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ABSTRACT »

The pertﬁrﬁative approéch to fhe pomeron via the muiti-
fireball expansion proposed in the preceding paper is furthef analyzed
in the conte*t of a simplified model. A detailed picture of the
pomer&n is given, with special attention paid to the extenf 6f
factorizétion and the strength of the output two-pomeron cut. The
role of various‘production mechanisms in building the output singular-
ities is'cléafly exhibited. The energy dependence of total cross
sections is discussed in the framerrk of the pefturbétive series and
compared to the complementary intermretation in terms of output
Reggerpdles. The possibility of a rising total cross section is

carefully examined.

Supported by the U. S. Atomic Energy Commission
* " On leave from the Weizmann Institute of Science, Rehovoth, Israel

(present address).
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1. INTRODUCTION
A perturbative approach to the pomeron has been introduced

recently [1] - [4], motivated by the familiar two-component model of

multiparticle prbduction processes. The perturbation series is an

expansion in the number of diffractively'produced fireballs or, in

~ other words, in the number of pomerons exchanged in production

amplitudes. The original two-bomponént model is the leading term,

and the’smdllneSS‘of mﬁhﬁple pomeron proégsses [7] ensures the rapid

convergence of the expansion at feasible eﬁefgies..‘ | |
The general ingredients of our approach, such as the clas-

sification_of-various mltiparticle final states‘ahd the diétinction

between small and large mass fireballs, have been diécussed reviously

(2], [3].and will not be repeated in any detail. We shall present

"here & simplified model in which quantitative detail has been

sacrificed in favor of clarity and tractability, but without omission

-of the physically significant aspects of the problem.

The zeroth order term, i.e., the original two-component model,

has the following interpretation: "the short-range correlation (SRC)

' component carresponds to a factorizable "bare” pomeron pole,(dénoted
. by ‘ib) and diffraction into low-mass stateé generates a generalized

AFS cut. The "physical" pomeron (P) is obtained only after summing

the higher order terms using unitarity, but the same-physicai
pomeron governs elastic and other diffractive processes. This provides
a consistency requirement on the pomeron--a point we shall return to.

The result of the expansion is that the singularities of the two-

. component model are 'renormalized” by the multifireball terms. High-

- mass fireballs, controlled by the Pﬁ? triple-Regge vertex, are

particularly sigpificant here,
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In section 2 we quote the complete solution for the absorptive
part obtained in the preceding paper:[B] (hereafter referred to as I),
and-then motivate and apply some simplifying assumptions._ The general
properties of the leading singularities, the pomeron pole and two-
pomeron cut, are studied in section 3.

In section 4 the Regge singularities of the full amplitude are
examined in detail. As 1is always the case in models'with t-channel
factorizability, these.are controlled by a (Fredholm) denominator
function, which bears an interesting relation to that of earlier
multiperipheral models. We pey particular attention to the role of
energy thresholds in generating complex poles [8].

Recent ISR data [12] has focused a great deal of theoretical
interest on models which can accommodate rising eross sections. This
subject will be discussed in the context of the present model in
section S5« first, the possibility of an increase in the total cross
section 1s discussed from the point of view of the perturbative seriles,
which contains a small number of terms in the NAL-ISR energy regime.
‘The significance of energy thresholds and the general characteristics
of ‘the energy dependence are given. Next, the alternative explanation

_1n terms of complex Regge poles is discussed, and some of the
physical implications of the results of section k4 clarified. We shall
emphasize the importance of the use éf a consistent theory of the
pgmeron'for this subject, in order to avoid misleading results.

In section 6 we summarize our results and discuss some
implications." A brief comparison of onr’treatment of rising cross
sections with that of other authors is given. Some of the technicalties

related to complex poles appear in two appendices.

ST

2, FORMUIATION OF A SIMPLIFIED MODEL
In I we have derived a rather formidahle expression for the
absorptive part of a scattering amplitude in terms of the parameters

of the multifireball expension. The key simplifying assnmption we

" make in this paper is the replacement of the two-pomeron branch cut

‘by an effective pole in the J-plane. It will be shown in section 3,

however, that the residue of this effective pole does not factorize,
in contrast to the usual behavior.* Since the pomeron has a finite
slope, one expects that the effective cut is located to the left of
the actual branch point. To clarify this somewhat, let_ ac. be the
position of the effective cut with a, < ac(O) = 2aP(O) -1, and let
8 = ac(O) - a,. ' Then for smell 8 (which is the case if the pomeron
slope is much smaller than the slope in t of its residues) and not

too large s, the energy dependence of the effective cut is

a_ -1 ac(o)-i-s ‘ac(o)-l
s = s - (1 -5 tns)
_ac(O)-l
~ S R
1 +8%ins

This is a familiar form for the comtribution of a Regge cut to the

cross section.

Now from eq. (5.6) of I,.with the replacement

Meag(t)-1-7) -AJ )

at £(t) E——m————o SO - R — at £(t) ,

J -.EaP(t) +1 : J < a,

In the usual case, a pole is a zero of a Fredholm denominator,
which guarantees factorization. This effective pole is, so to

speak, in the numerator.
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we see that the J-plane projection of the forward a-b absorptive

part is
, -A3-at) . '“b e-2A(J-ac),
_ e a b
AplT) = Ay 7o + SGE)
¢ (J‘.v-ac)J-ac.-qu , )
Aaa) ) |
+ { By +v & + a 1 :
P a J-aq =GN
(J'ac)é-ac-HEe. )
: -Z(J—o:i;)
- , x S
7 - o
1
X = —
: -A(J-cei-,) -A(J-ac) -A(J-(xE) -2A(J.-ac )
1 € € . e n 2 e e 4
) R T NJ-a)
T T % T (J-ac)<&-ac-n2e ¢ )
_A(J_ac) 0 e-2A(J-th)
x -~ + vV e + p.b l
: I . . G
c (J - ac?<? - o, - , € )
(1)
Where o o
, ™ . :
- S N
Apld) = [ Cas A (s)sTT S (2)
and‘ . _
Qr(s) = 3 Aab(s) R - (3)

(An energy scale of 1 GeV is used throughout this paper.) The various

perameters appearing in eq. (1) are given by

-6~

- [ ot 30 By ) 00 (e
R S EE ORI ()
% = flé;fdt Bpa(t_) g(t) lr;]P(fc}l2 - | (bc)
e = = ]dt g (t) lé&,(t)l2 | L a
o= l%; det g(t) v(t) lgP(.t)le (k.e)
N ='.l%;]dt v (t) IEP(t)I2 - (k.£)

where Brh(t) measures the strength of low-mass diffractive excitation
(including elastic scattering) of particle a, v(t) is the P-P-partide
coupling, and g(t) 1is the PPP vertex. The precise definition of
these vertices and a discussion of the rapidity gap'pdrameters A and:
2 _is given in I. The original two-component model is obtained from
(1) by setting g =v =0, yhich th§h expressés Aab(J) 'in‘terms_of '

bare singularities

-o(J-a,) —Z(J-ai)
e e
L a PR T T fh (5)

P

The perturbations, represented by g and v, renormalize the

bare pomeron P and two-pomeron cut in a manner given by eq. (1).

Both residue and intercept of P are altered; the strength (but not

the location) of the two pomeron cut is changed, and new singularities
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are introduced, Aside from the éffective cut at aé » all other
singularities arise from the vanishing of the denominator of _the

third term of (1). The apparent singularities at J = oy and at the

solution of

NI -a, )

Jd = ac‘- T e‘ f 0.

are in fact not present and decouple from the amplitude.
The solution (l) is still rather involved.v It has been written
here for completeness and for reference, and the bulk of an analysis

will be given 6nly in the simpler and more transparent case of v = 0

(see section 4).-

-8-

3. _THE LEADING SINGULARITIES
A bvasic assumption in our approach is that the output pomeron
(P) 1is the same singularity that dominates the diffractive processes
which appear in the unitarity sum. In other words we have & pa?tial
bootstrap condition for the pomefon. However such a condition is only
)

approximate because the diffractive procesées in the unitarity sum are

assumed to be governed by only a pomeron pole whereas, in general,

-additional output singularities are generated in the absorptive part.

Fortunately the degree of accuracy of the bootstrap condition can be
explicitly investigated by ;tudying the strength of the next important
output singularity, the two-pomeron cut. As shown below, this-cut is.
likely to be highly suppressed and hence, & posteriori, thé assumption
of éxchanging oniy P. in the unitarity sum is partiy Justified.

We now turn to eq. (1) from which the strength of the two-

pomeron cut is obtained by letting J approach ac :

e-A(J-ac) Ha Hp Ha M
Aab(J) = M T n M <Ea - n -
JQ J -Q 2 2
c e .
o | ; _
AL e
: n N\ ne
w€  ——
Tio,

. , i
Obviously eq. (6) will not lead, in general, to a factorized residue.
However, with a little effort\(6) can be cast into the familiar Gribov

[15) form for the cut (with a positive sign, however):

2 .
A () > 3—7—;——[& N (8) N (t) [ep(t)!] )
.. C
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where the "fixed pole residues” are given by

p'a 1]l
' My Q& S >
5,(8) = B (¢) - o v(t) - ———

Tl1
) - — t
2 nle <8( ) vn2 3 9

TR ®)

and similarly for Nb(t). One can see from eqs. (4.a) - (4.f) and (8)

that N_(t) can indeed be much smaller than By (t). In the ideal

. case where BPa(t)’ g{t) and v(t) are all proportional the fixed

pole residues vanish identically. This suggests that it may be a
reasonable approximation to neglect the exchange of the two-pomeron
cut in the unitarity sum. Thus the interactions BTa’ v and g
cooperate so as to reduce the factorization breaking in the cbmplete
nodel significantly below the breaking implied by the two-component
model (eq. (5)). |

A similar interplay among the various mechanisms maey result in

an:enhancement of the residues of the physicai pomeron pole. Thils is

almost apperent from eq. (1) where higher order terms have explicitly

renorﬁalized the SRC pole residue in a positive and factorized way.

"To be precise, the effect of the denominetor function in (1) must also

be included,'as we'shali'do in the next section. . It will turn out -
‘that the pomeron pole residue is renormalized in first order but the
intercept only in second order, so that the corrections to the residue

of P can be substantial while its intercept is quite close to that

of the physical pomeron.

<10-

4, THE SINGULARITY STRUCTURE OF THE MODEL
It will be assumed here that £he pomeron-pomeron-particie
coﬁp}ing, rep;esenﬁed above bj v(t), is negligible,. Recent exper-
iments [16] indicate that v 1is small, and except for a brief

d;scussion in section 6 owr arguments will be restricted to the case

v = 0. We feel that even in this approximation the essential physics
"is retained. .

Setting v = 0, which implies p = Ny =T, =0 eq. (1)

simplifies to

_ -a(T-a) , e‘A(J‘ac) A3 )
= & . : a
Ap(@) = ay — <&1~}a + ) e
. c - J- 9 J-og
NI )
1 <: b e ¢
AT - ot T )
l-ee(-a’f).eA(J-ac) 7 -a,
| J-og J-q | . (9)

where € is defined in terms of the PPFP vertex g(t) in (b.d).
The output two-pomeron cut has the same form as in eq. (7) but

with the simpler "fixed pole residue"

v
N(8) = By (t) - 2 g(t)

and siﬁiléfly fof Nb(t). .Of course, as iﬁ the general case with
vio, herefalso the ﬁwo pomeron cut is suppressed.

In aﬁ_aition we will assume . % A . YNotice that this
together with thevprevioﬁs apéroximatign.leads to a (single-fireball)

bomeron-pomeron cross section consisting of a negligiblyvsmall effective



-11-

low energy resomance plus & high energy tail starting at s = eA .

This may not be completely realistic, as discussed in section 2 of I,
and we will return to this point in section 6.

The assumption orlg = o, will further simplify the anélysis.
The precise requirement is that -A(O'fl - ac) << 1, which is expecﬁéd to -

hold because both C‘I‘S and _dc are expected to be very near «

P’
Denoting

o = o = o 7 (11)

one can write eq. (9) as

-8(3-a) S e
' 0
AL) = ay eJ_ao + F(3) ) F,(7)
(12)
with
o —2A(J-ao) ,
D) = (J -ao) - ce (13)
‘ -A_(J-ad)
F.(J) = By, + Y, ST— : (14)
- Q. ’

and similarly for Fb(J) ,

The quadratic nature of eq. (13) should be compared with still
" simpler models without leading cuts such as those of Chew a.>n.d' Pignotti
(A = 0) (18] and Chew and Snider (A-#0) [11], vhere the corresponding
denominator function is linear. In the present modgl the quadratic |
te’rm‘ in D(J) 1is due to the two-pomeron cut'inducéd by diffraction
diésociation into hiéh masses, as in:the schizophrenic pangi'on model
:17], where A = 0 however.. It is the combination of quadratic and
exponential in D(J) which leads {;o the richer singularity structure

of the present model.

-1o-

For later purposes it is useful to decompose D(J) into two °

functions
D) = D,(@) D) - (s)
where ( y » (26) -
) -NMJ 1
D)= J-a- Ve e o
and B . . - v . i . ' '
, . . — =AT-a) : :
D2(J) = J-ay+ Ve e . a7)

The leading pole in the model, the pomeron (P), belongs to the

D, family and its intercept o, satisfies

. . 'A(O‘P"%) ‘
_aP. = Qa, +‘\/e e . (28)
If we choose aP =1 then
-A(l-ao) :

1-a =‘\/—e-e_ ‘ s : (19)

which relates the bare .poﬁxeron intercept to the PP? coupling. Since

A(aP_ - ao) << 1, the approximate solutions to eqs. (18) and (19)

are, respectively,

., = a +L: . (lé')

1-0 = . | | » - ‘ (19")

In addition to the pomeron the family D, contains an infinite
seguence 'of. complex poles in analogy to the model studied by Chew and
Snider [11]. Indeed, Dl(J) is formally identical to the correspond-

ing denominator function there (with of course a different physical
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wass diffraction will precisely decouple the entire family "D,

-13-
interpretation for the couplings), which was shown to contain complex
poles. As in ref. [il], the gap parameter A 1s responsible for the
appearance of the complex poles in Dl' These compiex poles will be
shown to generate a local rise in oy . (section 5). In fact 1f A =0
then the whole family Dl_ degenerates to the pomeron alone, and non-
rising cross sections neqessérily>result. »

The family - D, 1sa new feature of the model. Because the
coupling V¢ appears in. D,(J) with sign opposite to that in
Dl(J), ‘the family D2v differs in its structure and strength from D

In fact as éhown‘in appendix A there exist a critical coupling,

€ = 1/A2e2 » such that the leading singularities in D2 are either

c

two real poles with residues of opposite sign (e < ec), a dipole
G =_ec), or a pair of conjugate complex poles (e.> éc). The poles
in D2 are not simply related to rising crdés sectians,_;n contrast
to the compléx poles from Dl' We Shail show in section 5 below -
that a certain condition on the relative importance of SRC and low

2°
We now wish to calculate the respective strengths with which

D, and D, couple to the amplitude. If @, 1s a pole from D, then,
) using Dl(al)'= 0 and egs. (12) - (13), its residue is
- - | ~ Y, /—.
g-og) (B ¢ v/ Ve By, + w/VE)

(20)
2(1 + oy - ao)) ,
For a pole ob " belonging to D2
D(a,) = 0) |
Noy-ay) (B3, - v /VE By - vi/ve)

e ——— . (21}
2(; + A(aé - ao) ) -

the residue is (now using

1

In p-p scattering this would 1ead to a substantial reduction in

<1k

(The dipole case is obtained when the denominatar in eq. (21) vanishes;
this is considered in appendix A.) Thus.tpe SRC and: diffraction
mechanisms are adding in the residue of val and subtractingrin the
residue of . The entire family D2 decouples if the following
relation between the SRC and low mass diffraction croés sections holds

for every particle .a :

= L : - ' (e2)

To understand the significance of this condition, let us first

assume BPa and g have the same t-dependence. The low mass

diffraction cross section is then (from eq. (4))

while the SRC cross section is

T e oay g sao‘}
M Pa "Po -2
so that .
i e [ )
gy % e/ - o . , (23)

importance for D, "relative to ‘D, by a factor of ~ 27. If,

2 1
however, we take into account the difference in t- dependence and write
b t b t
BIh(t) Bp, (0) e ,  glt) =gl(o) e then
v 2b f .
aa 2 ./ aa
Br 2 & \/;ﬂ—_ o= o .o (23')
Ba s J M B+ b, Vb
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Since experiment suggests bl may be much larger than b2 , the 5. AVLOCAL RISE IN CROSS SECTIONS AND ITS INTERPRETATION
suppression of D2 may not be so pronocunced. i Much attention has been‘recently directed to models which

' VFrom the work.of ref. [17] it is tempting to conjecture that medict increasing cross sections, largely due to the findings from

D, is related to the P' Regge trajectory. _Unfortunatély) the ‘ cosmic-ray [19] and ISR [12] experiments. A number of authors [4],
results of appendix A indicate that D, 1s more ,'complicatevd and | (131, [14], [20] have attributed this effect to the onset of high mass.
contains at least two leading poies (or a dipole). AFurthermore, it ) diffraction, and we now turn to this questiom.

is known that this "schizophrenic pomeron".interpretaﬁion reqﬁirés a | - Our main concern here is tb.investigate rising cross sections
large triple pomeron coupling (to prbducé'the observed splitting ' consistently in the framework of our model of the pomeron, and to
between P and P'), whereas the philosophy of our approach and discuss the mechanlsms responsible for the rise. Needless to say, the

preliminary experimental indications suggest this coupling is small. . results derived from this simplified model should not be taken_too
‘ . ' literally; however, the simple model is useful.in clarifying éome basic
aspects of theories of rising cross sectionms. .

The behavior of cT(s) is first studied from the perturbation
expansion, taking into account the pomeron comstraint (ea. (19)) which
must be cénsidered in a consistent approach. The results obtained
from the expansion are thén'interpreted in terms of the siﬁgularities
of the complete solution.

According to the perturbative approach, only a few terms in
the series aie‘important in the NAL-ISR energy range. As in section 4
of I, we asspmé the valué of A 'is such thaﬁ in the enefgy range of

interest to us the total cross section is

' ' ) a.-1 E 2 a.-1
apls) * (B};i s O+ I%;f at B, (t) B, ()]t (6)] s ° )

a.-1

x O(in's -A)+2Bx Vv s 0

in s ~ 27 ins - .
% Va (ns‘ 24) o(tn's - 24)

(25)
For simplicity we have assumed identical incident particles. The first

and the second terms represent, respectively, the SRC and low mass

ap—r
) .
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diffraction'componentsﬂ The third térm is generated from events where

one of the colliding particles is diffractively excited into low mass

, and the other into high mass, and vice versa. This term is propor-

tional to the weak coupling g(t) (see eq. (4.c)) and is the first

order correction to the two-component model. Even if further terms

are kinematically possible, the smallness of g ensures that they

will make a small contribution.

Let us denote by %M and % the SRC amd low mass diffraction

cross sections at ¢n s .= 24, namely
- 2a(a.-1) :
2
o0 = Py e 0 ' (26)
. 2 2l
o = 1&¢ [dt Bp, (t) By, (8) [ep(e)] e Soe e

_ Assuming that g(t) and Bra(t) have the same slope in t , one can

rewvrite eq. (25), for in s > 2A, as

a1 _Qg-l : a1l
w00 = 5y T ) ey ey

% (in s - 27) . (28)
The derivative at n s = 2A is
do(s)
T . —
= (ao - ].)(c‘M + oD) + 2oy oy Ve . (29)

d in s . ot
in s=2A i )

Since €. is nonvanishing, (19) implies 0 <1 and thus the
SRC component must decrease with s. This consistency condition is
often ignored in treatments of rising cross sections, although-@as in

appendix C of I) its effects can be critical.

i -18—

Taking eq. (19) into account, we can write (29) as

dop(s) -AN1-a) o N
= - ‘V’Z e (\'UM - \.’GD
d ins .
in s=2A . .
_ -A(1-a,)
+ 2 Y% % ~V_€‘ (i_- e’ Q ) .

(30) .

We can now clearly see the role of the gap parameter A . If

A =0 then the second term is absent and Op must decrease, although

slowly because of ‘cancellations between e and % in the first

term. If A 1is large enough (30) can indeed be positive. - Another

way to see this is to note that 1if A = O there are no complex poles.

The remaining singularities are then the pomeron pole, a pole from D2

whose residue in (21) is positive, and a cut whose discontinuity must

also be positive, and a decreasing croés section resulfs. Note also
thaf since oné of the A's involved'originated with the pomeron-
pafticle absorptive part, it may depend on the incident particle, and
différent reactions may begin to rise at different energies.

It is an important questiqn>yhe£her the rise of;;ﬁT(s) , at

in s = 24, is determined by f€¢ or by €. The two possibilities

‘will have Very different physical implications because € is expected

to be very small. Suppose, first, one approaches the problem ignoring
the consistency condition of the model. Then one is tempted to assume

a4y ® 1 in eq. (29) resulting in

doT

T 2 (31)
d in s - - GMVC 5
in s=24
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M D

where for the sake of the argument we have taken o, X o, . For ¢
as small as Q.0025 an increase of 2 mb per unit of 4&n s 1is easily

obtained.

However in & consistent treatment the increase is given by

eq. (30) which reads (again with Oy ® UD) _
do -A1-a,) '
dins _eomﬁ(l'e > (32)

in s=2A

since A1 - ao) is smnll we obtain, using eq. (19'),

T -~ €A ,
it s 20M1+A\/—€ (321)
in s=24N .
and now the increase is determined by ¢ and not € . Therefore if

€ ié very small the derivative of cT‘(s) ‘will be also small, e.g.,
0.3 mb per unit of 4n s with A% 3 and .e as above. |

Of course one can have a substantial increase ina consistent
theory if ¢ 1is sufficiegtly large. Howe\‘rer' in such a casé the
separatiog of ao from 1 w;ll acéorciingly _increase_because of eé.
(19). This implies, using eq. (25), that oT(s) will decrease for
‘ns< 2A in & corresponding manner. In other words in the consistent
approach a considerable increase: for {n s Zon Tequires a éanparable
ieérease for In s <2A. _

The moral is that in the discu_ssivon'of the behavior of oT(s).,
one must take into account the consistency requirement, or misleading
physicél results can be obtalned.

It will be instrugtive to gonsider in more detail the physical

relevance of the parameters A: and ¢ 1in determining the structure

(3@2"). -
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of oT(s). For this purpose we calculate from eq. (28) the following

derivative (for 2A < In s < 3A):

A

do(s) - o[ : .
TEs - <S/62A> - i_(o‘o" 1)(qy + o) +2 Vg, o Ve

x ('ao - 1)(tn s - 24) + 1> . (33)
A maximum of OT(s)_ occurs at
1 -A1-a,) (o, + o)
l«nsl-EA:l S l-e 0 ‘-l:l):] X A (34)
: SR 2oy, op |

where eq. .(19) has again been uséd. Hence the gap parameter A
measures the distance (in rapidity) betweeﬁ the points‘whé_re the cross
séction starts to rise a.nd begins to fall. The cross section at the
maximum is v |

,

Aee

OT(Sl)‘ ~ (OM + OD)(l + m ) | (35)

.and the increase, relative to the cross section at 'in s =24, 1is

proportional to ¢ (and not _ \,/_e‘_ ), as can be anticipated from eq.

‘We now turn to the interpretation, of the rise at in s = 24

and the maximum at 4n s ¥ 34, in terms of Regge poles generated

by the unitarity sum [8]. It has been demonstrated in section 4 that

apart from the cut all the output singwlarities fall into two distinct

and D.. As shown .explic_itly in appendix A the family

families, v D1 5

DE- tends to complicate the Regge represehtation of Cop- A.complete

decoupling of D, is ensured by the relation given in eq. (23) which

is translated into oy = op if BPa(t).- and g(t) have the same slope

s

e
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in t. In this casé the oufput cut 1s.also‘decoup1ed, as onebcan see
from eqs. (24) and (10). Thus we are left with only the family D)
which'qontains the pomeron P and an infinite sequence of complex
Regge poles. The most important contributions to qT(s) come. from
the pomeron, al=1, and the first pair of complek roles at J =0 _
and J = a*. _Denoting the real and imagina;y parts of a by o and
aI N ;espgctively, the desériptioh of OT(s) in terms of-the pomeron
and the first pair of complex poles is found from éq. (20):

Al-ay) | 1

{

M 1;1 + A1 - ao)

R 2 b >°‘R'1
o

[(1 + A(QR - ao))2 + j(AOLI)2

X cos [qI(ln s - A) + 9]} . (37)
|

where ¢ is defined in eq. (26) and the phase '© 1is glven by

- (-0 ) 4
o - gt — L (38)
1+ A(aR - ab)v o A
¥ow (37) should be compared with the perturbative series given in (28)
(taking M kg OD) if one considers energies such that in s < 3.A. Bth
representations of aT(s) should agree if indeed the pair of complex

poles explain the features exhibited by the series expansion. This has

been verified for a mathematically identical situation by Chew and

Snider [11] and need not be repeated here. - Note that our remark above

' on the possible reaction dependence of the energy at which a rise may

occur is equivalent to the statement that the phase of a complex pole's

residue ié reaction-dependent. The period, of course, is universal.

-2l =

VI. SUMMARY AND DISCUSSION

This work has been strongly motivated by the phenomenological
two-component model of multiparticle production processes which has
had a considerable success in describing recent data. Out approach
is a perturbative one where, within the present set of approximations,
the expansion parameter is brbvided by the weak PPP vertex. In this
perturbative scheme the zeroth order term is'preéisely the two-
éomponent model where the SRC (or mulfiperipherai) part generates the
factorizable "bare" pomeron P .and low-mass diffractive Trocesses
give the input generalized AFS cut. We have shown that the higher
order processes renormalize the "bare" singularities and that the
renormalizétion effécts may be rather important in.somé respeéts.
Explicitly; the output cut may be considerébly smaller [2] than the
diffraction component which a posteriori justifies the assumption of
including only the pomefqn'pole in the diffractive processes which
appeer in the unitarity sum. Such a suppression o the cutput cut may be
compensated by an increase of the factorizable piece, i.e., an enhance- )
ment of the residue of ?.* Therefore the factorization breaking
;n the complete model is expected to be smﬁller‘thaﬁ the breaking
in iowe;t order (the ﬁwo-COmponent model).  We remark that thle :
the residues of P and P ~can differ apgreciably, nevertheleés their
intercepts are very close which ensures that the SRC part will not
vary strongly with energy.

Our simple model clearly illustrates the manner in which the
various mechanisms’repormalize the bare singularities and in gen-
erating new output singularities. Apart from the output two-pomeron

cut, all the other singularities are associated with two families

Strictly speaking this depends on the details of the parameters invalvwed,
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Dl and D2. The Dl family contains the pomeron pole aﬁd an infinite
number of complex poles, the latter disappearing for a zero gap
parameter (A =0). The second family D,, which is studied further in
‘appendix A;.is'a new feature for which we lack a satisfactory inter-
pretation at present. Although at first glance D, appears to be
associated with the P' as in the schizophrenic pomeron model, there
are ‘Ehe.abévermentioned obéﬁaélés to this identification. While it

is formally possible to decoiple D, entirely if (22) halds this is
probably not realized in nature except perhaps approximately. We hope
to return to this question in the future.

We have exemined the possibility of incressing total éross
sections in some detail. Withinvthe context of this model we have
found that a substantial rise is possible for sufficiently large
triple-pomeron (really Pf?) coupling, but only at the expense of a
corresponding decrease at lower energies. This followed from the .
necessity of ﬁsing & bare pomeron of lover intercept in our (consistent)
approach. Indeed, . using the somewhat different set of approximations
in appendix C of I a'strictiy decreasing cross‘seétion results. An
essential ingrgdient in obtaiﬁing 8 rise is-a ;trong'threshold

-qonstréint to delay the engrgy gt'Which friple-pomeroh Sehaviorappﬁrs.
In other words, a rise requires large rapidity gap‘parameters'to
provide iﬁportant complex poles. In thé absence 6f this threshold
effect, an increase in cT(s) cannot Ee associated with the triple-
pomeron coupling. We emphasize that a complete and consiétent model
of the cross secﬁion.is required before its energy dependence.can be

sensibly discussed.

24

Obviously the approach adopted in this work pfovides an
iterational scheme for ;;lculating the eventual output'singularities.
Here we have presented the resﬁlts from the first iteration only, but
higher order iterations may lead to further ;enormalization effects

and possibly to a somewhat larger 1ncrease'in‘bT(s). No attempt has

been made here to consider the results from higher order iterations

but this possibility should be kepf in mind.

| We now mention some other mechanisﬁs; consisteﬁt.with the
present formalism, thch may‘lead.to an‘increasing total cross séction.
One candidate‘is the production of low-mass fireballs- internally by
repeated pomeron exchange. In our description this is represented by
the coupling v which we have neglected. It is beiievéd, however,

that the contribution of such processes to ¢

p is smll 43, 161,

" A local increase may also result from nonleading triple-Regge couplings

such as PRR. In spite of the fact that R ( = P', p, +--) is non-
;eading it may‘be significant since the energy scale is eA rather
than i GeV.. If this 1s indeed the explanation, then OT may begin

to flatten out at accéssible energies. Another interesting possibility
is the association of a rising.[ﬁT with the observed sudden‘and .
substantial incre;seiin ahti-béryon production at high energie;;[Zl].

Another popular approach, someﬁhaﬁ similar to ours, is that of

the absorbed multiperipheral model [lﬁ]. Thesé authors also employ a

perturbative approach using small corrections to a bare pomeron poie

with, however,'unit intercept. Absorption is then necessary to
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preserve the Froissart bound. The absorptive corrections necessarily

eventually destroy factorization, which experiment approximately

. ) *
~respects at present.
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Sinée our approach reélly'uses an effective pomeron pole in the

’

input, some absorptivé corrections may already be included.

.namely
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APPENDIX A

We shail discuss Here some features of the singularities
belonging to D2- It has been shown that apart from ﬂhe cut all the
singularities of themodel are generated frﬁm zeros of D(J) which
appears in egs. (12) and (13). The function D(J) has been split intc
Dl(J‘) and D, (7) (eqs. (15) - (17)) where the mathematical structure
of ,.the’singularities stemming from Dl(J) ‘has been é]ready discussed
in ref. [11]. Let us again write the expression far De(J);

-A(J-ao)

DZ(J)'=J-ao+\/?e S E (a.1)

The contribution of a pole at a, ,bsuch that De(ob) = 0, to the
scattering amplitude is given in eq. (21). However (21) is meaningless

if the denominator vanishes, namely if

- 1 . -
@ = T oo - Z, (A.2)

or, in other words, when D'(aé) = 0. This is the case of a dipole,
which cannot occur in Dl(J) because there (eq. (16)) the coupling
V€ appears with a different sign than in D,(J). The-contribution
of the dipole singularity to op will be evaluated below.

' Since‘in ihe dipole.limit we have the: two conﬁitions;

De(oh) =0 and Dé(ad) = O one obtains also a relation for €,

i

€ = ec = l/e2£? . o (A.3)
which for A =.3 1s €. = 0.015.
In contrast to the family Dl’ where in addition to the pomeror

there are only complex singularities for every value of € , here in

D2 if e < €. the leading singularities are two real poles and if
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€ > ec they become a complex pair. The dipole case, ¢ = ec, is a
transition point.
Methematically the point J = oy =y -

critical point with a critical coupling € = € For € near €. one

may be viewed as a

[ L

may expend about the "eritical point" and easily obtain that D2(J)

leads to the following pair of poles:

/
o, = o - z (e‘c/e)l/g * %(i:- - 1)1'2 : (A.1)
Indeed, these poles are real if e < €. and become complex for € > €.
Also since the "critical point" is a dipole it is obvious that for
e < ec one of the poles must have a negative residue.

We shall now study the contribution of the leading poles in
D2 to the total cross'secgién. It is éonven;ent and sufficient for
‘our ﬁurpdses to‘study only the dipole limit. One then needs to
caiculate also D”(aa) and D"'(aa) and a straightforward effart

‘leads to (see egs. (12) - (14))

-A(J-ao)
e . )
o By +v S J
é 0 (f Pa a J - ao jé/eA§47
A _(J) > . (a.5)
= gy ° 1 - 8@-a) (- C‘d)é
The corresponding contribution to cT(s) is
o 2 a
0 v “\d
e . a {l} I 2_
- | B - ,__) <s/e (tn s - 3 Y (A.6)
Ye
c

Hence the dipole generates a rise in an entirely different energy

region than the direct perturbative expansion-given in (28). A precise

-28-

decoupling occurs when a certain relation between the various mech- -

anisms is fulfilled (see egs. (A.6) and (23)); in reality the

magnitudes of Sy and o, are such that the family D2 indeed

couples more weakly than Dl .
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APPENDIX B
A more realistic model than the one presented in this work has
been discussed in great detail in I. Our goal here is to verify that

in that model complex poles also appear. Assuming that the pomeron-

-- pomeron-particle coupling is negligible, the denominator function can

be written as (see I.5.9, with v =0 and gP(t) - suppressed ). \
- | AT <) [ -AF-20,(t)+1)
) - 1 2/,.4 €
DJ) = J - - e g (t) at .
-( F m) J - 2aP(t) +1

(B.1)

Wé assume the pomeron has unit intercept. Then, in

" order to preserve the Froisart bound, the coupling g(t) must vauish

at t = 0; we write

gt) = - ateP® . o (.2)

The integral in (B.1) can be expressed in terms of known functionms,

resulting in | |
“AJ-or)  (b/a')(T-a (0))
_D(J) = J-aﬁ'_fgi_x;'jeb( ) e_a .‘ac
) o .'-(mb/q'ﬁ)(‘]'ac(o)')v ~(ardfa) (T (0))
w { . - € e .
l (7 - a,(0)) —Tom + —z
. 0 . ]
+ (3 -a/l0)) E [(A + b/oz')(J-clc(o))gr C (e.3)

-where «' 1is the slope of the pomeron pole, ac(O) = EaP(O) -1, and

‘Sl is the exponential integral function defined by

. -30_

E(z) = | at G . (B.4)
: %

One can easily verify from (B.1l) that there exists no real pole below
J =1 and hence only complex poles may appear. We shall now show
the close similarity of (B.3) to the denominator in the’simi)le model,
as given in‘ (9), as far as compiex'poles are concerned. For
concreteness take b = 2 Gev2,  a' = 0.2 eV amd A - 3, where
for these parameters both the real and imaginary parts of the argument
in the El function may become large com;a.red' to 1. In such a case

the following asymptotic expansion is extremely useful [22]:

-Z ' :
E,(z) ~ :— (1-%+2—2 +¢2¢); Re2<0, [Rezl, [Imz|>1
- Z
(8.5)

The use of (B.5), for vthe. E, function in (B.3), greatly simplifies
the form of D(J) to

2 -A(J-ai‘,') -.A(J'ac(o))
D 4 g~ o B 1 e
(J) J-ap -1 > PR e e

(B.6)

which is exactly the same as the denominator function in eq. (9) with

a 1

- S S B.7)
C T Loy (
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