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ABSTRACT OF THE DISSERTATION

The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous

reactive composites subject to dynamic loading

by

Karl L. Olney

Doctor of Philosophy in Engineering Sciences with a specialization in Computational Sciences

University of California, San Diego 2014

Professor Vitali F. Nesterenko, Co-Chair

Professor David J. Benson, Co-Chair

The dynamic behavior of granular/porous and laminate reactive materials is of interest
due to their practical applications; reactive structural components, reactive fragments, etc. The
mesostructural properties control meso- and macro-scale dynamic behavior of these

heterogeneous composites including the behavior during the post-critical stage of deformation.
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They heavily influence mechanisms of fragment generation and the in situ development of local

hot spots, which act as sites of ignition in these materials.

This dissertation concentrates on understanding the mechanisms of plastic strain
accommodation in two representative reactive material systems with different heterogeneous
mesostructrues:  Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate

composites.

The main focus is on the interpretation of results of the following dynamic experiments
conducted at different strain and strain rates: drop weight tests, explosively expanded ring
experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural
limitations in the evaluation of the mesoscale behavior of these materials experimentally and the
large variation in the size scales between the mesostructural level and the sample, it is extremely
difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical
simulations of the corresponding experiments are used as the main tool to explore material

behavior at the mesoscale.

Numerical models were developed to elucidate the mechanisms of plastic strain
accommodation and post critical behavior in these heterogeneous composites subjected to
dynamic loading. These simulations were able to reproduce the qualitative and quantitative
features that were observable in the experiments and provided insight into the evolution of the
mechanisms of plastic strain accommodation and post critical behavior in these materials with
complex mesotructure. Additionally, these simulations provided a framework to examine the
influence of various mesoscale properties such as the bonding of interfaces, the role of material
properties, and the influence of mesoscale geometry. The results of this research are helpful in the

design of material mesotructures conducive to the desirable behavior under dynamic loading.
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Chapter 1

Introduction

1.1 Motivation

The dynamic behavior of granular/porous [1-3] and laminate [4-9] reactive materials has
attracted significant attention due to their possible practical applications: reactive structural
components, reactive fragments, etc. The performance requirements introduce challenging
fundamental problems such as combining high strength with ability to undergo controlled bulk
disintegration producing small-sized reactive fragments unattainable for traditional materials.

The material structure that can meet this and other requirements should be tailored and
optimized at the mesoscale to produce the desirable mechanical properties while still facilitating
the release of chemical energy. Mesostructural parameters such as particle size and morphology
can affect the strength and shock-sensitivity. This can be seen in pressed explosives [10, 11] and
in reactive materials like AI-PTFE composites [12].

The ignition of a reactive material may be initiated via traditional methods, e.g. spark
ignition or exposure to high temperatures from a flame. In some instances, these materials may be
ignited due to the elevated temperatures associated with shock loading and post-shock dynamics
[1-9]. Additionally, mesoscale features like force-chains in granular energetic materials may also
serve as ignition sites [13-15]. It has also been observed that localized plastic flow of reactive
materials may generate conditions suitable for the formation of “hot spots” which can lead to
reaction [16-18]. In these cases, it is important to understand the mechanisms involved in the

plastic deformation and how they relate to the generation of hot spots. Two reactive material



systems, Al-W granular mixtures and Ni-Al laminates, have been shown to be candidates as
reactive material systems. These characteristic material systems will be used in this dissertation to
examine the mechanisms of plastic strain accommodation during dynamic loading related to the
formation of these “hot spots”.

In the case of Al granular mixtures the goal is to have the Al oxidize with the free oxygen
in air resulting in an exothermic reaction. Despite the large combustion energy (7422 cal/g) to
attain achieve oxidization on a timescale of approximately 1 millisecond (appropriate for blast
loading events in munitions), Al needs to be pulverized into particles with sizes less than 20 pm
[19]. The size scale (S) of the fragmentation of homogeneous materials may be characterized by

the Grady-Kipp [20] criteria
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where I is the fragmentation energy, p is the material density, and € is the strain rate. For the case
of Al 6061-T6 alloy (K.= 33MPa/m1/2, E= 70 GPa, I' = K./2E = 8000 J/m2) and at strain rates
typical for dynamic processes of interest (104 s-1), the typical fragment size is approximately
9mm. A possible method for reducing this size scale, which is the objective for the A1-W granular
mixtures examined in this dissertation, is to create a heterogeneous mesostructure that assists in
reduction of fragmentation size scales. Tungsten has been identified for two main reasons. First is
that it has a large strength and may be used to assist in the structural integrity of the material
system. Second is that the W is significantly denser then the Al (density W = 19.25 g/cc, density
Al = 2.7 g/cc) which results in a significantly different shock impedance (i.e. ability to be moved
by a shock wave), meaning that if a shock were to pass through a heterogeneous material of Al
and W, then it is possible that velocity gradients would form and fragments may be generated on

the size scale of the spacing of the W components.



In the case of Ni-Al laminates, the intermetallic reaction between Al and Ni is exothermic
and shown to be self-sustaining [21-25]. It has been shown that these materials are able to react
under shock loading [4-9] for mesostructures with nanometer sized layers. It has not been studied
however, if mechanical loading, e.g. pure shear, can generate conditions such as shear banding to
generate hot spots in cases where the layers of the laminate have layer thicknesses on the order of

micrometers.

1.2 Bridging simulations with experiments

In the reactive materials of interest, there are two initial main size scales of importance;
the global sample size (~1-10cm) and the size of the mesostructural features (~1-500 pm).
Additional multiple size scales (i.e. thickness of shear bands, spacing between them, scale of
microcracks patterning, size of fragments, etc.) can be generated in situ. Since the purpose of this
research is to examine the dynamic response of these materials, the time scales associated with
the experiments are very short (on the order of 10 ps to 100 ms). To complicate matters, many of
these experiments are explosively driven and some are in a closed experimental apparatus. These
complexities hinder the ability to capture the evolution of the mesostructures during these
experiments as current high speed cameras do not have the required resolution to capture the
material behavior at the required size and time scales. The best in sifu data we can obtain is either
general global properties of the process (e.g. free surface velocity of explosively expanded ring),
or we have to rely on the pre- and post-experiment imaging and attempt to interpret the results.

As such, numerical simulations of these experiments are developed to probe the evolution
of the mesoscale mechanisms of plastic strain accommodation. The Finite Element Method
(FEM) was selected as the numerical method to perform these simulations as it has been shown to
provide solutions to problems involving extremely complex geometries and complex loading

condition where analytical solutions are not available.



1.3 Modeling of heterogeneous materials

There are two main strategies for modeling heterogeneous materials; a homogenization
approach or a discrete modeling approach where each component is modelled separately.
Homogenization approaches make an assumption that, at the scale of interest, the heterogeneity
of the sample is at a much smaller scale and therefore can be represented using a single set of
bulk properties. This approach generally gives good results when the sample is subjected to small
strains or when the sample remains undamaged. However, this approach generally breaks down
when the sample is subjected to large strains where plasticity and fracture is involved as this
methodology does not provide the detail needed to distinguish between materials at the
component level. In these situations where the behavior of the mesoscale dominates the material
response, discretely modeling the components is advantageous. However, in many circumstances
where the size scales of the mesoscale and the global sample vary by many orders of magnitudes.
As such, the use of a representative element is generally used as modeling the entire sample is not
possible with current computational capabilities.

The size scale of the mesoscale components associated with the Al-W and Ni-Al
heterogeneous materials examined in this dissertation are of the order of tens to hundreds of
micrometers while the global samples are generally in the ones to tens of centimeters.
Additionally, the focus of this research is on the behavior of these materials when they are
subjected to large global strains that induce localized plastic strains and generate complex
behavior of these materials on the post critical stage of their deformation. Therefore, the

simulations conducted for this dissertation all utilize the representative element approach.

1.4 Objectives
The work performed for this dissertation utilizes numerical simulations in conjunction

with experiments to elucidate the mechanisms of plastic strain accommodation and fragmentation



in granular/porous Al-W and AI-Ni laminate reactive material systems. Chapter 2 provides a
background on the details of the three experimental setups where the dynamic experiments on the
heterogeneous materials were conducted. Chapter 3 provides a brief overview and background of
the numerical tools to model these problems. Chapter 4 examines the results of the experiments
and simulations related to the drop weight tests to examine the post-critical material response of
Al-W granular/porous materials. Chapter 5 examines the experimental and simulation results of
the explosively loaded AI-W granular rings. Chapter 6 uses simulations to examine the effects of
loading on the various mechanisms of fragmentation in explosively loaded Al-W rings. Chapter 7
and 8 examine the results from the Thick Walled Cylinder (TWC) tests and simulations of the Al-

Ni laminates. Finally, Chapter 9 will provide the summary and conclusions of the research.
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Chapter 2

Experimental techniques

The experimental results numerically analyzed in this dissertation were conducted in a
one of three experimental setups; drop weight tests with large global sample deformation with
acquired data using strain gauges and high speed camera, explosively driven fragmentation of
expanded rings examined using PDV technique, and the Thick Walled Cylinder method (TWC)
with controlled detonation speed and analysis of post critical features like shear banding and
fragmentation. This chapter outlines set ups of these three testing methods. It provides an insight
how these tests were used to gain understanding of the dynamic response of materials and help

elucidate the mechanism of accommodation of high strain rate, large plastic strains.

2.1 Drop weight tests

The drop weight tests modeled in this dissertation were all conducted using a high
velocity DYNATUP model 9250HV with an in-house modified anvil for sample support. A
photograph of the experimental setup is presented in Figure 2.1. The drop weight can be adjusted
from 2.7 kg to 28.9 kg and the maximum free fall height of drop tower is 1.25m. To perform a
drop weight test on a sample of interest, the sample is first placed on the anvil. The drop weight is
then lifted to a desired height. In some instances, a spring can be used to increase the nominal
velocity of impact above the nominal drop velocity to a maximum of 20 m/s. High speed cameras
are used in conjunction with accelerometers on dropped weight and strain gauges on the bottom

of the sample to gather strain, strain rate, and stress information. Scanning electron microscopy



(SEM) is utilized to view the mesostructure of the pre- and post-experiment samples. Stoppers
may be used to directly control the maximum strain in the sample. The strain rates involved in
this test O(10” - 10° s™) are comparable to the strain rates in Hopkinson-bar experiments [1],
however, unlike the Hopkinson-bar test, these experiments allow for the examination of the post
critical behavior of the material at some controlled conditions as the deformation is not limited by
a short duration of the loading pulse as in Hopkinson bar and it does not stop once the first shear
band or crack appears.

In the context of this dissertation, these experiments provided a framework that was used
to examine the large strain deformation (0.50 sample strain and above) of AI-W granular
materials at strain rates of O(10% - 10’ s™) to examine the influence of mesostructural properties
on the mechanisms of plastic deformation and post critical material response under these

conditions.
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Figure 2.1 - The DYNATUP model 9250HV with the in-house modified anvil used in the drop weight tests.
(2]

2.2 Explosively expanded rings

This class of experiments is commonly used to study the high strain rate behavior (10°-
10* s™") of materials. In this experimental setup, samples are formed into a ring or tube which is
placed around a copper driver tube. Explosive material is placed inside this copper tube and
detonated. A schematic of the experimental setup is presented in Figure 2.2. Photon Doppler
Velocimetry (PDV) is used to examine the free surface velocity of a spot of the expanding
sample. Figure 2.3 (a) presents an example PDV trace of an explosively expanded ring. In
addition to the PDV records, a high speed camera is utilized to view the fragmentation process
(see Figure 2.3 (b)). However, it is clear from the high speed video images that it is impossible to

see the mesoscale material response. The experiment was performed in a stainless steel blast
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chamber coated with wax. This wax acted as a “soft catch” barrier to ensure that additional
fragmentation did not occur on impact [3-5]. After the experiments, the fragments were collected
by melting the wax and sifting through various sized filters such that only the fragments remained
[3-5]. These fragments could then be analyzed using laser diffraction to obtain the fragment size
distributions [5].

In the context of this dissertation, these experiments were conducted on Al-W
(granular/porous, granular/wires, and solid/granular) composites to examine the high strain-rate
behavior resulting in the pulverization of the sample. Specifically, the mechanisms of

fragmentation of these composites at strain rates on the order 10°-10* s

4.76 mm 15mm 3517 mm 5mm
flash C 1 3986 mm B detonator
e el
mm ]
copper tube ) L_!PVC detonator sleeve
ring 3 mm primasheetdiscs
wax |] PDV fibre / steel tube
|
L 2 ]

| L4 ]

Figure 2.2 - Experimental setup of the explosively expanding ring setup. Testing was conducted in
Cavendish Labs in Cambridge, UK.
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Figure 2.3 — An example PDV trace of an explosively expanded ring (a) and the corresponding high speed
image captures (b).
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2.3 The Thick Walled Cylinder method

The Thick Walled Cylinder (TWC) method was developed to study the large strain, high
strain rate effects in plane strain conditions [6]. The collapse of the TWC can be driven either by
explosive [6] or magnetic [7, 8] loading. In this work, a modified nitromethane explosive [9] were
used to drive the collapse. A photograph and a schematic of the experimental setup are presented
in Figure 2.4 [9]. The TWC assembly is composed of 4 main components: the top and bottom
steel plugs, the copper stopper tube, the copper driver tube, and the sample with steel inserts on
the bottom and the top. The plugs have grooves allowing for the self-sealing of the assembly
preventing detonation products from interacting with the sample and encapsulating the sample for
post mortem analysis. The inner copper “stopper” tube is used to control the final strain of the
sample. The outer copper “drive” tube is significantly thicker then all of the other components in
the system and therefore determines the kinetics and symmetry of the collapse process. Tuning
the explosive driver allows variations of strain rates.

All previously investigated materials in the thick-walled cylindrical geometry: solid
monocrystalline and polycrystalline metals; polymers [6, 10-13]; solid and granular ceramics
(SiC and ALOs;) [14-16]; and reactive granular materials [17-19], accommodate the high
strain/strain-rate global plane strain deformation by developing self-organized patterns of
multiple shear bands. In some cases, these shear bands can number in the hundreds as in SS T-
304L [13]. The mechanisms of plastic flow instability triggering the spontaneous shear
localization and subsequent pattern of shear bands are different for various classes of materials.
For example, in solid homogeneous metals, the thermal softening triggers the shear instability at a
very modest increase in the uniform temperature caused by plastic deformation (~30 K) [13]. In
the case of granular materials, it is microfracture of grains due to the high stresses localized at the

contact interfaces [14-16]. In the context of this dissertation, the TWC method is used to examine
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the mechanisms of plastic strain accommodation of Ni-Al laminate materials in strain rates of

10°-10% s

{for in-situ sel-senlimg of capsule)

(a)

(b) )

Figure 2.4 - Experimental setup for the Thick Walled Cylinder (TWC) method (a) and an example of the
collapsed sample (b) and self-sealing mechanism (c) [9].
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Chapter 3
Background on the Finite element

method

This section provides a brief overview of the Finite Element Analysis (FEA) numerical
method that used to conduct the simulations performed in this dissertation. First a general
overview of the FEA framework for explicit dynamic continuum mechanics problems will be
presented. Second, a brief discussion of the material/constitutive models that were used for this
work will be presented. Finally, the Multi-Material Eulerian finite element method will be

discussed.

3.1 A brief overview of the finite element method for explicit dynamic continuum
mechanics problems

Determining and solving analytical solutions of boundary value problems (such as
structural/continuum mechanics problems) for complex geometries on domains of interest can be
very difficult. Finite Element Analysis (FEA) is a numerical method in which the complex
geometrical domain is discretized into a set of smaller, simple shapes (elements). The collection
of elements that discretize the domain is referred to as the mesh. The discretization scheme used
in FEA assumes that the solution in a single element is only influenced by the nodes defining the
element.

For problems involving the deformation of materials, the governing equation of interest is

15
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0 + pfi = p; 3.1
with traction boundary conditions of boundary b, defined by
oiin; = Ty(t) 3.2)
and the displacement boundary conditions of boundary b, defined by

x; (%o, t) = u;(¢) (3.3)
where o is the Cauchy stress, p is the current density, fis the body force, X is the acceleration, 7 is
the unit outward normal direction, 7{(t) is the time dependent traction, x, is the initial coordinate,

and u(t) is the time dependent displacement. The principle of virtual work is utilized and the

governing equation becomes

6U=f p)'c'l-5xl-dv+f
v

v

aijdxi,jdv+f pfiéx;dv
’ (3.4
+ j T;6x;ds =0
by
where U is the virtual work, &x; is the variations of x. When applied to the finite element
framework, these equations are discretized for each element and assembled into a global

formulation. These assembled sets of elemental equations take the form

nelements

Z {f pN};Nkkdv+f Bgadv—f pNLfdv
Vi Vi Vi

k=1
J;)

where N is the interpolation matrix and B is the strain-displacement matrix, both of which are

(3.5)

NgTds} =0

1

dependent on the type of element formulation used. It should be noted that ¢ is the vector of

stresses in Voigt notation. The first integral of Eqn. (3.5) forms the “mass matrix” and, in general,
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is simplified via row summing to generate a diagonal matrix. Additionally, the evaluations of the
interpolation functions are calculated in an isoparametric domain and integrated using Gaussian

quadrature.

3.2 Material / constitutive modeling

The relationship between the stress (o) and the field variables (i.e. strain, strain rates,
temperature, etc.) is referred to as the constitutive model. In situations where materials undergo
small deformations (i.e. in the elastic regime of the material behavior), a simple linear elastic
constitutive model (based on Hooke’s Law) can describe the resulting stresses generated due to

deformation with the following form,
o(e)=E-¢ (3.6)

where E is the Young’s modulus. However, in situations where the material undergoes plastic
deformation, this simple model does not capture the inelastic portion of the loading and a more
complex constitutive model is required.

Ductile isotropic metals may be modeled using a Von Mises plasticity theory. This theory
states that the yield stress (o) is related to the second deviatoric stress invariant (J>) through the

relation

(3.7)

where 0;; is the deviatoric stress tensor. The deviatoric stress originates from the the full stress

tensor which can be split into the hydrostatic and deviatoric tensors by

r ., Okk ,
O-ijzo-i'-l_Taij:O-ij_P(Sij (38)
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where o;; is the Cauchy stress tensor, §;; is the Kroniker delta function, and P is the pressure. The
hydrostatic, or pressure, portion of the stress tensor can be obtained using and equation of state. A
popular method for integrating these plasticity equations is using the Radial Return algorithm [1,
2]. The following sections will describe the constitutive models that were used in the modeling

performed for this dissertation.

3.2.1 The Johnson-Cook plasticity model

The Johnson-Cook plasticity model [3] was developed to model the behavior of isotropic
ductile metals. The model is empirically based and the material parameters are readily available
for a large selection of metals in the literature. This constitutive model was selected for the work
conducted in this dissertation due to its ability to capture the influence of strain hardening, strain
rate, and temperature on material behavior. In addition, the Johnson-Cook model is able to
capture the failing of material through a damage evolution model [4]. The model is based on J2
plasticity theory and the implementation in LS-DYNA [5] utilizes the radial return algorithm [1,
2] to integrate the plasticity equations. The yield strength of this constitutive model has the form

é T-T,
o, = (A+B&}) (1 + Cln_—) (1 + T&) 3.9)

€o melt — Troom

where &, is the effective plastic strain, € is the strain rate, & is the strain rate at which rate effects

become important, Ty, and Ty, are the melt and room temperatures respectively. The
constants A, B, n, C, and m are the material parameters obtained from experimental data. To
account for the material failure, the Johnson-Cook constitutive model tracks the damage

evolution in the element and scales the yield stress. This damage model scales the yield stress as
oy, = 0,(1—D) (3.10)

where the damage (D) is defined as
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with the failure strain (&) defined as

P €
& = (D1 + D, exp (D3 )) (1 + D4 ln ,—) (1
vas 80

T_Troom
+D —)
T

melt — Troom

(3.12)

where g, is the von mises stress, and D;-Ds are the damage parameters obtained via
experiments. It should be noted that these parameters are usually obtained by fracturing materials

in pure tension or under pure torsion [4].

3.2.2 The Mie-Griinieson equation of state

As mentioned in in Section 3.2, an equation of state is used to calculate the hydrostatic
response of the material. The Mie-Griineison equation of state was developed to examine the

behavior or materials under shock loading [6], and has a general form of
P=C+CE (3.13)

For the work performed in this dissertation, the form of the Mie-Grunieson equation of state used

two separate forms; in compression the equation of state takes the form,

poctuli (1) 4

and in tension it takes the form

P =poC*u+ (yo +aw)E (3.15)
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where py is the density of the unloaded material, C is the sound speed in the material, S;-S; are
constants that fit the particle velocity vs shock velocity (us-u,) relations of the material, y, is the
Grunieson parameter, a is the linear volume correction factor, and p is the compression ratio

defined by

p=L_1 (3.16)

3.2.3 Material models for explosives

Some of the tests examined in this dissertation involved the use of explosives to drive the
dynamic collapse/expansion of the test samples. In all of these cases, the main goal of the
explosive driver is to act solely as a driver and the details of the explosion were not the focus of
the research. As such, the microscopic details of explosive are of little importance, i.e.
heterogeneities, defects, localized phenomena, detonation details, etc. When simulating these
explosives, two different material models were used, selected based on the availability of the
material parameters. In all cases, it was assumed that the explosives and the detonation products
did not have any shear strength and therefore the material response behavior is dependent only on

the pressure.

3.2.3.1 Modeling the detonation products as a gamma law gas

In cases where the diameter or thickness of explosive charge is close to critical size, i.e.
near the size/thickness where detonation will not propagate, then it may be assumed that during
an explosive event, the detonation products exist at the Chapmann-Jourget (C-J) point [7, §].
Furthermore, if it is assume that the detonation event occurs simultaneously in the entire charge,
then the explosive may be modeled as its detonation products and behaves according to the

gamma law gas
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P= (y—l)ﬁE (3.17)
Po

where v is the ratio of the specific heats ¢, /c,, p is the density, p0 is the initial density, and E is

the internal energy. At the C-J point the initial parameters for vy, py, and E, can be found using the

C-J relations

PexpD?

v=vg=—"p—-1 (3.18)
CJ
YC] +1
Po = Pcj = Pexp (3.19)
Ycj

___Pag

0 pC](YC]_l)' (320)

3.2.3.2 The Jones-Wilkins-Lee (JWL) equation of state

The Jones-Wilkins-Lee (JWL) equation of state [9] is an empirical equation of state
mainly used to model the pressure response of detonation products of explosive materials as a
function of the relative volume, V, and the internal energy per initial volume, E. This equation of

state has the form

w w wE
P=A(1-—)e R B(l——) RV 4 2 3.21
( Rlv)e * )¢ Ty (3.21)

where A, B, o, R, and R, are material parameters.

3.3 Contact

In the work performed in this dissertation, the simulations involve many different
materials interacting with each other. In many of these cases, the different materials are composed

of different meshes and in many instances; it is possible for the exterior elements of a single mesh
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may come into contact with itself. To account for these possibilities, contact between different
meshes and a self-contact algorithm are utilized.

There are a variety of methods that have been developed to simulate the contact and
interaction of two or more elements/meshes that do not share the same nodes. These methods
mainly fall under one of two main categories; Lagrange multiplier method (constraint based) or
penalty methods. For problems involving explicit simulations with slip and separation of the
interfaces, the penalty methods are favorable.

One surface is designated the master surface and the other, the slave surface. As the
solution advances, if a slave node crosses the master interface a force normal to the penetration
direction is applied to the slave node and the master surface nodes. The contact force due to the

penalty method is analogous to the force generated by a spring
Fpenaity = k6 (3.21)

where 0 is the penetration depth and the value of k is the stiffness factor which is defined for solid

elements as

2
o = Jor KA (3.22)
%4
and for shell elements as
KA
- f: ST (3.23)
max(diagonal)

where K is the bulk modulus, f;f is a scale factor for the interface stiffness, V is the volume , and
A is the area of the contact face in solid elements and the element area for shell elements.

To handle the contact of interfaces belonging to the same mesh, a single-surface
algorithm is used [10]. This algorithm breaks the global domain into “buckets” and assumes that

any free surface in the same or adjacent buckets may be potential contact interfaces. Friction
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between interfaces is handled via the contact algorithm based on a Coulomb friction formulation

[11].

3.4 Brief overview of the Multi-Material Eulerian finite element methods

When modeling problems where materials undergo very large plastic deformation or
fragmentation, numerical instabilities and degradation of the solution quality may arise as the
mesh becomes highly distorted or in the case of fragmentation, removed/eroded from the
simulation. Many methods have been developed to model situations where these problems occur.
These methods include, smooth particle hydrodynamics (SPH) [12, 13], automatic
remeshing/rezoning, mesh free methods [14], and Multi-material Arbitrary Lagrangian Eulerian
Finite Element method (MMALE) [15]. The MMALE method was selected as it has shown to
provide good results in problems similar to the work performed in this dissertation [16]. This
provides a brief overview of this method, a more detailed presentation of the theory used in the
MMALE methods can be found in [15].

The MMALE methods are characterized by a background mesh in which each element
contains one or more materials defined by the volume fractions. Each time step is broken into two
sub-steps, the Lagrangian step and the Eulierain step. The conservation equations for mass,

momentum, and energy

dp

il . = 3.24
etV (pw) =0 (3.24)
dpu
W+V-(pu®u)=v-c+ pb (3.25)
dpe .
—+V-(peu)=0:£+ pb-u (3.26)

ot
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are split amongst the two steps via operator splitting. The resulting conservation equations take

the form

dp
— = 3.27
5 =0 (3.27)
dpu
—~——=V- 3.28
o =Vot pb (3.28)
dpe
—— =0 . 3.29
Fraiak &+ pb-u (3.29)
for the Lagrangian step and
0
L rv-(puw=0 (3.30)
ot
dpu
s (pu®u) =0 (3.31)
dpe
—;t +V-(peu) =0 (3.32)

for the Eulerian step. During the Lagrangian step, the solution variables are updated in time,
similar to the standard finite element procedure. These solution variables are then advected back
onto the background mesh during the Eulerian step. Additionally, during the Eulerian step, the
nodes on the interior of the background mesh may be moved to ensure a relatively smooth/regular
mesh. A subset of these MMALE methods is the Multi-Material Eulerian method (MME). These
MME methods are a special case of the MMALE methods where the background mesh is fixed in
space. In general, the background mesh for the MME problems is constructed in a regular grid
(i.e. rectangular elements with 90 degree angles).

In the elements containing multiple materials (mixed elements), a mixture theory is used

to describe the element level material response based on the interactions between the individual
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materials. In all mixture theories, two assumptions are made [17]. First, the mean strain rate of a
mixed element (£g;ement) is the volume weighted average of the strain rate in the materials
nmat

- . V
Eglement = Z gm—m (3.33)

VElement
m=1

and second, the mean stress (G ement) Of @ mixed element is the of the volume weighted average

of the stress in each of the materials

nmat v
— z m
Oclement = Om % (3.34)
- Element
m=1

Mixture theories deviate in their underlying assumptions that stem from the MMALE
formulation. One such approach is to assume that the mean strain rates in all of the materials are
the same. A second approach is to assume that the elements are small enough that the materials
are all in pressure equilibration. In both of these cases, the resulting assumptions act to fully bond
the interfaces of the materials in the mixed elements. A third formulation which allows for the
slip and separation of the materials in mixed elements is called the contact mixture theory [17,

18]. This approach applies the constraints

[6] ' mn=0 (3.35)

[Vu] -t =0 (3.36)

are enforced between each material interface [17]. The notation [a] refers to a jump in a across
the material interface, n is the interface normal vector, u is the material velocity, and ¢ is the
interface tangent vector. This constraint requires the knowledge of the individual material
velocities is required to generate a unique solution using

Vm

Tzt Vuy, = Vu. (3.37)

VElement
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As the standard MMALE methods do not track individual material velocities, an extended finite
element approach is required to resolve this issue. The details of this implementation can be

found in Ref. [18].
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Chapter 4
Drop Weight Experiments and

Simulations

4.1 Chapter introduction

The dynamic behavior of granular/porous reactive materials has attracted significant
attention due to its possible practical applications: reactive structural components, reactive
fragments, etc. [1-3] The performance requirements introduce challenging fundamental problems
such as combining high strength with ability to undergo controlled bulk disintegration producing
small-sized reactive fragments.

The material structure which can meet this and other requirements should be tailored and
optimized at the mesoscale to produce the desirable mechanical properties while still facilitating
the release of chemical energy. Mesostructural parameters like particle size and morphology can
affect the strength and shock-sensitivity. This can be seen in pressed explosives [4, 5] and in
reactive materials like Al-PTFE composites [6]. Additionally, mesoscale features like force-
chains in granular energetic materials may also serve as ignition sites [7-9].

Quasi-static, Hopkinson bar, and drop-weight experiments were performed for PTFE-Al-
W and for AlI-W composites [ 10-18] with different particle sizes of W, porosity, and morphology.
W particles were used to increase sample density and generate the desirable mode of

disintegration of the sample into small-sized debris. Multi-material Eulerian hydrocode

27
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simulations of the dynamic tests for the various types of samples were used to elucidate the
observed experimental results [11, 16, 18].

The complexity of the dynamic behavior of granular/porous materials is caused by the
significant role of the mesoscale parameters including the particle sizes of components, the
formation of force chains, the morphology of particles, and the bonding between particles. In
these materials, shear localization and fracture can be delayed by strain hardening mechanisms
such as compaction which results in porosity reduction [17, 18]. Usually, in solid metals, shear
localization under high strain rate loading is due to thermal softening [19] though shear
localization may also occur due to other softening mechanisms when thermal effects are
negligible [20]. Shear localization in plane strain conditions similar to those used in this paper for
the numerical modeling was observed in fcc metals such as Al 7075-T6 [21] and stainless steel
304L [22, 23]. Strain controlled mesoscale fracture of brittle particles can act as a “softening”
mechanism (qualitatively different then the softening mechanism due to adiabatic heating)
increasing the propensity of macroshear instability [24, 25].

In this chapter, the dynamic behavior of AI-W granular/porous composites, their
susceptibility to shear localization, and their subsequent fracture at large strains was investigated
using drop weight experiments and representative numerical simulations. Specifically, the
bonding between the Al particles, the initial porosity, the relative particle sizes of Al and W, the
arrangements of the W particles, and the constitutive behavior of Al was examined in Al-W

granular/porous composites.

4.2 Preparation of AI-W granular porous composites

High density Al-W granular/porous composites were prepared from an elemental powder
of Al (Alfa Aesar, -325 mesh), and W wires (A-M System, diameter of 200 um and length of 4

mm) using (a) cold isostatic pressing (CIPing) and (b) CIPing followed by vacuum encapsulation
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and subsequent hot isostatic pressing (HIPing) to create metal bonding between Al particles. All
samples had the same mass ratios of the Al and W components (23.8% Al and 76.2% W, by
weight, corresponding to a volume ratio of 69.0% Al and 31.0% W) with a theoretical solid
density of 7.8 g/cm’. Mixtures of Al powders and W wires were placed in a cylindrical stainless
steel mandrel with moving pistons and encapsulated in a rubber jacket providing axial loading
during pressurization in the CIP chamber. This allowed the preparation of samples with the exact
sizes and cylindrical shape that were necessary for the strength measurements. All samples were
CIPed at 345 MPa under room temperature for 5 min. Subsequent HIPing for some samples were
carried out at 200 MPa at a temperature of 500 degree Celsius with a soaking time 20 min. The
density of the samples was measured by the hydrostatic method. The samples had an average
density of 6.8 g/cm’ after CIPing and 7.5 g/cm’ after CIPing and HIPing. Examples of the

processed CIPed samples are presented in Figure 4.1.

(a) (b) ©

Figure 4.1 - Example of CIPed Al-W sample (a) and examples of the mesostructures with Al powders W
rods (b) and Al powder/ W powder (c).

4.3 Experimental details and results of the drop weight experiments
The dynamic behavior and fracture of the CIPed and CIPed+HIPed samples were

investigated at a strain rate of 1000 s™' using drop weight tests (nominal velocity of the drop
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weight was 10 m/s) using the high velocity DYNATUP model 9250HV with an in-house
modified anvil supporting the sample detailed in Section 2.1. The undeformed CIPed only,
CIPed+HIPed, and solid Al6061-T6 samples are presented in Figure 4.2. After the dynamic tests,
shear macrocracks were well developed in the CIPed+HIPed samples Figure 4.3 (b), while no
shear macrocracks were observed in the CIPed only samples (see Figure 4.3 (a) ) at similar global
strains. In the CIPed only sample, Al particles were ejected from the outer regions of samples
leaving areas of interconnected and mechanically locked W wires (see Figure 4.3 (a) and (e)).
The microscopic images of the deformed samples representing areas at the vicinity of
macroscopic shear localization, plastic flow and deformation of W and Al particles are presented
in Figure 4.4. It is evident that the bonding between the “soft” Al particles facilitated shear
localization in CIPed+HIPed samples. As a result of localized plastic flow in the matrix of Al
particles we have observed regions of heavily deformed and practically undeformed Al particles.
For comparison, dynamic tests were performed with as is Al 6061-T6 and annealed Al
6061-T6 (temperature 425C, 2.5 hours in vacuum) cylindrical samples under similar conditions of
impact and similar or larger final global strains in comparison with CIPed or CIPed+HIPed
samples (see Figure 4.3 (c) and (d)). The as is Al 6061-T6 and annealed Al 6061-T6 samples did

not exhibit signs of shear localization at this level of strains.

Table 4.1 —The description of the particle sizes of the Al and W powders used in the experimental granular
porous granular composites.

Particle diameter (pum) % of Material
-325 Mesh 31.9 50
15 40
4 10
Fine 40 -

Coarse 200 -
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Table 4.2 - Initial dimensions of the experimental samples used in the drop weight tests.

Sample Height [cm] Diameter [cm]
CIPed only 1.45 1.58
CIPed +HIPed 1.39 1.54
Solid Al 6061-T6 1.25 1.18

R (e)

Figure 4.2 - Initial CIPed (a) and CIPed+HIPed Al-W samples (b) and a sample of solid Al 6061-T6 (c).
Sample diameters and heights are given in Table 4.2. Mesostructures of CIPed and CIPed+HIPed samples

before dynamic deformation are presented in (d) and (e) respectively.
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Figure 4.3 - Deformed shapes of the CIPed (a) and CIPed+HIPed samples (b). For comparison, the
deformed annealed Al 6061-T6 samples and Al 6061-T6 are presented correspondingly in (c) and (d). A
high speed camera photo (e) captures the behavior of Al fragments as they are ejected from the CIPed
sample during a dynamic test. Arrows are added to show areas where the Al particles on the outer area of
the CIPed sample have been ejected (a) and the shear bands that form in the CIPed + HIPed samples (b).

Figure 4.4 - Microstructure of deformed CIPed+HIPed samples (a) and (b) illustrating a region of largely
undeformed Al particles neighboring heavily deformed and fractured areas of Al particles with different
arrangements of less deformed W rods.
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4.4 Numerical modeling
4.4.1 Simulation of CIPing process

Due to the large differences in the size scales between the global sample size O(cm) and
the size scale of the mesostructural components O(um), a representative volume element (RVE)
was considered for the modelling of the dynamic experiments. The simulations using the CIPed
mesostructures examined two different cases; the first is examination of Al and W powders that
both have the -325 mesh particle distribution and the second was the examination of
mesostructures with the -325 mesh Al powder and W rods with 200 um diameter. In both
situations, the mesostructure was generated using the same procedure which is outlined in the
following paragraphs.

A number of assumptions were made to simplify the mesostructure of the AI-W granular
composites such that it would be possible to perform and the analysis in a reasonable amount of
time, while still being able to capture the major details of the experiment. First, it was assumed
that the since the powders of the Al and W before CIPing were more or less spherical (spherical
polyhedral) and therefore could be represented in two dimensions as circular discs. Secondly, it
was assumed that the distribution of the initial particle sizes of the -325 mesh could be
characterized by a combination of three discrete particle sizes of 32, 15, and 4 um with a volume
percentage of 50%, 40%, and 10% respectively. Thirdly, it was assumed that the material
properties in each of the particles were identical, i.e. there were no initial defects or
inhomogeneties in the particles themselves. Finally, it was assumed that prior to CIPing, the Al
and W particles were thoroughly mixed and did not exhibit any self-organization into clusters or
gradients in the local particle distribution.

With these assumptions in mind, the rectangular domain with a size 10 times the size of

the largest particle size was populated with particles in the following procedure. First, the desired
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post CIPed volume fractions of the Al and W (70% Al, 30% W) and the size of the RVE were

used to calculate the number of each particle size was needed to populate the domain by

N, = vfi vfmat thotal(1 - vfporosity)
;=

4.1)

2
T

where N; is the number of particles for a particular particle size, vf; is the desired volume fraction
of the particular particle size, vf,,,4; is the volume fraction of the material (either Al or W), v¢orar
is the total volume of the desired simulation domain after the CIPing simulation, vf,oresity 1S the
volume fraction of the desired porosity after CIPing.

Once the number of particles was determined, the total number of each particle size was
combined and the algorithm began placing particles one by one from largest to smallest. The
algorithm placed the ith particle in the following manner. The ith particle was randomly placed in
the domain such that it is at least 1 radius distance from the boundary. Then the distance between
the placed particle and all previously placed particles is checked against the sum of the two
particle radii. If there is overlap, the ith particle is once again randomly placed in the domain and
the process is repeated. If there is no overlap between the ith particle and all previously placed
particles, then the particle is placed and the next and the ith+1 particle is then placed in the same
manner. This process proceeds until all particles are placed with no overlap. Since the theoretical
packing density of randomly distributed discs is significantly less than the organized, optimal
packing density, the height of the computational domain was increased such that the initial
porosity would be equal to 20%. This allowed for a rapid placement of all particles in the domain.

After all of the particles have been placed, each of the particles is randomly assigned a
material based on the number of predetermined particles calculated above. A final step must be
taken due to the nature of the Eulerian formulation which has the concept of material entities. In
the Eulerian formulation, components are defined as materials and stored as volume fractions in

the background elements. If two of these entities of the same material contact each other, the
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entities would merge into a single entity completely removing the interface. Since it is expected
that there may be large plastic strain and/or movement of particles from their original location,
each of the particles was assigned a material number such that there was not a similar material
number used within a region with a width equal to four times the largest particle radius.

Since the CIPing process is assumed to be quasi-static and adiabatic the strain rate and
temperature dependencies of the material models may be neglected. Furthermore, since the
CIPing pressure (345 MPa) is significantly under the yield strength of the W (770-1200 MPa) and
there was no observed fracture or deformation of W particles in the CIPed samples, the W
material was assumed to be in the elastic regime and therefore could be modeled as a linear
elastic material. The Aluminum was modeled using the Johnson-Cook constitutive model in
conjunction with the Gruniesen equation of state. However, the parameters associated with the
temperature and strain rate were chosen such that the material response was insensitive to the
strain rate or temperature effects. The parameters used for the W and Al are presented in Table
4.3.

The mesh density of the background Eulerian mesh was chosen such that 5 elements
spanned the diameter of the smallest component in the sample. This provided an adequate balance
between speed and ability to capture the stresses in the smallest components.

The CIPing process was simulated by imposing zero normal velocity boundary
conditions on the sides and bottom of the domain. A thin rigid strip of material was added to the
top boundary and a constant normal velocity of 1 m/s on the top boundary to simulate the uniaxial
compression of the sample. Since the process of CIPing involves high pressures relative to the
yield stress of the Al particles, it is assumed that there is little to no slipping of Al boundaries. As
such, a simple mixture theory to handle the mixed elements was used. This mixture theory

maintains a constant pressure in mixed elements.
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The resulting CIPed simulated mesostructures are presented in Figure 4.5. This

mesostructure shows similar qualitative features as the CIPed mesostructre presented in Figure

4.1 (c).

30 pm

(a)

(b)

Figure 4.5 - An example of the simulation mesostructure (a) before the simulated CIPing and (b) after

simulated CIPing.
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Table 4.3 - Constitutive model and equation of state material properties used in the numerical simulations
for the Al and W components

Material parameter Al 6061-T6 [24, 25] W][24, 26]

Johnson-Cook

po [gm cm™] 2.7 16.98
G [Mbar] 26.0 1.24
A [Mbar] 224.0 1506
B [Mbar] 111.4 176.5
n 0.42 0.12
C 0.002 0.0016
m 1.34 1.0
C, [J kg-1 K-1] 890 130
T [K] 930 1728
Troom [K] 300 300
D1 -0.77 0
D2 1.45 0.33
D3 -0.47 -1.5
D4 0

D5 1.6 0
Mie-Griineisen

Colem ps™] 0.52 0.40
Si 1.4 1.24
S2 0 0
S3 0 0
Yo 1.97 1.67

4.4.2 Simulations related to the drop weight tests

A number of sample properties were examined to explore their influenced shear
instability and localization during a dynamic test. The role of the metallic bonding was examined
in an attempt to understand a difference between dynamic behavior of CIPed samples (no metallic
bonding between Al particles) and CIPed+HIPed samples (metallic bonding between Al

particles). The roles of the initial porosity, the relative particle size of Al and W, the initial
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arrangement of the W particles, the confinement, and the constitutive behavior of the Al were
also explored to see their effect on the shear instability in the sample. A two-dimensional Eulerian
hydocode [26] was used to simulate the behavior of the samples during the drop weight tests. Due
to the smallness of the particles relative to the global sample size, small representative elements
of the microstructure were used in all the simulations. Metallic bonding between the particles was
enforced through the contact conditions. For the CIPed only simulations, particles were allowed
to slide and separate with frictionless contact. For simulations of the CIPed+HIPed samples,
particles were not allowed to slip or separate effectively bonding the particles together. Details of

the algorithm can be found in [27].

4.4.2.1 The initial particle arrangements, the constitutive model, and the boundary conditions
The initial particle arrangements of W and Al used in the numerical simulations are
shown in Figure 4.6, Figure 4.7, and Figure 4.8. The description of the particles sizes and volume
fractions for both the Al, W, and porosity are presented in Table 4.2 and Table 4.1. The samples
in Figure 4.6 (a) and (b) were used to investigate the role of porosity and metallic bonding on the
shear instability and formation of the shear bands in both the bonded (CIP+HIP) and non-bonded
(CIP only) samples with similar sized Al and W particles. The sample in Figure 4.7 was used to
investigate how relative sizes of W and Al affected the shear instability in both the bonded and
non-bonded samples. Additionally, the sample in Figure 4.7 was used to examine cases with
confinement boundary conditions as well as the variations for simulations looking at the role of
constitutive behavior in the Al. Samples in Figure 4.8 were used to investigate the role of initial
mesostructure on the shear instability in the bonded case. Numerical calculations were made in

plane strain conditions effectively considering particles as the rods used in experiments.
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Table 4.4 - Material volume fractions and porosity in each of the simulated samples.

Volume fraction Al Volume Fraction W % Initial Porosity

Sample

Figure 4.6 (a) 0.72 0.28 8.3
Figure 4.6 (b) 0.74 0.26 0
Figure 4.7 (a) 0.67 0.33 8.5

(b)

Figure 4.6 - Initial arrangements of the Al (blue) and the W (red) particles in the Al-W granular/porous
representative samples with similar sized Al and W particles corresponding to -325 mesh (see Table 4.1
and Table 4.2 ) with an initial porosity of 8.3% (a) and with the initial porosity filled with Al (b). These
simulated mesostructures have a width of 0.02 cm and a height of 0.015 cm. This mesostructure was used
for the simulations where Al-Al interfaces were bonded and non-bonded. In all simulations, the W-Al and
W-W interfaces were not bonded.
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Figure 4.7 —The initial mesostructure used for the simulations with 40pm and 200um diameter Al (blue)
and W (red) respectively and an initial porosity of 8.5%. The simulated sample size was 625 pm in width
and 1000 pm in height.

(a) (b)

Figure 4.8 — Examples of initial mesostructures with randomly placed 200 um diameter W (red) particles
embedded in a fully dense (0% porosity) Al (blue) matrix. These simulated samples have a height and
width equal to 3000 um. In all simulations examining these type of mesostructrures, the volume fraction of
the W particles was held at 0.30.
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A standard Johnson-Cook with failure [28] material model and the Mie-Griineisen
equation of state used for both the Al and the W in the simulations. Failure in the material is
determined through the equivalent plastic strain as shown in [28]. The material constants used in
this paper are presented in Table 4.3. We did not take into account the heat conductivity implying
that the conditions of deformation occurred under adiabatic conditions.

To simulate the drop weight test, a kinematic boundary condition with constant
downward velocity was imposed on the top boundary corresponding to the impact speed of the
falling weight in the experiment (10 m/s). For the cases where the small representative element is
near the outer edge of the large cylinder, the side wall boundary conditions shown in Figure 4.9
(a) were used. In cases where the small representative element is near the middle of the large
cylinder, the side wall boundary conditions shown in Figure 4.9 (b) were used to account for the
confinement. A variety of confinement conditions were considered in this paper and will be
detailed during the discussion of Figure 4.15. With the confinement boundary conditions, the
main concern is keeping the correct description of the global deformation of the sample, but due
to the artificial conditions, the agreement with global stresses is sacrificed. This confined

geometry produces compressive stresses in particles leading to elevated pressures in the sample.
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Velocity Boundary condition Velocity Boundary condition

Y Y YY VYY Y Y Y Y VY VY Y

Corner Sample Confined Sample

Free Boundary Condition
Velocity Boundary condition
A A A A A A A

Roller Boundary Condition

yvyvyvyvyvyy
Velocity Boundary condition

Roller Boundary Condition Roller Boundary Condition

(a) (b)

Figure 4.9 - Boundary conditions imposed on (a) corner samples and (b) internal confined samples.

4.4.2.2 The role of bonding and initial porosity in samples with similar sized Al and W particles
(-325 mesh)

The results of the numerical simulations corresponding to the initial mesostructures
shown in Figure 4.6 are presented in Figure 4.10 corresponding to the deformed sample with a
global strain of 0.45. The sample with the bonded particles and initial porosity of 8.3% began
developing shear instabilities at the mesoscale once the in situ densification that occurred at the
carly stages of deformation removed a majority of the porosity from the sample (the initial
average porosity was 8.3\% and the porosity when shear instability started was 3.2%). The
bonded sample with zero initial porosity began developing shear instabilities on the mesoscale
within the first 0.05 global strain. The global shear band began developing around 0.25 global
strain in the case with 8.3% initial porosity and around 0.20 global strain in the sample with zero
initial porosity. This behavior is similar to observations in the PTFE-AI-W mixtures and in the
experiments with the AI-W powder mixture [11, 12, 16-18]. The global shear localized zones and
the subsequent cracks developed at an approximate 45 degree angle but was “kinked” by the rigid

W particles resulting in the initial shear band forming in a range of angles from 36 to 50 degrees
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(see Figure 4.11). The samples in Figure 4.10 (a) and (b) have a relatively large percentage of
small W particles, providing some geometrical “homogenization” of the mixture. As a result, the
shear bands do not significantly deviate from this 45 degree angle. In both samples, the mesoscale
shear instabilities continue to grow until one begins to dominate (at approximately 0.25 global
strain) and a global shear band develops, which in turn leads to the growth of a macro crack.
While this simulation only looks at a small representative element along the edge, the
experimental CIP+HIP samples exhibit the same behavior (see Figure 4.3 (b)).

The corner samples that have non-bonded particles, simulating the CIPed only material,
are presented in Figure 4.10 (c) and (d). These samples do not develop shear instabilities like the
bonded samples with identical initial mesostructures. In the non-bonded samples, the Al and W
particles rearrange themselves during the dynamic deformation, effectively blocking shear
instabilities from forming. Additionally, due to the free boundary on the right hand side, the
sample undergoes bulk disintegration. Due to the two-dimensionality of the simulation and the
lack of friction in the simulation, the W particles do not offer much resistance to the movement of
the Al out of the right boundary. A similar behavior can be seen in the experimental samples
where the Al on the edge is ejected from the sample, disintegrating into agglomerates of Al
consisting of 5-30 initial sized Al particles. This ejection of the Al particles from the network of
the W wires adjacent to the free boundary was observed during the dynamic loading in
experiments using a high speed camera (see Figure 4.3 (¢)).

Initial variations in porosity (0% or 8.3%) in the bonded sample altered the orientation of
the mesoscale shear bands despite the practically identical initial mesostructure of the W
particles. In the sample with porosity, the pores are bulk distributed with sizes of approximately 4
microns in diameter. This bulk-distributed porosity allows for small movements of the W
particles at the initial stages of deformation due to pore closure. The shear instabilities were

observed nucleating during this early stage of the deformation. The small alterations in the W
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particle arrangement at this early stage therefore caused a large deviation in shear bands that
developed during later stages of the deformation. The non-bonded samples with and without
porosity both showed the same characteristic of particle rearrangement blocking shear band

formation and bulk disintegration.

Figure 4.10 - Role of initial porosity and bonding between particles. Deformed mesostructures of -325
mesh Al and W particles with the initial arrangement of Al and W particles shown in Figure 4.6 (a) and (b).
Damage is plotted to highlight the shear instability and shear bands in the sample. All samples shown at
global strain of 0.45 corresponding to mesostructures presented in:

(a) Figure 4.6 (a) with bonded particles (CIPed + HIPed).
(b) Figure 4.6 (b) with bonded particles (CIPed + HIPed).
(c) Figure 4.6 (a) without bonding between particles (CIPed only).

(d) Figure 4.6 (b) without bonding between particles (CIPed only).
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Figure 4.11 -Effect of rigid W particles on the “kinking” of the shear bands in the Al matrix with the W and
the Al -325 mesh sized particles with the initial mesostructure illustrated in Figure 4.6 (a). Black dots show

the kink locations of the shear bands. The angles of the piecewise shear bands are 32 (1), 58 (2), 34 (3), 47
(4), 48 (5), and 45 (6) degrees.

4.4.2.3 The role of bonding and initial porosity on samples with fine (40 micron) Al and coarse
(200 micron) W particles

Numerical calculations exploring how a difference in the relative sizes between the W
and Al particles (see the initial mesostructure in Fig. \ref{fig:5}) effect the development of shear
instabilities and the formation of shear bands/cracks are shown in Figure 4.12. The W particles in
the numerical simulations have a diameter of 200 microns, the same diameter as the W rods used
in the experimental samples shown in Figure 4.2 (a) and (b). The Al particles have a diameter of
40 microns, the size of the larger particles in the -325 mesh particle size used in the experimental
sample. The boundary conditions are the same as those described in Figure 4.9 (a) with a constant

downward velocity of 10 m/s on the top boundary.
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In the bonded sample simulating the CIPed+ HIPed material (Figure 4.12 (a) and (b)),
shear instabilities begin developing after the pores close like the porous sample with similar sized
Al and W particles shown in Figure 4.10 (a). Mesoscale shear bands develop at approximately
0.25 global strain. The shear band that forms is heavily influenced (guided) by the W particles in
its path. When comparing the shear bands in Figure 4.12 with those in Figure 4.10, the W
particles that are larger relative to the Al have a much greater influence on directing and altering
the path of the shear bands. The larger W particles require the shear instability to circumvent a
larger radius of the relatively rigid W particle to connect with instabilities that form in the Al on
the other side of the W particle. In Figure 4.12 (a) the shear band can be clearly seen
circumnavigating the W particle in the upper central region, causing the shear band to turn almost
90 degrees from one side of the particle to the other. The shear band in the lower section of the
same figure is directed between two adjacent W particles. Due to the larger relative size of the W
to the Al particles, the heterogeneous nature of the sample is increased in comparison to the
previous samples in Figure 4.10, where the small W particles homogenized the mesostructure.
This heterogeneity creates areas of mostly undeformed Al to appear in regions away from W
particles and areas of deformed Al to appear in regions near W particles. Based on the
simulations, the path of the shear bands closely follows the W particles in CIPed+HIPed material.
This behavior is in agreement with the experiments (see Figure 4.4).

In the non-bonded sample simulating the CIPed only material in Figure 4.12 (c) and (d),
the bulk distributed rearrangement of the Al and W particles effectively block the development of
shear bands. This rearrangement is similar to that of the particles in Figure 4.10 (c) and (d). Like
the previous case due to limitations in the two-dimensionality of the simulations some of the
three-dimensional W fiber effects cannot be reproduced. However, the trends seen in this two-
dimensional simulation can also be seen at the edge of the experimental sample where the Al is

ejected from the edge of the cylinder during the dynamic test as shown in Figure 4.3 (a) and (e).
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4.4.2.4 The relationship between sample strength and porosity in corner samples

The engineering stress at the upper and lower boundaries versus the global strain for the
simulation of bonded sample described in Figure 4.12 is shown in Figure 4.13. The solid red
curve and the dashed black curve show the average engineering stress on the top and bottom
boundaries respectively and are nearly identical except for the first 0.04 strain. Based on this, the
sample can be seen as undergoing a "quasi-static" deformation. In addition to the stress, the
percentage of porosity in the sample was plotted to show the relationship between the porosity
and sample strength. It can be seen that stresses in the sample increased until a global strain of
0.12 was reached. The maximum of stress corresponds to the minimum porosity due to in situ
densification during the initial stage of deformation. After the densification stage (corresponding
to a range of global strain 0.12-0.29), the stress begins to drop as the local shear bands begin
forming and the global shear band develops. Later (0.30 global strain) macrocracking occurred
resulting in a decrease in strength accompanied by a rapid increase of porosity. This behavior is
similar to the behavior observed in [11, 12, 16-18]. The two-dimensional simulation of the non-
bonded material, due to the material rearrangement, had near zero engineering stress on the top
and bottom boundary and was not included. The comparable strength of bonded and unbounded
samples in experiments is mostly due to interconnected W wires that cannot be accounted in these

two-dimensional simulations.
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Figure 4.12 - Role of relative particle sizes of W and Al in bonded (a), (b) and unbounded samples (c), (d)
at two different global strains of 0.30 (a), (b) and 0.45 (¢), (d). The initial mesostucture is shown in Figure
4.7. Damage is plotted to highlight the shear instability and the shear band development.
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Figure 4.13 - Average engineering stress versus the global strain at the top boundary (solid red line) and at
the bottom boundary (dashed black line) of the corner sample corresponding to initial mesostructure
presented in Figure 4.7 and velocity of impact 10 m/s. The porosity in the sample versus global strain is
also plotted (blue dashed and dotted line).

4.4.2.5 The role of initial arrangement of W particles in CIPed+HIPed samples (bonded) with
zero initial porosity

Experimentally tested samples had the W fibers initially placed in a random fashion.
Multiple “randomized” samples were created for numerical analysis to understand how different
experimental realizations of this randomized W fiber placement effects the formation of shear
instabilities during dynamic deformation. In two characteristic samples with initial mesostructure
presented in Figure 4.8, the W particles were randomly placed in an Al matrix such that the
volume fractions of W and Al in each sample were identical. The samples were then subjected to

boundary conditions described in Figure 4.9 (a) with a constant 10 m/s downward velocity. All
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samples had zero initial porosity to remove mesostructural changes due to void closure as seen in
simulations described in Figure 4.10. Results of the two characteristic simulations are shown in
Figure 4.14, demonstrating variations in the shear instabilities and shear band development while
highlighting the similarities that the samples share.

Both samples in Figure 4.14 have damage plotted to highlight the shear band formation,
with red corresponding to fully damaged Al. It is obvious from the comparison of the deformed
samples in Figure 4.14 (a) and (b) that changes in the initial mesostructure (see Figure 4.8 (a) and
(b)) greatly alter the location of the shear band despite the same volume content of Al and W and
the same size of W particles.

While both samples in Figure 4.14 have very different shear band locations and modes of
fracture, there are a number of similar characteristics that the samples exhibit.

First, both samples develop shear instabilities and shear bands at approximately the same
global strain of 0.20. It should be mentioned that in these samples with zero initial porosity, the
global strains corresponding to well-developed shear localization are similar to the corresponding
global strains in the initially porous samples (see Figure 4.10 and Figure 4.12).

Second, numerous local shear instabilities form due to the localized, high strain flow of
the softer Al particles around the harder W particles. These local instabilities link with other local
shear instabilities in close proximity creating localized shear bands. These bands join with other
localized shear bands until one global shear band transverses the entire sample and becomes the
dominant macroshear band. This macroshear band has a propensity to form at a 45 degree angle,
with its path locally altered by W particles, and spans the entire sample before subsequent global
shear bands are able to form. This demonstrates that the relatively rigid W particles initiate the
shear instability in these granular composites, enhancing the localized high strain plastic flow of
Al around the W particles. Local plastic strain in the Al around the W particles was 3 to 4 times

higher than the plastic strain in the surrounding Al thus facilitating localized damage and
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subsequent global shear localization within the Al matrix. Separate experiments and numerical
simulations with cylindrical samples made of as is Al 6061-T6 and annealed Al 6061-T6 did not
reveal shear localization at similar or larger global strains (see Figure 4.3 (c) and (d)).

Third, the W particles are largely responsible in dictating the path of instabilities. This
can be seen clearly in the bottom center region of Figure 4.14 (a), where the shear band develops
two branches that circumvent a clump of W particles and reconvene on the bottom boundary.
Additionally, in the top central region of Figure 4.14 (a), a closely packed clump of W particles
block shear instabilities from developing in this region. This may be due to a similar effect as
seen in Figure 4.10 (a) and (b) in addition to Figure 4.12 (a), where having the W particles
initially aggregated into a close pack causes the shear instability to move around the relatively
rigid mass into the softer area of the surrounding composite. The same effect can be seen in areas
of the samples in Figure 4.14 where the W particles group in very close proximity to each other.

Finally, due to the random nature of the sample, some of the W particles form angular
chains with channels of Al between them facilitating the growth of shear instabilities and shear
bands along the channel. The sample in Figure 4.14 (b) exemplifies this with W particles creating
a channel structure spanning the entire sample going diagonally from the lower left corner to the
upper right corner. This channel created a favorable path for the local instabilities to follow and
eventually lead to the formation of the shear band in the sample. W particles “flow” along the
shear band to help form these angular chains. Rearrangement of the rigid particles inside high
strain shear flow was observed in explosive compaction on interfaces between particles with high
strain shear deformation [32]. In Figure 4.14 (a) a distinct global chain structure of W particles is
not present like in Figure 4.14 (b), but rather a series of shorter chain structures in the left and the
upper right region of the sample. This lack of long chains may be the reason that the sample

accumulated more bulk-distributed damage in comparison to Figure 4.14 (b).
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Figure 4.14 — The role of initial mesostructure of the W particles on the shear localization and the
subsequent fragmentation with zero initial porosity. The deformed samples at 0.50 global strain shown in
(a) and (b) correspond to the initial mesostructures presented in Figure 4.8 (a) and (b) respectively.

4.4.2.6The role of kinematic confinement conditions

Previous simulations examined small representative elements corresponding to a material
on, or very near to, the outer edge of the experimental sample. A small representative element
near the central region of the sample interacts with surrounding material which resists movement
of material leaving the representative element. To account for this “confinement” from the
surrounding material, kinematic boundary conditions using a ramped normal velocity were
imposed on the sides. Multiple velocity ramps were explored in an attempt to model the large
variance in the local inhomogeneity within the sample, resulting in various local “confinements”.
The first ramp velocity tested kept the global Poisson ratio of the small representative sample
geometrically consistent with that of the experimental sample. Two additional constrained
boundary conditions were tested corresponding to 70% and 100% increased horizontal expansion
in comparison with the geometrically constrained case. The vertical strain rate was kept identical
for all samples. Figure 4.15 shows the simulation results at 0.30 and 0.50 global strains
respectively for the samples with the constrained side boundary conditions. Damage is plotted to
highlight the shear instabilities.

Shear bands developed in all samples at approximately 0.25 global strain. However, the
location and number of shear bands differed in each case. Despite these differences, all the

samples share a similar characteristic: areas of heavily deformed Al particles near the W particles,



53

resulting in local damage accumulation and subsequent shear band formation, while material
further away from the W particles is relatively undeformed. This trend seems to be independent
of the imposed confinement conditions. Also, samples in Figure 4.15 (b) and (c) exhibit cracks
that form between the W particles. The crack locations are very similar to the location of cracks
in the large experimental sample (see Figure 4.15 (b)). The cracks span between the W particles
in the areas of the heavily deformed Al. In the simulations, the W particles move, squeezing the
Al particles between the nearby W particles, acting as “anvils” that facilitate the heterogeneous
deformation of the Al particles. A similar effect may occur in the large experimental sample
where the Al flows around the W fibers due to the three-dimensional cage like network that the
packed network of W fibers create. A similar effect of rigid and heavy W particles is instrumental
also in the shock loading of corresponding mixtures allowing tailored redistribution of internal

energy between components [11, 12].
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Figure 4.15 - Role of different conditions of confinement on shear localization and subsequent fracture.
Three deformed mesostructures at 0.3 and 0.5 global strains with various confinement conditions are
presented. All three samples have boundary conditions described in Figure 4.9 (b) with a constant 10 m/s
downward velocity imposed on the top boundary. Each sample differs only in the imposed horizontal
velocity on the side boundaries (linear ramp as vertical strain goes from 0 to 0.5) in the following way:

(a), (d) A linear ramp from 0 to 7.20 m/s. Corresponding to a final horizontal strain equal to 0.58. This
produces the representative element to keep the same geometric proportions as in the experiments. Sample
shown at 0.3 (a) and 0.5 (d) vertical strain.

(b), (e) A linear ramp from 0 to 12.24 m/s. This corresponds to a horizontal strain 1.0. Sample shown at 0.3
(b) and 0.5 (e) vertical strain.

(¢), (f) A linear ramp from 0 to 14.40 m/s. This corresponds to a horizontal strain of 1.16. Sample shown at
0.3 (c) and 0.5 (f) vertical strain.

4.4.2.7 The role of the constitutive behavior of Al

The constitutive behavior of the Al particles were modified to explore how they
influenced the shear instability and the shear band formation in the bonded samples (CIPed plus
HIPed samples in experiments). Simulations were carried out with the initial mesostructure
shown in Figure 4.7 and the boundary conditions in Figure 4.9 (a) with a constant 10 m/s
downward velocity on the top boundary. The initial yield stress of Al was reduced to a very low

level 20 MPa from 324 MPa corresponding to all previous simulations and the results are shown
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in Figure 4.16. The sensitivity of shear band development to other parameters in the Johnson-
Cook model such at temperature softening and strain rate sensitivity were also explored, however,
these simulations showed that there were only slight changes in the material response due to these
alterations and results are not presented in this paper. This indicates that shear instability in these
granular composites is caused by damage accumulation due to the local high strain flow of the Al
around the W particles and not due to thermal softening.

The reduction of the initial yield stress in the material from that of Al 6061-T6 (324 MPa)
to that of a much softer Al (20 MPa) caused a large change in sample response. The Al particles
in Figure 4.16 experiences greater plastic flow and deformation in all areas of the sample,
especially in the areas around the W particles (compare to Figure 4.12). Due to the softening of
the Al matrix, the development of the global shear band was delayed, allowing for more bulk-
distributed plastic flow of the Al. The reduction of initial yield stress in the Al resulted in a shear
band developing in a different location. This is likely caused by the greater movement of W
particles in the softer Al altering the arrangement of the W altering the mesostructure at the

earlier stages of sample deformation.
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Figure 4.16 - Effect of the initial yield strength on the shear instability in porous granular composites. The
initial yield strength of the Al is reduced to that of a softer Al (20 MPa). The sample is presented with
global strains of 0.30 (a) and 0.40 (b). The damage is plotted to highlight the shear bands.

4.4.2.8 Modeling and results of the three dimensional mesostructure with W rods

In all previously simulations presented in this chapter, the two dimensional representation
of the mesostructure was used. In some instances, the mesostructure may have architecture which
has three dimensional features such as rods (see Figure 4.2 (¢) and (d)) that may influence the
accommodation of plastic strain and may not be captured in the two dimensional model. As such,
numerical simulations of a representative element of the mesostructure were conducted to explore
the effects of the three dimensional architecture.

The simulated mesostructure was assumed to consist of randomly distributed W
cylindrical rods with a length of 4 mm and a diameter of 200 pum in a solid Al matrix (fully
bonded) such that the packing fraction of the rods was similar to the experimental value of 0.30.
The procedure for placing rods was similar to the procedure for placing the particles in the two
dimensional simulations. To reduce the influence of boundary effects when placing the rods, the

rod placement algorithm was applied to a cubic space with side length of 2 cm (five times the
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length of a single W rod). A central cubic region with side lengths of 0.5 cm was used for the
simulations to reduce the effects of rod placement near the boundaries of the placement domain.

During the placement procedure, the rod is defined by two points defining the positions
of the top and bottom central axis of the rod and a radius. These three quantities are used by the
volume fraction filling procedure performed by LS-DYNA prior to the start of the Eulerian
analysis. The placement of rids is done sequentially until the volume fraction of the rods in the
placement domain is reached.

The placement of the ith rod is done a 2 step procedure; random placement in the domain
and checking for overlap with previously placed rods. First the rod is randomly placed inside the

domain by first placing one point (x;;) of the rod using the following equation:

x1; = rand * (Xmax — Xmin — 2 * Troa) + Xmin + Troa) (4.2)
where rand is a random real number between 0 and 1, x4, and x,;,;;, are the maximum and
minimum coordinates of the domain in the x direction, and 7;.,4 is the radius of the rod. This
placement is performed for each coordinate direction (x, y, z). After the placement of the first
point, the second point is placed in an iterative manner by randomly placing the point on a sphere

that is centered at (xy;, ¥1;, Z1;) using

Xp; = X1; T pcosOsing 4.3)
Y2; = Y1; T psinfsing 4.4
Zy; =7Z1; F pcose 4.5)

where p is the length of the rod, 6 is the azimuthal coordinate and is a random number between 0
to 2m, and ¢ is the polar coordinate with a value that is randomly picked from 0 to 7. If this point
falls outside of the domain, the point placement procedure is repeated until the point falls inside

the domain.
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When the rod is determined to be inside the domain, it is check against all previously
placed rods to ensure that there is no overlap. The algorithm used for performing this check first
finds the location of the two closest points on the infinite lines defined by the rods axis and is
based on the algorithm for finding the distance between lines in Ref. [33]. Then the algorithm
checks if the point lies on the rod, or if this point falls on the line outside the rod, the closest end
point is used in calculating the distance. To find the closest points between the infinite lines that

the ith and jth rods lie on, the lines are defined using parametric equations:

Ll(S) = xli + S(xzi - x1i) = xli + su (46)
where s and ¢ are parametric parameters and the Xy, = [k o Vicg 2k a]. If s, and t; are defined as
the parametric coordinates at which the distance between the lines is minimized then a vector w

can be defined as

w=1Li(s) = La(t)) = (%, —x1 ) +s5u—t3 v

4.8)
= W1 + Slu - t1 v

which will be perpendicular to both lines meaning that the dot products between w and u and v

will be zero

w-u=0andw-v=0. 4.9)

Substituting w into these relations the values of s;and t; to be found as

_(uwv)w-v)-(w-v)(w-u)
515 u-w)w-v) — (u-v)?

(4.10)

_(wrwy(wv)—(u-v)(w-u)
7 (uw-w)wv) — (u-v)?

4.11)

As a result of these equations, if the denominators are zero then the two lines are parallel and the
distance between the rods is simply the distance between the end points. If the values of both

s;and tqare between 0 and 1 (i.e. on the rod) then the distance is calculated as |w|. However, if
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either of the values are greater to 1 or less than zero, the end point associated with the line of the
rod are used to recalculate the minimum distance between the rods. This is done by minimizing
the length of w which is the same as minimizing |w|? [33]. Setting the first derivatives with

respect to s and ¢ of |w|? to zero allows relations:

a|w|?

latl =0=—-2v-(w; +su-—tv) (4.12)
a|lw|?

lasl =0=2u-(w; +su—tv). (4.13)

From these relations, the minimum point can be found by first seeing if the s coordinate is greater
than one or less than zero. In the former case, s is set to one in the latter, s is set to 0 and the first
relation (Eqn. 4.12) is used to find the new corresponding value of t. Then in a similar manner,
the t value is checked to see if it is greater than one or less than zero. Similarly to s, the value is
set to the appropriate boundary (0 or 1) if it falls outside of this range. If this occurs, then the
second relation is used to see if the s value should change. When using the second equation (Eqn.
4.13), if the value of s is again bounded by zero and one. Once the final values of s and t are
computed, the distance between the rods is calculated by finding the length of the vector w. If this
length is less than two times the radius, then the rods are considered to overlap and the rod will
not be placed. A figure showing a generated mesostructure of the entire domain is presented in
Figure 4.17 (a) and the initial mesostructure used in the computational study is shown in Figure
4.17 (b). Using this method of rod placement, a local volume fraction of 0.28 of W rods in the
area where the simulation was conducted was obtained. It should be noted that this procedure
generally results in global mesostructures with 0.20 to 0.25 volume fractions.

The drop weight simulations of the drop weight tests for the three dimensional
mesostructure was conducted using the Eulerian finite element method that was implemented in
LS-DYNA. As with the two dimensional simulations, the materials were modeled using the

Johnson-Cook constitutive model in conjunction with the Griineisen equation of state. The
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Eulerian background mesh size was chosen such that 100 elements spanned each direction of the
computational domain. Symmetry boundary conditions were imposed on the bottom and three of
the side boundary planes of the mesostructure, the remaining side boundary did not have a
constraint on it and allowed material to freely move out of the computational domain. A constant
velocity of 10 m/s was imposed on the top boundary to maintain consistency with the previous

simulations and experimental test.

(a) (b)

Figure 4.17 — (a) The locations of the W rods generated for the mesostructure used in simulations for the
drop weight tests. The generated domain was 2 cm x 2cm x 2cm and the central region of the domain was
used for computation of the drop weight test. (b) The initial mesostructure used in the simulation of the
drop weight test with W rods (4mm length, 200 micrometer diameter) shown in blue in a solid matrix of Al

(red).

The results of the simulation is presented in Figure 4.18 and demonstrate that the rods act
to direct the shear band in a similar fashion as the two dimensional simulations. Additionally, as
seen in the previous simulations, a single global shear band initially forms with a direction nearly

45 degrees to the loading direction (in the plane of maximum shear) before subsequent shear
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bands develop. As with the simulations examining the influence of the mesostructure (see Figure
4.14) there is a slight shifting of the W rods in the early stages of the deformation which may
result in the generation of channels that are favorable to the formation of the shear band. It should
be noted that the size degree of relative shift between the material regions on either side of the
shear band is qualitatively smaller in the three dimensional simulations. This is likely due to the
additional geometrical locking or caging that occurs as a result of the interaction of the rods.
Finally, due to the similarities between these three dimensional simulations and the analogous
simulations, these simulations give additional confidence in the assumptions used in the two

dimensional simulations previously conducted in this chapter.
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(a) (b)

(c) (d)

Figure 4.18 — Results of the drop weight simulation with W rods and solid Al matrix at 0.30 (a) and (b) and
0.50 (c) and (d) global strain. The deformed mesostructure is presented in (a) and (c) and the fringe of the
damage is plotted in (b) and (d) where areas in red are fully damaged and areas in blue have no damage.

4.5 Chapter conclusions

Dynamic experiments with Al-W granular/porous composites and numerical simulations
revealed the characteristics that had the greatest effects on shear instability and shear band
formation. It was shown that in simulated CIPed only (non-bonded) samples the Al and W

particles rearranged themselves during the dynamic deformation to effectively block shear
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localization. This resulted in the subsequent bulk disintegration of the sample in agreement with
areas near the outer surface of the samples used in the experiments.

All CIPed+HIPed (bonded) samples exhibited shear localization and shear band
formation. The shear bands nucleated during the initial stages of the deformation in Al
surrounding the W particles and spread to the nearby W particles at angles close to 45 degrees.
The shear band is kinked by W particles causing the shear band path to deviate from the ideal 45
degree angle path dictated by global geometry. In simulations with relatively larger W particles,
the path of the shear band was influenced to a greater degree than simulations with the similar
sized W and Al particles due to increased heterogeneity of the sample. It was also shown that
variations in the initial arrangements of the W particles were the main drivers determining where
the global shear bands formed in the sample. Numerical calculations and experiments revealed
that the mechanism of shear localization in granular composites is due to a localized high strain
flow of Al around rigid W particles, causing local damage accumulation and a subsequent growth
of the meso/macro shear bands/cracks.

A variety of constraint boundary conditions were examined to represent the
heterogeneous nature of the internal structure in the global sample. Each simulation showed shear
localization occurred between the nearby W particles while leaving areas away from the W
particles relatively undeformed. This result is supported by the microstructural features observed
in the experimental sample.

Finally, the role of the constitutive behavior in the Al was examined in numerical
calculations. The results showed that a significant reduction of the initial yield stress from Al
6061-T6 (324 MPa) to a softer Al (20 MPa) increased the amount of bulk distributed damage and
plastic strain in the sample in addition to altering the shear band location. Removal of thermal

softening in constitutive equation did not significantly change the shear instability in granular
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composites pointing to the damage accumulation caused by the local high strain flow of the Al
around the W particles as a main softening mechanism triggering shear localization.

This chapter contains material that appears in the Journal of Applied Physics article K.L.
Olney, P.-H. Chiu, C.-W. Lee, V.F. Nesterenko, and D.J. Benson, J. Appl. Phys. 110, 114908

(2011). The dissertation author was the primary author of this paper.

4.6 Chapter references

[1] R. Ames, Multi-functional Energetic Materials, MRS Proc. 896, 123 (2006).

[2] J. J. Davis, A. J. Lindfors, P. J. Miller, S. Finnegan, and D. L. Woody, 11th Det. Symp. (Int.)
1007 (1998).

[3] W. Holt, W. Mock, Jr., and F. Santiago, J. Appl. Phys. 88, 5485 (2000).

[4] C. R. Siviour, M. J. Gifford, S. M. Walley, W. G. Proud, and J. E. Field, J. Mater. Sci. 39,
1255 (2004).

[5] J. E. Balzer, C. .R Siviour, S. M. Walley, W. G. Proud, and J. E. Field, Proc. R. Soc. London
781, 460 (2004).

[6] J. W. Mock and J. Drotar, AIP Conf. Proc. 955, 871 (2007).

[7] J.C. Foster Jr., J. Glenn, and M. Gunger, AIP Conf. Proc. 505, 703 (2000).
[8] S. Bardenhagen and J. Brackbill, J. Appl. Phys. 83, 5732 (1998).

[9] K. Roessig, J. J.C. Foster, and S. Bardenhagen, Exp. Mech. 42, 329 (2002).

[10] J. Cai, S. Walley, R. Hunt, W. Proud, V. Nesterenko, and M. Meyers, Mat. Sci. Eng. A 473,
308 (2008).

[11] J. Cai, V. Nesterenko, K. Vecchio, F. Jiang, E. Herbold, D. Benson, J. W. Addiss, S. M.
Walley, and W. G. Proud, Appl. Phys. Lett. 92, 031903 (2008).

[12] E. Herbold, V. Nesterenko, D. Benson, J. Cai, K. Vecchio, F. Jiang, J. W. Addiss, S. M.
Walley, and W. G. Proud, J. Appl. Phys. 104, 103903 (2008).

[13]J. Cai and V. F. Nesterenko, AIP Conf. Proc. 845, 793 (2006).

[14] J. Addiss, J. Cai, S.Walley, W. Proud, and V. F. Nesterenko, AIP Conf. Proc. 955, 773
(2008).

[15] J. Cai, F. Jiang, K. Vecchio, M. Meyers, and V. Nesterenko, AIP Conf. Proc. 955, 723
(2008).



65

[16] E. Herbold, J. Cai, D. J. Benson, and V. Nesterenko, AIP Conf. Proc. 955, 785 (2008).
[17] P-H. Chiu and V. F. Nesterenko, DYMAT (EPD Sciences, 2009) pp. 947-953

[18] P-H. Chiu, S. Wang, E. Vitali, E. B. Herbold, D. J. Benson, and V. F. Nesterenko, AIP Conf.
Proc. 1195, 1345 (2009)

[19] C. Zener and J. H. Holloman, J. of Appl. Phys. 15, 22 (1944)

[20] J. Lomonds and A. Needleman, Mech. of Materials 5, 339 (1986)

[21] Y. Yang, H.G. Zheng, Z.J. Shi, and Q.M. Zheng, Mat. Sci. and Eng. A 528, 2446 (2011).
[22] Q. Xue, V.F. Nesterenko, and M.A. Meyers, Mat. Sci. and Eng. A 384,35 (2004)

[23] Q. Xue, V.F. Nesterenko, and M.A. Meyers, Int. J. Impact Eng. 28, 257 (2003)

[24] V. Nesterenko, M. Meyers, and H. Chen, Acta mater. 44, 4037 (1996)

[25] C. Shih, M. Meyers, and V. Nesterenko, Acta mater. 46, 4037 (1998)

[26] D. J. Benson, Comp. Methods in Appl. Mech. and Eng. 99, 235 (1992)

[27] E. Vitali and D. J. Benson, Int. J. Numer. Meth. Eng. 67, 1420 (2006)

[28] W. H. Cook, G. R. Johnson, Eng. Frac. Mech. 21, 31 (1985)

[29] T.J. Holmquist, D. W. Templeton, and K. D. Bishnoi, /nt. J. Impact Eng. 25,211 (2001)

[30] D. J. Steinberg, Equation of states and strength properties of selected materials, Tech. Rep.
(Lawrence Livermore National Lab, 1996).

[31] L. Westerling, P. Lundberg, and B. Lundberg, Int. J. Impact Eng. 25, 703 (2001)
[32] V. Nesterenko, Dynamics of Heterogenous Materials (Springer, NY, 2001) Chap. 6.

[33] P. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics (Elsevier, CA,
2003) Chap. 10.



Chapter 5

Mechanisms of fragmentation and the
microstructure of debris generated
during explosively expanded Al-W

granular composite rings

5.1 Chapter introduction

Control and understanding of the fragmentation processes of granular/porous reactive
materials is important for optimizing their performance [1, 2]. Despite having a large combustion
energy (7422 cal/g), to attain achieve oxidization on a timescale of approximately 1 millisecond
(appropriate for blast loading events in munitions), Al needs to be pulverized into particles with
sizes less than 20 microns [3]. Explosively loaded homogeneous materials (such as standard
engineering metals like aluminum and steels) demonstrate that the characteristic size of the
fragments is much larger (of the order 1-10 mm) due to the nature of the fragmentation
mechanisms of homogeneous materials [4, 5]. Using a highly heterogeneous material composed
of components with drastically different densities and shock impedances (e.g., Al and W) can
provide enhanced pulverization due to addition of mesoscale fragmentation mechanisms [6, 7]. In

this research, AI-W granular/porous composite rings with different mesostructures were prepared
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and tested in explosively driven expanding ring experiments. Numerical simulations were used to
gain an insight into the development of these mesoscale fragmentation mechanisms during

dynamic loading.

5.2 Explosively driven fragmentation experiments

Al-W granular/porous composite rings (24% Al and 76% W by weight, and 69% and
31% by volume correspondingly, and a theoretical density of 7.8 g/cm3) with 4 mm height, 30
mm outer diameter and 22 mm inner diameter were prepared by Cold Isostatic Pressing (CIPing)
at 345 MPa. The mesostructure of the samples were tailored by using different particle sizes of Al
powder (coarse: -325 mesh and fine: 4.5~7 pum, both from Alfa Aesar), and different
morphologies of W (powder: -325 mesh with polyhedral particles from Alfa Aesar and W rods:
200 um diameter with 4 mm length from A-M system). We consider that the elongated geometry
of W rods may influence the pulverization process of Al due to differences in the dynamic
behavior of rods in comparison to particles during fragmentation process. To investigate the role
of bonding between Al particles, half of the samples were Hot Isostatically Pressed (HIPed at
pressure 100 MPa and temperature 450C) after CIPing. Samples were pressed to correct
dimensions with 8~15% porosity and did not require further machining. Three smaller rings (19
mm outer diameter and 13 mm inner diameter) with the same height were made from a mixture of
fine Al and W powders (CIPed only) and were used in pilot experiments. For comparison, solid
rings with similar sizes and densities were manufactured from stainless steel 304.

The explosively driven fragmentation tests were conducted in the Cavendish Laboratory,
Cambridge University, UK. The samples were placed around a Cu tube. The explosive charge
(Primersheet 1000 discs) was placed inside the Cu tube and initiated by either a hollow end Nobel
No. 6 detonator or a RP501 detonator made by Teledyne. Photon Doppler Velocimetry (PDV or

Het-V) with nominal 140A laser output was used to capture the time-resolved expansion velocity.
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Paraffin wax (for homogeneous samples) or polyethylene glycol (for granular/porous samples)
was used for the soft capture of fragments. Details regarding the experimental setup can be found
in [8]. PDV records corresponding to the small ring samples and results of numerical simulations
are shown in Figure 5.1 (a).

PDV records corresponding to samples made with W rods are shown in Figure 5.2 (a). It
is difficult to distinguish between the PDV traces of samples with different morphologies of Al
and bonding. This suggests that the global response of these composites with W rods under this
loading condition is not very sensitive to the Al particle size or their bonding. X-ray Diffraction
(XRD) was performed on the recovered fragments (Figure 5.2 (b)) and demonstrated that
intermetallic reaction did not occur during the dynamic loading. In all samples, Al particles were
stripped from the W rods. The particle size analysis of the recovered fragments excluding the W
rods (Figure 5.2 (c) and (d)) showed that nearly all (90-98%) of the fragments were smaller than
100 microns. This is significantly smaller than the fragments generated from solid SS304 samples
with similar density [4]. In addition, an increase in the amount of small size fragments in
comparison with size distribution in initial powders was observed. For example, the percentage
of fragments with a size less than 10 microns in the sample with the coarse Al powder samples
grew from 22% (initial) to 28-35% (after test) and the number of fragments with a size smaller
than 4.5 microns in the samples with fine Al powder grew from 8% (initial) to 11-15% (after

test). This may indicate that some Al particles were fractured during the tests.
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Figure 5.1 - (a) The PDV records of the small ring tests with SS304 and the CIPed Al-W samples with fine
Al/coarse W powder as well as results of numerical simulations of Al/W samples; and (b) the particle size
distribution of the recovered fragments from the fine Al/coarse W powder composite samples. The
heterogeneous Al-W samples with non-bonded Al particles demonstrated a consistent behavior in
expansion velocity. Particle size analysis of the recovered fragments for the small ring Al-W samples was
performed using laser diffraction is presented in (b). This showed that about 90% of fragments were
smaller than 100 microns compared to the characteristic fragment size of several millimeters in the stainless
steel samples.
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Scanning Electron Microscopy (SEM) was utilized to examine the mesostructure of Al-
W granular/porous composite rings before the dynamic test and fragments after the test. Figure
5.3 (a) demonstrates that particles in the fine Al/coarse W powder sample after the CIPing
process mostly retained their as-received shape (slightly deformed spheres for Al and
polyhedrons for W). Figure 5.3 (b) shows a large recovered fragment polished and mounted in
epoxy. Fragments of this size consist of agglomerated Al and W particles. In places there is some
elongation of the low strength Al particles between high strength neighbouring W particles. This
suggests that the Al particles underwent plastic deformation during the dynamic loading by either
the extrusion of Al between the W particles, or the squeezing of the Al by the W particles. In
some instances, the elongated Al particles appear far from W particles. A similar phenomenon of
localized plastic flow of Al particles was observed in samples with W rods. It should be
emphasized that in the samples with Al powders and the W rods, the Al particles did undergo
small alterations to their shape after CIPing and HIPing (see Figure 5.3 (c)), but were heavily
dynamically deformed locally during the tests as shown in Figure 5.3 (d). The extrusion of the Al
matrix between W particles or rods may assist in the creation of fresh surfaces on the Al particles
hence improving their oxidation and subsequent combustion efficiency. Recovered fragments
from samples with different Al particles sizes and/or bonding conditions in Al matrix were very

similar.
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(c) (d)
Figure 5.3 - SEM images of CIPed only fine Al/coarse W powder sample (a) and fine Al/W rod sample (c)
before the test, and images of corresponding fragments after the dynamic testing of the samples is in (b)
and (d) respectively.

5.3 Numerical modeling

Two dimensional finite element simulations using LS-Dyna were performed to examine
the mechanisms of fragmentation during the explosively driven expansion of the granular
composites. A 10 degree wedge of the sample was simulated under plane strain conditions. The
mean size of all of the particles (Al and W) was assumed to be the same, 40 micrometer diameter.
These assumptions were imposed due to computational limitations. The individual particles were
created by using a Voronoi tessellation of the region. The volume fractions of the components
were kept similar to the experiment (30% W, 70% Al). The mesh resolution for the Al and W
particles was chosen such that ~5 elements spanned the diameter of the particle to adequately

capture the stresses in the particle. The initial mesostructure is presented in figure 4 (a). Since the
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experimental samples showed no bonding between the particles after the CIPing processing
(particles in the samples were held together due to mechanical interlocking), no metallic bonding
was introduced in numerical simulations and the particles were allowed to slip and separate.

The behavior of solid Al, Ni, and Cu was modeled using the Johnson-Cook constitutive
model [9] in conjunction with the Griineisen equation of state. The material parameters were
taken from the literature [9,10]. To model the explosive driver, we assumed that the detonation
was instantaneous in the plane of interest since detonation speed is much larger than the velocity
of expansion. The detonation products were modeled as a polytropic gas with the initial
pressures/energies of the detonation products described by conditions at the Chapman-Jouguet
point similar to [6]. The corresponding line in the Figure 5.1 (a) shows that the free surface
velocity of the expanding ring from the simulation is in good agreement with experimental data.
Differences in the initial 3 microseconds of velocity may be accounted for due to the geometry of
the experimental setup allowing additional axial expansion of the detonation products “softening”
the initial shock loading in comparison to the plane strain conditions. Evolution of sheared zones
and generation of fragments with agglomerated Al particles are shown in Figure 5.4 (b), (¢) and
(d). Sheared zones first initiate at about 45 degrees from radius and are kinked by clusters of W
particles (Figure 5.4 (b) and (c)). As the ring expands, tension in the hoop direction causes the
sheared zones thicken due to the difference in corresponding particle velocities of neighboring
areas (Figure 5.4 (b)). Regions outside of the sheared zones are possible areas where larger size

agglomerated fragments are created.
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5.4 Chapter conclusions

Explosively driven fragmentation experiments were conducted with Al-W
porous/granular composite rings with the goal of examining the mechanisms of fragmentation,
characteristic fragment sizes and variations of these with respect to the mesostructure (coarse Al
vs. fine Al particles, W powder vs. W rods, and bonded vs. unbounded Al particles). The
porous/granular samples were mostly pulverized into fragments sizes below 100 micron (above
90%) for all tested mesostructures. A comparison of initial sizes of particles in the powder and
post experiment fragment size distributions indicates that some Al particles may have been
fractured during the dynamic loading.

Some of the low strength Al particles were deformed between the rigid W particles, but
mainly maintained their equiaxed shape in the areas away from W particles. Al particles were
heavily deformed in samples with W rods regardless of the Al particle size and bonding between
Al particles. The similar behavior in PDV records for the samples with W rods suggests that the
global response is insensitive to the mesoscale properties of the Al (particle size, bonding). In all
of the dynamic experiments, there was no observable intermetallic reaction between Al and W in
the recovered fragments.

Numerical simulations were performed to examine the mechanisms of fragmentation
during explosively driven dynamic loading. Qualitative similarities between the simulations and
experiments were observed. The simulations revealed that the creation and development of
numerous sheared zones in granular Al matrix may allow fracture of initial Al particles and the
generation of micron-sized Al fragments inside them. The spacing between these sheared zones is
much larger than the size of the Al and W particles suggesting that material between them is
shielded from mesoscale pulverization resulting in the generation of the large scale fragments of

agglomerated Al and W particles.
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Nesterenko, J. Phys.: Conf. Series, 500, 112017 (2014). The dissertation author was an
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Chapter 6
Mechanisms of fragmentation of Al-W
granular composites under dynamic

loading

6.1 Chapter introduction

Granular materials are used to enhance the release of energy by mixing metal particles,
e.g., Aluminum (Al), with traditional energetic materials [1] or by surrounding traditional
energetic materials with a granular “shell” [2]. The performance of these composite energetic
materials is heavily influenced by the particle size of the metal powder which dictates the speed at
which these particles can be oxidized by the detonation products or by the surrounding air [1-3].
It has been shown that small sized suspended Al particles (40 um) in air can sustain a detonation
wave caused by the fast energy release due to the oxidization of these Al particles [4]. Impact-
initiated energetic materials (metal powders in a polymer binder, consolidated powders, or
mixtures of powders) are non-energetic under static or quasi-static loading but release energy
under high strain, high strain rate deformations [5-7]. In these materials, the material properties
such as the mesostructure and the individual constituents' strength are instrumental in determining

the performance characteristics [5].
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Another interesting class of reactive materials is granular composite materials that are
able to carry a structural load under quasi-static loading combined with the ability to undergo
rapid bulk distributed pulverization under dynamic loading, releasing a large amount of usable
chemical energy. The performance of these materials is determined by the properties of the
individual components and the mesostructure. For example, Al-Tungsten (W) granular
composites with an Al matrix are comparable in strength to solid Al and have demonstrated an
ability to undergo bulk distributed fragmentation under dynamic loading [8, 9]. The post critical
behavior of these AI-W granular composite materials was examined showing that the
mesostructure of the W particles was the main factor influencing the fragment size [10-12].

For explosively driven homogeneous expanding rings, the mechanism of fragmentation is
determined by the development of macrocracks [13] with a fragment size distribution that can be
estimated using the Grady-Kipp equations [14]. The typical fragment sizes for an explosively
driven expanding ring made from Al 6061-T6 is on the order of a few mm [11]. Small scale
experiments with explosively driven Al-W granular composite rings processed from -325 mesh
Al and W particles by Cold Isostatic Pressing (CIPing) were conducted [11]. The recovered
fragments demonstrated that the mesostructure of the AlI-W composite allowed for the generation
of fragments with a size scale on the order of 100 um. This reduction in the order of magnitude in
fragment size suggested that there is a shift in the fragmentation mechanism from the continuum
scale to that of the mesoscale determined by the mesostructure of the composite material. This
mesoscale mechanism of fragmentation was attributed to the development of gradients in the
particle velocities between the Al and the W constituents due to the significant difference
between the shock impedances of Al and W.

In this paper, numerical simulations were performed to elucidate the shift in the
mechanism from the continuum level determined by the nucleation, propagation and interaction

of the macrocracks [13] seen in the homogeneous samples to the generation of fragments which
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size is controlled by the mesoscale. The understanding of this mesosclae mechanism may allow
for the tailoring of the size of fragments and the reactivity by selecting an appropriate initial

mesostructure.

6.2 Description of the simulations

While this system has a 3D architecture, 2D models were used since the trends observed
in the 2D simulations that preserve the volume content of the components reflects the dynamic
behavior of the 3D heterogeneous materials [15-18]. The mesostructures in the numerical
simulations were randomly generated such that the volume content of W (30%) in the composite
corresponded to the mesostructures used in previous experiments for AI-W granular composites
[8-12]. The shock pressure and temperature seen in the simulations performed in this paper reach
conditions [19] that facilitate the bonding between the AIl/Al interfaces during shock
consolidation. However, the conditions attained during the shock loading do not cause bonding
between the A/W interfaces. As such, the Al particles are assumed to be fully bonded together
creating a solid fully dense Al matrix. W particles are embedded into this matrix and are allowed
to separate from the surrounding Al matrix. This mesostructure corresponds to a sample that has
been processed by CIPing followed by Hot Isostatic Pressing (HIPing) of the granular composite
[8-12].

A two-dimensional Eulerian hydrocode [29] that allows for bonding/debonding [21] was
used to model the explosively driven granular composite ring during expansion. Each material
(Al, W, copper (Cu), and the detonation products) in the sample used separate equations of state
and mechanical properties. For Al, Cu, and W, the Johnson-Cook [22] material model with failure
was used (equations of this constitutive model are presented in Section 3.2.1 with the material
parameters taken from [22-24] and presented in Table 6.1. This material model was used in

conjunction with the Mie-Griineisen equation of state. The explosive was assumed to have an
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instantaneous detonation converting the explosive into detonation products. We used this
approximation because the focus of our research was on the mechanism of fragmentation of the
composite material under similar conditions of loading. The detonation products were modeled as
an ideal gas using the Chapman-Jouguet relations for the stationary detonation to obtain the initial
conditions as detailed in Section 3.2.3. The initial pressure of the detonation products correspond
to the Chapman-Jouguet detonation pressure. The parameters used in this model were calibrated
by simulating an explosively driven expanding Cu ring and comparing the free surface velocity

with experiments.
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Table 6.1 - Constitutive model and equation of state material properties used in the numerical simulations

for the Al and W components.

Material parameter Al 6061-T6 [22,24] W][23, 24] Cu [22, 24]

Johnson-Cook

po [gm cm™]
G [Mbar]
A [Mbar]
B [Mbar]

n

C
m
C, [J kg-1 K-1]
Toere [K]

Troom [K]

DI

D2

D3

D4

D5

Mie-Griineisen

Co[em ps']
S
S2
S3

Yo

2.7
26.0
224.0
1114
0.42
0.002
1.34
890
930
300
-0.77
1.45
-0.47

1.6

0.52
1.4

1.97

16.98
1.24
1506

176.5
0.12

0.0016

130

1728

300

0.33
-1.5

0.40
1.24

1.67

8.96
48.0
90.0
292.0
0.31
0.25
1.09
383
1356
300
0.54
4.89
-3.03
0.014
1.12

0.394
1.489

2.02
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The initial mesostructure of the AI-W composite used in the simulations is presented in
Figure 6.1. In this paper, four variations of this initial setup were examined to elucidate the
influence shock amplitude on the mechanisms of fragmentation. The Cu liner dimensions were
identical to the dimensions of the Cu liner used in the experiments presented in [11]. The
calculations were performed at two initial pressures of detonation products with parameters
corresponding to Primasheet 1000 (a “weak” explosive, used in experiments in [11]): D¢=0.68
cm/pus, Yoi= 3, and pcy = 1.46 g/cm3 resulting in P; = 0.168 Mbar and LX-14 (a “strong”
explosive): D¢y =0.88 cm/ps, ¢y = 2.84, and pcy= 1.835 g/em’ resulting in P,= 0.37 Mbar. The
parameters used in this model were calibrated by simulating an explosively (LX-14) driven
expanding Cu ring and comparing the free surface velocity with the experiments in [25]. The

influence of the Cu inner liner on the mechanisms of fragmentation was also examined.
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Figure 6.1 — The initial mesostructure for the CIPed+HIPed AI-W granular composite ring with a Cu inner
liner. The central blue area represents the detonation products, the second layer (green) is the Cu inner
liner, and the outer layer is the granular composite composed of 200 um diameter W particles (red)
embedded in a solid Al matrix (blue). The W particles were randomly placed such that the volume content
of W in the composite was 30%. The mesostructure shown for the AlI-W composite was used for all of the
simulations presented in this paper. For the simulations where the detonation products are in direct contact
with the composite ring, the inner Cu liner was removed and replaced with the detonation products.

6.3 Results and discussion of the simulations

Results of the numerical simulations are presented in Figure 6.2 and Figure 6.3. These
figures show the fracture patterns in the composite for four configurations that will be referred to
as Cases 1-4. The odd numbered cases have the detonation pressure of P; and the even cases have
a detonation pressure of P,. Cases 1 and 2 have a Cu inner liner while in Cases 3 and 4 the Cu
inner liner replaced with detonation products. Due to the variations in the initial detonation

pressures and differences in the subsequent expansion rates, all samples depicted in Figure 6.2
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and Figure 6.3 are compared at the same radial expansion (10% and 50% increase in the initial
radius).

At 10% radial expansion, velocity gradients between the lighter Al matrix and the heavier
W particles have formed due to the initial shock loading and subsequent pressure release from the
free surface. The magnitude of the particle velocity gradient shows a strong dependency on the
amplitude of the shock loading. This is clearly seen by comparing Case 1 and Case 2: the velocity
gradients between the Al and W components are negligible in Case 1 while they are significant in
Case 2. In Cases 2-4, the velocity gradients between the Al and W were large enough to cause
microjetting to occur within the composite and facilitate the formation of microjets near the
vicinity of the free surface. The addition of the Cu inner liner significantly reduced the magnitude
of the velocity gradients by reducing the amplitude of the initial shock wave. This is especially
dramatic when comparing Case 1 with Case 3 where the addition of the Cu inner liner reduced
the velocity gradients between the Al and W such that microjetting did not occur. In Case 2, the
added Cu inner liner reduces the magnitude of the velocity gradients by about 20% in comparison
to Case 4. This suggests that the addition of the Cu inner liner reduces the effectiveness of the
microjetting mechanism and in the cases with weak detonation pressures, causes this mechanism
to be inactive. In Cases 2 and 4, these microjets eject approximately 30% of the Al from the

composite while no Al ejection was seen in Cases 1 or 3.
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Figure 6.2 - Patterns of mesoscale fragmentation after the granular composite ring has radially expanded by
10% for different initial geometries and detonation product pressures: (a) Case 1, PCJ=0.168 Mbar with a
Cu inner liner, (b) Case 2, PCJ=0.37 Mbar with a Cu inner liner, (¢) Case 3, PCJ=0.168 Mbar with
detonation products in direct contact with the granular composite, and (d) Case 4, PCJ=0.37 Mbar with
detonation products in direct contact with the granular composite. Detailed views of the radial velocity in
the granular composites are plotted to show the velocity gradients between W particles and the surrounding
Al. These velocity gradients are a driving force for mesoscale fragmentation at later stages of expansion.



87

- 1750 m/s

-0 m/s

(a)|[(b)
(c)l(d)

1750 m/s 2500 m/s -

-0 m/s 0m/s -

Figure 6.3 - Patterns of fragmentation in the granular composite rings at 50% radial expansion. A previous
stage of expansion was presented in Figure 6.2 (a), (b), (c), and (d) corresponding to Cases 1-4
respectively. Detailed views of the radial velocity in the granular composite are plotted to show the
equilibration of the velocities between the Al and W constituents at this stage of expansion.
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As the ring expands in all cases, the velocity gradients begin to diminish due to shock
wave equilibration and dissipation. The rate at which this equilibration occurs is largely
dependent on the shock amplitude and the shock impedances of the components. As the particle
velocity gradients diminish, the mesoscale microjets cease to exist. This results in a shift in the
mechanism of fragmentation from the ejection of Al due to gradients in the particle velocity to the
competition between the continuum scale development of macrocracks and the networks of
microcracks developing on the mesoscale between neighboring W particles and in heavily
damaged areas where Al flows around the relatively rigid W particles [12].

Figure 6.3 depicts the samples after expanding 50% of the initial radius. It is clear from
this figure that the differences in the detonation products create qualitatively different fracture
patterns in the composite material. In Case 1, potential fragments are forming with a similar size
scale as those predicted by the Grady-Kipp equations. In Case 2, the composite shows a large
number of mesoscale voids opening around the W particles and their coalescence with nearby
voids. The W particles in these regions exhibit a tendency to form clumps of 5-10 particles. This
suggests that a subsequent fragments will be generated on a smaller size scale containing about 5-
10 W particles.

In the simulations without the Cu inner liner, the W particles were heavily deformed.
Furthermore, in the regions of the composite near the detonation product interface, the Al matrix
was stripped from the W particles leaving free W particles behind. In these cases, the detonation
products penetrate into the composite where the Al material is fully damaged, resulting in a
Rayleigh-Taylor type instability. These instabilities grow into the composite, channeled by
clumps or short chains of W particles, creating “fingers” of detonation products that introduce an
additional size scale of fragmentation based on the mesoscale. The paths of these “fingers” start
in the same location on the inner Al-W composite ring but the penetration depth at a given radial

expansion is determined by the detonation pressure.
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The amplitude of the initial shock wave, dictated by the pressure of the detonation
products, determines the mechanism of pulverization for the Al in the granular composite. At low
detonation pressures, generating relatively low amplitude shock waves, the disintegration is
mainly determined by the competition between the continuum Grady-Kipp mechanism of
macrocracking and the opening of mesoscale voids due to the Al/W interfaces that are initially
not bonded due to local tensile strains when the composite radially expands. The continuum type
of spall in the radial direction is mitigated by the complex pattern of shock interactions resulting
in a desirable mesoscale type of spalling/jetting. At higher detonation pressures that generate
larger amplitude shock waves, a third fragmentation mechanism develops; the mesoscale jetting
due to the large gradient of particle velocities between the W and Al in the regions adjacent to the
free surface. This mechanism is responsible for the pulverization of approximately of 30% of Al.
The remainder of the composite is pulverized at later stages of expansion when the gradients in
the velocity between the Al and the W vanish due to wave equilibration. This pulverization is
based on the competition between the mechanisms of macrocracking and the opening of the
mesoscale voids at the AI/W interfaces. In the cases where the Cu inner liner was not present, the
detonation products penetrated into the composite generating an additional mesoscale mechanism
of fragmentation based on the mesostructure. The scale of the fragments come from the self-
organization of macrocracks starting with an opening of the existing microcracks and damage
localization of Al due to the complex strain and strain rate fields caused by the random
distribution of W particles [12]. These mesoscale mechanisms can be used to tailor the size of the
fragments (macro to mesoscale) by selecting the appropriate initial mesostructure. At relatively
low shock pressures, the initially non-bonded interfaces between particles may be the most
important mesostructural factor governing the size of the fragments while at higher detonation

pressures, the mesoscale jetting can be the most important factor for pulverization.
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6.4 Chapter conclusions

Numerical simulations of Aluminum (Al) and Tungsten (W) granular composite rings
under various dynamic loading conditions due to explosive loading were performed. Three
competing mechanisms of fragmentation were observed: a continuum level mechanism
generating macrocracks with a size scale comparable to the case width, a mesoscale mechanism
generating voids and microcracks at the non-bonded Al/W interfaces due to tensile strains, and
mesoscale jetting due to the development of large velocity gradients between the W particles and
surrounding Al. These mesoscale mechanisms can be used to tailor the size of the fragments
(macro to mesoscale) by selecting an appropriate initial mesostructure for a given loading
condition.

This chapter contains material that appears in Applied Physics Letters journal article K.L.
Olney, V.F. Nesterenko, and D.J. Benson, Appl. Phys. Lett. 100, 191910 (2012). The dissertation

author was the primary investigator and author of this paper.
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Chapter 7

The mechanism of instability and
localized reaction in the explosively
driven collapse of thick walled

concentric Ni-Al laminate cylinders

7.1 Chapter introduction

During the explosively- or magnetically-driven radial collapse of thin-walled metal
cylinders, the geometric instabilities lead to the development of buckling [1, 2]. This type of
instability is prohibited in the collapse of thick-walled cylinders. Instead, a material instability
may develop due to the presence of softening mechanisms that initiate shear localization leading
to the formation of multiple shear bands. Due to this property, the explosively- [3] or
magnetically-driven [4, 5] collapse of thick-walled cylinders has been used to investigate the high
strain/strain-rate deformation of various materials under plane strain conditions. To avoid
spallation and minimize the shock induced effects, powder explosives with low densities, low
detonation velocities, and sizes close to critical were used. All previously investigated materials

in the thick-walled cylindrical geometry: solid monocrystalline and polycrystalline metals;
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polymers [3, 6-9]; solid and granular ceramics (SiC and Al,Os) [10-12]; and reactive granular
materials [13-15], accommodate the high strain/strain-rate global plane strain deformation by
developing multiple shear bands. In some cases, these shear bands can number in the hundreds as
in SS T-304L [9]. The mechanisms of plastic flow instability triggering the spontaneous shear
localization and subsequent pattern of shear bands are different for various classes of materials.
For example, in solid homogeneous metals, the thermal softening triggers the shear instability at a
very modest increase in the uniform temperature caused by plastic deformation (~30 K) [9]. In
the case of granular materials, it is microfracture of grains due to the high stresses localized at the
contact interfaces [10-12].

Reactive Ni-Al laminates with different layer thicknesses and interface characteristics
have been fabricated using various techniques such as physical vapor deposition [16, 17] or cold
rolling/swaging [18, 19]. These reactive laminates have generated great interest due to their wide
variety of applications requiring a controlled local heat source such as soldering [20, 21]. The
chemical reaction in these laminates can be initiated by local heating [16-18] or by a shock-
induced deformation with the subsequent influence of post-shock phenomena [22-27]. In reactive
materials, the shear bands act as planar hot spots where reaction may occur and serve as an
ignition source for the reaction in the bulk material [13-15]. In metal-based reactive materials, the
intermetallic reaction may be triggered in zones of highly developed localized plastic deformation
where the local temperature can be approximately an order of magnitude higher than the
temperatures generated during the onset of the localized plastic flow. To improve the reactivity of
these materials under conditions of dynamic high strain/strain-rate plastic deformation, the
mesostructure should be designed to promote the localized plastic flow and the formation of hot
spots necessary for the initiation of the reaction. Conversely, if it is necessary to prevent reaction

until some critical strain, the mesostructure should be designed to block shear localization.
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Since the mesostructure of the Ni-Al laminate materials can be viewed as an assembly of
thin layers, it is interesting from both a fundamental and practical viewpoint to investigate the
competing mechanisms of instability (geometric versus material) in the collapse of laminate
thick-walled cylinders. It is not apparent if the geometric instability (buckling) or the material
instability (shear localization) will be the dominant factor in the accommodation of plastic strain
during the collapse. Furthermore, it is not clear if the instability will be sufficient to generate the
local conditions that are suitable for the initiation of reaction between the Al and Ni layers. It has
not been investigated if a buckling instability during dynamic plane strain loading can serve as an
effective means to develop local hot spots and provide conditions that are necessary for the
initiation of a reaction.

In this chapter, the Thick-Walled Cylinder (TWC) method [3] is applied with an
improved explosive driver that ensured a better uniformity of explosive charge and enhanced
tunability in comparison to the previously used powder explosives. The TWC method was used to
examine the mechanisms of instability under the high strain/strain-rate deformation of Ni-Al
laminates composed of concentric thin foil layers and to see if it is possible, under dynamic plane

strain conditions, to initiate a chemical reaction between the Al and Ni.

7.2 Sample processing

Ni and Al laminate thick-walled cylinders were assembled from alternating concentric
thin foil layers of pure Al (McMaster, annealed, Vickers microhardness HV= 251+4 MPa, purity
at least 98%, initial thickness = 38.1 um) and Ni (Alfa Aesar, annealed and soft tempered, HV=
898+9 MPa, purity 99%, initial thickness = 25.4 um). The layer thicknesses were selected such
that a 1:1 atomic ratio of Ni/Al was maintained. The concentric mesostructure was created one
layer at a time starting with the outermost layer. Each layer was prepared by cutting a length of

foil equal to the approximate circumference of its corresponding position in the final assembly.
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The foil was cleaned with acetone, loosely rolled and inserted into the cylinder. A copper tube
with an inner radius equal to the desired composite outer radius was used to encase the laminate.
After each layer was inserted, a balloon was placed into the center cavity and inflated, causing the
inner foil layer to unroll such that it was snug against its neighboring layer. A total of 24 bilayers
were used to construct the sample. The composite was then encapsulated in a rubber jacket and
processed using cold isostatic pressing (CIPing) by applying pressure, 345 MPa, on the interior
surface of the laminate to increase stacking density and prevent the sample from buckling during
preparation. After CIPing, the Al and Ni foils were densely packed, but the layers were not

bonded. The overall density of the sample was (4.85 g/cc), corresponding to a porosity of 6%.

500 pum

(@) (b)

Figure 7.1 - (a) SEM of cross-sectional image of concentric Ni-Al sample after CIPing, Ni (white) and Al
(gray) layers aligned alternatively and concentrically. (b) A detailed view of the Al (red) Ni (blue) laminate
composite mesostructure with the inner Cu stopper tube (green) used in the numerical simulations. The
thicknesses of Ni and Al foils used in the simulations were identical to the initial nominal thicknesses of
their corresponding counterparts in the experimental samples.

The processed concentric thick-walled cylinder laminate samples had an outer diameter
of 17 mm, an inner diameter of 12.1 mm, and a length of 30 mm. An image of the laminate
mesostructure after processing taken by using Scanning Electron Microscopy (SEM) is shown in

Figure 7.1 (a). The sample was enclosed in a copper assembly (see Figure 7.2) for the TWC test.
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The copper stopper tube had an inner diameter of 10 mm and an outer diameter of 12 mm. The
copper driver tube had an inner diameter of 17.1 mm and an outer diameter of 30 mm. The
explosive driver for the TWC test was a gelled nitromethane (96% nitromethane, 4% PMMA)
diluted 5% by mass with glass microballoons that allowed for the fine tuning of the dynamic
loading (explosive density=0.82 g/cc, detonation velocity = 4.8 mm/us). The diameter of the
explosive charge was equal to 58 mm and thickness of the PVC container was 7.4 mm. The
behavior of a laminate casing made from concentric Ni and Al layers under inner explosive

loading was investigated in [28].
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Figure 7.2 - Experimental setup for Thick Walled Cylinder Method.
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7.3 Experimental results

Examination of the Ni-Al laminate material after the TWC test showed that the dominant
mechanism of plastic strain accommodation in the experiments was the cooperative buckling of
Ni and Al layers (see Figure 7.3 (a)). There were no observable shear bands in the sample. Based
on the pattern of radially-aligned peaks and troughs of the buckles (apices), it may be concluded
that the cooperative buckling of individual layers originated in the inner layers (due to higher
strains) and propagated outward as the cylinder collapsed. Thus the instability mode of the
outmost layers is dictated by the buckling mode of the inner layers. This mechanism of plastic
strain accommodation in the laminate material is qualitatively different than found in previously
investigated homogeneous materials (solid and granular, inert and reactive) subjected to similar

loading conditions in the same geometry [3-15].
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Figure 7.3 - (a) SEM image of the cross-sectional cut of the concentric Ni-Al sample after the explosive
collapse, Ni (white) and Al (gray), the red square indicates the area with local reaction shown at larger
magnification in Fig. 4; (b) the mesostructure of the simulated partially collapsed TWC sample (Al (red)
and Ni (blue)) demonstrating the development of instability in the inner layers; (c) the mesostructure of the
laminated fully collapsed TWC sample in the numerical simulations; (d) the effective plastic strain of the
same view shown in (c).

7.4 Numerical modeling

Numerical simulations were used to elucidate the mechanism of buckling during the
TWC experiments. They were conducted under plane strain conditions using LS-DYNA, a finite-
element software. The similar conditions in previous numerical calculations [5, 29-32] adequately
described experimental results; including the pattern of shear bands/cracks in uniform solid
metals, solid ceramics, granular ceramics, and the complex shapes of monocrystals generated
during collapse. Additionally, the collapsed stainless steel inserts above and below Ni-Al samples
in this TWC test (Figure 7.2) exhibit nearly vertical shear bands indicating plane strain

conditions.
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A quarter of the sample was simulated using symmetry boundary conditions. The number
of layers, layer thickness, and copper tube dimensions were consistent with the experiment. The
mesh resolution was chosen such that the 8 rectangular elements spanned each layer to ensure
that stresses and bending through the thickness would be captured. The simulation allowed for the
layers to slip and separate. Friction was not included in the model. A detailed view of the
geometry used in the simulations is presented in Figure 7.1 (b).

The modified nitromethane explosive was modeled using a JWL equation of state of the form

L) o-rav 4 ©OF
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where 4 = 78.69 GPa, B =1.92 GPa, ® = 0.36 , R,= 4.61, and R,= 1.06 are constants obtained
from Cheetah calculations [33]. Because the velocity of collapse is significantly smaller than the
detonation speed, we assume that the explosive in the plane of interest detonates instantaneously.
The material properties of Cu, Al, and Ni were modeled using the standard Johnson-Cook
plasticity model [34] in conjunction with the Mie-Griiniesen equation of state. The constitutive

parameters were taken from the [34-36] and are presented in Table 7.1 and Table 7.2.

Table 7.1 - Parameters for the Johnson-Cook constitutive model used in the simulations.

Material P,[gcm®] G|[GPa] A[MPa] B[MPa] n [4 m T, [K]
Al 2.77 26.2 84.21 426.0 0.34 0.015 1.0 773
Ni 8.902 74.45 297.2 648.1 0.33 0.006 1.44 1725

Cu 8.96 48.0 90.0 292.0 031 0.025 1.09 1356
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Table 7.2- Parameters for the Griineisen equation of state used in the simulations

Material C[ms'] S S, S Yo a

Al 5328 1.338. 0.0 0.0 2.0 048
Ni 4650 1445 0.0 0.0 193 0.50
Cu 3940 1489 0.0 0.0 202 047

7.5 Discussion of the numerical modeling results

7.5.1 Mechanism of cooperative buckling

The geometry of the cylinder at the initial stage of instability demonstrating the initiation
of cooperative buckling originating in the inner layers is presented in Figure 7.3 (b). The
collapsed laminate sample with the fully developed instability is presented in Fig. 3(c) and the
plastic strain distribution in the composite is shown in Figure 7.3(d). It is clear from comparing
these results with the experiment (Figure 7.3 (a)) that the simulation of the instability at the final
stage of collapse shows good agreement with the experiment. The number of apices in a single
layer in the experiment was 148 while the simulation had 164, a 10.8% difference. Defining a
characteristic amplitude of waviness, 4,, as the average of the differences in the radius of all
neighboring apices in the same layer yields an 4,,of 155.7 pm (about 6 times Ni layer thickness)
for 5th Ni layer in the experimental sample while the simulation predicts an A4,, of 144.2 pm.
Simulations with different strain rates of collapse were conducted by altering the explosive
properties and demonstrated that increasing strain rate results in an increasing number of apices.
The differences between the number of apices and the A4, in simulations and experiment is
probably due to the difference in the high strain, high strain rate material behavior and the role of
friction between layers in experiments.

The simulations and experiments both clearly demonstrate that the cooperative buckling

of the layers was the dominant mechanism of plastic strain accommodation in the Ni-Al laminate
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thick-walled cylinder during collapse. The simulations demonstrated that as the cylinder initially
collapses, the individual layers experience compression in the hoop direction with the interior
layers experiencing a larger hoop strain than the exterior layers. At first, the spontaneous buckling
of the inner layers occurs and quasi-sinusoidal distortions develop. This initial buckling in the
inner layers triggers the cascading geometric instability of neighboring layers extending all the
way to the outermost layers. The amplitude of waviness of each layer increases to accommodate
the change in circumference length with further collapse of the cylinder. The simulations show
that this amplitude change is non-symmetric despite the initial symmetric geometry and that
additional buckling does not occur on later stages of collapse. This suggests that the increase in
amplitude of the initially buckled shape is the favorable mode of plastic accommodation. At the
same time, we observed some secondary buckling (Figure 7.3 (a) and (c)), demonstrating that the
instability in the outer foil layers may not be completely controlled by buckling in the innermost
layers. In this case local conditions in the outer layers may also influence the instability.

The simulations show that prior to the instability initiation, the layers experience a ~5-6%
increase in layer thickness. This plastic flow within the individual layers is a secondary
mechanism of global plastic strain accommodation. However, this effect is minor in comparison
with ~45% increase of the sample thickness during the collapse due to the cooperative buckling
of layers which have an amplitude of waviness about 6 times the layer thickness.

Dramatic changes in the accommodation of global plastic strain were observed in
numerical calculations if the layers were bonded. In this case, the prevailing mechanism was
shifted from cooperative buckling to shear localization generating trans-layer shear bands. The
resulting response is similar to that of homogeneous materials [3-15] under similar loading
conditions. This suggests that the laminate mesostructure can be tailored to either allow or
prevent shear band formation by altering the level of bonding and interface characteristics such as

roughness. Additional simulations with both bonded and non-bonded Ni-Al layers constructed
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with a brittle material having material properties similar to Ni and a ductile Al material
demonstrated that the prevalent mode of large plastic accommodation is shear localization. The
subsequent shear bands that were developed in these simulations had an angle of about 45° to the
radius and spanned the entire thickness of the sample. Additionally, a dependence of the number
of apices on the layer thickness was observed, which may be used to tune the reactivity of these

materials.

7.5.2 Intermetallic reaction

Numerous areas of reaction were observed in the collapsed sample in areas adjacent to
the apices (see Figure 7.4). Based on Energy Dispersive X-ray Spectroscopy (EDX) analysis, two
types of reaction products were observed, Ni-rich and Al-rich, which were similar to the reaction
products observed in [16-18]. Simulations also demonstrated that the areas near the apices,
approximately the size of the layer thickness, were the areas of maximum local strains and
temperatures. The typical level of effective plastic strains observed in these areas were about 1.5
corresponding to peak temperatures 823 K for Al and 873 K for Ni. The start of reaction in Ni-Al
laminates [18, 37] was observed under static conditions at temperatures 473 - 873 K. This
indicates that local plastic strains inside apex areas are sufficient to explain the observed localized
reaction. The ignition temperature for nanolaminates is in the range of 450-900 K [16, 38],
indicating that ignition in these materials can be attained in dynamic conditions similar to our
experiments.

In addition to the local plastic deformation increase of interface temperatures also can be
caused by friction. The role of friction is supported by the smaller localized spots of reaction

observed at Ni-Al interfaces away from the apices.
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Figure 7.4 - An example of the intermetallic reactions observed at the Ni and Al interface at the inner apex
region of the buckled Ni foil. EDX results showed two types of reaction products: Ni-rich and Al-rich.

7.6 Chapter conclusions

The TWC experiments and simulations of dynamic collapse of Ni-Al concentric laminate
cylinders demonstrated a new phenomenon of the cooperative buckling originating in the
innermost layers. The instability of all layers is dictated by the buckling mode of the inner layers.
The laminate geometry resulted in the cooperative buckling of layers which is different from
independent buckling of single thin walled cylinders. The investigated non-bonded laminate
mesostructure blocked the development of localized shear bands, the major mechanism of large
plastic strain accommodation observed in homogeneous materials under similar conditions. This
buckling mechanism supported numerous localized reaction zones in the areas near the apices,
but global ignition was not observed. Numerical simulations showed that it is possible to tailor
the behavior of laminates by altering their mesostructural properties, e.g., bonding at the

interfaces of Ni and Al, critical strain of fracture, and layer thicknesses.
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This chapter contains material that appears in Applied Physics Letters journal article P.H.
Chiu, K.L. Olney, A. Higgins, M. Serge, D.J. Benson, and V.F. Nesterenko, Appl. Phys. Lett.,

102, 241912 (2013). The dissertation author was an investigator and author of this paper.
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Chapter 8
Mechanisms of plastic strain
accommodation in corrugated Ni-Al

laminates

8.1 Chapter introduction

Reactive materials (e.g., Al-PTFE, Ti-Si, Ti-B) have shown promise for various
applications due to their high energy density that can be released during extreme dynamic
deformation [1-3]. Ni-Al laminate materials are a well investigated system with respect to the
kinetics of reaction initiation and propagation depending on mesostructure [4]. In addition to the
traditional ignition methods (direct heating or spark ignition [5]) the intermetallic reaction can be
initiated during dynamic mechanical loading, for example, during impact or rapid launch of a
projectile. It has been shown that strong shock loading and subsequent post-shock
mechanochemical processes can result in the ignition of Ni-Al mixtures [6-8].

Ignition may also occur at relatively weak shock pressures and high strain plastic flow
where ignition occurs in the hot spots formed in zones of shear localization. These are inevitably
present in most materials accommodating high strain, high strain rate plastic flow as observed in
inert granular materials [9-11], solid metals [12-14] and reactive powder based mixtures [15-17].

The rate of complete reaction in the material is determined by the heat of reaction and the spacing
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between the shear bands that serve as local hot spots. As such, an understanding of how and
where these hot spots form is an important step in tailoring the material system performance to
either hasten or delay the ignition and reaction rate.

The Thick Walled Cylinder (TWC) method [18] was proposed to examine the
development of material instabilities during the high strain rate, large strain deformations in plane
strain conditions. It uses an explosive to collapse a cylindrical tube of the sample placed between
two copper tubes. The interior copper tube (stopper tube) controls the total final maximum strain
in the sample while the outer copper tube (driver tube), which is accelerated by an explosive
charge and axisymmetrically drives the radial collapse. Because the mass of the driver copper
tube is significantly larger than the mass of the TWC sample, the kinetics of the collapse are
determined mainly by the thickness of the outer copper tube, allowing the testing of materials
with different properties at similar strains and strain rates.

In most materials, the material instability generated during the TWC test generally is
manifested by the formation of multiple, periodic, self-organized shear localization zones
originating in the interior of the sample and propagating radially outward at an angle close to 45°
to the radius. In the case of Ni-Al laminates composed of alternating non-bonded concentric Ni
and Al thin foils with low initial porosity [19], this pattern of shear bands was completely
blocked. Instead, the large plastic strain was accommodated by the cooperative buckling of the
layers where the wavelength of the buckling was dictated during the initial stages of the collapse
by the layers in the interior region of the sample. Numerous reaction spots formed in the apex
areas during the collapse of these concentric Ni-Al laminates.

The mesostructure of the Ni-Al laminate (e.g., bilayer thickness) may be controlled via
swaging. This large strain processing of laminates forms a corrugated pattern of layers. The
degree of corrugation is controlled by the number of swaging cycles such that fewer swaging

cycles result in a mesostructure that is locally closer to the concentric laminate while a larger
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number of swaging cycles results in a sample with more/larger wrinkled layers. As such, it is
important to understand how these laminate materials with two different spatial features (bilayer
thickness and corrugation scale) behave during high strain, high strain rate deformation. Of
specific importance is their effect on the development of, or the blocking of, shear localization
during plastic deformation and the formation of hot spots and subsequent reaction zones. It is not
clear if the laminate materials with corrugated mesostructure will behave like the concentric
laminates, blocking shear localization via cooperative buckling with the apex locations promoting
the local high straining and reaction initiation during the collapse, or if the anisotropic
mesostructure will lend itself to increasing the shear band density.

In this chapter, the TWC method was used to test two corrugated Ni-Al laminates SW-6
and SW-7, created by the swaging process. To examine the mechanisms of plastic strain
accommodation of the corrugated laminate during the collapse, a numerical simulation was
conducted using the real geometry extrapolated from a characteristic micrograph of the plane

perpendicular to the sample axis.

8.2 Sample processing

The corrugated mesostructures were processed from alternating layers of Al (30 micron
nominal thickness) and Ni (20 micron nominal thickness) that were stacked, rolled into a cylinder
and then placed into a tubular steel jacket. This jacketed assembly was then swaged using mating
tapered dies resulting in cylindrical shaped rods with a corrugated mesostructure. The two rods
that underwent 6 and 7 swaging cycles were used to prepare samples tested in this paper, SW-6
and SW-7, respectively. Additional details of the swaging process can be found in [20].

Each of the swaged rods (SW-6 and SW-7) was cut into three 30 mm long segments and
labeled A, B, and C. Electrical Discharge Machining (EDM) was used to remove the central core

of each rod segment to create the hollow cylinders used as samples in the dynamic tests and to
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ensure that no reaction occurred during the machining of the samples. The initial, corrugated, as-
processed Al-Ni samples are presented in Figure 8.1 (a) and Figure 8.1 (b) and high
magnification scanning electron micrographs for these samples are presented in Figure 8.1 (c) and
Figure 8.1 (d). Due to the processing technique used to create the samples, their mesostructures
are highly heterogeneous on two different spatial scales — the size of the layers and the size of the
corrugation. In most places in the samples the thicknesses of Al and Ni layers are similar and can
be characterized by a nominal thickness. Variations in swaging and machining processes resulted

in slightly different inner and outer diameters of the samples (see Table 8.1).

@

Figure 8.1 - Cross-sectional micrographs of the swaged Ni-Al laminate tubes (a) SW-6A and (b) SW-7A
before the TWC test. The higher magnification images, (c) and (d), correspond to SW-6A and SW-7A,
respectively. The Ni and Al layers had a nominal thickness of 20 and 30 microns, respectively, in each
sample and appear as white and dark grey, respectively. Samples SW-7A, B, and C have a thin steel jacket
on the exterior of the sample.
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Table 8.1 - Dimensions of the TWC samples before the TWC experiments.

Sample SW-6A SW-6B SW-6C SW-7A SW-7B  SW-7C

Inner sample
diameter before
TWC (mm) 12.08 12.21 12.25 12.20 12.20 12.23

Outer sample
diameter before
TWC (mm) 16.21 17.41 17.38 17.06 16.74 16.78

Inner diameter of
copper stopper tube
before TWC (mm) 10.00 10.00 10.00 10.00 10.00 10.00

Outer diameter of
copper stopper
before TWC (mm) 12.00 12.00 12.00 12.00 12.00 12.00

Sample SW-7 retained a thin steel jacket (400-700 um thickness), which was left on for
convenience of sample handling, and did not significantly affect the behavior of collapse during
the dynamic deformation because the copper driver tube dominates the dynamic collapse,
irrespective of the sample’s mesostructure.

The hollow Ni-Al laminate cylinder samples were placed in the TWC assembly shown in
Figure 2 (a). The inner diameter and outer diameter of the copper stopper tube in all experiments
was 10.0 mm and 12.0 mm, respectively. The dimensions of the copper stopper tube allowed for
the precise control of the dynamic global strain imparted to the sample due to the complete
collapse of the TWC assembly (see Figure 2.4). The outer diameter of the copper driver tube was
31.8 mm for all experiments; the inner diameter of the copper driver tube (16.8 - 17.5 mm) was
customized for each sample. The top and bottom steel plugs in the TWC assembly had grooves
(depth and radius equal to 5 mm). They served for in situ sealing of the TWC assembly (see
Figure 2.4) during the test to ensure the complete recovery of the test specimen and to prevent the

penetration of the detonation products.
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The TWC assembly was placed in a PVC container with an inner diameter of 58.0 mm
and a wall thickness of 7.4 mm. The container was filled with a gelled Nitromethane (96%
Nitromethane, 4% PMMA) explosive to drive the collapse of the TWC assembly. Glass
microballoons (3M™ Glass Bubbles K1) were used to dilute the explosive 5% by mass, allowing
the fine-tuning of the dynamic loading [19]. The detonation velocities in the experiments were

measured to be 4.80 + 0.05 km/s and exhibited good reproducibility.

8.3 Experimental results

The recovered self-sealed samples were along planes perpendicular to their axes after the
TWC experiments with EDM to prevent any incidental reaction event from occurring during the
post-TWC examination process. The dimensions of the samples and the effective strains on the
interface with the copper stopper tube are presented in Table 8.2.

Microstructural analyses of the cross-sectional axial cuts were performed by using
scanning electron microscopy (SEM). The composite images of the medial cuts from all of the
tested samples are presented in Figure 8.2. It should be noted that there are variations of the
mesostructure through the axial direction of the sample due to the swaging processing. As such,
the composite images of the mesostructures for the collapsed samples SW-6A and SW-7A,
presented in Figure 8.2, do not exactly correspond to the initial mesostructures presented in
Figure 8.1, as they are cut from different axial locations. High magnification images of
representative areas of the collapsed mesostructures are presented in Figure 8.3, illustrating that
local trans-layer shear bands were common in all samples and generally are located in the interior
regions of the sample. Additionally, this figure shows a unique mesostructual behavior - the

extrusion of wedge-shaped regions on the inner surface of the cylinder towards the inner copper
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stopper tube. These wedge-shaped regions directly correspond to the initial corrugation in the

mesostructure generated during the swaging processing.

Table 8.2 - Dimensions of the TWC samples and effective strains after the TWC experiments

Sample SW-6A SW-6B SW-6C SW-7A SW-7B SW-7C

Mean sample inner
diameter after TWC (mm)  6.58 7.12 6.82 6.66 6.86 6.62

Mean sample outer
diameter after TWC (mm)  13.02 14.54 14.32 14.28 13.22 13.40
Calculated diameter of
fully collapsed copper
stopper tube based on
mass conservation (mm)  6.63 6.63 6.63 6.63 6.63 6.63
Calculated effective strains
(ger) of the inner sample
based on mass
conservation of inner
copper stopper tube 0.69 0.70 0.71 0.70 0.70 0.71

Measured effective strain
(&er) of the outer surface of
the sample 0.25 0.21 0.22 0.21 0.27 0.26

The local trans-layer shear bands (see Figure 8.3), observed in all samples, were limited
to the inner areas of the sample and did not create a periodic pattern as in all previously
investigated granular and solid materials [9-17]. In general, the local trans-layer shear bands
spanned ~3-10 layers in the areas where the Ni and Al layers were approximately radially
aligned. This radial alignment obstructed the accommodation of large strain by other
mechanisms. For example, the formation of shear localization in the soft Al layers or sliding
along non-bonded Ni-Al interfaces, as well as the development of cooperative buckling [19],
were less favorable than trans-layer shear localization. These trans-layer shear bands were
oriented approximately 45° from the radial direction corresponding to the maximum global stress.

Within these shear band zones, the Ni and Al layers were elongated and fragmented as shown in
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Figure 8.5 (c). This elongation resulted in a decrease in the layer size in the shear band by nearly
an order of magnitude (from approximately 12 microns to approximately 1.2 microns).
By comparing the mesostructure before and after the TWC test, it is apparent that there are more
radially aligned apexes and less locally coaxial areas in the post-experimental samples,
suggesting that the mechanism of cooperative buckling, similar to that observed in the concentric
mesostructure in [19], is active in regions where the layers are locally concentric. The generation
of the apexes in the locally coaxial areas is likely influenced by the initial corrugation of the areas
interior to these regions.

The final mean inner diameter of the Al-Ni samples are presented in Table 8.2. The

maximum effective global strains [18]

Lk 8.1
gef—ﬁn<;> (8.1)

at a material point in the sample were calculated using the initial radius of this point (7() and the
radius after the collapse (7, ). Due to the highly irregular interior surface of the collapsed TWC
samples, the corresponding value of 7, was calculated based on the conservation of mass of the
copper stopper tube, assuming a perfect cylindrical geometry of collapse. The mass of a central
copper rod with a height 7.8 mm is equal to 2.21 gram and the initial mass of the corresponding
segment of copper stopper tube with the same height was 2.32 gram. This suggests that only 0.11
gram was removed from the inside surface of the collapsed copper stopper tube due to axial
jetting or due to axial plastic flow of the sample. This translates to a difference of 7.8x10> mm
(2.4%) for the outside diameter of the collapsed copper stopper tube if we assume that this mass
difference is due solely to the removal of central part of copper stopper tube by jetting. If we
attribute this difference in mass to axial elongation due to plastic flow of the sample, the upper
estimate of axial strain will be 0.047. The global effective strain in all of the samples on the inner

surface was between 0.69 and 0.71 while on the outer surface, the strains were between 0.21 and
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0.27. The corresponding final inner and outer calculated radii are shown in Figure 8.2 as blue
lines imposed over the collapsed samples. The cylindrical geometry of the outside surface of the
sample (deformed by a copper driver) was preserved during the collapse process, allowing us to
model the heterogeneous deformation of the interior areas assuming a cylindrical exterior

geometry, as in the other cases of collapsing cylinders with a complex inner cavity shape [21, 22]

Figure 8.2 - Axial slices of the collapsed samples showing axial symmetry of the outside surface of
deformed samples, similar maximum strains (0.69-0.71), and similar features on the inner surface (wedge
extrusion). The inner blue circles in each of the samples represent the calculated mean inner diameter of the
sample based on the mass conservation of the inner copper stopper tube, assuming plane strain geometry of
deformation for the copper driver and stopper tubes during the collapse. A global shear band is shown in
SW-6A by a dashed line; areas of extruded and reacted wedges in SW-6B and SW-6C are shown by red
squares.
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Figure 8.3 - Two mesoscale mechanisms of the deformation accommodation in collapsed laminates
samples — wedge extrusions and trans-layer shear bands spanning only a few layers are shown in (a), SW-
6B and (b), SW-7C; a detailed view of the trans-layer shear band in SW-7A is shown in (c) and (d) and
demonstrates the dramatic elongation and subsequent fracture of the Ni and Al layers within the shear zone.
The Ni layers appear white and the Al layers appear dark grey.

Intermetallic reaction caused by the high strain plastic flow of Ni and Al within some of
the trans-layer shear bands was observed in the areas away from the interface with the copper
stopper tube, as in the sample SW6-B (see Figure 8.4). The possible mechanism of reaction
within these trans-layer shear bands consists of several steps. First, the localized high strain
shearing within the trans-layer shear band elongates the Ni and Al layers (see Figure 8.3 (c))
resulting in a reduction in the layer thicknesses by an order of magnitude. At some shear strain,
the instability of the elongation process causes the layers to fragment. This provides a region in

these shear zones where a mixture of small, sub-micron fragments of Ni and Al exist which, due
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to the reduction in bi-layer size, have a significantly lower temperature of ignition, approaching a
minimum of 490 K [23, 24]. Second, the localized heating caused by the high strain plastic flow
inside the shear band allows for the reaction to develop. Third, because the Al and Ni layers
outside the shear bands are significantly thicker than the elongated and fragmented layers inside
the shear band, and since they are relatively cold due to a small strain plastic deformation, the
reaction is quickly quenched and does not extend outside of the shear zone.

We did not observe propagation of reaction into the bulk of the laminate, however this
dynamic plastic deformation can be used as preconditioning making Ni-Al laminates more
susceptible for the bulk reaction initiation by subsequent shock loading.

In addition to the high strain shear induced reaction observed in the trans-layer shear
bands, the tips of Ni layers along the sample interface with the stopper tube showed signs of
bending and mushrooming from initially blunt tips with some degree of reaction (see Figure 8.5).
This may be due to the presence of the initial gap between the sample and the copper stopper
tube. At the initial stage of collapse, the sample closes the small air gap, colliding with the copper
stopper tube, and the tips of the layers deformed during this impact in a fashion similar to Taylor
bar samples [23, 24], developing localized plastic strain and increasing the local temperatures at
the tips. Axial shearing at the sample-copper stopper tube interface may also contribute to the
reaction initiation. Lastly, due to the small gap between the sample and the copper stopper tube, a
high velocity jet of metals/air could develop, providing additional heating which is favorable for
reaction initiation.

These mechanisms of reaction at the sample-copper stopper tube interface are the
probable causes of full reaction in some of the wedge shaped regions (see Figure 8.6). It is
interesting that the quenched reaction front in the wedges were contained within the very specific
corrugated mesostructure of each wedge. This suggests that reactions were initiated in the

wedges, after they were extruded by plastic flow, and then they were rapidly quenched by
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adjacent, cold material. However, this mechanism of reaction initiation in the wedge shaped
regions is beyond the scope of this paper, which focuses on deformation induced reaction.

The reactions in the Al-Ni system have been extensively investigated both theoretically
and experimentally. Depending on the stoichiometry and morphology of Ni/Al reactants,
fabrication methods, and ignition processes and conditions, the first phase to form in Ni-Al
reaction has been reported to be AlzNi [23, 24, 27-31], AINi [32-34], AloNi, [35, 36], or NizAl
[37, 38]. Energy-dispersive X-Ray spectroscopy (EDX) analysis was performed in the reacted
trans-layer shear bands and the reacted wedges to determine the composition of the reaction
products (locations examined are shown in Figure 8.4 (b) and Figure 8.6 (b)). It revealed that the
atomic ratio of Al/Ni varies from 0.3 to 6 in the reaction products. This shows that both Ni-rich
and Al-rich products exist in the reacted areas. In addition to the AI/Ni reaction products, the
presence of a small amount of Cu was detected in some of the spots in the reacted wedges. This is
likely due to the contact of the sample with the copper stopper tube. In the reacted shear band,

significant amounts of oxygen were detected suggesting that an oxide layer formed.
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Figure 8.4 - (a) A detailed view of a local reacted trans-layer shear band in sample SW-6B (location is
boxed in red). (b) A detailed view of the locations X1-X10 in the sample SW-6B (blue boxed region) where
the EDX analysis was conducted showing Al-rich (X1-X4), Ni-rich (X5-X8), and Ni-Al (X9-X10) reaction

products.

Figure 8.5 - Bent and deformed Ni layers (compare the geometry of Ni layers in the initial sample in Figure
8.1 (b)), showing melting and localized reaction at the interface with copper stopper tube.
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Figure 8.6 - (a) Examples of localized reaction in some of the extruded wedge-shaped regions in SW-6 C
(regions in the red boxes) showing the presence of an intermetallic reaction and (b) a reacted wedge in SW-
6B with locations for EDX analysis identified.

8.4 Numerical modeling

Numerical simulations were performed using LS-DYNA [39], a general-purpose finite
element program, under plane strain conditions. For the TWC experiments, plane strain
conditions have been shown to provide good agreement with complex patterns of deformation
(e.g., as in granular SiC [11] stainless steel [14], monocrystal copper [21, 22] and in coaxial Ni-

Al laminates [19]) under similar testing conditions [18]. This is due to the explosive driver,
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nitromethane, having a significantly faster detonation velocity than the velocity of collapse and
the deformation of the sample being mainly radial in nature. No significant axial deformation of
samples was detected, as mentioned above, based on mass conservation of the segments of the
copper stopper tube. The axial direction of plane shear bands in stainless steel samples also
supports this assumption. Additionally, the axial orientation of the grooves on the outer surface of
the copper stopper tube corresponds to kinks where shear bands originated and wedges are

extruded in the Ni-Al samples.

8.4.1 Generation of the mesostructure

Since the mesostructure of the corrugated sample is highly anisotropic, contains non-
uniform layers, and does not contain regular repeatable mesostructural features, a process was
developed to extract the mesostrutural geometry from images of axial slices of the sample.

First an optical microscope image of a section of the mesostructure was obtained using an
optical microscope such that a view of ~15-20 degree wedge of the sample is in the entire field of
view. This is done to ensure that at least one initial wedge shaped region is in the field of view.
Additionally, using a single image of the area ensures that there are no artifacts in the image due
to image stitching that may be present when connecting multiple higher resolution images. This
image was then imported into GIMP ver. 2.7, an open source photo editing software, and the
interfaces of the Al layers were traced. These interfaces were then filled with a solid color. The
traced layers were then saved as a .jpg file. The images were converted into a binary matrix using
the image processing toolbox in Octave [40], an open source high-level interactive programming
language for numerical computations, such that pixels in associated with Al layers would be
designated with a value of 1 while pixels outside of these layers would be designated a value of 0.
The optical microscope image of the section of the corrugated sample used to generate the

mesostructure and the corresponding extracted Al layers are presented in Figure 8.7.
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(a) (b)

Figure 8.7 — The optical microscope image (a) and the corresponding image of the extracted layers (b) used
for the section of the corrugated laminate simulations. This section of the laminate was chosen as it
contained many of the representative mesoscale features associated with the corrugation (e.g. interior
wedge shaped regions).

The edges of the layers were found by removing all pixels that do not neighbor a pixel
with a zero value above, below or to the sides. An algorithm was developed and then used to
separate all of the pixels associated with the individual layers into individual arrays. This
algorithm began by incrementing along the horizontal and then vertical coordinate of the image
matrix until an edge pixel was encountered. After encountering the pixel, the algorithm
performed a recursive search where the pixels in the 3x3 neighborhood were searched for other
edge nodes. Once all of the edge nodes associated with the layer was identified, they were placed
into an array and the pixels were set to zero in the image matrix. This process continued until all
of the edge pixels were placed into the appropriate layer array. The lines were then smoothed
using a simple moving average algorithm with the window size of 4 to reduce the noise
associated with the pixilation process.

The pixel locations were transformed into x-y location data by a scale factor of 2.26 X

10~* which was determined by the measuring the scale on the SEM image in pixels. The x-y
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location was shifted in the x-direction such that the innermost layer at y=0 is equal to the
experimental inner radius of the corrugated sample. Since the field of view in the SEM image
only has a small portion of the entire sample in view, a 15 degree wedge of the sample was
modeled. Pixels that fell outside of this region were cropped from the layer arrays. The remaining
arrays were exported as lists of x-y coordinates.

The lines were then imported into LS-Prepost [39], and smoothed via the b-spline
smoothing tool. A mesh size was chosen such that a minimum of 8 elements spanned the
thickness of each layer. This process is illustrated in Figure 8.8. Once the Al layers were
generated, the process was repeated with the Ni layers. The initial mesostructure of the corrugated
sample is presented in Figure 8.9.

The Al, Ni, Cu, and stainless steel used in the simulation were modeled using the
Johnson-Cook [41] constitutive model (see Section 3.2) in conjunction with the Griineisen
equation of state. The initial yield strength, 4, of the Ni and Al was calculated using the
microhardness values of the Al and Ni foils. The other material parameters were taken from the

literature [41-43] and are presented in Table 8.3 and Table 8.4.
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Figure 8.8 — The process of mesh generation in one of the layers in the corrugated Ni-Al laminate. (a) The
x-y coordinates were extracted from the pixel information and imported into LS-Prepost. (b) The lines were
smoothed using b-splines to reduce the noise on the layer interfaces. (c) The generated mesh of the layer
with 8 elements spanning the thickness. The inserts on the right of (c) show the mesh resolution at two
sections of the layer.

Figure 8.9 - The mesostructure used for the simulations (a) was extracted from an image of an area in SW-
7A (b) that is characteristic of the experimental mesostructure. The red layers are aluminum, the blue layers
are nickel, the yellow layer is the stainless steel jacket, and the green material is the copper inner stopper
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tube. The outer copper driver tube and the explosive are not shown in this figure, but have dimensions that
are consistent with the experiment.

Table 8.3 - Parameters for the Johnson-Cook constitutive model used in the simulations.

Material Py g em”®] G[GPa] A[MPa] B[MPa] n c m T, [K]
Al 2.77 26.2 84.21 426.0 0.34 0.015 1.0 773

Ni 8.902 74.45 297.2 648.1 0.33 0.006 1.44 1725
Cu 8.96 48.0 90.0 292.0 0.31 0.025 1.09 1356
SS 304 7.90 71.5 100.0 10720 034 0.005 1.0 1670

Table 8.4 - Parameters for the Griineisen equation of state used in the simulations

Material C[ms'] S S, S Yo a
Al 5328 1338 00 0.0 20 048
Ni 4650 1445 00 0.0 193 0.50
Cu 3940 1489 00 0.0 202 047
SS 304 4570 148 0.0 00 1.75 050

The modified nitromethane explosive was modeled with the Jones-Wilkins-Lee (JWL)
equation of state (see Section 3.2) where the JWL constants 4 = 78.69 GPa, B = 1.92 GPa, ® =
0.36 , R, = 4.61, and R, = 1.06 ware obtained from calculations performed using Cheetah [44].
Since the velocity of collapse is significantly smaller than the detonation speed, we assume that
the explosive in the plane of interest detonates instantaneously.

The maximum radial velocity of the interior surface of the Ni-Al laminate was 200-250
m/s. This shows that the strain rates in the sample were on the order of 10* s, which is consistent
with the strain rates observed in experiments using the TWC method [18] and is similar to the

conditions in Taylor rod tests [25, 26]. The deformed geometry and the temperatures of the
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simulated Ni-Al corrugated laminate at the moment of complete collapse are presented in Figure
8.10. The simulation captures the main features of plastic strain accommodation - wedge

extrusion, trans-layer shear bands, and cooperative buckling (see Figure 8.10).

8.5 Discussion of results

Examination of the experimental specimens shown in Figure 8.2 and Figure 8.3 and the
simulation results shown in Figure 8.10 and Figure 8.11 identified three major mechanisms of
plastic strain accommodation — (1) the extrusion of interior facing wedge-shaped regions on the
interior surface of the laminate, (2) local/global trans-layer shear bands mainly in areas where the
layers were oriented in the radial direction, and (3) the cooperative buckling of layers in layers
that were locally concentric. This behavior is dramatically different in comparison with plastic
strain accommodation during dynamic deformation of coaxial Ni-Al layers in identical conditions
of loading [19].

In the area where the layers on the interior of the sample are oriented more steeply
towards the radial direction, a trans-layer shear band forms in numerical calculations. The
detailed view of this shear band in Figure 8.11 (a) shows a reduction of the layer thickness inside
the trans-layer shear band similar to the one observed in the experimental sample (Figure 8.11
(b)). In addition, the temperatures in the shear band in the simulation are greater than 550 K. In
nano-sized Ni-Al laminates, reaction has been observed over a temperature range of 490 - 900 K
[23, 24] and calculated temperatures in the simulated shear bands are inside this range. Thus, we

may assume that reaction initiation inside the shear band was deformation induced.
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Figure 8.10 - The deformed mesostructure (a) showing the three major mechanisms of plastic strain
accommodation: (1) the extrusion of wedged shaped regions outlined by the orange dashed line, (2) the
development of trans-layer shear bands outlined by the green dashed line, and (3) the cooperative buckling
shown in the area outlined by the yellow dashed box. The temperatures at the moment of complete collapse
are shown in (b). Elevated temperatures were observed in the apex regions throughout the sample and in
the shear band at the bottom of the figure.
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(a)

Figure 8.11 - Comparison of elongated Al and Ni layers observed inside the trans-layer shear bands in the
numerical simulation (a) and the experimental result corresponding to sample SW-7A (b). This elongation
process may be the initial stage in the initiation of reaction within the shear bands shown in Figure 8.3 and
Figure 8.4 (b).

The development of the trans-layer shear bands was observed mainly in the exterior
facing wedge-shaped regions or in areas where the layers were more parallel to the radius (Figure
8.3). Within the trans-layer shear bands, Ni and Al layers were elongated, reducing their thickness
by an order of magnitude (from approximately 15-20 microns to 0.75-1.5 microns), creating
localized, fine, micro-laminates. Additionally, in areas near the interior of the sample where the
strains are large, some of these elongated layers fragment into sub-micron fragments. Both the
elongation and fragmentation of the Ni and Al layers inside the shear bands provide favorable
conditions for reactivity inside the shear bands. The thickness of the shear band is approximately
10 microns with a shear displacement of approximately 200 microns, thus the shear strain is about
20.

In addition to the local trans-layer shear bands, sample SW-6A contains a global shear
band, defined as a shear band that traverses the entire width of the sample (Figure 3). In the
global shear band, we do not observe any layer elongation or thinning. This global shear band

radiates from the interior of the sample with an angle of ~45° with the radial direction. This
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orientation is similar to the global shear bands observed in homogeneous and granular materials
[9-18].

The simulations provided insight into the other details of the development of the plastic
strain accommodation during the TWC tests. As the sample initially collapses, the porosity is
squeezed from the sample and the gap between its inner surface and the copper stopper tube is
closed. As the collapse progresses, the increase in the compressive hoop strains in the interior of
the sample causes the wedge shaped regions, that are oriented at a slanted angle from the radial
direction, to become extruded into the inner copper tube due to the slipping of the Ni-Al
interfaces and also due to the localized plastic shearing of the Al in the slanted layers.

The extrusion of the interior facing wedges appears to be a unique mesoscale mechanism
that accommodates plastic strain in these corrugated laminates. This mechanism of high strain
plastic flow accommodation observed in the corrugated laminates is qualitatively analogous to the
plastic flow of monocrystals [22, 23]. In both cases, the planes of easy slip were activated first,
controlling the overall flow of the material. In the case of Al-Ni laminates these planes of easy
slip were the Al layers and the Al-Ni interfaces that were at an angle to the radius at a 45°
inclination, serving as the boundaries of the extruded wedges.

The temperatures observed in the simulations (Figure 8.10 (b)) showed that the layers in
the interior wedges adjacent to the inner copper stopper tube had a temperature range of 320-500
K for the Ni, for the Al, and the maximum temperature on the outside surface of the copper
stopper tube was 350-450 K. These deformation-induced temperatures due to radial collapse are
small in comparison to the temperatures required for the initiation of intermetallic reactions in
laminates with similar bi-layer thicknesses under static conditions, 500-900 K [4, 45]. As we
mentioned above, one of the reasons for this localized reaction may be the interaction of Ni-Al
laminates with the copper stopper interface during high strain, high strain rate plastic flow which

is suggested by the presence of thin, reacted layers on this interface, as presented in Figure 8.5.
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Simulations showed that in layers oriented nearly perpendicular to the radius (locally
coaxial geometry), cooperative buckling appears to have been the prevalent mode of plastic strain
accommodation, which was the dominant mode during the collapse of coaxial laminates [19].
This mode of deformation was difficult to characterize in the experimental samples due to the
variation in the mesostructure in the axial direction, making it impossible to view the initial and
corresponding final mesostructure at the same axial locations. However, we did observe some
areas of locally coaxial layers in the initial mesostructures while we did not see any locally
concentric areas in the collapsed mesostructures. Also, we observed that most of the apices in the
collapsed sample were radially aligned similar to the radial alignment observed in the concentric
samples [19] with no evidence of random buckling of individual layers. This suggests that the
cooperative buckling mechanism was also active in the corrugated samples. The outer regions of
the simulated segment of the laminate sample showed that the dominant mechanism of plastic
strain accommodation was similar to the cooperative buckling observed in the concentric
laminate composites [19]. The pattern of buckling was heavily influenced by the corrugated
mesostructure on the interior of the sample. Like the samples with concentrically aligned layers,
the buckles that were generated were nearly radial in nature. In addition, the apex areas of the
buckles showed similar increases in localized temperature as in the concentric samples. However,
the observed temperatures were less than those observed in the simulations with concentric layers
of similar nominal size, probably due to additional mechanisms of plastic strain accommodation

present in corrugated laminates.

8.6 Chapter conclusions
Explosively driven Thick Walled Cylinder experiments and their corresponding
numerical simulations demonstrate that three main mechanisms of plastic strain accommodation

triggered by instabilities, additionally to bulk distributed plastic flow, were active during the
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collapse of the Ni-Al corrugated laminate composite — (1) the extrusion of interior facing wedge-
shaped regions on the interior surface of the laminate, (2) a small number of non-uniformly
distributed local/global trans-layer shear bands, and (3) the cooperative buckling of layers that
were initially locally concentric. These mechanisms compete with each other in accommodation
of high strain, high strain rate plastic flow and are dependent on the initial mesostructure of the
corrugated samples. These mechanisms acted to block the development of multiple uniformly
distributed global shear bands that have been observed in all previously examined solid
homogeneous materials and granular materials. The observed mesoscale mechanisms of plastic
strain accommodation in corrugated laminates are qualitatively different in comparison with
behavior of Ni-Al laminates with coaxial symmetrical layers and showed a correlation with the
orientation of layers relative to the sample’s radius. Some of the local trans-layer shear bands
showed reaction between the Ni and Al enhanced by dramatic elongation and fragmentation of Ni
and Al layers and temperature increases due to deformation. A few of the extruded wedge-shaped
regions demonstrated reaction between the Ni and Al layers, forming Ni-rich and Al-rich reaction
products. The reaction inside extruded wedge-shaped regions with geometry of reaction products
coinciding with the geometry of deformed wedges possibly enhanced by a high velocity
metals/air jet moving in the gap between copper stopper tube and the sample. The reaction
initiated in these spots did not ignite the bulk of material demonstrating that these mesostructured
Ni-Al laminates are able to withstand high strain, high strain rate deformation without reaction.
Thus the dynamic plastic deformation can be used as preconditioning making Ni-Al laminates
more susceptible for subsequent bulk reaction initiated by shock.

This chapter contains material that appears in the Philosophical Magazine journal article
K.L. Olney, P.H. Chiu, A. Higgins, M. Serge, T. P. Weihs, G. M. Fritz, A. K. Stover, D.J.
Benson, and V.F. Nesterenko (2014) and is currently in press as of the writing of this dissertation.

The dissertation author was an investigator and author of this paper.
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Chapter 9

Conclusions

Numerical simulations of dynamic behavior of heterogenecous Al-W granular and Al-Ni
laminate materials were conducted for three different experimental testing environments; the drop
weight test, the explosively driven expanding ring, and the thick walled cylinder. These
experiments and simulations revealed the mechanisms of plastic strain accommodation and post
critical behavior experienced by these heterogencous materials with mesostructures that are
characteristic of other reactive material systems.

The drop weight experiments and simulations of the AI-W granular material revealed that
the main mechanism of plastic strain accommodation was primarily influenced by (a) the degree
of bonding between the Al determined by the processing and (b) the geometry of the
mesotrucutre (i.e. particle size and arrangement). It was shown that in simulated CIPed only (non-
bonded) samples, the Al and W particles rearranged themselves during the dynamic deformation
to effectively block shear localization. This resulted in the subsequent bulk disintegration of the
sample in agreement with areas near the outer surface of the samples used in the experiments.
The CIPed+HIPed (bonded) samples exhibited shear localization and subsequent shear band
formation. The shear bands nucleated during the initial stages of the deformation in Al
surrounding the W particles and spread to the nearby W particles at angles close to 45 degrees.
The shear band is kinked by W particles causing the shear band path to deviate from the ideal 45
degree angle path dictated by global geometry. In simulations with relatively larger W particles,
the path of the shear band was influenced to a greater degree than simulations with the similar

sized W and Al particles due to increased heterogeneity of the sample. It was also shown that

134
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variations in the initial arrangements of the W particles were the main drivers determining where
the global shear bands formed in the sample. Numerical calculations and experiments revealed
that the mechanism of shear localization in granular composites is due to a localized high strain
flow of Al around rigid W particles, causing local damage accumulation and a subsequent growth
of the meso/macro shear bands/cracks.

Explosively driven fragmentation experiments of Al-W porous/granular composite rings
showed that the samples were mostly pulverized into fragments sizes below 100 micron (above
90%) for all tested mesostructures. A comparison of initial sizes of particles in the powder and
post experiment fragment size distributions indicates that some of the low strength Al particles
were deformed between the rigid W particles, but mainly maintained their equiaxed shape in the
areas away from W particles. Numerical simulations were performed of these experiments with
an artificial mesostructure generated from a Voronoi tessellation procedure. The simulations
showed good agreement with the final free surface measurements. Qualitative similarities
between the simulations and experiments were observed. The simulations revealed that the
creation and development of numerous sheared zones in granular Al matrix may allow fracture of
initial Al particles and the generation of micron-sized Al fragments inside them. The spacing
between these sheared zones is much larger than the size of the Al and W particles suggesting
that material between them is shielded from mesoscale pulverization resulting in the generation of
the large scale fragments of agglomerated Al and W particles.

Numerical simulations of AlI-W granular composite rings under various dynamic loading
conditions due to explosive loading were performed. Three competing mechanisms of
fragmentation were observed: a continuum level mechanism generating macrocracks with a size
scale comparable to the case width, a mesoscale mechanism generating voids and microcracks at
the non-bonded Al/W interfaces due to tensile strains, and mesoscale jetting due to the

development of large velocity gradients between the W particles and surrounding Al. These
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mesoscale mechanisms may be used to tailor the size of the fragments (macro to mesoscale) by
selecting an appropriate initial mesostructure for a given loading condition.

The TWC experiments and simulations of dynamic collapse of Ni-Al concentric laminate
cylinders demonstrated a new phenomenon of the cooperative buckling originating in the
innermost layers. The instability of all layers is dictated by the buckling mode of the inner layers.
The laminate geometry resulted in the cooperative buckling of layers which is different from
independent buckling of single thin walled cylinders. The investigated non-bonded laminate
mesostructure blocked the development of localized shear bands, the major mechanism of large
plastic strain accommodation observed in homogeneous materials under similar conditions. This
buckling mechanism supported numerous localized reaction zones in the areas near the apices,
but global ignition was not observed.

In the TWC experiments and simulations of the corrugated Ni-Al laminates, three main
mechanisms of plastic strain accommodation triggered by instabilities were active during the
collapse of the Ni-Al corrugated laminate composite; (1) the extrusion of interior facing wedge-
shaped regions on the interior surface of the laminate, (2) a small number of non-uniformly
distributed local/global trans-layer shear bands, and (3) the cooperative buckling of layers that
were initially locally concentric. These mechanisms compete with each other in accommodation
of high strain, high strain rate plastic flow and are dependent on the initial mesostructure of the
corrugated samples. These mechanisms acted to block the development of multiple uniformly
distributed global shear bands that have been observed in all previously examined solid
homogeneous materials and granular materials. The observed mesoscale mechanisms of plastic
strain accommodation in corrugated laminates are qualitatively different in comparison with
behavior of Ni-Al laminates with coaxial symmetrical layers and showed a correlation with the
orientation of layers relative to the sample’s radius. Some of the local trans-layer shear bands

showed reaction between the Ni and Al enhanced by dramatic elongation and fragmentation of Ni
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and Al layers and temperature increases due to deformation. A few of the extruded wedge-shaped
regions demonstrated reaction between the Ni and Al layers, forming Ni-rich and Al-rich reaction
products. The reaction inside extruded wedge-shaped regions with geometry of reaction products
coinciding with the geometry of deformed wedges possibly enhanced by a high velocity
metals/air jet moving in the gap between copper stopper tube and the sample. The reaction
initiated in these spots did not ignite the bulk of material demonstrating that these mesostructured

Ni-Al laminates are able to withstand high strain, high strain rate deformation without reaction.





