both a mathematically straight beam configuration Ω0 and an initially curved reference

configuration Ωc are derived. The contribution to deformation due to various effects are carefully

explored and explained.

The results in this chapter are used in developing a scalar strain gauge measurement

model for finite length and discrete strain gauge attached to the beam, and in developing shape-
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reconstruction technique as detailed in chapter 6. The kinematics developed in this chapter sets

the basis to investigate the variational and finite element formulation of enhanced geometrically

exact beam discussed in chapters 7–10.

The discussion carried out in this chapter has been published in the International Journal

of Solids and Structures, Mayank Chadha and Michael D. Todd [34], 2019. The title of this

paper is: “A comprehensive kinematic model of single-manifold Cosserat beam structures with

application to a finite strain measurement model for strain gauges”. The dissertation author is the

primary investigator and author of this paper.
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Chapter 5

Inconsistencies in the Governing

Differential Equation of Warping

5.1 Introduction

In the last chapter, we presented generalized kinematics of Cosserat beams. One of the

primary contributions was the inclusion of fully coupled Poisson’s and warping effects. The

coupled Poisson’s and warping were developed in a two-stage process. We arrive at the governing

differential equations to capture warping in an asymmetric beam cross-section subjected to

curvatures and axial strains for the linear elastic case constituting the first stage of this coupling.

Stage one represents the incorporation of the effects of axial strains and Poisson’s transformation

on warping. In stage two, we propose the fully-coupled Poisson’s transformation by considering

the axial strain contributions due to mid-curve strain, finite shear, bending curvatures, and out of

plane warping. This yields fully coupled Poisson’s and warping effect.

However, the inclusion of axial strain and Poisson’s effect on the small displacement field

leads to an inconsistent governing differential equation for warping (refer to Eq. (4.21a) and

(4.21b)). In this chapter, we first explore the inconsistency condition and then obtain the consistent
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differential equation by deliberately enforcing the inconsistency condition into the inconsistent

warping equation. The consistent warping equation suggests a solution to the warping function W

that is not explicitly dependent on the axial strain e(ξ1) and its derivatives. However, we carefully

note that the elimination of inconsistency results in consistent differential equations for warping

that could be solved, but the accuracy of the solution and their closeness to the exact 3D solution is

open to further investigation. Motivated from the work of Burgoyne and Brown [41] and [42], we

delineated two possible solution approaches to obtain the warping function in variable separable

form. We also note that for the Poisson’s ratio ν = 0, the presented theory of warping reduces to

the theory presented by Burgoyne and Brown in [41] and [42].

5.2 Inconsistency condition and the proposed Solution

5.2.1 Preliminary results

Before we present a deeper discussion, we note the following results. From the definition

of t and t̃ as in Eq. (4.21b), we have∮
t dΓ =

∮
((ξ2E2 + ξ3E3) × n) · E1 dΓ =

∮
n · (−ξ3E2 + ξ2E3) dΓ

=

∫
B

Div(−ξ3E2 + ξ2E3) dξ2dξ3 = 0;
(5.1a)

∮
t̃ dΓ =

∮
n · (ξ2E2 + ξ3E3) dΓ =

∫
B

Div(ξ2E2 + ξ3E3) dξ2dξ3 = 2A(ξ1); (5.1b)∫
B

∇2Wdξ2dξ3 =

∮
∂nW dΓ. (5.1c)

From here on, we will represent the area of the cross-section A(ξ1) as A. Equation (5.1c) is

obtained using the Gauss-divergence theorem. Recalling the governing differential equation for

warping (4.21a) and (4.21b),

∇2W +
λ̃

G
(
∂2
ξ1

W − ξ2.∂ξ1κ3 + ξ3.∂ξ1κ2
)
+ λ.∂ξ1e = 0 on B(ξ1); (5.2a)
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∂nW = −κ1t + ν.∂ξ1e.t̃ on Γ(ξ1). (5.2b)

5.2.2 The inconsistency

Integrating Eq. (5.2b) along the boundary of the cross-section Γ(ξ1) and using the result

(5.1a) and (5.1b), we have,∮
∂nW dΓ = −κ1

∮
t dΓ + ν.∂ξ1e.

∮
t̃ dΓ = 2νA.∂ξ1e. (5.3)

Integrating Eq. (5.2a) across the cross-section B(ξ1) and realizing that
∫
B
ξidξ2dξ3 = 0 for i = 2

and 3, we have, ∫
B

∇2W dξ2dξ3 = −
λ̃

G

∫
B

∂2
ξ1

W dξ2dξ3 − λA.∂ξ1e. (5.4)

Using Eq. (5.1c) and (5.4), we get∮
∂nW dΓ = −

λ̃

G

∫
B

∂2
ξ1

W dξ2dξ3 − λA.∂ξ1e. (5.5)

Comparing Eq. (5.3) and (5.5), we clearly observe an inconsistency which can be resolved only if

∫
B

∂2
ξ1

W dξ2dξ3 = −
©­­«

GA(ξ1)
(
λ + 2ν

)
λ̃

ª®®¬ ∂ξ1e = −
(
λ̃ − 2νλ

λ̃

)
A(ξ1).∂ξ1e. (5.6)

From the definition of the reduced axial force field P1(ξ1) in Eq. (4.22), we obtain the following

result

∂ξ1 P1 = (λ̃ − 2νλ)A.∂ξ1e + λ̃
∫
B

∂2
ξ1

W dξ2dξ3 (5.7)

The inconsistency condition (5.6) and the Eq. (5.7) implies that the inconsistency can be resolved

if

∂ξ1 P1 = 0 or P1(ξ1) = constant. (5.8)

These kinds of inconsistencies or anomalies are commonly observed in simplified theories. For

instance, the anomaly of the torque for the case of wholly-restrained end warping was observed by
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Burgoyne et al. [41]. If the axial strain and the Poisson’s effect is not included in the displacement

field (4.19), it would require
∫
B
∂2
ξ1

W dξ2dξ3 = 0. This condition is automatically satisfied if

P1 = 0 along the length of the beam, which is physically true if axial deformation and force

are ignored as in Eq. (7) of Brown et al. [42]. At the most fundamental level, the reason for

this inconsistency lies primarily in our objective to obtain a simplified warping function and our

assumption of zero body force. In our opinion, the inconsistency indicates that the rigid body

cross-sectional deformation due to constant axial strain field across the cross-section attributed to

mid-curve axial strain e(ξ1) does not affect warping (essentially an out-of-plane deformation),

which is observed later in equations (5.21) and (5.39).

5.2.3 The proposed consistent differential equation of warping

We attempt to resolve the inconsistency by enforcing the condition (5.6) in the inconsistent

warping equation. Substituting for ∂ξ1e (obtained using Eq. (5.6)) in Eq. (5.2a) and (5.2b), we

obtain the modified consistent governing differential equation

∇2W + C1
(
∂2
ξ1

W − ξ2.∂ξ1κ3 + ξ3.∂ξ1κ2
)
+ C2λ

∫
B

∂2
ξ1

W dξ2dξ3 = 0 on B(ξ1), (5.9a)

∂nW = −κ1t +
{
νC2

∫
B

∂2
ξ1

W dξ2dξ3

}
t̃ on Γ(ξ1), (5.9b)

where,

C1 =
λ̃

G
and C2 = −

1
A

(
λ̃

λ̃ − 2νλ

)
. (5.10)
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5.3 Solution approach 1: Solution of warping function using

series sum

5.3.1 Assumed solution and the governing differential equations

We assume a solution of the variable separable form

W(ξ1, ξ2, ξ3) =

∞∑
r=0

(
∂r
ξ1
κ1.Ψ1r + ∂

r
ξ1
κ2.Ψ2r + ∂

r
ξ1
κ3.Ψ3r + ∂

r
ξ1

e.Ψ4r

)
, (5.11)

and aim at obtaining the functions Ψir , where i = 1− 4. Substituting Eq. (5.11) into the consistent

differential equations (5.9a) and (5.9b), we can obtain the governing differential equations for the

functions Ψir with i = 1 − 4.

The governing differential equations for the functions Ψ1r: We have,

for r = 0 and 1,
∇2
Ψ10 = 0 on B(ξ1) with ∂nΨ10 = −t on Γ(ξ1);

∇2
Ψ11 = 0 on B(ξ1) with ∂nΨ11 = 0 on Γ(ξ1);

(5.12)

for r ≥ 2,

∇2
Ψ1r = −

(
C1Ψ1(r−2) + λC2

∫
B

Ψ1(r−2) dξ2dξ3

)
on B(ξ1);

∂nΨ1r =

(
νC2

∫
B

Ψ1(r−2) dξ2dξ3

)
t̃ on Γ(ξ1).

(5.13)

From Eq. (5.12), we note that Ψ11 = constant. To avoid any rigid body motion of the

cross-section due to warping, we take Ψ11 = 0. Eq. (5.13) then implies Ψ1r = 0 for any odd r .

If the cross-section is symmetric,
∫
B
Ψ10 dξ2dξ3 = 0 as Ψ10 is anti-symmetric. This

reduces the governing differential equation for Ψ1r for any even r = 2,4,6, ... to,

∇2
Ψ1r = −C1Ψ1(r−2) on B(ξ1) with ∂nΨ1r = 0 on Γ(ξ1); (5.14)
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It is easy to prove then that
∫
B
Ψ1r dB = 0 for any even r = 2,4,6, ... implying that the non-trivial

solution to the functionsΨ1r is anti-symmetric. Thus, we observe that the anti-symmetric nature of

the solution (contribution to warping due to torsion) for the symmetric cross-section is preserved.

The governing differential equations for the functions Ψ2r: We have,

for r = 0 and 1,

∇2
Ψ20 = 0 on B(ξ1) with ∂nΨ20 = 0 on Γ(ξ1);

∇2
Ψ21 = −C1ξ3 on B(ξ1) with ∂nΨ21 = 0 on Γ(ξ1);

(5.15)

for r ≥ 2,

∇2
Ψ2r = −

(
C1Ψ2(r−2) + λC2

∫
B

Ψ2(r−2) dξ2dξ3

)
on B(ξ1);

∂nΨ2r =

(
νC2

∫
B

Ψ2(r−2) dξ2dξ3

)
t̃ on Γ(ξ1).

(5.16)

The governing differential equations for the functions Ψ3r: We have,

for r = 0 and 1,
∇2
Ψ30 = 0 on B(ξ1) with ∂nΨ30 = 0 on Γ(ξ1);

∇2
Ψ31 = C1ξ2 on B(ξ1) with ∂nΨ31 = 0 on Γ(ξ1);

(5.17)

for r ≥ 2,

∇2
Ψ3r = −

(
C1Ψ3(r−2) + λC2

∫
B

Ψ3(r−2) dξ2dξ3

)
on B(ξ1);

∂nΨ3r =

(
νC2

∫
B

Ψ3(r−2) dξ2dξ3

)
t̃ on Γ(ξ1).

(5.18)

Following similar reasoning as before, we observe from Eq. (5.16) and (5.18) that Ψ20 = 0 and

Ψ30 = 0. That implies, Ψ2r = 0 and Ψ3r = 0 for any even r . The inclusion of bending curvature

in warping results in a non-linear strain profile across the cross-section.
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The governing differential equations for the functions Ψ4r: We have,

for r = 0 and 1,
∇2
Ψ40 = 0 on B(ξ1) with ∂nΨ40 = 0 on Γ(ξ1);

∇2
Ψ41 = 0 on B(ξ1) with ∂nΨ41 = 0 on Γ(ξ1).

(5.19)

for r ≥ 2,

∇2
Ψ4r = −

(
C1Ψ4(r−2) + λC2

∫
B

Ψ4(r−2) dξ2dξ3

)
on B(ξ1);

∂nΨ4r =

(
νC2

∫
v

Ψ4(r−2) dξ2dξ3

)
t̃ on Γ(ξ1).

(5.20)

Equation (5.19) implies Ψ40 = 0 and Ψ41 = 0. This result coupled with the Eq. (5.20) results in

Ψ4r = 0 for any r . This result eliminates the explicit contribution to warping due to axial strain.

Hence, we are left with a solution of the form

W(ξ1, ξ2, ξ3) =
(
κ1Ψ10 + ∂

2
ξ1
κ1.Ψ12 + ∂

4
ξ1
κ1.Ψ14 + ...

)
+

(
∂ξ1κ2.Ψ21 + ∂

3
ξ1
κ2.Ψ23 + ∂

5
ξ1
κ2.Ψ25 + ...

)
+

(
∂ξ1κ3.Ψ31 + ∂

3
ξ1
κ3.Ψ33 + ∂

5
ξ1
κ3.Ψ35 + ...

)
.

(5.21)

5.3.2 On the non-uniform shear based warping functions Ψ31 and Ψ21

Proposition 5.1: The warping contribution ∂ξ1κ3.Ψ31 (or ∂ξ1κ2.Ψ21) in Eq. (5.21) represents

the out-of-plane deformation of the cross-section due a non-uniform shear stress field induced by

bending about E3 (or E2). This implies that the slope ∂ξ1κ3.∂ξ2Ψ31 (or ∂ξ1κ2.∂ξ2Ψ21) is the shear

strain profile of the cross-section.

Proof: The warping is dependent on the geometry of the cross section. Therefore, let us consider

a rectangular prismatic beam with the depth d and breadth b to proceed with further discussion.

For the proof, we assume that the claim is true and arrive at the governing equation for Ψ31 as

in Eq. (5.17). If M(ξ1) and V(ξ1) represent the cross-sectional bending moment (about E3) and

shear respectively, then we know from the theory of bending that V = ∂ξ1 M and M = κ3EI33,
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where I33 =
1
12 bd3 is the moment of inertia about E3 axis. The expression for the shear strain

profile of rectangular section is given as,

γ12 =
6V

Gbd3

(
d2

4
− ξ2

2

)
=

6EI33.∂ξ1κ3

Gbd3

(
d2

4
− ξ2

2

)
(5.22)

Note that Poisson’s effect is ignored in traditional beam theory limiting the constant C1 =
E
G (in

Eq. (5.10)). Substituting for I33 and C1, the shear strain profile reduces to

γ12 =
C1.∂ξ1κ3

2

(
d2

4
− ξ2

2

)
. (5.23)

From our claim,
∂ξ1κ3.∂ξ2Ψ31 = γ12;

∂ξ2Ψ31 =
C1
2

(
d2

4
− ξ2

2

)
.

(5.24)

Taking the derivative with ξ2, and noting that γ12 is not a function of ξ3 (implying ∂2
ξ3
Ψ31), we

can write

∇2
Ψ31 = −C1ξ2 on B(ξ1). (5.25)

We also note that for bending about E3, we have ∂ξ2Ψ31 |ξ2=
d
2
= 0 and ∂ξ3Ψ31 = 0 (because Ψ31

does not have ξ3 dependence), implying

∂nΨ31 = 0 on Γ(ξ1). (5.26)

This completes the proof. The results here can be extended to the warping function Ψ21. �.

5.3.2.1 Non-uniform shear based warping function for rectangular section

Timoshenko’s beam theory assumes plane cross-section remains plane after deformation

but relaxes the restriction of cross-section remaining perpendicular to the neutral surface. Thus,

assuming constant shear strain of γ12 =
1.5V
Gbd = 1.5 E

G

(
d2

4

)
for a rectangular section with a

shear coefficient 1.5. This leads us to define an equivalent warping function that incorporates
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Timoshenko shear deformation as

Ψ
t
31 =

E
2G

(
d2

4
ξ2

)
;

Ψ
t
21 =

E
2G

(
d2

4
ξ3

)
;

(5.27)

such that if v(ξ1) and w(ξ1) represent total transverse displacement (including shear and bending)

of the midcurve in E2 and E3 respectively and θ2(ξ1) and θ3(ξ1) represents bending rotations

about the axes E2 and E3, respectively, then

∂ξ1v − θ3 = ∂ξ1κ3.∂ξ2Ψ
t
31;

∂ξ1w + θ2 = κ2.∂ξ3Ψ
t
21.

(5.28)

Using Eq.(5.24) and the fact that Ψ31(0,0) = Ψ21(0,0) = 0, the warping functions Ψ31 (or Ψ21)

are obtained as,

Ψ31 =
E

2G

(
d2

4
ξ2 −

ξ3
2
3

)
= Ψt

31 −
E

2G

(
ξ3

2
3

)
;

Ψ21 =
E

2G

(
d2

4
ξ3 −

ξ3
3
3

)
= Ψt

21 −
E

2G

(
ξ3

3
3

)
.

(5.29)

Figure 5.1 illustrates the discussion here.

5.3.2.2 A practically useful warping function for large deformation

From the previous discussion, its clear that Ψt
21 and Ψ

t
31 are the linear part of the warping

function Ψ21 and Ψ31 respectively. The displacement field assumed in (4.19) does not have shear

deformation added explicitly. However, the inclusion of the warping component ∂ξ1κ3.Ψ31 and

∂ξ1κ2.Ψ21 generalizes the shear deformation assumed by Timoshenko to include out of plane

bending-induced shear warping. Therefore, we should be careful in using this general warping

solution if the shear deformations are explicitly added. Since the kinematics developed in this

paper includes finite shear, we propose a simplified warping function for the large deformation

120



Figure 5.1: Example of non-uniform shear deformation of the rectangular cross-section in the
beam subjected to plane bending.

problem as,

W(ξ1, ξ2, ξ3) = κ1(ξ1)Ψ10 + ∂ξ1κ2.(Ψ21 − Ψ
t
21) + ∂ξ1κ3.(Ψ31 − Ψ

t
31). (5.30)

Secondly, an alternative warping function that can be defined as an improved version of warping

used by Simo and Vu-Quoc [43] (as defined by equation (4.10)) as,

W(ξ1, ξ2, ξ3) = p(ξ1)Ψs + ∂ξ1κ2.(Ψ21 − Ψ
t
21) + ∂ξ1κ3.(Ψ31 − Ψ

t
31). (5.31)

Here, p(ξ1) is the warping amplitude and an additional unknown finite strain parameter.

5.3.3 The end support conditions for warping

There are two possible end conditions for warping– wholly restrained and the unrestrained.

Wholly restrained warping implies W = 0 at the end support. Unrestrained warping would

eliminate a contribution of warping to the stress component σ11 at the end support resulting in
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∂ξ1W = 0. If a solution of form (5.21) is used, we can obtain the warping end conditions by

imposing the following:

Warping wholly restrained: ∂p
ξ1
κ1 = 0; ∂

q
ξ1
κ2 = 0 and ∂

q
ξ1
κ3 = 0

for all even p ≥ 0 and for all odd q ≥ 1.
(5.32)

Warping unrestrained: ∂p
ξ1
κ1 = 0; ∂

q
ξ1
κ2 = 0 and ∂

q
ξ1
κ3 = 0

for all odd p ≥ 1 and for all even q ≥ 2.
(5.33)

5.3.3.1 An alternative way of arriving at the end support conditions for warping

Consider an end support condition with warping unrestrained. Such a warping function

must satisfy ∂ξ1W = 0 for all the material points (ξ2, ξ3) across the cross-section of end support.

Let us call this as unrestrained warping condition. Differentiating Eq. (5.9b), with respect to the

arc-length ξ1, we get,

∂ξ1∂nW = −∂ξ1κ1.t +
(
νC2

∫
B

∂3
ξ1

W dξ2dξ3

)
t̃. (5.34)

As an implication of unrestrained warping condition, we have ∂ξ1∂nW = 0. This can be guaranteed

from Eq. (5.34) if following is satisfied at the end support:

∂ξ1κ1 = 0 and
∫
B

∂3
ξ1

W dξ2dξ3 = 0. (5.35)

Equation (5.35) is a part of much larger set of end conditions. To proceed further, we take the

derivative of Eq. (5.9a) with respect to ξ1 and use the previous result (5.35), obtaining

∂3
ξ1

W +
1

C1
.∂ξ1∇

2W =
1

C1

(
ξ2.∂

2
ξ1
κ3 − ξ3.∂

2
ξ1
κ2

)
. (5.36)

Once again, as a result of unrestrained warping condition, we have ∂ξ1∇
2W = 0. This result

coupled with Eq. (5.36), implies ∂3
ξ1

W = 1
C1

(
ξ2.∂

2
ξ1
κ3 − ξ3.∂

2
ξ1
κ2

)
, which is identically satisfied if

∂3
ξ1

W = 0, ∂2
ξ1
κ2 = 0 and ∂2

ξ1
κ3 = 0. (5.37)
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We can continue the process of obtaining odd derivatives of Eq. (5.9a) and (5.9b) with respect to

ξ1 and proceed along the same reasoning used to obtain Eq. (5.35) and (5.37) to arrive at the end

condition for the case of unrestrained warping as described in Eq. (5.32). In the very same way,

we can obtain the set of end conditions for warping wholly restrained.

5.4 Solution approach 2: Solution of warping function using

trigonometric series

5.4.1 The governing differential equations

The warping function W depends on the curvatures and the end support conditions. For

a small (linear) deformation, we define the component of the displacement field v1(ξ1), v2(ξ1),

v3(ξ1) that represents the motion of the mid-curve due to axial deformation and bending. For small

deformations, ∂ξ1v1 = e(ξ1), ∂2
ξ1
v2 = κ3 and ∂2

ξ1
v3 = −κ2. Secondly if θ represents the angular

rotation due to torsion, then ∂ξ1θ = κ1(ξ1). To demonstrate the solution procedure of the modified

consistent differential equation (5.9a) and (5.9b) using trigonometric series, we assume simple

support at the end as in Brown et. al. [42]. The admissible end conditions for small deformation

are
θ = v2 = v3 = 0 at ξ1 = 0, L;

M2 = M3 = 0 at ξ1 = 0, L.
(5.38)

Since, the consistent governing equation does not explicitly depend on the axial strain, we ignore

the admissibility of the deformation field v1(ξ1). We choose the strain parameters such that the
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displacement and force boundary conditions are satisfied.

κ1(ξ1) =

∞∑
m=1

k1m cos
(
mπξ1

L

)
;

κ2(ξ1) =

∞∑
m=1

k2m sin
(
mπξ1

L

)
;

κ3(ξ1) =

∞∑
m=1

k3m sin
(
mπξ1

L

)
;

W(ξ1, ξ2, ξ3) = Ψ0(ξ2, ξ3) +

∞∑
m=1

Ψm(ξ2, ξ3) cos
(
mπξ1

L

)
.

(5.39)

Substituting Eq. (5.39) into the equation set (5.9a) and (5.9b) and observing the orthogonality of

trigonometric functions leads to the following,

Governing equation for Ψ0: We have,

∇2
Ψ0 = 0 on B(ξ1) with ∂nΨ0 = 0 on Γ(ξ1). (5.40)

Following similar reasoning as above, Ψ0 = 0, to avoid any rigid body contribution due to warping.

Governing equation for Ψm with m ≥ 1:

∇2
Ψm − C1

(
m2π2

L2

)
Ψm = C1

(mπ
L

)
(k3mξ2 − k2mξ3) + C2λ

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3 on B(ξ1);

(5.41a)

∂nΨm = −k1mt −
{
C2ν

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3

}
t̃ on Γ(ξ1). (5.41b)

The integral
∫
B
Ψm dξ2dξ3 can be obtained from the ∂ξ1e field, by substituting the warping function

as in Eq. (5.39) into the inconsistency condition (5.6) and utilizing the orthogonality relationship

of trigonometric functions,

Im(ξ1) =

∫
B

Ψm dξ2dξ3 =

(
λ̃ − 2νλ

λ̃

) (
L2

m2π2

)
A(ξ1) sec

(
mπξ1

L

) ∫ L

0
e,ξ1

(
cos

mπξ1
L

)
dξ1.

(5.42)
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Similarly, the Fourier coefficients k1m, k2m and k3m can be obtained as,

k1m =
2
L

∫ L

0
κ1(ξ1) cos

(
mπξ1

L

)
dξ1; (5.43a)

k2m =
2
L

∫ L

0
κ2(ξ1) sin

(
mπξ1

L

)
dξ1; (5.43b)

k3m =
2
L

∫ L

0
κ3(ξ1) sin

(
mπξ1

L

)
dξ1. (5.43c)

Check for consistency of equation (5.41a) and (5.41b): Using equation (5.41b), Gauss theorem

and the results in equations (5.1a) and (5.1b), we have,∫
B

∇2
Ψmdξ2 dξ3 =

∮
∂nΨm dΓ = −k1t

∮
tdΓ −

{
C2ν

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3

} ∮
t̃dΓ

= −

{
2νAC2

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3

}
.

(5.44)

Integrating equation (5.41a) across the cross-section B(ξ1), we have,

∫
B

∇2
Ψm dξ2dξ3 = C1

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3 + C1

(mπ
L

) ©­­­­­«
k3m

0︷         ︸︸         ︷∫
B

ξ2 dξ2dξ3 −k2m

0︷         ︸︸         ︷∫
B

ξ3 dξ2dξ3

ª®®®®®¬
+ C2 Aλ

(
m2π2

L2

) ∫
B

Ψm dξ2dξ3 =
(
C2 Aλ + C1

) (
m2π2

L2

) ∫
B

Ψm dξ2dξ3.

(5.45)

The consistency between equations (5.41a) and (5.41b) can be proved from equations (5.44) and

(5.45), if we can show that C1 +C2 Aλ = −2νAC2. Using the definitions of C1, C2, and λ, we have

C1 + C2 Aλ =
λ̃

G
−

λ︷               ︸︸               ︷(
λ̃ + 2ν(G − λ̃)

G

) (
λ̃

λ̃ − 2νλ

)
= 2

(
νλ̃

λ̃ − 2νλ

)
= −2νAC2. (5.46)

Therefore, the governing differential equations for Ψm are consistent.
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5.4.2 Solving for Ψm

Consider a solution of the form

Ψm = Ψ0m +

3∑
i=1

Ψimkim. (5.47)

The functions Ψjm for j = 0 − 3 satisfies four set of differential equations. The governing

differential equations for Ψ0m are,

∇2
Ψ0m − C1

(
m2π2

L2

)
λ̃

G
Ψ0m = C2λ

(
m2π2

L2

)
Im(ξ1) at B(ξ1); (5.48a)

∂nΨ0m = −C2ν

(
m2π2

L2

)
Im(ξ1)t̃ at Γ(ξ1). (5.48b)

The governing differential equations for Ψ1m are,

∇2
Ψ1m − C1

(
m2π2

L2

)
λ̃

G
Ψ1m = 0 at B(ξ1); (5.49a)

∂nΨ1m = −t at Γ(ξ1). (5.49b)

The governing differential equations for Ψ2m are,

∇2
Ψ2m − C1

(
m2π2

L2

)
λ̃

G
Ψ2m = −C1

(mπ
L

)
ξ3 at B(ξ1); (5.50a)

∂nΨ2m = 0 at Γ(ξ1). (5.50b)

The governing differential equations for Ψ3m are,

∇2
Ψ3m − C1

(
m2π2

L2

)
λ̃

G
Ψ3m = C1

(mπ
L

)
ξ2 at B(ξ1); (5.51a)

∂nΨ3m = 0 at Γ(ξ1). (5.51b)

We can obtain the functions Ψjm with j = 0 − 4 by solving the equation set (5.48a)-(5.51b).

Therefore, the warping function W can be obtained using equation (5.39), the Fourier coefficients

as defined in equation set (5.43a)-(5.43c) and equation (5.47).
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5.5 Summary

This chapter tackles the inconsistencies observed in the governing differential equations

of warping. Two possible solution approaches to obtain the warping function in the variable

separable form are explored. For the Poisson’s ratio ν = 0, the presented theory of warping

reduces to the theory presented by Burgoyne and Brown in [41] and [42]. End support conditions

for warping are explored. A practically useful warping function that includes the warping due to

non-uniform torsion and bending induced shear is presented. Chapter 10 utilizes the simplified

warping function defined in Eq. (5.31) to develop finite element code for the geometrically-exact

beam.

The discussion carried out in this chapter has been published in the International Journal

of Solids and Structures, Mayank Chadha and Michael D. Todd [34], 2019. The title of this

paper is: “A comprehensive kinematic model of single-manifold Cosserat beam structures with

application to a finite strain measurement model for strain gauges”. The dissertation author is the

primary investigator and author of this paper.
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Chapter 6

Measurement Model for Strain Gauges and

Shape Reconstruction of Slender

Structures

6.1 Introduction

This chapter can be divided into two broader parts. In the first part, we delineate

measurement model for finite length strain gauges, as well as discrete (or point) strain gauges

attached to the surface or the beam or embedded into it. The measurement model constitutes a

formula that relates the strain value measured by the strain gauge to the kinematic quantities of

the beam. We then simplify the expression of the discrete strain gauge measurement model for

small strain but large deformation and exploit it to develop a shape reconstruction methodology

for slender structures. That constitutes the second part of this chapter.

Strain measurement devices (“strain gauges”) are immensely important for a wide variety

of measurement and monitoring applications ranging across civil structures, the energy sector,

aerospace structures, and even biomedical systems, to name just a few. The development of
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sensing mechanisms that measure strain has been a well-developed field for over a century; the

solutions have spanned piezo-resistive gauges (arguably the most common and commercially-

realized) to fiber optic systems to laser Doppler velocimetry (LDV). The sensing mechanism itself

may require contact between the measuring device and structure (e.g., piezo-resistive gauges

or fiber optics) or be non-contact (e.g., LDV). Realizations of these architectures can result in

localized measurements (discrete measurement points with a fixed length scale) or distributed

measurements (e.g., fiber optic Rayleigh backscatter sensing [57], where the length scale and

location of measurement depending on the optical pulsing).

A significant number of these monitoring applications for which strain measurements are

required involve, fundamentally, one-dimensional slender structures. In this chapter, we exploit

the kinematics developed in chapter 5 to develop a measurement model for the scalar strain of

discrete and finite-length strain gauges assumed affixed to the surface of the beam or embedded

in the beam. The measurement gauge length of the measuring device must be small enough to

classify it as a discrete sensor. A discrete strain gauge is treated like an infinitesimal (tangent)

vector. We arrive at the Pull-back Riemannian Metric of the beam that is key in developing

the expression of the strain that would be detected by a finite length strain gauge. We validate

our result by demonstrating the applicability of the expression obtained on a simple case of

deformation that includes constant torsion, axial strain, and Poisson’s effect.

There are multiple instances where it is desirable to reconstruct the full-field deformed

shape of a very long, slender object such as pipelines, suspension cables, tethers, surgical tubing,

catheters, and others. For instance, the underground pipelines are prone to severe damage due to

seismic activities like earthquake, liquefaction- induced lateral spreading, landslide, and others.

These events have global effect on the pipeline configuration. Earthquakes causes transient ground

deformation and permanent ground deformations. In the simplest sense, the primary cause of

underground pipeline deformation is the movement of soil mass associated with the seismic

activities. There is abrupt ground deformation at the margin of landslide. The schematic diagram
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of the strike-slip fault effecting the underground pipeline is shown below. Hence, monitoring

Figure 6.1: Schematic diagram of strike-slip fault.

the performance of underground pipelines during these seismic events and in real time is equally

important as developing resilient design methodologies for the same.

We exploit the strain measurement model for discrete strain gauge to construct a shape-

reconstruction methodology of slender structures from a limited set of scalar surface strain

measurements. It is an exhaustive approach that captures the effect of curvature, shear, torsion,

and elongation restricted to rigid cross-section assumption, such that the final deformed state is

Ω1. The inclusive consideration of shear effects extends the validity of the proposed approach to

even more moderately-slender objects like beams or connecting rods while generally providing

robustness in the predicted results. This theory mainly targets the single-manifold structures that

are subjected to finite strains and large deformations.

The idea is to infer the global displacement (defined by the locus of the mid-curve) and the

cross-sectional orientation (defined by shear and torsion) of such structures in their deformed state,

using distributed sensing of some kind. As mentioned in Todd et al. [16], distributed sensing

may be grouped into two types: non-contact (the sensing mechanism is remote, such as using

Laser Doppler Vibrometry (LDV)), and contact (the sensing mechanism is affixed to the object
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for in-situ measurement). Like [16], this theory focuses on the latter group of sensing methods,

since a large number of applications do not lend themselves to the strict limitations of non-contact

methods, such as line-of-sight or ranging restrictions. Conventional contact sensors typically

involve measurement of kinematic/kinetic properties such as strain or acceleration (distributed or

discrete) and then obtain the global displaced shape by means of some inverse model. This theory

further considers the case of the measurement of a finite set of local, uniaxial, discrete strain

readings that are obtained through any type of sensing approach, including Fiber Bragg Grating

(FBG), Rayleigh back-scattering (refer to [57], [58] and [59]) or conventional resistive strain

gauges. The aim is to develop a comprehensive inverse model that provides three-dimensional

deformed shape and the kinematic generalized coordinates (like shear angles, curvatures, and

elongations) from these limited sets of uniaxial strain values. This chapter extends the ideas

presented in [16] and related works by including far more comprehensive mechanics in the

model, allowing for applicability to a greater range of slender structures (such as non-negligible

cross-sectional shear deformation).

6.2 On finite length strain gauge measurement

6.2.1 Geometric description of the deformation of finite strain gauge

Consider a strain gauge of finite length l0 (not necessarily small) attached to the surface of

beamS0 in the undeformed state Ω0. Let a ∈ S0 and b ∈ S0 represent two ends of the finite strain

gauge. Let us consider the unstrained segment of FBG sensor as a space curve α : [0, l0] −→S0,

with α(0) = a and α(l0) = b, such that,

α(t) = ξi(t)Ei, t ∈ [0, l0], (ξ1, ξ2, ξ3) ∈ S0. (6.1)

The curve α(t) is parameterized by its arc-length t. Therefore, ∂tα(t) ∈ Tα(t)S0 is a unit

tangent vector along the curve. Here, Tα(t)S0 represents the tangent space of the manifold S0
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restricted to the curve α(t). The curve α(t) maps to the curve φ j(α(t)) = β j(t) : [0, l0] −→ Sj ,

Figure 6.2: Deformation of a finite length curve on the beam surface.

such that F j .∂tα(t) = ∂tβ j(t) ∈ Tφ(α(t))Sj . The vector field ∂tβ j(t) is not a unit vector as t is not

the arc length of the curve β(t). The magnitude of the tangent vector ∂tβ j(t) can be obtained as

‖∂tβ j(t)‖ =
(
∂tβ j(t) · ∂tβ j(t)

) 1
2
=

(
(F j .∂tα(t)) · (F j .∂tα(t))

) 1
2 =

(
∂tα(t) · (FT

j .F j .∂tα(t))
) 1

2

=
(
∂tα(t) · (C j .∂tα(t))

) 1
2 .

(6.2)

Here, C j = FT
j .F j = UT

j .U j represents the right Cauchy Green deformation tensor. In fact, the

Cauchy Green deformation tensor can be thought as a pull-back Riemannian Metric (refer chapter

2 of Do Carmo [15] and Chapter 1 Marsden and Hughes [60]) in the deformed configuration Ω j

(and the surfaceSj as well). This is because for any pair of tangent vector v1, v2 ∈ TpΩ0 (or TqS0),

the tensor C j associates an inner product
(
(F j .v1) · (F j .v2)

)
on the tangent space Tφ(p)Ω j (or

Tφ(q)Sj) such that F j .v1,F j .v2 ∈ Tφ(p)Ω j (or Tφ(q)Sj). The length of the curve β(t) as a function
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of the parameter t is obtained as,

l j(t) =
∫ t

0
‖∂tβ j(k)‖dk . (6.3)

The scalar strain efj(t) (the super-script “f” stands for finite length strain gauge and the sub-script j

indicates that the deformed configuration is Ω j) at the material point (ξ1(t), ξ2(t), ξ3(t)) ∈ Ω j and

the average scalar strain efjavg(t) in the strain gauge are obtained as,

e
f
j(t) = ‖∂tβ j(t)‖ − 1;

e
f
javg(t) =

l j(t = l0)
l0

− 1.
(6.4)

Figure 6.2 shows the construction discussed above.

6.2.2 Illustration

Consider a cantilever beam with circular cross-section of radius r = 0.05 m and length

l0 = 1 m. Let the finite length strain gauge join the material point a = (0,0,0.05) ∈ S0 and

b = (1,0,0.05) ∈ S0 giving a straight curve α(t) = ξ1(t)E1 + 0.05E3 with t ≡ ξ1 ∈ [0,1]. Note

that in this case ∂tξ1(t) = 1. Hence, ∂tα(t) = E1. Let the beam be subjected to the following

finite strain parameters,

κ1(ξ1) = 2π, e(ξ1) = 0.1, with ν = 0.3. (6.5)

The deformed state for this example isΩ3 with vanishing κ2, κ3 and W . It is intuitive that the curve

α(t) deforms to β3(t) ∈ S3 (hence j=3) which is a helix with pitch length lp = (1 + e) = 1.1 m,

radius r1 = (1 − eν)r and number of turn nturn = 1. From the equation of length of helix, the

length of the curve β3(t) can be obtained as,

l3 = 2πnturn

√
r2
1 +

(
lp
2π

)2
= 1.141m;

e
f
javg(t) = 14.1%.

(6.6)
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Now we obtain the length of the curve β3(t) using the discussion in chapter 4 and the result (4.29).

We have,

∂tβ3 = F3.∂tα(t) = λ3
1(t)+d1 = (1 + e(ξ1(t))) .d1− ξ̂3(t).κ1(ξ1(t)).d2+ ξ̂2(t).κ1(ξ1(t)).d3. (6.7)

Since the undeformed curve (a mathematical equivalent of unstrained finite length strain gauge) is

along E1 with ξ2 = 0, we have ξ̂2(t) = 0 and ξ̂3(t) = (1 − eν)r . Hence,

l3 =
∫ 1

0

(
∂tβ3 · ∂tβ3

) 1
2 dt =

∫ 1

0

√(
(1 + e)2 + (1 − eν)rκ1

)2dt = 1.141m. (6.8)

Thus, the results from Eq. (6.6) and (6.8) are exactly the same.

6.3 On discrete “point” strain measurements

In a strict sense, a discrete point strain gauge is an absurd idea because a point does not

strain. In reality, a discrete strain gauge has a small but finite undeformed gauge length associated

with it. The discrete strain gauge with small gauge length can be treated by considering it as an

infinitesimal vector such that its orientation in the undeformed state is known and gauge length

represents the length of the vector. This can help us estimate strain in an average sense, by

assuming that the finite strain parameters along the length of discrete strain gauge are constant

throughout its length. We consider the value of the deformation gradient tensor at the center point

of the strain gauge. Since the gauge length of the discrete strain gauge is small and the finite strain

parameters are continuous, this approach gives an excellent estimation of the scalar strain value.

6.3.1 Orientation of the surface strain gauge in the undeformed state Ω0

Consider the undeformed configuration Ω0 that consist of continuously varying family of

planar cross-sections B0(ξ1). Consider a strain gauge attached to the point q0 =
(
ξ
g
1 , ξ

g
2 , ξ

g
3

)
∈ S0

such that the unit direction vector n0 ∈ Tq0S0. The strain gauge can be located from the point on
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the mid-curve p0 = (0,0) ∈ B0

(
ξ
g
1

)
by the vector rg0 = ξ

g
2E2 + ξ

g
3E3. The tangent plane Tq0S0 is

spanned by the unit orthonormal vectors t0
(
ξ
g
1 , ξ

g
2 , ξ

g
3

)
− t̃0

(
ξ
g
1 , ξ

g
2 , ξ

g
3

)
. The vector t̃0 lies in the

plane spanned by E1 − r
g
0, such that,

t̃0 = cos µ̃E1 + sin µ̃

(
r
g
0

‖r
g
0‖

)
= cos µ̃E1 +

©­­«
ξ
g
2 sin µ̃√
ξ
g2

2 + ξ
g2

3

ª®®¬E2 +
©­­«

ξ
g
3 sin µ̃√
ξ
g2

2 + ξ
g2

3

ª®®¬E3. (6.9)

The vector t0 represents the unit tangent vector to the periphery Γ0 of the cross-section B0

(
ξ
g
1

)
,

such that

t0 = E1 ×

(
r
g
0

‖r
g
0‖

)
= −

©­­«
ξ
g
3√

ξ
g2

2 + ξ
g2

3

ª®®¬E2 +
©­­«

ξ
g
2√

ξ
g2

2 + ξ
g2

3

ª®®¬E3. (6.10)

The vector n0 makes an angle µ with the vector t̃0 at the point q0. Figure 6.3 describes the

orientation of the strain gauge in the undeformed state. The expression for n0 is obtained as,

Figure 6.3: The orientation of the strain gauge in undeformed configuration Ω0.

n0 = cos µ t̃0 + sin µt0. (6.11)
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If the configuration Ω0 consists of the same cross-sections (not varying along the beam), then

µ̃ = 0.

As, dφ : Tq0S0 −→ Tφ(q0)Sj , the tangent space Tφ(q0)Sj is spanned by the normal basis

vectors
(

F j .t0
‖F j .t0‖

,
F j . t̃0
‖F j . t̃0‖

)
. These basis vectors are not orthogonal unless F j = Q at the point q0.

6.3.2 Expression of scalar strain value of discrete strain gauge

Consider a discrete strain gauge with the finite (but small) gauge length lg with the

orientation n0 in the undeformed state. Let the center point of the strain gauge be attached to

the material point q0. Considering the strain gauge as the vector lgn0, the scalar strain edj (the

super-script “d” stands for discrete strain gauge) in the deformed state Ω j is,

e
d
j =

Stretch λ̂j︷                               ︸︸                               ︷(
(F j(q0).n0) · (F j(q0).n0)

) 1
2 −1. (6.12)

Equation (6.12) defines nominal strain. We can obtain natural strain, Lagrangian strain, Eulerian

strain, and logarithmic strain fields using the expression of stretch λ̂ j (refer to section 4.2 of Asaro

and Lubarda [61]). Note that a similar expression can be obtained by using Eq. (6.3) and (6.4)

such that the deformation gradient tensor is assumed to be constant F j(q0) (considering its value

at the center of the strain gauge) along the length of the discrete strain gauge.

6.3.3 Simplified discrete strain gauge measurement model for deformed

case Ω1 considering small strain case

As noted in section 6.4.1, the deformation gradient tensor considering the deformed

configuration as Ω1, is given by

F1 = λ
1
1 ⊗ E1 + di ⊗ Ei = H1 + Q. (6.13)
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Given n0 is the unit vector defining the direction of the strain gauge, the scalar strain for discrete

gauge is simplified as follows:

e
d
1 = ‖(F1.n0)‖ − 1 = ‖(H1.n0 + Q.n0)‖ − 1

=
√
‖H1.n0‖ + 2(H1.n0) · (Q.n0) + 1 − 1.

(6.14)

For small strain, large deformation, ‖H1.n0‖ << Q.n0. Therefore, expanding the expression for

e upto first order of H1.n0 yields,

e
d
1 ≈ (H1.n0) · (Q.n0) +O(H1.n0)

2. (6.15)

6.4 Three dimensional shape reconstruction of slender struc-

tures

The theory of shape sensing developed in this chapter utilities the results discussed in

chapters 1, 2 and 4. The following section represents the kinematic discussion and the solution

algorithm.

6.4.1 Kinematic discussion

We consider that the deformed beam is subjected to multiple curvatures (bending and

torsion), Poisson’s deformation due to mid-curve axial strain only (in-plane cross-sectional

deformation), shear deformation and warping due to torsion only. We exclude the warping

due to bending induced shear and also exclude the effect of warping and bending on Poisson’s

deformation. We also assume that the warping function is known and the initial undeformed

configuration is straight (not curved).

Let an open setΩ0 ∈ R
3 andΩ ∈ R3 represent the undeformed and deformed configuration

of the rod. The inclusion of the aforementioned deformation effects has no impact on the definition
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of mid-curve position vector ϕ(ξ1), parameterized by the arc-length ξ1 ∈ [0, L] ⊂ R+, and the

cross-sectional orientation is defined by a material frame (MF) or director triad {di}. Let {Ei}

define a fixed orthonormal reference frame such that we define the orthogonal rotation tensor Qm

(the sub-script “m” stands for material frame) and the curvature tensor κ̂ as,

Qm(ξ1) = di ⊗ Ei;

κ̂ = ∂ξ1Q.Q
T ;

∂ξ1di = κ̂ .di = κ × di .

(6.16)

The deformation map of such beam is defined as φ : R0 ∈ Ω0 7−→ R ∈ Ω such that,

φ(R0) = R = ϕ(ξ1) + r + pΨd1; (6.17a)

r = (ξ̂2d2 + ξ̂3d3) = (1 − νε1)r1; (6.17b)

r1 = ξ2d2 + ξ3d3. (6.17c)

In the equation set above, p, Ψ, and ε1 = (Q
T
m.∂ξ1ϕ − E1) · E1 represents the warping amplitude,

the known warping function, and the component of axial strain vector ε along d1. We realize that

the deformation map is a special case of the map φ3 discussed in chapter 4 described in equation

set (4.24).

Let B0(ξ1) = {ξ2, ξ3} ∈ R
2
ξ1
and B(ξ1, ξ2, ξ3) = {pΨ, ξ̂2, ξ̂3} ∈ R

3
ξ1
represent the cross-

section field for the configuration Ω0 and Ω. Another deformed configuration of interest to us

is Ω1. It is a special case of Ω where we ignore warping and Poisson’s deformation. We define

another deformed configuration Ω4 ∈ R
3 such that the associated cross-section field is given by

B4(ξ1, ξ2, ξ3) = {ξ̂2, ξ̂3} ∈ R
2
ξ1
. It is a special case of Ω when we ignore warping. The discussed

shape sensing algorithm will be simulated for the deformation statesΩ1 andΩ4. The configuration

space for Ω1, Ω4, and Ω is given by:

Φ1 :=
{
(ϕ,Qm) | ϕ : R+ → R3, Qm : R+ → SO(3)

}
⊂ C1; (6.18)
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Φ4 :=
{
(ϕ,Qm, ε1) | ϕ : R+ → R3, Qm : R+ → SO(3), ε1 : R+ → R

}
⊂ C4; (6.19)

Φ :=
{
(ϕ,Qm, ε1, p) | ϕ : R+ → R3, Qm : R+ → SO(3), ε1, p : R+ → R

}
⊂ C. (6.20)

Therefore, we note that C1 = R
3 × SO(3), C4 = R

3 × SO(3) × R and C = R3 × SO(3) × R × R.

However, as noted in section 2.3.1, the quantities (ϕ,Qm) can be approximated to the least order

by SPEG technique, where we use linearized shape functions (refer to Eq. (2.15)). However,

since ε1 is functionally dependent on ∂ξ1ϕ, it can separately be approximated using higher order

techniques from the discrete values of the estimated ϕ. In that case C1 ≡ C4.

The associated deformation gradient tensor is given by F1 = H1 + Qm = λ
1
1 ⊗ E1 + Qm,

F4 = H4 + Qm = λ
4
i ⊗ Ei + Qm, and F = H + Qm = λi ⊗ Ei + Qm. Here, the strain vector λ1

1

for the deformed configuration Ω1 is given by Eq. (4.41). The strain vectors corresponding to the

deformed configuration Ω4 and Ω can be deduced from the expression of strain vectors of most

general deformed case Ω3 as defined in equation set (4.35) by neglecting the terms associated

with the not-included deformation effects (i.e., bending induced shear warping and contribution

to in-plane deformation due to warping). For the configuration Ω4, we have,

λ4
1 =

(
ε1 + ξ̂3κ2 − ξ̂2κ3

)
d1 +

(
ε2 − ξ̂3κ1 + ∂ξ1 ξ̂2

)
d2 +

(
ε3 + ξ̂2κ1 + ∂ξ1 ξ̂3

)
d3; (6.21a)

λ4
2 =

(
∂ξ2 ξ̂2 − 1

)
d2 + ∂ξ2 ξ̂3.d3; (6.21b)

λ4
3 = ∂ξ3 ξ̂2.d2 +

(
∂ξ3 ξ̂3 − 1

)
d3. (6.21c)

Similarly, for the configuration Ω, we have,

λ1 =
(
ε1 + ξ̂3κ2 − ξ̂2κ3 + ∂ξ1 p.Ψ

)
d1 +

(
ε2 − ξ̂3κ1 + ∂ξ1 ξ̂2 + pΨκ3

)
d2

+
(
ε3 + ξ̂2κ1 + ∂ξ1 ξ̂3 − pΨκ2

)
d3;

(6.22a)

λ2 = p.∂ξ2Ψ.d1 +
(
∂ξ2 ξ̂2 − 1

)
d2 + ∂ξ2 ξ̂3.d3; (6.22b)

λ3 = p.∂ξ3Ψ.d1 + ∂ξ3 ξ̂2.d2 +
(
∂ξ3 ξ̂3 − 1

)
d3. (6.22c)
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Here,

∂ξ1 ξ̂i = −∂ξ1ε1.νξi for i ∈ 2,3; (6.23a)

∂ξj ξ̂i = (1 − νε1)δi j for i, j ∈ 2,3. (6.23b)

6.4.2 The director triad and the governing differential equation

To uniquely describe the shear angles and to express the frame {di} with respect to the

fixed frame {Ei}, we first consider an un-sheared cross-section defined by a special material

adapted frame (SMAF) field {T (ξ1),Y s(ξ1),Ps(ξ1)} obtained by rotating {Ei} frame about −E2

by an angle φy(ξ1) (yaw angle) followed by rotation about E3 by an angle φp(ξ1) (pitch angle).

Here,T (ξ1) is the tangent vector field to the mid-curve ϕ(ξ1) defined asT = ∂sϕ =
1

1+e∂ξ1ϕ. Here,

s is the deformed arc-length of the beam as defined in section 4.2.2. From (1.27) in section 1.3.3,

we can arrive at the relationship between the SMAF and the fixed frame {Ei} by substituting −φy

in place of φy (unlike in section 1.3.3, we have rotated the SMAF about −E2), yielding,


T

Y s

Ps


=

[Qs]
T
Ei ⊗E j

=Rs︷                           ︸︸                           ︷
cφpcφy sφp cφp sφy

−sφpcφy cφp −sφp sφy

−sφy 0 cφy



E1

E2

E3


. (6.24)

From the equation above, we have Qs = T ⊗ E1 + Y s ⊗ E2 + Ps ⊗ E3. Here we have used same

convention as section 1.3.3: cos θ = cθ and sin θ = sθ, for any angle θ. Both these notations are

interchangeably used as per convenience.

Recall the definition of shear angles in section 1.3.3. The three shear angles, denoted by

γ11(ξ1), π2 − γ12(ξ1) and π
2 − γ13(ξ1) are subtended by the directors d1, d2 and d3 with the tangent

vector T . However, this definition does not provide us with unique sheared cross-section. To

uniquely define the sheared cross-section, we obtain the director triad by rotating SMAF. To do

140



so, we define three additional angles α1, α2, α3 as angles subtended by the directors d1, d2, and d3,

with the vector Y s such that,


T

Y s

Ps


=

[QT
sm]Ei ⊗E j

=[Qms]Ei ⊗E j
=Rsm︷                                                                   ︸︸                                                                   ︷

cγ11 sγ12 sγ13

cα1 cα2 cα3

cα3 sγ12 − cα2 sγ13 cα3cγ11 − cα1 sγ13 cα2 sγ11 − cα1 sγ12



d1

d2

d3


. (6.25)

Here, Qsm = T ⊗ d1 +Y s ⊗ d2 + Ps ⊗ d3 = QT
ms. We aim to relate the director triad {di} with the

fixed reference frame {Ei} such that di = Qm.Ei, such that the corresponding direction cosine

matrix (refer to section 1.3.2.3) is given by Rm = [Qm]
T
Ei⊗E j

. Like the result in (1.29), we have,

Qm ≡ Q = Qms.Qs = QT
sm.Qs;

[Qm]
T
Ei⊗E j

= [Qsm]Ei⊗E j .[Qs]
T
Ei⊗E j

;

Rm = R
T
sm.Rs.

(6.26)

The rotation tensor Qm is orthogonal if the following constraints on (α1, α2, α3, γ11, γ12, γ13)

are imposed:

‖T ‖ = ‖Y s‖ = ‖Ps‖ = 1; ∂ξ1 ‖T ‖ = ∂ξ1 ‖Y s‖ = ∂ξ1 ‖Ps‖ = 0. (6.27)

Figure 6.4 illustrates the discussion carried so far. We define the curvature tensor associated with

the beam configuration Ω1 as κ̂ = ∂ξ1Qm.Q
T
m with the associated curvature vector κ = κidi. The

components of the curvature vector as a function of the angles (α1, α2, α3, γ11, γ12, γ13) and
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Figure 6.4: Sheared and un-sheared cross-section.

their derivatives can be obtained using the expression for Qm as:

κ1 = −∂ξ1α2.cα3 sα2 + ∂ξ1α3.cα2 sα3 + ∂ξ1γ11.cα1 sγ11(−cα3 sγ12 + cα2 sγ13) − ∂ξ1γ12.cα2
2
cγ12 sγ13

− ∂ξ1γ13.cγ13 sγ13 + ∂ξ1γ13.cα2
3
cγ13 sγ12 − ∂ξ1γ13.cα2cα3cγ13 sγ13 + ∂ξ1φy .(cα2 sγ12 − cα2 sγ13)

− ∂ξ1φy .(cα1cφp + cγ11 sφp );

(6.28a)

κ2 =
1
2

(
2∂ξ1α1.cα3 sα1 − 2∂ξ1α3.cα1 sα3 + ∂ξ1γ11.(2 + c2α2 + c2α3)sγ13 − 2∂ξ1φy .

(
cα2cφp + sγ12 sφp

)
+ ∂ξ1γ12.

(
cα1cα3 s2γ13 + 2cα2cγ12(−cα3cγ11 + cα1 sγ13)

)
+ 2

(
cγ11cγ13 sα2

3
+ cα1cα3 s2γ13

)
+ 2∂ξ1φp.(−cα3cγ11 + cα1 sγ13)

)
;

(6.28b)
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κ3 = −∂ξ1α1.cα2 sα1 + ∂ξ1α2.cα1 sα2 + ∂ξ1γ12.(cα1cα3cγ12 sγ13 − cα2
3
cγ11cγ12) − ∂ξ1φy .(cα3cφp + sγ13 sφp )

+ ∂ξ1γ13.(cα2cα3cγ11cγ13 − cα1cα3cγ13 sγ12) + ∂ξ1γ11.cα3 sγ11(cα2 sγ13 − cα3 sγ12)

+ ∂ξ1φp.(cα2cγ11 − cα1 sγ12).

(6.28c)

Like Eq. (2.14), the governing differential equation governing the kinematic evolution of

the beam can be obtained using Eq. (4.7) and (4.5) as,

∂ξ1ϕ

∂ξ1d1

∂ξ1d2

∂ξ1d3


=



0 (1 + e)cγ11 (1 + e)sγ12 (1 + e)sγ13

0 0 κ3 −κ2

0 −κ3 0 κ1

0 κ2 −κ1 0





ϕ

d1

d2

d3


(6.29)

It is worth mentioning that in the absence of shear deformation and the axial extension, we

have γ1i(ξ1) = 0, α1(ξ1) = α3(ξ1) =
π
2 , α2(ξ1) = 0 and e(ξ1) = 0, yielding {di} = {T, Y s, Ps},

vanishing the axial strain vector ε = 0, and simplifying the curvatures as κ1 = −sφy .∂ξ1φy, κ2 =

cφy .∂ξ1φy, κ3 = ∂ξ1φp, reducing the governing differential equation set to:

∂ξ1ϕ

∂ξ1T

∂ξ1Y s

∂ξ1Ps


=



0 1 0 0

0 0 ∂ξ1φp −∂ξ1φy .cφy

0 −∂ξ1φp 0 −∂ξ1φy .sφy

0 ∂ξ1φy .cφy ∂ξ1φy .sφy 0





ϕ

T

Y s

Ps


. (6.30)

This is exactly the Eq. (5) in Todd et al. [16]. Therefore, the current relationship Eq. (6.29)

consistently reduces to the simpler one (6.30) as described in Todd et al. [16]. Equation (6.30)

represents a deformation relationship that only considers the curvature-based contributions

(bending and torsion).

The matrix in the Eq. (6.29) consist of six unknowns: three components of axial strain

vector ε and three components of the curvature vector κ. As discussed in section 2.3, once the
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quantities
(
1 + ε1 = (1 + e)cγ11, ε2 = (1 + e)sγ12, ε3 = (1 + e)sγ13, κ1, κ2, κ3

)
are known at finite

number of cross-sections, the deformed shape of the beam can be estimated by integrating Eq.

(6.29). These techniques were discussed in chapter 2 concerning the problem of path estimation.

Since there are six unknowns, we need six strain gauges to be attached onto the surface of the

beam.

6.4.3 Orientation of the strain gauge in the undeformed state considering

circular cross-section

To proceed further, we detail the geometry of beam and the orientation of the strain

gauge assumed to develop the shape sensing methodology. We consider a cylindrical beam with

circular cross-section of outer radius r. As discussed in section 6.3.1, we assume strain gauges

to be attached on the surface at the point q0 = (ξ1, ξ2, ξ3) ∈ S0 such that r0 = ξ2E2 + ξ3E3 and

r =
√
ξ2

2 + ξ
2
3 . We assume that the vector r0 subtends an angle σ with E2, such that ξ2 = rcσ,

ξ3 = rsσ, and t0 = −sµE2 + cµE3. By virtue of the uniform cross-section assumption, we have

µ̃ = 0, and hence t̃ = E1. Therefore, the strain gauge orientation vector n0 can be obtained as

n0 = cµE1 − sµsσE2 + sµcσE3. (6.31)

We discuss the scalar strain formula for the configuration Ω1 and the ideas discussed can be

extended to the configurations Ω4 and Ω. For the deformed configuration Ω1, we have

F1.n0 = ((1 + ε1) − κ3ξ2 + κ2ξ3) cµd1+(ε2−κ1ξ3)cµ−sµsσd2+(ε3+κ1ξ2)cµ+sµcσd3. (6.32)

To further interpret the expression of scalar strain, we assume n0 = E1, yielding

e
d
1 =

√
((1 + ε1) − κ3ξ2 + κ2ξ3)2 + (ε2 − κ1ξ3)2 + (ε3 + κ1ξ2)2 − 1. (6.33)
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Considering only one deformation effect at a time, the expression for scalar strain values are

evaluated as follows,

Axial deformation : e
d
1
��
ε1,0 = ε1; (6.34a)

Plane bending about E3 : e
d
1
��
κ2,0 = κ2ξ3; (6.34b)

Plane bending E2 : e
d
1
��
κ3,0 = −κ3ξ2; (6.34c)

Shear and Axial deformation : e
d
1
��
ε2,ε3,0 =

√
(1 + ε1)2 + ε

2
2 + ε

2
3 − 1; (6.34d)

Torsion : e
d
1
��
κ1,0 =

√
1 + κ2

1r2 − 1. (6.34e)

The first three expressions considering pure axial and bending deformations are obvious. However,

the expressions for ed1
��
ε2,ε3,0 and ed1

��
κ1,0 seems less obvious. For instance, intuitively, κ1r =

‖H1.n0
��
κ1,0‖ should be the scalar strain due to torsion. Here, we carefully note that the strain

gauge does not measure the magnitude of the strained vector ‖H1.n0‖, rather it measures the

scalar strain defined in Eq. 6.12. For the pure axial deformation and bending, we observe that

‖H1.n0‖ = ‖F1.n0‖ − 1, because the deformation happens to be along n0 = E1. Similarly, for

the deformed states Ω4 and Ω, the expression for the scalar strain ed4 and e
d respectively, can be

found using Eq. (6.12).

6.4.4 Solution approach

To obtain the approximate solution of the global deformed shapes (Ωh
1, Ω

h
4, Ω

h), we

discretize the structure into N segments (n = 1,2, ...,N) with the center of segment n located at

ξ1n . Let ξ̂1n represents the right boundary of the nth segment, such that ξ̂1n−1 < ξ̂1n . We aim at

obtaining the estimated deformed configuration of the beam using the finite strain data at the

cross-sections located at ξ1n , with (n = 1,2, ...,N). We assume the origin at ξ1 = 0 is a fixed

end and the boundary at ξ1 = L is a free end. For the assumed boundary conditions, we have,

ξ1n = ξ̂1n and ξ̂10 = 0. We also assume Qm(0) = {d0i} = {Ei}.
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From Eq. (6.29), we observe that to determine the estimated mid-curve ϕh(ξ1) and director

field Qh
m(ξ1), we need only the discrete values of

(
ε1n, ε2n, ε3n, κ1n, κ2n, κ3n

)
at N cross sections.

However, from the discussion in the previous section, we realize that the scalar strain formula for ed
1

is a function of six finite strain quantities (ε1, ε2, ε3, κ1, κ2, κ3); the scalar strain ed
4 is a function

of seven finite strain quantities
(
ε1, ∂ξ1ε1, ε2, ε3, κ1, κ2, κ3

)
; and the quantity ed depends on nine

unknowns
(
ε1, ∂ξ1ε1, ε2, ε3, κ1, κ2, κ3, p, ∂ξ1 p

)
. Letσn,m and µn,m represents the angles defining

the orientation of the mth strain gauge at a cross-section located at ξ1n . Considering the deformed

configuration Ω, for the cross-section at ξ1n , the scalar strain gauge edn,m at mth strain gauge can be

written as a function of
(
ε1n, ∂ξ1ε1n = ∂ξ1ε1(ξ1n), ε2n, ε3n, κ1n, κ2n, κ3n, pn, ∂ξ1 pn = ∂ξ1 p(ξ1n)

)
such that:

e
d
n,m = fm

(
ε1n, ∂ξ1ε1n, ε2n, ε3n, κ1n, κ2n, κ3n, pn, ∂ξ1 pn; σn,m, µn,m

)
. (6.35)

We note that σn,m and µn,m are known. To uniquely evaluate the nine unknowns, we invert the set

of m = 9 non-linear equations. Similarly, for Ω1 and Ω4, we have m = 6 and m = 7.

6.4.4.1 Approximate solution for the mid-curve position vector and the director triad

using SPEG

We only need the discrete value of axial strain and curvatures
(
ε1n, ε2n, ε3n, κ1n, κ2n, κ3n

)
to obtain

(
ϕh(ξ1), Q

h
m(ξ1)

)
for any deformed configuration

(
Ωh

1, Ω
h
4, Ω

h) . To estimate the

deformed shape using SPEG technique, we consider the co-rotated derivatives of axial strain

vector and the curvature vector to vanish for each patch. Equivalently, we truncate the Taylor series

expansion of the finite strain quantities about ξ1n to zeroth order, thereby reducing the system

of differential equations (6.29) into a constant-coefficient system such that the solution of the

differential equation gives an approximated configurationΦh
n = (ϕ

h
n,Q

h
n) ≡ (ϕ

h
n, {d

h
in}) ∈ C1 valid

in the patch n. Therefore, N segments would involve solving for 12N constants of integration.

Imposing continuity in the (ϕ, {di}) fields at the boundary between the segments gives 12(N − 1)
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constraints, and an appropriate boundary condition gives the additional 12 conditions. We obtain

a solution for nth segment as:

ϕh
n(ξ1) = An1 + An2ξ1 + An3 sin κnξ1 + An4 cos κnξ1;

dh
in(ξ1) = Bni1 + Bni2ξ1 + Bni3 sin κnξ1 + Bni4 cos κnξ1.

(6.36)

In the above equation κn = ‖κn‖. We represent the vector coefficients in Eq. (6.36) in a more

desirable form given below,[
[An1]{Ei}, [An2]{Ei}, [An3]{Ei}, [An4]{Ei}

]
3×4 = [Cn]3×4[An]4×4; (6.37a)[

[Bni1]{Ei}, [Bni2]{Ei}, [Bni3]{Ei}, [Bni4]{Ei}

]
3×4 = [Cn]3×4[Bin]4×4; (6.37b)

In the equation above, the notation [Anj]{Ei} = [Anj · E1, Anj · E2, Anj · E3]
T , represents the

component of the coefficient vector [Anj]{Ei} in {Ei} frame. Therefore, the approximated solution

is expressed in {Ei} frame (Note that the boundary conditions were expressed in {Ei} frame).

The matrix [Cn] represents the 12 constants of integration corresponding to nth patch and is

determined using continuity conditions or the boundary conditions. The matrices [An] and [Bin]

(for i = 1,2,3) contains coefficients that are function of the discrete velocity data (E1 + εn) and

κn, and are given as:

[An] =



(κn×(E1+εn))·E1
κ2
n

((E1+εn)·κn).(κn·E1)

κ2
n

−
(κn×κn×(E1+εn))·E1

κ3
n

−
(κn×(E1+εn)n)·E1

κ2
n

(κn×(E1+εn))·E2
κ2
n

((E1+εn)·κn).(κn·E2)

κ2
n

−
(κn×κn×(E1+εn))·E2

κ3
n

−
(κn×(E1+εn))·E2

κ2
n

(κn×(E1+εn))·E3
κ2
n

((E1+εn)·κn).(κn·E3)

κ2
n

−
(κn×κn×(E1+εn))·E3

κ3
n

−
(κn×(E1+εn))·E3

κ2
n

1 0 0 0


; (6.38)

[Bin] =



(di0+κn×κn×di0)·E1
κ2
n

0 (di0×κn)·E1
κn

−
(κn×κn×di0)·E1

κ2
n

(di0+κn×κn×di0)·E2
κ2
n

0 (di0×κn)·E2
κn

−
(κn×κn×di0)·E2

κ2
n

(di0+κn×κn×di0)·E3
κ3
n

0 (di0×κn)·E3
κn

−
(κn×κn×di0)·E3

κ2
n

0 0 0 0


. (6.39)
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In the equation above κn = ‖κn‖ =

√
κ2

1n + κ
2
2n + κ

2
3n . Equation (6.36) yields a helix (which is

smooth). We glue the solution of each patch using heavy side function such that the global

approximated configuration yielding a continuous solution as,

ϕh(ξ1) =

N∑
n=1

ϕh
n(ξ1)

[
H(ξ1 − ξ̂1n−1) − H(ξ1 − ξ̂1n)

]
; (6.40)

dh
i (ξ1) =

N∑
n=1

dh
in(ξ1)

[
H(ξ1 − ξ̂1n−1) − H(ξ1 − ξ̂1n)

]
. (6.41)

In the equation above H(·) represents Heaviside function. Other higher order techniques listed in

section 2.3.2 can also be used to estimate (ϕh(ξ1),Q
h
m(ξ1)) as,

Qh
m(ξ1) = exp

(∫ ξ1

0
κ̂

h
(x) dx

)
;

ϕh(t) =
∫ t

0
Qh(x).

(
εh
(x) + E1

)
dx.

(6.42)

6.4.4.2 Estimation of the warping amplitude ph(ξ1), mid-curve strain eh(ξ1), and shear

angles γh
1i

We obtain pn by solving the equation set (6.35). The strain en and the shear angles γ1in

can be obtained from the finite strain parameters as:

en =

√
ε2

1n + ε
2
2n + ε

2
3n − 1;

γ1in =


arccos

(
εin

1+en

)
, for i = 1

arcsin
(
εin

1+en

)
, for i = 2,3

 .
(6.43)

The approximated fields ph(ξ1), eh(ξ1), γ
h
1i(ξ1) can be obtained by interpolating the discrete

quantities pn, en, γ1in using techniques listed in table 2.1.
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6.4.4.3 Approximated configurations Ωh
1, Ω

h
4, Ω

h

The approximated deformation maps φh
1 : R0 ∈ Ω0 7−→ R ∈ Ωh

1 , φ
h
4 : R0 ∈ Ω0 7−→ R ∈

Ωh
4 , and φ

h : R0 ∈ Ω0 7−→ R ∈ Ωh can be obtained as:

φh
1(R0) = ϕ

h(ξ1) + ξ2d
h
2 + ξ3d

h
3; (6.44a)

φh
4(R0) = ϕ

h(ξ1) + (1 − νεh
1)(ξ2d

h
2 + ξ3d

h
3); (6.44b)

φh(R0) = ϕ
h(ξ1) + (1 − νεh

1)(ξ2d
h
2 + ξ3d

h
3) + ph

Ψdh
1 . (6.44c)

In the equation above, εh
1 = (1 + eh)cγ11n . In the next section, we show simulations concerning

the deformed configurations Ω1 and Ω4.

6.4.5 Simulations concerning the deformed state Ω1

We simulate three-dimensional shapes of varying complexities in deformation. We consider

a long rod with the length L = 300 m, and radius r = 30 cm. It is noteworthy that for the deformed

state Ω1, the simulations are completely independent of material properties because inverse shape

sensing requires only the kinematic and geometric parameters that define the displacement and

strains. To simulate the shape sensing problem, we assume a deformed shape and analytically

obtain the finite strain quantities (ε1n, ε2n, ε3n, κ1n, κ2n, κ3n) using the formula for curvatures given

in Eq. (6.28) and the definition of material axial strain vector ε = QT
m.∂ξ1ϕ−Ei = εiEi. The strain

value at the surface for the assumed deformed shape at set cross-sections for the given directions of

strain gauges can be obtained using Eq. (6.43). It was checked that inversion of non-linear equation

set (6.35) corresponding to the respective deformed state yields a unique solutions of finite strain

terms. To do so we assumed σn,m = {
π
4 ,

π
2 ,

3π
4 , π,

5π
4 ,

3π
2 } and µn,m = {

π
4 , −

π
4 ,

π
4 , −

π
4 ,

π
4 , −

π
4 }.
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6.4.5.1 Simulation 1

This simulation investigates the effect of curvature and constantly increasing torsion from

the fixed end towards the distal end (0 − 0.75π radian). The simulation was run for six (3 of

them are showed in Fig. 6.5) different cases varying the number of equally spaced strain values

to simulate different sensor counts. It is important to note that 6 sensors are required for each

cross-section, which implies a total of 6N sensors, where N indicates the number of cross-section

along the length where these sensors are placed. For simulation 1, N = 3, 5, 10, 20 ,50 and

100 (18, 30, 60, 120 and 600 total sensors respectively) are considered. The distal end was

displaced almost by 70 m in both y (along ξ2) and z (along ξ3) directions from the initially straight

configuration. The imposed configuration is defined by the following parameters:

φy = φp =
π

8
sin

(
πξ1
L

)
;

e(ξ1) = 0; γ1i = 0; α1 =
π

2
; α2 =

0.75πξ1
L

; α3 = α1 + α2.

(6.45)

Figure 6.5 compares the exact (imposed) deformed configuration (ϕ, {di}) and the

reconstructed configuration (ϕh, {dh
i }) obtained using the SPEG technique (Eq. (6.40)) for the

first simulation. For as few as 5 and 10 cross-sections (spaced approximately 60 m and 30 m

respectively), excellent reconstruction is observed with an average (over the full length) root mean

square (RMS) error of only 5.2 m and 1.03 m respectively. Secondly for 10 cross-sections, the

RMS error for the directors d1, d2, and d3 is merely 0.0078, 0.0056 and 0.0059 respectively, thus

predicting the cross-sectional orientation efficiently. If the same simulation is run for the length

of cable as 212 m and no torsion for 5 sensor locations (as was performed by Todd et al. [16]),

the error comes out to be the same (1.1 m). This clearly reflects the fact that the formulation

presented here is a general form that can capture many more mechanical effects as compared to

the formulation in Todd et al. [16], which could capture only curvature changes. Increment in

number of sensor locations improves the shape reconstruction, thereby reducing the RMS error to

as low as 3 mm for 50 sensor locations (1 every 6 m). Figure 6.6 compares the exact component
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Figure 6.5: Exact and estimated deformed configuration for simulation 1.

of (ϕ, d1) with the components predicted by N = 10 and N = 50 strain measurement locations.

The figure shows good convergence with the increase of the number of sensors. Since the object

in simulation 1 is not deformed in a very complicated shape, 10 sensor locations does a good

reconstructing of the shape.

The results presented above are for the ideal case of perfect strain transfer from the

structure to the attached strain gauges with certainty in the assumed boundary conditions and

no other external noise influence on the system (environmental or numerical). To examine these

influences for a first order assessment of robustness, uniformly-distributed random noise was

added to the strain values, at a [-5,5] micro-strain level (representative of the most conventional

strain gauge systems) and at [-50,50] micro-strain level (severe noise) before being input into the

reconstruction algorithm. Fifty such realizations were performed in a Monte Carlo sense, and the

average RMS error was computed for different number of sensor counts at each noise level. It

is observed that at each sensor count, the noise elevates the error with gradual improvement as
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Figure 6.6: Exact and estimated components of mid-curve position vector ϕ, and the components
of director d1 for simulation 1.

the sensor count increases. Figure 6.7 (right plot) gives the RMS error in the position vector for

different noise level and the left plot represents the RMS error plot for the directors considering no

external noise. The error when there is no external noise is due to approximation in the estimation.

Another source of error is uncertainty in the boundary conditions. Figure 6.7 shows the effect of

uncertainty on the specifications of the boundary condition at the proximal end ξ1 = 0, using 100

sensors by choosing 50 random boundary conditions at proximal end over [−0.0001, 0.0001] m,

[−0.01,0.01] m, [−0.1,0.1] m, [−1,1] m and [−10,10] m and obtaining the average RMS value

(averaged over 50 simulation) for both the simulations 1 and 2 (discussed in next section). It is

clear that with the current approach, the trend remains linear, with the averaged RMS error being

proportional to the input boundary condition uncertainty level.
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Figure 6.7: Right plot: RMS error in mid-curve position vector for different noise levels; Left
plot: RMS error plot for the directors considering no-noise case.

6.4.5.2 Simulation 2

In simulation 2, the object with same geometric and kinematic configuration as in

Simulation 1 is subjected to torsion, non-uniform elongation, shear and complex curvature

changes, making it more general. The exact/imposed deformed configuration is given by the

following,

φy = π sin
(
πξ1
L

)
; φp = π sin

(
πξ1
L

)
.

(
1 − 0.5 sin

3.5πξ1
L

)
;

e(ξ1) =
20π

L
cos

(
πξ1
2L

)
; γ11 =

πξ1
16L

; γ12 =
πξ1
32L

; α3 =
π

2

(
1 +

0.2ξ1
L

)
.

(6.46)

The angles γ12, α1 and α2 may be obtained by imposing the constraints defined in Eq. (6.27).

The displacement of the distal end is about 193 m and 116 m in the y and z direction. Since

the shape and deformation is complicated, the study is performed for a minimum of 10 sensor

locations (with N = 10, 20, 50 and 100) unlike a minimum of 3 sensor locations in simulation 1.

The RMS error for the position vector decreases from 9.8 m using 10 sensor locations to 4.8 cm
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Figure 6.8: Average root mean square error in the shape reconstruction for simulations 1 and 2
as a function of the uncertainty level in the initial displacement conditions at the proximal end.

with 100 sensor locations, representing excellent convergent reconstruction.

The top three plots of Fig. 6.9 compare the exact (imposed) mid-curve with the

reconstructed mid-curve for the second simulation and the bottom three plots compares the exact

cross sectional orientation with the predicted directors for N = 10, 20 and 100. Figure 6.10

represents comparison of the exact component of (ϕ, d1) with the components predicted by

N = 10 and N = 50 strain measurement locations. Assuming perfect strain transfer between the

structure and the strain gauge (no noise and perfect bonding), exact and the predicted angles are

observed to coincide because these parameters are directly related to the strain measurements.

The major contributor of error due to the algorithm, for this simulation, is mainly the

deformed shape of the mid-curve and the curvatures. The axial, shear and torsion contributions

are almost negligible to the RMS error of the position vector to the mid-curve. This observation

is made clear from the RMS error plot in Fig. 6.11. This is not a surprising result because the

global shape of the structure in this example is still dominated by the curvature; in a simulation

dominated by another effect, e.g., a pure axial extension, error would be primarily due to that

instead, and using the simplified theory such as in Todd et al. [16] would induce significant error.

Similar pattern of RMS error is observed as in simulation 1 when external noise is added

to the structure. The error is much higher for the second simulation as compared to the first
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Figure 6.9: Exact and estimated deformed configuration for simulation 2.

because of complicated deformed shape of the mid-curve and the complex curvature. As in Todd

et al. [16], the maximum reconstruction error in both of the above simulations was observed at the

distal end. It is because the boundary conditions were exactly specified on the proximal end. Error

due to the algorithm itself (but not necessarily error due to external influence or measurement

noise) then propagates along the object to the maximum at the farthest end from the known

condition. Therefore, the error propagation start from the point of specified boundary condition.

6.4.5.3 Simulation 3

In most cable or tether-like structures, curvature is the dominant deformation. The third

simulation presents a cable with same cross-section as the previous simulations. We consider

a helix with varying radius such that the bottom helix radius is rhelix = 50 m, pitch length is

lp = 10π m, number of turns is nturns = 20. The total length is then given by the total length of

L = 2π.nturns

√
r2
spring +

(
lp
2π

)2
= 6.314 km. Apart from these geometric parameters, the deformed
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Figure 6.10: Exact and estimated components of the mid-curve position vector ϕ and the
director d1 for simulation 2.

state is defined by the following:

φy =
2πnturnsξ1

L
; φp =

π

2
sin

(
πξ1
2L

)
;

e(ξ1) = 0; γ1i = 0; α1 = α3 =
π

2
; α2 = 0.

(6.47)

Significant RMS error of 15.9 m was observed with 50 sensor locations (1 in every 126 m) and

it reduced to 0.78 m with 200 sensor locations (1 cross section every 32 m). The predicted

shape using 20 sensor locations was not acceptable with tremendous error of 1326 m because of

complex shape and curvature changes. Figure 6.12 shows the predicted deformed shape and the

directors for N = 50, 100 and 200 sensor locations. Figure 6.13 shows the comparison between

the predicted components of the mid-curve for N = 50 and N = 100 sensor locations as compared

to the exact deformed shape. It is observed that an excellent reconstruction of such a complicated

shape is observed with mere N = 200 sensor locations.

Furthermore, it is observed that for a constant radius, constant pitch spring only 2
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Figure 6.11: Root mean square error for the position vector for simulation 2.

sensor locations (which is the minimum number of sensor locations required) are required

to exactly predict the shape. Such a deformed shape is parameterized by constant κ1 and κ2

(κ3 = ∂ξ1φp(ξ1) = 0) throughout the length of the cable.

6.4.6 Simulations concerning the deformed state Ω4

Unlike the simulations in last section concerning the deformed state Ω1, the shape sensing

now depends on the material property ν. To simulate the case, we assume a deformed shape

and analytically obtain the finite strain quantities (ε1n, ∂ξ1ε1n, ε2n, ε3n, κ1n, κ2n, κ3n). The strain

value at the surface for the assumed deformed shape at set cross-sections for the given directions

of strain gauges can be obtained using Eq. (6.43). It was checked that inversion of set of

seven non-linear equation (6.35) corresponding to the respective deformed state yields a unique

solutions of finite strain terms. To do so we have assumed σn,m = {
π
4 ,

π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 } and

µn,m = {
π
4 , −

π
4 ,

π
4 , −

π
4 ,

π
4 , −

π
4 ,

π
4 }.

We simulate a 300 m long circular rod with ν = 0.3 and diameter of 30.48 cm to

study the effect of multiple curvatures, axial strain, Poisson’s deformation, but no shear (thus,
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Figure 6.12: Exact and estimated deformed configuration for simulation 3.

ε1 = e; ε2 = ε3 = 0). The imposed shape is dictated by the following parameters,

φy = φp =
π

8
sin

(
2.5πξ1

L

)
;

e(ξ1) = 0.05 +
0.2ξ1

L
+

1
50

sin
(
4πξ1

L

)
; γ1i = 0; α1 =

π

2
; α2 =

0.75πξ1
L

; α3 = α1 + α2.

(6.48)

The assumed mid-curve shape bears two points of degeneracy, yet the algorithm performs robustly.

The algorithm is thus without any singularity.

Figure 6.13: Exact and estimated components of mid-curve position vector ϕ and the director
d1 for simulation 3.
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Figure 6.14: Exact and estimated deformed configuration for simulation considering Poisson’s
deformation along with curvatures and axial strain but no shear.

Figure 6.15: Comparison of the components of the exact and approximated axial strain ε1.

The figure 6.14 compares the exact (imposed) mid-curve ϕ(ξ1) with the approximated

mid-curve ϕh(ξ1) and the exact director field {di} with the approximated field {dh
i }, solved

using SPEG technique for N = 5, 7, 20 and 50 number of cross-sections. The RMS Error is

reported on top of the plots. The RMS Error reduces exponentially with the increase in number of

cross-section at which strain gauge is attached.

Figure 6.15 and 6.16 compares the exact curvature and axial strain field with the

approximated fields. The approximation is obtained using Moving Least Square approximation.

In this simulation, we use 2nd order shape function. The parameter L/a in Fig. 6.15 and

6.16 represents the ratio of the undeformed length of beam and the support size chosen for the

approximation.
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Figure 6.16: Comparison of the components of exact and approximated curvatures.

6.5 Similarities in the path estimation of rigid body (or swarm

of rigid bodies) and shape reconstruction of slender struc-

ture (like rods)

A rigid body motion and a beam with rigid Euler-Bernoulli’s cross-section B1(ξ1) is

defined by an identical configuration space C1 := R3 × SO(3). The Cosserat beam is defined by a

mid-curve curve ϕ and the director triad field {di} that defines the orientation of the cross-section.

However, the configuration of the beam Φ1 ∈ C1 is parameterized by the undeformed arc length

of the mid-curve, lets call it ξ1 ∈ R
+, and the configuration of the moving rigid body Φ2 ∈ C1 is

parameterized by time t ∈ R+, such that

Φ1(ξ1) :=
{
(ϕ(ξ1),Q(ξ1)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)

}
∈ C1;

Φ2(t) :=
{
(ϕ(t),Q(t)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)

}
∈ C1.

(6.49)
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If s represents the deformed arc-length in the deformed state of the beam or the distance traveled

by the moving object, then an analogy can be observed between the axial strain of the mid-curve

e(ξ1) for the beam and the velocity v(t) of the moving object, such that, ∂ξ1 s = 1 + e(ξ1) for

beams, and ∂t s = v(t) in case of a moving rigid body. Similarly, the velocity vector v = ∂tϕ is

comparable to the mid-curve axial strain vector of the beam, in the sense that ∂ξ1ϕ = ϕ + d1.

Like the configuration space, the tangent space of the two systems is identical. The

equivalent of angular velocity (spin) tensor ω̂(t) = ∂tQ.Q
T is the spin tensor corresponding to the

Darboux vector (also called the curvature tensor) κ̂(ξ1) = ∂ξ1Q.Q
T . Therefore, the problem of

shape reconstruction of the beam from a finite number of surface strain gauge readings bears a

striking similarity with the path estimation of rigid body motion using discrete linear and angular

velocity data. In the case of path estimation, the data is obtained in the form of Euler angles (or

quaternions) and their derivatives (from the IMU and other sensors), whereas in case of shape

sensing, the strain gauge data can be used to obtain the sectional curvatures and mid-curve strains.

Furthermore, the problem of dead reckoning is common in the case of path estimation and shape

sensing as will be seen in this chapter.

A geometrically-exact Kirchhoff beam and a rigid body can be defined by an adapted

frame. If the torsion angle is zero along the beam or if the roll angle field vanishes (which is

seldom in case of rigid body motion), SMAF is sufficient to define the orientation. The presence

of a torsion field in the beam and roll angle in the rigid body demands GMAF to define the

orientation.

A more interesting case arises when we consider the swarm of rigid-bodies (say drones).

If the swarm is a rigid-formation, the relative positions of follower drone is fixed (with vanishing

co-rotational derivative) and pre-defined with respect to the leader drone. If the rigid-formation

is planar, the orientation of the plane and the position vector of the leader drone defines the

configuration of the system. This is analogous to Simo-Reissner beam (refer to: Simo [48]

and Reissner [62]) that has rigid cross-section and is allowed to have shear deformation (unlike
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Euler-Bernoulli beam, where the cross-section is perpendicular to the mid-curve and shear

deformations are ignored). In a leader-follower model of drone formations, the follower drones

need not have a fixed relative position with respect to the leader drone. However, if the relative

positions of follower drones are pre-defined (that is useful for drone light-shows that have gained

recent popularity), the system maintains its single-manifold character. This system is similar to

Simo-Reissner beam with in-plane and out-of-plane cross-sectional deformation with warping

and Poisson’s transformation being pre-defined. The material frame (MF) can be used to define

orientation in these types of problems. The paper by Chadha and Todd [34] (discussed in chapter 4

and 5) is dedicated to developing generalized single-manifold beam kinematics that includes fully

coupled Poisson’s and warping effect (such that the cross-sectional deformation is pre-defined to

maintain single-manifold nature of the problem).

The compact approach in defining the shape of the swarm at any given time is accomplished

using a partial differential equation. For a system like a swarm of drones, trajectory tracking is

essential to define controls for the system so that the shape of swarm converges to the solution of

the prescribed differential equation at a given time. Defining the shape as a solution to governing

differential equations is compact, communication and memory-efficient, and it helps in developing

a local corrective algorithm (distributed control) where one drone corrects its position based

on the position of neighboring drones. This process is very much similar to obtaining warping

function from the Neumann boundary value problem corresponding to warping in the beam.

The local corrective algorithm in case of a swarm of drones is comparable to the compatibility

conditions in solid mechanics.

6.6 Summary

This chapter essentially consists of two parts. The first part details the measurement model

for strain gauge (finite length and discrete strain gauges) attached to the beam. The kinematics of
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the beam described in chapter 5 is exploited to develop a mathematical model for scalar strain

value that would be observed in strain gauges perfectly attached to the surface (or embedded into

the beam). A simple example is illustrated to validate the proposed strain gauge model.

The second part of the chapter deals with three-dimensional shape-reconstruction of

slender structures. The idea is to obtain the global shape of the rod using a countable number

of strain gauges. The theory detailed in this chapter does not assume the cross-section to be

rigid. Therefore, the cross-section could undergo in-plane and out-of-plane deformation. The

kinematics considered is simplified as compared to the kinematics of deformed configuration Ω3

discussed in chapter 4. The contribution of warping and bending towards in-plane deformation is

ignored. The contribution of bending induced shear to out-of-plane warping is also ignored.

The finite strain parameters on to which the strain gauge reading depends (like mid-curve

axial strain, curvatures, and their derivatives) at a given cross-section can be evaluated from

the strain gauges reading by inverting the set of scalar strain equations (Eq. (6.12)). Once the

material mid-curve strain vector and the curvature vector at discrete cross-section locations are

obtained, the mid-curve position vector and the director triads can be estimated using techniques

like SPEG developed in chapter 2. This algorithm could potentially be embedded in digital signal

processing chips or field-programmable gate array as part of an embedded solution with low power

and memory requirements. There are three main sources of error: uncertainty in the boundary

condition, noise in the strain measurements, and error due to approximation. Preliminary noise

tolerance study and boundary condition uncertainty studies show that the RMS error trends with

the extraneous noise due to environmental or measurement noise and with error in specifying

the one boundary condition vector required for inertial reference. The suggested reconstruction

strategy is convergent and non-singular even if the mid-curve has multiple points or segments of

degeneracy.

The discussion on the strain gauge model carried out in the early part of this chapter has

been published in the International Journal of Solids and Structures, Mayank Chadha and Michael
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D. Todd [34], 2019. The title of this paper is: “A comprehensive kinematic model of single-

manifold Cosserat beam structures with application to a finite strain measurement model for strain

gauges”. The shape reconstruction methodology developed in section 6.4, has been published in

the Journal of Applied Mechanics (ASME), Mayank Chadha and Michael D. Todd [17], 2017.

The title of this paper is: “A generalized approach for reconstructing the three-dimensional

shape of slender structures including the effects of curvature, shear, torsion, and elongation”.

The conference proceeding titled: “An Improved Shape Reconstruction Methodology for Long

Rod Like Structures Using Cosserat Kinematics-Including the Poisson’s Effect,” published in

Nonlinear Dynamics, furthers the theory of shape sensing detailed in [17] by incorporating

Poisson’s deformation. Conference paper Chadha and Todd [55], presented at International

Conference on Experimental Vibration Analysis for Civil Engineering Structures, 2017, focuses

on the applications of shape-sensing on pipeline monitoring. The dissertation author is the

primary investigator and author of these papers.
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Chapter 7

Balance Laws and Variational Formulation

of Geometrically-Exact Beam with

Enhanced Kinematics

7.1 Introduction and brief literature review on geometrically-

exact beam theory

The development of the beam/rod theories idealized by a space curve goes back to two

and half centuries ago and was instrumental in accelerating the second industrial revolution (refer

Euler and Truesdell [63]). Interestingly, further development of beam theory continues to date.

The work by Ericksen and Truesdell [64], Yang et al. [65] and Chadha and Todd [53], among

many others in this area, summarizes the developments in the beam theory in the last century. The

advanced applications of beam theory like deformation of bio-polymers (for example: Travers et al.

[66], Manning et al. [67]), biological structures (for example: Klapper et al. [68]), shape-sensing,

robotics, multi-body dynamics (for example: Lang et al. [69]), composite structures (for example:

Hodges [70]), contact problems (for example: Meier et al. [71]), thermal problems (for example:
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Green and Naghdi [72], Altenbach et al. [73]), micro and nanostructures used in MEMS and

NEMS etc., necessitates further development and refinement of this theory. The versatility of the

application of beam theory in numerous problems is the core motivation to develop and to refine

the existing theories. In the next few paragraphs, we first perform a relevant literature review

related to this chapter.

Duhem [74] investigated a kinematic idea that provided a sense of rotation to any material

point, such that a point in the object not only has a position vector associated with it but also

has an attached triad (not necessarily orthonormal in nature). The attached triad, also called

the directors, assigns the sense of rotation to these material points. Darboux [6] exploited the

moving frame technique to study surfaces. Cartan further generalized the idea of a frame field

(or moving frames) to n-dimensional manifolds in one of the most important constructions in

differential geometry, known as Cartan connections. The idea was to study Riemannian manifold

by means of a moving frame. Influenced from the work of Cosserat brothers [75], Cartan used a

moving tetrad frame to investigate 4-dimensional space-time manifold and modified the General

Theory of Relativity so as to allows space-time to have torsion in addition to curvature: called

Einstein-Cartan Theory (refer to Cartan [9], [8] and Trautman [76]). At a fundamental level, the

tetrad frame theory in relativity is very similar to the geometrically-exact shell theory (refer to

Simo et al. [77]). We deliberately deviated a bit above to make a strong point that at a deeper

level, the kinematics of geometrically-exact beams, shells, and advanced theories like general

relativity are kinematically unified under the domain of differential geometry investigated using

moving frames. In the field of deformation theory, moving frames becomes particularly useful in

defining kinematics of micropolar models of continuum mechanics. In such models, a macro

element has independent rotational degrees of freedom at the micro-level along with translation

considered at a macro level. Unlike traditional continuum mechanics, where each particle has

three degrees of freedom associated with it, in micropolar continua, each particle is equipped

with 6 degrees of freedom (refer to Eringen [78]). For example, in the case of a beam with rigid
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cross-section, each cross-section can be considered as a rigid body that can undergo translation

and rotation. The Cosserat rod is a special case of problems in micropolar continua, which is a

special restraint case of micromorphic continua. The compiled work by Altenbach and Eremeyev

[79] serves as a great reference that covers topics on micro-polar continua (by Altenbach and

Eremeyev), Cosserat rods (by Altenbach, Bîrsan and Eremeyev), micromorphic continua (by

Samuel Forest), electromagnetism and generalized continua (by Maugin).

It was Eugene and François Cosserat [75] who conceived the idea of moving frames

to capture geometrically exact non-linear deformation of the beams (and shells) using framed

space curve (therefore called single-manifold beam). Ericksen and Truesdell [64] generalized the

Cosserat brothers work to develop a non-linear theory of rods and shells for finite strain. Some of

the prominent investigations and research on theory of rods by Hay [80], Cohen [81], Whitman

and Desilve [82], Green and Naghdi [83] and [84], Antman et al. [85], [86], and [87], Argyris

and Symeonidis [19], [88], and [89], Eric Reissner [90], [91] and [62], and Simo [48].

Among these seminal contributions, the work by Reissner was the first major leap forward

towards the geometrically-exact beam theory, when he extended Kirchhoff-Love beam theory

(refer to Love [92]) to also capture shear deformation in addition to bending and torsion in 2D

plane [90]. Reissner [62] tackled the 3D problem by further simplifying rotation tensor at a cost

of losing geometric exactness. Reissner’s work, among many previous ones, ignited researchers

in this area and lead to a wave of publications in geometrically-exact beams (that can ideally

describe any magnitude of displacement and rotations) in and around the 1980s. Amongst them,

was a prominent work by Simo [48] that extended the geometrically-exact Reissner’s beam to

3D (with geometric-exactness preserved) in the setting of differential geometry (now called

Simo-Reissner beam theory). In our opinion, Simo [48] succeeded in giving a clear description of

non-linear configuration space, the associated tangent space and the exponential maps associated

with rotational non-commutative Lie group SO(3). Differential geometry and Lie groups were not

an alien concept in the 1980s but these ideas largely remained inaccessible to researchers with an
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engineering background. Simo’s work established machinery that helped the applied mechanics

community in developing an understanding of operating on the tangent space of a non-linear

manifold, thus, furthering the research in numerical solutions of the governing equations.

Many papers were published in the same time period concerning finite element formulation

of geometrically-exact beams, the primary contributors being: Simo et al. [48], [93], [94] and

[95]; Iura et al. [49] and [96]; Cardona et al. [51]; Ibrahimbegovic [52]. These papers considered

linearly elastic material and addressed both static and dynamic cases, but they presented different

approaches to time-stepping schemes and updating rotation vector: Eulerian (refer to: [93], and

[94]), updated Lagrangian (refer to: [51]) and total Lagrangian (refer to: [52], [96] and [97]).

Since these papers got published, research tackling the theoretical and computational techniques

gained momentum, for examples: problems related to discretization and interpolation approaches

(refer to: [98], [99], [100], [101] [102] and [26]), mixed formulation (refer to: [103]), non-linear

materials and constitutive law (refer to: [104], [105], [106] and [107]), space and time-integration

schemes (refer to: [108], [109] and [110]), initially curved configuration (refer to: [50] and [53]),

and enhanced kinematics (refer to: [93], [111], [37] and [34]).

The Cosserat beam with a Euler-Bernoulli rigid cross-section has been well treated in the

past. Simo and Vu-Quoc [43] extended their previous work [48] and [95] to incorporate warping

using a Saint-Venant warping function. It also included the effect of asymmetrical sections by

using the concept of shear-center in the framework of geometrically-exact beams. The works by

Carrera et al. [112] and Pagani et al. [113] also tackle warping in a rather general framework

of Carrera Unified Formulation (CUF). A very recent paper by Carrera [114] gives CUF for the

micropolar beams.

Chapter 4 and 5 investigated and refined the kinematics of Cosserat beams and chapter

6 developed a generalized strain gauge measurement model for prediction of finite strain at any

location on the surface of such an object. This development incorporated a fully coupled Poisson’s

and warping effect along with the classical deformation effects like bending, torsion, shear, and
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axial deformation for the case of finite displacement and strain (refer to Hay [80]), thus, allowing

us to capture a three dimensional, multi-axial strain fields using a single-manifold kinematics

(a beam/rod represented by a spatial curve). Numerous works on shear based deformation are

founded on Timoshenko’s beam theory that assumes a uniform shear distribution (thus restricting

the cross-section to remain planar). However, the enhanced kinematics discussed in chapter 4

also considers non-uniform shear deformation due to bending-induced shear. The kinematics

of Cosserat beams is derived from the theory of differential geometry of framed space curves.

Unlike the traditional geometrically-exact beam theory where the deformation map is a function

of the differential invariants (curvatures) of a framed curve, the work presented in chapter 4

considers a deformation map that also depends on the higher-order derivatives of the curvatures

and mid-curve strains.

With amore complete kinematics defined, further analysis of the beam can be primarily split

into two broad parts: the first part will include developing variational formulation, investigating

balance laws (presented in current chapter) and exploring the Hamiltonian structure (presented in

chapter 8) of the beam; the second part will focus on numerically solving for the configuration

space of the beam (presented in chapter 9 and 10). In order to tangibly solve the problem at hand,

we first focus our attention on performing a step-by-step and detailed analysis of the balance laws

and the variational formulation of the beam. This investigation becomes interesting, and at the

same time challenging, because of the inclusion of fully coupled Poisson’s and warping effect. In

particular, the bending-induced shear warping introduces higher-order derivatives of material

curvatures (refer to Eq. (5.21) of chapter 5), and the Poisson’s effect introduces mid-curve axial

strain in the deformation map. Hence, the comprehensive kinematics renders the deformation

map to be a function of mid-curve axial strain, the curvature vector, and their derivatives, thus

making the process of obtaining the variation of these quantities challenging. The reduced section

(internal) forces (conjugate to the finite strain terms and their derivatives), inertial and external

forces, and the boundary forces are obtained. We also observe that the theory converges to the one
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presented in Simo et al.[43] if we ignore the Poisson’s effect and bending induced non-uniform

shear. The derivation of strong and weak form and their equivalence leads to some very interesting

results and relationships that are presented in this chapter.

Finally, we obtain the balance laws for the geometrically-exact beam with a rigid cross-

section (a special case) using both an infinitesimal equilibrium equation and theHamilton-Lagrange

principle. We do not specifically assume that the mid-curve passes either through the geometric

centroid of the mass centroid of the beam but rather leaves its location general. We obtain the

equations for the initially straight configuration and finally achieve the same for an initially curved

(but strain-free) reference configuration. To demonstrate the importance of the terms involved in

the equation of motion, we interpret the motion as viewed from the director frame of reference.

We also obtain the energy conservation law from Hamilton’s principle, thereby establishing a

transformational link between the total energy and Lagrangian functional for Cosserat beams.

As noted in Mardsen and Hughes [60], we sincerely believe that differential geometry

(refer to Kreyszig [14] for beginners; Do Carmo [15] for advanced level; Clelland [115] and

Ivey et al. [7] for understanding the method of moving frames) is a natural and unified approach

to investigate problems of deformation as it provides construction and a unified language that

helps one understand the subject in a more deeper fashion (for example, the tangent bundle of the

configuration space represents the state space of dynamical problem). The paper by Simo et al.

[116] is a wonderful excursion into the geometric structure of non-linear continuummechanics. To

gain more insights into understanding the behavior of dynamic systems in the realm of differential

geometry, readers are recommended to refer to an excellent book by Lee et al. [117]. As much as

we are aligned towards using the general tensor analysis in this work, we use differential geometry

rather carefully, just enough to elucidate the intended ideas.

Note on Notations: We first quickly present some preliminary definitions and notations: the

dot product, ordinary vector product and tensor product of two Euclidean vectors v1 and v2 are

170



defined as v1 · v2 = vT
1 v2, v1 × v2, and v1 ⊗ v2 respectively. The expression vT

1 v2 is the matrix

representation of the dot product. The usage of v1 · v2 and vT
1 v2 is contextual and are used

interchangeably. The Euclidean norm is represented by ‖.‖ or the un-bolded version of the symbol

(for example, ‖v‖ ≡ v). Secondly, nth order partial derivative with respect to a scalar quantity,

ξ1 for instance, is given by the operator ∂n

∂ξn1
= ∂n

ξ1
. For n = 1, we define ∂1

ξ1
≡ ∂ξ1 . A vector,

tensor or a matrix is represented by bold symbol and their components are given by indexed

un-bolded symbols. The action of a tensor A onto the vector v is represented by Av ≡ A.v. The

contraction between two tensors A and B is given by A : B = Ai j Bi j = trace(BT .A). Vectors

when expressed in array form are column in nature. Vertical concatenation of n vectors (for

example, of dimension 3×1) v1, v2, ..., vn is represented by the vector [v1; v2; ...; vn] (of dimension

3n × 1). The n dimensional Euclidean space is represented by Rn, with R1 = R. The space of

real number and integers is represented by R and Z, with R+ and Z+ giving the set of positive

real numbers and integers (including 0). It is interesting to note that the language that reads-“The

action of a tensor...onto the vector...”- is acceptable in the field of engineering. However, it would

not make much sense in differential geometry. This is because a tensor in differential geometry is

defined as multi-linear function that take other tensors, vectors, one-forms etc. as its argument.

However, as a matter of convenience, we accept this abuse of notations. These notations are valid

for all the chapters hereafter.

7.2 Kinematics

7.2.1 Deformation map and deformation gradient tensor

For the development of mechanics of geometrically-exact beam, we consider the enhanced

kinematics discussed in chapter 4 and the deformed configurationΩ3. For this and the forthcoming

chapters, we rename Ω3 to Ω; φ3 to φ; R3 to R; and F3 = λ3
i ⊗ Ei + Q = H3 + Q to

F = λi ⊗ Ei + Q = H + Q. Bearing this in mind, we briefly discuss the kinematics for continuity
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sake. For detailed discussion on kinematics used in this chapter, readers are recommended to read

section 4.2 of chapter 4.

Let an open set Ω0 ⊂ R
3 and Ω ⊂ R3 with at least piecewise smooth boundaries

S0 = B0(0) ∪ B0(L) ∪∀ξ1 Γ0(ξ1) and S = B(0) ∪ B(L) ∪∀ξ1 Γ(ξ1) represent the undeformed

and deformed configuration of the beam respectively. The final deformed state Ω is defined

by the mid-curve ϕ and a family of cross-section B(ξ1) =
{(

W(ξ1, ξ2, ξ3), ξ̂2, ξ̂3

)
∈ R3

ξ1

}
. It

incorporates a fully coupled Poisson’s and warping effect. The deformation map for Ω is given by

φ : R0 ∈ Ω0 7−→ R ∈ Ω, such that,

φ(R0) = R = ϕ(ξ1) + r ;

r = ξ̂2d2(ξ1) + ξ̂3d3(ξ1) +Wd1(ξ1).

(7.1)

Here, the vector r gives the position vector of a material point (ξ2, ξ3) in the deformed cross-section

B(ξ1) with respect to the point ϕ(ξ1). Let Γ(ξ1) represent the boundary of cross-section B(ξ1),

such thatS = B(0) ∪B(L) ∪∀ξ1 Γ(ξ1). As discussed in Eq. (4.25) of chapter 4, the quantities ξ̂2

and ξ̂3 are defined by Poisson’s transformation Pξ1 : (ξ2, ξ3) 7→ (ξ̂2, ξ̂3).

In general, the mid-curve need not necessarily be the locus of geometric centroid of the

beam. It can also be the locus of center of mass or the shear-center. In this chapter, we assume

locus of geometric centroid constituting the mid-curve. For homogeneous material with constant

mass density, the geometric and mass centroid coincides, vanishing the first geometric and mass

moment. This simplifies the computations.

We assume that the contribution of higher order derivative (> 1) of curvatures to warping

is negligible. Thus, to facilitate the computation of governing field equations, we consider a

simplified warping function for this chapter,

W(ξ1, ξ2, ξ3) = p(ξ1)Ψ1(ξ2, ξ3) + ∂ξ1κ2.Ψ2(ξ2, ξ3) + ∂ξ1κ3.Ψ3(ξ2, ξ3);

W(ξ1, ξ2, ξ3) = p(ξ1)Ψ1(ξ2, ξ3) + ∂ξ1κ .Ψ23.

(7.2)

In the equation above, Ψ23 = Ψ2(ξ2, ξ3)E2 + Ψ3(ξ2, ξ3)E3 and ∂ξ1κ = ∂ξ1κi .Ei. The warping
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function W mentioned above is a modified version of the warping used in Simo and Vu-Quoc

[43], where p(ξ1) gives the warping amplitude. The coefficients ∂ξ1κ j ( j = 2,3) incorporated

bending induced non-uniform shear deformation. For the sake of computation, the cross-section

dependent functions Ψ1(ξ2, ξ3), Ψ2(ξ2, ξ3) and Ψ3(ξ2, ξ3) are assumed to be known.

We obtain the desirable form of Poisson’s transformation in terms of finite strain quantities

and the warping function W as

ξ̂i =
(
1 − ν

(
ε .E1 + κ .(ξ3E2 − ξ2E3) + ∂ξ1 p.Ψ1 + ∂

2
ξ1
κ .Ψ23

))
ξi for i = 2,3. (7.3)

The deformation gradient tensor can then be expressed as,

F = ∂ξiR ⊗ Ei = (∂ξiR − di) ⊗ Ei + Q = λi ⊗ Ei + Q = H + Q; (7.4a)

F = λi ⊗ Ei + I3 = H + I3. (7.4b)

The expressions of the strain vector λi is described in equation set (4.35).

7.2.2 Revisiting the material and spatial strain vector λi

In this section, we elaborate the expressions of strain vectors λi and λi in a desirable

form. To do so, we present the derivatives of deformed position vector R with respect to material

coordinates as

∂ξ1R = ∂ξ1ϕ + κ × r +
(
∂ξ1 ξ̂2.d2 + ∂ξ1 ξ̂3.d3 + (∂ξ1 p.Ψ1 + ∂

2
ξ1
κ .Ψ23)d1

)
; (7.5a)

∂ξ2R = ∂ξ2 ξ̂2.d2 + ∂ξ2 ξ̂3.d3 +
(
p.∂ξ2Ψ1 + ∂ξ1κ .∂ξ2Ψ23

)
d1; (7.5b)

∂ξ3R = ∂ξ3 ξ̂2.d2 + ∂ξ3 ξ̂3.d3 +
(
p.∂ξ3Ψ1 + ∂ξ1κ .∂ξ3Ψ23

)
d1. (7.5c)

We obtain the derivatives of Poisson’s transformed cross-section coordinates (ξ̂2, ξ̂3) using Eq.

(4.18) and (7.3) as

∂ξ1 ξ̂2 =∂ξ1ε .(−νξ2E1) + ∂ξ1κ .(νξ
2
2E3 − νξ2ξ3E2) + ∂

2
ξ1

p.(−νξ2Ψ1) + ∂
3
ξ1
κ .(−νξ2Ψ23); (7.6a)
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∂ξ1 ξ̂3 =∂ξ1ε .(−νξ3E1) + ∂ξ1κ .(νξ2ξ3E3 − νξ
2
3E2) + ∂

2
ξ1

p.(−νξ3Ψ1) + ∂
3
ξ1
κ .(−νξ3Ψ23); (7.6b)

∂ξ2 ξ̂2 =1 + (ε .(−νE1) + κ .(2νξ2E3 − νξ3E2) + ∂ξ1 p.(−νΨ1 − νξ2.∂ξ2Ψ1) (7.6c)

+ ∂2
ξ1
κ .(−νΨ23 − νξ2.∂ξ2Ψ23)); (7.6d)

∂ξ2 ξ̂3 =κ .(νξ3E3) + ∂ξ1 p.(−νξ3.∂ξ2Ψ1) + ∂
2
ξ1
κ .(−νξ3.∂ξ2Ψ23); (7.6e)

∂ξ3 ξ̂2 =κ .(−νξ2E2) + ∂ξ1 p.(−νξ2.∂ξ3Ψ1) + ∂
2
ξ1
κ .(−νξ2.∂ξ3Ψ23); (7.6f)

∂ξ3 ξ̂3 =1 + (ε .(−νE1) + κ .(νξ2E3 − 2νξ3E2) + ∂ξ1 p.(−νΨ1 − νξ3.∂ξ3Ψ1) (7.6g)

+ ∂2
ξ1
κ .(−νΨ23 − νξ3.∂ξ3Ψ23)). (7.6h)

Substituting the results above into Eq. (7.5) and using the definition of strain vector in Eq. (4.28),

we obtain the expressions for material and spatial form of strain vector λi expressed in matrix

form as

L = L.ε ; (7.7a)

L = L.ε . (7.7b)

where,
L =

[
λ1;λ2;λ3

]
;

L = [λ1;λ2;λ3] ;

ε =
[
ε; ∂ξ1ε; κ; ∂ξ1κ; ∂2

ξ1
κ; ∂3

ξ1
κ; p; ∂ξ1 p; ∂2

ξ1
p
]

;

ε =
[
ε; ∂̃ξ1ε; κ; ∂̃ξ1κ; Q.∂2

ξ1
κ; Q.∂3

ξ1
κ; p; ∂ξ1 p; ∂2

ξ1
p
]

;

(7.8)

such that,
L = Q3.L;

ε = Λ.ε ;
(7.9)
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where,

Q3 =


Q 03 03

03 Q 03

03 03 Q


; Λ =



Q 03 03 03 03 03 03

03 Q 03 03 03 03 03

03 03 Q 03 03 03 03

03 03 03 Q 03 03 03

03 03 03 03 Q 03 03

03 03 03 03 03 Q 03

03 03 03 03 03 03 I3



. (7.10)

Using the result Eq. (3.17a) presented in Proposition 3.3, we have, Q.∂n
ξ1
κ = ∂̃n

ξ1
κ.

Therefore,

ε =
[
ε; ∂̃ξ1ε; κ; ∂̃ξ1κ; ∂̃2

ξ1
κ; ∂̃3

ξ1
κ; p; ∂ξ1 p; ∂2

ξ1
p
]
. (7.11)

From here on, we call the vectors L and L as material and spatial concatenated strain vector

respectively. The matrices L and L are given as

L =


L
λ1
ε L

λ1
∂ξ1ε

L
λ1
κ L

λ1
∂ξ1κ

L
λ1
∂2
ξ1
κ L

λ1
∂3
ξ1
κ L

λ1
p L

λ1
∂ξ1 p L

λ1
∂2
ξ1

p

L
λ2
ε L

λ2
∂ξ1ε

L
λ2
κ L

λ2
∂ξ1κ

L
λ2
∂2
ξ1
κ L

λ2
∂3
ξ1
κ L

λ2
p L

λ2
∂ξ1 p L

λ2
∂2
ξ1

p

L
λ3
ε L

λ3
∂ξ1ε

L
λ3
κ L

λ3
∂ξ1κ

L
λ3
∂2
ξ1
κ L

λ3
∂3
ξ1
κ L

λ3
p L

λ3
∂ξ1 p L

λ3
∂2
ξ1

p


;

L =



Lλ1
ε Lλ1

∂ξ1ε
Lλ1
κ Lλ1

∂ξ1κ
Lλ1
∂2
ξ1
κ

Lλ1
∂3
ξ1
κ

Lλ1
p Lλ1

∂ξ1 p Lλ1
∂2
ξ1

p

Lλ2
ε Lλ2

∂ξ1ε
Lλ2
κ Lλ2

∂ξ1κ
Lλ2
∂2
ξ1
κ

Lλ2
∂3
ξ1
κ

Lλ2
p Lλ2

∂ξ1 p Lλ2
∂2
ξ1

p

Lλ3
ε Lλ3

∂ξ1ε
Lλ3
κ Lλ3

∂ξ1κ
Lλ3
∂2
ξ1
κ

Lλ3
∂3
ξ1
κ

Lλ3
p Lλ3

∂ξ1 p Lλ3
∂2
ξ1

p


;

(7.12)

such that,

L = Q3.L.Λ
T . (7.13)

We call the quantities L
λi
x and Lλix as material and spatial L-terms respectively. For x ∈{

ε, ∂ξ1ε, κ, ∂ξ1κ, ∂
2
ξ1
κ, ∂3

ξ1
κ, ∂ξ1 p, ∂ξ1 p, ∂2

ξ1
p
}
, the quantity Lλix (or Lλix ) is associated with the

strain term x in the expression of strain vector λi (or λi). For the subscripts (p, ∂ξ1 p, ∂2
ξ1

p), the
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L-terms are 3 × 1 vectors. For all other cases, L-terms are 3 × 3 matrices. The material and

spatial L-terms are related by the following relationship:

Lλix = Q.L
λi
x .Q

T and L
λi
x = QT .Lλix .Q for x ∈ {ε, ∂ξ1ε, κ, ∂ξ1κ, ∂

2
ξ1
κ, ∂3

ξ1
κ}

Lλix = Q.L
λi
x and L

λi
x = QT .Lλix for x ∈ {p, ∂ξ1 p, ∂2

ξ1
p}.

(7.14)

The L-terms are defined below.

L-terms associated with λ1:

L
λ1
ε = I3 Lλ1

ε = I3 (7.15a)

L
λ1
∂ξ1ε
= −νr1 ⊗ E1 Lλ1

∂ξ1ε
= −νr1 ⊗ d1 (7.15b)

L
λ1
κ = r̂

T
Lλ1
κ = r̂T (7.15c)

L
λ1
∂ξ1κ
= νξ2r1 ⊗ E3 − νξ3r1 ⊗ E2 Lλ1

∂ξ1κ
= νξ2r1 ⊗ d3 − νξ3r1 ⊗ d2 (7.15d)

L
λ1
∂2
ξ1
κ = E1 ⊗ Ψ23 Lλ1

∂2
ξ1
κ
= d1 ⊗ Ψ23 (7.15e)

L
λ1
∂3
ξ1
κ = −νr1 ⊗ Ψ23 Lλ1

∂3
ξ1
κ
= −νr1 ⊗ Ψ23 (7.15f)

L
λ1
p = 01 Lλ1

p = 01 (7.15g)

L
λ1
∂ξ1 p = Ψ1E1 Lλ1

∂ξ1 p = Ψ1d1 (7.15h)

L
λ1
∂2
ξ1

p = −νΨ1r1 Lλ1
∂2
ξ1

p
= −νΨ1r1 (7.15i)

L-terms associated with λ2:

L
λ2
ε = −νE2 ⊗ E1 Lλ2

ε = −νd2 ⊗ d1 (7.16a)

L
λ2
∂ξ1ε
= 03 Lλ2

∂ξ1ε
= 03 (7.16b)
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L
λ2
κ = 2νξ2E2 ⊗ E3 − νξ3E2 ⊗ E2

+ νξ3E3 ⊗ E3

Lλ2
κ = 2νξ2d2 ⊗ d3 − νξ3d2 ⊗ d2

+ νξ3d3 ⊗ d3

(7.16c)

L
λ2
∂ξ1κ
= E1 ⊗ ∂ξ2Ψ23 Lλ2

∂ξ1κ
= d1 ⊗ ∂ξ2Ψ23 (7.16d)

L
λ2
∂2
ξ1
κ = −νE2 ⊗ Ψ23 − νr1 ⊗ ∂ξ2Ψ23 Lλ2

∂2
ξ1
κ
= −νd2 ⊗ Ψ23 − νr1 ⊗ ∂ξ2Ψ23 (7.16e)

L
λ2
∂3
ξ1
κ = 03 Lλ2

∂3
ξ1
κ
= 03 (7.16f)

L
λ2
p = ∂ξ2Ψ1.E1 Lλ2

p = ∂ξ2Ψ1.d1 (7.16g)

L
λ2
∂ξ1 p = −νΨ1E2 − ν∂ξ2Ψ1.r1 Lλ2

∂ξ1 p = −νΨ1d2 − ν∂ξ2Ψ1.r1 (7.16h)

L
λ2
∂2
ξ1

p = 01 Lλ2
∂2
ξ1

p
= 01 (7.16i)

L-terms associated with λ3:

L
λ3
ε = −νE3 ⊗ E1 Lλ3

ε = −νd3 ⊗ d1 (7.17a)

L
λ3
∂ξ1ε
= 03 Lλ3

∂ξ1ε
= 03 (7.17b)

L
λ3
κ = −νξ2E2 ⊗ E2 + νξ2E3 ⊗ E3

− 2νξ3E3 ⊗ E2

Lλ3
κ = −νξ2d2 ⊗ d2 + νξ2d3 ⊗ d3

− 2νξ3d3 ⊗ d2

(7.17c)

L
λ3
∂ξ1κ
= E1 ⊗ ∂ξ3Ψ23 Lλ3

∂ξ1κ
= d1 ⊗ ∂ξ3Ψ23 (7.17d)

L
λ3
∂2
ξ1
κ = −νE3 ⊗ Ψ23 − νr1 ⊗ ∂ξ3Ψ23 Lλ3

∂2
ξ1
κ
= −νd3 ⊗ Ψ23 − νr1 ⊗ ∂ξ3Ψ23 (7.17e)

L
λ3
∂3
ξ1
κ = 03 Lλ3

∂3
ξ1
κ
= 03 (7.17f)

L
λ3
p = ∂ξ3Ψ1.E1 Lλ3

p = ∂ξ3Ψ1.d1 (7.17g)

L
λ3
∂ξ1 p = −νΨ1E3 − ν∂ξ3Ψ1.r1 Lλ3

∂ξ1 p = −νΨ1d3 − ν∂ξ3Ψ1.r1 (7.17h)

L
λ3
∂2
ξ1

p = 01 Lλ3
∂2
ξ1

p
= 01 (7.17i)
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7.3 Configuration and the state space of the beam

Adapting the kinematics discussed above, we find that there are three primary quantities

required to defined the configuration Ω: ϕ ∈ R3, Q ∈ SO(3) and p ∈ R. For static case, the

configuration space of the beam Ω is given as

C :=
{
Φ = (ϕ,Q, p) : [0, L] −→ R3 × SO(3) × R

}
. (7.18)

For any Φ(ξ1) ∈ C, we define the tangent space TΦC as

TΦC :=
{
Φ̃ = (∂ξ1ϕ, ∂ξ1Q, ∂ξ1 p) : [0, L] −→ R3 × TQSO(3) × R

}
. (7.19)

The state space of the beam is defined by the tangent bundle TC of the configuration space C as

TC :=
{
(Φ, Φ̃)|Φ ∈ C, Φ̃ ∈ TΦC

}
. (7.20)

As discussed in section 2.2.1 of chapter 2, the curvature associated with the beam can be

obtained as,

κ̂ = ∂ξ1exp(θ̂).exp(−θ̂) =
(
sin θ
θ

)
∂ξ1 θ̂ +

(
1 − cos θ

θ2

) [
θ̂, ∂ξ1 θ̂

]
+ (θ.∂ξ1θ)

(
θ − sin θ
θ3

)
θ̂. (7.21)

It is interesting to interpret the curvature vector κ = ∂ξ1Q.Q
T and the derivative of rotation

vector ∂ξ1θ with a physical viewpoint. At an arc-length ξ1, the director triad {di(ξ1)} rotates

about the vector κ(ξ1).dξ1 to yield the triad at {di(ξ1 + dξ1)}. Whereas, the triad {di(ξ1)} and

{di(ξ1 + dξ1)} are obtained by finite rotation of the frame {Ei} about the rotation vector θ(ξ1)

and θ(ξ1 + dξ1) = θ(ξ1) + ∂ξ1θ(ξ1).dξ1 respectively. Figure 3.3 (left) illustrates the idea discussed

here. In terms of exponential map,

Q(ξ1 + dξ1) = exp(κ̂(ξ1).dξ1).Q(ξ1) = exp(κ̂(ξ1).dξ1).exp(θ̂(ξ1));

Q(ξ1 + dξ1) = Q(θ(ξ1 + dξ1)) = exp(θ̂(ξ1) + ∂ξ1 θ̂(ξ1).dξ1).

(7.22)
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Figure 7.1: Geometric representation of SO(3) manifold, exponential map, tangent plane
TQSO(3), curvature tensor κ̂, and angular velocity tensor ω̂.

We understand that with slight abuse of notation, we can associate the tangent space with

curvature tensor field κ̂(ξ1) (instead of ∂ξ1Q = κ̂ .Q). The isomorphism between so(3) and R3

permits one to identify the tensor field κ̂(ξ1) with its corresponding axial vector κ(ξ1) ∈ R
3. Thus,

accepting the abuse of notation, the state space is defined by the set
(
ϕ, {di}, p; ∂ξ1ϕ,κ, ∂ξ1 p

)
.

Hence, we redefine the tangent space described in Eq. (7.19) as,

TΦC :=
{
Φ̃ = (∂ξ1ϕ,κ, ∂ξ1 p) : [0, L] −→ R3 × R3 × R

}
. (7.23)

For the dynamic case, we define the configuration space parameterized with arc-length

and time (ξ1, t) as,

C :=
{
Φ = (ϕ,Q, p) : [0, L] × R+ −→ R3 × SO(3) × R

}
(7.24)

However, it is important to look at the configuration of beam Ωt at a fixed time t ∈ R+ to study

curvature vector κ and consider a point with constant arc-length to understand the evolution of
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director field with time (given by angular velocity tensor ω̂ = ∂tQ.Q
T ). Hence,

Q(ξ1 + dξ1, t) = exp(κ̂(ξ1, t).dξ1).Q(ξ1, t);

Q(ξ1, t + dt) = exp(ω̂(ξ1, t + dt).dt).Q(ξ1, t).
(7.25)

Figure 7.1 provides geometric interpretation of result in Eq. (7.25) considering the boundary at

ξ1 = 0 to be fixed. We also observe that the geometric structure of angular velocity vector ω and

the curvature vector κ is very similar such that ω̂.Q, κ̂ .Q ∈ TQSO(3).

7.4 Variation

To obtain the virtual work principle (weak form of equilibrium equation), we need to

obtain the admissible variation of the deformed configuration. We also must linearize the weak

form for numerically solving the system. This shall be covered in chapter 10. However, since

both variation and linearization are geometrically similar procedures (that help us operate on the

tangent space TΦC), we shall carefully describe the variation of deformation map and associated

strain quantities here.

7.4.1 Admissible variation of the deformed configuration Ω

To obtain the virtual deformed configuration of the system, we superimpose an admissible

variation or admissible infinitesimal (and instantaneous) displacement field δΦ = (δϕ, δQ, δp) to

the configuration Φ = (ϕ,Q(θ), p). The varied configuration is then defined byΦε = (ϕε,Qε, pε )

such that for ε > 0, we have,

ϕε = ϕ + εδϕ; (7.26a)

Qε = Q(θ + εδθ) = Q(εδα).Q(θ); (7.26b)

pε = p + εδp. (7.26c)
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We also note that

δϕ = ∂εϕε |ε=0; δQ = ∂εQε |ε=0; δp = ∂ε pε |ε=0; (7.27a)

δΦ = ∂εΦε |ε=0. (7.27b)

Unlike the variation in the mid-curve axial vector and the warping amplitude, understanding the

variation in the rotation tensor needs some detailed investigation. This is because ϕ ∈ R3 and

p ∈ R belong to linear vector spaces, where as SO(3) is a non-linear manifold. Section 3.3 of

chapter 3 discusses variation in the rotation tensor Q in great detail. We recall the following two

important results from section 3.3:

δQ = δα̂.Q;

δdi = δα̂.di = δα × di .

(7.28)

In the equation above, δα represents the virtual rotation vector in current state. We redefine δΦ

as,

δΦ = [δϕ; δα; δp] . (7.29)

Having understood the varied configuration space, the expressions derived in this section can be

directly used to obtain variation of other quantities using straightforward chain rule.

7.4.2 Variation of the strain quantities and their derivatives

In this section, we obtain the variation of finite strain quantities in terms of (δϕ, δα, δp)

and their derivatives. The virtual material strain vectors δλi are strain conjugate to material form

of first PK stress vectors (discussed later in section 7.5.2). Deriving the expression of δλi requires

us to first find variation of L-terms and δε as a function of (δϕ, δα, δp) and their derivatives.
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7.4.2.1 Variation of the finite strain terms

From the definition of axial strain vector ε and its material counterpart ε in Eq. (4.6), we

obtain the variation of these quantities as,

δε = δ∂ξ1ϕ − δα̂.d1; (7.30a)

δε = δ(QT .ε) = QT (
δ∂ξ1ϕ + ∂ξ1 ϕ̂.δα

)
= QT .δ̃ε . (7.30b)

Similarly, the variation of spatial and material curvature tensor is given by,

δκ̂ = δ(∂ξ1Q.Q
T ) = δ∂ξ1Q.Q

T + ∂ξ1Q.δQ
T = δ∂ξ1 α̂ + [δα̂, κ̂] ; (7.31a)

δκ̂ = δ(QT .∂ξ1Q) = δQ
T .∂ξ1Q + QT .δ∂ξ1Q = QT .δ∂ξ1 α̂.Q = QT .δ̃κ̂ .Q. (7.31b)

The corresponding curvature vector are obtained as,

δκ = δ∂ξ1α + δα̂.κ; (7.32a)

δκ = QT .δ∂ξ1α = QT .δ̃κ . (7.32b)

Like the co-rotated derivatives, δ̃ε =
(
δ∂ξ1ϕ + ∂ξ1 ϕ̂.δα

)
, δ̃κ = δ∂ξ1α and δ̃κ̂ = δ∂ξ1 α̂ defines the

co-rotated variation of the curvature vector, axial strain vector and curvature tensor respectively.

7.4.2.2 Variation of the vector ε

Since the derivative and variation can be used interchangeably, we obtain the following:

δ∂ξ1ε = ∂ξ1δε = QT .
(
δ∂2

ξ1
ϕ + (∂2

ξ1
ϕ̂ − κ̂ .∂ξ1 ϕ̂).δα + ∂ξ1 ϕ̂.δ∂ξ1 α̂ − κ̂ .δ∂ξ1ϕ

)
; (7.33a)

δ∂ξ1κ = ∂ξ1δκ = QT .
(
δ∂2

ξ1
α − κ̂ .δ∂ξ1α

)
; (7.33b)

δ∂2
ξ1
κ = ∂ξ1(δ∂ξ1κ) = QT .

(
δ∂3

ξ1
α + (κ̂ .κ̂ − ∂ξ1 κ̂).δ∂ξ1α − 2κ̂ .δ∂2

ξ1
α
)

; (7.33c)

δ∂3
ξ1
κ = ∂ξ1(δ∂

2
ξ1
κ) =QT .(δ∂4

ξ1
α + (∂ξ1 κ̂ .κ̂ + 2κ̂ .∂ξ1 κ̂ − ∂

2
ξ1
κ̂ − κ̂ .κ̂ .κ̂).δ∂ξ1α

+ (3κ̂ .κ̂ − 3∂ξ1 κ̂).δ∂
2
ξ α − 3κ̂ .δ∂3

ξ1
α).

(7.33d)
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Using the results obtained above, the virtual quantity δε can be expressed in the following form:

δε = ΛT .B1.δΘ = Λ
T .δ̃ε, (7.34)

where,

δΘ =
[
δϕ; δ∂ξ1ϕ; δ∂2

ξ1
ϕ; δα; δ∂ξ1α; δ∂2

ξ1
α; δ∂3

ξ1
α; δ∂4

ξ1
α; δp; δ∂ξ1 p; δ∂2

ξ1
p
]

(7.35a)

δε =
[
δε; δ∂ξ1ε; δκ; δ∂ξ1κ; δ∂2

ξ1
κ; δ∂3

ξ1
κ; δp; δ∂ξ1 p; δ∂2

ξ1
p
]

; (7.35b)

δ̃ε =
[
δ̃ε; Q.δ∂ξ1ε; δ̃κ; Q.δ∂ξ1κ; Q.δ∂2

ξ1
κ; Q.δ∂3

ξ1
κ; δp; δ∂ξ1 p; δ∂2

ξ1
p
]

;

=
[
δ̃ε; δ̃∂̃ξ1ε; δ̃κ; δ̃∂̃ξ1κ; δ̃∂̃2

ξ1
κ; δ̃∂̃3

ξ1
κ; δp; δ∂ξ1 p; δ∂2

ξ1
p
]
.

(7.35c)

In Eq. (7.34), the transformation matrix Λ left-translates the quantity δε to obtain co-rotationally

varied vector δ̃ε .

The virtual vector δΘ can be related to δΦ by means of a differential operator B2 (of size

27 × 7), such that,

δΘ = B2.δΦ. (7.36)

The Eq. (7.34) can then be re-written as,

δε = ΛT .B1.B2.δΦ;

δ̃ε = B1.B2.δΦ.

(7.37)
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The expanded description of the matrix B1 is given below.

B1 =



03 I3 03 ∂ξ1 ϕ̂ 03 03 03 03 03

03 −κ̂ I3

(
∂2
ξ1
ϕ̂ − κ̂ .∂ξ1 ϕ̂

)
∂ξ1 ϕ̂ 03 03 03 03

03 03 03 03 I3 03 03 03 03

03 03 03 03 −κ̂ I3 03 03 03

03 03 03 03
(
κ̂ .κ̂ − ∂ξ1 κ̂

)
−2κ̂ I3 03 03

03 03 03 03
©­­«
∂ξ1 κ̂ .κ̂ + 2κ̂ .∂ξ1 κ̂

−∂2
ξ1
κ̂ − κ̂ .κ̂ .κ̂

ª®®¬ 3
(
κ̂ .κ̂ − ∂ξ1 κ̂

)
−3κ̂ I3 03

03 03 03 03 03 03 03 03 I3



.

(7.38)

The matrix B2 consist of differential operators and is given by,

BT
2 =


I3 ∂ξ1 .I3 ∂2

ξ1
.I3 03 03 03 03 03 01 01 01

03 03 03 I3 ∂ξ1 .I3 ∂2
ξ1
.I3 ∂3

ξ1
.I3 ∂4

ξ1
.I3 01 01 01

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 1 ∂ξ1 ∂2
ξ1


. (7.39)

Here,

∂n
ξ1
.I3 =


∂n
ξ1

0 0

0 ∂n
ξ1

0

0 0 ∂n
ξ1
.


(7.40)

7.4.2.3 Variation of the strain vector λi and the concatenated strain vector L

From Eq. (7.7a), we have,

δL = δL.ε + L.δε . (7.41)
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We realize that, except for δLλ1
κ = δ r̂

T
, the variation in all other L-terms are 03. Thus, we have,

δL.ε = [δLλ1
κ .κ; 01; 01] = [δ r̂

T
.κ; 01; 01] (7.42)

The material form of the position vector of r is given by,

r = QT .r = ξ̂2E2 + ξ̂3E3 +WE3. (7.43)

From the equation above, we have,

δ r̂
T
=

(
δε .(−νE1) + δκ .(−νξ3E2 + νξ2E3) + δ∂

2
ξ1
κ .(−νΨ23) + δ∂ξ1 p.(−νΨ1)

)
r̂

T
1

+
(
δp.(−Ψ1) + δ∂ξ1κ .Ψ23

)
Ê

T
1 ;

(7.44a)

δ r̂
T
.κ =

(
−νκ̂ .r1 ⊗ E1

)
.δε +

(
νκ̂ .r1 ⊗ (ξ2E3 − ξ3E2)

)
.δκ +

(
κ̂E1 ⊗ Ψ23

)
.δ∂ξ1κ

+
(
−νκ̂ .r1 ⊗ Ψ23

)
.δ∂2

ξ1
κ + δp

(
Ψ1κ̂ .E1

)
+ δ∂ξ1 p.

(
−νΨ1κ̂ .r1

)
=M

λ1
ε .δε + M

λ1
κ .δκ + M

λ1
∂ξ1κ

.δ∂ξ1κ + M
λ1
∂2
ξ1
κ .δ∂

2
ξ1
κ + M

λ1
p .δp + M

λ1
∂ξ1 p.δ∂ξ1 p.

(7.44b)

Like L-terms, we call Mλi
(.) as M-terms. The expression of M-terms are given as follows,

M
λ1
ε = −νκ̂ .r1 ⊗ E1 Mλ1

ε = −νκ̂ .r1 ⊗ d1 (7.45a)

M
λ1
κ = νκ̂ .r1 ⊗ (ξ2E3 − ξ3E2) Mλ1

κ = νκ̂ .r1 ⊗ (ξ2d3 − ξ3d2) (7.45b)

M
λ1
∂ξ1κ
= κ̂ .E1 ⊗ Ψ23 Mλ1

∂ξ1κ
= κ̂ .d1 ⊗ Ψ23 (7.45c)

M
λ1
∂2
ξ1
κ = −νκ̂ .r1 ⊗ Ψ23 Mλ1

∂2
ξ1
κ
= −νκ̂ .r1 ⊗ Ψ23 (7.45d)

M
λ1
p = Ψ1κ̂ .E1 Mλ1

p = Ψ1κ̂ .d1 (7.45e)

M
λ1
∂ξ1 p = −νΨ1κ̂ .r1 Mλ1

∂ξ1 p = −νΨ1κ̂ .r1. (7.45f)

Combining equations (7.42) and (7.44b), we have

δL.ε = M .δε, (7.46)
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where,

M =


M

λ1
ε 03 M

λ1
κ M

λ1
∂ξ1κ

M
λ1
∂2
ξ1
κ 03 M

λ1
p M

λ1
∂ξ1 p 01

03 03 03 03 03 03 01 01 01

03 03 03 03 03 03 01 01 01


. (7.47)

Similar to Eq. (7.13), we define the spatial form of M matrix as,

M = Q3.M .ΛT, (7.48)

such that,

M =


Mλ1

ε 03 Mλ1
κ Mλ1

∂ξ1κ
Mλ1

∂2
ξ1
κ

03 Mλ1
p Mλ1

∂ξ1 p 01

03 03 03 03 03 03 01 01 01

03 03 03 03 03 03 01 01 01


, (7.49)

and
Mλi

x = Q.M
λi
x .Q

T and M
λi
x = QT .Mλi

x .Q for x ∈ {ε, κ, ∂ξ1κ, ∂
2
ξ1
κ}

Mλi
x = Q.M

λi
x and M

λi
x = QT .Mλi

x for x ∈ {p, ∂ξ1 p}
. (7.50)

Substituting Eq. (7.46) into Eq. (7.41), we get

δL =
[
δλ1; δλ2; δλ3

]
=

(
L + M

)
.δε (7.51)

We define the co-rotoational variation of the concatenated strain vector L as

δ̃L =
[
δ̃λ1; δ̃λ2; δ̃λ3

]
= Q3.δL = Q3.

(
L + M

)
.δε

=
(
Q3.

(
L + M

)
.ΛT

)
.δ̃ε = (L + M).δ̃ε .

(7.52)

We finally note that the variation of deformation gradient tensor is obtained as

δF = δ̃F + δQ.F = δ̃F + δα̂.F;

δ̃F = Q.δF = δ̃λi ⊗ Ei;

δF = δλi ⊗ Ei .

(7.53)
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7.4.3 Variation of displacement field

We need the variation of displacement field to evaluate the virtual work done by external

loads. We define the displacement field u(ξ1, ξ2, ξ3) as u = R − R0. Since, δR0 = 01, we have

δu = δR. Thus, from Eq. (7.1),

δR = δϕ + δr ; (7.54a)

δr = δ̃r + δα̂.r ; (7.54b)

δ̃r = δξ̂2d2 + δξ̂3d3 + δWd1, (7.54c)

where,

δξ̂2 = δε .(−νξ2E1) + δκ .(νξ
2
2E3 − νξ2ξ3E2) + δ∂

2
ξ1
κ .(−νξ2Ψ23) + δ∂ξ1 p(−νξ2Ψ1);

δξ̂3 = δε .(−νξ3E1) + δκ .(νξ2ξ3E3 − νξ
2
3E2) + δ∂

2
ξ1
κ .(−νξ3Ψ23) + δ∂ξ1 p(−νξ3Ψ1);

δW = δp.Ψ1 + δ∂ξ1κ .Ψ23.

(7.55)

Using the results discussed above, we expand the expression for δ̃r in Eq. (7.54c) in a

desirable form that will be used later:

δ̃r = Lλ1
∂ξ1ε

.δ̃ε + Lλ1
∂ξ1κ

.δ̃κ + Lλ1
∂2
ξ1
κ
.(Q.δ∂ξ1κ) + Lλ1

∂3
ξ1
κ
.(Q.δ∂2

ξ1
κ) + δp.Lλ1

∂ξ1 p + δ∂ξ1 p.Lλ1
∂2
ξ1

p
;

= Lλ1
∂ξ1ε

.δ̃ε + Lλ1
∂ξ1κ

.δ̃κ + Lλ1
∂2
ξ1
κ
.(δ̃∂̃ξ1κ) + Lλ1

∂3
ξ1
κ
.(δ̃∂̃2

ξ1
κ) + δp.Lλ1

∂ξ1 p + δ∂ξ1 p.Lλ1
∂2
ξ1

p
.

(7.56)
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7.5 Weak form of governing differential equation for the de-

formed state Ω

7.5.1 General virtual work principle

We define the unsymmetric two-point first Piola Kirchoff stress tensor S referenced to the

undeformed configuration Ω0 such that the associated stress vectors Si are given by

Si = S.Ei = Si j d j ; (7.57a)

S = Si ⊗ Ei = Si j d j ⊗ Ei . (7.57b)

The infinitesimal equilibrium equation for a general continuum referenced to the undeformed

configuration Ω0 is given as

DivS + ρ0b = ρ0∂
2
t R;

or

∂ξ1S1 + ∂ξ2S2 + ∂ξ3S3 + ρ0b = ρ0∂
2
t R.

(7.58)

Here, Div is divergence operator referenced to the configurationΩ0. The quantities ρ0(ξ1, ξ2, ξ3) =

ρ0 and b(ξ1, ξ2, ξ3) = b give the mass density field in the undeformed state and the body force per

unit mass of the body respectively. We can write the point-wise equilibrium equation described in

Eq. (7.58) in an integral form as∫
Ω

δu.
(
DivS + ρ0b − ρ0∂

2
t R

)
dΩ = 0. (7.59)

Since F = I3 + Grad(u), we have δF = Grad(δu). Here, Grad is the gradient operator with

respect to the configuration Ω0. Using this result and divergence theorem on Eq. (7.59), we get
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the general virtual work principle as,

δUstrain + δWinertial = δWext;

G(Φ, δΦ) = δUstrain + δWinertial − δWext = 0,
(7.60)

where,

δUstrain =

∫
Ω0

S : δF dΩ0 =

∫
Ω0

trace
(
ST .δF

)
dΩ0; (7.61a)

δWinertial =

∫
Ω0

ρ0δu.∂
2
t R dΩ0; (7.61b)

δWext =

∫
S0

δu.(S.N ) dS0 +

∫
Ω0

δu.b dΩ0 = δWst
ext + δWb

ext. (7.61c)

The virtual work due to external forces is contributed by surface tractions (δWst
ext) and body forces

(δWb
ext). In the equation above, N represents the normal vector to the surfaceS0 of the beam.

7.5.2 Virtual strain energy

The expression of strain energy in Eq. (7.61a) can be further simplified by using Eq.

(7.53)

δUstrain =

∫
Ω0

S : δF dΩ0 =

∫
Ω0

S : δ̃F dΩ0 +

∫
Ω0

S : (δα̂.F) dΩ0. (7.62)

We observe that S : (δα̂.F) = SFT : δα̂ = 0. This is because, SFT is symmetric and δα̂ is an

anti-symmetric matrix. We define the concatenated stress vectorG = [S1; S2; S3] and its material

counterpartG =
[
S1; S2; S3

]
, such thatG = Q3.G. This further simplifies Eq. (7.62) to

δUstrain =

∫
Ω0

S : δ̃F dΩ0 =

∫
Ω0

Si .δ̃λi dΩ0 =

∫
Ω0

Si .δλi dΩ0;

δUstrain =

∫
Ω0

G.δ̃L dΩ0 =

∫
Ω0

G.δL dΩ0.

(7.63)

Using the results in Eq. (7.51) and (7.52) we have,

δUstrain =

∫
Ω0

δ̃ε .
(
(L + M)T .G

)
dΩ0 =

∫ L

0
δ̃ε .N dξ1; (7.64a)
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δUstrain =

∫
Ω0

δε .
(
(L + M)T .G

)
dΩ0 =

∫ L

0
δε .N dξ1. (7.64b)

We define the spatial and material reduced section force vectors N(ξ1) and N(ξ1) as

N = [Nε ;N∂ξ1ε
;Nκ ;N∂ξ1κ

;N∂2
ξ1
κ ;N∂3

ξ1
κ ;Np;N∂ξ1 p;N∂2

ξ1
p] =

∫
B0

(L + M)T .G dB0;

N = [Nε ;N∂ξ1ε
;Nκ ;N∂ξ1κ

;N∂2
ξ1
κ ;N∂3

ξ1
κ ;Np;N∂ξ1 p;N∂2

ξ1
p] =

∫
B0

(L + M)T .G dB0,

(7.65)

such that

N = Λ.N. (7.66)

The expressions of material and spatial reduced section forces are given as follows,

Nε =

∫
B0

(Lλ1
ε + Mλ1

ε )
T .S1 + (L

λ2
ε )

T .S2 + (L
λ3
ε )

T .S3 dB0 (7.67a)

N∂ξ1ε
=

∫
B0

(Lλ1
∂ξ1ε
)T .S1 dB0 (7.67b)

Nκ =

∫
B0

(Lλ1
κ + Mλ1

κ )
T .S1 + (L

λ2
κ )

T .S2 + (L
λ3
κ )

T .S3 dB0 (7.67c)

N∂ξ1κ
=

∫
B0

(Lλ1
∂ξ1κ
+ Mλ1

∂ξ1κ
)T .S1 + (L

λ2
∂ξ1κ
)T .S2 + (L

λ3
∂ξ1κ
)T .S3 dB0 (7.67d)

N∂2
ξ1
κ =

∫
B0

(Lλ1
∂2
ξ1
κ
+ Mλ1

∂2
ξ1
κ
)T .S1 + (L

λ2
∂2
ξ1
κ
)T .S2 + (L

λ3
∂2
ξ1
κ
)T .S3 dB0 (7.67e)

N∂3
ξ1
κ =

∫
B0

(Lλ1
∂3
ξ1
κ
)T .S1 dB0 (7.67f)

Np =

∫
B0

Mλ1
p .S1 + Lλ2

p .S2 + Lλ3
p .S3 dB0 (7.67g)

N∂ξ1 p =

∫
B0

(Lλ1
∂ξ1 p + Mλ1

∂ξ1 p).S1 + Lλ2
∂ξ1 p.S2 + Lλ3

∂ξ1 p.S3 dB0 (7.67h)

N∂2
ξ1

p =

∫
B0

Lλ1
∂2
ξ1

p
.S1 dB0; (7.67i)

and,

Nε =

∫
B0

(L
λ1
ε + M

λ1
ε )

T .S1 + (L
λ2
ε )

T .S2 + (L
λ3
ε )

T .S3 dB0 (7.68a)

N∂ξ1ε
=

∫
B0

(L
λ1
∂ξ1ε
)T .S1 dB0 (7.68b)
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Nκ =

∫
B0

(L
λ1
κ + M

λ1
κ )

T .S1 + (L
λ2
κ )

T .S2 + (L
λ3
κ )

T .S3 dB0 (7.68c)

N∂ξ1κ
=

∫
B0

(L
λ1
∂ξ1κ
+ M

λ1
∂ξ1κ
)T .S1 + (L

λ2
∂ξ1κ
)T .S2 + (L

λ3
∂ξ1κ
)T .S3 dB0 (7.68d)

N∂2
ξ1
κ =

∫
B0

(L
λ1
∂2
ξ1
κ + M

λ1
∂2
ξ1
κ)

T .S1 + (L
λ2
∂2
ξ1
κ)

T .S2 + (L
λ3
∂2
ξ1
κ)

T .S3 dB0 (7.68e)

N∂3
ξ1
κ =

∫
B0

(L
λ1
∂3
ξ1
κ)

T .S1 dB0 (7.68f)

Np =

∫
B0

M
λ1
p .S1 + L

λ2
p .S2 + L

λ3
p .S3 dB0 (7.68g)

N∂ξ1 p =

∫
B0

(L
λ1
∂ξ1 p + M

λ1
∂ξ1 p).S1 + L

λ2
∂ξ1 p.S2 + L

λ3
∂ξ1 p.S3 dB0 (7.68h)

N∂2
ξ1

p =

∫
B0

L
λ1
∂2
ξ1

p.S1 dB0. (7.68i)

Using Eq. (7.37), we finally arrive at the desired matrix form of virtual strain energy

expression that is useful in the process of linearization as

δUstrain =

∫ L

0
δΦTBT

2B
T
1N dξ1. (7.69)

The equation above is written in matrix format. For clarity, we note that δΦTBT
2B

T
1N =

δΦ.
(
BT

2B
T
1N

)
.

7.5.3 Virtual work done due to external and inertial forces

7.5.3.1 Virtual work done due to external forces

The virtual work due to external forces is contributed by surface traction and body force.

We first consider the surface traction term:

δWst
ext =

∫
S0

δu.(S.N ) dS0

=

∫ L

0

(∫
B0(ξ1+dξ1)

δu.S1 dB0 −

∫
B0(ξ1)

δu.S1 dB0 +

∫
Γ0(ξ1)

δu.(S.N ) dΓ0

)
dξ1

(7.70)

191



Recall the expression of δu = δϕ + δα̂.r + δ̃r as discussed in section 7.4.3. We simplify the first

two integrals to obtain boundary terms. We note the following results:∫
B0(ξ1+dξ1)

δϕ.S1 dB0 −

∫
B0(ξ1)

δϕ.S1 dB0 = ∂ξ1

(
δϕ.Bϕ

)
dξ1∫

B0(ξ1+dξ1)
(δα̂.r).S1 dB0 −

∫
B0(ξ1)
(δα̂.r).S1 dB0 = ∂ξ1 (δα.Bα) dξ1∫

B0(ξ1+dξ1)
δ̃r .S1 dB0 −

∫
B0(ξ1)

δ̃r .S1 dB0 = ∂ξ1(δ̃ε .Bε + δ̃κ .Bκ + (Q.δ∂ξ1κ).B∂ξ1κ

+ (Q.δ∂2
ξ1
κ).B∂2

ξ1
κ + δp.Bp + δ∂ξ1 p.B∂ξ1 p) dξ1.

(7.71)

Here, the quantities B(.) and B(.) represents the reduced end boundary force terms. Therefore, the

virtual work due to end boundary terms associated with the traction δWst
ext

��
B(0)∪B(L) is given by

δWst
ext

��
B(0)∪B(L) =

∫ L

0

(∫
B0(ξ1+dξ1)

δu.S1 dB0 −

∫
B0(ξ1)

δu.S1 dB0

)
dξ1

=
[
δϕ.Bϕ + δα.Bα + δ̃ε .Bε + δ̃κ .Bκ + (Q.δ∂ξ1κ).B∂ξ1κ

+ (Q.δ∂2
ξ1
κ).B∂2

ξ1
κ + δp.Bp + δ∂ξ1 p.B∂ξ1 p

] L
0

(7.72)

Note that Bϕ , Bα and Bp represents the reduced section force, moment and bi-shear as in Simo et

al. [43] (given by n, m and N f ).

We now consider the virtual work due to surface traction on the peripheral boundary

∪∀ξ1Γ0(ξ1), denoted by δWst
ext

��
∪∀ξ1Γ0(ξ1)

. We have,

δWst
ext

��
∪∀ξ1Γ0(ξ1)

=

∫ L

0

(∫
Γ0(ξ1)

δu.(S.N ) dΓ0

)
dξ1

=

∫ L

0
(δϕ.N st

ϕ + δα.N
st
α + δ̃ε .N

st
ε + δ̃κ .N

st
κ + (Q.δ∂ξ1κ).N

st
∂ξ1κ

+ (Q.δ∂2
ξ1
κ).N st

∂2
ξ1
κ
+ δp.Nst

p + δ∂ξ1 p.Nst
∂ξ1 p) dξ1.

(7.73)

In the equation above, the quantities N st
(.)
and Nst

(.)
represents the reduced external force due to

surface traction (represented by the super script st). Similarly, the virtual work due to body force
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field b is obtained as,

δWb
ext =

∫ L

0
(δϕ.Nb

ϕ + δα.N
b
α + δ̃ε .N

b
ε + δ̃κ .N

b
κ + (Q.δ∂ξ1κ).N

b
∂ξ1κ
+ (Q.δ∂2

ξ1
κ).Nb

∂2
ξ1
κ

+ δp.Nb
p + δ∂ξ1 p.Nb

∂ξ1 p) dξ1.

(7.74)

The quantities Nb
(.)
and Nb

(.)
represents the reduced external force due to body force (represented

by the super script b). Hence,

δWext =
(
δWst

ext
��
∪∀ξ1Γ0(ξ1)

+ δWb
ext

)
+ δWst

ext
��
B(0)∪B(L). (7.75)

Defining the (total) reduced external forces as N (.) = N st
(.)
+ Nb

(.)
and N(.) = Nst

(.)
+ Nb

(.)
, we have,(

δWst
ext

��
∪∀ξ1Γ0(ξ1)

+ δWb
ext

)
=

∫ L

0
(δϕ.Nϕ + δα.Nα + δ̃ε .Nε + δ̃κ .N κ + (Q.δ∂ξ1κ).N ∂ξ1κ

+ (Q.δ∂2
ξ1
κ).N ∂2

ξ1
κ + δp.Np + δ∂ξ1 p.N∂ξ1 p) dξ1.

(7.76)

To proceed further, we intend to obtain the virtual work in terms of the virtual quantities

δϕ, δα and δp and their derivatives. Using Eq. (7.30b), (7.32b), (7.33b) and (7.33c), we re-write

Eq. (7.72) and (7.76) in matrix form as

δWst
ext

��
B(0)∪B(L) =

[
δΘ.(B3B f )

] L
0 =

[
δΘTB3B f

] L
0 =

[
δΦTBT

2B3B f
] L

0 ;(
δWst

ext
��
∪∀ξ1Γ0(ξ1)

+ δWb
ext

)
=

∫ L

0
δΘ.(B3N f ) dξ1 =

∫ L

0
δΘTB3N f dξ1

=

∫ L

0
δΦTBT

2B3N f dξ1;

(7.77)

where,
B f = [Bϕ; Bε ; Bα; Bκ ; B∂ξ1κ

; B∂2
ξ1
κ ; Bp; B∂ξ1 p];

N f = [Nϕ; Nε ; Nα; N κ ; N ∂ξ1κ
; N ∂2

ξ1
κ ; Np; N∂ξ1 p].

(7.78)

The vectors B f and N f represent concatenated end boundary forces and reduced external forces
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respectively. The expressions of boundary forces and reduced external forces are given as,

Bϕ =

∫
B0

(Lλ1
ε )

T .S1 dB0; (7.79a)

Bα =

∫
B0

(Lλ1
κ )

T .S1 dB0; (7.79b)

Bε =

∫
B0

(Lλ1
∂ξ1ε
)T .S1 dB0; (7.79c)

Bκ =

∫
B0

(Lλ1
∂ξ1κ
)T .S1 dB0; (7.79d)

B∂ξ1κ
=

∫
B0

(Lλ1
∂2
ξ1
κ
)T .S1 dB0; (7.79e)

B∂2
ξ1
κ =

∫
B0

(Lλ1
∂3
ξ1
κ
)T .S1 dB0; (7.79f)

Bp =

∫
B0

Lλ1
∂ξ1 p.S1 dB0; (7.79g)

B∂ξ1 p =

∫
B0

Lλ1
∂2
ξ1

p
.S1 dB0; (7.79h)

and,

Nϕ = N st
ϕ + Nb

ϕ =

∫
Γ0

(Lλ1
ε )

T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
ε )

T .b dB0; (7.80a)

Nα = N st
α + Nb

α =

∫
Γ0

(Lλ1
κ )

T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
κ )

T .b dB0; (7.80b)

Nε = N st
ε + Nb

ε =

∫
Γ0

(Lλ1
∂ξ1ε
)T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
∂ξ1ε
)T .b dB0; (7.80c)

N κ = N st
κ + Nb

κ =

∫
Γ0

(Lλ1
∂ξ1κ
)T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
∂ξ1κ
)T .b dB0; (7.80d)

N ∂ξ1κ
= N st

∂ξ1κ
+ Nb

∂ξ1κ
=

∫
Γ0

(Lλ1
∂2
ξ1
κ
)T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
∂2
ξ1
κ
)T .b dB0; (7.80e)

N ∂2
ξ1
κ = N st

∂2
ξ1
κ
+ Nb

∂2
ξ1
κ
=

∫
Γ0

(Lλ1
∂3
ξ1
κ
)T .(S.N ) dΓ0 +

∫
B0

ρ0(L
λ1
∂3
ξ1
κ
)T .b dB0; (7.80f)

Np = Nst
p + Nb

p =

∫
Γ0

Lλ1
∂ξ1 p.(S.N ) dΓ0 +

∫
B0

ρ0L
λ1
∂ξ1 p.b dB0; (7.80g)

N∂ξ1 p = Nst
∂ξ1 p + Nb

∂ξ1 p =

∫
Γ0

Lλ1
∂2
ξ1

p
.(S.N ) dΓ0 +

∫
B0

ρ0L
λ1
∂2
ξ1

p
.b dB0. (7.80h)
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The matrix B3 is given as,

B3 =



I3 03 03 03 03 03 01 01

03 I3 03 03 03 03 01 01

03 03 03 03 03 03 01 01

03 −∂ξ1 ϕ̂ I3 03 03 03 01 01

03 03 03 I3 κ̂ (κ̂ .κ̂ + ∂ξ1 κ̂) 01 01

03 03 03 03 I3 2κ̂ 01 01

03 03 03 03 03 I3 01 01

03 03 03 03 03 03 01 01

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 1 0

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0 1

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0 0



(7.81)

7.5.3.2 Virtual work done due to inertial forces

We realize that the body force b and the acceleration ∂2
t R is defined over the volume Ω0.

Therefore, like the expression of virtual work contribution due to body force in Eq. (7.74), we

arrive at the following

δWinertial =

∫ L

0
(δϕ.Fϕ + δα.Fα + δ̃ε .Fε + δ̃κ .Fκ + (Q.δ∂ξ1κ).F∂ξ1κ + (Q.δ∂

2
ξ1
κ).F∂2

ξ1
κ

+ δp.Fp + δ∂ξ1 p.F∂ξ1 p) dξ1.

(7.82)

The expressions of the inertial forces F(.) and F(.) are given as,

Fϕ =

∫
Ω0

ρ0(L
λ1
ε )

T .∂2
t R dΩ0 (7.83a)

Fα =

∫
Ω0

ρ0(L
λ1
κ )

T .∂2
t R dΩ0 (7.83b)

Fε =

∫
Ω0

ρ0(L
λ1
∂ξ1ε
)T .∂2

t R dΩ0 (7.83c)
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Fκ =

∫
Ω0

ρ0(L
λ1
∂ξ1κ
)T .∂2

t R dΩ0 (7.83d)

F∂ξ1κ =

∫
Ω0

ρ0(L
λ1
∂2
ξ1
κ
)T .∂2

t R dΩ0 (7.83e)

F∂2
ξ1
κ =

∫
Ω0

ρ0(L
λ1
∂3
ξ1
κ
)T .∂2

t R dΩ0 (7.83f)

Fp =

∫
Ω0

ρ0L
λ1
∂ξ1 p.∂

2
t R dΩ0 (7.83g)

F∂ξ1 p =

∫
Ω0

ρ0L
λ1
∂2
ξ1

p
.∂2

t R dΩ0 (7.83h)

Substituting for the expressions of δ̃ε, δ̃κ, Q.δ∂ξ1κ and Q.δ∂2
ξ1
κ as in equations (7.30b), (7.32b),

(7.33b) and (7.33c), we condense Eq. (7.82) into a more desirable matrix form as

δWinertial =

∫ L

0
δΦTBT

2B3F dξ1; (7.84)

where,

F = [Fϕ;Fα;Fε ;Fκ ;F∂ξ1κ ;F∂2
ξ1
κ ;Fp;F∂ξ1 p]. (7.85)

7.5.4 Virtual work principle revisited

We restate the weak form of governing differential equation (7.60) for the beam kinematics

at hand by using the expression of virtual strain energy in Eq. (7.69), virtual work due to external

forces in Eq. (7.75) and (7.77) and the virtual work contribution due to inertial work obtained in

Eq. (7.84) as,

G(Φ, δΦ) =
∫ L

0
δΦTBT

2 (B
T
1N + B3F − B3N f ) dξ1 − δWst

ext
��
B(0)∪B(L) = 0; (7.86)
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7.6 Strong form of governing differential equation for the de-

formed state Ω

In this section, we derive the strong form (governing differential equations) from the weak

form using the equivalence between the two forms. The strong form essentially represents the

local balance laws governing the deformation of beam. The analysis carried in the following

section can be summarized in two steps. Firstly, we transform the weak form in Eq. (7.86) using

integration by parts to obtain an equation of the form

G(Φ, δΦ) =
∫ L

0
δΦT [Eϕ;Eα;Ep] dξ1 =

∫ L

0
δϕ.Eϕ + δα.Eα + δp.Ep dξ1 = 0. (7.87)

The arbitrary nature of the virtual displacement field implies Eϕ = 01,Eα = 01 and Ep = 0,

resulting in the conservation of linear, angular momentum and balance of bi-moment respectively.

Secondly, since the strong form equations are local in nature, the boundary terms arising due to

integration by part of the integral
∫ L
0 δΦTBT

2 (B
T
1N + B3F − B3N f ) dξ1 must be −δWst

ext
��
B(0)∪B(L)

such that no boundary term appears in the transformed equation of the form (7.87). We carefully

prove that the boundary terms vanish in the transformation of Eq. (7.86) into the form described

in Eq. (7.87).

7.6.1 Relationship between L and M terms

For our further analysis, we present the following useful identities.

Identity set 1:

∂ξ1L
λ1
∂2
ξ1

p
= Mλ1

∂ξ1 p (7.88a)

∂ξ2L
λ1
∂2
ξ1

p
= Lλ2

∂ξ1 p (7.88b)
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∂ξ3L
λ1
∂2
ξ1

p
= Lλ3

∂ξ1 p (7.88c)

∂ξ2L
λ1
∂ξ1ε
= Lλ2

ε ⇒ ∂ξ2(L
λ1
∂ξ1ε
)T = (Lλ2

ε )
T (7.88d)

∂ξ3L
λ1
∂ξ1ε
= Lλ3

ε ⇒ ∂ξ3(L
λ1
∂ξ1ε
)T = (Lλ3

ε )
T (7.88e)

∂ξ2L
λ1
∂ξ1κ
= Lλ2

κ ⇒ ∂ξ2(L
λ1
∂ξ1κ
)T = (Lλ2

κ )
T (7.88f)

∂ξ3L
λ1
∂ξ1κ
= Lλ3

κ ⇒ ∂ξ3(L
λ1
∂ξ1κ
)T = (Lλ3

κ )
T (7.88g)

∂ξ2L
λ1
∂2
ξ1
κ
= Lλ2

∂ξ1κ
⇒ ∂ξ2(L

λ1
∂2
ξ1
κ
)T = (Lλ2

∂ξ1κ
)T (7.88h)

∂ξ3L
λ1
∂2
ξ1
κ
= Lλ3

∂ξ1κ
⇒ ∂ξ3(L

λ1
∂2
ξ1
κ
)T = (Lλ3

∂ξ1κ
)T (7.88i)

∂ξ2L
λ1
∂3
ξ1
κ
= Lλ2

∂2
ξ1
κ
⇒ ∂ξ2(L

λ1
∂3
ξ1
κ
)T = (Lλ2

∂2
ξ1
κ
)T (7.88j)

∂ξ3L
λ1
∂3
ξ1
κ
= Lλ3

∂2
ξ1
κ
⇒ ∂ξ3(L

λ1
∂3
ξ1
κ
)T = (Lλ3

∂2
ξ1
κ
)T (7.88k)

Identity set 2: For a vector v ∈ R3, the following holds:

(Mλ1
ε )

T .v = −(Lλ1
∂ξ1ε
)T .κ̂ .v (7.89a)

(Mλ1
κ )

T .v = −(Lλ1
∂ξ1κ
)T .κ̂ .v (7.89b)

(Mλ1
∂ξ1κ
)T .v = −(Lλ1

∂2
ξ1
κ
)T .κ̂ .v (7.89c)

(Mλ1
∂2
ξ1
κ
)T .v = −(Lλ1

∂3
ξ1
κ
)T .κ̂ .v (7.89d)

Proof of the identities mentioned above are rather straightforward and follows from the definition

of L and M terms.

Identity set 3:

∂̃ξ1

∫
B0

(
Lλ1
∂ξ1ε

)T
.S1 dB0 =

∫
B0

(
Lλ1
∂ξ1ε

)T
.∂ξ1S1 dB0 +

∫
B0

(
Mλ1

ε

)T
.S1 dB0 (7.90a)

∂̃ξ1

∫
B0

(
Lλ1
∂ξ1κ

)T
.S1 dB0 =

∫
B0

(
Lλ1
∂ξ1κ

)T
.∂ξ1S1 dB0 +

∫
B0

(
Mλ1

κ

)T
.S1 dB0 (7.90b)
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∂̃2
ξ1

∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.S1 dB0 = ∂̃ξ1

∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.∂ξ1S1 dB0 + ∂̃ξ1

∫
B0

(
Mλ1

∂ξ1κ

)T
.S1 dB0 (7.90c)

∂̃3
ξ1

∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.S1 dB0 = ∂̃
2
ξ1

∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.∂ξ1S1 dB0 + ∂̃
2
ξ1

∫
B0

(
Mλ1

∂2
ξ1
κ

)T

.S1 dB0 (7.90d)

Proof of identity (7.90a) and (7.90b): Observe, ∂̃ξ1

(
Lλ1
∂ξ1ε

)T
= 03. Recall the relation between

derivative of a spatial tensor (or matrix) and the corresponding co-rotational derivative in (3.4).

Following which, we have,

∂ξ1

(
Lλ1
∂ξ1ε

)T
= κ̂ .

(
Lλ1
∂ξ1ε

)T
−

(
Lλ1
∂ξ1ε

)T
.κ̂ + ∂̃ξ1

(
Lλ1
∂ξ1ε

)T
= κ̂ .

(
Lλ1
∂ξ1ε

)T
−

(
Lλ1
∂ξ1ε

)T
.κ̂; (7.91)

Using the result above, we get

∂̃ξ1

∫
B0

(
Lλ1
∂ξ1ε

)T
.S1 dB0 = ∂ξ1

∫
B0

(
Lλ1
∂ξ1ε

)T
.S1 dB0 −

∫
B0

(
κ̂ .

(
Lλ1
∂ξ1ε

)T
)
.S1 dB0;

=

∫
B0

(
Lλ1
∂ξ1ε

)T
.∂ξ1S1 dB0 −

∫
B0

(
Lλ1
∂ξ1ε

)T
.κ̂ .S1 dB0.

(7.92)

Identity (7.89a) implies∫
B0

(
Mλ1

ε

)T
.S1 dB0 = −

∫
B0

(
Lλ1
∂ξ1ε

)T
.κ̂ .S1 dB0. (7.93)

Combining equations 7.92 and 7.93 proves the identity (7.90a). Following an exactly similar

procedure yields identity (7.90b). �

Proof of identity (7.90c) and (7.90d): We note the following:

∂̃ξ1

(
Lλ1
∂2
ξ1
κ

)T

= 03; (7.94a)∫
B0

(
Mλ1

∂ξ1κ

)T
.S1 dB0 = −

∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.κ̂ .S1 dB0. (7.94b)

The relation (7.94b) follows from identity (7.89d). Consider the RHS of identity (7.90c). Using

equations (7.94a) and (7.94b), we have
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RHS = ∂̃ξ1

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.∂ξ1S1 +
(
Mλ1

∂ξ1κ

)T
.S1 dB0

)
= ∂̃ξ1

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.(∂ξ1S1 − κ̂ .S1) dB0

)
= ∂̃ξ1

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.(∂̃ξ1S1) dB0

)
= ∂̃2

ξ1

∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.S1 dB0 = LHS

(7.95)

The last step follows from the fact that co-rotational derivative abides with the product rule of

derivatives. This completes the proof of identity (7.90c). Along similar lines, identity (7.90d)

can be proved. �

7.6.2 Further manipulation of weak form

7.6.2.1 Further manipulation of virtual strain energy

The expression of δUstrain in Eq. (7.64a) can be expanded as:

δUstrain =

∫ L

0

(
Nε .δ̃ε +N∂ξ1ε

.(Q.δ∂ξ1ε) +Nκ .δ̃κ +N∂ξ1κ
.(Q.δ∂ξ1κ) +N∂2

ξ1
κ .(Q.δ∂

2
ξ1
κ)

+N∂3
ξ1
κ .(Q.δ∂

3
ξ1
κ) + Np.p + N∂ξ1 p.∂ξ1 p + N∂2

ξ1
p.∂

2
ξ1

p
)
dξ1.

(7.96)

We note that the strain conjugates of the reduced section forces are spatial quantities obtained by

left translation of material finite-strain terms and their derivatives. Using the expressions for δ̃ε,

δ̃κ, Q.δ∂ξ1κ, Q.δ∂2
ξ1
κ and Q.δ∂3

ξ1
κ in equations (7.30b), (7.32b), (7.33b), (7.33c) and (7.33d),

followed by integration by part on the integrals in (7.96) and simplifying using the definition of

the operator ∂̃n
ξ1
(refer to Proposition 1 in Chadha and Todd [35]), we obtain the following:
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δUstrain =

∫ L

0
∂ξ1

(
−Nε + ∂̃ξ1N∂ξ1ε

)
.δϕ dξ1 +

∫ L

0

(
Np − ∂ξ1N∂ξ1 p + ∂

2
ξ1
N∂2

ξ1
p
)
.δp dξ1

+

∫ L

0

(
∂ξ1

(
−Nκ + ∂̃ξ1N∂ξ1κ

− ∂̃2
ξ1
N∂2

ξ1
κ + ∂̃

3
ξ1
N∂3

ξ1
κ

)
− ∂ξ1 ϕ̂.

(
Nε − ∂̃ξ1N∂ξ1ε

) )
.δα dξ1

+ δU∗strain.

(7.97)

In the equation above, δU∗strain gives the sum of boundary terms that originated by virtue of

integration by part, such that,

δU∗strain =δU
∗
strainϕ + δU

∗
strainα + δU

∗
strainp (7.98)

where,

δU∗strainϕ =
[
δϕ.

(
Nε − ∂̃ξ1N∂ξ1ε

) ] L

0
+

[
δ∂ξ1ϕ.N∂ξ1ε

] L

0
−

[
δα.

(
∂ξ1 ϕ̂.N∂ξ1ε

) ] L

0
;

δU∗strainα =
[
δα.

(
Nκ − ∂̃ξ1N∂ξ1κ

+ ∂̃2
ξ1
N∂2

ξ1
κ − ∂̃

3
ξ1
N∂3

ξ1
κ

) ] L

0
+

[
δ∂ξ1α.

(
N∂ξ1κ

− ∂̃ξ1N∂2
ξ1
κ

) ] L

0

+

[
δ∂2

ξ1
α.

(
N∂2

ξ1
κ − ∂̃ξ1N∂3

ξ1
κ + 2κ̂ .N∂3

ξ1
κ

) ] L

0
+

[
δ∂3

ξ1
α.N∂3

ξ1
κ

] L

0
;

δU∗strainp =

[
δp.

(
N∂ξ1 p − ∂ξ1N∂2

ξ1
p
) ] L

0
+

[
δ∂ξ1 p.N∂2

ξ1
p

] L

0
.

(7.99)

7.6.2.2 Further manipulation of virtual work done due to external and inertial forces

Equations (7.76) and (7.82) can be re-written by substituting the expressions of δ̃ε, δ̃κ,

Q.δ∂ξ1κ and Q.δ∂2
ξ1
κ in equations (7.30b), (7.32b), (7.33b) and (7.33c) respectively, such that(

δWst
ext

��
∪∀ξ1Γ0(ξ1)

+ δWb
ext

)
=

∫ L

0

(
δϕ.Nϕ + δ∂ξ1ϕ.Nε + δp.Np + δ∂ξ1 p.N∂ξ1 p

+ δα.
(
Nα − ∂ξ1 ϕ̂.N ε

)
+ δ∂ξ1α.

(
N κ + κ̂ .N ∂ξ1κ

+
(
κ̂ .κ̂ + ∂ξ1 κ̂

)
.N ∂2

ξ1
κ

)
+ δ∂2

ξ1
α.

(
N ∂ξ1κ

+ 2(κ̂ .N ∂2
ξ1
κ)

)
+ δ∂3

ξ1
α.N ∂2

ξ1
κ

)
dξ1;

(7.100a)
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δWinertial =

∫ L

0

(
δϕ.Fϕ + δ∂ξ1ϕ.Fε + δp.Fp + δ∂ξ1 p.F∂ξ1 p + δα.

(
Fα − ∂ξ1 ϕ̂.Fε

)
+ δ∂ξ1α.

(
Fκ + κ̂ .F∂ξ1κ +

(
κ̂ .κ̂ + ∂ξ1 κ̂

)
.F∂2

ξ1
κ

)
+ δ∂2

ξ1
α.

(
F∂ξ1κ + 2(κ̂ .F∂2

ξ1
κ)

)
+ δ∂3

ξ1
α.F∂2

ξ1
κ

)
dξ1.

(7.100b)

Carrying integration by part on equation set (7.100) followed by further simplification yields(
δWst

ext
��
∪∀ξ1Γ0(ξ1)

+ δWb
ext

)
=

∫ L

0

(
δϕ.

(
Nϕ − ∂ξ1Nε

)
+ δp.

(
Np − ∂ξ1 N∂ξ1 p

)
δα.

(
Nα − ∂ξ1 ϕ̂.Nε − ∂ξ1(N κ − ∂̃ξ1N ∂ξ1κ

+ ∂̃2
ξ1
N ∂2

ξ1
κ)

) )
dξ1 + δW∗ext;

(7.101a)

δWinertial =

∫ L

0

(
δϕ.

(
Fϕ − ∂ξ1Fε

)
+ δp.

(
Fp − ∂ξ1F∂ξ1 p

)
δα.

(
Fα − ∂ξ1 ϕ̂.Fε − ∂ξ1(Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ)

) ))
dξ1 + δW∗inertial.

(7.101b)

Here, δW∗ext and δW∗inertial represent the boundary terms arising due to integration by part and are

given by,

δW∗ext =
[
δϕ.Nε + δα.

(
N κ − ∂̃ξ1N ∂ξ1κ

+ ∂̃2
ξ1
N ∂2

ξ1
κ

) ] L

0
+

[
δ∂2

ξ1
α.N ∂2

ξ1
κ + δp.N∂ξ1 p

] L

0

+

[
δ∂ξ1α.

(
N ∂ξ1κ

− ∂̃ξ1N ∂2
ξ1
κ + κ̂ .N ∂2

ξ1
κ

) ] L

0
;

(7.102a)

δW∗inertial =
[
δϕ.Fε + δα.

(
Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ

) ] L

0
+

[
δ∂2

ξ1
α.F∂2

ξ1
κ + δp.F∂ξ1 p

] L

0

+

[
δ∂ξ1α.

(
F∂ξ1κ − ∂̃ξ1F∂2

ξ1
κ + κ̂ .F∂2

ξ1
κ

) ] L

0
.

(7.102b)

7.6.3 Conservation laws

7.6.3.1 Revisiting the weak form

Using the results from last two sections 7.6.2.2 and 7.6.2.2, the weak form of equilibrium

equation can be written in the form of Eq. (7.87) as

G(Φ, δΦ) =
∫ L

0
δϕ.Eϕ + δα.Eα + δp.Ep dξ1 + G∗ = 0, (7.103)
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where,

G∗ = δU∗strain + δW
∗
inertial − δW

∗
ext − δWst

ext
��
B(0)∪B(L); (7.104)

and

Eϕ = ∂ξ1n + Nϕ −Fϕ; (7.105a)

Eα = ∂ξ1m + ∂ξ1 ϕ̂.n + Nα −Fα; (7.105b)

Ep = ∂ξ1 MΨ − Np + N p −Fp. (7.105c)

In Eq. (7.105c), Np represents the bi-shear. Here we define the reduced cross-section force,

moment vector, and the bi-moment as

n =

( (
Nε − ∂̃ξ1N∂ξ1ε

)
+

(
Fε − Nε

) )
; (7.106a)

m =

(
Nκ − ∂̃ξ1N∂ξ1κ

+ ∂̃2
ξ1
N∂2

ξ1
κ − ∂̃

3
ξ1
N∂3

ξ1
κ

)
+

(
Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ

)
;

−

(
N κ − ∂̃ξ1N ∂ξ1κ

+ ∂̃2
ξ1
N ∂2

ξ1
κ

)
;

(7.106b)

MΨ =

( (
N∂ξ1 p − ∂ξ1N∂2

ξ1
p
)
+

(
F∂ξ1 p − N∂ξ1 p

) )
. (7.106c)

Remark 7.1: It remains to be proven that the term G∗ in Eq. (7.103) vanishes. This result

should not come as a surprise because the strong form describes local equilibrium of forces.

However, it is interesting (and also necessary, as it provides check for correctness of the work

discussed so far) to prove that G∗ = 0. The proof is carried out in section 7.6.3.2.

Remark 7.2: Assuming that G∗ = 0, the arbitrary nature of the virtual displacement field δΦ

leads us to conservation of linear and angular momentum and the balance laws for bi-shear and

bi-moment: Eϕ = 01, Eα = 01 and Ep = 0, respectively. The strong form of equation described in

Eq. set (7.105) appears similar to the governing equations discussed in Simo and Vu-Quoc [43],

except for the definition of reduced section forces and bi-moment n, m and MΨ. The fact that
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reduced forces in Eq. (7.106), contains inertial and external force terms is distracting. However,

the results obtained in the process of proving G∗ = 0, helps us to simplify n, m and MΨ (refer to

section 7.6.3.3) to a desirable form independent of inertial and external force terms.

Remark 7.3: We obtain the velocity and acceleration vectors as

∂tR = ∂tϕ + ∂̃t r + ω × r ;

∂2
t R = ∂

2
t ϕ + ∂̃

2
t r + ω × (ω × r) + 2ω × ∂̃t r + ∂tω × r .

(7.107)

In case of Cosserat beam with rigid cross-section (refer to section 6.5 of Chadha and Todd

[53]), the Coriolis force and non-inertial force due to cross-sectional deformation vanishes

because ∂̃t r1 = 0 and ∂̃2
t r1 = 0. Secondly, if the locus of geometric centroid coincided

with the center of mass locus for a beam with rigid cross-section, the centrifugal and Euler

force vanishes because
∫
B0
ρ0.r1 dB0 = 0. However, for the deformed state Ω, we have

non-zero Coriolis force
(
−2ω ×

∫
B0
ρ0.∂̃t r dB0 , 0

)
, non-inertial force due to cross-sectional

deformation
(
−

∫
B0
ρ0.∂̃

2
t r dB0 , 0

)
, Euler force

(
−∂tω ×

∫
B0
ρ0.r dB0 , 0

)
and centrifugal

force
(
−ω ×

(
ω ×

∫
B0
ρ0.r dB0

)
, 0

)
in addition to impressed force

(
∂ξ1n + Nϕ

)
, Einstein force

due to translation
(
−

∫
B0
ρ0.∂

2
t ϕ dB0

)
such that the sum of impressed and the non-inertial forces

yields Eq. (7.105a).

7.6.3.2 Vanishing G∗

Theorem 1: For an arbitrarily displacement field δΘ, G∗ = 0.

Proof: The term G∗ in Eq. (7.104) can be written in the form presented below,

G∗ =
[
δϕ.gϕ + δα.gα + δ∂ξ1α.g∂ξ1α

+ δ∂2
ξ1
α.g∂2

ξ1
α + δp.gp

] L
0 . (7.108)

The displacement field is arbitrary but admissible. Provided we have displacement prescribed

boundary conditions, G∗ vanishes due to admissibility requirement. However, for a general case,
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proving theorem 1 requires,

gp = 0; gϕ = 01; gα = 01; g∂ξ1α
= 01; g∂2

ξ1
α = 01. (7.109)

We prove that all these conditions are true. The expressions of g(.) and gp are stated as required

during the proof.

Proof: gp = 0

We have,
gp = gp1 + gp2 + gp3;

gp1 =
(
N∂ξ1 p − ∂ξ1N∂2

ξ1
p
)
− Bp;

gp2 = F∂ξ1 p − Nb
∂ξ1 p;

gp3 = −Nst
∂ξ1 p.

(7.110)

Substituting for the expressions of reduced forces given in appendix 7.128 and using the relationship

(7.88a), we manipulate the expression of gp1 as,

gp1 =

∫
B0

(
Mλ1

∂ξ1 p.S1 + Lλ2
∂ξ1 p.S2 + Lλ3

∂ξ1 p.S3
)
dB0 − ∂ξ1

∫
B0

Lλ1
∂2
ξ1

p
.S1 dB0

=

∫
B0

(
Lλ2
∂ξ1 p.S2 + Lλ3

∂ξ1 p.S3
)
dB0 −

∫
B0

Lλ1
∂2
ξ1

p
.∂ξ1S1 dB0.

(7.111)

Using stress equilibrium equation (Eq. (7.58)), we further analyze the expression of gp2 as,

gp2 =

∫
B0

Lλ1
∂2
ξ1

p
.(ρ0.∂

2
t R − ρ0.b) dB0 =

∫
B0

Lλ1
∂2
ξ1

p
.(∂ξ1S1 + ∂ξ2S2 + ∂ξ3S3) dB0. (7.112)

Finally, we apply divergence theorem on the expression of gp3 and use the relations established in

Eq. (7.88b) and (7.88c) , yielding

gp3 = −

∫
Γ0

Lλ1
∂2
ξ1

p
.(S.N ) dΓ0

= −

∫
B0

∂ξ2L
λ1
∂2
ξ1

p
.S2 + ∂ξ3L

λ1
∂2
ξ1

p
.S3 + Lλ1

∂2
ξ1

p
.(∂ξ2S2 + ∂ξ3S3) dB0

= −

∫
B0

Lλ2
∂ξ1 p.S2 + Lλ3

∂ξ1 p.S3 + Lλ1
∂2
ξ1

p
.(∂ξ2S2 + ∂ξ3S3) dB0.

(7.113)
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Adding up the expressions of gp1, gp2 and gp3 in equations (7.111), (7.112) and (7.113), we get,

gp = 0.

Proof: gϕ = 01

We have,
gϕ = gϕ1 + gϕ2 + gϕ3;

gϕ1 = Nε − ∂̃ξ1N∂ξ1ε
− Bϕ;

gϕ2 = Fε − Nb
ε ;

gϕ3 = −N
st
ε .

(7.114)

Realizing ∂̃ξ1N∂ξ1ε
= ∂̃ξ1

(∫
B0

(
Lλ1
∂ξ1ε

)T
.S1 dB0

)
, we manipulate the expression of gϕ1 using

identity (7.90a) to obtain

gϕ1 =

∫
B0

((
Lλ2
ε

)T
.S2 +

(
Lλ3
ε

)T
.S3 −

(
Lλ1
∂ξ1ε

)T
.∂ξ1S1

)
dB0. (7.115)

Using stress equilibrium equation (Eq. (7.58)), we expand the expression of gϕ2 to obtain,

gϕ2 =

∫
B0

ρ0

(
Lλ1
∂ξ1ε

)T
.(∂2

t R − b) dB0 =

∫
B0

(
Lλ1
∂ξ1ε

)T
.(∂ξ1S1 + ∂ξ2S2 + ∂ξ3S3) dB0.

(7.116)

Using divergence theorem, the results in Eq. (7.88d) and (7.88e) on to the expression of gϕ3, we

obtain,

gϕ3 = −

∫
Γ0

(
Lλ1
∂ξ1ε

)T
.(S.N ) dΓ0

= −

∫
B0

∂ξ2

(
Lλ1
∂ξ1ε

)T
.S2 + ∂ξ3

(
Lλ1
∂ξ1ε

)T
.S3 +

(
Lλ1
∂ξ1ε

)T
.(∂ξ2S2 + ∂ξ3S3) dB0

= −

∫
B0

(
Lλ2
ε

)T
.S2 +

(
Lλ3
ε

)T
.S3 +

(
Lλ1
∂ξ1ε

)T
.(∂ξ2S2 + ∂ξ3S3) dB0.

(7.117)

Equations (7.115), (7.116) and (7.117) adds up to give gϕ = 01.
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Proof: gα = 01

Consider
gα = gα1 + gα2 + gα3;

gα1 =

(
Nκ − ∂̃ξ1N∂ξ1κ

+ ∂̃2
ξ1
N∂2

ξ1
κ − ∂̃

3
ξ1
N∂3

ξ1
κ

)
− Bα;

gα2 =

(
Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ

)
−

(
Nb
κ − ∂̃ξ1N

b
∂ξ1κ
+ ∂̃2

ξ1
Nb
∂2
ξ1
κ

)
;

gα3 = −

(
N st
κ − ∂̃ξ1N

st
∂ξ1κ
+ ∂̃2

ξ1
N st
∂2
ξ1
κ

)
.

(7.118)

Like the previous proves, we arrive at the following,

gα2 + gα3 =

(∫
B0

(
Lλ1
∂ξ1κ

)T
.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
κ

)T
.S2 +

(
Lλ3
κ

)T
.S3

)
dB0

)
− ∂̃ξ1

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
∂ξ1κ

)T
.S2 +

(
Lλ3
∂ξ1κ

)T
.S3

)
dB0

)
+ ∂̃2

ξ1

(∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
∂2
ξ1
κ

)T

.S2 +

(
Lλ3
∂2
ξ1
κ

)T

.S3

)
dB0

)
.

(7.119)

Substituting for the expression of reduced section forces defined in appendix 7.128 into gα1, we

get,

gα1 =

(∫
B0

((
Mλ1

κ

)T
.S1 +

(
Lλ2
κ

)T
.S2 +

(
Lλ3
κ

)T
.S3

)
dB0

)
− ∂̃ξ1

(∫
B0

((
Lλ1
∂ξ1κ
+ Mλ1

∂ξ1κ

)T
.S1 +

(
Lλ2
∂ξ1κ

)T
.S2 +

(
Lλ3
∂ξ1κ

)T
.S3

)
dB0

)
+ ∂̃2

ξ1

(∫
B0

((
Lλ1
∂2
ξ1
κ
+ Mλ1

∂2
ξ1
κ

)T

.S1 +

(
Lλ2
∂2
ξ1
κ

)T

.S2 +

(
Lλ3
∂2
ξ1
κ

)T

.S3

)
dB0

)
− ∂̃3

ξ1

(∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.S1 dB0

)
.

(7.120)

Summing up the equations (7.119) and (7.120) followed by considering the identities (7.90b),

(7.90c) and (7.90d), we get gα = 01.

Proof: g∂ξ1α
= 01

The equation set below presents the expression of g∂ξ1α in a desirable form that facilitate the
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proof.

g∂ξ1α
= g∂ξ1α1 + g∂ξ1α2 + g∂ξ1α3; (7.121a)

g∂ξ1α1 =

ga
∂ξ1α1︷          ︸︸          ︷(

N∂ξ1κ
− Bκ

)
+

gb
∂ξ1α1︷                                              ︸︸                                              ︷(

−
(
∂ξ1N∂2

ξ1
κ − 2(κ̂ .N∂2

ξ1
κ)

)
− κ̂ .B∂ξ1κ

)

+

gc
∂ξ1α1︷                                                                 ︸︸                                                                 ︷(

∂2
ξ1
N∂3

ξ1
κ − 3∂ξ1

(
κ̂ .N∂3

ξ1
κ

)
+

(
(2κ̂ .κ̂ + 2∂ξ1 κ̂)

)
.N∂3

ξ1
κ

)
;

(7.121b)

g∂ξ1α2 =

(
F∂ξ1κ + κ̂ .F∂2

ξ1
κ − ∂̃ξ1F∂2

ξ1
κ

)
−

(
Nb
∂ξ1κ
+ κ̂ .Nb

∂2
ξ1
κ
− ∂̃ξ1N

b
∂2
ξ1
κ

)
; (7.121c)

g∂ξ1α3 = −

(
N st
∂ξ1κ
+ κ̂ .N st

∂2
ξ1
κ
− ∂̃ξ1N

st
∂2
ξ1
κ

)
. (7.121d)

We manipulate the expression of g∂ξ1α2 + g∂ξ1α3 as in previous proves, such that

g∂ξ1α2 + g∂ξ1α3 =

(
F∂ξ1κ + κ̂ .F∂2

ξ1
κ − ∂̃ξ1F∂2

ξ1
κ

)
−

(
N ∂ξ1κ

+ κ̂ .N ∂2
ξ1
κ − ∂̃ξ1N ∂2

ξ1
κ

)
=

(
F∂ξ1κ − N ∂ξ1κ

)
− (∂̃ξ1 − ∂̂ξ1)

(
F∂2

ξ1
κ − N ∂2

ξ1
κ

)
=

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
∂ξ1κ

)T
.S2 +

(
Lλ3
∂ξ1κ

)T
.S3

)
dB0

)
− (∂̃ξ1 − ∂̂ξ1)

(∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
∂2
ξ1
κ

)T

.S2 +

(
Lλ3
∂2
ξ1
κ

)T

.S3

)
dB0

)
.

(7.122)

We now simplify the terms associated with g∂ξ1α1. We have,

ga
∂ξ1α1 = N∂ξ1κ

− Bκ =

∫
B0

(
Mλ1

∂ξ1κ

)T
.S1 +

(
Lλ2
∂ξ1κ

)T
.S2 +

(
Lλ3
∂ξ1κ

)T
.S3 dB0. (7.123)
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Similarly,

gb
∂ξ1α1 = −

(
∂ξ1N∂2

ξ1
κ − 2(κ̂ .N∂2

ξ1
κ)

)
− κ̂ .B∂ξ1κ

= −
(
∂ξ1N∂2

ξ1
κ − (κ̂ .N∂2

ξ1
κ)

)
+ κ̂ .(N∂2

ξ1
κ − B∂ξ1κ

)

= −∂̃ξ1N∂2
ξ1
κ + ∂̂ξ1(N∂2

ξ1
κ − B∂ξ1κ

)

= −(∂̃ξ1 − ∂̂ξ1)

(∫
B0

(
Mλ1

∂2
ξ1
κ

)T

.S1 +

(
Lλ2
∂2
ξ1
κ

)T

.S2 +

(
Lλ3
∂2
ξ1
κ

)T

.S3 dB0

)
− ∂̃ξ1

(∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.S1 dB0

)
.

(7.124)

In a similar fashion, we manipulate the expression of gc
∂ξ1α1 as follows,

gc
∂ξ1α1 = ∂̃

2
ξ1
N∂3

ξ1
κ − κ̂ .∂̃ξ1N∂3

ξ1
κ = (∂̃ξ1 − ∂̂ξ1)∂̃ξ1N∂3

ξ1
κ

= (∂̃ξ1 − ∂̂ξ1)∂̃ξ1

(∫
B0

(
Lλ1
∂3
ξ1
κ

)T

.S1 dB0

)
= (∂̃ξ1 − ∂̂ξ1)

(∫
B0

( (
Lλ1
∂3
ξ1
κ

)T

.∂ξ1S1 −

(
Lλ1
∂3
ξ1
κ

)T

.κ̂ .S1

)
dB0

)
= (∂̃ξ1 − ∂̂ξ1)

(∫
B0

( (
Lλ1
∂3
ξ1
κ

)T

.∂ξ1S1 +

(
Mλ1

∂2
ξ1
κ

)T

.S1

)
dB0

)
.

(7.125)

The last equality in the above equation holds by virtue of identity (7.89d). Summing up equations

(7.122), (7.123), (7.124) and (7.125) yields g∂ξ1α = 01.

Proof: g∂2
ξ1
α = 01

Like before, we define,
g∂2

ξ1
α = g∂2

ξ1
α1 + g∂2

ξ1
α2 + g∂2

ξ1
α3;

g∂2
ξ1
α1 =

(
N∂2

ξ1
κ − ∂̃ξ1N∂3

ξ1
κ

)
− B∂ξ1κ

g∂2
ξ1
α2 = F∂2

ξ1
κ − Nb

∂2
ξ1
κ
;

g∂2
ξ1
α3 = −N

st
∂2
ξ1
κ
.

(7.126)
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Substituting for the expressions of reduced forced from appendix 7.128 into the equation above,

we have,

g∂2
ξ1
α1 =

∫
B0

(
Lλ1
∂2
ξ1
κ

)T

.∂ξ1S1 dB0 −

∫
B0

((
Lλ2
∂2
ξ1
κ

)T

.S2 +

(
Lλ3
∂2
ξ1
κ

)T

.S3

)
dB0

g∂2
ξ1
α2 + g∂2

ξ1
α3 = −g∂2

ξ1
α1.

(7.127)

This completes the proof. Hence, G∗ = 0. �

7.6.3.3 Simplified reduced section force, couple and bi-moment: n, m and MΨ

The expression of n, m and MΨ as defined in (7.106a), (7.106b) and (7.106c) can be

further reduced by using equation set (7.114), (7.118) and (7.110) respectively yielding

n = gϕ + Bϕ = Bϕ =

∫
B0

(
Lλ1
ε

)T
.S1 dB0 =

∫
B0

S1 dB0;

m = gα + Bα = Bα =

∫
B0

(
Lλ1
κ

)T
.S1 dB0 =

∫
B0

r × S1 dB0;

MΨ = gp + Bp = Bp =

∫
B0

Lλ1
∂ξ1 p.S1 dB0.

(7.128)

As expected, the expression of reduced section force, couple and bi-moment is independent of any

external and inertial force terms. The reduced forces obtained above are identical to the respective

quantities discussed in Simo and Vu-Quoc. [43].

7.7 Balance laws for the deformed configurationΩ1: A special

case

The chapter so far has focused on the general beam configuration Ω that allows the

cross-section to deform. A special case of a deformed state that is of interest to engineers is

the beam configuration Ω1 that assumes the cross-section to be rigid. Slender structures are

predominated by mid-curve deformation governed by bending, shear and axial strain. Therefore,
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in many applications, it is safe to assume the cross-section to be rigid. This section is dedicated to

carefully investigating the balance laws associated with the deformed state Ω1.

Recall, the configuration space for Ω1 is R3 × SO(3). The primary unknowns are the

mid-curve position vector and the rotation tensor field. The beam subjected to rigid cross-section

is governed by balance of linear and angular momentum (there is no warping, hence we do not

have balance law for bi-shear and bi-moment). As in (7.128), the internal force and moment

vector (refer to Fig. 7.2) for this case is defined as,

n =

∫
B0

S1 dB0;

m =

∫
B0

r1 × S1 dB0.

(7.129)

The infinitesimal equilibrium equation for a general continuum problem referenced to the

Figure 7.2: Reduced section force and moment for the deformed state Ω1.

configuration Ω0 for this case of deformation is given by:

DivS + ρ0b = ρ0∂
2
t R1. (7.130)
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Integrating above equation over the entire undeformed domain Ω0 followed by the application

of Green’s theorem to get the boundary terms gives the balance of linear momentum equation.

Similarly, taking the cross product of the lever arm (R1 − v) with all the terms in Eq. (7.130),

followed by the integration over the entire domain gives the angular momentum balance equation

with respect to any arbitrary point p defined by the fixed vector v, such that∫
Γ0

S.N dΓ0 +

∫
Ω0

ρ0b dΩ0 =

∫
Ω0

ρ0∂
2
t R1 dΩ0, (7.131a)∫

Γ0

(R1 − v) × (S.N ) dΓ0 +

∫
Ω0

ρ0(R1 − v) × b dΩ0 =

∫
Ω0

ρ0(R1 − v) × ∂2
t R1 dΩ0. (7.131b)

7.7.1 Strong form obtained by balance of force and moment on a unit

arc-length element referenced to initially straight configuration

7.7.1.1 Balance of linear momentum

To obtain the governing differential equation that holds at every deformed cross-section

B1(ξ1), we exploit the fact that the conservation equations (7.131a) and (7.131b) obtained for the

entire beam are also valid for the unit arc-length element of the beam (bounded by the cross-section

B0(ξ1), B0(ξ1 + dξ1), and the peripheral boundary Γ0 in the un-deformed state), since equilibrium

of the structure as a whole implies the equilibrium of a reduced element in Ω0. Therefore, the

conservation of linear momentum for a unit arc-length element is given by,

Term F3:
Inertial force term.︷               ︸︸               ︷∫
Ω0

ρ0∂
2
t R1 dΩ0 =

Term F1:
The reduced internal force at the cross-sectional boundary

B0(ξ1) and B0(ξ1+dξ1) referred to unit arc-length reduced element.︷                                                                ︸︸                                                                ︷∫
B0(ξ1)

S.N (ξ1) dB0 +

∫
B0(ξ1+dξ1)

S.N (ξ1 + dξ1) dB0

+

Term F2:
The reduced external force due to
body force and surface traction.︷                              ︸︸                              ︷∫
Γ0

S.N dΓ0 +

∫
Ω0

ρ0b dΩ0 .

(7.132)
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For the domain of unit arc-length reduced element (refer to Fig. 7.3), the volume integral of any

Figure 7.3: Unit arc-length element of the initially straight beam and incremental moment about
an arbitrary point.

function X(ξ1, ξ2, ξ3) would become integral over the cross section B0(ξ1) as

lim
dξ1→1

∫
Ω0

X(ξ1, ξ2, ξ3) dΩ0 =

∫
B0(ξ1)

X(ξ1, ξ2, ξ3) dB0. (7.133)

The stress vectors at the cross-sections B1(ξ1) and B1(ξ1 + dξ1) (with the corresponding un-

deformed cross-sections being B0(ξ1) and B0(ξ1 + dξ1)) are given by the following,

[S.N ]B0(ξ1) = S.N (ξ1) = −S.E1 = −S1,

[S.N ]B0(ξ1+dξ1) = S.N (ξ1 + dξ1) = S.E1 = S1.

(7.134)

Term F1 and F2 can be simplified using the result (7.134) and the definition of reduced sectional

force n and moment m in Eq. (7.128) to obtain,

Term F1 = lim
dξ1→1

[
n(ξ1 + dξ1) − n(ξ1)

]
= ∂ξ1n(ξ1); (7.135)
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Term F2 =
∫
Γ0

S.N dΓ0 +

∫
B0

ρ0b dB0 = Nϕ(ξ1). (7.136)

Like the result stated in remark 7.3, the velocity and acceleration vector for the deformed state can

be written as,

∂tR1(ξ1, ξ2, ξ3) = ∂tϕ(ξ1) + ω(ξ1) × r1;

∂2
t R1(ξ1, ξ2, ξ3) = ∂

2
t ϕ(ξ1) + ∂tω(ξ1) × r1 + ω(ξ1) × ω(ξ1) × r1.

(7.137)

Using these results, the term F3 is obtained as,

Term F3 = Fϕ = µ0∂
2
t ϕ + ∂tω × Υ0 + ω × ω × Υ0, (7.138)

where,

µ0(ξ1) =

∫
B0

ρ0 dB0, (7.139)

Υ0(ξ1) =

∫
B0

ρ0r1 dB0 =

(∫
B0

ρ0ξ2 dB0

)
d2 +

(∫
B0

ρ0ξ3 dB0

)
d3. (7.140)

The first term (µ0∂
2
t ϕ) in Eq. (7.138) represents the inertial force due to translation acting at

the point where the mid-curve intersect the cross-section B1. The term µ0 represents the mass

density per unit arc-length in the initially straight configuration Ω0. The occurrence of second

term is because of the fact that, in general the mid-curve may not coincide with the mass centroid.

These terms would vanish for the untwisted straight beam Ω0 of homogeneous material if the

beam mid-curve is chosen as the loci of mass centroid, which in this case would coincide with the

geometric centroid. If the initial configuration of the beam were curved Ωc, these terms would

vanish only if the mass centroid were chosen as the mid-curve, as in this case the loci of geometric

centroid may not coincide with the mass centroid.

Combining Eqs. (7.132)–(7.140) gives the reduced linear momentum conservation

equation of the moving beam at section B1(ξ1) referred to the initially straight configuration Ω0 as

∂ξ1n(ξ1) + Nϕ(ξ1) = Fϕ(ξ1). (7.141)
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7.7.1.2 Balance of angular momentum

The angular momentum conservation for the unit arc-length element can be written as:

Term M1:
The reduced internal moment at the cross-sectional boundary B0 and B0(ξ1+dξ1)

referred to unit arc-length reduced element about a fixed arbitrary point p.︷                                                                                ︸︸                                                                                ︷∫
B0(ξ1)
(R1 − v) ×

(
S.N

)
dB0 +

∫
B0(ξ1+dξ1)

(R1 − v) ×
(
S.N

)
dB0 +∫

Γ0

(R1 − v) ×
(
S.N

)
dΓ0 +

∫
Ω0

ρ0(R1 − v) × bdΩ0︸                                                              ︷︷                                                              ︸
Term M2:

The reduced external moment about a fixed arbitrary
point p due to the body force and surface traction.

=

∫
Ω0

ρ0(R1 − v) × ∂2
t R dΩ0︸                             ︷︷                             ︸

Term M3:
Inertial term corresponding to

moment about point p.

.

(7.142)

It is sensible to define the moment about the mid-curve such that the lever arm is r1 = (R1 − ϕ).

Therefore, from the definition of reduced force and moment as in Eqs. (7.128), and using the

result in Eq. (7.134), Term M1 may be simplified as

Term M1 =
∫
B0(ξ1)
(R1 − ϕ) × (S.N ) dB0 +

∫
B0(ξ1)
(ϕ − v) × (S.N ) dB0

+

∫
B0(ξ1+dξ1)

(R1 − ϕ) × (S.N ) dB0 +

∫
B0(ξ1+dξ1)

(ϕ − v) × (S.N ) dB0

= lim
dξ1→1

(m(ξ1 + dξ1) − m(ξ1))

+ lim
dξ1→1

(∫
B0(ξ1+dξ1)

(ϕ − v) × S1 dB0 −

∫
B0(ξ1)
(ϕ − v) × S1 dB0

)
(7.143)

=∂ξ1m + ∂ξ1ϕ × n + (ϕ − v) × ∂ξ1n.

For a unit arc-length element, Term M2 and Term M3 may be simplified using Eq. (7.133) as

Term M2 =
∫
Γ0

(R1 − v) × (S.N ) dΓ0 +

∫
B0

ρ0(R1 − v) × b dB0

= Nα(ξ1) +

∫
Γ0

(ϕ − v) × (S.N ) dΓ0 +

∫
B0

ρ0(ϕ − v) × b dB0.

(7.144)

where,

Nα(ξ1) =

∫
Γ0

(r1) × (S.N ) dΓ0 +

∫
B0

ρ0(r1) × b dB0. (7.145)
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The quantity Nα represents the reduced moment due to surface traction on peripheral boundary

Γ0 and body force about the point on the mid-curve.

Similarly,

Term M3 =

Term M3a︷                             ︸︸                             ︷∫
B0

ρ0(R − ϕ) × ∂2
t R1 dB0 +

∫
B0

ρ0(ϕ − v) × ∂2
t R1 dB0.

(7.146)

Term M3a represents the reduced moment due to the inertial force about point on the mid-curve.

Noting the expression for ∂2
t R1 and Υ0 as in Eq. (7.137) and (7.140), Term M3a can be simplified

as

Term M3a =
∫
B0

ρ0(r1 × ∂
2
t R1) dB0

= Υ0 × ∂
2
t ϕ −

∫
B0

ρ0r1 × (r1 × ∂tω) dB0 +

∫
B0

ρ0r1 × ω × (ω × r1) dB0

= Υ0 × ∂
2
t ϕ +

(∫
B0

ρ0 r̂
T
1 . r̂1 dB0

)
.∂tω + ω ×

(∫
B0

ρ0 r̂
T
1 . r̂1 dB0

)
.ω

= Υ0 × ∂
2
t ϕ + I0.∂

2
t ω + ω × I0.ω

(7.147)

The spatial quantity I0 =
∫
B0
ρ0 r̂

T
1 . r̂1 dB0 is the second mass moment of inertia tensor per unit

arc length of the straight configuration Ω0. It is associated with the distribution of mass across the

cross section. The vector (ϕ − v) is independent of the parameters ξ2 and ξ3. Keeping this in

mind and combining all the equations above yields,

Equation M1︷                                                                        ︸︸                                                                        ︷
∂ξ1m + ∂ξ1ϕ × n +Nα − (Υ0 × ∂

2
t ϕ + I0.∂tω + ω × I0ω)+

(ϕ − v) ×

(
∂ξ1n +

∫
Γ0

S.N dΓ0 +

∫
B0

ρ0b dB0 −

∫
B0

ρ0∂
2
t R1 dB0

)
︸                                                                                    ︷︷                                                                                    ︸

Equation M2

= 0.
(7.148)

It is clear that term Equation M2 contains terms consisting of (ϕ − v), which must vanish in order

to obtain angular momentum balance law with respect to moment taken about the point on the
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mid-curve. It is clear from the linear momentum conservation equation (7.141) that the Equation

M2 vanishes. Therefore, the reduced strong form of angular momentum conservation referenced

to Ω0 is given as

∂ξ1m + ∂ξ1ϕ × n + Nα = Fα, (7.149)

The quantity Fα represents reduced moment acting at the cross-section B1 about point on the

mid-curve due to inertial forces. Refer to section 7.7.6 for further discussion on inertial forces.

7.7.2 Strong form referenced to initially curved configuration

To derive the balance law referenced to Ωc we transform the limits of the integrals in the

strong form obtained in previous section to the configuration Ωc. Consider that the unit arc-length

element for curved beam configuration Ωc is defined by the boundary Γc ∪Bc(ξ1) ∪Bc(ξ1 + dξ1).

To proceed further, it is required to establish a relation between the stress tensors S and Sc (first

PK stress tensor referenced to initially curved configuration). We utilize the relationship between

the Cauchy stress tensor σ, and the first PK stress tensors S and Sc (refer to Lai et al. [118]). We

have,

σ =
1

det(Fr)
Sc.F

T
r =

1
det(F1)

S.F1
T ; (7.150)

S = det(Fc).Sc.F
−T
c . (7.151)

The area vector on the surface boundary NdΓ0 and N cdΓc in the configurations Ω0 and Ωc,

respectively, is related by Nanson’s relation as

NdΓ0 =
1

det(Fc)
FT

c .N c.dΓc. (7.152)

Using Eq. (7.151) and (7.152) and the result in Eq. (4.47), the reduced linear momentum

conservation equation referenced to the curved configuration Ωc is obtained as,

∂ξ1n + Nα = F
c
ϕ . (7.153)
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Here,

Nϕ =

∫
Γ0

Sc.N c dΓc +

∫
Bc

det(Fc)ρcb dBc =

∫
Γ0

S.N dΓ0 +

∫
B0

ρ0b dB0;

Fc
ϕ =µc∂

2
t ϕ + ω × (ω × Υc) + ∂tω × Υc;

µc =

∫
Bc

det(Fc)ρc dBc;

Υc =

(∫
Bc

det(Fc)ρcξ2 dBc

)
d2 +

(∫
Bc

det(Fc)ρcξ3 dBc

)
d3.

(7.154)

Since the deformation is referenced to Ωc, the angular velocity tensor for this case is defined

as ω̂ = ∂tQr .Q
T
r . Along the similar lines, we observe that the reduced angular momentum

conservation equation referenced to Ωc has similar form as Eq.(7.149), such that,

∂ξ1m + ∂ξ1ϕ × n + Nα = F
c
α, (7.155)

where,

Nα =

∫
Γc

r1 × (Sc.N c)dΓc +

∫
Bc

det(Fc)ρc(r1 × b) dBc; (7.156)

Fc
α = Υc × ∂

2
t ϕ + I c.∂tω + ω × (I c.ω); (7.157)

I c =

∫
Bc

ρc(r̂
T
1 . r̂1) dBc. (7.158)

The parameter Υc defines the first mass moment vector and I c defines the second mass moment

of inertia tensor considering the curved reference configuration Ωc.

7.7.3 Weak form and virtual work principle

Along the lines of section 7.5, the virtual work principle for deformed state Ω1 is given by

Eq. (7.60), such that

δUstrain =

∫
Ω0

S : δF1 dΩ0 =

∫ L

0

(
n · δ̃ε + m · δ̃κ

)
dξ1

=

∫ L

0
(n · δε + m · δκ) dξ1;

(7.159a)
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δWinertial =

∫
Ω0

ρ0δu · ∂
2
t R1 dΩ0 =

∫ L

0

(
δϕ · Fϕ + δα · Fα

)
dξ1; (7.159b)

δWext =

∫
S0

δu · (S.N ) dS0 +

∫
Ω0

δu · b dΩ0

=

∫ L

0

(
δϕ · Nϕ + δϕ · Nα

)
dξ1 + [δϕ · n + δα · m]

L
0 .

The equation (7.60) defines the general virtual work principle which states that if the body in

dynamic equilibrium is subjected to a virtual displacement at a given instant of time, the virtual

work done due to the real external forces δWext (Traction and body force) is stored as virtual strain

energy δUstrain and virtual work due to the inertial forces on the body δWinertial. The virtual work

principle, when the deformation of the beam is referenced to the curved configuration would then

become,

δUc
strain + δW

c
inertial = δWext; (7.160)

where,

δUc
strain =

∫ L

0

(
n · δ̃εr + m · δ̃κr

)
dξ1 =

∫ L

0
(n · δεr + m · δκr) dξ1, (7.161)

δWc
inertial =

∫ L

0

(
δϕ · Fc

ϕ + δα · F
c
α

)
dξ1. (7.162)

The quantities εr = ∂ξ1ϕ − dc1 and κ̂r = ∂ξ1Qr .Q
T
r gives the mid-curve axial strain and the

curvature vector of the deformed state Ω1 referenced to the curved reference state Ωc. The virtual

external work δWext remains the same for both the reference configuration Ω0 and Ωc. The

expression for the strain energy and the inertial work changes because the strain and the inertial

effect depends on the initial configuration of the beam considered.

7.7.4 Equivalence of the weak and strong form of equilibrium equation

Section 7.6 was dedicated to obtaining the strong form of governing differential equations

for the general deformed state Ω from the weak form. In this section, we do the opposite. We

obtain the weak form for the beam Ω1 referenced to the undeformed state Ω0 using the strong
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form derived in the section 7.7.1.

The linear and angular momentum conservation principle for the beam Ω1 is obtained in

Eq. (7.141) and (7.149). The weak form of equation described in section 7.7.3 can be obtained

in a purely mathematical sense from the strong form. This shows the equivalence of strong and

weak form and also validate the results obtained in section 7.7.3. We take a similar approach

as delineated in Hughes [119]. The linear momentum equation (7.141) is associated with the

mid-curve deformation. Therefore, the weight function used to obtain residual form of reduced

equilibrium equation is the virtual displacement of the mid-curve δϕ. Similarly, the angular

momentum equation (7.149) is associated with the curvatures of the cross-section, thus making

virtual rotation δα as the natural choice for the weight function. Note that δϕ and δα are

admissible and are related to δu in the sense that δu = δϕ + δα × r1. The residual form of

equilibrium equation referenced to the straight configuration Ω0 can be written as,∫ L

0

(
δϕ ·

(
∂ξ1n + Nϕ −Fϕ

)
+ δα ·

(
∂ξ1m + ∂ξ1ϕ × n + Nα −Fα

) )
dξ1 = 0. (7.163)

Using Green’s theorem and the property of the triple product of vectors, following results hold,∫ L

0
(δϕ.∂ξ1n) dξ1 =

[
δϕ.n

] ξ1=L
ξ1=0 −

∫ L

0
(δ∂ξ1ϕ.n) dξ1,∫ L

0
(δα.∂ξ1m)dξ1 =

[
δα.m

] ξ1=L
ξ1=0 −

∫ L

0
(δ∂ξ1α.m) dξ1,∫ L

0
δα.(∂ξ1ϕ × n) dξ1 =

∫ L

0
n.(δα × ∂ξ1ϕ) dξ1.

(7.164)

Therefore, using the results in Eq. (7.164) with Eq. (7.163), the residual form of equilibrium

equation simplifies to the following,∫ L

0

( (
δ∂ξ1ϕ − δα × ∂ξ1ϕ

)
· n + δ∂ξ1α · m

)
dξ1 +

∫ L

0
(δϕ · Fϕ + δα · Fα) dξ1

=
[
δϕ · n

] ξ1=L
ξ1=0 +

[
δα · m

] ξ1=L
ξ1=0 +

∫ L

0
(δϕ · Nϕ + δα · Nα) dξ1.

(7.165)
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Using the expression for δ̃ε and δ̃κ mentioned in section 7.4.2.1, the above equation becomes,∫ L

0

(
δ̃ε · n + δ̃κ · m

)
dξ1 +

∫ L

0
(δϕ · Fϕ + δα · Fα)dξ1

=
[
δϕ · n

] ξ1=L
ξ1=0 +

[
δα · m

] ξ1=L
ξ1=0 +

∫ L

0
(δϕ · Nε + δα · Nα) dξ1.

(7.166)

which is exactly same as the weak form mentioned in Eq. (7.159) derived using the infinitesimal

Lagrangian equation of motion thereby validating the former approach.

7.7.5 Strong form of equations derived from Hamilton’s equation

Hamilton’s Principle (refer to Rao [120]) can be used to evaluate the dynamic equation of

motion. The principle assumes that the configuration of the deformed beam is exactly known

at time t1 and t2. Therefore, the variational field δu(t1, ξ1, ξ2, ξ3) = 0 and δu(t2, ξ1, ξ2, ξ3) = 0.

There are infinitesimal configurations that the beam can have at any time t (t , t1and t2), each

configuration deviating from the correct one by an arbitrary but admissible displacement field

δu(t, ξ1, ξ2, ξ3) = δϕ(t, ξ1) + δα(t, ξ1) × r1(ξ1, ξ2, ξ3), where δϕ defines the admissible variation

in the midcurve and the vector δα parametrizes the variation in the director frame. The exact

deformed configuration at any time t1 < t < t2 is determined by making the action A stationary,

defined as,

A =
∫ t2

t1
Ldt =

∫ t2

t1
(T −Ustrain +Wext) dt. (7.167)

where, the functional L is called the Lagrangian of the system. The principle states that,

δ

∫ t2

t1
(T −Ustrain +Wext) dt =

Term 1︷      ︸︸      ︷∫ t2

t1
δT dt −

Term 2︷            ︸︸            ︷∫ t2

t1
δUstrain dt +

Term 3︷         ︸︸         ︷∫ t2

t1
δWext dt = 0.

(7.168)

To proceed further with the simplification of the equation above, we consider each of these terms

independently.
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7.7.5.1 Term 1: Simplification of kinetic energy term

The total kinetic energy of the beam referenced to Ω0 can be written using Eq. (7.137) as,

T =
1
2

∫
Ω0

ρ0∂tu ·∂tu dΩ0 =
1
2

∫
Ω0

ρ0∂tR1 ·∂tR1 dΩ0 =
1
2

∫
Ω0

ρ0(∂tϕ+∂t r1) · (∂tϕ+∂t r1) dΩ0.

(7.169)

Therefore,

δ

∫ t2

t1
T dt =

∫ t2

t1

∫
Ω0

ρ0 (δ∂tϕ · ∂tϕ + δ∂tϕ · ∂t r1 + ∂tϕ · δ∂t r1 + δ∂t r1 · ∂t r1) dΩ0dt.

(7.170)

We subject Eq. (7.170) to integration by parts with respect to time and note that δϕ(t1) = δϕ(t2) =

δα(t1) = δα(t2) = 0. Therefore δr1(t1) = δα(t1) × r1 = 0 and δr1(t2) = 0. This leads to,

δ

∫ t2

t1
T dt = −

∫ t2

t1

∫
Ω0

(
δϕ · ∂2

t ϕ + δϕ · ∂
2
t r1 + ∂

2
t ϕ · δr1 + δr1 · ∂

2
t r1

)
dΩ0dt. (7.171)

We make note of the following relations,

∂2
t ϕ · δr1 = ∂

2
t ϕ · (δα × r1) = δα ·

(
r1 × ∂

2
t ϕ

)
; (7.172)

δr1 · ∂
2
t r1 = δα ·

(
r1 × ∂

2
t r1

)
(7.173)

Substituting (7.172) and (7.173) in Eq. (7.171), and realizing that δϕ, δα, δω and δ∂tω are

function of (ξ1, t) only, we obtain,

δ

∫ t2

t1
T dt = −

∫ t2

t1

∫ L

0
δϕ ·

Fϕ︷                                                 ︸︸                                                 ︷©­­­­­«
∂2

t ϕ.

µ0︷          ︸︸          ︷(∫
B0

ρ0 dB0

)
+

∂tω×Υ0+ω×ω×Υ0︷                ︸︸                ︷(∫
B0

ρ0∂t r1 dB0

)ª®®®®®¬
dξ1dt (7.174)
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−

∫ t2

t1

∫ L

0
δα ·

Fα︷                                                              ︸︸                                                              ︷©­­­­­«
Υ0︷              ︸︸              ︷(∫

B0

ρ0r1 dB0

)
×∂tϕ +

I0.∂tω+ω×I0.ω︷                          ︸︸                          ︷(∫
B0

ρ0(r1 × ∂t r1) dB0

)ª®®®®®¬
dξ1dt .

Therefore,

δ

∫ t2

t1
T dt = −

∫ t2

t1

∫ L

0

(
δϕ · Fϕ + δα · Fα

)
dξ1 dt . (7.175)

7.7.5.2 Term 2: Simplification of potential energy term

We simplify the virtual strain energy defined in Eq. (7.159) as,∫ t2

t1
δUstrain dt =

∫ t2

t1

∫ L

0

( (
δ∂ξ1ϕ − δα × ∂ξ1ϕ

)
· n + δ∂ξ1α · m

)
dξ1dt. (7.176)

Rearranging the terms and carrying out integration by parts with respect to ξ1, we obtain,∫ t2

t1
δUstrain dt = −

∫ t2

t1

∫ L

0
δϕ·∂ξ1n+δα·(∂ξ1ϕ×n+∂ξ1m) dξ1 dt+

∫ t2

t1
(δϕ · n + δα · m)ξ1=L

ξ1=0 dt

(7.177)

7.7.5.3 Term 3: Simplification of external work term

The body force field b and the surface traction are the external forces in the body. The

external force term in Hamilton’s equation can be written as,

∫ t2

t1
δWext dt =

Term 3.1︷                           ︸︸                           ︷∫ t2

t1

∫
Ω0

ρ0(δu · b)dΩ0dt +

Term 3.2︷                                         ︸︸                                         ︷∫ t2

t1

∫ L

0

∫
Γ0

(δu · (S.N )) dΓ0 dξ1dt (7.178)

Term 3.1 and Term 3.2 can be simplified by substituting for the expression of δu, yielding,∫ t2

t1

∫
Ω0

ρ0(δu · b) dξ1dt =
∫ t2

t1

∫ L

0
δϕ ·

(∫
B0

ρ0b dB0

)
+ δα ·

(∫
B0

ρ0(r1 × b) dB0

)
dξ1dt;

(7.179)
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∫ t2

t1

∫ L

0

∫
Γ0

(δu · (S.N )) dΓ0 dξ1dt =
∫ t2

t1

∫ L

0
δϕ ·

(∫
Γ0

S.N dΓ0

)
+ δα ·

(∫
Γ0

r1 × (S.N ) dΓ0

)
dξ1dt.

(7.180)

Combing Eq.(7.178)–(7.180) and noting the definition of reduced external force Fϕ and moment

Fα in Eq. (7.136) and (7.144) respectively, we get,

∫ t2

t1
δWext dt =

∫ t2

t1

∫ L

0

(
δϕ · Fϕ + δα · Fα

)
dξ1dt. (7.181)

7.7.5.4 Governing equations of motion and boundary terms

The Hamilton’s equation for the Cosserat beam can be realized by combining Eq. (7.168),

(7.175), (7.177), and (7.181), giving∫ t2

t1

∫ L

0

(
δϕ ·

(
∂ξ1n + Nϕ −Fϕ

)
+ δα ·

(
∂ξ1m + ∂ξ1ϕ × n + Nα −Fα

) )
dξ1dt

+

∫ t2

t1
(δϕ · n + δα · m)ξ1=L

ξ1=0 dt = 0. (7.182)

Realizing that δϕ and δα are arbitrary virtual quantities at time t, for Eq. (7.182) to hold good for

all δϕ and δα, following must be true,

∂ξ1n + Nϕ −Fϕ = 0, (7.183)

∂ξ1m + ∂ξ1ϕ × n + Nα −Fα = 0, (7.184)[
δϕ · n

] ξ1=L
ξ1=0 = 0, (7.185)[

δα · m
] ξ1=L
ξ1=0 = 0. (7.186)

Equations (7.183) and (7.184) represent linear momentum conservation and angular momentum

conservation law referenced to straight configuration Ω0 respectively. It is not surprising that

the result is same as obtained from infinitesimal equilibrium equation in section 7.7.1 as in Eq.

(7.141) and (7.149). Secondly, the equations (7.185) and (7.186) represent the general boundary
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condition at ξ1 = 0 and ξ1 = L. For instance, if the left boundary is fixed and the right boundary

is free, ϕ(0) = θ(0) = 0 and n(L) = m(L) = 0. Note that δα parameterize the variational rotation

of director frame that has rotation of Q(θ) in equilibrium state. Therefore, for the fixed end,

δα(0) = 0 implies θ(0) = 0 at all time t.

7.7.6 Interpretation of equation of motion from D’Alembert’s Principle–

Motion viewed from the director frame

In general, to interpret motion from the non-inertial frame, we define the impressed forces

as the forces that are imposed on the system due to external effects and due to the configuration

of the system. In the case of the Cosserat beam, the body force, traction (external forces), and

the internal stresses (due to deformed configuration) are the sources of the impressed forces. We

define the forces of inertia referenced to a frame in consideration as the forces resisted by the

structure by virtue of inertia, as observed from the frame considered. Lastly the Einstein forces or

the apparent forces are defined as the forces experienced by the object due to non-inertial nature of

the frame of reference. To establish the state of equilibrium, the impressed forces, Einstein forces,

and the forces of inertia referenced to a frame in consideration are considered simultaneously.

This law is referred to as the D’Alembert’s Principle.

Owing to the single manifold nature of the problem, the motion of the Cosserat beam is

simplified to motion of the mid-curve. Each point of the mid-curve has a rigid section attached

to it. Therefore, the equation of motions developed in section 7.7.1 can be thought of as the

equilibrium equation of a unit arc-length element with the mass µ0 idealized as a rigid section

B1(ξ1), with the mass µ0 distributed homogeneously throughout the section.

We have assumed that the mid-curve may not necessarily be the locus mass centroid.

For the cross-section B1(ξ1), any point is defined by the position vector r1. Let the point CM

represents the mass centroid located by the vector r cm =
Υ0
µ0
. The figure below illustrates the

discussion.
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Figure 7.4: Reduced element of unit arc-length idealized as a rigid section with the mass µ0.

The conservation of linear momentum equation (7.141) represents the translational

equilibrium of the mass µ0. The mass µ0 is static with respect to the frame {di} because the

section is rigid. The frame {di} is translating with the translational acceleration of ∂2
t ϕ and is

rotating with the angular acceleration ∂tω referenced to the fixed inertial frame {Ei}. The mass

µ0 experiences the following forces,

1. The impressed force = ∂ξ1n + Nϕ.

2. The force of inertia w.r.t the frame {di} = −µ0∂̃
2
t r cm = 0.

3. The Einstein force due to translation = −µ0∂
2
t ϕ.

4. The centrifugal force = −ω × ω × (µ0r cm) = −ω × ω × (Υ0).

5. The Euler force = −∂tω × (µ0r cm) = −∂tω × (Υ0).

6. The Coriolis force = −2ω × (µ0∂̃t r cm) = 0.

Summing these forces yields linear momentum conservation law.
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The conservation of angular momentum Eq. (7.149) represents the moment balance of the

section B1(ξ1). If the force on the elemental mass ρ0dξ2dξ3 = ρ0dB0 = ρ0dB1 located at point

on the section, positioned by the vector r1, is dF, then the total reduced moment of the section is∫
B1

r1 × dF. Therefore,

1. The reduced moment due to the impressed forces = m,ξ1 + ϕ,ξ1 × n + Nα.

2. The reducedmoment due to force of inertiaw.r.t the frame {di} = −
∫
B1
ρ0r1×∂̃

2
t r1 dB1 = 0.

The parameter ∂̃2
t r1 represents the acceleration of a point w.r.t the frame {di}. It vanishes

since the configuration Ω1 assume rigid cross-section.

3. The reduced moment due to the translational Einstein force = −
∫
B1
ρ0r1 × ∂

2
t ϕdB1 =

−Υ0 × ∂
2
t ϕ.

4. The reduced moment due to the centrifugal force = −
∫
B1

r1 × (ω × ω × (r1ρ0dB1))

= −ω × I0.ω.

5. The reduced moment due to the Euler force = −
∫
B1

r1 × (∂tω × (r1ρ0dB1)) = I0.∂tω.

6. The moment due to the Coriolis force is 0 because ∂̃t r1 = 0.

It is noteworthy that the Coriolis force and the force of inertia w.r.t {di} (and the respective

moments) vanishes because we have ignored the Poisson’s and the warping effect. As discussed

in remark 7.3, if the cross-section is allowed to deform, we will have these two forces (and the

respective moments). Secondly, if the locus of mass centroid was considered as the mid-curve,

the mass µ0 would not experience centrifugal force and Euler force.

7.7.7 Conservation of energy and time invariance

The Hamilton formulation of least action holds if the impressed forces are monogenic in

nature (refer Lanczos [121]). Therefore, work functions for the forces can be defined. The work

function need not necessarily be conservative for the applicability of Hamilton’s principle. Table
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Table 7.1: Forces and their respective work functions

Force Work function
Body force Wb

ext =
∫
Ω0
ρ0(u · b) dΩ0

Surface traction W st
ext =

∫ L
0

∫
Γ0
(u · (S.N )) dΓ0 dξ1

Internal stress Ustrain =
∫
Ω0

F1i j Si j dΩ0 =
∫
Ω0

U dΩ0

Inertial force T = 1
2

∫
Ω0
ρ0∂tR1 · ∂tR1 dΩ0 =

1
2

∫
Ω0
ρ0∂tu · ∂tu dΩ0

7.1 lists the work function for all the forces considering the straight beam as the undeformed state.

In table 7.1, U represents the strain energy density. Secondly, the work function for external force

used in Eq. (7.168) can be written as Wext = Wb
ext +W st

ext.

We may arrive at the Energy conservation law and the conditions associated with it by

considering the real infinitesimal displacement du = ∂tudt as the variational field in the Hamilton’s

equation (7.168). This unique consideration no longer guarantees the virtual displacement at time

t1 and t2 to vanish. Therefore, for δu → du, the Hamilton’s principle modifies to,

δA = δ
∫ t2

t1
L dt =

∫
Ω0

ρ0

[
∂tu · δu

] t=t2

t=t1

dΩ0. (7.187)

Using table 7.1, the left hand side of the above equation can be simplified for δu → du as,

δA =
∫ t2

t1

(∫
Ω0

(
ρ0∂tu · δ∂tu − δU + ρ0δu · b

)
dΩ0 +

∫ L

0

∫
Γ0

(
δu · (S.N )

)
dΓ0 dξ1

)
dt

=

(∫ t2

t1

∫
Ω0

(
ρ0∂tu · ∂

2
t u − dU + ρ0∂tu.b

)
dΩ0 +

∫ L

0

∫
Γ0

(
∂tu.(S.N )

)
dΓ0 dξ1 dt

)
dt

=

(∫ t2

t1

(
∂tT − ∂tUstrain + ∂tWb

ext + ∂tW st
ext

)
dt

)
dt =

[
T −Ustrain +Wexternal

] t2

t1
dt.

(7.188)

It was possible to simplify Eq. (7.188) by assuming the traction and body forces to be constant

with time. This was done to obtain a simplified form of energy as (T −Ustrain +Wext). The second

step of (7.188) shows the general energy conservation law. We can evaluate the right hand side of

Eq. (7.187) for δu → du as,∫
Ω0

ρ0

[
∂tuδu

] t=t2

t=t1

dΩ0 =

[ ∫
Ω0

ρ0∂tu.∂tu dΩ0

] t=t2

t=t1

dt =
[
2T

] t=t2

t=t1

dt . (7.189)
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Therefore, from Eqs. (7.187)–(7.189), we have[ ∫
Ω0

ρ0∂tu.∂tu dΩ0 − L

] t=t2

t=t1

=

[
T −Wext +Ustrain

] t=t2

t=t1

= 0. (7.190)

This implies that the quantity (T −Wext + Ustrain) is conserved. This quantity is energy H (or

Hamiltonian). It is clear that the external work Wext adds energy to the system. This energy is

used to deform the beam (stored as strain energy Ustrain) and to bring the motion in the beam

(stored as kinetic energy T), implying Wext = Ustrain + T . Therefore, a relationship between the

Lagrangian and the Hamilton can be established for Continuum problem as,∫
Ω0

ρ0∂tu.∂tu dΩ0 − L = H. (7.191)

The above equation establishes a relationship between the Lagrangian and Hamiltonian functional.

It is well known from the classical mechanics of discrete bodies that both the functionals are

related by Legendre transformation [121]. The continuum is an infinite degree of freedom system.

If we assume the beam to be composed of infinite particle each of mass mi = ρ0∆Ω0i , located by

ui , the Lagrangian takes the form,

L =
∞∑

i=1

1
2

mi∂tui .∂tui −Ustrain +Wext. (7.192)

Note that only the kinetic energy is function of velocity. We define the generalized momentum

of the ith particle as pi = (ρ0∆Ω0i )∂tui =
∂L
∂∂tui

. The Legendre transformation applied to the

Lagrangian is therefore, written as,

∞∑
i=1

∂L

∂∂tui
· ∂tui − L =

∞∑
i=1

pi · ∂tui − L = H. (7.193)

For the continuum case,
∞∑

i=1
pi · ∂tui = lim

n→∞
∆Ωs

i→dΩ0i

n∑
i=1

ρ0∂tui · ∂tui∆Ω0i =

∫
Ω0

ρ0∂tu · ∂tudΩ0. (7.194)

Therefore, for continuum case, Eq. (7.193) is same as Eq. (7.191).
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We were able to obtain the Energy conservation law from Hamilton’s Principle by

considering the differential displacement as the virtual displacement. We can choose this special

case of variation only if the Lagrangian does not have explicit time dependence. If the Lagrangian

has explicit time dependence, then the variation in Lagrangian occurs at a specific time t, whereas

the differential change in Lagrangian occurs in a duration of dt. Therefore, for the Energy of the

system to be conserved, the system must be scleronomic and the forces must be conservative in

addition tomonogenic. If the external forces are time-dependent, it would imply the presence of an

external source of energy which is not taken into account, leading to the addition of unaccounted

energy in the system. The energy conservation arises from the time invariance symmetry of

nature. Therefore, our understanding is in accordance with Noether’s theorem.

The Hamiltonian structure of the general beam configuration Ω is not as straightforward

as the discussion in this section. Therefore, we dedicate the next chapter to exhaustively discuss

the Poisson bracket formulation and general Legendre transformation.

7.8 Summary

This chapter details the variational formulation of geometrically-exact Cosserat beams

with deforming cross-section. In this regard, the current chapter is a sequel to chapter 4.

To arrive at the virtual work principle, the variation of necessary quantities are evaluated.

The attempt to capture fully coupled Poisson’s and warping effect (including bending induced

non-uniform shear) results in the dependence of deformation map on derivatives of curvature

fields (up to second-order). This makes the calculation of variations rather demanding. Detailed

calculations of variations of kinematic quantities required to obtain the weak form are performed.

The next part of this chapter deals with deriving the weak equilibrium equation in a

form desirable to computationally solve the problem. This beam model has higher regularity

requirements as compared to the conventional Simo-Reissner beam. It was expected to obtain
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an exactly similar balance of linear momentum, angular momentum, and bi-moment as given in

Simo and Vu-Quoc [43]. Despite using an advanced kinematic model, the strong form, when

expressed using the first PK stress tensor, does not change.

Finally, the variational formulation and balance laws of the beam with a rigid cross-section

(a special case) are discussed in detail.

The discussion carried out in this chapter is planned to be published in a journal titled:

“Mathematical theory of a higher-order geometrically-exact beam with a deforming cross-section”.

The content of section 7.7 is part of a publication in the International Journal of Solids and

Structures authored by Mayank Chadha and Michael D. Todd, titled: “An introductory treatise on

reduced balance laws of Cosserat beams”. The dissertation author is the primary investigator and

author of this paper.

231



Chapter 8

The Poisson Bracket Formulation

8.1 Introduction

This chapter deals with the Poisson bracket formulation associated with the beam

kinematics discussed in chapter 4. The Poisson bracket formulation constitutes a part of the

variational analysis of a mechanical system. In this sense, this chapter is a continuation of the last

chapter. Simo et al. [116] details the Hamiltonian structure of general continua, geometrically-

exact rods with rigid cross-section, and geometrically-exact shells. We define the Hamiltonian

structure of geometrically exact beam with enhanced kinematics and deformable cross-section in

terms of the canonical conjugate variables (as is indicated in Marsden and Hughes [60]).

We discuss the cotangent space, phase space and cotangent bundle associated with beam

configuration mentioned in Eq. (7.18). We also define the Poisson bracket associated with the

cotangent bundle or phase space of the system. Poisson brackets essentially help one study flows

on phase space and the generators associated with such flows, and they facilitate the development

of canonical transformations. Canonically transformed phase space coordinates preserve the

Poisson geometry associated with the system or equivalently they preserve the Hamiltonian

structure of the system. We obtain the Hamiltonian via Legendre transformation of the Lagrangian.
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Finally, the Hamiltonian form of equilibrium equations is obtained.

8.2 The cotangent space, phase space, and cotangent bundle

Recall remark 4.1 in chapter 4, where we discussed how we got away with making use

of one-form and cotangent space associated with R3 (Tφ(p)Ω to be specific, for φ(p) ∈ Ω) using

the concept of the dot product. However, to define phase space associated with the configuration

space of the beam, we need to describe the cotangent space T∗ΦC (identified with the product

space (R3)∗ × T∗QSO(3) × R∗) dual to the tangent space TΦC.

Consider v∗ = viE
∗
i ∈ (R

3)∗ and u = uiEi ∈ R
3. Here, E∗i is the one-form (or

covector) associated with the vector Ei such that E∗i (E j) = Ei .E j = δi j . We define the duality

〈·|·〉R3 : (R3)∗ × R3 −→ R by means of dot product, such that,

〈v∗ |u〉R3 = v∗(u) = v.u (8.1)

Here, v = viEi is dual to v∗. From here on, any quantity with ∗ as super-script represent a

covector. Essentially, the duality defined above is an identity metric on the tangent space of R3.

Therefore, we can identify
(
R3)∗ ≡ R3 via the Euclidean dot product. Similarly, we realize that

R∗ ≡ R. However, to avoid confusion, we maintain our nomenclature of using ∗ as super-script

representing an element of dual space. Therefore, if v∗ ∈ R∗ (with v∗ = v) and u ∈ R, the duality

〈·|·〉R : R∗ × R −→ R by means of product as,

〈v∗ |u〉R = v∗(u) = vu (8.2)

Wedefine so(3)∗ ≡ T∗I3
SO(3) as the cotangent space to so(3) such that for Â∗ = Âi jE

∗
i ⊗E

∗
j ∈ so(3)∗

and B̂ = B̂i jEi ⊗ E j ∈ so(3), we define the duality 〈·|·〉so(3) : so(3)∗ × so(3) −→ R as follows,

〈Â
∗
|B̂〉so(3) = Â

∗
(
B̂
)
=

1
2
Â : B̂ =

1
2

Âi j B̂i j = A.B. (8.3)
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Here, A = Ai jEi ⊗ E j ∈ TQSO(3) is the tangent vector dual to A∗. Since Â and B̂ are skew-

symmetric, let A and B represent the associated axial vectors. Using the duality defined above,

we can rewrite the metric ‖log (Q(θ)) ‖ defined in Eq. (1.18) as

‖log (Q(θ)) ‖ =
√〈

θ̂
∗
���θ̂〉

so(3)
. (8.4)

Let AQ = Q.Â ∈ TQSO(3) and BQ = Q.B̂ ∈ TQSO(3) be obtained by left translating

the quantities Â and B̂. We note that the quantities AQ and BQ are not skew-symmetric. For

the cotangent vector A∗Q ∈ T∗QSO(3), dual to the tangent vector AQ, we define the duality

〈·|·〉TQSO(3) : T∗QSO(3) × TQSO(3) −→ R as,〈
A∗Q

���BQ

〉
TQSO(3)

= A∗Q
(
BQ

)
=

1
2
AQ : BQ. (8.5)

We also observe the left-invariant nature of the metric (or duality) discussed in Eq. (8.3) and (8.5)

such that 〈
A∗Q

���BQ

〉
TQSO(3)

=
〈
Â
∗
���B̂〉

so(3)
. (8.6)

Similarly, the duality associated with T∗ΦC and TΦC is given by:

〈·|·〉TΦC = 〈·|·〉R3 + 〈·|·〉TQSO(3) + 〈·|·〉R. (8.7)

We note that the dualities discussed above are commutative in the sense that〈
A∗Q

���BQ

〉
TQSO(3)

=
〈
B∗Q

���AQ

〉
TQSO(3)

and 〈v∗ |u〉R3 = 〈u∗ |v〉R3 . (8.8)

This brings us to the definition of cotangent bundle T∗C dual to T∗C associated with the

configuration C. For Φ̃∗ ∈ T∗ΦC and Φ ∈ C, we have,

T∗C :=
{
(Φ, Φ̃

∗
)|Φ ∈ C, Φ̃

∗
∈ T∗ΦC

}
. (8.9)

The TC gives the state space and T∗C gives the phase space. For simplicity, we assume

displacement prescribed boundary and no external force for the analysis in the coming sections.
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8.3 The Lagrangian and Hamiltonian

Usually, the Lagrangian is defined as L : TC −→ R. The Hamiltonian H : T∗C −→ R

is obtained by means of Legendre transformation of Lagrangian via the change of variables

(Φ, Φ̃) 7→ (Φ, Φ̃
∗
). However, the kinematics of the beam at hand not only depends on the

configuration space but also on the spatial (with respect to ξ1) derivatives of (ϕ,Q, p). Therefore,

we take a more general approach to obtain Hamiltonian from the Lagrangian. We start with

defining the Lagrangian in terms of passive and active coordinates. The coordinates that takes part

in Legendre transformation are called as active coordinates (refer to chapter 6 of Lanczos [121]).

Definition 8.1: Let the set q and a define the field of passive and active variables respectively

with q and a being their respective material forms. These sets are given by:

q = {ϕ,Q, p, ε, κ, Q.∂ξ1ε, Q.∂ξ1κ, Q.∂
2
ξ1
κ, Q.∂3

ξ1
κ, ∂ξ1 p, ∂2

ξ1
p};

q = {QT .ϕ, I3, p, ε, κ, ∂ξ1ε, ∂ξ1κ, ∂
2
ξ1
κ, ∂3

ξ1
κ, ∂ξ1 p, ∂2

ξ1
p};

a = {∂tϕ, ω, ∂t p, ∂̃tε, ∂̃tκ, Q.∂t(∂ξ1κ), Q.∂t(∂
2
ξ1
κ), ∂t(∂ξ1 p)};

a = {QT .∂tϕ, ω, ∂t p, ∂tε, ∂tκ, ∂t(∂ξ1κ), ∂t(∂
2
ξ1
κ), ∂t(∂ξ1 p)}.

(8.10)

We note that (q1,q2,q3) ∈ C and (a1,a2Q,a3) ∈ TΦC, where a2Q = â2.Q. Finally, we define

â2 = QT .â2.Q.

Definition 8.2: The Lagrangian L : (q; a) 7→ R associated with the beam is defined as

L = T(a) − Ustrain(q). (8.11)

Here, T and Ustrain gives the kinetic energy and strain energy stored in the system respectively. T

can be obtained using the result (7.107) as

T =
∫
Ω0

ρ0∂tR.∂tR dΩ0 =
1
2

∫ L

0

8∑
i=1

ai .(Iiai) dξ1 =
1
2

∫ L

0

8∑
i=1

ai .(Iiai) dξ1. (8.12)
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Here,

I1 =

∫
B0

ρ0 dB0; (8.13a)

I2 =

∫
B0

ρ0 r̂
T . r̂ dB0; (8.13b)

I3 =

∫
B0

ρ0L
λ1
∂ξ1 p.L

λ1
∂ξ1 p dB0; (8.13c)

I4 =

∫
B0

ρ0(L
λ1
∂ξ1ε
)T .Lλ1

∂ξ1ε
dB0; (8.13d)

I5 =

∫
B0

ρ0(L
λ1
∂ξ1κ
)T .Lλ1

∂ξ1κ
dB0; (8.13e)

I6 =

∫
B0

ρ0(L
λ1
∂2
ξ1
κ
)T .Lλ1

∂2
ξ1
κ
dB0; (8.13f)

I7 =

∫
B0

ρ0(L
λ1
∂3
ξ1
κ
)T .Lλ1

∂3
ξ1
κ
dB0; (8.13g)

I8 =

∫
B0

ρ0L
λ1
∂2
ξ1

p
.Lλ1

∂2
ξ1

p
dB0. (8.13h)

Define the material quantity Ii = QT .Ii .Q. For i ∈ {1,3,8}, we have Ii = Ii. Also observe that I2

is dependent on (p, ε1,κ, ∂ξ1κ, ∂
2
ξ1
κ). For ρ0 = constant, we have

I1 = ρ0

∫
B0

dB0 = ρ0 A, where A = Area of cross section B0; (8.14a)

I2 = ρ0

∫
B0

r̂T . r̂ dB0 = ρ0I, where I = spatial moment of inertia matrix ; (8.14b)

I3 = ρ0

∫
B0

Ψ
2
1 dB0 = ρ0Ξ, where Ξ = warping constant of Vlasov. (8.14c)

The strong form of equations obtained in section 7.6 can be obtained by stationarizing the action

provided δu(t1) = δu(t2) = 0, such that (refer section 6 of Chadha and Todd [53])

δ

∫ t2

t1
L dt = 0. (8.15)

To obtain canonical coordinates using Legendre transformation, we assume each ai as

independent quantities and we note the following result that can be easily proved using the chain

rule.
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Proposition 8.1: For a function of form g(ai) = g(Q.ai) for i ∈ {1,2,4,5,6,7} and a function of

form f (a2Q) = f (â2), the following are true:

∂g

∂ai
= Q.

∂g

∂ai
; (8.16a)

∂ f
∂a2Q

= Q.
∂ f

∂â2
. (8.16b)

Definition 8.3: Define the set p of canonical momentum coordinates corresponding to the active

variable set a obtained by Legendre transformation F as,

FL(ai) = pi = ∂ξ1

∂L

∂ai
(8.17)

Using the fact that Ii is symmetric, and the result in proposition 8.1, we get pi = Iiai (Einstein

summation is suppressed). Let p represent the material form of canonical momentum coordinates.

We note that the kinetic energy depends on the first component of ∂tε and on the second and third

components of ∂tκ, ∂t(∂ξ1κ) and, ∂t(∂
2
ξ1
κ). We assume that the canonical momentum coordinate

for all the zero active coordinates (for example, ∂tκ1 = 0) is zero, for example p4 = (I411∂tε1,0,0)T

and p4 = Q.(I411∂tε1,0,0)T . As such, the non-zero active coordinates can then be uniquely defined

as a function of their corresponding canonical coordinate and vice-versa. This is equivalent to the

fact that if the active coordinate consists of non-zero terms only, then the determinant of Hessian

of the Lagrangian with respect to the active coordinate is non-zero. Using the result (8.16b), we

get the following:
∂ f
∂a2
= (I2ω) =⇒

∂ f

∂â2
=

�
(I2ω);

p2Q =
∂L

∂a2Q
= Q.�(I2ω). (8.18)

Definition 8.4: The Hamiltonian H : (q,p∗) 7→ R is defined in terms of canonical coordinates as

H =

∫ L

0

8∑
i=1

pi .ai dξ1 − L =

∫ L

0
H(q,p) dξ1 = T(p) + Ustrain(q) = Total energy. (8.19)
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Here H(q,p) is energy per unit arc length or energy density.

Definition 8.5: Define the inverse Legendre transformation F−1 as

F−1H(pi) = ai = ∂ξ1

∂H

∂pi
=
∂H
∂pi

. (8.20)

8.4 Canonical bracket

Poisson brackets are defined on phase space. The definition of Poisson’s bracket consist of

mix of partial derivatives of functional of form f (q;p) (example of such function is Hamiltonian)

with respect to parameters defining configuration space (ϕ,Q, p) ≡ (q1,q2,q3) and parameters

defining cotangent space (p1,p2Q,p3). Therefore, in order to state Poisson bracket on T∗C, we

first define partial functional derivatives of such functional (we consider Hamiltonian as the

functional of interest). Refer to appendix A of Engel et al. [122] for detailed discussion on

funtional derivatives.

Definition 8.6: The varied passive and canonical variables is defined as qiε = qi + εδqi and

piε = pi + εδpi. We have qε = {qiε } and pε = {piε } such that p2Qε = Q.p̂2ε = Q. �(QT .p2ε ).

Definition 8.7: For a pure displacement boundary, following are the partial functional derivative
δH
δpi

ofHamiltonian (density)H(q;p)with respect to parameters defining cotangent space (p1,p2Q,p3)

as:

d
dε
H(q; (p1ε,pi))

����
ε=0
=

∫ L

0

〈
δH
δp1

∗
����δp1

〉
R3

dξ1 =

∫ L

0

δH
δp1

.δp1 dξ1 (8.21a)

d
dε
H(q; (p2Qε,pi))

����
ε=0
=

∫ L

0

〈
δH
δp2Q

∗
����δp2Q

〉
TQSO(3)

dξ1 =
1
2

∫ L

0

δH
δp2Q

: δp2Q dξ1 (8.21b)

d
dε
H(q; (p3ε,pi))

����
ε=0
=

∫ L

0

〈
δH
δp3

∗
����δp3

〉
R

dξ1 =

∫ L

0

δH
δp3

.δp3 dξ1 (8.21c)
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Like the result in Eq. (8.16b), we have:

δH
δp2Q

= Q.
∂H

∂p̂2
. (8.22)

Remark 8.1: This result holds because, pi for i , 2 does not have any functional dependence

on p2. However, the elements of q and p do have dependence on the spatial and time derivatives

of (q1,q2,q3). To define partial functional derivatives of H with respect to (q1,q2,q3), we treat

the pairs (q1,p1), (q2,p2Q) and (q3,p3) as independent quantities. This is crucial as it allows us to

operate on cotangent bundle. As a result, even though, for example, ∂tϕ is functionally dependent

on ϕ, the corresponding canonical quantity p1 is considered to be independent of ϕ. On the

other hand, the direct dependence of p2 on q3 is consider while evaluating δH
δp . We also note that

since (q1,q2,q3) defines the configuration space, we do not consider pi for i > 3 to be functionally

independent on the configuration space. As was pointed in section 3 of Simo et al. [116], defining

the functional derivative of H(q;p) with respect to parameters on configuration space requires

some caution. This is because the cotangent bundle is not a simple product space. Accordingly

definition 5 can be written as:

F−1H(pi) = ai =
δH
δpi

(8.23)

Definition 8.8: For a change qi 7→ qiε = qi + εδqi (with i ∈ 1,2,3), let p(qiε ) = {p j(qiε )} and q j(qiε )

(for j , 1,2,3) define the associated canonical and passive quantities respectively.

Definition 8.9: For a pure displacement boundary, the partial functional derivatives δH
δqi

of

Hamiltonian density H(q;p) with respect to parameters defining cotangent space (q1,q2,q3) are

given as:

d
dε
H((q1ε,qi(q1ε ));p(q1ε ))

����
ε=0
=

∫ L

0

〈
δH
δq1

∗
����δq1

〉
R3

dξ1 =

∫ L

0

δH
δϕ

.δϕ dξ1 (8.24a)

d
dε
H((q2ε,qi(q2ε ));p(q2ε ))

����
ε=0
=

∫ L

0

〈
δH
δq2

∗
����δq2

〉
TQSO(3)

dξ1 =
1
2

∫ L

0

δH
δQ

: δQ dξ1 (8.24b)
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d
dε
H((q3ε,qi(q3ε ));p(q2ε ))

����
ε=0
=

∫ L

0

〈
δH
δq3

∗
����δq3

〉
R

dξ1 =

∫ L

0

δH
δp

.δp dξ1. (8.24c)

Proposition 8.2: The following holds:

dp1
dt
= Fϕ (8.25a)

dp2
dt
= Fα (8.25b)

dp3
dt
=

d2p

dt2
.

∫
B0

ρ0Ψ
2
1 dB0 = I3

d2p

dt2
= Fp1. (8.25c)

Proof: Proof of proposition 8.2 follows from a straightforward calculation and application

of chain rule. We leave proving (8.25a) and (8.25c) to the readers. Realizing ∂̃tI2 = 03 and

∂̃tω =
dω
dt − ω × ω =

dω
dt , we can prove the result (8.25b) as

dp2
dt
=

dI2.ω
dt
= ∂̃t(I2.ω) + ω × I2.ω = I2.

dω
dt
+ ω × I2.ω = Fα . (8.26)

Hence proved. �

Proposition 8.4: With the definition of Hamiltonian and its partial functional derivatives in

equation set (8.19) and (8.24) respectively, the following holds true:

δH
δq1
= −(Eϕ +Fϕ) (8.27a)

δH
δq2Q

= −Q.(Êα + F̂α), where Êα = �QT .Eα and F̂α = �QT .Fα (8.27b)

δH
δq3
= −(Ep +Fp) (8.27c)

δH
δq2
= −(Eα +Fα) (8.27d)

Proof: Recall remark 8.1, that stated the need to consider (qi,pi) as independent quantities while

considering partial functional derivative of H with respect to q1,q2Q,q3. Keeping that in mind, for

the curve ε : Φ 7→ Φ + εδΦ (keeping the respective canonical coordinates fixed), the variation of
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Hamiltonian in the direction of δΦ is given as,

δH|({p1,p2Q,p3}=fixed) =

∫ L

0

〈
δH
δq1

∗
����δq1

〉
R3
+

〈
δH
δq2

∗
����δq2

〉
TQSO(3)

+

〈
δH
δq3

∗
����δq3

〉
R

dξ1. (8.28)

Since strain energy does not have any dependence on the canonical quantities p, we have

δUstrain |({p1,p2Q,p3}=fixed) = δUstrain =

∫ L

0
∂ξ1

(
−Nε + ∂̃ξ1N∂ξ1ε

)
· δϕ dξ1

+

∫ L

0

(
Np − ∂ξ1N∂ξ1 p + ∂

2
ξ1
N∂2

ξ1
p
)
.δp dξ1

+

∫ L

0

(
∂ξ1

(
−Nκ + ∂̃ξ1N∂ξ1κ

− ∂̃2
ξ1
N∂2

ξ1
κ + ∂̃

3
ξ1
N∂3

ξ1
κ

)
− ∂ξ1 ϕ̂.

(
Nε − ∂̃ξ1N∂ξ1ε

) )
· δα dξ1.

(8.29)

Substituting for the expression of velocity vector in Eq. (7.107) into Eq. (8.12) and carrying out

integration by parts yields

δT =
∫ L

0

(
δϕ ·

(
−Fϕ − ∂ξ1Fε

)
+ δp.

(
−Fp − ∂ξ1F∂ξ1 p

)
δα ·

(
−Fα − ∂ξ1 ϕ̂.Fε − ∂ξ1(Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ)

) ))
dξ1.

(8.30)

However, the terms −
∫ L
0

(
δϕ.Fϕ + δα.Fα + δp.Fp

)
dξ1 are obtained by considering the terms

∂tϕ = a1 = I
−1
1 p1, ω = a2 = I

−1
2 p2 and ∂t p = a3 = I

−1
3 p3 to be functionally dependent on the

configuration space. Therefore, we can obtain δT|({p1,p2Q,p3}=fixed) by ignoring these terms, yielding

δT|({p1,p2Q,p3}=fixed) =

∫ L

0
δϕ

(
− ∂ξ1Fε

)
+ δp.

(
−Fp +Fp1 − ∂ξ1F∂ξ1 p

)
δα.

(
− ∂ξ1 ϕ̂.Fε − ∂ξ1(Fκ − ∂̃ξ1F∂ξ1κ + ∂̃

2
ξ1
F∂2

ξ1
κ)

) ))
dξ1.

(8.31)

From the definition of Hamiltonian in Eq. (8.19), we have

δH|({p1,p2Q,p3}=fixed) = δT|({p1,p2Q,p3}=fixed) + δUstrain |({p1,p2Q,p3}=fixed). (8.32)

We use the expression of δUstrain Eq. (7.97) and the results in Eq. set (7.105) to obtain:

δH|({p1,p2Q,p3}=fixed) = −

∫ L

0
(Eϕ +Fϕ).δα + (Eα +Fα).δα + (Ep +Fp1).δp dξ1 (8.33)
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Eq. (8.28) and (8.32) proves the results (8.27a) and (8.27c). To prove (8.27b), we consider

(Eα +Fα).δα = (Eα +Fα).δα = (Êα + F̂α).δα̂ =
〈
Q.(Êα + F̂α)

���δQ〉
TQSO(3)

(8.34)

This proves the result (8.27b). Using chain rule, like Eq. (8.22), we have

δH
δp2Q

= Q.
δH

δp̂2
; (8.35a)

δH
δp2
= Q.

δH
δp2

. (8.35b)

Since p̂2 ∈ so(3), we realize that δH
δp̂2
=

�( δH
δp2

)
. Using the result obtained above and in (8.27b), we

have:
δH

δp̂2
= (Êα + F̂α) =⇒

δH
δp2
= −(Eα +Fα) =⇒

δH
δp2
= −(Eα +Fα). (8.36)

This completes the proof of proposition 8.4. �

Note that a more direct approach towards obtaining partial functional derivatives of

Hamiltonian with respect to configuration space is by considering a general function H =∫ L
0 H(q,p) dξ1 and obtaining δH|({p1,p2Q,p3}=fixed) by carrying integration by parts of all functionally

dependent quantities (keeping (p1,p2Q,p3) fixed) to obtain result of form (8.28). Such proof

would require defining strain energy in an integral form using for example, a free-energy function

characterizing hyperelastic response. Readers are recommended to refer section 5 of Simo et al.

[116] that deploys this approach for beam with rigid cross-section.

Corollary 8.1: Proposition 8.3 and 8.4 along with the strong form of equilibrium equation

stated section 7.6.3.1 yields:

dp1
dt
= −

δH
δq1

(8.37a)

dp2
dt
= −

δH
δq2

(8.37b)

dp3
dt
= −

δH
δq3

(8.37c)
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The equation set (8.37) along with the inverse Legendre transformation (8.23) gives Hamiltonian

equation of motion. Note that there are 7 equations constituting the strong form (3 for linear

momentum conservation, 3 for angular momentum conservation and 1 for the balance of bi-

moment and bi-shear), where as, there are 14 equations constituting Hamiltonian form. This

brings us to the definition of Poisson bracket. �

Definition 8.10 : Consider (Φ, Φ̃) ∈ T∗C such thatΦ = {q1,q2,q3} ∈ C and Φ̃
∗
= {p∗1,p

∗
2Q,p

∗
3} ∈

T∗ΦC. For the functions of form F,G : T∗C −→ R or F,G ∈ f(T∗C), such that F(Φ, Φ̃) =∫ L
0 f (Φ, Φ̃) dξ1 andG(Φ, Φ̃) =

∫ L
0 g(Φ, Φ̃) dξ1, the Poisson bracket {., .} : f(T∗C)×f(T∗C) −→ R

is defined as:

{F,G} =
∫ L

0

〈
δ f
δΦ

∗
���� δgδΦ̃

〉
TΦC
−

〈
δg

δΦ

∗
���� δ f
δΦ̃

〉
TΦC

dξ1

{F,G} =
∫ L

0

(〈
δ f
δq1

∗
���� δgδp1

〉
R3
−

〈
δ f
δq1

∗
���� δgδp1

〉
R3

)
+

(〈
δ f
δq2

∗
���� δgδp2Q

〉
TQSO(3)

−

〈
δg

δq2

∗
���� δ f
δp2Q

〉
TQSO(3)

)
+

(〈
δ f
δp3

∗
���� δgδq3

〉
R

−

〈
δ f
δp3

∗
���� δgδq3

〉
R

)
dξ1

{F,G} =
∫ L

0

δ f
δϕ

.
δg

δp1
−
δg

δϕ
.
δ f
δp1

dξ1 +
1
2

∫ L

0

δ f
δQ

:
δg

δp2Q
−
δg

δQ
:
δ f
δp2Q

dξ1

+

∫ L

0

δ f
δp
.
δg

δp3
−
δg

δp
.
δ f
δp3

dξ1

(8.38)

Theorem 8.1: The following are equivalent

1. The strong form of equilibrium equations (Eϕ = 01,Eα = 01,Ep = 0);

2. Hamilton’s principle of stationary action defined by Eq. (8.15);

3. The Hamiltonian equation of motion given by equation set (8.23) and (8.37);
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4. Hamiltonian equation in their Poisson bracket formulation given by dF
dt = {F,H} for all

F =
∫ L
0 f dξ1 ∈ f(T∗C).

Proof: We had used the strong form (statement 1) to establish Hamiltonian equation (statement

3) in corollary 8.1. We can obtain strong form of equation using by stationarizing the action as

indicated in Eq. (8.15) and substituting for the expression of virtual kinetic energy and virtual

strain energy in (8.30) and (7.97) respectively. We prove statement 4. By chain rule, we have

dF
dt
=

∫ L

0

(
δ f
δq1

.a1 +
1
2
δ f
δq2

: (Qâ2Q) +
δ f
δq3

.a3

)
+

(
δ f
δp1

.
dp1
dt
+
δ f
δp2

.
dp2
dt
+
δ f
δp3

.
dp3
dt

)
dξ1 (8.39)

Using Hamiltonian equations (8.23) and (8.37), the equation above simplifies to dF
dt = {F,H},

thereby proving theorem 8.1. �

Remark 8.2: The Poisson bracket defined in (8.38) satisfies the following properties: anti-

commutativity, bilinearity, Leibniz’s rule and Jacobi identity. Refer chapter on canonical

transformation in Goldstein et al. [123]. Using anti-commutative property, we arrive at energy

conservation law as dH
dt = {H,H} = 0 =⇒ dH

dt = 0. This is true because the energy density H (or

the total energyH and the Lagrangian L) does not have explicit time dependence, thereby implying

time invariant symmetry. Thus, the equations derived in the last section are for scleronomic

system. However, if we consider time dependent external forces (for example, non-conservative

forces like follower loads) and damping, it would imply the presence of unaccounted source of

energy, such that ∂H∂t , 0. Therefore, the general Poisson bracket form of equilibrium equation is
dF
dt = {F,H} +

∂F
∂t . Lastly, we note that for infinitesimal motion considered on phase space and

using Hamiltonian form of equations, we have

Φ(t) = Φ(t = 0) + t
dΦ
dt

���
t=0
= Φ(t = 0) + t

δH
δΦ̃

���
t=0

Φ̃(t) = Φ̃(t = 0) + t
dΦ̃
dt

���
t=0
= Φ̃(t = 0) − t

δH
δΦ

���
t=0
.

(8.40)
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Thus,
(
δH
δΦ̃
,− δH

δΦ

)
can be thought as two component of tangent vector to the curve representing

time evolution of the system on phase space at t = 0. Therefore, we can consider time evolution

as a canonical transformation on coordinates (Φ(t = 0), Φ̃(t = 0)) −→ (Φ(t), Φ̃(t)) generated by

Hamiltonian.

8.5 Summary

This chapter dealt with the Hamiltonian structure of geometrically-exact beams with

enhanced kinematics. The phase space and the associated duality (or metric) are defined. The

Hamiltonian is obtained from Lagrangian via change of coordinates from state space to phase

space carried by means of Legendre transformation. The Hamiltonian form of equations are

obtained, Poisson bracket formulation is described and the equivalence between various forms of

balance laws are stated.

The discussion carried out in this chapter is planned to be published in a journal titled:

“Mathematical theory of a higher-order geometrically-exact beam with a deforming cross-section”.

The dissertation author is the primary investigator and author of this paper.
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Chapter 9

Multi-Axial Linear Constitutive Law for

Small Strain

9.1 Introduction

In this chapter, the time- and rate-independent, multi-axial linear constitutive relations

restricted to large deformation but small strain assumption is considered. We first establish the

relationship between the material form of first Piola-Kirchhoff stress tensor S and the material

form of the symmetric part of the strain tensor H using the linear constitutive law for isotropic

Saint-Venant/Kirchhoff material. Finally, the reduced constitutive law pertaining to the single-

manifold beam model is developed that relates the reduced internal forces N with the conjugate

strain vector ε .

9.2 Saint-Venant/Kirchhoff constitutive law for small strains

In this section, we define the multi-axial linearly elastic constitutive law considering

large deformation but small strain. Recall, the expression of material form of deformation
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gradient tensor in Eq. (7.4b): F = I3 + H . The small strain assumption is imposed by assuming

‖H ‖ = O(ε) for a small parameter ε > 0 such that limε→0
O(ε)
ε = constant. Keeping this in mind,

we can linearize the material deformation gradient tensor about I3, such that,

Fε = I3 +
∂F

∂ε

����
ε=0

.ε +O(ε2) = I3 + εH +O(ε2). (9.1)

The spatial form can be obtained by linearizing F about Q, or simply by left translation of Fε as:

Fε = Q + εH +O(ε2). (9.2)

It is advantageous to postulate linear isotropic constitutive law (Saint-Venant/Kirchhoff material)

by relating the linear part of second PK stress tensor T = Ti jEi ⊗ E j with the linear part of the

corresponding strain conjugate: Lagrangian strain tensor (symmetric) E = Ei jEi ⊗ E j . This is

because of the material nature of these quantities. We have (refer to Marsden et al. [60]):

T = 2GE + λtrace(E);

Ti j = (G(δikδ jl + δilδ j k) + λδi jδkl)Ekl = (2Gδikδ jl + λδi jδkl)Ekl .

(9.3)

Here, G and λ = Eν
(1+ν)(1−2ν) are the Lamé’s constant. The quantities G and E represents shear and

Young’s modulus respectively.

Proposition 9.1: Up to order O(ε), the following holds: S = T and E = 1
2 (H + H

T
) = H

S.

Proof: For small strain, we assume the Lagrangian strain tensor of order O(ε); that’s saying

Eε = εE. Using the relationship between E and F, and the result in Eq. (9.1), we have:

Eε =
1
2
(FT

ε .Fε − I3) =
1
2
(F

T
ε .Fε − I3). (9.4)

From Eq. (9.1), we have:

F
T
ε = I3 + εH

T
+O(ε2); (9.5a)
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F
T
ε .Fε = I3 + εH + εH

T
+O(ε2); (9.5b)

det(F) = det(Q + εH +O(ε2)) = 1 + ε .det(H) +O(ε2). (9.5c)

Using the results (9.4) and (9.5), up to order O(ε), we get:

Eε = ε
1
2

(
H + H

T
)
= εH

S

E = H
S

(9.6)

To prove S = T up to order O(ε), we start with the Cauchy stress tensor σ, which for

small strain is of order O(ε), implying σε = εσ. Recall the relationship of S and T with σ (refer

to Lai et al. [118]):
S = det(F).F−1.σ.F−T ;

T = det(F).σ.F−T .

(9.7)

Using (9.1), we have

F
−T
ε = I3 + εH

−T
+O(ε2); (9.8a)

F
−1
ε = QT + εH−1 +O(ε2); (9.8b)

det(F) = det(Q + εH +O(ε2)) = 1 + ε .det(H) +O(ε2). (9.8c)

Therefore, using Eq. (9.7) and equation set (9.8), we arrive at the following for small strain case:

Sε = εS = ε(Q
T .σ.Q);

T ε = εT = ε(σ.Q).
(9.9)

From Eq. (9.9), up to order O(ε), we get S = T . Hence proved. �

This brings us to the definition of constitutive relation in terms of S and H
S. Using Eq.

(9.3) and the proposition 9.1, we have:

S = 2GH
S
+ λ.trace

(
H

S
)

;

Si j = (2Gδikδ jl + λδi jδkl)H
S
kl .

(9.10)
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The definition of symmetric matrix H
S yields:

H
S
=

1
2
(λi ⊗ Ei + Ei ⊗ λi) =

1
2
(λi j + λ ji)Ei ⊗ E j . (9.11)

Using the constitutive law given by (9.10) and the expression of H
S
kl in Eq. (9.11), we express the

material form of stress vector Si in terms of material form of strain vectors λi as:


S1

S2

S3


=

C︷                ︸︸                ︷
C11 C12 C13

C21 C22 C23

C31 C32 C33



λ1

λ2

λ3


;

S = C .L.

(9.12)

In spatial form, the stress vectors can be related to the spatial strain vectors as follows

S = C .L;

C = Q3.C .Q
T
3 .

(9.13)

The matrices Ci j are constant material matrix and are defined below.

C11 =


λ̃ 0 0

0 G 0

0 0 G


; C12 =


0 λ 0

G 0 0

0 0 0


; C13 =


0 0 λ

0 0 0

G 0 0


;

C21 =


0 G 0

λ 0 0

0 0 0


; C22 =


G 0 0

0 λ̃ 0

0 0 G


; C23 =


0 0 0

0 0 λ

0 G 0


;

C31 =


0 0 G

0 0 0

λ 0 0


; C32 =


0 0 0

0 0 G

0 λ 0


; C33 =


G 0 0

0 G 0

0 0 λ̃


.

(9.14)
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Here, λ̃ = 2G + λ. The spatial constitutive matrix is given as:

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33


= Q3.C .Q

T
3 ; where Ci j = Q.Ci j .Q

T . (9.15)

9.3 Reduced constitutive law

The goal is to obtain a linear relationship between the internal force vector N with the

vector ε . We ignore terms of O(ε2) in the expression of λi. To start with, we make use of following

two observation to redefine the internal force vector for first order strain:

First, we realize that except for L
λi
κ , all the other L

λi
(.) are independent of any strain

measurements. Realizing S1 −→ O(ε), we have(∫
B0

L
λi
κ .S1 dB0

)
ε

= ε .

∫
B0

r̂
T
1 .S1 dB0 +O(ε2). (9.16)

Therefore, from here on L
λi
κ = r̂

T
1 . Secondly, we note that the M-matrix are of order O(ε).

Therefore, ∫
B0

M
λ1
(.) .S1 dB0 −→ O(ε2). (9.17)

Using Eq. (9.16) and (9.17), we redefine the material form of reduced forces, initially defined in

Eq. (7.65) as: N =
∫
B0

L
T
.G dB0, where L is defined in Eq. (7.12) with L

λi
κ = r̂

T
1 . Using Eq.

(9.12) and the relation given in Eq. (7.7a) we have:

N =

∫
B0

L
T
.C .L dB0 =

∫
B0

L
T
.C .L.ε dB0 =

C︷                  ︸︸                  ︷(∫
B0

L
T
.C .L dB0

)
.ε = C.ε . (9.18)

The symmetric matrixC relates the reduced force vectors with the finite strains and their derivatives.

The constitutive matrix C is defined below. The spatial form can be written as C = Λ.C.ΛT .
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C matrix and definitions of some constants

C =



C11 C12 C13 C14 C15 C16 C17 C18 C19

C21 C22 C23 C24 C25 C26 C27 C28 C29

C31 C32 C33 C34 C35 C36 C37 C38 C39

C41 C42 C43 C44 C45 C46 C47 C48 C49

C51 C52 C53 C54 C55 C56 C57 C58 C59

C61 C62 C63 C64 C65 C66 C67 C68 C69

C
T
71 C

T
72 C

T
73 C

T
74 C

T
75 C

T
76 C77 C78 C79

C
T
81 C

T
82 C

T
83 C

T
84 C

T
85 C

T
86 C87 C88 C89

C
T
91 C

T
92 C

T
93 C

T
94 C

T
95 C

T
96 C97 C98 C99



. (9.19)

We define the following:

λ̃ = 2G + λ;

c1 = 4ν2(G + λ) − 4νλ;

c2 = −λν + 2ν2(G + λ);

c3 = 9λν2 − 6λν + 9Gν2;

c4 = 3λν2 + 3Gν2 − λν;

c5 = λ̃ + c1 + c2;

c6 = λ̃ + c1;

I22 =

∫
B0

ξ2
3 dB0; I33 =

∫
B0

ξ2
2 dB0; I23 = −

∫
B0

ξ2ξ3 dB0; I11 = I22 + I33.

GradΨi = ∂ξ2ΨiE2 + ∂ξ3ΨiE3.

(9.20)
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Matrices associated with the reduced force Nε:

The reduced force vector Nε can be written as,

Nε = C11.ε +C12.∂ξ1ε +C13.κ +C14.∂ξ1κ +C15.∂
2
ξ1
κ +C16.∂

3
ξ1
κ + p.C17 + ∂ξ1 p.C18 + ∂

2
ξ1

p.C19.

(9.21)

Here:

C11 =


(λ̃ + c1)A 0 0

0 GA 0

0 0 GA


; C12 = C13 = 03;

C14 =


0 0 0

0 −GνI23 + G
∫
B0

∂ξ2Ψ2 dB0 GνI33 + G
∫
B0

∂ξ2Ψ3 dB0

0 −GνI22 + G
∫
B0

∂ξ3Ψ2 dB0 −GνI23 + G
∫
B0

∂ξ3Ψ3 dB0


;

C15 =



0
©­­­«
(λ̃ + c1)

∫
B0

Ψ2 dB0

+c2

∫
B0

GradΨ2.r1 dB0

ª®®®¬
©­­­«
(λ̃ + c1)

∫
B0

Ψ3 dB0

+c2

∫
B0

GradΨ3.r1 dB0

ª®®®¬
0 0 0

0 0 0


;

C16 =


0 0 0

0 −Gν
∫
B0

ξ2Ψ2 dB0 −Gν
∫
B0

ξ2Ψ3 dB0

0 −Gν
∫
B0

ξ3Ψ2 dB0 −Gν
∫
B0

ξ3Ψ3 dB0


;
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C17 =


0

G
∫
B0

∂ξ2Ψ1 dB0

G
∫
B0

∂ξ3Ψ1 dB0


;C18 =



©­­­«
(λ̃ + c1)

∫
B0

Ψ1 dB0

+c2

∫
B0

GradΨ1.r1 dB0

ª®®®¬
0

0


;C19 =


0

−Gν
∫
B0

ξ2Ψ1 dB0

−Gν
∫
B0

ξ3Ψ1 dB0


.

Matrices associated with the reduced force N∂ξ1ε
:

The reduced force vector N∂ξ1ε
can be written as,

N∂ξ1ε
= C21.ε+C22.∂ξ1ε+C23.κ+C24.∂ξ1κ+C25.∂

2
ξ1
κ+C26.∂

3
ξ1
κ+p.C27+∂ξ1 p.C28+∂

2
ξ1

p.C29.

(9.22)

Here:

C21 = 03; C22 =


Gν2I11 0 0

0 0 0

0 0 0


; C23 = 03;

C24 =



0
©­­­«

Gν2
∫
B0

ξ3(ξ
2
3 − ξ

2
2 ) dB0

−Gν
∫
B0

GradΨ2.r1 dB0

ª®®®¬
©­­­«
−Gν2

∫
B0

ξ2(ξ
2
3 + ξ

2
2 ) dB0

−Gν
∫
B0

GradΨ3.r1 dB0

ª®®®¬
0 0 0

0 0 0


;

C25 = 03; C26 =


0 Gν2

∫
B0

(ξ2
3 + ξ

2
2 )Ψ2 dB0 Gν2

∫
B0

(ξ2
3 + ξ

2
2 )Ψ3 dB0

0 0 0

0 0 0


;
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C27 =


−Gν

∫
B0

GradΨ1.r1 dB0

0

0


; C28 = 01; C29 =


Gν2

∫
B0

(ξ2
2 + ξ

2
3 )Ψ1 dB0

0

0


.

Matrices associated with the reduced force Nκ:

The reduced force vector Nκ can be written as,

Nκ = C31.ε +C32.∂ξ1ε +C33.κ +C34.∂ξ1κ +C35.∂
2
ξ1
κ +C36.∂

3
ξ1
κ + p.C37 + ∂ξ1 p.C38 + ∂

2
ξ1

p.C39.

(9.23)

Here:

C31 = C32 = 03; C33 =


GI11 0 0

0 λ̃I22 λ̃I23

0 λ̃I23 λ̃I33


+


0 0 0

0 Gν2I11 + c3I22 c3I23

0 c3I23 Gν2I11 + c3I33


;

C34 =



0
©­­­«

−2Gν
∫
B0

ξ2ξ
2
3 dB0

+GE1.

∫
B0

r1 × GradΨ2 dB0

ª®®®¬
(
GE1.

∫
B0

r1 × GradΨ3 dB0

)
0 0 0

0 0 0


;

C35 =


0 0 0

0 C3522 C3523

0 C3532 C3533


; C36 = 03 with,

C3522 = c5

∫
B0

ξ3Ψ2 dB0 + Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ3Ψ2 dB0 + c4

∫
B0

ξ3(r1.GradΨ2) dB0;

C3523 = c5

∫
B0

ξ3Ψ3 dB0 + Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ3Ψ3 dB0 + c4

∫
B0

ξ3(r1.GradΨ3) dB0;
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C3532 = −c5

∫
B0

ξ2Ψ2 dB0 − Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ2Ψ2 dB0 − c4

∫
B0

ξ2(r1.GradΨ2) dB0;

C3532 = −c5

∫
B0

ξ2Ψ3 dB0 − Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ2Ψ3 dB0 − c4

∫
B0

ξ2(r1.GradΨ3) dB0;

C37 =


GE1.

∫
B0

r1 × GradΨ1 dB0

0

0


; C38 =


0

C382

C383


; C39 = 01 with,

C382 = c5

∫
B0

ξ3Ψ1 dB0 + Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ3Ψ1 dB0 + c4

∫
B0

ξ3(r1.GradΨ1) dB0;

C383 = −c5

∫
B0

ξ2Ψ1 dB0 − Gν2
∫
B0

(ξ2
2 + ξ

2
3 ).∂ξ2Ψ1 dB0 − c4

∫
B0

ξ2(r1.GradΨ1) dB0.

Matrices associated with the reduced force N∂ξ1κ
:

The reduced force vector N∂ξ1κ
can be written as,

N∂ξ1κ
= C41.ε+C42.∂ξ1ε+C43.κ+C44.∂ξ1κ+C45.∂

2
ξ1
κ+C46.∂

3
ξ1
κ+p.C47+∂ξ1 p.C48+∂

2
ξ1

p.C49.

(9.24)

Here:

C41 = C
T
14; C42 = C

T
24; C43 = C

T
34;

C44 =


0 0 0

0 C4422 C4423

0 C4432 C4433


; C45 = 03 where,

C4422 =Gν2
∫
B0

ξ2
3 (ξ

2
2 + ξ

2
3 ) dB0 + 2Gν

∫
B0

ξ2ξ3.∂ξ2Ψ2 − ξ
2
3 .∂ξ3Ψ2 dB0

+ G
∫
B0

‖GradΨ2‖
2 dB0;
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C4423 = C4432 =Gν2
∫
B0

ξ2ξ3(ξ
2
2 − ξ

2
3 ) dB0 + G

∫
B0

∂ξ3Ψ2.∂ξ3Ψ3 + ∂ξ2Ψ2.∂ξ2Ψ3 dB0

+ Gν
∫
B0

(ξ2
2 .∂ξ2Ψ2 + ξ2ξ3.∂ξ3Ψ2) + (ξ2ξ3.∂ξ2Ψ3 − ξ

2
3 .∂ξ3Ψ3) dB0;

C4433 =Gν2
∫
B0

ξ2
2 (ξ

2
2 + ξ

2
3 ) dB0 + 2Gν

∫
B0

ξ2ξ3.∂ξ3Ψ3 + ξ
2
2 .∂ξ2Ψ3 dB0

+ G
∫
B0

‖GradΨ3‖
2 dB0;

C46 =


0 0 0

0 C4622 C4623

0 C4632 C4733


with,

C4622 = −Gν2
∫
B0

ξ3(ξ
2
2 − ξ

2
3 )Ψ2 dB0 − Gν

∫
B0

Ψ2(r1.GradΨ2) dB0;

C4623 = −Gν2
∫
B0

ξ3(ξ
2
2 − ξ

2
3 )Ψ3 dB0 − Gν

∫
B0

Ψ3(r1.GradΨ2) dB0;

C4632 = −Gν2
∫
B0

ξ2(ξ
2
2 + ξ

2
3 )Ψ2 dB0 − Gν

∫
B0

Ψ2(r1.GradΨ3) dB0;

C4633 = −Gν2
∫
B0

ξ2(ξ
2
2 + ξ

2
3 )Ψ3 dB0 − Gν

∫
B0

Ψ3(r1.GradΨ3) dB0;

C47 =


0

C472

C473


; C48 = 01; C49 =


0

C492

C493


where,

C472 = Gν
∫
B0

ξ2ξ3.∂ξ2Ψ1 − ξ
2
3 .∂ξ3Ψ1 dB0 + G

∫
B0

∂ξ3Ψ1.∂ξ3Ψ2 + ∂ξ2Ψ1.∂ξ2Ψ2 dB0;

C473 = Gν
∫
B0

ξ2(r1.GradΨ1) dB0 + G
∫
B0

∂ξ3Ψ1.∂ξ3Ψ3 + ∂ξ2Ψ1.∂ξ2Ψ3 dB0;

and

C492 = −Gν
∫
B0

Ψ1(r1.GradΨ2) dB0 − Gν2
∫
B0

ξ3(ξ
2
2 − ξ

2
3 )Ψ1 dB0;

C493 = −Gν
∫
B0

Ψ1(r1.GradΨ3) dB0 − Gν2
∫
B0

ξ2(ξ
2
2 + ξ

2
3 )Ψ1 dB0.
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Matrices associated with the reduced force N∂2
ξ1
κ:

The reduced force vector N∂ξ1κ
can be written as,

N∂ξ1κ
= C51.ε+C52.∂ξ1ε+C53.κ+C54.∂ξ1κ+C55.∂

2
ξ1
κ+C56.∂

3
ξ1
κ+p.C57+∂ξ1 p.C58+∂

2
ξ1

p.C59.

(9.25)

Here:

C51 = C
T
15; C52 = C

T
25; C53 = C

T
35; C54 = C

T
45;

C55 =


0 0 0

0 C5522 C5523

0 C5532 C5533


where,

C5522 =c6

∫
B0

Ψ
2
2 dB0 + 2c2

∫
B0

Ψ2(r1.GradΨ2) dB0 + Gν2
∫
B0

ξ2
2 (∂ξ3Ψ2)

2 + ξ2
3 (∂ξ2Ψ2)

2 dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ2)

2 + ξ2
2 (∂ξ2Ψ2)

2 dB0 + 2(G + λ)ν2
∫
B0

ξ2ξ3.∂ξ3Ψ2.∂ξ2Ψ2 dB0;

C5523 = C5532 =c6

∫
B0

Ψ2Ψ3 dB0 + c2

∫
B0

Ψ2(r1.GradΨ3) + Ψ3(r1.GradΨ2) dB0

+ Gν2
∫
B0

ξ2
2 (∂ξ3Ψ2.∂ξ3Ψ3) + ξ

2
3 (∂ξ2Ψ2.∂ξ2Ψ3) dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ2.∂ξ3Ψ3) + ξ

2
2 (∂ξ2Ψ2.∂ξ2Ψ3) dB0

+ (G + λ)ν2
∫
B0

ξ2ξ3.(∂ξ3Ψ3.∂ξ2Ψ2 + ∂ξ3Ψ2.∂ξ2Ψ3) dB0;

C5533 =c6

∫
B0

Ψ
2
3 dB0 + 2c2

∫
B0

Ψ3(r1.GradΨ3) dB0 + Gν2
∫
B0

ξ2
2 (∂ξ3Ψ3)

2 + ξ2
3 (∂ξ2Ψ3)

2 dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ3)

2 + ξ2
2 (∂ξ2Ψ3)

2 dB0 + 2(G + λ)ν2
∫
B0

ξ2ξ3.∂ξ3Ψ3.∂ξ2Ψ3 dB0;
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C56 = 03; C57 = 01; C58 =


0

C582

C583


; C59 = 01 where,

C582 =c2

∫
B0

Ψ2(r1.GradΨ1) dB0 + Gν2
∫
B0

ξ2
2 (∂ξ3Ψ2.∂ξ3Ψ1) + ξ

2
3 (∂ξ2Ψ2.∂ξ2Ψ1) dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ2.∂ξ3Ψ1) + ξ

2
2 (∂ξ2Ψ2.∂ξ2Ψ1) dB0

+ (G + λ)ν2
∫
B0

ξ2ξ3.(∂ξ3Ψ2.∂ξ2Ψ1 + ∂ξ2Ψ2.∂ξ3Ψ1) dB0;

C583 =c2

∫
B0

Ψ3(r1.GradΨ1) dB0 + Gν2
∫
B0

ξ2
2 (∂ξ3Ψ3.∂ξ3Ψ1) + ξ

2
3 (∂ξ2Ψ3.∂ξ2Ψ1) dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ3.∂ξ3Ψ1) + ξ

2
2 (∂ξ2Ψ3.∂ξ2Ψ1) dB0

+ (G + λ)ν2
∫
B0

ξ2ξ3.(∂ξ3Ψ3.∂ξ2Ψ1 + ∂ξ2Ψ3.∂ξ3Ψ1) dB0.

Matrices associated with the reduced force N∂3
ξ1
κ:

The reduced force vector N∂3
ξ1
κ can be written as,

N∂3
ξ1
κ = C61.ε+C62.∂ξ1ε+C63.κ+C64.∂ξ1κ+C65.∂

2
ξ1
κ+C66.∂

3
ξ1
κ+p.C67+∂ξ1 p.C68+∂

2
ξ1

p.C69.

(9.26)

Here,

C61 = C
T
16; C62 = C

T
26; C63 = C

T
36; C64 = C

T
46;

C66 =


0 0 0

0 Gν2
∫
B0

(ξ2
2 + ξ

2
3 )Ψ

2
2 dB0 Gν2

∫
B0

(ξ2
2 + ξ

2
3 )Ψ2Ψ3

0 Gν2
∫
B0

(ξ2
2 + ξ

2
3 )Ψ2Ψ3 dB0 Gν2

∫
B0

(ξ2
2 + ξ

2
3 )Ψ

2
3 dB0


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C67 =


0

−Gν
∫
B0

Ψ2(r1.GradΨ1) dB0

−Gν
∫
B0

Ψ3(r1.GradΨ1) dB0


; C68 = 01; C69 =


0

Gν2
∫
B0

Ψ1Ψ3(ξ
2
2 + ξ

2
3 ) dB0

Gν2
∫
B0

Ψ1Ψ2(ξ
2
2 + ξ

2
3 ) dB0


.

Matrices associated with the reduced force Np:

The bi-shear Np can be written as,

Np = C71 ·ε+C72 ·∂ξ1ε+C73 ·κ+C74 ·∂ξ1κ+C75 ·∂
2
ξ1
κ+C76 ·∂

3
ξ1
κ+p.C77+∂ξ1 p.C78+∂

2
ξ1

p.C79.

(9.27)

Here:

C71 = C17; C72 = C27; C73 = C37; C74 = C47; C75 = C57; C76 = C67;

C77 = G
∫
B0

‖GradΨ1‖
2 dB0; C78 = 0; C79 = −νG

∫
B0

Ψ1(r1.GradΨ1) dB0.

Matrices associated with the reduced force N∂ξ1 p:

The bi-moment N∂ξ1 p can be written as,

N∂ξ1 p = C81 ·ε+C82 ·∂ξ1ε+C83 ·κ+C84 ·∂ξ1κ+C85 ·∂
2
ξ1
κ+C86.∂

3
ξ1
κ+p.C87+∂ξ1 p.C88+∂

2
ξ1

p.C89.

(9.28)

Here:

C81 = C18; C82 = C28; C83 = C38; C84 = C48; C85 = C58; C86 = C68; C87 = C78;

C88 =c6

∫
B0

Ψ
2
1 dB0 + 2c2

∫
B0

Ψ1(r1.GradΨ1) dB0 + Gν2
∫
B0

ξ2
2 (∂ξ3Ψ1)

2 + ξ2
3 (∂ξ2Ψ1)

2 dB0

+ λ̃ν2
∫
B0

ξ2
3 (∂ξ3Ψ1)

2 + ξ2
2 (∂ξ2Ψ1)

2 dB0 + 2(G + λ)ν2
∫
B0

ξ2ξ3.∂ξ3Ψ1.∂ξ2Ψ1 dB0;
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C89 = 0.

Matrices associated with the reduced force N∂2
ξ1

p:

The reduced force N∂2
ξ1

p can be written as,

N∂2
ξ1

p = C91 ·ε+C92 ·∂ξ1ε+C93 ·κ+C94 ·∂ξ1κ+C95 ·∂
2
ξ1
κ+C96 ·∂

3
ξ1
κ+p.C97+∂ξ1 p.C98+∂

2
ξ1

p.C99.

(9.29)

Here:

C91 = C19; C92 = C29; C93 = C39; C94 = C49;

C95 = C59; C96 = C69; C97 = C79; C98 = C89;

C99 = Gν2
∫
B0

(ξ2
2 + ξ

2
3 )Ψ

2
1 dB0.

Remark 9.1: Owing to the linear elastic and small strain assumption, the matrix C and C

are symmetric. However, C matrix in the form defined above is singular. We observe that the

second and third components of N∂ξ1ε
and the first component of N∂ξ1κ

, N∂2
ξ1
κ and N∂3

ξ1
κ are zero.

Therefore, the 5, 6, 10, 13, and 16th rows and columns of C are zero. However the global material

stiffness matrix obtained in next chapter is not singular.

9.4 Summary

This chapter deals with obtaining a reduced linear constitutivemodel for isotropic Kirchhoff

material for the single-manifold geometrically-exact beam. At a continuum level, the relationship

between the material form of first PK stress tensor S and the material form of the symmetric part

of the strain tensor H is obtained. Finally, the reduced constitutive law for a one-dimensional

beam is derived. The constitutive law described in Simo et al. [48] and [93] are recovered

considering the simplified kinematics used in those papers.
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The discussion carried out in this chapter is planned to be published in a journal titled:

“Mathematical theory of a higher-order geometrically-exact beam with a deforming cross-section”.

The dissertation author is the primary investigator and author of this paper.
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Chapter 10

Finite Element Formulation

10.1 Introduction

To numerically solve the higher-order geometrically-exact beam with enhanced kinematics,

we restrict to static case and use multi-axial linear material constitutive law valid for large

deformation but limited to small strains relating to the reduced forces to their corresponding finite

strain counterpart (presented in chapter 9). Linearization of weak form is detailed followed by

matrix formulation of the equation of motion. For simplicity, we assume displacement prescribed

boundary conditions. We update the rotation tensor in Eulerian sense using an incremental

current rotation vector. As was noted in Cardona et al. [51], this choice of updating leads to

non-symmetric geometric stiffness. We obtain and update curvature and its derivatives using the

results presented in chapter 3.
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10.2 Consistent linearization

10.2.1 Linearization of weak form

The linearized part of the functional G(Φ, δΦ) at the configuration Φ# in the direction of

∆Φ, such that Φε = Φ
# + ε∆Φ, is given as,

G(Φ, δΦ) = δUstrain − δWext =

∫ L

0
δΦTBT

2B
T
1N dξ1 −

∫ L

0
δΦTBT

2B3N f dξ1 = 0. (10.1)

L[G(Φ, δΦ)](Φ#,∆Φ) = G(Φ#, δΦ) + DG(Φ#, δΦ).∆Φ. (10.2)

In the equation above, DG(Φ#, δΦ).∆Φ is the Frećhet differential defined by directional derivative

formula as,

DG(Φ#, δΦ).∆Φ =
dG(Φε, δΦ)

dε

����
ε=0

. (10.3)

In Eq. (10.2), the term G(Φ#, δΦ) is responsible for the unbalanced forces, whereas the term

DG(Φ#, δΦ).∆Φ (linear in ∆Φ) yields the tangent stiffness matrix. For simplicity, we assume

that Φ# = Φ and define the linear increment in the weak form ∆G as,

DG(Φ#, δΦ).∆Φ = ∆G(Φ#, δΦ) = ∆G(Φ, δΦ)
��
Φ=Φ# = ∆G(Φ, δΦ);

∆G(Φ, δΦ) = ∆δUstrain − ∆δWext.

(10.4)

10.2.2 Linearization of virtual strain energy

The expression of virtual strain energy can be written using Eq. (7.69) as,

δUstrain =

∫ L

0
δΦTBT

2B
T
1N dξ1 =

∫ L

0
δΦTBT

2B
T
1ΛN dξ1. (10.5)
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Thus, the linearized virtual strain energy is obtained as,

∆δUstrain =

∆δUstrain1︷                          ︸︸                          ︷∫ L

0
δΦTBT

2B
T
1Λ∆N dξ1 +

∆δUstrain2︷                          ︸︸                          ︷∫ L

0
δΦTBT

2B
T
1∆ΛN dξ1 +

∆δUstrain3︷                          ︸︸                          ︷∫ L

0
δΦTBT

2∆B
T
1ΛN dξ1 .

(10.6)

Since the process of linearization is similar to the variation, using Eq. (7.37), we get ∆ε =

ΛTB1B2∆Φ. Using the constitutive law given in Eq. (9.18), we can obtain the linear increment

in the material internal force vector as,

∆N = C∆ε = CΛTB1B2∆Φ. (10.7)

Thus,

∆δUstrain1 = DδUstrain1(Φ, δΦ).∆Φ

=

∫ L

0
δΦTBT

2B
T
1ΛCΛ

TB1B2∆Φ dξ1 =

∫ L

0
δΦTBT

2B
T
1CB1B2∆Φ dξ1.

(10.8)

Similarly, we have ∆Q = ∆α̂.Q, using which, the following is obtained,

∆ΛN = [∆α̂.Nε ;∆α̂.N∂ξ1ε
;∆α̂.Nκ ;∆α̂.N∂ξ1κ

;∆α̂.N∂2
ξ1
κ ;∆α̂.N∂3

ξ1
κ ; 0; 0; 0]

= B4∆Θ = B4B2∆Φ.

(10.9)

Here,

B4 =



03 03 03 −N̂ε 03 03 03 03 03

03 03 03 −N̂∂ξ1ε
03 03 03 03 03

03 03 03 −N̂κ 03 03 03 03 03

03 03 03 −N̂∂ξ1κ
03 03 03 03 03

03 03 03 −N̂∂2
ξ1
κ 03 03 03 03 03

03 03 03 −N̂∂3
ξ1
κ 03 03 03 03 03

03 03 03 03 03 03 03 03 03



(10.10)
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Thus,

∆δUstrain2 = DδUstrain2(Φ, δΦ).∆Φ =

∫ L

0
δΦTBT

2B
T
1B4B2∆Φ dξ1. (10.11)

Finally, to derive the expression of ∆δUstrain3, we consider the following results:

∆κ = ∆∂ξ1α − κ̂ .∆α;

∆∂ξ1κ = ∆∂
2
ξ1
α + κ̂ .∆∂ξ1α − ∂ξ1 κ̂ .∆α;

∆∂2
ξ1
κ = ∆∂3

ξ1
α − κ̂ .∆∂2

ξ1
α − 2∂ξ1 κ̂ .∆∂ξ1α − ∂

2
ξ1
κ̂ .∆α.

(10.12)

For Â, B̂ ∈ so(3) with their corresponding axial vectors A,B ∈ R3 and the vector v ∈ R3, we note

the following identities:

Â.B̂.v = −Â.v̂.B = −
[
B̂, v̂

]
.A;

B̂.Â.Â.v =
[̂̂A.v, Â]

.B =
[ [
Â, v̂

]
, Â

]
.B.

(10.13)

Using results in Eq. (10.12) and (10.13) along with the expression of BT
1 in Eq. (7.38), we obtain

∆BT
1N = B5∆Θ = B5B2∆Φ. (10.14)

The matrix B5 is defined as follows,

B5 =



03 03 03 03 03 03 03 03 03

03 03 03 B524 B525 03 03 03 03

03 03 03 03 03 03 03 03 03

03 B542 B543 B544 B545 03 03 03 03

03 B552 03 B554 B555 B556 B557 03 03

03 03 03 B564 B565 B566 03 03 03

03 03 03 B574 B575 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03



(10.15)
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where,

B524 = N̂∂ξ1ε
.κ̂;

B525 = −N̂∂ξ1ε
;

B542 = N̂ε +
[
κ̂, N̂∂ξ1ε

]
;

B543 = N̂∂ξ1ε
;

B544 = −∂ξ1 ϕ̂.N̂∂ξ1ε
.κ̂;

B545 = ∂ξ1 ϕ̂.N̂∂ξ1ε
;

B552 = N̂∂ξ1ε
;

B554 =
(
N̂∂ξ1κ

+
[
κ̂, N̂∂2

ξ1
κ

]
+ κ̂ .N̂∂2

ξ1
κ + κ̂ .

[
κ̂, N̂∂3

ξ1
κ

]
+

[
κ̂, [κ̂, N̂∂3

ξ1
κ]

]
+ κ̂ .κ̂ .N̂∂3

ξ1
κ

+
[
∂ξ1 κ̂, N̂∂3

ξ1
κ

]
+ 2∂ξ1 κ̂ .N̂∂3

ξ1
κ

)
.κ̂ +

(
N̂∂2

ξ1
κ + κ̂ .N̂∂3

ξ1
κ + 2

[
κ̂, N̂∂3

ξ1
κ

] )
.∂ξ1 κ̂

+ N̂∂3
ξ1
κ .∂

2
ξ1
κ̂;

B555 = −
(
N̂∂ξ1κ

+
[
κ̂, N̂∂2

ξ1
κ

]
+ κ̂ .N̂∂2

ξ1
κ + κ̂ .

[
κ̂, N̂∂3

ξ1
κ

]
+

[
κ̂, [κ̂, N̂∂3

ξ1
κ]

]
+ κ̂ .κ̂ .N̂∂3

ξ1
κ

+
[
∂ξ1 κ̂, N̂∂3

ξ1
κ

]
+ 2∂ξ1 κ̂ .N̂∂3

ξ1
κ

)
+

(
N̂∂2

ξ1
κ + κ̂ .N̂∂3

ξ1
κ + 2

[
κ̂, N̂∂3

ξ1
κ

] )
.κ̂

+ 2N̂∂3
ξ1
κ .∂ξ1 κ̂;

B556 = N̂∂3
ξ1
κ .κ̂ −

(
N̂∂2

ξ1
κ + κ̂ .N̂∂3

ξ1
κ + 2

[
κ̂, N̂∂3

ξ1
κ

] )
;

B557 = −N̂∂3
ξ1
κ ;

B564 = 3N̂∂3
ξ1
κ .∂ξ1 κ̂ +

(
2N̂∂2

ξ1
κ + 3

[
κ̂, N̂∂3

ξ1
κ

]
+ 3κ̂ .N̂∂3

ξ1
κ

)
.κ̂;

B565 = −
(
2N̂∂2

ξ1
κ + 3

[
κ̂, N̂∂3

ξ1
κ

]
+ 3κ̂ .N̂∂3

ξ1
κ

)
+ 3N̂∂3

ξ1
κ .κ̂;

B566 = −3N̂∂3
ξ1
κ ;

B574 = 3N̂∂3
ξ1
κ .κ̂;

B575 = −3N̂∂3
ξ1
κ .
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Therefore, we have,

∆δUstrain3 = DδUstrain3(Φ, δΦ).∆Φ =

∫ L

0
δΦTBT

2B5B2∆Φ dξ1. (10.16)

Finally, if B6 = B5 + BT
1 .B4, we define:

∆δUstrain23 = ∆δUstrain2 + ∆δUstrain3 = DδUstrain23(Φ, δΦ).∆Φ =

∫ L

0
δΦTBT

2B6B2∆Φ dξ1.

(10.17)

Therefore, from Eq. (10.6), (10.8) and (10.17), we get,

∆δUstrain =

∫ L

0
δΦTBT

2B
T
1CB1B2∆Φ dξ1 +

∫ L

0
δΦTBT

2B6B2∆Φ dξ1. (10.18)

The term ∆δUstrain1 leads to the symmetric material stiffness matrix whereas, the term ∆δUstrain23

yields geometric stiffness matrix (not necessarily symmetric).

10.2.3 Linearization of virtual external work done

From the expression of virtual external work, we have:

∆δWext =

∆δWext1︷                         ︸︸                         ︷∫ L

0
δΦTBT

2∆B3N f dξ1 +

∆δWext2︷                         ︸︸                         ︷∫ L

0
δΦTBT

2B3∆N f dξ1 . (10.19)

The term ∆δWext1 arises due to geometric dependence of ∆δWext; whereas the term ∆δWext2 is

due to non-conservative nature of the external forces. We can represent ∆B3N f and B3∆N f in a

more desirable form:
∆B3N f = B7∆Θ = B7B2∆Φ;

B3∆N f = B8∆Θ = B8B2∆Φ.

(10.20)
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The matrix B7 is defined as,

B7 =



03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 B742 03 03 03 03 03 03 03

03 03 03 B754 B755 B756 03 03 03

03 03 03 B764 B765 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03



. (10.21)

where,

B742 = N̂ε ; (10.22a)

B754 =
(
N̂ ∂ξ1κ

+
[
κ̂, N̂ ∂2

ξ1
κ

]
+ κ̂ .N̂ ∂2

ξ1
κ

)
.κ̂ + N̂ ∂2

ξ1
κ .∂ξ1 κ̂; (10.22b)

B755 = N̂ ∂2
ξ1
κ .κ̂ −

(
N̂ ∂ξ1κ

+
[
κ̂, N̂ ∂2

ξ1
κ

]
+ κ̂ .N̂ ∂2

ξ1
κ

)
; (10.22c)

B756 = −N̂ ∂2
ξ1
κ ; (10.22d)

B764 = 2N̂ ∂2
ξ1
κ .κ̂; (10.22e)

B765 = −2N̂ ∂2
ξ1
κ . (10.22f)

The matrix B8 depends on the characteristic of external loading (for example: follower

load, pressure load, etc) and is determined on a case by case basis. Therefore, using Eq. (10.19)

and (10.20), we have:

∆δWext =

∫ L

0
δΦTBT

2B7B2∆Φ dξ1 +

∫ L

0
δΦTBT

2B8B2∆Φ dξ1. (10.23)
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10.2.4 Example of concentrated follower load and moment

To demonstrate treatment of concentrated and follower load, we consider a case of external

loading where we have a concentrated follower load and moment acting at ξ1 = ξ
#
1 , such that

Nϕ(ξ1) = Q.Nϕδ(ξ1−ξ
#
1 ) and Nα(ξ1) = Q.Nαδ(ξ1−ξ

#
1 ). Here, δ(ξ1−ξ

#
1 ) is Dirac delta function.

We assume all the other loads constituting N f to be zero. We have,

∆Nϕ(ξ1) = ∆α̂.Nϕ .δ(ξ1 − ξ
#
1 ) = −N̂ϕ .∆α.δ(ξ1 − ξ

#
1 );

∆Nα(ξ1) = ∆α̂.Nα .δ(ξ1 − ξ
#
1 ) = −N̂α .∆α.δ(ξ1 − ξ

#
1 ).

(10.24)

The linearized external force ∆N f and the matrix B8 can then be written as,

∆N f = B9.B2.∆Φ.δ(ξ1 − ξ
#
1 );

B8 = B3.B9.

(10.25)

The matrix B9 is given below,

B9 =



03 03 03 −N̂ϕ 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 −N̂α 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0T
1 0T

1

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0T
1 0T

1



. (10.26)
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10.3 Discretization and Galerkin form of equilibrium equa-

tion

We discretize the domain using Ne elements. Any element e consist of Nen number

of nodes and has length Le = ξe
1b − ξ

e
1a, where, ξ

e
1b and ξe

1a are the arc-length of the first

and last node of the element e, such that ξe
1b > ξe

1a and ξe
1 ∈ [ξ

e
1a, ξ

e
1b]. We approximate the

admissible incremental displacement field ∆Φ by a finite dimensional subspace that is subset of

the variationally admissible tangent space. The incremental displacement field (∆ϕe,∆αe,∆pe)

restricted to element e can then be interpolated by means of shape functions as:

∆ϕe =

Nen∑
I=1

NI∆ϕ
e
I ; ∆αe =

Nen∑
I=1

NI∆α
e
I ; ∆pe =

Nen∑
I=1

NI∆pe
I . (10.27)

Here, ∆ϕe
I , ∆α

e
I and ∆pe

I represents the nodal incremental dispacement, vortivity and warping

amplitude at node I of element e respectively; NI is the shape-function associated with I th node.

10.3.1 Unbalanced force vector

We first obtain the nodal internal load vector f e
intI . The approximated virtual strain energy

can be written as

δUh
strain =

Ne∑
e=1

(
Nen∑
I=1

∫ ξe1b

ξe1a

δΦeT
I B

T
I B

eT
1 N

e dξ1

)

=

Ne∑
e=1

Nen∑
I=1

δΦeT
I

f eintI︷                      ︸︸                      ︷(∫ ξe1b

ξe1a

BT
I B

eT
1 N

e dξ1

)
=

Ne∑
e=1

Nen∑
I=1

δΦeT
I f e

intI .

(10.28)
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The matrix BI , defined below, consists of the shape-functions and its derivatives. The superscript

e on any quantity represents the restriction of that quantity on element e.

BI =



NI I3 03 01

∂ξ1 NI .I3 03 01

∂2
ξ1

NI .I3 03 01

03 NI I3 01

03 ∂ξ1 NI .I3 01

03 ∂2
ξ1

NI .I3 01

03 ∂3
ξ1

NI .I3 01

03 ∂4
ξ1

NI .I3 01

0T
1 0T

1 NI

0T
1 0T

1 ∂ξ1 NI

0T
1 0T

1 ∂2
ξ1

NI



. Here, ∂n
ξ1

NI .I3 =


∂n
ξ1

NI 0 0

0 ∂n
ξ1

NI 0

0 0 ∂n
ξ1

NI


. (10.29)

In order to define incremental load steps necessary for numerical formulation, we first

define the load coefficient X ∈ [0,1] with N f (X) = XN f 0, such that:

δWext(X) = XδWext0 = X

∫ L

0
δΦTBT

2B3N f 0 dξ1. (10.30)

The approximated virtual external work is obtained as:

δWh
ext0 =

Ne∑
e=1

Nen∑
I=1

δΦeT
I

f eext0I︷                      ︸︸                      ︷(∫ ξe1b

ξe1a

BT
I B3N

e
f 0 dξ1

)
=

Ne∑
e=1

Nen∑
I=1

δΦeT
I f e

ext0I .

δWh
ext(X) =

Ne∑
e=1

Nen∑
I=1

δΦeT
I f e

extI(X); where f e
extI(X) = X f e

ext0I .

(10.31)

The expression of internal and external force vectors: f e
intI and f e

extI(X) are defined below,

f e
intI =

∫ ξe1b

ξe1a

BT
I B

eT
1 N

e dξ1 =
[
f e
intI1; f e

intI2; f e
intI3

]
. (10.32)

271



Here,

f e
intI1 =

∫ ξe1b

ξe1a

(
∂ξ1 NI(N

e
ε + κ̂ .N

e
∂ξ1ε
) + ∂2

ξ1
NIN

e
∂ξ1ε

)
dξ1; (10.33)

f e
intI2 =

∫ ξe1b

ξe1a

(
NI

(
−∂ξ1 ϕ̂.N

e
ε −

(
∂2
ξ1
ϕ̂ + ∂ξ1 ϕ̂.κ̂

)
.Ne

∂ξ1ε

)
+ ∂ξ1 NI .

(
Ne
κ − ∂ξ1 ϕ̂.N

e
∂ξ1ε
+ κ̂ .Ne

∂ξ1κ

+
(
κ̂ .κ̂ + ∂ξ1 κ̂

)
.Ne

∂2
ξ1
κ
+

(
κ̂ .∂ξ1 κ̂ + 2∂ξ1 κ̂ .κ̂ + ∂

2
ξ1
κ̂ + κ̂ .κ̂ .κ̂

)
.Ne

∂3
ξ1
κ

)
+ ∂2

ξ1
NI

(
Ne
∂ξ1κ
+ 2κ̂ .Ne

∂2
ξ1
κ
+ 3

(
κ̂ .κ̂ + ∂ξ1 κ̂

)
.Ne

∂3
ξ1
κ

)
+ ∂3

ξ1
NI

(
Ne
∂2
ξ1
κ
+ 3κ̂ .Ne

∂3
ξ1
κ

)
+ ∂4

ξ1
NI .N

e
∂3
ξ1
κ

)
dξ1.

(10.34)

f e
intI3 =

∫ ξe1b

ξe1a

(
NI .N

e
p + ∂ξ1 NI .N

e
∂ξ1 p + ∂

2
ξ1

NI .N
e
∂2
ξ1

p

)
dξ1. (10.35)

Similarly,

f e
extI(X) =

∫ ξe1b

ξe1a

BT
I B3N

e
f (X) dξ1 =

[
f e
extI1; f e

extI2; f e
extI3

]

=

∫ ξe1b

ξe1a



NI .N
e
ϕ(X) + ∂ξ1 NI .N

e
ε(X)©­­­«

NI .
(
N e
α(X) − ∂ξ1 ϕ̂.N

e
ε(X)

)
+ ∂2

ξ1
NI .N

e
∂2
ξ1
κ
(X)

+∂ξ1 NI .(N
e
κ(X) + κ̂ .N

e
∂ξ1κ
(X) + (κ̂ .κ̂ + ∂ξ1 κ̂).N

e
∂2
ξ1
κ
(X)

ª®®®¬
NI .Ne

p(X) + ∂ξ1 NI .Ne
∂ξ1 p(X)


dξ1

. (10.36)

The unbalanced force vector associated with element e at node I is defined as:

Pe
I (Φ

e,X) = f e
extI(Φ

e,X) − f e
intI(Φ

e). (10.37)
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10.3.2 Element tangent stiffness

The approximated form of linearized virtual strain energy defined in Eq. (10.18) is given

by:

∆δUh
strain = ∆δU

h
strain1 + ∆δU

h
strain23

=

Ne∑
e=1

Nen∑
I=1

Nen∑
J=1

δΦeT
I

©­­­­­­«

Ke
mIJ︷                         ︸︸                         ︷∫ ξe1b

ξe1a

BT
I B

eT
1 CB

e
1BJ dξ1 +

Ke
gIJ︷                 ︸︸                 ︷∫ ξe1b

ξe1a

BT
I B

e
6BJ dξ1

ª®®®®®®¬
∆Φe

J

=

Ne∑
e=1

Nen∑
I=1

Nen∑
J=1

δΦeT
I K e

intI J∆Φ
e
J .

(10.38)

Here, the element tangential stiffness matrix corresponding to internal loads K e
intI J = K e

mI J +K
e
gI J

consist of a symmetric material part K e
mI J and a geometric part K e

gI J (not necessarily symmetric.

Similarly, the contribution to stiffness matrix due to external loads can be obtained by using Eq.

(10.23), such that the approximated linearized virtual work is obtained as:

∆δWh
ext(X) = X∆δWh

ext0

=

Ne∑
e=1

Nen∑
I=1

Nen∑
J=1

δΦeT
I

©­­­­­­«

Ke
ext1IJ︷                 ︸︸                 ︷∫ ξe1b

ξe1a

BT
I B

e
7BJ dξ1 +

Ke
ext2IJ︷                 ︸︸                 ︷∫ ξe1b

ξe1a

BT
I B

e
8BJ dξ1

ª®®®®®®¬
∆Φe

J

=

Ne∑
e=1

Nen∑
I=1

Nen∑
J=1

δΦeT
I K e

extI J∆Φ
e
J .

(10.39)

Here, the element tangential stiffness matrix corresponding to internal loads K e
extI J = K e

ext1I J +

K e
ext2I J consist of two parts: the matrix K e

ext1I J gives contribution due to dependence of external

work on the configuration of the system, assuming the force vectors are conservative; whereas,

the matrix K e
ext2I J is due to non-conservative nature of the external forces. The element stiffness
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matrix is given as:

K e
I J(Φ

e,X) = K e
intI J(Φ

e) − K e
extI J(Φ

e,X)

= K e
mI J(Φ

e) + K e
gI J(Φ

e) − K e
ext1I J(Φ

e,X) − K e
ext2I J(Φ

e,X).

(10.40)

10.3.3 Matrix form of linearized equation of motion and iterative solution

The unbalanced force vector and the element tangent stiffness can be assembled using

assembly operator A such that the global stiffness and global unbalanced force is obtained as:

K = A(K e
I J);

P(Φ,X) = A(Pe
I ) = XA( f

e
ext0I(Φ

e)) − A( f e
intI(Φ

e)) = X f ext0(Φ) − f int(Φ).

(10.41)

We use standard Newton Raphson’s iterative procedure. We divide the external loading

into n load steps. LetΦn represents the discretized form of degrees of freedom vector at load step

n, such that ∆Φn = Φn+1 −Φn. At equilibrium state corresponding to load step n (converged

state), the unbalanced force vanishes, i.e., P(Φn,Xn) = 0. Provided the nth load step has converged,

we aim to find ∆Φn, such that P(Φn+1,Xn+1) = 0. At ith iteration, we can linearize the equation

P(Φn+1,Xn+1) = 0 about P(Φi
n+1,X

i
n+1), such that Φ

i+1
n+1 = Φ

i
n+1 + ∆Φ

i+1
n and Xi

n+1 = Xn as:

P(Φi+1
n+1,Xn+1) = P(Φi

n+1,Xn) +
∂P

∂Φ

����
(Φi

n+1,Xn)

.∆Φi+1
n +

∂P

∂X

����
(Φi

n+1,Xn)

.(Xn+1 − Xn) = 0. (10.42)

We define the global tangent stiffness matrix (obtained in (10.41)) and obtain the following results

from Eq. (10.41),

P(Φi
n+1,Xn) = Xn f ext0(Φ

i
n+1) − f int(Φ

i
n+1);

K (Φi
n+1,Xn) = −

∂P(Φn+1,Xn+1)

∂Φn+1

����
(Φi

n+1,Xn)

;

f ext0(Φ
i
n+1) =

∂P(Φn+1,Xn+1)

∂Xn+1

����
(Φi

n+1,Xn)

.

(10.43)
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Substituting the results obtained above into the equation (10.42), we get:

K (Φi
n+1,Xn).∆Φ

i+1
n = Xn+1 f ext0(Φ

i
n+1) − f int(Φ

i
n+1) = P(Φi

n+1,Xn+1). (10.44)

10.4 Updating the axial strain vector, curvature vector and

their derivatives

10.4.1 Updating configuration

Solving equation (10.44), yields an incremental change in configuration space due to

deformation, say ∆Φ = {∆Φ,∆α,∆p}.The derivatives of these increments can be obtained by

using the approximation in Eq. 10.27 such that ∂n
ξ1
∆Φe(ξe

1) = ∂n
ξ1

NI(ξ
e
1).∆Φ

e, ∂n
ξ1
∆αe(ξe

1) =

∂n
ξ1

NI(ξ
e
1).∆α

e
I and ∂

n
ξ1
∆pe(ξe

1) = ∂
n
ξ1

NI(ξ
e
1).∆pe

I . Let the initial and final configuration be given

as Φi = {Φi,Qi, pi} and Φf = {Φf,Qf, pf}, such that:

ϕf = ϕi + ∆ϕ; ∂n
ξ1
ϕf = ∂

n
ξ1
ϕi + ∂

n
ξ1
∆ϕ (10.45a)

pf = pi + ∆p; ∂n
ξ1

pf = ∂n
ξ1

pi + ∂n
ξ1
∆p (10.45b)

Qf = exp(∆α̂).Qi = Q+.Qi where, Q+ = exp(∆α̂). (10.45c)

From the expressions of Bi with i ∈ {1,3,4,5,6} defined in previous sections, the following

quantities other than the configuration space itself need to be updated: ∂ξ1ϕ, ∂
2
ξ1
ϕ, κ̂, ∂ξ1 κ̂, and

∂2
ξ1
κ̂ and the finite strain quantities constituting ε . Once we update ε , we can obtain the material

(and then spatial) form of internal force vector, eventually getting the updates Bi with i ∈ {4,5,6}.

10.4.2 Updating axial strain, curvature and its derivatives

Readers are refereed back to chapter 3 that details method for obtaining and updating the

higher-order derivatives of curvature. So far, we have obtained all the elements constituting the
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concatenated strain vector ε except for ε and ∂ξ1ε. These can be obtained using the definition of

axial strain vector in Eq. (4.6), such that:

ε = QT .∂ξ1ϕ − E1; (10.46a)

∂ξ1ε = QT .
(
∂2
ξ1
ϕ − κ̂ .∂ξ1ϕ

)
= QT .(∂̃ξ1∂ξ1ϕ). (10.46b)

Using the results in Proposition 3.3, presented in chapter 3, we get ∂ξ1ε = QT .∂̃ξ1ε. The co-

rotational derivative can be obtained from Eq. (10.46b) as ∂̃ξ1ε = ∂̃ξ1(∂ξ1ϕ). Using Proposition

3.1 (that also defines the operator ∂̂ξ1 used below) presented in chapter 3, we have the following,

∂̃n
ξ1
ε = ∂̃n

ξ1
(∂ξ1ϕ) = (∂ξ1 − ∂̂ξ1)

n(∂ξ1ϕ); (10.47a)

∂n
ξ1
ε = QT .∂̃n

ξ1
(∂ξ1ϕ) = QT .

(
n∑

i=0
(−1)(n−i)Cn

i ∂
n
ξ1
∂̂
(n−i)
ξ1

)
∂ξ1ϕ. (10.47b)

The following section presents few numerical example concerning the formulation described so

far.

10.5 Numerical examples

We consider three numerical examples based on the formulation described in this chapter

using the constitutive model defined in chapter 9. The set of problems chosen emphasizes on a

large 3D deformation of beam/framed structure.

We realize that the weak form demands C3 continuity in ∆α; C1 continuity in ∆φ and ∆p.

To maintain a global C3 continuity in the incremental rotation angle, a seventh order polynomial is

required (for example: eight, seventh-order Hermite polynomials obtained by imposing Kronecker-

delta properties at the element junction; or considering seventh-order Lagrangian-polynomials on

an eight-noded element). However, concerning the computational cost and the fact that we are not

using Gauss-Lobatto quadrature (the integration points include the element end nodes), we use

fourth-order Lagrangian polynomial (committing Variational crime) as it satisfies the minimum

276



requirement for the weak form to be square-integrable. Secondly, it satisfies the compatibility

requirement and yields a continuous curvature and mid-curve axial-strain vector at the element

junctions. We use a full Newton-Raphson iterative solution procedure with uniformly reduced

Gauss-Legendre quadrature to avoid shear-locking.

We consider the tolerance of 10−5 in the Euclidean norm of force residue ‖P(Φ)‖ =

‖X f ext0(Φ) − f int(Φ)‖ as a measure of convergence. The numerical results, including the

deformation map and finite strains, obtained by the current formulation (referred to as Chadha-

Todd (CT) beam) are compared with the Simo-Reissener beam model (SR) described in [48], Simo

Vu-Quoc beam model (SV) discussed in [43], and Crisfield co-rotational formulation detailed in

[124]. As per the description of deformed configuration in chapter 4, the SR beam is defined by

the configuration Ω1; the SV beam is defined by a special case of configuration Ω2 that considers

non-uniform St. Venant warping but ignores bending induced shear contribution to warping; the

CT beam is described by the state Ω ≡ Ω3; and the CF beam is a special case of SR (defined by

Ω1) that ignores the shear deformation. We also note that SV and CT beam converges if we ignore

Poisson’s deformation and warping due to bending induced shear; SR and CF beam formulation

converges if shear deformation is ignores; and all the four beams converge if the structure is

infinitely slender.

In the following simulations, we consider rectangular cross-section with the edge dimen-

sions b × d, such that d ≥ b. The warping function Ψ1 pertaining to the torsion can be obtained

using the Neumann boundary value problem defined in Eq. (4.13). There exists a closed form

solution of this differential equation for rectangular cross-section (refer to Sokolnikoff [38]) given

by:

Ψ1(ξ2, ξ3) = ξ2ξ3 −
8d2

π3

∞∑
n=0

(−1)n sin (knξ2) sinh (knξ3)

(2n + 1)3 cosh (knb)
;

kn =
(2n + 1)π

d
for n = 0,1,2, ....

(10.48)

The Fig. 10.1a illustrates the warping function Ψ1a for a square cross-section with the edge

dimension 0.5 units obtained by solving the concerned Neumann boundary value problem.
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(a) Warping function Ψ1a (b) Warping function Ψ1b (c) Error Ψ1a − Ψ1b

Figure 10.1: Saint Venant’s warping function for a square cross-section.

Similarly, Fig. 10.1b represents the warping function Ψ1b obtained using Eq. (10.48) considering

0 ≤ n ≤ 3. We observe from Fig. 10.1c that Eq. (10.48) with 0 ≤ n ≤ 3 gives an excellent

estimate of the warping function Ψ1.

The bending induced shear warping functions are obtained in chapter 5 described in Eq.

(5.29). We consider the non-linear parts of warping functions defined in Eq. (5.29) as Ψ2 and Ψ3.

This is because the uniform shear deformation of the cross-section is taken care of by the director

triad. Therefore, we have:

Ψ3 = −
E

2G

(
ξ3

2
3

)
; Ψ2 = −

E
2G

(
ξ3

3
3

)
. (10.49)

10.5.1 Numerical example 1: Cantilever beam subjected to conservative

concentrated end load

For simulation 1, we consider a cantilever beam with a uniform square cross-section with

edge length 0.5 units subjected to the conservative concentrated load Nϕ = [18; 5; 5] units and

Nα = [120; 500; 200] units at end node. The beam has the material and geometric properties

as: E = 150 × 103 units, L = 10 units, G = 62.5 × 103 units and ν = 0.2. The Vlasov warping

constant for this case is significantly small: C88 = 0.796.

We run the simulations considering 15 elements, fourth-order Lagrangian polynomial and
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30 load steps (implying Xn+1 − Xn =
1
30). The CT beam shows an excellent rate of convergence.

Table 4 gives the norm of force residue for the selective load step.

Table 10.1: Numerical example 1: Force residue for the load steps (5, 10, 20, 30) obtained
using the Chadha-Todd (CT) beam model

Iterations Load step 5 Load step 10 Load step 20 Load step 30
0 1.840211 × 101 1.840211 × 101 1.840211 × 101 1.840211 × 101

1 6.345199 × 102 6.114772 × 102 1.816455 × 103 6.963457 × 102

2 2.065176 × 100 2.282938 × 100 1.141781 × 101 1.576687 × 100

3 2.637549 × 10−2 1.091766 × 10−1 4.058497 × 100 2.615883 × 10−1

4 1.318676 × 10−5 6.821832 × 10−5 1.037867 × 10−3 2.640774 × 10−5

5 1.759103 × 10−7 1.817813 × 10−7 1.127938 × 10−5 1.740689 × 10−7

6 – – 1.881784 × 10−7 –

Figure 10.2: Numerical example 1: Deformed configuration.

Figure 10.2 represents the mid-curve and director triad field of the considered beam for

selective load steps respectively. The plot compares the undeformed state Ω0 and the deformed

state obtained using SR, SV, CT, and CF beam models.
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The error eϕ and eQ (as defined in Eq. (2.33a) and (2.36a)) of SR and SV beam relative

to the CT beam for four different load steps are plotted in the figures 10.3 and 10.4.

(a) Error in mid-curve position vector (b) Error in the rotation tensor field

Figure 10.3: Numerical example 1: Error in the Simo-Reissener beam relative to the Chadha-
Todd beam.

(a) Error in mid-curve position vector (b) Error in the rotation tensor field

Figure 10.4: Numerical example 1: Error in the SimoVu-Quoc beam relative to the Chadha-Todd
beam.

There is significant difference in the position vector of the mid-curve obtained using CT

beam model relative to SR, CF, and SV beams. This is primarily because the bending stiffness for

CT beam (described in Eq. (9.23)) is greater than the bending section modulus for SR, SV, and

CF beam by a factor of f =
(

3ν2+2ν−2
4ν2+2ν−2 +

ν2

2(1+ν)

(
I11
Ixx

))
≥ 1, such that C33xx = f E Ixx , where the

subscript xx is either 22 or 33 (refer to Fig. 10.8).

280



Secondly, CT beam is flexible in torsion relative to the other beammodels. We also observe

that the error eϕ, increases with the arc-length ξ1, or equivalently
∂eϕ
∂ξ1

> 0. This phenomenon is

very similar to the problem of dead-reckoning (also called a coning effect) in path-estimation. In

(a) p for CT and SV beam (b) p and κ1 for CT

Figure 10.5: Numerical example 1: Torsional curvature and warping amplitude.

Fig. 10.5a, we observe that CT and SV predicts almost the same warping amplitude p. This is

because the parameters C78, C79, C89, C99, C98, C97 are small for the considered cross-section.

We observe oscillations in the warping amplitude p near the boundary. The beam is subjected to

conservative torsional moment, leading to constant warping amplitude away from the boundary.

Since the aforementioned material constants Ci j are negligible and the cross-section is symmetric

(shear center and the centroid of the cross-section coincides), the warping amplitude p(ξ1)

converges with the torsional curvature field κ1(ξ1) as depicted in Fig. 10.5b.

Figure 10.6 shows the curvatures (left column) and axial strain components (right column)

for load steps (5, 10, 20, 30) obtained using Simo-Reissener (SR), Simo Vu-Quoc (SV) and

Chadha-Todd (CT) beam models. Figure 10.7 illustrates the shear angle field for load steps

(5, 10, 20, 30) obtained using SR, SV, and CT beam models.
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(a) Torsional curvature κ1 (b) Axial strain ε1

(c) Bending curvature κ2 (d) Axial strain ε2

(e) Bending curvature κ3 (f) Axial strain ε3

Figure 10.6: Numerical example 1: Components of the material curvature vector (left column)
and the axial strain vector (right column).
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(a) Shear angle γ11 (b) Shear angle γ12 (c) Shear angle γ13

Figure 10.7: Numerical example 1: Shear angles.

Figure 10.8: Factor f as a function of Poisson’s ratio for a square cross-section.

10.5.2 Numerical example 2: Cantilever beam subjected to pure torsion

and elongation

We consider a beam with the same geometry and material property as for example 1

discussed in section 10.5.1, except for the cross-section. For current example, we consider a

rectangular cross-section with the dimensions b = 0.5 units and d = 4b = 2 = L
5 units. The

Vlasov constant for the considered cross-section is C88 = 1261.65. The beam is subjected to

torsion of 10000 units and an axial pull of 10000 units at the free end. This structure can not be

considered as a slender beam because the depth of the cross-section is 20% of its length. The
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goal of this example is to demonstrate the performance of the CT beam relative to SV, SR, and

CF beam when Poisson’s and warping effects are dominant. We expect a significant deviation of

CT and SV beam relative to the SR and CF beam. Like before, we consider 30 load steps, 15

elements, and fourth-order Lagrangian polynomial.

(a) Deformed state for SR and CF
beam (b) Deformed state for SV beam (c) Deformed state for CT beam

Figure 10.9: Numerical example 2: Deformed state.

(a) Error in mid-curve position vector (b) Error in the rotation tensor field

Figure 10.10: Numerical example 2: Error in the Simo-Reissener beam relative to the Chadha-
Todd beam.
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(a) Error in mid-curve position vector (b) Error in the rotation tensor field

Figure 10.11: Numerical example 2: Error in the Simo Vu-Quoc beam relative to the Chadha-
Todd beam.

Figure 10.9 represents the deformed state for SR (and CF), SV and CT beam models. We

observe a few expected results. The error in eϕ is negligible for SR (Fig. 10.10a) and SV (Fig.

10.11a) beams. This is because the mid-cure of the beam is effected by pure elongation. However,

as observed in figures 10.9 and 10.10b, there is significant error in rotation triad obtained for SR

and CF beam relative to CT beam (or even SV beam). Unlike example 1, we observe a notable

error in the rotation triad obtained using the SV beam model relative to the CT beam. We can infer

from figure 10.9a that the deviation of the director triad in the SR beam relative to the CT beam

(obtained at the Gauss points) increases linearly along the length of the beam. However, at first

glimpse, the triangular shape of the error plot eQ (Fig. 10.10b) depicts a linear increase followed

by a decrease in the error. This observation is misleading and contradicting to our previous

inference. The wave nature of error plot eQ is due to a local homeomorphism of exponential map

discussed in section 1.3.2.2. In fact, the error plot 10.10b does show continuous increase of error

since eQ ∈ [0, π].

We attribute large error in the deformation map predicted by SR beam to the fact that the

considered structure can no longer be considered slender and the deformation is significantly

effected by fully coupled Poisson’s and warping effect. The inclusion of all deformation effects in

the CT beam makes it more flexible (or less stiff).
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(a) Mid-curve axial strain e (b) Axial-strain ε1

Figure 10.12: Numerical example 2: Axial strains.

Figure 10.12 shows the first component of the axial strain vector ε1 and the mid-curve

axial strain e. Since the beam is not subjected to bending and shear, ε2 = ε3 = 0, κ2 = κ3 = 0, and

ε1 = e. As expected, we observe that all four beams have excellent agreement on the mid-curve

deformation and the axial strains.

(a) Curvature κ1 (b) Warping constant p

Figure 10.13: Numerical example 2: Torsional curvature and warping amplitude.

Figure 10.13a illustrates the torsional curvature field obtained using SR, CF, SV, and CT

beam model; and Fig. 10.13b illustrates the warping amplitude obtained using SV and CT for

the load steps in the multiple of five. We make the following observations. Firstly, we observe a

significant underestimation of the torsional curvature obtained by the SR or CF beam. This is
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Figure 10.14: Numerical example 2: Warping amplitude and torsional curvature for CT beam.

because the beam is no longer slender. The CT and SV beams are more flexible in torsion relative

to SR and CF beam. In case of uniform torsion, we have p = κ1. If T represents torsion at the end

node (here, T = 10000 units), the torsional curvature converges to a constant value for CT and SV

beam as κ1(L) = T
C3311+C3711

= 2.306 (note that C3711 < 0), whereas, the curvature for SR and CF

beam can be obtained as κ1(L) = T
C3311

= 0.456.

Secondly, for the given loading, we anticipate a constant torsion field (as in SR beam), but

the torsional curvature transitions from zero to constant value in SV and CT beam. Similar is the

case with the warping amplitude. We also know that for uniform torsion, the warping amplitude

equals the torsional curvature, as observed in Fig. 10.14. The fixed boundary on the left end

implies p(0) = 0. Seemingly, the warping amplitude guides the value of torsional curvature

leading to an anomaly in the value of curvature near the boundary. Thirdly, we observe oscillations

in the torsional curvature and warping amplitude in plot 10.13. We suspect that the oscillation

in the warping amplitude is because of the dependence of bi-shear on ∂2
ξ1

p. Since the quantity

∂2
ξ1

p is highly oscillatory at Gauss points it leads to oscillations in the warping amplitude. The

derivatives of warping amplitude obtained at the Gauss points recorded after the convergence of

the load step is shown in Fig. 10.15. As noted before, in the case of uniform torsion, the torsional

curvature is guided by the warping amplitude. Therefore, we observe the same oscillations in

κ1(ξ1).
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(a) ∂ξ1 p (b) ∂2
ξ1

p

Figure 10.15: Numerical example 2: First and second derivatives of warping amplitude at
Gauss points for CT beam.

10.5.3 Numerical example 3: 3D frame subjected to concentrated conser-

vative loads at multiple nodes

We consider a structure with the geometry depicted in figure 10.16 subjected to two

different cases of loading and cross-section. The local element frames are defined by {ei}. The

only global to local transformation that we make here is for the material matrix C. We consider

150 load steps for this example.

10.5.3.1 Case 1

For case 1, we consider a moderately slender structure with the cross-sectional dimension

as b = 0.5 units and d = 5b units. We subject the structure to 3 times the load showed in figure

10.16. Figure 10.17 illustrates the deformed shape for various load-steps using CT, SV, SR, and

CF beam models. As is expected, SR and CF formulation yields a very similar deformation field.
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Figure 10.16: Numerical example 3: Geometry and load pattern.

Figure 10.17: Numerical example 3, case 1: Deformed configuration.
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Figure 10.18: Numerical example 3, case 1: Error in the Simo-Reissener beam relative to the
Chadha-Todd beam.

Figure 10.19: Numerical example 3, case 1: Error in the Simo Vu-Quoc beam relative to the
Chadha-Todd beam.

290



Figure 10.20: Numerical example 3, case 1: The component of material curvatures κ1, and κ2
in global coordinates.

Figure 10.21: Numerical example 3, case 1: The component of material curvature κ3 in global
coordinates, and warping amplitude p.

291



Figure 10.17 and 10.18 shows the error in the mid-curve position vector and rotation triads

predicted by SR and SV beams relative to CT beam respectively. CT beam prediction is closer

to SV beam as compared to SR beam. The figure 10.19 and 10.20 compares the curvature and

warping amplitude fields interpolated linearly from their values at the Gauss points obtained by

CT, SV, and SR beam models for various load steps. The yellow plane represents the positive

plot. We note that the strain fields are in global coordinate system, for example, in local element

coordinate system, κ1 represents bending curvature about e2 for elements 1, 2, 3, and 4, whereas it

represents torsional curvature for elements 5 and 6. Similarly, the torsional curvature for elements

1 and 2 is given by κ3, for elements 3 and 4 by κ2 (the local and global system aligns for elements

4 and 5). A clear resemblance in the warping amplitude p can be observed with κ3 for elements 1

and 2; with κ2 for elements 3 and 4; and with κ1 for elements 5 and 6.

10.5.3.2 Case 2

For case 2, we consider a more slender structure with the cross-sectional dimension as

b = 0.2 units and d = 8b units. We subject the structure to 2 times the load showed in figure

10.16. Figure 10.22 illustrates the deformed shape for various load-steps using CT, SV, SR, and

CF beam models.

Figure 10.22: Numerical example 3, case 2: Deformed configuration.
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Figure 10.23: Numerical example 3, case 2: Error in the Simo-Reissener beam relative to the
Chadha-Todd beam.

Figure 10.24: Numerical example 3, case 2: Error in the Simo Vu-Quoc beam relative to the
Chadha-Todd beam.
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Figure 10.25: Numerical example 3, case 2: The component of the material curvatures κ1, and
κ2 in global coordinates.

Figure 10.26: Numerical example 3, case 2: The component of the material curvature κ3 in
global coordinates, and warping amplitude p.
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As is expected, SR and CF formulation yields a very close displacement field. The

difference in the displacement fields obtained by various beam models are very prominent in this

example because the slenderness of the structure brings out the affect of fully coupled Poisson’s

and warping effect in the displacement and strain fields.

10.6 Summary

This chapter delineates the consistent linearization of the weak form of the equilibrium

equation discussed in chapter 7. The material and geometric stiffness matrices, external and

internal force vectors are obtained. The matrix form of equilibrium equations is derived and

solved using Newton Raphson’s iterative algorithm using uniformly reduced Gauss quadrature.

For the considered constitutive model, the material stiffness matrix is symmetric, whereas, in

general, the geometric stiffness is not symmetric. Finally, numerical simulation for conservative

and non-conservative loading is presented.

The discussion carried out in this chapter is planned to be published in a journal titled:

“Mathematical theory of a higher-order geometrically-exact beam with a deforming cross-section”.

The dissertation author is the primary investigator and author of this paper.
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Chapter 11

Modal analysis

11.1 Introduction

In this chapter, we investigate linear dynamics, focusing on modal analysis, for the

considered beam. There are seven unknowns in our beam model: three components of the

mid-curve position vector ϕ, three components of rotation vector θ, and the warping amplitude

p. Therefore, in this chapter, we arrive at seven uncoupled and non-dimensionalized governing

differential equations describing the evolution of these seven degrees of freedom. We solve these

Euler-Lagrangian equations to obtain mode shapes for various boundary conditions.

11.2 Euler-Lagrangian equations of motion

For the purpose of linear dynamics, we assume that the deformation is small, such that

the oscillations occur about the undeformed state Ω0. Therefore, it is safe to assume Q = I3 or

equivalently, di = Ei. The deformed mid-curve position vector is given by ϕ = ϕ0 + x, where

x = xiEi is the the mid-curve displacement vector. For small deformation, from Eq. 2.3, we have,

limθ→0 κ̂ = ∂ξ1 θ̂. Thus, κi = κi = ∂ξ1θi. The angle θ1 represents torsional deformation, whereas,
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the angles θ2 and θ3 quantifies bending. The deformation map is then defined as:

R(ξ1, ξ2, ξ3) = ϕ + r = R0 + u. (11.1)

The components of the displacement vector u = uiEi are given as:

u1 = x1 − (1 − νεl)ξ2θ3 + (1 − νεl)ξ3θ2 + pΨ1 + ∂
2
ξ1
θ2.Ψ2 + ∂

2
ξ1
θ3.Ψ3;

u2 = x2 − (1 − νεl)ξ3θ1 − νεlξ2;

u3 = x3 − (1 − νεl)ξ2θ1 − νεlξ3.

(11.2)

where,

εl = ∂ξ1 x1 − ξ2.∂ξ1θ3 + ξ3.∂ξ1θ2 + ∂ξ1 p.Ψ1 (11.3)

The quantity εl is same as λ2
1 · d1 defined in Eq. 4.33, but for the linear small deformation case.

We extend our small deformation assumption to the following:

1. Contributions to Poisson’s effect due to bending and warping deformations are negligible

as compared to axial strains. Therefore,

εl = ∂ξ1 x1. (11.4)

2. Contributions of Poisson’s deformation on to bending and torsion are negligible. Therefore,

the deformation map simplifies to the following,

u1 = x1 − ξ2θ3 + ξ3θ2 + pΨ1 + ∂
2
ξ1
θ2.Ψ2 + ∂

2
ξ1
θ3.Ψ3;

u2 = x2 − ξ3θ1 − ν∂ξ1 x1.ξ2;

u3 = x3 − ξ2θ1 − ν∂ξ1 x1.ξ3.

(11.5)

3. The contribution of bending induced shear non-uniform warping is negligible. The section

constant arising out of non-uniform shear warping is negligible as compared to other section
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constant. The deformation map further simplifies to,

u1 = x1 − ξ2θ3 + ξ3θ2 + pΨ1;

u2 = x2 − ξ3θ1 − ν∂ξ1 x1.ξ2;

u3 = x3 − ξ2θ1 − ν∂ξ1 x1.ξ3.

(11.6)

4. To proceed further, we also assume the section to be symmetric to at least one principle

axes.

Considering linear isotropic St. Venant’s Kirchhoff material, we define the symmetric

Cauchy stress tensor σ and its strain conjugate τ as:

τi j =
1
2

(
∂ξiu j + ∂ξjui

)
;

σi j = 2Gτi j +

(
Eν

(1 + ν)(1 − 2ν)

)
τkkδi j .

(11.7)

Using the deformation map defined in Eq. (11.6), and the definition of stress-strain in Eq. (11.7),

the strain energy Ustrain, kinetic energy T and external work Wext can be obtained as:

Ustrain =
1
2

∫
Ω

σ : τ dΩ

=
1
2

∫ L

0

(
E A(∂ξ1 x1)

2 + GA(∂ξ1 x3 + θ2)
2 + GA(∂ξ1 x2 − θ3)

2 + G(I11 − Ik)(∂ξ1θ1)
2

+ EI22(∂ξ1θ2)
2 + EI33(∂ξ1θ3)

2 + GIk(p − ∂ξ1θ1)
2 + EΞ.(∂ξ1 p)2

+

(
GI11ν

2

1 + ν

)
(∂2
ξ1

x1)
2
)
dξ1;

(11.8)

T =
1
2

∫ L

0
ρ

(
A(∂t x2

1 + ∂t x2
2 + ∂t x2

3) + I33(∂tθ3)
2 + I22(∂tθ2)

2 + I11(∂tθ1)
2

+ ν2I11(∂t∂ξ1 x1)
2 + Ξ∂t p2

)
dξ1;

(11.9)

Wext =

∫ L

0
(N1x1 + N2x2 + N3x3 + M1θ1 + M2θ2 + M3θ3 + Npp) dξ1. (11.10)
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In the equation above,

A =
∫
B

dB; I22 =

∫
B

ξ2
2 dB; I33 =

∫
B

ξ2
3 dB; I11 = I22 + I33;

Ξ =

∫
B

Ψ
2
1 dB; Ik =

∫
B

∂ξ2Ψ
2
1 + ∂ξ3Ψ

2
1 dB =

∫
B

(ξ2∂ξ3Ψ1 − ξ3∂ξ2Ψ1) dB.
(11.11)

The external force and moment vectors are given by:

N (ξ1) = Ni(ξ1)Ei =

∫
Γ

σ.n dΓ +
∫
Ω

ρb dΩ;

M(ξ1) = Mi(ξ1)Ei =

∫
Γ

r × σ.n dΓ +
∫
Ω

ρr × b dΩ;

Np = E1 ·

(∫
Γ

Ψ1σ.n dΓ +
∫
Ω

ρΨ1b dΩ
)
.

(11.12)

We note that, for the case of small linear deformation case, the integration in the above equation

set can be carried out with respect to the undeformed state Ω0, with the boundary Γ0. The vector

n gives the surface normal vector.

We arrive at the governing equations of motion using Hamiltonian’s principle, such that

the action A is stationarized:

δA = δ(T −Ustrain +Wext) = 0. (11.13)

We obtain seven coupled Euler-Lagrangian equations of motion with the respective boundary

conditions. The governing equations and the boundary conditions for the axial deformation is

obtained as: (
Gν2I11
1 + ν

)
∂4
ξ1

x1 − (E A)∂2
ξ1

x1 − (ρI11ν
2)∂2

t ∂
2
ξ1

x1 + (ρA)∂2
t x1 = N1;[(

−E A∂ξ1 x1 − (ρI11ν
2)∂2

t ∂ξ1 x1 +

(
Gν2I11
1 + ν

)
∂3
ξ1

x1

)
δx1

] L

0
= 0;[((

Gν2I11
1 + ν

)
∂2
ξ1

x1

)
δ∂ξ1 x1

] L

0
= 0.

(11.14)
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The coupled equations for the torsion angle θ1 and warping amplitude p are obtained as:

ρΞ∂2
t p − EΞ∂2

ξ1
p + GIk(p − ∂ξ1θ1) = Np;[

EΞ∂ξ1 p.δp
] L

0 = 0;
(11.15)

and,
ρI11∂

2
t θ1 − ∂ξ1

(
GI11∂ξ1θ1 − GIk p

)
= M1;[ (

GI11∂ξ1θ1 − GIk p
)
.δθ1

] L
0 = 0.

(11.16)

The coupled equations for the bending angle θ2 and the mid-curve deformation component x3 are

obtained as:
ρA∂2

t x3 − GA.∂ξ1

(
θ2 + ∂ξ1 x3

)
= N3;[ (

GA(θ2 + ∂ξ1 x3)
)
.δx3

] L
0 = 0;

(11.17)

and,
ρI22∂

2
t θ2 + GA(θ2 + ∂ξ1 x3) − EI22∂

2
ξ1
θ2 = M2;[ (

EI22∂ξ1θ2
)
.δθ2

] L
0 = 0.

(11.18)

The coupled equations for the bending angle θ3 and the mid-curve deformation component x2 is

obtained as:
ρA∂2

t x2 + GA∂ξ1

(
θ3 − ∂ξ1 x2

)
= N2;[ (

GA(θ3 − ∂ξ1 x2)
)
.δx2

] L
0 = 0;

(11.19)

and,
ρI33∂

2
t θ3 + GA(θ3 − ∂ξ1 x2) − EI33∂

2
ξ1
θ3 = M3;[ (

EI33∂ξ1θ3
)
.δθ3

] L
0 = 0.

(11.20)

11.3 Modal analysis

To proceed further with the modal analysis, we non-dimensionalize the Euler-Lagrangian

equations of motion obtained in the previous section. We represent the mode shapes corresponding

to a non-dimensionalized degree of freedom by adding a tilde on the quantity. For example θ̃1n and
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p̃n represents the nth mode shape corresponding to θ1 and non-dimensionalized warping amplitude

p (defined later) respectively. Secondly, we use sin (α) = sα and cos (α) = cα interchangeably.

Lastly, we define shorthand notation of hyperbolic functions as sinh (α) = shα and cosh (α) = chα

that is used interchangeably.

11.3.1 Mode shape for θ1 and p

We consider the following definition of dimensionless quantities:

ξ1 =
ξ1
L

; t = t

√
EΞ

ρI11L4 ; p = pL; θ1(ξ1, t) = θ1(ξ1, t) = θ1;

β2 =
E
G

; γ2 =
Ξ

I11L2 ; α2 =
Ik

I11
; N p =

NpL
GI11

; M1 =
M1L2

GI11
.

(11.21)

We note that if Ik < 0, then α is a complex number. Substituting these quantities into equations

(11.15) and (11.16), we get non-dimensionalized but coupled equations as:

β2γ4∂2
t p − β2γ2∂2

ξ1
p + α2(p − ∂ξ1

θ1) = N p;[
∂ξ1

p.δp
]1

0
= 0;

(11.22)

and,
β2γ2∂2

t θ1 − ∂
2
ξ1
θ1 + α

2∂ξ1
p = M1;[(

∂ξ1
θ1 − α

2p
)
.δθ1

]1

0
= 0.

(11.23)

The non-dimensionalized uncoupled Euler-Lagrangian equations can be obtained from Eq. (11.22)

and (11.23) as:

β4γ6∂4
t p + α2β2γ2∂2

t p − β2γ4(β2 + 1)∂2
ξ1
∂2

t p + β2γ2∂4
ξ1

p + α2(α2 − 1)∂2
ξ1

p

= α2∂ξ1
M1 + β

2γ2∂2
t N p − ∂

2
ξ1

N p;
(11.24)

−β4γ6∂4
t θ1 − α

2β2γ2∂2
t θ1 + β

2γ4(β2 + 1)∂2
ξ1
∂2

t θ1 − β
2γ2∂4

ξ1
θ1 − α

2(α2 − 1)∂2
ξ1
θ1

= −α2M1 − β
2γ4∂2

t M1 + β
2γ2∂2

ξ1
M1 + α

2∂ξ1
N p.

(11.25)
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For modal analysis, we consider the case of free vibration and assume all the external forces to

vanish. We assume a solution of form p = eλξ1 cosωt (or similar form of θ1) and substitute it in

Eq. (11.24), yielding the characteristic equations:

(−1 + α2)λ2 +

(
β2γ2

α2

)
λ4 − (β2γ2)ω2 +

(
β2γ4

α2

)
(β2 + 1)λ2ω2 +

(
β4γ6

α2

)
ω4 = 0. (11.26)

The characteristic equation leads to four complex roots:

λ1,2 = ±is1; (11.27)

λ3,4 = ±is2. (11.28)

where,

s1 =

√√√√√√√√α2

(
α2 +

√
β4(β2−1)

2
γ8ω4

α4 +
2β2γ4ω2(α2(β2+1)+β2−1)

α2 +
(
α2 − 1

)2
− 1

)
2β2γ2 +

1
2

(
β2 + 1

)
γ2ω2;

(11.29)

s2 =

√√√√√√√√α4 − α2

(√
β4(β2−1)

2
γ8ω4

α4 +
2β2γ4ω2(α2(β2+1)+β2−1)

α2 +
(
α2 − 1

)2
+ 1

)
+ β2 (

β2 + 1
)
γ4ω2

2β2γ2 .

(11.30)

Here, s1,s2 ∈ R. Therefore, the mode shapes can be written as:

p =
(
c1 cos (s1ξ1) + c2 sin (s1ξ1) + c3 cos (s2ξ1) + c4 sin (s2ξ1)

)
cos (ωt);

θ1 =
(
c5 cos (s1ξ1) + c6 sin (s1ξ1) + c7 cos (s2ξ1) + c8 sin (s2ξ1)

)
cosωt.

(11.31)

There are nine unknowns: eight ci and the natural frequency ω that is embedded in s1 and

s2. Eight constants can be specified by applying four boundary conditions and four continuity

conditions. The continuity conditions makes sure that the assumed solutions in (11.31) must

solve the coupled equation (11.22) and (11.23). To realize various mode shapes, we assume For
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β2 = 2.4, γ2 = 2.88 × 10−2 and α2 = −0.923.

11.3.1.1 Fixed-fixed boundary condition

For fixed-fixed boundary, we have

p(0, t) = p(1, t) = 0;

θ1(0, t) = θ1(1, t) = 0.
(11.32)

We impose these boundary conditions on the Eq. (11.31) and ensure continuity as mentioned

before. We obtain eight conditions that can be represented in the form given below:

Z .c = 0, where, (11.33a)

c = [c1; c2; c3; c4; c5; c6; c7; c8]; (11.33b)

Z =



1 0 1 0 0 0 0 0

cs1 ss1 cs2 ss2 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 cs1 ss1 cs2 ss2

0 s2
1 − χ

2 0 0 −α2s1 0 0 0

s2
1 − χ

2 0 0 0 0 α2s1 0 0

0 0 0 s2
2 − χ

2 0 0 −α2s2 0

0 0 s2
2 − χ

2 0 0 0 0 α2s2



. (11.33c)

χ = βγω. (11.33d)

For equation (11.33a) to hold, we require the determinant of Z matrix to vanish, yielding

det (Z) =
1
2

(
2s1ss2

(
χ2 − s2

2

) (
s2ss2

(
s

2
1 − χ

2
)
+ s1ss1 (χ − s2) (χ + s2)

)
+ s2

(
s

2
1 − χ

2
) (

2s2ss1 ss2
(
s

2
1 − χ

2
)
+ s1

(
−4cs1cs2 + c2s2 + 3

) (
χ2 − s2

2

) ))
= 0.

(11.34)

303



We solve the above equation to obtain the natural frequencies ω of which the first five are

ω = {8.912, 23.527, 26.406, 38.114, 43.133}. The natural frequency ω can be obtained using the

equality ωt = ωt. The mode shape or the Eigenfunction is only determinable up to the arbitrary

scaling constant. Therefore, we obtain seven constants by solving any seven equations in the

equation set Eq. (11.33a) and normalize the mode shape to obtain the eighth constant. Figure

11.1 illustrates the first five mode shapes.

(a) Mode shapes p̃n for 1 ≤ n ≤ 5 (b) Mode shapes θ̃1n for 1 ≤ n ≤ 5

Figure 11.1: Mode shapes for the warping amplitude p and θ1 considering the fixed-fixed
boundary.

11.3.1.2 Fixed-free boundary condition

At the fixed boundary, we have displacement boundary conditions, whereas at the free

boundary, we impose the force boundary conditions, such that

p(0, t) = θ1(0, t) = 0;

∂ξ1
p(1, t) = 0; ∂ξ1

θ1(1, t) − α2∂ξ1
p(1, t) = 0

(11.35)
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We obtain eight simultaneous equations in the coefficient ci that can be written in the form defined

in Eq. (11.33a), such that:

Z =



1 0 1 0 0 0 0 0

0 0 0 0 −s1ss1 s1cs1 −s2ss2 s2cs2

0 0 0 0 1 0 1 0

−s1ss1 s1cs1 −s2ss2 s2cs2 −α2cs1 −α
2ss1 −α

2cs2 −α
2ss2

0 s2
1 − χ

2 0 0 −α2s1 0 0 0

s2
1 − χ

2 0 0 0 0 α2s1 0 0

0 0 0 s2
2 − χ

2 0 0 −α2s2 0

0 0 s2
2 − χ

2 0 0 0 0 α2s2



. (11.36)

The zero determinant condition yields,

det (Z) = − s1s2cs1cs2
(
−2s2

1 χ
2 − 2s2

2 χ
2 + s4

1 + s
4
2 + 2χ4

)
− 2s1s2

(
s

2
1 − χ

2
) (
χ2 − s2

2

)
−

(
s

2
1 + s

2
2

)
ss1 ss2

(
s

2
1 − χ

2
) (
s

2
2 − χ

2
)
= 0.

(11.37)

We solve the Eq. (11.37) for ω, yielding the first five non-dimensional natural frequencies as

ω = {11.888, 17.956, 31.622, 34.408, 46.462}. The mode shapes can be obtained using the

approach described in section 11.3.1.1. Figures 11.2 illustrates the first five mode shape for

fixed-free boundary.

(a) Mode shapes p̃n for 1 ≤ n ≤ 5 (b) Mode shapes θ̃1n for 1 ≤ n ≤ 5

Figure 11.2: Mode shapes for the warping amplitude p and θ1 considering the fixed-free
boundary.
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11.3.1.3 Free-free boundary condition

We assume force boundary condition at both ends as,

∂ξ1
p(0, t) = 0; ∂ξ1

θ1(0, t) − α2∂ξ1
p(0, t) = 0;

∂ξ1
p(1, t) = 0, ∂ξ1

θ1(1, t) − α2∂ξ1
p(1, t) = 0.

(11.38)

The Z matrix obtained after imposing these boundary conditions along with the continuity

conditions is:

Z =



0 0 0 0 0 s1 0 s2

0 0 0 0 −s1ss1 s1cs1 −s2ss2 s2cs2

0 s1 0 s2 −α2 0 −α2 0

−s1ss1 s1cs1 −s2ss2 s2cs2 −α2cs1 −α
2ss1 −α

2cs2 −α
2ss2

0 s2
1 − χ

2 0 0 −α2s1 0 0 0

s2
1 − χ

2 0 0 0 0 α2s1 0 0

0 0 0 s2
2 − χ

2 0 0 −α2s2 0

0 0 s2
2 − χ

2 0 0 0 0 α2s2



(11.39)

The zero determinant condition yields,

det (Z) =2s2s3
1
(
cs1cs2 − 1

) (
s

2
2 − χ

2
)
+ 2s2s1χ2 (

cs1cs2 − 1
) (
χ2 − s2

2

)
+ ss1 ss2s

2
1 χ

4

− 2ss1 ss2s
4
1 χ

2 + ss1 ss2
(
s

3
2 − s2χ

2
)

2 + ss1 ss2s
6
1 = 0.

(11.40)

We solve the Eq. (11.40) for ω, using same parameters used before, yielding the first six

non-dimensional natural frequencies as ω = {0, 12.272, 22.480, 26.003, 39.726, 41.778}. We

note that ω = 0 is a trivial solution to the previously discussed boundary conditions. However, for

this boundary condition, the Eigenfunction corresponding to ω = 0 reflects the rigid body mode

for θ1. Figure 11.3 illustrates the first six mode shape for fixed-free boundary.
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(a) Mode shapes p̃n for 1 ≤ n ≤ 6 (b) Mode shapes θ̃1n for 1 ≤ n ≤ 6

Figure 11.3: Mode shapes for the warping amplitude p and θ1 considering the free-free
boundary.

11.3.2 Mode shape for θ2 and x3

We consider the following definition of dimensionless quantities:

ξ1 =
ξ1
L

; t = t

√
EI22

ρAL4 ; x3 =
x3
L

; θ2(ξ1, t) = θ2(ξ1,θt) = θ2; β2 =
E
G

; R2
ξ2
=

I22

AL2 .
(11.41)

In the equation above, Rξ2 defines the radius of gyration of the cross-section about E2 axis.

Substituting these quantities into the Euler-Lagrangian equations for θ2 and x3 in Eq. (11.17) and

(11.18) leads to the non-dimensional equations of motion as,

β2R2
ξ2
∂2

t x3 − ∂
2
ξ1

x3 − ∂ξ1
θ2 = N3;[

(∂ξ1
x3 + θ2).δx3

]1

0
= 0;

(11.42)

and,
β2R4

ξ2
∂2

t θ2 − β
2R2

ξ2
∂2
ξ1
θ2 + θ2 + ∂ξ1

x3 = M2;[
∂ξ1
θ2.δθ2

]1

0
= 0.

(11.43)

We can obtained the uncoupled non-dimensionalized set of governing equations like before.

We assume a solution of form x3 = eλξ1 cosωt (or similar form of θ2) and substitute it in the

uncoupled non-dimensionalized equation yielding the characteristic equations:

λ2ω2
(
−β2R2

ξ2
− R2

ξ2

)
− β2ω4R4

ξ2
+ ω2

− λ4 = 0; (11.44)
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The characteristic equation leads to four roots (2 complex and two real):

λ1,2 = ±i

√
1
2
ω

( (
β2 + 1

)
ωR2

ξ2
+

√(
β2 − 1

)2
ω2R4

ξ2
+ 4

)
= ±is1; (11.45)

λ3,4 = ±i

√
1
2
ω

( (
−β2 − 1

)
ωR2

ξ2
+

√(
β2 − 1

)2
ω2R4

ξ2
+ 4

)
= ±s2. (11.46)

Here, s1,s2 ∈ R. Therefore, the mode shapes can be written as:

x3 =
(
c1 cos (s1ξ1) + c2 sin (s1ξ1) + c3 cosh (s2ξ1) + c4 sinh (s2ξ1)

)
cos (ωt);

θ2 =
(
c5 cos (s1ξ1) + c6 sin (s1ξ1) + c7 cosh (s2ξ1) + c8 sinh (s2ξ1)

)
cosωt.

(11.47)

As before, there are nine unknowns: eight ci and the natural frequency ω that is embedded in s1

and s2. Eight constants can be specified by applying four boundary conditions and four continuity

conditions. The continuity conditions makes sure that the assumed solutions in (11.47), must solve

the coupled equation (11.42) and (11.43). To investigate mode shapes for various boundaries, we

assume Rξ2 = 0.0289 and β2 = 2.4.

11.3.2.1 Pinned-pinned boundary condition:

We enforce the following boundary conditions:

x3(0, t) = 0; ∂ξ1
θ2(0, t) = 0;

x3(1, t) = 0; ∂ξ1
θ2(1, t) = 0.

(11.48)

We obtain eight simultaneous equations in ci by enforcing the boundary conditions and continuity

conditions, that can be written in the form Z .c = 0. The vanishing determinant of Z matrix yields,

det (Z) = s2
1s

2
2

(
s

2
1 + s

2
2

)
2ss1shs2 = 0. (11.49)

The non trivial solution for the equation above is s1 = nπ, where n ∈ Z+ − {0}. Solving the

equation above for s1 − nπ yields two group of natural frequencies ω as,
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ω =

√√√√√
π2 (

β2 + 1
)

n2R2
ξ2
−

√
π4 (

β2 − 1
)2 n4R4

ξ2
+ 2π2 (

β2 + 1
)

n2R2
ξ2
+ 1 + 1

2β2R4
ξ2

;

ω =

√√√√√
π2 (

β2 + 1
)

n2R2
ξ2
+

√
π4 (

β2 − 1
)2 n4R4

ξ2
+ 2π2 (

β2 + 1
)

n2R2
ξ2
+ 1 + 1

2β2R4
ξ2

.

(11.50)

The first set of natural frequencies corresponds to bending about E2, whereas the second set

of natural frequencies corresponds to shear mode. The first set of natural frequencies are

ω = {9.727, 37.372, 79.286, 131.479, 190.672}, whereas the shear mode frequencies are

ω = {755.083, 786.158, 833.756, 893.834, 963.046}. In this case, we obtain an analytic form of

mode shapes x̃3n and θ̃2n as,

x̃3n = c2 sin(πnξ1);

θ̃2n = −c2

(
π2n2 − β2ω2R2

ξ2

πn

)
cos(πnξ1).

(11.51)

The normalized mode shapes are obtained as:

x̃3n =
√

2 sin(πnξ1);

θ̃2n = −
√

2 cos(πnξ1).

(11.52)

For simplicity, we have used the displacement variables x3 and θ2 as the variable representing the

mode shapes. Figure 11.4 illustrates the first five mode shapes.

(a) Mode shapes x̃3n for 1 ≤ n ≤ 5 (b) Mode shapes θ̃2n for 1 ≤ n ≤ 5

Figure 11.4: Mode shapes for x3 and θ2 considering the pinned-pinned boundary.
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11.3.2.2 Fixed-fixed boundary condition

We impose the following boundary conditions:

x3(0, t) = θ2(0, t) = 0;

x3(1, t) = θ2(1, t) = 0; .
(11.53)

The determinant condition on the Z matrix arrived at by enforcing the boundary conditions and

the continuity requirements is given by:

det (Z) = −
1
2
s1s2

(
4chs1chs2 − ch2s2 − 3

) (
s

2
1 − β

2ω2R2
ξ2

) (
β2ω2R2

ξ2
+ s2

2

)
+ s1shs2

(
β2ω2R2

ξ2
+ s2

2

) (
β2ω2R2

ξ2

(
s2shs2 + s1ss1

)
+ s1s2

(
s2ss1 − s1shs2

) )
+ ss1s

2
2shs2

(
−

(
s

2
1 − β

2ω2R2
ξ2

)
2
)
= 0.

(11.54)

The natural frequencies can be by solving above equation. The first five natural frequencies

are obtained as ω = {21.172,54.727,99.706,152.466,210.595} (assuming Rξ2 = 0.0289 and

β2 = 2.4). Figure 11.5 illustrates the first five mode shapes for this case.

(a) Mode shapes x̃3n for 1 ≤ n ≤ 5 (b) Mode shapes θ̃2n for 1 ≤ n ≤ 5

Figure 11.5: Mode shapes for x3 and θ2 considering the fixed-fixed boundary.

11.3.2.3 Fixed-free boundary condition

The boundary conditions for this case are:

x3(0, t) = θ2(0, t) = 0;

∂ξ1
θ2(1, t) = 0; θ2(1, t) + ∂ξ1

x3(1, t) = 0.
(11.55)
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The determinant condition on the Z matrix yields:

det (Z) =s1s2chs1chs2
(
2β4ω4R4

ξ2
+ 2β2

(
s

2
2 − s

2
1

)
ω2R2

ξ2
+ s4

1 + s
4
2

)
+ 2s1s2

(
s

2
1 − β

2ω2R2
ξ2

) (
β2ω2R2

ξ2
+ s2

2

)
+

(
s

2
1 − s

2
2

)
ss1shs2

(
β2ω2R2

ξ2
− s2

1

) (
β2ω2R2

ξ2
+ s2

2

)
= 0.

(11.56)

The first five non-dimensional natural frequencies, for same parameters Rξ2 and β, obtained by

solving the equation above are ω = {3.492,21.040,55.712,101.807,156.041}. Figure below

illustrates the mode shapes.

(a) Mode shapes x̃3n for 1 ≤ n ≤ 5 (b) Mode shapes θ̃2n for 1 ≤ n ≤ 5

Figure 11.6: Mode shapes for x3 and θ2 considering the fixed-free boundary.

11.3.2.4 Free-free boundary condition

The boundary conditions for this case are:

∂ξ1
θ2(0, t) = 0; θ2(0, t) + ∂ξ1

x3(0, t) = 0;

∂ξ1
θ2(1, t) = 0; θ2(1, t) + ∂ξ1

x3(1, t) = 0.
(11.57)

The vanishing determinant condition for this case is:

det (Z) = − 2s1s2chs1chs2
(
s

2
1 − β

2ω2R2
ξ2

) (
β2ω2R2

ξ2
+ s2

2

)
+ 2s1s2

(
s

2
1 − β

2ω2R2
ξ2

) (
β2ω2R2

ξ2
+ s2

2

)
+ ss1shs2

(
β4

(
s

2
1 − s

2
2

)
ω4R4

ξ2
− 2β2

(
s

4
1 + s

4
2

)
ω2R2

ξ2
+ s6

1 − s
6
2

)
= 0.

(11.58)
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Solving the above equation for previously assumed parameters yields the natural frequency, the

first six of them being ω = {0, 21.660, 56.656, 104.022, 159.795, 221.170}. The Eigenfunction

corresponding to ω = 0 represents the rigid body mode for θ2 and x3. The figure below presents

the mode shapes.

(a) Mode shapes x̃3n for 1 ≤ n ≤ 6 (b) Mode shapes θ̃2n for 1 ≤ n ≤ 6

Figure 11.7: Mode shapes for x3 and θ2 considering the free-free boundary.

11.3.3 Mode shape for θ3 and x2

We consider the following definition of dimensionless quantities:

ξ1 =
ξ1
L

; t = t

√
EI33

ρAL4 ; x2 =
x2
L

; θ3(ξ1, t) = θ3(ξ1,θt) = θ3; β2 =
E
G

; R2
ξ3
=

I33

AL2 .
(11.59)

In the equation above, Rξ3 defines the radius of gyration of the cross-section about E3 axis.

Substituting these quantities into the Euler-Lagrangian equations for θ3 and x2 given in Eq. (11.19)

and (11.20) leads to the non-dimensional equations of motion as,

β2R2
ξ3
∂2

t x2 − ∂
2
ξ1

x2 + ∂ξ1
θ3 = N2;[

(θ3 − ∂ξ1
x2).δx2

]1

0
= 0;

(11.60)

and,
β2R4

ξ3
∂2

t θ3 − β
2R2

ξ3
∂2
ξ1
θ3 + θ3 − ∂ξ1

x2 = M3;[
∂ξ1
θ3.δθ3

]1

0
= 0.

(11.61)

312



The non-dimensional equation of motions obtained in Eq. (11.60) and (11.61) are similar in

the form to the equations (11.42) and (11.42) (for the quantities θ2 and x3). We omit the modal

analysis for θ3 and x2 because the results are identical to the modal analysis for θ2 and x3 carried

out in section 11.3.2.

11.3.4 Mode shape for x1

To obtain the non-dimensional governing equation of motion, we define the following,

ξ1 =
ξ1
L

; t = t

√
E
ρL2 ; x1 =

x1
L

; η2 =
I11ν

2

AL2 ; ζ2 =
β2

1 + ν
. (11.62)

Substituting the above definitions into Eq. (11.14), we obtain the non-dimensionalized equation

of motion as,
ζ2η2∂4

ξ1
x1 − ∂

2
ξ1

x1 − η
2∂2

t ∂
2
ξ1

x1 + ∂
2
t x1 = N1;[(

−∂ξ1
x1 − η

2∂2
t ∂ξ1

x1 + η
2ζ2∂3

ξ1
x1

)
.δx1

] l

0
= 0;[

∂2
ξ1

x1.δ∂ξ1
x1

] l

0
= 0.

(11.63)

We consider a solution to free vibration problem of form x1 = eλξ1 cosωt and substitute it in Eq.

(11.63) yielding the characteristic equation as,

ζ2η2λ4 + η2λ2ω2
− λ2 − ω2 = 0; (11.64)

The characteristic equation leads to four roots (two complex and two real):

λ1 = ±i

√√√√√√√
η2ω2

(
4ζ2 + η2ω2

− 2
)
+ 1 + η2ω2

− 1

2ζ2η2 = ±is1;
(11.65)

λ3 = ±

√√√√√√√
η2ω2

(
4ζ2 + η2ω2

− 2
)
+ 1 − η2ω2 + 1

2ζ2η2 = ±s2.
(11.66)
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Here, s1,s2 ∈ R. Therefore, the mode shapes can be written as:

x1 =
(
c1 cos (s1ξ1) + c2 sin (s1ξ1) + c3 cosh (s2ξ1) + c4 sinh (s2ξ1)

)
cos (ωt) (11.67)

There are five unknowns: four ci and the natural frequency ω that is embedded in s1 and s2. Four

constants can be specified by applying four boundary conditions. The fifth constant is obtained

by normalizing the mode shape. We consider the four boundary conditions with ζ = 0.544 and

η = 0.1.

11.3.4.1 Pinned-pinned boundary condition

We enforce the following boundary conditions:

x1(0, t) = 0; ∂2
ξ1

x1(0, t) = 0; x1(1, t) = 0; ∂2
ξ1

x1(1, t) = 0. (11.68)

We obtain four simultaneous equations in ci by enforcing the boundary conditions that can be

written in the form Z .c = 0, such that:

Z︷                                     ︸︸                                     ︷

0 1 0 1

ss1 cs1 shs2 chs2

0 −s2
1 0 s2

2

−s2
1ss1 −cs1s

2
1 s2

2shs2 chs2s2
2


.

c︷︸︸︷

c1

c2

c3

c4


=

0︷︸︸︷

0

0

0

0


. (11.69)

For Eq. (11.69) to be true and solvable (ignoring the trivial solution c = 0), we require:

det (Z) = ss1shs2(s
2
1 + s

2
2)

2 = 0. (11.70)

The solution for the equation above is s1 = nπ, where n ∈ Z+ − {0} and s1 = 0. The latter solution

is trivial for the considered boundary. The natural frequency ω can be solved by solving for

s1(ω) = nπ, that yields a positive and a negative solution. Since, the natural frequency ω > 0, we
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ignore the negative solution and obtain,

ωn =
π
√
π2ζ2η2n4 + n2√
π2η2n2 + 1

. (11.71)

The mode shape can be obtained by solving for any three ci in the system of Eq. (11.69), yielding

x̃1n = c1 sin (nπξ1). (11.72)

The normalized mode shape is obtained as:

x̃1n =
√

2 sin (πnξ1). (11.73)

Figure 11.8 illustrates the first five mode shapes.

Figure 11.8: Mode shapes x̃1n for 1 ≤ n ≤ 5 for the pinned-pinned support.

11.3.4.2 Fixed-fixed boundary condition

We enforce the following boundary conditions:

x1(0, t) = 0; ∂ξ1
x1(0, t) = 0; x1(1, t) = 0; ∂ξ1

x1(1, t) = 0. (11.74)
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We obtain four simultaneous equations in ci by enforcing the boundary conditions as:

0 1 0 1

ss1 cs1 shs2 chs2

s1 0 s2 0

cs1 s1 −s1ss1 chs2 s2 s2shs2


.



c1

c2

c3

c4


=



0

0

0

0


. (11.75)

The zero determinant condition can then be obtained as:

det (Z) = 2s1s2cs1chs2 +
(
s

2
1 − s

2
2

)
ss1shs2 − 2s1s2 = 0. (11.76)

Unlike the pinned-pinned case, there is no closed form solution of Eq. (11.76). For the assumed ζ

and η, the first five natural frequencies are obtained as ω = {3.182 ,6.354, 9.507, 12.630, 15.715}.

Figure 11.9 illustrates the first five mode shapes.

Figure 11.9: Mode shapes x̃1n for 1 ≤ n ≤ 5 for the fixed-fixed support.
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11.3.4.3 Fixed-free boundary condition

We enforce the following boundary conditions:

x1(0, t) = 0; ∂ξ1
x1(0, t) = 0;

−∂ξ1
x1(1, t) − η2∂2

t ∂ξ1
x1(1, t) + η2ζ2∂3

ξ1
x1(1, t) = 0; ∂2

ξ1
x1(1, t) = 0.

(11.77)

The zero determinant condition is,

det (Z) =s1s2

(
s2
1

(
cs1chs2

(
η2ω2 + 2ζ2η2

s
2
2 − 1

)
− η2ω2 + 1

)
− s2

2

(
η2ω2

− 1
) (

cs1chs2 − 1
)

+ ζ2η2s4
1 + ζ

2η2
s

4
2 − s2ss1 s1shs2

(
2η2ω2 + ζ2η2

s
2
2 − 2

)
+ ζ2η2

s2ss1 s3
1shs2

)
= 0.

(11.78)

The first five natural frequencies are obtained as ω = {1.645 ,4.611, 6.939, 10.273, 11.755}.

Figure 11.10 illustrates the first five mode shapes.

Figure 11.10: Mode shapes x̃1n for 1 ≤ n ≤ 5 for the fixed-free support.
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11.3.4.4 Free-free boundary condition

We enforce the following boundary conditions:

−∂ξ1
x1(0, t) − η2∂2

t ∂ξ1
x1(0, t) + η2ζ2∂3

ξ1
x1(0, t) = 0; ∂2

ξ1
x1(0, t) = 0;

−∂ξ1
x1(1, t) − η2∂2

t ∂ξ1
x1(1, t) + η2ζ2∂3

ξ1
x1(1, t) = 0; ∂2

ξ1
x1(1, t) = 0.

(11.79)

The zero determinant condition yields,

det (Z) =2ζ2η2
s2s

3
1
(
cs1chs2 − 1

) (
η2ω2 + ζ2η2

s
2
2 − 1

)
− 2s2s1

(
η2ω2

− 1
) (

cs1chs2 − 1
) (
η2ω2 + ζ2η2

s
2
2 − 1

)
+ ζ4η4

s
2
2ss1s

4
1shs2

− ss1s
2
1shs2

((
η2ω2

− 1
)2
+ ζ4η4

s
4
2 + 4ζ2η2

s
2
2

(
η2ω2

− 1
))

+ s2
2ss1

(
η2ω2

− 1
)2

shs2 = 0.

(11.80)

The first five natural frequencies are obtained as ω = {1.645, 4.611, 6.939, 10.273, 11.755}.

Figure 11.11 illustrates the first five mode shapes.

Figure 11.11: Mode shapes x̃1n for 1 ≤ n ≤ 5 for the free-free support.
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11.4 Conclusion

This chapter deals with the modal analysis of the beam theory detailed in this dissertation

in the domain of small strain and small deformations considering St. Venant’s and Kirchhoff

linearly elastic material model. The governing equations of motion obtained in chapter 7 and 8

are non-linear and coupled. Small strain and small deformation assumption simplify the beam

kinematics and yields seven linear uncoupled Euler-Lagrange equation of motion for each primary

degree of freedom. The mode shapes and natural frequencies for each deformation variable are

obtained.

319



Chapter 12

Conclusions and Future Work

In this chapter, we summarize the concepts discussed and the results obtained in this

dissertation. We dedicate a section to elaborate on the new line of research that can potentially

branch out of this work.

12.1 Conclusions

The goal of this work is to investigate the differential geometry of framed space curves and

explore its engineering applications. This research, therefore, utilizes the application of differential

geometry and mechanics to define the configuration of single-manifold characterized systems and

eventually helps obtain the governing differential equations to investigate the evolution of these

systems. Most importantly, this work leads to the development of an advanced non-linear beam

theory, shape reconstruction of slender structures, path-estimation, and computational graphics.

Chapter 1 details various curve framing techniques. There are multiple ways to frame a

space curve, ranging from intrinsic Frenet-Serret and relatively parallel adapted frames (RPAF)

to the system-dependent material-adapted frame (MAF) and even more general material frame

(MF). Unlike the Frenet-Serret and RPAF, the material frame is conveniently defined in terms

of the parameters associated with the system configuration and is free of singularities. Hence,
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various curve framing approaches and the relationship between these frames and the curvatures

associated with them are studied in chapter 1. The concepts of proper orthogonal Lie group, finite

rotations, tangent space, and exponential maps are also discussed.

In chapter 2, we exploit the theoretical discussions and mathematical constructions

explored in chapter 1 to develop path-estimation techniques and applications in computer graphics.

The evolution of the system can be mathematically defined by a state space. An approach to

approximate the state space of a single-manifold characterized system (like drone or swarm of

drones) using a limited number of the material linear and angular velocity vector is proposed. The

relationships are applied to generate some complicated structures like double helix intertwined

about a space curve, a leaf, and an entire plant.

Chapter 1 and 2 deals with the material and spatial forms of curvature of a framed space

curve. Chapter 3 is a theoretical extension to chapter 1 as it details higher-order derivatives,

variations, and co-rotational derivatives of curvature tensor. Parameterizing the rotation tensor

using the Gibbs vector yields a suitable formula of rotation tensor that helps in deriving a closed

form formula to obtain any order derivative of the curvature tensor as the summation of functions

of the parameterizing quantity and its derivatives. A linearized updating algorithm for curvature

and its derivatives when the configuration of the curve acquires a small increment is obtained. The

results presented in this chapter can be readily used in numerical implementation of higher-order

geometrically-exact beam/rod theory that requires obtaining and updating higher order derivatives

of curvatures (discussed in chapter 10).

Chapter 4 and 5 elucidates the enhanced kinematics of higher-order non-linear geometrically-

exact beams that incorporates bending curvatures, torsional curvatures, shear, axial strains, and

fully-coupled Poisson’s wand warping effects. The primary reason to investigate the coupling

between Poisson’s and warping effect (along with the contribution to warping due to torsional and

bending induced shear) and develop a fully-coupled Poisson’s transformation is to further refine

the kinematics of the Cosserat beam model. This is beneficial for both forward modeling analyses
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and solving inverse problems like shape reconstruction from strain measurements. Chapter 5 is

dedicated to investigating the inconsistencies in the differential equation for warping obtained in

chapter 4 and arriving at a simplified warping function.

The kinematics developed in chapter 4 is used to establish a measurement model of discrete

and finite-length strain gauges attached to the surface of the beam (or embedded into the beam).

The discrete strain gauge measurement model is then used to develop a global shape reconstruction

algorithm of the Cosserat beam subjected to large deformation. The idea is to obtain the global

shape of the rod using a countable number of strain gauge measurements. The finite strain

parameters on to which the strain gauge reading depends (like mid-curve axial strain, curvatures

and their derivatives) at a given cross-section can be evaluated from the strain gauges reading

by inverting the set of scalar strain measurements. Once the material mid-curve strain vector

and the curvature vector at discrete cross-section locations are obtained, the mid-curve position

vector and the director triads can be estimated using similar techniques used in path-estimation

(like SPEG) described in chapter 2. Preliminary noise tolerance study and boundary condition

uncertainty studies show that the RMS error trends with the extraneous noise due to environmental

or measurement noise and with error in specifying the one boundary condition vector required for

inertial reference. The suggested reconstruction strategy is convergent and non-singular even if

the mid-curve has multiple points or segments of degeneracy.

Chapter 7 details the variational formulation of geometrically-exact Cosserat beams with

deforming cross-sections. The attempt to capture fully coupled Poisson’s and warping effect

(including bending induced non-uniform shear) results in the dependence of deformation map on

derivatives of curvature fields (up to second-order). This makes the calculation of variations rather

demanding. Detailed calculations of variations of kinematic quantities required to obtain the

weak form are performed. The strong and weak form of governing equations is obtained. Finally,

the variational formulation of the beam with a rigid cross-section (a special case) is discussed

in detail. Chapter 8 further extends the variational mechanics of the geometrically-exact beam
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by investigating the Poisson’s bracket formulation and Hamiltonian structure of the concerned

beam model. Various mathematical constructions like co-tangent space, co-tangent bundle, phase

space and the associated duality (or metric) are discussed. The Hamiltonian is obtained via the

Legendre transformation of the Lagrangian.

Chapter 9 details the time- and rate-independent, multi-axial linear constitutive relations

restricted to large deformation, but small strain assumption is considered for isotropic Saint-

Venant/Kirchhoff material. Chapter 10 delineates consistent linearization of the weak form and

details finite element formulation of the geometrically-exact non-linear beam with enhanced

kinematics. The matrix form of equilibrium equations is derived and solved using Newton

Raphson’s iterative algorithm using uniformly reduced Gauss quadrature. The numerical

simulations compare and discuss the results obtained using the current beam model (referred to as

Chadha-Todd beam or CT beam) with co-rotational formulation (CF), Simo-Reissener beam (SR),

and Simo Vu-Quoc beam (SV). Finally, chapter 11, tackles the modal analysis of the beam model

developed in previous chapters. The small strain and small deformation assumption simplify

the beam kinematics and yields seven linear uncoupled Euler-Lagrange equation of motion for

each primary degree of freedom. The mode shapes and natural frequencies for each deformation

variable are obtained.

12.2 Future Work

1. Numerical solutions using other approaches: The comprehensive kinematics that was

developed for Cosserat rods gives a simple but accurate description of deformation. However,

the governing differential equations have higher regularity requirements. Numerical solu-

tions were developed using standard FEM. Other approaches to numerical implementation

like isogeometric and mesh-free finite element analysis using Reproducing Kernel Particle

Method (RKPM) might be more suitable to solve the problem numerically. The prime
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motivation to implement these numerical methods is their suitability to solve problems

with higher regularity requirements. The finite element formulation presented here leads to

displacement-based elements and can be extended to force-based element formulation.

2. Material non-linearity: The variational mechanics of the beam derived here is general,

geometrically-exact, and is capable of defining beam subjected to large deformations and

finite strains. Except for the reducedmodeling of the beamusing a framed curve (or as a single

manifold structure) and prior knowledge of warping functions, no kinematic assumptions

are made. However, limitations are introduced when a linear Saint Venant’s/Kirchhoff

material model for the isotropic case is assumed. The linear constitutive law is valid for

small strain case. Further efforts could be directed to expand the current beam theory for

non-linear material with composite cross-sections (like a reinforced concrete beam) that

can capture damage and collapse of the structure.

3. Numerical implementation for dynamic effects and stability analysis: The numerical

implementation described in this thesis is limited to the static case using Newton-Raphson’s

iteration technique. A straightforward extension to the current work is to include the

dynamic effects and investigate the non-linear dynamic behavior of the beam. Secondly,

problems related to stability like lateral bifurcation can be numerically modeled using

arch-length control and other advanced non-linear solvers.

4. Analysis of non-conventional structures like DNA and bio-polymers: DNA (deoxyri-

bonucleic acid) molecules are stress-responsive, and in the case that they are mutated,

compressed or stretched, they can lead to serious deformities and illnesses in the body.

Thus, the investigation of DNA elasticity and stability is necessary. The mechanics

of a DNA molecule under mechanical stress can be studied within the framework of

geometrically-exact Cosserat rods.

5. Estimation of higher-order Riemannian manifold from the material curvature data:
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The path-estimation and shape sensing of slender rods using material strains and curvatures

(equivalently linear and angular velocity) can be further extended to higher-order manifold

problems like shape sensing of composite panels, membranes, motion of swarm of drones,

space-time fabric in general relativity, etc. The sensors like strain gauges or Inertial

Measurement Units (IMU) are attached to the structure; therefore, the sensor data are

obtained with respect to the deformed frame of reference and are local. Local curvatures

and strains associated with finite deformation can be used to obtain the state space of the

system using the idea of parallel-transport and nature of manifold under consideration.

6. Investigating errors in the problem of shape sensing and path-estimation: The issue

of dead-reckoning is observed in the problem of shape-sensing and path-estimation.

Understanding the relationship between the error structure of the sensors and the estimated

configuration is extremely useful to mitigate or minimize the errors and can be potentially

explored.

325



Bibliography

[1] J. Coolidge, “The story of tangents,” The American Mathematical Monthly, vol. 58, no. 7,
pp. 449–462, 1951.

[2] R. Descartes, La géométrie. Leiden, 1637.

[3] L. Euler, Introductio in analysin infinitorum. MM Bousquet, 1748.

[4] F. Frenet, “Sur les courbes a double courbure.,” Journal de mathématiques pures et
appliquées, pp. 437–447, 1852.

[5] J. A. Serret, “Sur quelques formules relatives à la théorie des courbes à double courbure.,”
Journal de mathématiques pures et appliquées, pp. 193–207, 1851.

[6] G. Darboux, Leçons sur la théorie générale des surfaces. 1894.

[7] T. A. Ivey and J. M. Landsberg, Cartan for beginners: differential geometry via moving
frames and exterior differential systems, vol. 61. American Mathematical Society Provi-
dence, RI, 2003.

[8] É. Cartan, “La géométrie des espaces de riemann,” 1925.

[9] E. J. Cartan, On manifolds with an affine connection and the theory of general relativity.
Bibliopolis, 1986.

[10] R. L. Bishop, “There is more than one way to frame a curve,” The American Mathematical
Monthly, vol. 82, no. 3, pp. 246–251, 1975.

[11] A. J. Hanson and H. Ma, “Parallel transport approach to curve framing,” Indiana University,
Techreports-TR425, vol. 11, pp. 3–7, 1995.

[12] E. Xargay, I. Kaminer, A. Pascoal, N. Hovakimyan, V. Dobrokhodov, V. Cichella, A. Aguiar,
and R. Ghabcheloo, “Time-critical cooperative path following of multiple unmanned
aerial vehicles over time-varying networks,” Journal of Guidance, Control, and Dynamics,
vol. 36, no. 2, pp. 499–516, 2013.

[13] K. Zahradová, Frame defined by parallel transport for curves in any dimension,. Bachelor
Thesis, Czech Technical University, Prague., 2016.

326



[14] E. Kreyszig, Introduction to differential geometry and Riemannian geometry. University
of Toronto Press, 1968.

[15] M. P. Do Carmo, Riemannian geometry. Cambridge University Press, 1992.

[16] M. D. Todd, C. J. Stull, and M. Dickerson, “A local material basis solution approach
to reconstructing the three-dimensional displacement of rod-like structures from strain
measurements,” Journal of Applied Mechanics, vol. 80, no. 4, p. 041028, 2013.

[17] M. Chadha and M. D. Todd, “A generalized approach for reconstructing the three-
dimensional shape of slender structures including the effects of curvature, shear, torsion,
and elongation,” Journal of Applied Mechanics, vol. 84, no. 4, p. 041003, 2017.

[18] M. Chadha and M. D. Todd, “An improved shape reconstruction methodology for long
rod like structures using cosserat kinematics-including the poisson’s effect,” in Nonlinear
Dynamics, Volume 1, Proceedings of the 34th IMAC, A Conference and Exposition on
Structural Dynamics 2016, pp. 237–246, Springer, 2019.

[19] J. Argyris, “An excursion into large rotations,” Computer methods in applied mechanics
and engineering, vol. 32, no. 1-3, pp. 85–155, 1982.

[20] A. Ibrahimbegović, F. Frey, and I. Kožar, “Computational aspects of vector-like parametriza-
tion of three-dimensional finite rotations,” International Journal for Numerical Methods in
Engineering, vol. 38, no. 21, pp. 3653–3673, 1995.

[21] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[22] D. R. Wilkins, “William rowan hamilton: mathematical genius,” Physics World, vol. 18,
no. 8, p. 33, 2005.

[23] A. R. Klumpp, “Singularity-free extraction of a quaternion from a direction-cosine matrix,”
Journal of spacecraft and rockets, vol. 13, no. 12, pp. 754–755, 1976.

[24] R. A. Spurrier, “Comment on" singularity-free extraction of a quaternion from a direction-
cosine matrix",” Journal of spacecraft and rockets, vol. 15, no. 4, pp. 255–255, 1978.

[25] M. Ben-Ari, “A tutorial on euler angles and quaternions,” Weizmann Institute of Science,
Israel., 2014.

[26] M. Chadha and M. D. Todd, “On the material and material-adapted approaches to curve
framing with applications in path estimation, shape reconstruction, and computer graphics,”
Computers & Structures, vol. 218, pp. 60–81, 2019.

[27] F. C. Park, “Distance metrics on the rigid-body motions with applications to mechanism
design,” Journal of Mechanical Design, vol. 117, no. 1, pp. 48–54, 1995.

327



[28] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal ofMathematical
Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[29] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An introduction to splines for use in computer
graphics and geometric modeling. Morgan Kaufmann, 1995.

[30] P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares methods,”
Mathematics of computation, vol. 37, no. 155, pp. 141–158, 1981.

[31] D. Levin, “The approximation power of moving least-squares,” Mathematics of
Computation of the American Mathematical Society, vol. 67, no. 224, pp. 1517–1531,
1998.

[32] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods:
an overview and recent developments,” Computer methods in applied mechanics and
engineering, vol. 139, no. 1-4, pp. 3–47, 1996.

[33] J.-S. Chen, M. Hillman, and S.-W. Chi, “Meshfree methods: progress made after 20 years,”
Journal of Engineering Mechanics, vol. 143, no. 4, p. 04017001, 2017.

[34] M. Chadha andM. D. Todd, “A comprehensive kinematic model of single-manifold cosserat
beam structures with application to a finite strain measurement model for strain gauges,”
International Journal of Solids and Structures, vol. 159, pp. 58–76, 2019.

[35] M. Chadha and M. D. Todd, “On the derivatives of curvature of framed space curve and
their time-updating scheme,” Applied Mathematics Letters, 2019.

[36] M. Chadha and M. D. Todd, “On the derivatives of curvature of framed space curve and
their time-updating scheme: Extended version with matlab code,” arXiv of Differential
Geometry:1907.11271, 2019.

[37] F. Yiu, A geometrically exact thin-walled beam theory considering in-plane cross-section
distortion. PhD thesis, Cornell University, 2005.

[38] I. S. Sokolnikoff, R. D. Specht, et al., Mathematical theory of elasticity, vol. 83. McGraw-
Hill New York, 1956.

[39] E. Trefftz, “Die bestimmung der knicklast gedrückter, rechteckiger platten,” ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, vol. 15, no. 6, pp. 339–344, 1935.

[40] E. Elter, “Two formuli of the shear center,” Periodica PolytechnicaMechanical Engineering,
vol. 28, no. 2-3, pp. 179–193, 1984.

[41] C. Burgoyne and E. Brown, “Nonuniform elastic torsion,” International journal of
mechanical sciences, vol. 36, no. 1, pp. 23–38, 1994.

328



[42] E. Brown and C. Burgoyne, “Nonuniform elastic torsion and flexure of members with
asymmetric cross-section,” International journal of mechanical sciences, vol. 36, no. 1,
pp. 39–48, 1994.

[43] J. C. Simo and L. Vu-Quoc, “A geometrically-exact rod model incorporating shear and
torsion-warping deformation,” International Journal of Solids and Structures, vol. 27, no. 3,
pp. 371–393, 1991.

[44] V. V. Z, Thin walled elastic beams. English translation published for US Science Foundation
by Israel Program for Scientific Translation., 1961.

[45] J. N. Goodier, The buckling of compressed bars by torsion and flexure. Cornell University
Engineering Experiment Station, 1941.

[46] A. Gjelsvik, The theory of thin walled bars. Wiley New York, 1981.

[47] W. Y. Lin and K. M. Hsiao, “More general expression for the torsional warping of a
thin-walled open-section beam,” International journal of mechanical sciences, vol. 45,
no. 5, pp. 831–849, 2003.

[48] J. C. Simo, “A finite strain beam formulation. the three-dimensional dynamic problem. part
i,” Computer methods in applied mechanics and engineering, vol. 49, no. 1, pp. 55–70,
1985.

[49] M. Iura and S. Atluri, “On a consistent theory, and variational formulation of finitely
stretched and rotated 3-d space-curved beams,” Computational Mechanics, vol. 4, no. 2,
pp. 73–88, 1988.

[50] R. Kapania and J. Li, “A formulation and implementation of geometrically exact curved
beam elements incorporating finite strains and finite rotations,” Computational Mechanics,
vol. 30, no. 5-6, pp. 444–459, 2003.

[51] A. Cardona and M. Géradin, “A beam finite element non-linear theory with finite rotations,”
International journal for numerical methods in engineering, vol. 26, no. 11, pp. 2403–2438,
1988.

[52] A. Ibrahimbegović, “On finite element implementation of geometrically nonlinear reissner’s
beam theory: three-dimensional curved beam elements,” Computer methods in applied
mechanics and engineering, vol. 122, no. 1-2, pp. 11–26, 1995.

[53] M. Chadha and M. D. Todd, “An introductory treatise on reduced balance laws of cosserat
beams,” International Journal of Solids and Structures, vol. 126, pp. 54–73, 2017.

[54] B. Schutz, A first course in general relativity. Cambridge university press, 2009.

329



[55] M. Chadha and M. D. Todd, “A displacement reconstruction strategy for long, slender
structures from limited strain measurements and its application to underground pipeline
monitoring,” in International Conference on Experimental Vibration Analysis for Civil
Engineering Structures, pp. 317–327, Springer, 2017.

[56] K. S. Miller, “On the inverse of the sum of matrices,” Mathematics magazine, vol. 54,
no. 2, pp. 67–72, 1981.

[57] A. Friedman, M. Todd, K. Kirkendall, A. Tveten, and A. Dandridge, “Rayleigh backscatter-
based fiber optic distributed strain sensor with tunable gage length,” SPIE Smart
Structures/NDE 5050 Proceedings, San Diego, CA, March, pp. 2–6, 2003.

[58] R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang,
and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Sensor Systems and
Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring
2007, vol. 6530, p. 65301S, International Society for Optics and Photonics, 2007.

[59] M. Todd, D. Mascarenas, L. Overbey, T. Salter, C. Baldwin, and J. Kiddy, “Towards
deployment of a fiber optic smart tether for relative localization of towed bodies,” in
Proceedings of the SEM Annual Conference on Experimental Mechanics, Portland, OR,
June, pp. 6–9, 2005.

[60] J. E.Marsden andT. J.Hughes,Mathematical foundations of elasticity. Courier Corporation,
1994.

[61] R. Asaro and V. Lubarda, Mechanics of solids and materials. Cambridge University Press,
2006.

[62] E. Reissner, “On finite deformations of space-curved beams,” Zeitschrift für angewandte
Mathematik und Physik ZAMP, vol. 32, no. 6, pp. 734–744, 1981.

[63] L. Euler andC.A. Truesdell, The rationalmechanics of flexible or elastic bodies, 1638-1788.
Verlag nicht ermittelbar, 1960.

[64] J. Ericksen and C. Truesdell, “Exact theory of stress and strain in rods and shells,” Archive
for Rational Mechanics and Analysis, vol. 1, no. 1, pp. 295–323, 1957.

[65] Y.-B. Yang, J.-D. Yau, and L.-J. Leu, “Recent developments in geometrically nonlinear and
postbuckling analysis of framed structures,” Applied Mechanics Reviews, vol. 56, no. 4,
pp. 431–449, 2003.

[66] A. Travers and J. Thompson, “An introduction to the mechanics of dna,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 362, no. 1820, pp. 1265–1279, 2004.

[67] R. S. Manning, J. H. Maddocks, and J. D. Kahn, “A continuum rod model of sequence-
dependent dna structure,” The Journal of chemical physics, vol. 105, no. 13, pp. 5626–5646,
1996.

330



[68] I. Klapper, “Biological applications of the dynamics of twisted elastic rods,” Journal of
Computational Physics, vol. 125, no. 2, pp. 325–337, 1996.

[69] H. Lang, J. Linn, and M. Arnold, “Multi-body dynamics simulation of geometrically exact
cosserat rods,” Multibody System Dynamics, vol. 25, no. 3, pp. 285–312, 2011.

[70] D. H. Hodges, Nonlinear composite beam theory. American Institute of Aeronautics and
Astronautics, 2006.

[71] C. Meier, M. J. Grill, W. A. Wall, and A. Popp, “Geometrically exact beam elements
and smooth contact schemes for the modeling of fiber-based materials and structures,”
International Journal of Solids and Structures, vol. 154, pp. 124–146, 2018.

[72] A. Green and P. Naghdi, “On thermal effects in the theory of rods,” International Journal
of Solids and Structures, vol. 15, no. 11, pp. 829–853, 1979.

[73] H. Altenbach, M. Bîrsan, and V. A. Eremeyev, “On a thermodynamic theory of rods with
two temperature fields,” Acta Mechanica, vol. 223, no. 8, pp. 1583–1596, 2012.

[74] P. Duhem, “Le potentiel thermodynamique et la pression hydrostatique,” in Annales
scientifiques de l’École Normale Supérieure, vol. 10, pp. 183–230, 1893.

[75] E. Cosserat and F. Cosserat, Théorie des corps déformables. A. Hermann et fils„ 1909.

[76] A. Trautman, “Einstein-cartan theory,” arXiv preprint gr-qc/0606062, 2006.

[77] J. C. Simo and D. D. Fox, “On a stress resultant geometrically exact shell model. part i:
Formulation and optimal parametrization,” Computer Methods in Applied Mechanics and
Engineering, vol. 72, no. 3, pp. 267–304, 1989.

[78] A. C. Eringen, Microcontinuum field theories: I. Foundations and solids. Springer Science
& Business Media, 2012.

[79] H. Altenbach and V. A. Eremeyev, Generalized Continua-from the Theory to Engineering
Applications, vol. 541. Springer, 2012.

[80] G. Hay, “The finite displacement of thin rods,” Transactions of the American Mathematical
Society, vol. 51, no. 1, pp. 65–102, 1942.

[81] H. Cohen, “A non-linear theory of elastic directed curves,” International Journal of
Engineering Science, vol. 4, no. 5, pp. 511–524, 1966.

[82] A. B. Whitman and C. N. DeSilva, “A dynamical theory of elastic directed curves,”
Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 20, no. 2, pp. 200–212,
1969.

331



[83] A. E. Green, P. Naghdi, and M. Wenner, “On the theory of rods. i. derivations from the
three-dimensional equations,” Proc. R. Soc. Lond. A, vol. 337, no. 1611, pp. 451–483,
1974.

[84] A. Green, P. Naghdi, and M.Wenner, “On theory of rods ii: Derivations by direct approach,”
Proceedings of Royal Society, London A, vol. 337, pp. 485–507, 1974.

[85] S. S. Antman, “The theory of rods,” in Linear Theories of Elasticity and Thermoelasticity,
pp. 641–703, Springer, 1973.

[86] S. S. Antman, “Kirchhoff’s problem for nonlinearly elastic rods,” Quarterly of applied
mathematics, vol. 32, no. 3, pp. 221–240, 1974.

[87] S. S. Antman andK.B. Jordan, “Qualitative aspects of the spatial deformation of non-linearly
elastic rods.,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
vol. 73, p. 85–105, 1975.

[88] J. Argyris and S. Symeonidis, “Nonlinear finite element analysis of elastic systems under
nonconservative loading-natural formulation. part i. quasistatic problems,” Computer
methods in applied mechanics and engineering, vol. 26, no. 1, pp. 75–123, 1980.

[89] J. Argyris and S. Symeonidis, “Nonlinear finite element analysis of elastic systems under
nonconservative loading—natural formulation part ii. dynamic problems,” Computer
methods in applied mechanics and engineering, vol. 28, no. 2, pp. 241–258, 1980.

[90] E. Reissner, “On one-dimensional finite-strain beam theory: the plane problem,” Zeitschrift
für angewandte Mathematik und Physik ZAMP, vol. 23, no. 5, pp. 795–804, 1972.

[91] E. Reissner, “On one-dimensional large-displacement finite-strain beam theory,” Studies in
applied mathematics, vol. 52, no. 2, pp. 87–95, 1973.

[92] A. E. H. Love, A treatise on the mathematical theory of elasticity. Cambridge university
press, 2013.

[93] J. Simo and T. Hughes, “On the variational foundations of assumed strain methods,” Journal
of applied mechanics, vol. 53, no. 1, pp. 51–54, 1986.

[94] J. C. Simo and L. Vu-Quoc, “On the dynamics in space of rods undergoing largemotions— a
geometrically exact approach,” ComputerMethods in AppliedMechanics and Engineering,
vol. 66, no. 2, pp. 125–161, 1988.

[95] J. C. Simo and L. Vu-Quoc, “A three-dimensional finite-strain rod model. part ii: Compu-
tational aspects,” Computer methods in applied mechanics and engineering, vol. 58, no. 1,
pp. 79–116, 1986.

[96] M. Iura and S. Atluri, “Dynamic analysis of finitely stretched and rotated three-dimensional
space-curved beams,” Computers and Structures, vol. 29, no. 5, pp. 875 – 889, 1988.

332



[97] J. Mäkinen, “Total lagrangian reissner’s geometrically exact beam element without sin-
gularities,” International Journal for Numerical Methods in Engineering, vol. 70, no. 9,
pp. 1009–1048, 2007.

[98] D. Zupan andM. Saje, “Finite-element formulation of geometrically exact three-dimensional
beam theories based on interpolation of strain measures,” Computer Methods in Applied
Mechanics and Engineering, vol. 192, no. 49-50, pp. 5209–5248, 2003.

[99] E. Zupan and D. Zupan, “On conservation of energy and kinematic compatibility in
dynamics of nonlinear velocity-based three-dimensional beams,” Nonlinear Dynamics,
pp. 1–16, 2018.

[100] M. A. Crisfield and G. Jelenić;, “Objectivity of strain measures in the geometrically exact
three-dimensional beam theory and its finite-element implementation,” Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
vol. 455, no. 1983, pp. 1125–1147, 1999.

[101] C. Meier, A. Popp, and W. A. Wal, “An objective 3d large deformation finite element
formulation for geometrically exact curved kirchhoff rods,” Computer Methods in Applied
Mechanics and Engineering, vol. 278, pp. 445 – 478, 2014.

[102] A. Borković, S. Kovačević, G. Radenković, S. Milovanović, and M. Guzijan-Dilber,
“Rotation-free isogeometric analysis of an arbitrarily curved plane bernoulli–euler beam,”
Computer Methods in Applied Mechanics and Engineering, vol. 334, pp. 238 – 267, 2018.

[103] W. Li, H. Ma, and W. Gao, “Geometrically exact curved beam element using internal force
field defined in deformed configuration,” International Journal of Non-Linear Mechanics,
vol. 89, pp. 116 —126, 2017.

[104] P. Mata, S. Oller, and A. Barbat, “Static analysis of beam structures under nonlinear geomet-
ric and constitutive behavior,” Computer methods in applied mechanics and engineering,
vol. 196, no. 45-48, pp. 4458–4478, 2007.

[105] P. Mata, S. Oller, and A. Barbat, “Dynamic analysis of beam structures considering
geometric and constitutive nonlinearity,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, no. 6-8, pp. 857–878, 2008.

[106] A. Arora, A. Kumar, and P. Steinmann, “A computational approach to obtain nonlinearly
elastic constitutive relations of special cosserat rods,” Computer Methods in Applied
Mechanics and Engineering, 2019.

[107] P. M. Pimenta, E. M. B. Campello, and P. Wriggers, “An exact conserving algorithm
for nonlinear dynamics with rotational dofs and general hyperelasticity. part 1: Rods,”
Computational Mechanics, vol. 42, 2008.

333



[108] J. C. Simo, N. Tarnow, and M. Doblare, “Non-linear dynamics of three-dimensional rods:
Exact energy and momentum conserving algorithms,” International Journal for Numerical
Methods in Engineering, vol. 38, no. 9, pp. 1431–1473, 1995.

[109] F. Demoures, F. Gay-Balmaz, M. Kobilarov, and T. S. Ratiu, “Multisymplectic lie group
variational integrator for a geometrically exact beam in r3,” Communications in Nonlinear
Science and Numerical Simulation, vol. 19, no. 10, pp. 3492 – 3512, 2014.

[110] I. Romero and F. Armero, “An objective finite element approximation of the kinematics of
geometrically exact rods and its use in the formulation of an energy–momentum conserving
scheme in dynamics,” International Journal for Numerical Methods in Engineering, vol. 54,
no. 12, pp. 1683–1716, 2002.

[111] I. Sokolov, S. Krylov, and I. Harari, “Extension of non-linear beam models with deformable
cross sections,” Computational Mechanics, vol. 56, no. 6, pp. 999–1021, 2015.

[112] E. Carrera, G. Giunta, and M. Petrolo, Beam structures: classical and advanced theories.
John Wiley & Sons, 2011.

[113] A. Pagani and E. Carrera, “Unified formulation of geometrically nonlinear refined beam
theories,” Mechanics of Advanced Materials and Structures, vol. 25, no. 1, pp. 15–31,
2018.

[114] E. Carrera and V. V. Zozulya, “Carrera unified formulation (cuf) for the micropolar beams:
Analytical solutions,” Mechanics of Advanced Materials and Structures, vol. 0, no. 0,
pp. 1–25, 2019.

[115] J. N. Clelland, From Frenet to Cartan: the method of moving frames, vol. 178. American
Mathematical Soc., 2017.

[116] J. C. Simo, J. E. Marsden, and P. S. Krishnaprasad, “The hamiltonian structure of nonlinear
elasticity: the material and convective representations of solids, rods, and plates,” Archive
for Rational Mechanics and Analysis, vol. 104, no. 2, pp. 125–183, 1988.

[117] T. Lee, M. Leok, and N. H. McClamroch, Global Formulations of Lagrangian and
Hamiltonian Dynamics on Manifolds. Springer, 2017.

[118] W. M. Lai, D. H. Rubin, E. Krempl, and D. Rubin, Introduction to continuum mechanics.
Butterworth-Heinemann, 2009.

[119] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[120] S. S. Rao, Vibration of continuous systems. John Wiley & Sons, 2007.

[121] C. Lanczos, The variational principles of mechanics. Courier Corporation, 2012.

[122] E. Engel and R. M. Dreizler, Density functional theory. Springer.

334



[123] H. Goldstein, C. Poole, and J. Safko, “Classical mechanics,” 2002.

[124] M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional,
beam-elements,” Computer methods in applied mechanics and engineering, vol. 81, no. 2,
pp. 131–150, 1990.

335


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Framed Space Curves
	Introduction to various curve framing techniques
	Frenet-Serret and Relatively Parallel Adaptive Frames
	Frenet-Serret Frame
	Relatively Parallel Adapted Frame (RPAF): Bishop's frame

	Material frames and finite rotations
	Motivation
	Finite rotations
	Construction of material-adapted and material frames

	Curvature of an evolving frame
	Curvatures of a general material frame
	RPAF and Frenet frame as GMAF

	Summary

	Path Estimation and Computer Graphics
	Introduction
	Configuration and state space of single-manifold characterized systems
	Tangent space and tangent bundle of the configuration space
	Material and spatial representation of curvature (or equivalently angular velocity and the associated spin tensor)
	Linear and angular velocity of rigid body

	Estimating global framed curve from limited material curvature and velocity data
	Smooth Patch Estimation and Gluing technique (SPEG)
	Higher order approximation techniques
	Error quantification
	Illustration and simulation

	Applications in computer graphics
	Double helix intertwining a space curve
	Leaf like structure using RPAF

	Summary

	On the Derivatives of Curvature and their Linearized Updating Scheme
	Introduction:
	Material and spatial quantities and their derivatives
	Variation and linearization of rotation tensor
	On derivatives
	Useful results on derivatives of Lie-bracket and higher-order product rule
	Derivatives of curvature tensor

	Updating the curvature and its derivatives
	Summary

	Enhanced Kinematics of Geometrically-Exact Cosserat beam
	Introduction to generalized kinematics
	Geometric description of various beam configurations
	Description of the director frame and the mid-curve of beam
	Finite strain parameters defining the configuration 1
	An introductory remark on warping
	Coupling between axial strain, Poisson's effect and warping
	Description of the configuration 2 and 3 

	Kinematics
	Deformation gradient tensor and strain vectors
	Physical interpretation of the strain vector bold0mu mumu schutz2009firstij
	Deformation of infinitesimal vector along the reference unit vectors bold0mu mumu EEschutz2009firstEEEEi
	Deformation gradient tensor of the curved undeformed state referenced to the straight configuration
	Deformation gradient tensor referenced to curved undeformed state
	Deformation gradient tensor referenced to another deformed state

	Summary

	Inconsistencies in the Governing Differential Equation of Warping
	Introduction
	Inconsistency condition and the proposed Solution
	Preliminary results
	The inconsistency
	The proposed consistent differential equation of warping

	Solution approach 1: Solution of warping function using series sum
	Assumed solution and the governing differential equations
	On the non-uniform shear based warping functions 31 and 21
	The end support conditions for warping

	Solution approach 2: Solution of warping function using trigonometric series
	The governing differential equations
	Solving for m

	Summary

	Measurement Model for Strain Gauges and Shape Reconstruction of Slender Structures
	Introduction
	On finite length strain gauge measurement
	Geometric description of the deformation of finite strain gauge
	Illustration

	On discrete ``point'' strain measurements
	Orientation of the surface strain gauge in the undeformed state 0
	Expression of scalar strain value of discrete strain gauge
	Simplified discrete strain gauge measurement model for deformed case 1 considering small strain case

	Three dimensional shape reconstruction of slender structures
	Kinematic discussion
	The director triad and the governing differential equation
	Orientation of the strain gauge in the undeformed state considering circular cross-section
	Solution approach
	Simulations concerning the deformed state 1
	Simulations concerning the deformed state 4

	Similarities in the path estimation of rigid body (or swarm of rigid bodies) and shape reconstruction of slender structure (like rods)
	Summary

	Balance Laws and Variational Formulation of Geometrically-Exact Beam with Enhanced Kinematics
	Introduction and brief literature review on geometrically-exact beam theory
	Kinematics
	Deformation map and deformation gradient tensor
	Revisiting the material and spatial strain vector bold0mu mumu simo1991geometricallyi

	Configuration and the state space of the beam
	Variation
	Admissible variation of the deformed configuration 
	Variation of the strain quantities and their derivatives
	Variation of displacement field

	Weak form of governing differential equation for the deformed state 
	General virtual work principle
	Virtual strain energy
	Virtual work done due to external and inertial forces 
	Virtual work principle revisited

	Strong form of governing differential equation for the deformed state 
	Relationship between bold0mu mumu LLsimo1991geometricallyLLLL and bold0mu mumu MMsimo1991geometricallyMMMM terms
	Further manipulation of weak form
	Conservation laws

	Balance laws for the deformed configuration 1: A special case
	Strong form obtained by balance of force and moment on a unit arc-length element referenced to initially straight configuration
	Strong form referenced to initially curved configuration
	Weak form and virtual work principle
	Equivalence of the weak and strong form of equilibrium equation
	Strong form of equations derived from Hamilton's equation
	Interpretation of equation of motion from D'Alembert's Principle–Motion viewed from the director frame
	Conservation of energy and time invariance

	Summary

	The Poisson Bracket Formulation
	Introduction
	The cotangent space, phase space, and cotangent bundle
	The Lagrangian and Hamiltonian
	Canonical bracket
	Summary

	Multi-Axial Linear Constitutive Law for Small Strain
	Introduction
	Saint-Venant/Kirchhoff constitutive law for small strains
	Reduced constitutive law
	Summary

	Finite Element Formulation
	Introduction
	Consistent linearization
	Linearization of weak form
	Linearization of virtual strain energy
	Linearization of virtual external work done
	Example of concentrated follower load and moment

	Discretization and Galerkin form of equilibrium equation
	Unbalanced force vector
	Element tangent stiffness
	Matrix form of linearized equation of motion and iterative solution

	Updating the axial strain vector, curvature vector and their derivatives
	Updating configuration
	Updating axial strain, curvature and its derivatives

	Numerical examples
	Numerical example 1: Cantilever beam subjected to conservative concentrated end load
	Numerical example 2: Cantilever beam subjected to pure torsion and elongation
	Numerical example 3: 3D frame subjected to concentrated conservative loads at multiple nodes

	Summary

	Modal analysis
	Introduction
	Euler-Lagrangian equations of motion
	Modal analysis
	Mode shape for 1 and p
	Mode shape for 2 and x3
	Mode shape for 3 and x2
	Mode shape for x1

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography



