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MODES OF ELLIPTICAL WAVEGUIDES; A CORRECTION 

D.A. Goldberg, L.J. Laslett, and R.A. Rimmer 
Lawrence Berkeley Laboratory, Berkeley, CA 94720* 

We show that the fields associated with the 'fMol mode of an elliptical wave guide are qualitatively different 
from those which have appeared in the standard literature for the past fifty years, and that the original fields 
as plotted were also in qualitative disagreement with the analytic expressions which accompanied them. 
Nonetheless, the cutoff frequencies given for that mode, as well as for the five other modes described in 
those references, are exceedingly accurate (within roughly 1 %) for elliptical eccentricities as large as 0.75; 
for eccentricities in excess of 0.9, the inaccuracy increases to from 5 to nearly 50%, depending on the mode 
in question. 

1. Introduction 

The analytic solutions for the lowest modes of an elliptical waveguide were first 
published some fifty years ago in a classic paper by L-J Chu [1]; references published as 
recently as 1986 [2] make use of Chu's original expressions and figures. In the course of 
checking the accuracy of a numerical field solver by using it to determine the cutoff 
frequencies of an elliptical waveguide, we observed that while the field solver yielded a 
cutoff frequency for the TMOI mode which was quite close to that shown in Refs. 1 and 2, 
it predicted a field pattern which was strikingly at variance with that shown in those 
references. The former gave a field pattern that was basically a deformed version of the 
TMOI mode for the circular guide (having a single, on-axis "flux tube" of E z); the latter's 
solution showed a pair of Ez flux tubes, pointing in the same direction, located at what 
appeared to be the foci of the ellipse (see Fig. 1 below). Upon further examination, it 
appeared that the field pattern depicted in Refs. 1 and 2 was at variance with the analytic 
expressions contained in those same references. 

We decided that the most direct approach to resolving the above discrepancies would be 
to solve the wave equation by numerical integration, using an iterative technique to obtain 
the relevant eigenvalues. To give away the show at the outset, we wound up concluding 
that indeed the fields shown for the TMOl mode in Refs. 1 and 2 were qualitatively incor
rect, and that the error had apparently gone undetected for some five decades. 

In the course of obtaining our solutions to this problem, and of examining the discrep
ancies between the analytic expressions and field plots in Refs. 1 and 2, we managed to 
demystify for ourselves both the Mathieu equation and its solutions, as well as the elliptical 
coordinate system. In the hope of being able to render a similar service to our readers, we 
elected to report our results in the present, somewhat expanded form, rather than simply 
submitting them as a one-line (or more accurately, one-figure) erratum. 

2. The Wave Equation in Elliptical Coordinates 

For a cylindrical waveguide (i.e. of constant cross-section), the z-dependence of the 
electric and magnetic fields is simply given by e-jkzz. Hence for TM (TE) waves, the wave 
equation for the longitudinal component of the electric (magnetic) field takes the form 

* Work supported by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Pnysics, High Energy Physics Division, U.S. D.O.E., under Contract ~o. DE-AC03-
76SF00098. 
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vI {~:} + (k
2
-k?) {~:} = 0 (1) 

where v~ represents the two-dimensional (i.e. in the transverse plane) Laplacian, and k is 
the wave number (m/c) in unbounded space. 

For a waveguide whose cross section is of the form of an ellipse of focal distance p, it 
is convenient to use confocal elliptical coordinates (see Appendix). In this system, Eq. 1 
can be rewritten as [3] 

(2) 

Assuming that Ez (Hz) can be written in the form U(~)·V(1J) ['e-ikzz], we can rewrite 
Eq. 2 as 

(3) 

where by the usual argument, the left- and right-hand sides of Eq. 3 must be equal to a 
separation constant, which in accordance with conventional usage we define as a (not to be 
confused with the semi-major axis of the ellipse). We can then rewrite Eq. 3 as two 
separate equations 

d
2
U -(a-2qcosh2~) U=O 

d~2 

d
2
V + (a - 2q cos 211) V = 0 

d1J2 

where, according to standard usage [3,4] we have defined 

(4a) 

(4b) 

(5) 

Equation 4b for the "angular" dependence is the Mathieu equation; Eq. 4a, which gives the 
"radial" dependence, is usually known as the modified Mathieu equation. Because both 
separation constants, a and q, appear in both equations, the solutions are more properly 
written as V(a,q;7J) and U(a,q;~, respectively 

We are now in a position to write down formally the solutions to Eq. 3. If we define 

W(~,7J) == U(~).v(1J) 

then for TM modes (E waves), W describes the ~,1J-dependence of the Ez field; it must 
satisfy the boundary condition U(~o) = 0, where ~o is the radial coordinate of the ellipti-
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cal boundary. For TE modes (H-waves), W describes the Hz field, and satisfies the 
boundary condition U'( ~o) = o. 

In the usual fashion, one can obtain the transverse field components from the longitu
dinal field. Shown below are the relevant relations for elliptical coordinates; essentially 
these are the equations appeari~g in Refs. I and 2, albeit with slightly different notation. In 
all cases a z-dependence of e-}kzz is understood; for completeness, we include the z-fields 
explicitly. 

1EModes: 

Hz = A U(~) V(7J) 

H" = _ ETJ = _J kz A U'(~) V(1J) 
., ZTE PI (k2_k;:) 

H = _E_~ _ _ J kz A U(~) V'(1J) 

TJ ZTE PI (k2_k;) 

where 

Z - pm _ ZO 
TE - -k-

z 
- -,Jr=i=_ =( m='cI=m=)~2 

and 

TMModes 

Ez = A U(~) V(1J) 

E - Z H _ J kz A U' (~) V (1J) 
~ - ™ TJ - - PI (k2_k;) 

PI = P -.j cosh2~ - cos211 = P -.j sinh2~ + sinz" 

2.1 Solutions to the Wave Equation and their Properties 

(6a,b) 

(7a,b) 

(8a,b) 

(9a,b) 

(10) 

We adopt the notation of Refs. 3 and 4 and denote the V(a,q;7J) which satisfy the re
quired periodic boundary conditions as sem(q;1J) and cem(q;7J), depending' on whether 
the function or its derivative is zero at 1J = 0, 21t. The constant m turns out to be equal to 
the number of nodes in the interval 0 ~ 1J < 1t; in this notation m has effectively replaced 
a as the second separation constant. In like manner, the two radial solutions are defined as 
Sem(q;~) and Cem(q;~). 

Looking at the full solution, we note that there are two different kinds of W(~,7J), 
namely 

W(~,7J) = Cem(q;~) cem(q;7J) 

W(~,1J) = Sem(q;~) sem(q;7J) 

(lIa) 

(lIb) 

sometimes referred to as even and odd solutions, respectively. Although it might seem 
initially that all combinations of the Ce, Se, ce, and se would be possible, it is shown in 
Ref. 4 that continuity of both W a:nd its vertical gradient across the interfocal line ~ = 0 
restricts the allowed combinations to the two shown. 
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2.2. Calculation of Eigenfrequencies 

Of comparable importance to the field distributions are the frequencies of the various 
eigenmodes. The most direct method of calculating these frequencies is by numerical 
integration of Eqs. 4a and 4b. Because both separation constants appear in both equations, 
one must solve for both sets of eigenvalues simultaneously, by what amounts to a double 
iteration method, looking for combinations of a and q, which simultaneously satisfy the 
angular and radial boundary conditions. Having obtained the q (along with the a, or 
equivalently, the m) for a given mode, one can use Eq. 5 to obtain the mode frequency. 
Using the same convention as conventionally applied to the modes for a circular geometry, 
we label them with the indices mr, with m, the index of the angular Mathieu function, 
indicating the number of oscillations between 0 and 21t, and r indicating that the radial 
solution corresponds to the rth root (Le. value of q) of U m(q;~o) = 0 (for TM modes) 
or of Um'(q;~o) = 0 (for TE modes). In this notation, 

/, = kmr c = --'---- / 4 qmr + k2 
mr 2n 2;ry 2 z P . 

(12af 

For a cylindrical cavity of length t, kz is nn/ t, where n is the number of longitudinal 
half-waves; for a wave guide, its value is unrestricted. In fact Eq. 12a can be used to find 
the cutoff frequency of the mr mode by setting kz = 0, whereupon we have 

/, cutoff = --'-----I7f= 
mr n p mr 

(12b) 

Chu's [1] method of arriving at the value of qmr was somewhat similar. However, 
rather than numerically integrating the radial equation, Chu used Fourier-Bessel expansions 
of the Cem and Sem, based on (at that time) unpublished M.LT. tables. Starting with a 
given value of kp (equivalent to assuming a q; see Eq. 5), he then calculated by succes
sive approximation the value of ~g_~or equivalently the eccentricity e-see Appendix) for 
which the appropriate radial bounuary conditions were satisfied, always restrictmg himself 
to the lowest radial root (r = 1); operationally this amounted to determining e(q) rather 
than q(e). In this way he could obtain a set of "universal" curves by plotting for each 
mode the dimensionless quaraity kp as a function of e. Because of the specific problem 
he was considering, Chu mstead chose the equivalent device of scaling the cutoff wave
length Ao = 21t/k to the circumference of the ellipse. That quantity is given by 

s = 4p/e E(e) (13) 

where E(e) (sometimes written as E(sin a) or simply-and ambiguously-E(a)) is the 
complete elliptic integral of the second kind. It then follows that 

Ao = ne = 7re 
s 4E(e) Vq 2E(e) kp 

(14) 

Having performed this procedure for the six lowest modes, Chu presumably interpolated 
on these curves (so as to get the appropriate q) to be able to calculate the fields for the case 
e = 0.75, the plots of which are presented in his paper, and referred to in Ref. 2. 

I 
It' 
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3. Comparison of Results 

We compare the eigerunodes obtained using our numerical integration technique (Meth
od 1) with those obtained by Chu in Ref. 1 (Method 2) for two different ellipses: The first 
is an ellipse of semi-axes 10 and 6.614 cm, corresponding to an e of 0.75; this is the case 
for which the field plots are presented in Ref. 1. The second is an ellipse of semi-axes of 6 
and 2 cm , corresponding to an e of .94281; this is the geometry of the waveguide (actu
ally an accelerator beam tube) we were working on when this problem originally arose. 

Table 1: Cutoff frequencies for the six lowest modes of an elliptical wave guide. 

MODE FREQUENCY (GHz) 

e = 0.75 e= 0.9428 
Method 1 Method 2 Method 1 Method 2 

EVEN TEll .889 .88 1.496 1.457 

ODD TEll 1.300 1.30 4.095 4.31 

EVENTMol 1.467 1.46 4.205 4.49 

EVENTMll 2.124 2.11 5.11 5.91 

EVENTEol 2.500 2.64 7.876 12.5 

ODDTMll 2.554 2.64 7.92 12.5 

Comparison of the first two columns shows that Chu's results (Method 2) are extreme
ly accurate for the case of e =.75 (discrepancies here may simply be attributable to the 
accuracy with which one can read the values from the published curves). The reduced 
accuracy for the higher eccentricity, particularly the higher-frequency modes, is at least 
partly attributable to the fact that Chu is plotting the wavelength, rather than the frequency, 
and since the frequency for the higher modes increases with increasing eccentricity, a given 
reading error translates into a larger percentage error in the frequency; notwithstanding this 
consideration, the "exact" solutions (Method 1) clearly lie off Chu's curves for the higher 
eccentricity. This would suggest that the accuracy of either the tables or the truncated 
expansions used by Chu decreases in the limit of large q and small ~. 

Perhaps more striking than the agreement in frequency for the modes of the e = 0.75 
ellipse is the fact that the figure presented for the fields of the even TMOl (or eEo) mode, 
shown in Fig. 1, reproduced from Ref. 1, are qualitatively incorrect (this despite the fact 
that the cutoff frequency for this mode is correctly calculated in Ref. 1 I). This can be seen 
in several ways. 

Fig. 1 shows a reversal in the sign of Exas x increases. However as we shall now 
show, this is incompatible with Eqs. 7b and 8b for the TM01 mode. We begin by noting 
that for points on the x-axis to the right of x = p, Ex= E;. Also, for these points Tl = 
0, so that, from Eq. 7b we have 

Ex (~,O) = _i kz A U'(~) V(O) = C U'(~) V(O) 

(k2_k';) Pl(~'O) sinh ~ 
(l5a) 
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Similarly, for point on the interfocalline to the left of x = P, Ex = - E1]' and ~ = 0, so 
that from Eq. 8b we have 

E (0, ) = _ C U(O~ V(1]) 
x 1] sm 1] (15b) 

where the constant in Eq. 15b is the same as that in Eq. 15a. For the case of the TMo 1 
mode, U(~) and V(1]) are Ceo(~) and ceO(1]), respectively. 

Eqs. 15a and 15b show that the relative signs of Ex on either side of the focus depend 
on the relative signs of Ceo'(~) and ceO'(1]). We have plotted these functions in Figs. 2 
and 3, respectively, for the case of an ellipse with e = 0:75 and with a q corresponding to 
the cutoff frequency of its TMol mode. From Fig. 2, we see that the sign of Ceo'(~) is 
everywhere negative; from Fig. 3, that the sign of ceO'(1]) is positive throughout the 
region ° :::;; 1] :::;; 1t/2. (In fact, both these results are true for any positive value of q, 
provided the radial function has its first zero at the outer boundary.) Hence, from Eqs. 15a 
and 15b, we see that the sign of Ex is the same for all positive x, in direct contradiction to 
the figure. 

We should note that it might appear from the presence of the PI term in the denomina
tors of Eqs. 7 and 8 that there is some sort of singularity in the transverse fields just at the 
points ~ = 0; 1] = 0, 1t, i.e., the foci of the ellipses; we will now show that this is not the 
case. In our discussion we will consider only the horizontal E-field at the right hand focus 
for the case of the TM modes; the arguments can easily be extended to all other cases. 

In the immediate neighborhood of x = P, we can approximate sinh ~ by ~, sin 11 by 11 , 
U'(~ by U" (0) ~ = (a - 2qcosh 2~ U(O) ~, and V'(1]) by V" (0) 1] = (- a + 2qcos 21]) V(O) 1], 
whereby we find that 

lim Ex (~,O) = lim Ex (0,1]) = (a - 2q) C U(O) V(O) 
~~o l1~o 

(16) 

From Eq. 16 we see that Ex is both finite and continuous at the point (~,1]) = (0,0). 

It might appear that this result would admit of a sign change in Ex in the event that 
either U(O) or V(O) were zero at this point. For the particular case of the TMoI mode, 
neither function exhibits this behavior. More generally, from Eqs. lla and 11 b we see that 
it is only the odd solutions which admit of this behavior; in fact for those solutions, both 
U(O) and V(O) are zero, thereby requiring that Ex be zero everywhere along the x-axis. 

Since the transverse fields are derivable from the longitudinal fields, we might also 
expect a contradiction to arise with respect to Ez' and this is in fact the case. Figure 1 
suggests that the value of Ez on the x-axis initially increases with x, reaching a maximum 
at a point which appears to be the focus of the ellipse (although the point is not explicitly 
identified as such in Ref. 1); in elliptical coordinates this would correspond to 1] decreas
ing from 1t/2 to ° (see Fig. A.l in the appendix). However, as shown in Fig. 3, ceO is a 
maximum at 1] = 1t/2, meaning that E z decreases with increasing x. In fact, similar to 
the result for the transverse field, this angular dependence of Ez characterizes not only this 
particular TMOI mode, but rather any m = ° mode (for any positive q, and hence any 
eccentricity ). 
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Before presenting a correct version of Fig. 1, we describe briefly the procedure used to 
obtain the field lines for the E and H fields. For a TM mode, Ez is proportional to the 
vector potential for the (transverse) H field. Hence, lines of constant Ez are field lines of 
H, and uniform spacing of contours of constant Ez results in a line density proportional to 
the value of the local H field; such contours can be readily obtained by taking the (pre
viously obtained) numerical solutions to Eqs. 4a and 4b, and substituting them into Eq. 6b. 

Obtaining the E fields is somewhat more difficult. The E-field lines are characterized 
by the relation 

(17) 

From Eqs. 7b and 8b, we have that 

(18) 

We can evaluate the right-hand side of Eq. 18 by numerically integrating Eqs. 4a and 4b 
starting at the outer boundary, using the initial values for U, U', V, and V' obtained from 
the previously obtained numerical solutions of Eqs. 4a and 4b, "simultaneously" substitut
ing this result into Eq. 17 and integrating to obtain 17(~). To choose the starting 17 val
ues to produce a line density proportional to the field strength, we note from Eqs. 7b and 
A.6 (see Appendix) that the flux of the electric field on the outer boundary is given by 

(19) 

Hence, we need merely choose the values of 17 to obtain equal increments in the integral of 
V(T])d17, a quantity we can calculate by numerically integrating the previously obtained 
solutions to Eq. 4b. 

The true appearance of the electric field for the TMOI mode is as shown in Fig. 4, 
essentially a deformed version of the corresponding mode for a circular guide, a result 
which holds for all values of q and e. This result, although not particularly surprising, is 
by no means a universal occurrence. In particular, as far as bifurcation of flux tubes is 
concerned, this can indeed occur in the transition between circular and elliptic geometries, 
although it generally happens in the reverse sense: For example, for the even TMml 
modes with m > 1, what are single flux tubes in moderately eccentric elliptical geometry 
can bifurcate as the geometry becomes more nearly circular. 

It is perhaps a fruitless endeavor to speculate on the origin of the erroneous field plot in 
Ref. 1; however, one cannot help but conjecture. The most likely (and, in our view, the 
only plausible) explanation is that when the fields were calculated, the values of ceO(q;T]) 
used to generate tne fields were, for one reason or other, those corresponding to a negative 
q, albeit with the correct magnitude (the values of Ceo(q;~) would still have had to be 
calulated correctly). This would have interchanged the nature of the extrema at 17 = 0 and 
n/2 and reversed the relative field directions on either side of the foci, consistent with the 
field plots in Ref. 1. 
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APPENDIX: ELLIPTICAL CO-ORDINATES 

The elliptical coordinate system uses as the "radial" coordinate ~ a set of confocal 
ellipses, with the orthogonal coordinate 1] being a set of hyperbolas having the same foci 
(see Figure A.l). The quantity ~ is defined by the relation 

~ == cosb-1(a/p) (A.l) 

where p is the focal distance of the ellipse, and is related to the semi-major and semi
minor axes by 

p = -J a2 - b2 (A.2) 

The relation between elliptical and cartesian coordinates is given by 

x = P cosh ~ cos 1] y = p sinh ~ sin 1] (A.3a,b) 

It is frequently useful to parametrize an ellipse in terms of its eccentricity e defined by 

e =p/a (A.4) 

whence we can rewrite Eq. A.l as 

~ = cosh-I(1/e) (A.5) 

Finally, from Eqs. A.3a,b we can obtain the expression for the differential path length in 
elliptical coordinates 

(A.6) 

" 
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FIGURE CAPTIONS 

Figure 1. Field pattern for the TM01 mode for an ellipse of e = 0.75, as shown in Ref. 
1. Solid lines represent the electric field; dashed lines, the magnetic. Both the 
implied initial increase in Ez and the change of sign of Ez with increasing x 
are inconsistent with the analytic expression for the field (se~ text). 

Figure 2. Radial dependence of Ez for the TMOI mode for an ellipse with e = 0.75, 
i.e. a plot of CeO(q;x) for the q corresponding to the aforementioned mode. 

Figure 3. Angular dependence of Ez for the TMol mode for an ellipse with e = 0.75, 
i.e. a plot of ceO(q;x) for the q corresponding to the aforementioned mode. 

Figure 4. Field pattern for the TMol mode for an ellipse of e = 0.75, obtained from the 
numerically integrated solutions, as described in the text; the field-line 
conventions are the same as in Fig. 1. 

Figure A.l. The elliptical coordinate system. 
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