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University of California 
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August 27, 1973 

ABSTRACT 

The perturbative approach to the pomeron via the multi

fireball eXPlnsion proposed in the preceding Plper is further analyzed 

in the context of a simplified model. A detailed picture of the 

pomeron is given, with special attention Plid to the extent of 

factorization and the strength of the output two-pomeron cut. The 

role of various production mechanisms in building the output singular

ities is'clearly exhibited. The energy dependence of total cross 

sections is discussed in the framework of the perturbative series and 

comp:l.red to the complementary interpretation in terms of output 

Regge poles. The possibility of a rising total cross section is 

carefully examined. 

* Supported by the U. S. Atomic Energy Commission 

+ On leave from the Weizmann Institute of SCience, Rehovoth, Israel 

(present address). 

1. INTRODUCTION 

A perturbati ve approach to the pomeron has been introduced 

recently [1] - [4], motivated by the familiar two-component model of 

multiparticle production processes. The perturbation series is an 

eXPlnsion in the number of diffractivelyproduced fireballs or, in 

other words, in the number of pomerons exchanged in production 

amplitudes~ The original two-'component modei is the leading term, 

and the smallness of multlple pomeron processes [7] ensures the rapid 

convergence of the eXPlnsion at 'feasible energies. 

The general ingredients of our approach, such as the clas-

sification of various multiparticle final states and the distinction 

between small and large mass fireballs, have been discussed previously 

[2], (3] ,and will not be repeated in any detail. We shall present 

. here a simplified model in which quantitative detail has been 

sacrificed in favor of clarity and tractability, but without omission 

of the physically significant aspects of the problem. 

The zeroth order term, i:e., the original two-component model, 

has the following interpretation: the short-range correlation (SRC) 

component corresponds to a factorizable ''bare'' pomeron pole (denoted 

by p) and diffraction into low-mass states generates a generalized 
I 

AFS cut. The "physical" pomeron (p) is obtained only after summing 

the higher order terms using unitarity, but the same 'physical 

pomeron governs elastic and other diffracti ve processes. This provides 

a consistency requirement on the pomeron--a point we shall return to. 

The result of the expansion is that the singularities of the two-

component model are "renormalized" by the multi fireball terms. High

mass fireballs, controlled by the PPP triple-Regge vertex, are 

Plrticularly significant here. 
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In section 2 we quote the complete solution for the absorptive 

rart obtained in the preceding raper [3] (hereafter referred to as I), 

and then motivate and apply some simplifying assumptions. The general 

properties of the leading singularities, the pomeron pole and two~ 

pomeron cut, are studied in section 3. 

In section 4 the Regge singularities of the full amplitude are 

examined in detail. As is alwre.ys the case in models with t-channel 

factorizability, these are controlled by a (Fredholm) denominator 

function, which bears an interesting relation to that of earlier 

multiperipheral models. We ray rarticular attention to the role of 

energy thresholds in generating complex poles [8J. 

Recent ISR data [12] has focused a . great deal of theoretical 

interest on models Which can accanmodate rising cross sections. This 

subject will be discussed in the context of the present model in 

section 5.- First, the possibility of an increase in the total cross 

section is discussed from the point of view of the perturbative series, 

which contains a small number of terms in the NAL-ISR energy regime. 

The significance of energy thresholds arid the general characteristics 

of ' the energy dependence are given. Next, the alternative explanation 

in terms of complex Regge poles is discussed, and some of the 

physical implications of the results of section 4 clarified. We shall 

emphasize the importance of the use of a consistent theory of the 

P?IDeron for this subject, in order to avoid misleading results. 

In section 6 we summarize our results and discuss some 

implications. A brief comrarison of our treatment of rising cross 

sections with that of other authors is given. Some of the technicalitEs 

related to complex poles appear in two appendices. 
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2. FORMUIATION OF A SIMPLIFIED MODEL 

In I we have derived a rather formidable expression for the 

absorptive rart of a scattering amplitude in terms of the rarameters 

of the multifireball expansion. The key simplifying assumption we 

make in this paper is the replacement of the two-pomeron branch cut 

by an effective pole in the J-plane. It will be shown in section 3, 

however, that the residue of this effective pole does not factorize,' 

* in contrast to the usual behavior. Since the pomeron has a finite 

slope, one expects that the effective cut is located to the left of 

the actual branch point. To clarify this somewhat, let a be the 
c 

position of the effective cut with a < a (0) = 2ap (O) - 1, and let 
c c 

8 = a (0) .. a. Then for small 8 (which is the case if the pomeron c c 

slope is much smaller than the slope in t of its residues) and not 

too large s, the energy dependence of the effective cut is 

a -1 
c 

s 
a (0)-1-8 c . 

s 

a (0)-1 . c 
s 

1 + 5 tn s 

a (0)-1 
s c (1 _ 5 tns) 

This is a familiar form for the contribution of a Regge cut to the 

cross section. 

Now from eq. (5.6) of I, with the replacement 

J dt f(t) J dt f(t) , 

* In the usual case, a pole is a zero of a Fredholm denominator, 

which guarantees factorization. This effective pole is, so to 

speak, in the numerator. 

", 
"/-
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we see that the J-plane projection of the torward a-b absorptive 

!art is 

Aab(J) 

)( 

1 - € 

;",here 

and 

-/::,(J -a ) 
e c ~a ~ 

A.ab + 
J - a (J - ac)~ c 

x 

J - ap 

1 

-2t:,(J-a ) 
e c 

- a c 

-/::,(J -a ) 
e . c ) - 1']2 

-2/::,(J -a ) 
c e 

-b.(J-ap) -/::'(J~ ) c -6(J-ap) -2/::'(J~ ) . c 
e e 

,J - ap J 

-/::'(J~ ) 
e c 

J - a c 

- a 

+ 

fCC Aab (J) 

1 

2 e 
, - 1']1 

J -ap c 

e 

ds Aab(s) 
-J-l s 

(1 ) 

(2 ) 

(An energy scale of 1 GeV is used throughout this raper .') The various 

parameters appearing in eq. (1) are given by 

f..ab 

v 
a 

€ 
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( 4.a) 

( 4.b) 

(4.c) 

( 4.d) 

(4.e) 

(4.f) 

where B:Fa (t) measures the strength of low-mass diffractive excitation 

(including elastic scattering) of Iarticle a, v( t) is the P-P-p!.rticle 

coupling, and g(t) is the PPP vertex. The precise definition of 

these vertices and a discussion .of the rapidity gap parameters /::, and· 

-/::, is given in I. The original two-component model is obtained from 

(1) by setting g = v = 0, which then expresses Aab (J)in terms of 

bare singularities 

-6(J-a ) 
e c 

J - a c 

-6(J-ap) 
e 

+ f'1a J-ap 

The perturbations, represented by g and v, renormalize the 

bare pomeron P and two-pomeron cut in a manner given by eq. (1). 

Both residue and intercept of P are altered, the strength (but not 

the location) of the two pomeron cut is changed, and new singularities 
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are introduced. Aside fran the effective cut at 0: , all other 
c 

singularities arise from the vanishing of the denominator of_the 

third term of (1). The app:!.rent singularities at J = ap and at the 

solution of 

-I:::.(J-o: ) 
J ~ O:c '- ~2 e c o 

are in fact not present and decouple from the amplitude. 

The solution (1) is still rather involved. It has been written 

here for completeness and for reference, and the bulk of an analysis 

will be given only in the simpler and more transparent case of v ~ 0 

(see section 4). 
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3. THE LEADING SINGULARITIE3 

A basic assumption in our approach is that the output pomeron 

(p) is the same singularity that daninates the diffractive pr~esses 

which appear in theunitarity sum. In other words we bB.ve a partial 

bootstrap condition for the pomeron. However such a condition is only 

approximate because the diffractive processes in the unitarity sum are 

assumed to be governed by only a pomeron pole whereas, in general, 

additional output singularities are generated in the absorptive part. 

Fortunately the degree of accuracy of the bootstrap condition can be 

explicitly investigated by studying the strength of the next imPortant 

output singularity, the two-pomeron cut. As shown below, this·cut is 

likely to be highly suppressed and hence, a posteriori, the assumption 

of exchanging only P in the unitarity sum is partly justified. 

We now turn to eq. (1) fran which the strength of the two~ 

pomeron cut is obtained by letting J approach O:c 

J-tQ' 
c 

) 

-I:::.(J -ex ) 
e c 

J - ex c 
[-ab 

)( 

1 

2 
~l 

-€ + -
1]2 

~ I-La ~l) 
+ v - --

a "2 

\ 

(6) 

Obviously eq. (6) will not lead, in general, to a factorized residue. 

However, with a little effort '(6) can be cast into the familiar Gribov 

(15) form for the cut (with a positive sign, however): 
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where the "fixed pole residues" are given by 

~a -
~a TJ1 ) 

Bra (t) -
~a TJ2 . 

~(t) - ~~ v(t) N (t) - v(t) - 2 a TJ2 111 
€ - (8 ) 112 

and similarly for 1\ (t). One can see from eqs. (4.a) - (4. f) and (8 ) 

that Na (t) can indeed be much smaller than Bra (t). In the ideal 

case where Bra(t), g(t) and v(t) are all proportional the fixed 

pole residues vanish identically. This suggests that it may be a 

reasonable approximation to neglect the exchange of the two-pomeron 

cut in the unitarity sum. Thus the interactions Bra, v and g 

cooperate so as to reduce the factorization breaking in the complete 

motel significantly below the breaking implied by the two-component 

model (eq. (5)). 

A similar interplay among the various mechanisms may result in 

a. enhancement of the residues of the physical pomeron pole. This is 

alllost appi.rent from eq. (1) where higher order terms have explicitly 

renorma11zed the SRe pole residue in a positive and factorized way. 

To be precise, the effect of the denominator function in (1) must also 

be included, as we shall do in the next section. It will turn out 

that the pomeron pole residue is renormalized in first order but the 

intercept only in second order, so that the corrections to the residue 

of P can be substantial while its intercept is quite close to that 

of the physical pomeron. 
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4. THE SINGULARITY STRUCTURE OF THE MODEL 

It will be assumed here that the pomeron-pomeron-particle 

coupling, represented above by v(t), is negligible. Recent exper

iments [16] indicate that v is small, and except for a brief 

discussion in section 6 our arguments will be restricted to the case 

v = O. We feel that even in this. apprOXimation the essential physics 

is rt:!tained. 

Setting v = 0, which implies ~ = 111 = ~i2 0, eq. (1) 

simplifies to 

\.b 

" 
1 - € 

e 

-6(J -a ) 
e . c 

J - a 
c 

1 

-l(J-ap) 

J -ap 

-dJ-a ) 

(~ + _V.;;;a_e ___ 
c
_ 

J - a 
+ 

c 

. (~Pb + 
Vb e 

-6(J -Clc ) J e 

J - a c 

) e-:;(J~) 

J - ap 

-6(J -a ) 
c 

- a 
) 

c 

(9) 

where € is defined in terms of the PPP vertex g(t) in (4.d). 

The outputtwo-pomeron cut has the same form as in eq. (7) but 

with the Simpler "fixed pole residue" 

V 

a g(t) 
E 

and similarly for Nb(t). Of course, as in the general case with 

v ., 0, here. also the two pomeron cut is suppressed. 

In addition we will assume Notice that this 

together with the previous approximation lea.ds to a (single-fireball) 

pomeron-pomeron cross section consisting of a negligibly small effective 
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low energy resonance plus a high energy tail starting at 6 
s = e 

This may not be completely realistic, as discussed in section 2 of I, 

and we will return to this point in section 6. 

The assumption ap ~ 0c will further simplify the analysis. 

The preCise requirement is that .c::,(ap - 0c) «1, which is expected to 

hold because both ap and0c are expected to be very near 0p' 

Denoting 

~ = ° P c (11) 

one can write eq. (9) as 

-6(J-O ) -6( J -cio) 
- °0 ) 0 e (J 

Aab (J) 
e 

Fa (J) A.ab + Fb(J) 
J - °0 

D(J) 
(12 ) 

with 

D(J) (J - 0
0

)2 
-26(J-O:

O
) 

(13) € e 

-6(J-O:o) 
F (J) f31a + v e (14) a a J - °0 

and similarly for Fb (J) 

The quadratic nature of,eq. (13) should be compared with still 

simpler models without leading cuts such as those of Chew and Pignotti 

(~ = 0) [181 and Chew and Snider (6! 0) [111, where the corresponding 

denominator function is linear. In the present model the quadratic 

term in D(J) is due to .the two-pomeron cut induced by diffraction 

dissociation into high masses, as in the schizophrenic pomeron model 
\ 

;171, where 8, '" 0 however. It is the combination of quadratic and 

exponential in D(J) which leads to the richer singularity structure 

of the present model. 
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For later purposes it is useful to decompose D(J) into two 

functions 

D(J) Dl(J) D2 (J) (15 ) 

where 

Dl (J) J - °0 - -v; 
-6(J-o:O) (16) 

e 

and 

D2 (J) = 
r- -6(J-O

O
) 

(17) J-oO+\J€ e 

The leading pole in the model, the pomeron (P), belongs to the 

Dl family and its intercept ap satisfies 

If we choose 0p = 1 then 

which relates" the bare pomeron intercept to the pPp coupling. Since 

6(ap - °0) « 1, the approximate solutions to eqs. (18) and (19) 

are, respectively, 

1 - ° = o 1 + 6 '; E 

,l'E , (19' ) 

In addition to the pomeron the family Dl contains an infinite 

sequence of complex poles in analogy to the model studied by Chew and 

Snider (11 j. Indeed, Dl (J) is formally identical to the correspond

ing denOminator function there (with of course a different physical 

-, 
:r 
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interpretation for the couplings), which was shown .to contain complex 

poles. As in ref. [lll, the gap parameter 6. is responsible for the 

appearance of the complex poles in Dl • These complex poles will be 

shown to generate a local rise in 0T (section 5). In fact if 6. = 0 

then the whole family Dl degenerates to the pomeron alone, and non

rising cross sections neQessarily result. 

The family·· D2 is a new feature of the model. Because the 

coupling -y-;. appears in D2 (J) with sign opposite to that in 

Dl(J), the family D2 differs in its structure and strength from Dl • 

In tact as shown in appendix A there exist a critical coupling, 

€c = 1/6.
2

e2 , such that the leading singularities in D2 are either 

two real poles with residues of· opposite sign (€ < €), a dipole 
c 

(€ = €), or a pair of conjugate complex poles (€ > €). The poles . c c 

in D2 are not simply related to rising cross sections, in contrast 

to the complex poles from Dl • We .shall show iQ section ~ below. 

that a-certain condition on the relative importance of SHC and low 

mass diffraction will precisely decouple the entire family D2 • 

We now wish to calculate the respective strengths with which 

Dl and D2 couple to the amplitude. If Oi is a pole from Dl thEIl, 

using Dl (Oi) = 0 and eqs. (12) - (13), its residue is 

For a pole ~ - belonging to D2 

D
2

(02) = 0) 

the residue is (now using 

( ~!a - v a/ y~)( [)iJb - Vb/-{€) 

2 (1 + 6.(°2 - 0 0 >",) 

(20) 

. (21) 
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(The dipole case is obtained when the denominator in eq. (21) vanishesj 

this is considered in appendix A.) Thus the SRC and diffraction 

mechanisms are adding in the residue of Oi and subtracting in the 

residue of °2 , The entire family D2 decouples if the following 

relation between the SRC and low mass diffraction cross sections holds 

for every particle a : 

v 
a 

(22 ) 

To understand the significance of this condition, let us first 

assume BFa and g have the same t-dependence. 

diffraction cross section is then (from eq. (4» 

while the SRC cross section is 

so that 

ex: -«aa :!: ° . D 

The low mass 

(23 ) 

In p-p scattering this would lead to a substantial reduction in 

importance for D2 relative to Dl by a factor of ~ 27. If, 

however, we take into account the difference in t-dependence and write 
blt b2t 

BFa(t) = Bia(O), e g(t) = g(O) e then 

v 
a + (23 ') 
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Since ex;periment suggests bl may be much larger than b2 ,. the 

suppression of D2 may not be so pronounced. 

From the work of ref. [17] it is tempting to conjecture that 

D2 is related to the pI Regge trajectory. Unfortunately, the 

results of appendix A indicate that D2 is ~ore.complicated and 

contains at least ~ leading poles (or a dipole). Furthermore, it 

is known that this "schizophrenic pomeron" interpretation requires a 

large triple pomeI'on coupling (to produce the observed splitting 

between P and pI), whereas the philosophy of our approach and 

preliminary experimental indications suggest this coupling is small. 

-16-

5.· A LOCAL RISE IN CROSS SECTIONS AND ITS INTERffiEl'ATION 

Much attention has been recently directed to models which 

predict increasing cross sections, largely due to the findings from 

cosmic-ray [19] and ISR [12] experiments. A number of authors [4], 

[13], [14), [20] have attributed this effect to the onset of high mass 

diffraction, and we now turn to this question. 

Our main concern here is to investigate rising cross sections 

consistently in the framework of our model of the pomeron, and to 

discuss the mechanisms responsible for the rise. Needless to say, the 

results derived from this simplified model should not be taken too 

literally; however, the simple model is useful in clarifying some basic 

aspects of theories of riSing cross sections. 

The behavior of crT (s) is first studied from the perturbation 

expmsion, taking into account the pomeron constraint (eq. (i9)) which 

must be considered in a consistent approach. The results obtained 

from the expansion are then interpreted in terms of the singularities 

of the complete solution. 

According to the perturbati ve approach, only a few terms in 

the series are important in theNAL-ISR energy range. As in section 4 

of I, we assume the value of 6 ·is such that in the energy range of 

interest to us the total cross section is 

0:
0

-1 
)( e( tn s - ,,,-» + 2 PIa vas (in s - 26) e( to s - 26) 

(25 ) 

For simplicity we have assumed identical incident particles. .The first 

and the second terms represent, respectively, the SRC and low mass 
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-
diffraction components. The third term is generated from events where 

one of the colliding particles is diffractively excited into low mass 

and the other into high mass, and vice versa. This term ispropor-

tional.to the weak coupling g(t) (see eq. (4.c» and is the first 

order correction to the two-component model. Even if further terms 

are kinematically possible, the smallness of g ensures that they 

will make a small contribution. 

Let us denote by O'M and O'n the SRC and low mass diffraction 

cross sections at tn s = 26, namely 

(26) 

Assuming that g (t ) and BRl, (t ) have the same slope in t, one can 

rewrite eq. (25), for in s > 26, as 

)( (tn s - 26) • (28 ) 

The derivative at tn s = 26 is 

d tn s 
tn s=26 

Since E is nonvanishing, (19) implies q, < 1 and thus the 

SRC component must decrease with s. This consistency condition is 

often ignored in treatments of rising cross sections, althougl1· (as in . 

appendix C of I) its effects can be critical. 

, -18-

Taking eq. (19) into account, we can write (29) as 

d tn s 
tn s=26 

We can now clearly see the role of the gap parameter 6. If 

6 = 0 then the secon.d term is absent and O'T must decrease, although 

slowly because of cancellations between O'M and O'n in the first. 

term. If 6 is large enough (30) can indeed be positive. Another 

way to see this is to note that.if 6 = 0 there are no complex poles. 

The remaining singularities are then the pomeron pole, a pole from D2 

whose residue in (21) is positive, and a cut whose discontinuity must 

also be positive, and a decreasing cross section results. Note also 

that since one of the 6's involved originated with the pomeron-

particle absorptive part, it may depend on the incident particle, and 

different reactions may begin to rise at different energies. 

It is an impbrtant question whether the rise of O'T(s) , at 

tn s = 26, is determined by F or by E. The two possibilities 

will have very different physical implications because E is expected 

to be very small. Suppose, first, one approaches the problem ignoring 

the consistency condition of the model. Then one is tempted to assume 

ao ~ 1 in eq. (29) resulting in 

tn s=26 
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where for the sake of the argument we have taken a ~ 
M 

For 

as small as 0.0025 an increase of 2 mb per unit'of tn s is easily 

obtained. 

However in a consistent treatment the increase is given by 

eq. (30) which reads (again with OM ~ aD) 

(32 ) 

tn s=2L1 

since L1(1 - 0:0 ) is small we obtain, using eq. (19'), 

(32' ) 

tn s=2L1 

€ 

and now the increase is determined by € and not 1f€. Therefore if 

E is very small the derivative of 0T(s) will be also small, e.g., 

0.3 mb per unit of tn s with L1 ~} and € as above. 

Of course one can have a substantial increase ina consistent 

theory if € is suffiCiently _large. However in such a case the 

sep:l.ration of 0:
0 

from 1 will accordingly increase because of eq. 

(19). This implies, using eq. (25), that 0T(s) will decrease for 

I,n s < 2L1 in a corresponding manner. In other words in the consistent 

approach a considerable increase for tn s )2L1requires a comp:l.rable 

iecrease for tn s < 2.6. 

The moral is that in the discussion of the behavior of 0T(s), 

one must take into account the consistency requirement, or misleading 

physical results can be, obtained. 

It will be instructive to consider in more detail the physical 

relevance of the p:l.rameters L1 and E in determining the structure 

-20-

of For this purpose we calculate from eq. (28) the following 

deri vative (for 2.6 < tn s < 3.6): 

A maximum of 0T(s) occurs at 

--- l-e 
1 [ -L1(1-0:0) 

1 - 0:0 
(34 ) 

where eq. (19) has again been used. Hence the gap p:l.rameter .6 

measures the distance (in rapidity) between the points where the cross 

section starts to rise and begin'S to fall. The cross section at the 

maximum is 

,and the increase, relative to the cross section at tn s = 2.6, is 

proportional to € (and not \/7), as can be anticipated from eq. 

(32' ). 

We now turn to the interpretation, of the rise at tn s = 2L1 

and the maximum at tn s :::: 3L1, in terms of Regge poles generated 

by the unitarity sum [81. It has been demonstrated in section 4 that 

ap:l.rt from the cut all the output singularities fall into two distinct 

families, Dl and D2 . As shown explicitly in appendix A the family 

D2 tends to complicate the Regge representation of GT, A complete 

decoupling of D2 is ensured by the relation given in eq, (23) which 

is translated into if Bfa (t ) and g ( t ) have the same slope 
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in t. In this c~se the output cut is alsodecoupled, as one can see 

• from eqs. (24) and (10). Thus we are left with only tqe family Dl 

which contains the pomeron P and an infinite sequence of complex 

Regge poles. The most important contributions to 0T(s) come from 

the pomeron, al=l, and the first pair of complex poles at J = a 

* and J = a. Denoting the real and imaginary parts of a by on and 

QI ' respectively, the description of 0T(s) in terms of the pameron 

and the first pair of complex poles is found from eq. (20): 

~(l-ao) r 1 
:iT(s) :::: 2 OM e li .-1-----

+ ~(l - ao) 

.here 

e 

2 
+ f 2 2 ]1/2 l (1 + ~(on - aO)) +(~) 

x cos [~(tn s - ~) + ell 
J 

is defined in eq. (26) and the phase 9 

;..1 
tg 

(-~) 

1 + ~(on - ao) 

( ~.)on-l sle 

is given by 

?·iow (37) should be compared with the perturbative series given in (28) 

(taking OM ~ 0D) if one considers energies such that tn s < 3~. Ibth 

representations of 0T(s) should agree if indeed the pair of complex 

poles explain the features exhibited by the series expansion. This has 

"oeen verified for a mathematically identical situation by Chew and 

3Ilider [11] and need not be repeated here. Note that our remark above 

on the possible reaction dependence of the energy at which a rise may 

occur is equivalent to the statement that the phase of a complex pole's , 

::-esidue is reaction-dependent. The period, of course, is universal. 
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VI. SUMMARY AND DISCUSSION 

This work nas been strongly motivated by the phenomenological 

two-component model of multi particle production processes which has 

had a considerable success in describing recent data. Out approach 

is a perturbative one where, within the present set of approximations, 

the expansion parameter is provided by the weak ppP vertex. In this 

perturbative scheme the zeroth 'order term is precisely the two

component model where the SRC (or multiperipheral) part generates the 

factorizable "bare" pameron P and low-mass diffracti ve processes 

give the input generalized AFS cut. We have shown that the higher 

order processes renormalize the "bare" singularities and that the 

renormalization effects may be rather important in some respects. 

Explicitly, the output cut may be considerably smaller (2) than the 

diffraction component which a posteriori justifies the assumption of 

including only the pomeron pole in the diffractive processes which 

appear in the unitarity sum. Such a suppression c£ the rutput cut may be 

compensated by an increase of the""factorizable piece, 1.e., an enhance-

- * ment of the residue of P. Therefore the factorization breaking 

in the complete model is expected to be sllia.ller than the breaking 

in lowest order (the two-component model). We remark that while 

the residues of P and P can differ ap~eciably, nevertheless their 

intercepts are very close which ensures that the SRC part will not 

vary strongly with energy. 

Our simple model cle~ly illustrates the manner in which the 

various mechanisms renormalize the bare singularities and in gen-

erating new output singularities. Apart from the output two-pomeron 

cut, all the other singularities are associated with two families 
r 
Strictly speaking t.his depends on . the details of the parameters 1nvol\al. 
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Dl and D2 • The Dl family contains the pomeron pole and an infinite 

number of complex poles, the latter disappearing for a zero gap 

pu'ameter (ll = 0). The second family D
2

, which is studied further in 

appendix A, is a new feature for which we lack a satisfactory inter-

pretation at present. Although at first glance D2 appears to be 

associated with the pI as in the schizophrenic pomeron model, there 

are the above,..mentioned obstacles to this identification. While it 

is formally possible to decouple D2 entirely if (22) h~ this is 

probably not realized in nature except perhaps apprOXimately. We hope 

to return to this question in the future. 

We have examined the possibility of increasing total cross 

sections in some detail. Within the context of this model we have 

found that a substantial rise is possible for suffiCiently large 

triple-pomeron (really PPP) coupling, but only at the expense of a 

corresponding decrease at lower energies. This followed from the 

necessity of using a bare pomeron of lower intercept in our (consistent) 

approach. Indeed, using the somewhat different set of approximations 

in appendixC of I a strictly decreasing cross section results. An 

essential ingredient in obtaining a rise is a strong threshold 

constraint to delay the en~rgy at which triple-pomeron behavior app!B.I's. 

In other words, a rise requires large rapidity gap parameters to 

provide important complex poles. In the absence of this threshold 

effect, an increase in aT(s) cannot be associated with the triple

pomeron coupling. We emphasize that a complete and consistent model 

of the cross section is required before its energy dependence can be 

sensibly discussed. 
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Obviously the approach adopted in this work provides an 

• 
iterational scheme for calculating the eventual output singularities. 

Here we have presented the results from the first iteration only, but 

higher order iterations may lead to further renorma11zation effects 

and possibly to a somewhat larger increase. in aT(s). No attempt has 

been made here to consider the results from higher order iterations 

but this possibility should be kept in mind. 

We now mention some other mechanisms; consistent with the 

present formalism, which may lead to an, increasing total cross section. 

One candidate is the production of low-mass fireballs· internally by 

repeated pcmeron exchange. In our description this is represented by 

the coupling v which we have neglected. It is believed, however, 

that the contribution of such processes to aT is small [4l, [16l. 

A local increase may also result from nonleading triple-Regge couplings 

such as PER. In spite of the fact that R ( = pI, p, ••• ) is non

leading it may be significant since the energy scale is ell rather 

than 1 GeV. If this is indeed the explanation, then aT may begin 

to flatten out at accessible energies. Another interesting possibility 

is.the association of a rising aT with the observed sudden and 

substantial increase in anti-baryon production at high energies [2ll. 

Another popular approach, somewhat similar to ours, is that of 
. I 

the absorbed multiperipheral model [13l. These authors also employ a 

perturbative approach using small corrections to a bare pcmeron pole 

with, however, unit intercept. Absorption is then necessary to 

-" . 
! 
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preserve the Froissart bound. The absorptive corrections necessarily 

eventually destroy factorization, which experiment approximately 

* respects at present. 
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APPENDIX A 

We shall discuss here some features of the singularities 

belaDg!ng to D2 • It has been shown that apart from the cut all the 

singularities of the model are generated from zeros of D(J) which 

appears in eqs. (12) and (13). The function D(J) has .been split intI 

Dl(J) and D2 (J) (eqs. (15) - (17» where the mathematical structure 

of the singularities ste!IIID.ing from Dl (J) has been already discussed 

in ref. [lll. Let us again write the expression for D2 (J); 

-.6(J-ao) 
e = J - CXo + (A.l) 

The contribution of a pole at cx2 ' such that D2(~) = 0, to the 

scattering amplitude is given in eq. (21). However (21) is meaningless 

if the denominator vanishes, namely if 

1 
6' (A.2) 

or, in other words, when DI(~) =0. This is the case of a dipole, 

which cannot occur in Dl (J) because there (eq. (16» the coupling 

~ appears with a different sign than in D2 (J). The-contribution 

of the dipole singularity to 0T will be evaluated below. 

Since in the dipole limit we have the two conditions, 

D2 (CXd ) 0 and D~(CXd) = 0 one obtains also a relation for €, 

namely 

E 

which for 6 = 3 is E 
C 

(A.3 ) 

0.015. 

In contrast to the family Dl , where in addition to the pomeron 

there are only complex singularities for every value of €, here in 

D2 if € < EC the leading singularities are two real poles and if 
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€ > €c they become a complex IBir. The dipole case, € 

transition point. 

Mathematically the point J = a = a -!. may be viewed as a 
d 0 6. 

critical point with a critical coupling € = € • 
C 

For € near € one 
c 

may exp:md about the "critical point" and easily obtain that D2 (J) 
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decoupling occurs when a certain relation between the various mech-

anisms is fulfilled (see eqs. (A.6) and (23»; in reality the 

magnit~des of oM and oD are such that the family D2 indeed 

couples more weakly than Dl • 

leads to the following IBir of poles: '" 

± ! (€ C _ 1)1/2 
6. € • 

(A.4) 

Indeed, these poles are real if € < €c and become complex for € > €c' 

Also since the "critical point" is a dipole it is obvious that for 

€ < €c one of the poles must have a negative residue. 

We shall now study the contribution of the leading poles in 

D2 to the total cross section. It is convenient and sufficient for 

our purposes to study only the dipole limit. One then needs to 

calculate also D" (ad) and D'" (ad) and a straightforward effort 

leads to (s~e eqs. (12) - (14» 

( 

-6(J-aO) 

t3~ + va .::;e ___ ---
=. J - aO (A.5) A (J) 

aa 
1 

The corresponding contribution to oT(s) is 

(tn s - 3- :\) (A.6) 

Hence the dipole generates a rise in an entirely different energy 

region than the direct perturbati ve eXIBnsion' gi ven in (28). A precise 
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APPENDIX B 

A more realistic model than tne one presented in this work has 

been discussed in great detail in I. Our goal here is to verify that 

in that model ccmplex poles also appear. Assuming that the pcmeron-

- - poIIleron-p!.rticle crupling is negligible, the denominator function can 

be written as (see I.5.9, with v = 0 and ~p(t) suppressed). 

D(J) 

(B.l) 

We assume the pcmeron has unit intercept. Then, in 

order to preserve the Fm1:lsart bound, the coupling g(t) must vallish 

at t = OJ we write 

get) = _ atebt (B.2 ) 

The integral in (B.l) can be expressed in terms of known functions, 

resulting in 

-(6+b/a')(J-a (0» -(6+b/a' )(J-a (0» c . c 
(J _ a (0» e + ~e ___ ~:::--__ 

c . 6 + b/a' (6 + b/a' )2 

(J -.ac (0»2 E, [(~ + bfa' )(J -oc (0)) ] } (B.3) 

where a' is the slope of the pomeron pole, ac(O) = 2ap (0) - 1, and 

~l is the exponential integral function defined by 

~(z) , 
i 
~ 

-t 
e 

dt t (B.4) 

One can easily verify from (B.l) that there exists no real pole below 

J = 1 and hence only· ccmplex poles may appear. We shall now show 

the close similarity of (B.3) to the denominator in the simple model, 

as given in (9), as far as complex poles are concerned. For 

. -2, -2 
concreteness take b = 2 GeV, a = 0.2 GeV and 6 = 3, where 

for these parameters both the real and imaginary IBrts of the argumen1 

in the ~ function may become large compared to 1. In such a case 

the following asymptotic expansion is extremely useful [22]: 

~(z) .... 
-z e -z Re z < 0, IRe zl, lIm zl »l 

(B.5 ) 

The use of (B.5), for the ~ function in (B.3), greatly simplifies 

the form of n(J) to 

D(J) 
e -6(J -ac (0 ) ) 

J - a (0) 
c 

(B.6) 

which is exactly the same as the denominator function in eq. (9) with 

€ 
a2 1 

lbrr ~ -----=-3 . 
(b + a' 6) 
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