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ABSTRACT OF THE THESIS

Lightweight Fault Tolerance

in SRAM Based On-Chip Memories

by

Irina Alam

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Puneet Gupta, Chair

The reliability of memory subsystem is fast becoming a concern in computer architecture and system

design. From on-chip embedded memories in Internet-of-Things (IoT) devices and on-chip caches

to off-chip main memories, they have become the limiting factor in reliability of computing systems.

This is because they are primarily designed to maximize bit storage density; this makes memories

particularly sensitive to manufacturing process variation, environmental operating conditions, and

aging-induced wearout. Addressing these concerns is particularly challenging in on-chip caches or

embedded memories like scratchpads in IoT devices as additional area, power and latency overheads

of reliability techniques in these memories need to be minimized as much as possible. Hence, this

dissertation proposes Lightweight Fault Tolerance in SRAM based scratchpad memories and last

level caches.

In the first part of the dissertation we propose FaultLink: an approach to deal with known

hard faults in software managed scratchpad memories. FaultLink avoids hard faults found during

testing by generating a custom-tailored application binary image for each individual chip. During

software deployment-time, FaultLink optimally packs small sections of program code and data

into fault-free segments of the memory address space and generates a custom linker script for a

lazy-linking procedure. The second part proposes two software defined lightweight error detection

and correction techniques: Software Defined Error Localization Code (SDELC) and Parity++ to

recover from soft errors during run time. SDELC is mostly for embedded memories and uses
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novel and inexpensive Ultra-Lightweight Error-Localizing Codes (UL-ELCs). These require fewer

parity bits than single-error-correcting Hamming codes. Yet our UL-ELCs are more powerful than

basic single-error-detecting parity: they localize single-bit errors to a specific chunk of a codeword.

SDELC then heuristically recovers from these localized errors using a small embedded C library

that exploits observable side information (SI) about the application’s memory contents. Parity++ is

a novel unequal message protection scheme that preferentially provides stronger error protection to

certain “special messages”. This protection scheme provides Single Error Detection (SED) for all

messages and Single Error Correction (SEC) for a subset of special messages. Parity++ can be used

in both last level caches and lightweight embedded memories.
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CHAPTER 1

Introduction

Memories are one of the key bottlenecks in the performance, reliability and energy efficiency of

most computing systems. As computing systems have scaled over the decades, the need for memory

systems where large amount of data can be stored and retrieved efficiently have also risen rapidly.

To achieve this, main memory systems have been scaled for maximum information density. Moore’s

Law has been the primary driver behind the phenomenal advances in computing capability of the

past several decades. However, with technology scaling having reached the nanoscale era, integrated

circuits, especially memory systems, are becoming increasingly sensitive to process variations

leading to reliability and yield concerns.

1.1 Memory Reliability is Becoming a Key Concern

Memories have become the limiting factor in reliability of computing systems [3] because they are

primarily designed to maximize bit storage density; this makes memories particularly sensitive to

manufacturing process variation, environmental operating conditions, and aging-induced wearout

[4, 5]. Unfortunately, errors in computing memories have also increased. In warehouse-scale

computers, these errors have become expensive culprits that cause machine crashes, corrupted data,

security vulnerabilities, service disruption, and costly repairs and hardware servicing [3, 6]. Google

has observed 70000 failures in time (FIT)/Mb in commodity on-chip DRAM memory, with 8% of

modules affected per year [3], while Facebook has found that 2.5% of their servers have experienced

memory errors per month [7]. The Blue Waters supercomputer had 8.2% of the dual in-line memory

modules (DIMMs) (modules that contain multiple RAM chips) encounter an error over the course

of a 261 day study [8]. These trends are expected to continue to rise.
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Moreover, with IoT devices increasingly becoming part of critical infrastructure and being

deployed in failure-intolerant modes (e.g., cars), development of inexpensive fault tolerance schemes

for them has become important [9]. Also, with sensing and data-processing being one of the most

important use cases for edge devices, these devices are seeing increasing use of large memories.

SRAM based scratchpad memories are often the choice of memory architecture used in IoT

devices. As demand for higher memory density increases, memory cells are shrunk using advanced

technology nodes which in turn makes the memory cells more susceptible to both soft and hard

faults. Need for low-power and hence lower operating voltage exacerbates the error rates further.

These trends indicate that memory failures are likewise going to be critical for emerging edge/IoT

computing devices as well.

1.2 Power/Performance Scaling and Fault Tolerance in On-Chip SRAM Based

Memories

Low power density is the key to achieving the vision of both exascale computing and the Internet

of Things (IoT) [10]. To achieve that, systems need to adopt intelligent power-saving techniques.

Memories, both on-chip and off-chip, consume a significant portion of system power. One way

to reduce power consumption in on-chip SRAM based memories is to reduce the supply voltage

(VDD). However, as shown in Figure 1.1, scaling the VDD down leads to an exponential rise in hard

faults in the memory cells [11]. Not only hard faults, the memories also become more susceptible

to radiation-induced soft faults at lower voltages, thus degrading yield at low voltage. Moreover,

on-chip embedded memories or caches in high performance computing systems are often the largest

consumers of chip area. This further increases the likelihood of defects affecting memory rather

than logic and process variations with respect to individual memory cells create a significant impact.

To deal with on-chip memory errors due to manufacturing defects designers traditionally include

spare rows and columns in the memory arrays [12] and employ large voltage guardbands [13]

to ensure reliable operation. Unfortunately, large guardbands limit the energy proportionality of

memory. For unpredictable runtime bit flips, the widely used technique to guarantee reliability of

storage devices is using information redundancy in the form of Error Correcting Codes (ECC). In
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Figure 1.1: Faults in two SRAM based scratchpad memories at different voltages

typical ECCs, extra redundancy bits are added to every row to detect and correct errors. There are

additional encoding (while writing data) and decoding (while reading data) procedures required as

well. Thus, redundancy in ECC schemes not only incurs area overhead, the encoding and decoding

mechanisms also incur additional overheads in terms of latency and energy.

1.3 Thesis Outline

Area, power and latency overheads of fault tolerance techniques are critical considerations for

on-chip memories. This thesis primarily focuses on lightweight low overhead solutions for fault tol-

erance in on-chip scratchpad memories and last level caches . The organization and key contributions

of this thesis are as follows:

• In Chapter 2, we develop FaultLink, a fault tolerance technique that tackles the problem

of hard faults that appear at low voltages in software managed/scratchpad memories for

embedded systems at the edge of the Internet-of-Things (IoT). It is a novel lazy link-time

approach that extends the software construction toolchain with new fault-tolerance features

for such memories. This approach builds application binary that is custom-tailored for each

individual chip based on the chip’s memory fault map so that the faulty locations in the
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memory are never accessed when it is run at lower voltages.

• In Chapter 2, we also propose Software Defined Error Localization Code (SDELC), a hybrid

hardware/software technique that allows the system to heuristically recover from unpredictable

single-bit soft faults in instruction and data memories, which cannot be handled using

FaultLink. SDELC, along with FaultLink provides a holistic approach in dealing with both

hard and soft faults in software managed embedded memories.

• In Chapter 3, we propose Parity++, a novel unequal message protection scheme for last level

caches that preferentially provides stronger error protection to certain “special messages”.

Parity++ sits in between basic Single Error Detecting(SED) parity and a full single error

correcting Hamming code. This technique can be used not only for last level caches but can

be extended to embedded memories.

• Chapter 4 concludes the thesis.

The techniques proposed in both the chapters can be extended to other system and memory

technologies where such lightweight fault tolerance techniques to reduce chip real estate and power

consumption are critically needed.
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CHAPTER 2

Low Cost Fault Tolerance for IoT Devices

IoT devices need reliable hardware at low cost. It is challenging to efficiently cope with both hard

and soft faults in embedded scratchpad memories. To address this problem, we propose a two-step

approach: FaultLink and Software-Defined Error-Localizing Codes (SDELC). FaultLink avoids

hard faults found during testing by generating a custom-tailored application binary image for each

individual chip. During software deployment-time, FaultLink optimally packs small sections of

program code and data into fault-free segments of the memory address space and generates a custom

linker script for a lazy-linking procedure. During run-time, SDELC deals with unpredictable soft

faults via novel and inexpensive Ultra-Lightweight Error-Localizing Codes (UL-ELCs). These

require fewer parity bits than single-error-correcting Hamming codes. Yet our UL-ELCs are more

powerful than basic single-error-detecting parity: they localize single-bit errors to a specific chunk of

a codeword. SDELC then heuristically recovers from these localized errors using a small embedded

C library that exploits observable side information (SI) about the application’s memory contents. SI

can be in the form of redundant data (value locality), legal/illegal instructions, etc. Our combined

FaultLink+SDELC approach improves min-VDD by up to 440 mV and correctly recovers from up

to 90% (70%) of random single-bit soft faults in data (instructions) with just three parity bits per

32-bit word.

Collaborators:

• Mark Gottscho, UCLA/Google

• Clayton Schoeny, UCLA

• Prof. Lara Dolecek, UCLA

• Prof. Puneet Gupta, UCLA
5



2.1 Introduction

For embedded systems at the edge of the Internet-of-Things (IoT), hardware design is driven by the

need for the lowest possible cost and energy consumption, which are both are strongly affected by

on-chip memories [14]. Memories consume significant chip area and are particularly susceptible

to parameter variations and defects resulting from the manufacturing process [15]. Meanwhile,

much of an embedded system’s energy is consumed by on-chip SRAM memory, particularly during

sleep mode. The embedded systems community has thus increasingly turned to software-managed

on-chip memories – also known as scratchpad memories (SPMs) [16] – due to their 40% lower

energy as well as latency and area benefits compared to hardware-managed caches [17].

It is challenging to simultaneously achieve low energy, high reliability, and low cost for embed-

ded memory. For example, an effective way to reduce on-chip SRAM power is to reduce the supply

voltage [18]. However, this causes cell hard fault rates to rise exponentially [11] and increases

susceptibility to radiation-induced soft faults, thus degrading yield at low voltage and increasing

cost. Thus, designers traditionally include spare rows and columns in the memory arrays [12] to

deal with manufacturing defects and employ large voltage guardbands [13] to ensure reliable opera-

tion. Unfortunately, large guardbands limit the energy proportionality of memory, thus reducing

battery life for duty-cycled embedded systems [19], a critical consideration for the IoT. Although

many low-voltage solutions have been proposed for caches, fewer have addressed this problem for

scratchpads and embedded main memory.

Our goal in this work is to improve embedded software-managed memory reliability at minimal

cost; we propose a two-step approach. FaultLink first guards applications against known hard faults,

which then allows Software-Defined Error-Localizing Codes (SDELC) to focus on dealing with

unpredictable soft faults. The key idea of this work is to first automatically customize an application

binary to individually accommodate each chip’s unique hard fault map with no disruptions to source

code, and second, to deal with single-bit soft faults at run-time using novel Ultra-Lightweight

Error-Localizing Codes (UL-ELC) with a software-defined error handler that knows about the

UL-ELC construction and implements a heuristic data recovery policy. The contributions of this

chapter are the following.
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• We present FaultLink, a novel lazy link-time approach that extends the software construction

toolchain with new fault-tolerance features for software-managed/scratchpad memories.

FaultLink relies on hard fault maps for each software-controlled physical memory region that

may be generated during manufacturing test or periodically during run-time using built-in-

self-test (BIST).

• We detail an algorithm for FaultLink that automatically produces custom hard fault-aware

linker scripts for each individual chip. We first compile the embedded program using specific

flags to carve up the typical monolithic sections, e.g., .text, .data, stack, heap, etc. Fault-

Link then attempts to optimally pack program sections into memory segments that correspond

to contiguous regions of non-faulty addresses.

• We propose SDELC, a hybrid hardware/software technique that allows the system to heuristi-

cally recover from unpredictable single-bit soft faults in instruction and data memories, which

cannot be handled using FaultLink. SDELC relies on side information (SI) about application

memory contents, i.e., observable patterns and structure found in both instructions and data.

SDELC is inspired by our recently-proposed notion of Software-Defined ECC (SDECC) [20].

• We describe the novel class of Ultra-Lightweight Error-Localizing Codes (UL-ELC) that are

used by SDELC. UL-ELC codes are stronger than basic single-error-detecting (SED) parity,

yet they have lower storage overheads than a single-error-correcting (SEC) Hamming code.

Like SED, UL-ELC codes can detect single-bit errors, yet they can additionally localize them

to a chunk of the erroneous codeword. UL-ELC codes can be explicitly designed such that

chunks align with meaningful message context, such as the fields of an encoded instruction.

By experimenting with both real and simulated test chips, we find that with no hardware changes,

FaultLink enables applications to run correctly on embedded memories using a min-VDD that can

be lowered by up to 440 mV. After FaultLink has avoided hard faults (that may include defects as

well as voltage-induced faults), our SDELC technique recovers from up to 90% of random single-bit

soft faults in 32-bit data memory words and up to 70% of errors in instruction memory using a 3-bit

UL-ELC code (9.375% storage overhead). SDELC can even be used to recover up to 70% of errors

using a basic SED parity code (3.125% storage overhead). In contrast, a full Hamming SEC code
7



incurs a storage overhead of 18.75%. Our combined FaultLink+SDELC approach could thus enable

more reliable IoT devices while significantly reducing cost and run-time energy.

To the best of our knowledge, this is the first work to both (i) customize an application binary

on a per-chip basis by lazily linking at software deployment-time to accommodate the unique

patterns of hard faults in embedded scratchpad memories, and (ii) use error-localizing codes with

software-defined recovery to cope with random bit flips at run-time.

This chapter is organized as follows. Background material that is necessary to understand our

contributions is presented in Sec. 2.2. We then describe the high-level ideas of FaultLink and

SDELC to achieve low-cost embedded fault-tolerant memory in Sec. 2.3. FaultLink and SDELC are

each described in greater detail in Secs. 2.4 and 2.5, respectively. Both FaultLink and SDELC are

evaluated in Sec. 2.6. We provide an overview of related work in Sec. 2.7 before discussing other

considerations and opportunities for future work in Sec. 2.8. We conclude the chapter in Sec. 2.9.

2.2 Background

We present the essential background on scratchpad memory, the nature of SRAM faults, sections

and segments used by software construction linkers, and error-localizing codes needed to understand

our contributions.

2.2.1 Scratchpad Memories (SPMs)

Scratchpad memories (SPMs) are small on-chip memories that, like caches, can help speed up

memory accesses that exhibit spatial and temporal locality. Unlike caches, which are hardware-

managed and are thus transparent in the address space, data placement in scratchpads must be

orchestrated by software. This requires additional effort from the application programmer, who

must – with the help of tools like the compiler and linker – explicitly partition data into physical

memory regions that are distinct in the address space. Despite the programming difficulty, SPMs

can be more efficient than caches. Banakar et al. showed that SPMs have on average 33% lower

area requirements and can reduce energy by 40% compared to equivalently-sized caches [17]. In
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Figure 2.1: Our high-level approach to tolerating both hard (FaultLink) and soft (SDELC) faults in

on-chip scratchpad memories.

energy and cost-conscious embedded systems, SPMs are increasingly being used for this reason

and because they provide more predictable performance. In this work, FaultLink is used to improve

the reliability/min-VDD of SPMs/software-managed main memory.

2.2.2 Program Sections and Memory Segments

The Executable and Linkable Format (ELF) is ubiquitous on Unix-based systems for representing

compiled object files, static and dynamic shared libraries, as well as program executable images in

a portable manner [21]. ELF files contain a header that specifies the ISA, ABI, a list of program
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sections and memory segments, and various other metadata.

• A section is a contiguous chunk of bytes with an assigned name: sections can contain

instructions, data, or even debug information. For instance, the well-known .text section

typically contains all executable instructions in a program, while the .data section contains

initialized global variables.

• A segment represents a contiguous region of the memory address space (i.e., ROM, instruction

memory, data memory, etc.). When a final output binary is produced, the linker maps sections

to segments. Each section may be mapped to at most one segment; each segment can contain

one or more non-overlapping sections.

The toolchain generally takes a section-centric view of a program, while at run-time the segment-

centric view represents the address space layout. Manipulating the mapping between program

sections and segments is the core focus of FaultLink.

2.2.3 Tolerating SRAM Faults

There are several types of SRAM faults. In this chapter, we define hard faults to include all recurring

and/or predictable failure modes that can be characterized via testing at fabrication time or in the

field. These include manufacturing defects, weak cells at low voltage, and in-field device/circuit

aging and wearout mechanisms [22]. A common solution to hard faults is to characterize memory,

generate a fault map, and then deploy it in a micro-architectural mechanism to hide the effects of

hard faults.

We define soft faults to be unpredictable single-event upsets (SEUs) that do not generally reoccur

at the same memory location and hence cannot be fault-mapped. The most well-known and common

type of soft fault is the radiation-induced bit flip in memory [23]. Soft faults, if detected and

corrected by an error-correcting code (ECC), are harmless to the system. In this work, SDELC is

used to tolerate single-bit SEUs in a heuristic manner that has significantly lower overheads than a

conventional ECC approach, yet can do more than basic SED parity detection.
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2.2.4 Error-Correcting Codes (ECCs)

ECCs are mathematical techniques that transform message data stored in memory into codewords

using a hardware encoder to add redundancy for added protection against faults. When soft faults

affect codewords, causing bit flips, the ECC hardware decoder is designed to detect and/or correct a

limited number of errors. ECCs used for random-access memories are typically based on linear

block codes.

The encoder implements a binary generator matrix G and the complementary decoder imple-

ments the parity-check matrix H to detect/correct errors. To encode a binary message ~m, one

multiplies its bit-vector by G to obtain the codeword ~c: ~mG =~c. To decode, one multiplies the

stored codeword (which may have been corrupted by errors) with the parity-check matrix to obtain

the syndrome~s, which provides error detection and correction information: H~cT =~s. Typical ECCs

used for memory have the generator and parity-check matrices in systematic form, i.e., the message

bits are directly mapped into the codeword and the redundant parity bits are appended to the end

of the message. This makes it easy to directly extract message data in the common case when no

errors occur.

Typical ECC-based approaches can tolerate random bit-level soft faults but they quickly become

ineffective when multiple errors occur due to hard faults. Meanwhile, powerful schemes like

ChipKill [24] have unacceptable overheads and are not suited for embedded memories. In this

work, we propose novel ECC constructions that have very low overheads, making them suitable for

low-cost IoT devices that may experience occasional single-bit SEUs.

2.2.5 Error-Localizing Codes

In 1963, Wolf et al. introduced error-localizing codes (ELC) that attempt to detect errors and

identify the erroneous fixed-length chunk of the codeword. Wolf established some fundamental

bounds [25] and studied how to create them using the tensor product of the parity-check matrices of

an error-detecting and an error-correcting code [26]. ELC has been adapted to byte-addressable

memory systems [27] but until now, they had not gained any traction in the systems community.

To the best of our knowledge, ELCs in the regime between SED and SEC capabilities has not
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been previously studied. We describe the basics of Ultra-Lightweight ELC (UL-ELC) that lies in

this regime and apply specific constructions to recover from a majority of single-bit soft faults.

2.3 Approach

We propose FaultLink and SDELC that together form a novel hybrid approach to low-cost embedded

memory fault-tolerance. They specifically address the unique challenges posed by SPMs.

The high-level concept is illustrated in Fig. 2.1. At fabrication time, process variation and

defects may result in hard faults in embedded memories. During test-time, these are characterized

and maintained in a per-chip fault map that is stored in a database for later. When the system

developer later deploys the application software onto the devices, FaultLink is used to customize

the binary for each individual chip in a way that avoids its unique hard fault locations. Finally, at

run-time, unpredictable soft faults are detected, localized, and recovered heuristically using SDELC.

Note that FaultLink is not heuristic and therefore does not induce errors. On the other hand,

SDELC has a chance of introducing silent data corruption (SDC) if recovery turns out to be incorrect;

this consideration will be revisited later in the discussion. We briefly explain the approaches of the

FaultLink and SDELC steps before going into greater detail for each.

2.3.1 FaultLink: Avoiding Hard Faults at Link-Time

Conventional software construction toolchains assume that there is a contiguous memory address

space in which they can place program code and data. For embedded targets, the address space is

often partitioned into a region for instructions and a region for data. On a chip containing hard faults,

however, the specified address space can contain faulty locations. With a conventional compilation

flow, a program could fetch, read, and/or write from these unreliable locations, making the system

unreliable.

FaultLink is a modification to the traditional embedded software toolchain to make it memory

“fault-aware.” At chip test-time, or periodically in the field using built-in-self-test (BIST), the

software-managed memories are characterized to identify memory addresses that contain hard
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faults.

At software deployment time – i.e., when the application is actually programmed onto a

particular device – FaultLink customizes the application binary image to work correctly on that

particular chip given the fault map as an input. FaultLink does this by linking the program to

guarantee that no hard-faulty address is ever read or written at runtime. However, the fault mapping

approach taken by FaultLink cannot avoid random bit flips at run-time; these are instead addressed

at low cost using SDELC.

2.3.2 Software-Defined Error-Localizing Codes (SDELC): Recovering Soft Faults at Run-

Time

Typically, either basic SED parity is used to detect random single-bit errors or a Hamming SEC

code is used to correct them. Unfortunately, Hamming codes are expensive for small embedded

memories: they require six bits of parity per memory word size of 32 bits (an 18.75% storage

overhead). On the other hand, basic parity only adds one bit per word (3.125% storage overhead),

but without assistance by other techniques it cannot correct any errors.

SDELC is a novel solution that lies in between these regimes. A key component is the new class

of Ultra-Lightweight Error-Localizing Codes (UL-ELCs). UL-ELCs have lower storage overheads

than Hamming codes: they can detect and then localize any single-bit error to a chunk of a memory

codeword. We construct distinct UL-ELC codes for instruction and data memory that allows a

software-defined recovery policy to heuristically recover the error by applying different semantics

depending on the error location. The policies leverage available side information (SI) about memory

contents to choose the most likely candidate codeword resulting from a localized bit error. In this

manner, we attempt to correct a majority of single-bit soft faults without resorting to a stronger

and more costly Hamming code. SDELC can even be used to recover many errors using a basic

SED parity code. Unlike our recent preliminary work on general-purpose Software-Defined ECC

(SDECC) [20], SDELC focuses on heuristic error recovery that is suitable for microcontroller-class

IoT devices.

We now discuss FaultLink in greater depth before revisiting the details of SDELC in Sec. 2.5.
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(a) Chip floorplan (b) Board

Figure 2.2: Test chip and board used to collect hard fault maps for FaultLink.

(a) 750 mV (b) 700 mV (c) 650 mV

Figure 2.3: Measured voltage-induced hard fault maps of the 176 KB data memory for one test

chip. Black pixels represent faulty byte locations.

2.4 FaultLink

We motivate FaultLink with fault mapping experiments on real test chips, describe the overall

FaultLink toolchain flow, and present the details of the Section-Packing problem that FaultLink

solves.
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2.4.1 Test Chip Experiments

To motivate FaultLink, we characterized the voltage scaling-induced fault maps for eight micro-

controller test chips. Each chip contains a single ARM Cortex-M3 core, 176 KB of on-chip data

memory, 64 KB of instruction memory. They were fabricated in a 45nm SOI technology with

dual-Vth libraries [28, 29, 30]; the chip floorplan and test board are shown in Fig. 2.2. The locations

of voltage-induced SRAM hard faults in the data memory for one chip are shown in Fig. 2.3 as

black dots. Its byte-level fault address map appears as follows:

0x200057D6

0x200086B4

...

0x2002142F

0x200247A9.

Without further action, this chip would be useless at low voltage for running embedded ap-

plications; either the min-VDD would be increased, compromising energy, or the chip would be

discarded entirely. We now describe how the FaultLink toolchain leverages the fault map to produce

workable programs in the presence of potentially many hard faults.

2.4.2 Toolchain

FaultLink utilizes the standard GNU tools for C/C++ without modification. The overall procedure

is depicted in Fig. 2.4. The programmer compiles code into object files but does not proceed to link

them. The code must be compiled using GCC’s -ffunction-sections and -fdata-sections

flags, which instruct GCC to place each subroutine and global variable into their own named sections

in the ELF object files. Our FaultLink tool then uses the ELFIO C++ library [31] to parse the object

files and extract section names, sizes, etc. FaultLink then produces a customized binary for the

given chip by solving the Section-Packing problem.
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Figure 2.4: FaultLink procedure: given program source code and a memory fault map, produce a

per-chip custom binary executable that will work in presence of known hard fault locations in the

SPMs.

2.4.3 Fault-Aware Section-Packing

Section-Packing is a variant of the NP-complete Multiple Knapsacks problem. We formulate it as

an optimization problem and derive an analytical approximation for the probability that a program’s

sections can be successfully packed into a memory containing hard faults.

2.4.3.1 Problem Formulation

Given a disjoint set of contiguous program sections M and a set of disjoint hard fault-free contiguous

memory segments N, we wish to pack each program section into exactly one memory segment such

that no sections overlap or are left unpacked. If we find a solution, we output the M→ N mapping;

otherwise, we cannot pack the sections (the program cannot accommodate that chip’s fault map).

An illustration of the Section-Packing problem is shown in Fig. 2.5, with the program sections on

the top and fault-free memory regions on the bottom.

Let mi be the size of program section i in bytes and n j be the size of memory segment j, y j be 1

if segment j contains at least one section, otherwise let it be 0, and zi j be 1 if section i is mapped to

segment j, otherwise let it be 0. Then the optimization problem is formulated as an integer linear
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program (ILP) as follows:

Minimize: ∑
j∈N

y j

Subject to:

∑
i∈M

mi · zi j ≤ n j · y j ∀ j ∈ N

∑
j∈N

zi j = 1 ∀i ∈M

zi j = 0 or 1 ∀i ∈M; j ∈ N

y j = 0 or 1 ∀ j ∈ N.

We solve this ILP problem using CPLEX. We use an objective that minimizes the number

of packed segments because the solution naturally avoids memory regions that have higher fault

densities. The constraints ensure that every program section gets packed in the non-faulty segments

of the memory and the total size of all the sections packed in one non-faulty segment is no more

than the size of that particular segment. (Note that other objectives will produce equally-valid

section-packing solutions in terms of correctness; the important fault-avoidance constraints are

fixed.) To pack any benchmark onto any fault map that we evaluated, CPLEX required no more

than 14 seconds in the worst case; if a solution cannot be found or if there are few faults, typically

FaultLink will complete much quicker. If a faster solution is needed, a greedy ILP relaxation can be

used.

2.4.3.2 Analytical Section-Packing Estimation

We observe that the size of the maximum contiguous program section often comprises a significant

portion of the overall program size, and that most FaultLink section-packing failures occur when

the largest program section is larger than all non-faulty memory segments.

Therefore, we estimate the FaultLink success rate based on the probability distribution of the

longest consecutive sequences of coin flips as provided by Schilling [32]. Let Lk be a random

variable representing the length of the largest run of heads in k independent flips of a biased coin
17



.
t
e
x
t
.
p
r
i
n
t
f

Program Sections

.
t
e
x
t
.
f
o
o

.
t
e
x
t
.
m
a
i
n

.
d
a
t
a
.
m
y
s
t
r
u
c
t

stack & heap

.
d
a
t
a
.
m
y
a
r
r
a
y

FaultLink

Section-Packing

Optimizer

expanded

stack & heap

Non-Faulty

Data Memory Segments

Non-Faulty

Instruction Memory Segments
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indicate faulty memory regions that are not available for section-packing.

(with p as the probability of heads). The following equation is an approximation for the limiting

behavior of Lk, i.e., the probability that longest run of heads is less than x and assuming k(1− p)� 1

[32]:

P(Lk < x)≈ e−p
(x−log

p−1 (k(1−p)))

. (2.1)

We apply Schilling’s above formula to estimate the behavior of FaultLink. Let b be the i.i.d.

bit-error-rate and s be the probability of no errors occurring in a 32-bit word, i.e., s = (1−b)32. Let

size be the memory size in bytes and mmax be the size in bytes of the largest contiguous program

section. Using Eqn. 2.1, we plug in p = s, k = size/4, and x = mmax/4. Then, we can approximate

the probability of there not being a memory segment that is large enough to store the largest program

section:

P
(

Lsize/4 <
mmax

4

)
≈ e−s(

mmax
4 −log

s−1( size4 (1−s)))
. (2.2)
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Figure 2.6: Architectural support for SDELC on an microcontroller-class embedded system. Hard

faults that would be managed by FaultLink are not shown.

This formula will be used in the evaluation to estimate FaultLink yield and min-VDD.

2.5 SDELC

We describe the SDELC architecture, the concept of UL-ELC codes, and two SDELC recovery

policies for instruction and data memory.

2.5.1 Architecture

The SDELC architecture is illustrated in Fig. 2.6 for a system with split on-chip instruction and data

SPMs (each with its own UL-ELC code) and a single-issue core that has an in-order pipeline. We

assume that hard faults are already mitigated using FaultLink.
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When a codeword containing a single-bit soft fault is read, the UL-ELC decoder detects and

localizes the error to a specific chunk of the codeword and places error information in a Penalty Box

register (shaded in gray in the figure). A precise exception is then generated, and software traps to a

handler that implements the appropriate SDELC recovery policy for instructions or data, which we

will discuss shortly.

Once the trap handler has decided on a candidate codeword for recovery, it must correctly commit

the state in the system such that it appears as if there was no memory control flow disruption. For

instruction errors, because the error occurred during a fetch, the program counter (pc) has not

yet advanced. To complete the trap handler, we write back the candidate codeword to instruction

memory. If it is not accessible by the load/store unit, one could use hardware debug support such

as JTAG. We then return from the trap handler and re-execute the previously-trapped instruction,

which will then cause the pc to advance and re-fetch the instruction that had been corrupted by the

soft error. On the other hand, data errors are triggered from the memory pipeline stage by executing

a load instruction. We write back the chosen candidate codeword to data memory to scrub the

error, update the register file appropriately, and manually advance pc before returning from the trap

handler.

2.5.2 Ultra-Lightweight Error-Localizing Codes (UL-ELC)

Localizing an error is more useful than simply detecting it. If we determine the error is from a

chunk of length ` bits, there are only ` candidate codewords for which a single-bit error could have

produced the received (corrupted) codeword.

A naı̈ve way of localizing a single-bit error to a particular chunk is to use a trivial segmented

parity code, i.e., we can assign a dedicated parity-bit to each chunk. However, this method is very

inefficient because to create C chunks we need C parity bits: essentially, we have simply split up

memory words into smaller pieces.

We create simple and custom Ultra-Lightweight ELCs (UL-ELCs) that – given r redundant

parity bits – can localize any single-bit error to one of C = 2r−1 possible chunks. This is because

there are 2r−1 distinct non-zero columns that we can use to form the parity-check matrix H for our
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UL-ELC (for single-bit errors, the error syndrome is simply one of the columns of H). To create a

UL-ELC code, we first assign to each chunk a distinct non-zero binary column vector of length r

bits. Then each column of H is simply filled in with the corresponding chunk vector. Note that r of

the chunks will also contain the associated parity-bit within the chunk itself; we call these shared

chunks, and they are precisely the chunks whose columns in H have a Hamming weight of 1. Since

there are r shared chunks, there must be 2r− r−1 unshared chunks, which each consist of only data

bits. Shared chunks are unavoidable because the parity bits must also be protected against faults,

just like the message bits.

UL-ELCs form a middle-ground between basic parity SED error-detecting codes (EDCs) and

Hamming SEC ECCs. In the former case, r = 1, so we have a C = 1 monolithic chunk (H is a row

vector of all ones). In the latter case, H uses each of the 2r−1 possible distinct columns exactly

once: this is precisely the (2r−1,2r− r−1) Hamming code. An UL-ELC code has a minimum

distance of two bits by construction to support detection and localization of single-bit errors. Thus,

the set of candidate codewords must also be separated from each other by a Hamming distance of

exactly two bits. (A minimum codeword distance of two bits is required for SED, while three bits

are needed for SEC, etc.)

For an example of an UL-ELC construction, consider the following Hexample parity-check matrix

with nine message bits and r = 3 parity bits:

Hexample =

S1 S2 S3 S4 S4 S5 S6 S6 S7 S5 S6 S7

d1 d2 d3 d4 d5 d6 d7 d8 d9 p1 p2 p3


c1 1 1 1 0 0 1 0 0 0 1 0 0

c2 1 1 0 1 1 0 1 1 0 0 1 0

c3 1 0 1 1 1 0 0 0 1 0 0 1

,

where di represents the ith data bit, p j is the jth redundant parity bit, ck is the kth parity-check

equation, and Sl enumerates the distinct error-localizing chunk that a given bit belongs to. Because

r = 3, there are N = 7 chunks. Bits d1,d2, and d3 each have the SEC property because no other

bits are in their respective chunks. Bits d4 and d5 make up an unshared chunk S4 because no parity

bits are included in S4. The remaining data bits belong to shared chunks because each of them also
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Table 2.1: Proposed 7-Chunk UL-ELC Construction with r = 3 for Instruction Memory (RV64G

ISA v2.0)

bit→ 31 27 26 25 24 20 19 15 14 12 11 7 6 0 -1 -3

Type-U imm[31:12] rd opcode parity

Type-UJ imm[20|10:1|11|19:12] rd opcode parity

Type-I imm[11:0] rs1 funct3 rd opcode parity

Type-SB imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode parity

Type-S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode parity

Type-R funct7 rs2 rs1 funct3 rd opcode parity

Type-R4 rs3 funct2 rs2 rs1 funct3 rd opcode parity

Chunk C1 (shared) C2 (shared) C3 (shared) C4 C5 C6 C7 C3 C2 C1

Parity- 00000 00 11111 00000 111 11111 1111111 1 0 0

Check 00000 11 00000 11111 000 11111 1111111 0 1 0

H 11111 00 00000 11111 111 00000 1111111 0 0 1

includes at least one parity bit. Notice that any data or parity bits that belong to the same chunk Sl

have identical columns of H, e.g., d7, d8, and p2 all belong to S6 and have the column [0;1;0].

The two key properties of UL-ELC (that do not apply to generalized ELC codes) are: (i) the

length of the data message is independent of r, and (ii) each chunk can be an arbitrary length. The

freedom to choose the length of the code and chunk sizes allow the UL-ELC design to be highly

adaptable. Additionally, UL-ELC codes can offer SEC protection on up to 2r− r− 1 selected

message bits by having the unshared chunks each correspond to a single data bit.

2.5.3 Recovering SEUs in Instruction Memory

We describe an UL-ELC construction and recovery policy for dealing with single-bit soft faults in

instruction memory. The code and policy are jointly crafted to exploit SI about the ISA itself. Our

SDELC implementation targets the open-source and free 64-bit RISC-V (RV64G) ISA [33], but

the approach is general and could apply to any other fixed-length or variable-length RISC or CISC

ISA. Note that although RISC-V is actually a little-endian architecture, for sake of clarity we use

big-endian in this work.

Our UL-ELC construction for instruction memory has seven chunks that align to the finest-grain
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Figure 2.7: The relative frequencies of static instructions roughly follow power law distributions.

Results shown are for RISC-V with 20 SPEC CPU2006 benchmarks; we observed similar trends

for MIPS and Alpha, as well as dynamic instructions.

boundaries of the different fields in the RISC-V codecs. These codecs, the chunk assignments,

and the complete parity-check matrix H are shown in Table 2.1. The bit positions -1, -2, and -3

correspond to the three parity bits that are appended to a 32-bit instruction in memory. The opcode,

rd, funct3, and rs1 fields are the most commonly used – and potentially the most critical – among

the possible instruction encodings, so we assign each of them a dedicated chunk that is unshared

with the parity bits. The fields which vary more among encodings are assigned to the remaining

three shared chunks, as shown in the figure. The recovery policy can thus distinguish the impact of

an error in different parts of the instruction. For example, when a fault affects shared chunk C1, the

fault is either in one of the five MSBs of the instruction, or in the last parity bit. Conversely, when a

fault is localized to unshared chunk C7 in Table 2.1, the UL-ELC decoder can be certain that the

opcode field has been corrupted.

Consider another example with a fault in the unshared chunk C6 that guards the rd destination

register address field for most instruction codecs. Suppose bit 7 (the least-significant bit of chunk

C6/rd) is flipped by a fault. Assume the original instruction stored in memory was 0x0000beef,

which decodes to the assembly code jal t4, 0xb000. The 5-bit rd field is protected with our

UL-ELC construction using a dedicated unshared chunk C6. Thus, the candidate messages are the

following instructions:

<0x0000b66f> jal a2, 0xb000

<0x0000ba6f> jal s4, 0xb000
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<0x0000beef> jal t4, 0xb000

<0x0000bc6f> jal s8, 0xb000

<0x0000bf6f> jal t5, 0xb000.

Our instruction recovery policy can decide which destination register is most likely for the jal

instruction based on program statistics collected a priori via static or dynamic profiling (the SI). The

instruction recovery policy consists of three steps.

• Step 1. We apply a software-implemented instruction decoder to filter out any candidate

messages that are illegal instructions. Most bit patterns decode to illegal instructions in three

RISC ISAs we characterized: 92.33% for RISC-V, 72.44% for MIPS, and 66.87% for Alpha.

This can be used to dramatically improve the chances of a successful SDELC recovery.

• Step 2. Next, we estimate the probability of each valid message using a small pre-computed

lookup table that contains the relative frequency that each instruction appears. We find that the

relative frequencies of legal instructions follow power-law distribution, as shown by Fig. 2.7.

This is used to favor more common instructions.

• Step 3. We choose the instruction that is most common according to our SI lookup table. In

the event of a tie, we choose the instruction with the longest leading-pad of 0s or 1s. This is

because in many instructions, the MSBs represent immediate values (as shown in Table 2.1).

These MSBs are usually low-magnitude signed integers or they represent 0-dominant function

codes.

If the SI is strong, then we would expect to have a high chance of correcting the error by choosing

the right candidate.

2.5.4 Recovering SEUs in Data Memory

In general-purpose embedded applications, data may come in many different types and structures.

Because there is no single common data type and layout in memory, we propose to simply use

evenly-spaced UL-ELC constructions and grant the software trap handler additional control about

how to recover from errors, similar to the general idea from SuperGlue [34].
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We build SDELC recovery support into the embedded application as a small C library. The

application can push and pop custom SDELC error handler functions onto a registration stack. The

handlers are defined within the scope of a subroutine and optionally any of its callees and can define

specific recovery behaviors depending on the context at the time of error. Applications can also

enable and disable recovery at will.

When the application does not disable recovery nor specify a custom behavior, all data memory

errors are recovered using a default error handler implemented by the library. The default handler

computes the average Hamming distance to nearby data in the same 64-byte chunk of memory

(similar to taking the intra-cacheline distance in cache-based systems). The candidate with the

minimum average Hamming distance is selected. This policy is based on the observation that

spatially-local and/or temporally-local data tends to also be correlated, i.e., it exhibits value locality

[35] that has been used in numerous works for cache and memory compression [36, 37, 38]. The

Hamming distance is a good measure of data correlation, as shown later in Fig. 2.13.

The application-defined error handler can specify recovery rules for individual variables within

the scope of the registered subroutine. They include globals, heap, and stack-allocated data. This is

implemented by taking the runtime address of each variable requiring special handling. For instance,

an application may wish critical data structures to never be recovered heuristically; for these, the

application can choose to force a crash whenever a soft error impacts their memory addresses. The

SDELC library support can increase system reliability, but the programmer is required to spend

effort annotating source code for error recovery. This is similar to annotation-based approaches

taken by others for various purposes [39, 40, 41, 42, 43, 44].

2.6 Evaluation

We evaluate FaultLink and SDELC primarily in terms of their combined ability to proactively avoid

hard faults and then heuristically recover from soft faults in software-managed memories.
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2.6.1 Hard Fault Avoidance using FaultLink

We first demonstrate how applications can run on real test chips at low voltage with many hard

faults in on-chip memory using FaultLink, and then evaluate the yield benefits at low voltage for a

synthetic population of chips.

2.6.1.1 Voltage Reduction on Real Test Chips

We first apply FaultLink to a set of small embedded benchmarks that we build and run on eight of

our microcontroller-class 45nm “real test chips.” Each chip has 64 KB of instruction memory and

176 KB of data memory. The five benchmarks are blowfish and sha from the mibench suite [45]

as well as dhrystone, matmulti and whetstone. We characterized the hard voltage-induced fault

maps of each test chip’s SPMs in 50 mV increments from 1 V (nominal VDD) down to 600 mV

using March-SS tests [46] and applied FaultLink to each benchmark for each chip individually at

every voltage. Note that the standard C library provided with the ARM toolchain uses split function

sections, i.e., it does not have a monolithic .text section. For each FaultLink-produced binary

that could be successfully packed, we ran them to completion on the real test chips. The FaultLink

binaries were also run to completion on a simulator to verify that no hard fault locations are ever

accessed.

FaultLink-packed instruction SPM images of the sha benchmark for two chips are shown in

Fig. 2.8 with a runtime VDD of 650 mV. There were about 1000 hard-faulty byte locations in each

SPM (shown as black dots). Gray regions represent sha’s program sections that were mapped into

non-faulty segments (white areas).

We observe that FaultLink produced a unique binary for each chip. Unlike a conventional binary,

the program code is not contiguous in either chip because the placements vary depending on the

actual fault locations. In all eight test chips, we noticed that lower addresses in the first instruction

SPM bank are much more likely to be faulty at low voltage, as seen in Fig. 2.8. This could be

caused either by the design of the chip’s power grid, which might have induced a voltage imbalance

between the two banks, or by within-die/within-wafer process variation. Chip 1 (Fig. 2.8a) also

appears to have a cluster of weak rows in the first instruction bank. Because FaultLink chooses a
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(a) Chip 1 (b) Chip 2

Figure 2.8: Result from applying FaultLink to the sha benchmark for two real test chips’ 64 KB

instruction memory at 650 mV.

solution with the sections packed into as few segments as possible, we find that the mapping for

both chips prefers to use the second bank, which tends to have larger segments.

We achieved an average min-VDD of 700 mV for the real test chips. This is a reduction of 125

mV compared to the average non-faulty min-VDD of 825 mV, and 300 mV lower than the official

technology specification of 1 V. FaultLink did not require more than 14 seconds on our machine to

optimally section-pack any program for any chip at any voltage.

2.6.1.2 Yield at Min-VDD for Synthetic Test Chips

To better understand the min-VDD and yield benefits of FaultLink using a wider set of benchmarks

and chip instances, we created a series of randomly-generated synthetic fault maps. For instruction

and data SPM capacities of 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, and 4 MB, we synthesized 100

fault maps for each in 10 mV increments for a total of 700 “synthetic test chips.” We used detailed

Monte Carlo simulation of SRAM bit-cell noise margins in the corresponding 45 nm technology.

Six more benchmarks were added from the AxBench approximate computing C/C++ suite [44]

that are too big to fit on the real test chips: blackscholes, fft, inversek2j, jmeint, jpeg, and

sobel. These AxBench benchmarks were compiled for the open-source 64-bit RISC-V (RV64G)

instruction set v2.0 [33] and privileged specification v1.7 using the official tools. This is because
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Figure 2.9: Achievable min-VDD for FaultLink at 99% yield. Bars represent the analytical lower

bound from Eqn. 2.2 and circles represent our actual results using Monte Carlo simulation for 100

synthetic fault maps.

unlike the standard C library for our ARM toolchain, the library included with the RISC-V toolchain

has a monolithic .text section. This allows us to consider the impact of the library sections on

min-VDD.

The expected min-VDD for 99% chip yield across 100 synthetic chip instances for seven memory

capacities is shown in Fig. 2.9. The vertical bars represent our analytical estimates calculated using

Eqn. 2.2. The red line represents the empirical worst case out of 100 synthetic test chips, while the

blue line is the lowest non-faulty voltage in the worst case of the 100 chips. Finally, the green line

represents the nominal VDD of 1 V.

FaultLink reduces min-VDD for the synthetic test chips at 99% yield by up to 450 mV with

respect to the nominal 1 V and between 370 mV and 430 mV with respect to the lowest non-faulty

voltage. All but jpeg from the AxBench suite were too large to fit in the smaller SPM sizes

(hence the “missing” bars and points). When the memory size is over-provisioned for the smaller

programs, min-VDD decreases moderately because the segment size distribution does not have a

strong dependence on the total memory size.

The voltage-scaling limits are nearly always determined by the length of the longest program
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Figure 2.10: Distribution of program section sizes. Packing the largest section into a non-faulty

contiguous memory segment is the most difficult constraint for FaultLink to satisfy and limits

min-VDD.

section, which must be packed into a contiguous fault-free memory segment. This is strongly

indicated by the close agreement between the empirical min-VDDs and the analytical estimates, the

latter of which had assumed the longest program section is the cause of section-packing failure.

To examine this further, the program section size distribution for each benchmark is depicted in

Fig. 2.10. The name of the largest section is shown in the legend for each benchmark.

We observe all distributions have long tails, i.e., most sections are very small but there are

a few sections that are much larger than the rest. We confirm that the largest section for each

benchmark – labeled in the figure legend – is nearly always the cause of failure for the FaultLink

section-packing algorithm at low voltage when many faults arise. Recall that the smaller ARM-

compiled benchmarks have split C library function sections, while the AxBench suite that was

compiled for RISC-V has a C library with a monolithic .text section; we observe that the latter

RISC-V benchmarks have significantly longer section-size tails than the former benchmarks. This

is why the AxBench suite does not achieve the lowest min-VDDs in Fig. 2.9. Notice that program

size is not a major factor: jpeg for RISC-V is similar in size to the ARM benchmarks, but it still

does not match their min-VDDs. If the RISC-V standard library had used split function sections,
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the AxBench min-VDDs would be significantly lower. For instance, jpeg compiled on RISC-V

achieves a min-VDD of 750mV for 128 KB memory, while on ARM (not depicted) it achieves a

min-VDD of 660mV.

FaultLink does not require any hardware changes; thus, energy-efficiency (voltage reduction)

and cost (yield at given VDD) for IoT devices can be considerably improved.

2.6.2 Soft Fault Recovery using SDELC

SDELC guards against unpredictable soft faults at run-time that cannot be avoided using FaultLink.

To evaluate SDELC, Spike was modified to produce representative memory access traces of all 11

benchmarks as they run to completion. Each trace consists of randomly-sampled memory accesses

and their contents. We then analyze each trace offline using a MATLAB model of SDELC. For

each workload, we randomly select 1000 instruction fetches and 1000 data reads from the trace and

exhaustively apply all possible single-bit faults to each of them. Because FaultLink has already

been applied, there is never an intersection of both a hard and soft fault in our experiments.

We evaluate SDELC recovery of the random soft faults using three different UL-ELC codes

(r = 1,2,3). Recall that the r = 1 code is simply a single parity bit, resulting in 33 candidate

codewords. (For basic parity, there are 32 message bits and one parity bit, so there are 33 ways

to have had a single-bit error.) For the data memory, the UL-ELC codes were designed with the

chunks being equally sized: for r = 2, there are either 11 or 12 candidates depending on the fault

position (34 bits divided into three chunks), while for r = 3 there are always five candidates (35

bits divided into seven chunks). For the instruction memory, chunks are aligned to important field

divisions in the RV64G ISA. Chunks for the r = 2 UL-ELC construction match the fields of the

Type-U instruction codecs (the opcode being the unshared chunk). Chunks for the r = 3 UL-ELC

code align with fields in the Type-R4 codec (as presented in Table 2.1). A successful recovery for

SDELC occurs when the policy corrects the error; otherwise, it fails by accidentally mis-correcting.
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Figure 2.11: Average rate of recovery using SDELC from single-bit soft faults in data and instruc-

tion memory. Benchmarks have already been protected against known hard fault locations using

FaultLink. r is the number of parity bits in our UL-ELC construction.

2.6.2.1 Overall Results

The overall SDELC results are presented in Fig. 2.11. The recovery rates are relatively consistent

over each benchmark, especially for instruction memory faults, providing evidence of the general

efficacy of SD-ELC. One important distinction between the memory types is the sensitivity to the

number r of redundant parity bits per message. For the data memory, the simple r = 1 parity yielded

surprisingly high rates of recovery using our policy (an average of 68.2%). Setting r to three parity

bits increases the average recovery rate to 79.2% thanks to fewer and more localized candidates to

choose from. On the other hand, for the instruction memory, the average rate of recovery increased

from 31.3% with a single parity bit to 69.0% with three bits.

These results are a significant improvement over a guaranteed system crash as is traditionally

done upon error detection using single-bit parity. Moreover, we achieve these results using no more

than half the overhead of a Hamming SEC code, which can be a significant cost savings for small

IoT devices. Based on our results, we recommend using r = 1 parity for data, and r = 3 UL-ELC

constructions to achieve 70% recovery for both memories with minimal overhead. Next, we analyze

the instruction and data recovery policies in more detail.
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Figure 2.12: Sensitivity of SDELC instruction recovery to the actual position of the single-bit fault

with the r = 3 UL-ELC construction.

2.6.2.2 Recovery Policy Analysis

The average instruction recovery rate as a function of bit error position for all benchmarks is shown

in Fig. 2.12. Error positions -1, -2, and -3 correspond to the three parity bits in our UL-ELC

construction from Table 2.1.

We observe that the SDELC recovery rate is highly dependent on the erroneous chunk. For

example, errors in chunk C7 – which protects the RISC-V opcode instruction field – have high rates

of recovery because the power-law frequency distributions of legal instructions are a very strong

form of side information. Other chunks with high recovery rates, such as C1 and C5, are often (part

of) the funct2, funct7, or funct3 conditional function codes that similarly leverage the power-

law distribution of instructions. Moreover, many errors that impact the opcode or function codes

cause several candidate codewords to decode to illegal instructions, thus filtering the number of

possibilities that our recovery policy has to consider. For errors in the chunks that often correspond

to register address fields (C3, C4, and C6), recovery rates are less because the side information on

register usage by the compiler is weaker than that of instruction relative frequency. However, errors

towards the most-significant bits within these chunks recover more often than the least-significant

bits because they can also correspond to immediate operands. Indeed, many immediate operands

are low-magnitude signed or unsigned integers, causing long runs of 0s or 1s to appear in encoded

instructions. These cases are more predictable, so we recover them frequently, especially for chunk
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Figure 2.13: Sensitivity of SDELC data recovery to the mean candidate Hamming distance score

for two benchmarks and r = 1 parity code.

C1 which often represents the most-significant bits of an encoded immediate value.

The sensitivity of SDELC data recovery to the mean candidate Hamming distance score for

two benchmarks is shown in Fig.2.13. White bars represent the relative frequency that a particular

Hamming distance score occurs in our experiments. The overlaid gray bars represent the fraction of

those scores that we successfully recovered using our policy.

When nearby application data in memory is correlated, the mean candidate Hamming distance is

low, and the probability that we successfully recover from the single-bit soft fault is high using our

Hamming distance-based policy. Because applications exhibit spatial, temporal, and value locality

[35] in memory, we thus recover correctly in a majority of cases. On the other hand, when data has

very low correlation – essentially random information — SDELC does not recover any better than

taking a random guess of the bit-error position within the localized chunk, as expected.

2.7 Related Work

We summarize and differentiate our contributions from related work on fault-tolerant caches and

scratchpads, as well as error-localizing and unequal error protection codes.
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2.7.1 Fault-Tolerant Caches

There is an abundance of prior work on fault-tolerant and/or low-voltage caches. Examples include

PADded Cache [47], Gated-VDD [48], Process-Tolerant Cache [49], Variation-Aware Caches [50],

Bit Fix/Word Disable [51], ZerehCache [52], Archipelago [53], FFT-Cache [54], VS-ECC [55],

Correctable Parity Protected Cache (CPPC) [56], FLAIR [57], Macho [58], DPCS [59], DARCA

[60], and others (see related surveys by Mittal [61, 4]). These fault-tolerant cache techniques tolerate

hard faults/save energy by sacrificing capacity or remapping physical data locations. This affects

the software-visible memory address space and hence they cannot be readily applied to SPMs.

Although they are cache-specific, some of the above techniques can be roughly compared with

FaultLink in terms of min-VDD. For instance, DPCS [59] achieves a similar min-VDD to FaultLink

of around 600 mV, while FLAIR [57] achieves a lower min-VDD (485 mV). We emphasize that the

above techniques cannot be applied to SPMs and are therefore not a valid comparison.

Similar to SDELC, CPPC [56] can recover random soft faults using SED parity. However, CPPC

requires additional hardware bookkeeping mechanisms that are in the critical path whenever data is

added, modified, or removed from the cache (and again, their method is not applicable to SPMs).

2.7.2 Fault-Tolerant Scratchpads

The community has proposed various methods for tolerating variability and faults in SPMs that

relate closely to this work. Traditional fault avoidance techniques like dynamic bit-steering [62]

and strong ECC codes are too costly for small embedded memories. Meanwhile, spare rows and

columns cannot scale to handle many faults that arise from deep voltage scaling.

E-RoC [41] is a SPM fault-tolerance scheme that aims to dynamically allocate scratchpad space

to different applications on a multi-core embedded SoC using a virtual memory approach. However,

it requires extensive hardware and run-time support. Several works [63, 40, 42, 43] propose to use

OS-based virtual memory to directly manage memory variations and/or hard faults, but they are

not feasible in low-cost IoT devices that lack support for virtual memory; nor do they guarantee

avoidance of known hard faults at software deployment time. Others have proposed to add small

fault-tolerant buffers that assist SPM checkpoint/restore [64], re-compute corrupted data upon
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detection [65], build radiation-tolerant SPMs using hybrid non-volatile memory [66] and duplicate

data storage to guard against soft errors [67]; these are each orthogonal to this work.

There are several other prior works that relate closely to SDELC, although ours is the first to

propose heuristic recovery that lies in the regime between SED and SEC capabilities. Farbeh et

al. [68] propose to recover from soft faults in instruction memory by leveraging basic SED parity

combined with a software recovery handler that leverages duplicated instructions in memory. On

the other hand, our approach does not add any storage overhead to recover from errors (although

ours is heuristic). Volpato et al. [69] proposed a post-compilation binary patching approach to

improve energy efficiency in SPMs that closely resembles the FaultLink procedure. However, that

work did not deal with faults in the SPMs. Sayadi et al. [65] uses SED parity to dynamically

recompute critical data that that is affected by single-bit soft faults. SDELC completely subsumes

that approach: the embedded SDELC library can heuristically recover data, recompute it if possible,

or opt to panic according to the application’s needs.

Unlike all known prior work, our combined FaultLink+SDELC approach can simultaneously

deal with both hard and soft SPM faults with minimal hardware changes compared to existing

IoT systems. Our low-cost approach can be used today with off-the-shelf microcontrollers (minor

changes are needed to implement UL-ELC codes, however), and can improve yield and min-VDD.

2.8 Discussion

We highlight several considerations and beneficial use cases for FaultLink and SDELC and outline

directions for future work.

2.8.1 Performance Overheads

FaultLink does not add any performance overheads because it is purely a link-time solution, while

its impact on code size is less than 1%. SDELC recovery of soft faults, however, requires about 1500

dynamic instructions, which takes a few µs on a typical microcontroller (the number of instructions

varies depending on the specific recovery action taken and the particular UL-ELC code). However,
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for low-cost IoT devices that are likely to be operated in low-radiation environments with only

occasional soft faults, the performance overhead is not a major concern. Simple recovery policies

could be implemented in hardware, but then software-defined flexibility and application-specific

support would be unavailable.

2.8.2 Memory Reliability Binning

FaultLink could bring significant cost savings to both IoT manufacturers and IoT application

developers throughout the lifetime of the devices. Manufacturers could sell chips with hard defects

in their on-chip memories to customers instead of completely discarding them, which increases

yield. Customers could run their applications on commodity devices with or without hard defects at

lower-than-advertised supply voltages to achieve energy savings. Fault maps for each chip at typical

min-VDDs are small (bytes to KBs) and could be stored in a cloud database or using on-board flash.

Several previous works have proposed heterogeneous reliability for approximate applications to

reduce cost [70, 71, 72, 73].

2.8.3 Coping with Aging and Wearout using FaultLink

Because IoT devices may have long lifetimes, aging becomes a concern for the reliability of the

device. Although explicit memory wearout patterns cannot be predicted in advance, fault maps

could be periodically sampled using BIST and uploaded to the cloud. Because IoT devices by

definition already require network connectivity for their basic functionality and to support remote

software updates and patching of security vulnerabilities, it is not disruptive to add remote FaultLink

support to adapt to aging patterns. Because running FaultLink remotely takes just a few seconds,

customers would not be affected any worse than the downtime already imposed by routine software

updates and the impact on battery life would be minimum.

2.8.4 Risk of SDCs from SDELC

SDELC introduces a risk of mis-correcting single-bit soft faults that cannot be avoided unless one

resorts to a full Hamming SEC code. However, for low-cost IoT devices running approximation-
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tolerant applications, SDELC reduces the parity storage overhead by up to 6× compared to Ham-

ming while still recovering most single-bit faults. Similar to observations by others [74], we found

that no more than 7.2% of all single-bit instruction faults and 2.3% of data faults result in an

intolerable silent data corruption (SDC), i.e., an SDC with more than 10% output error [44]. The

rest of the faults are either successfully corrected, benign, or cause crashes/hangs. The latter are no

worse than crashes from commonly-used SED parity. Current SED-based systems’ reliability could

be improved with remote software updates to incorporate our techniques.

2.8.5 Directions for Future Work

The FaultLink and SDELC approaches can be further improved upon. One could extend FaultLink

to accommodate hard faults within packed sections to reduce min-VDD and increase reliability. For

FaultLink with instruction memory, one approach could be to insert unconditional jump instructions

to split up basic blocks, similar to a recent cache-based approach [75]. For FaultLink with data

memory, one could use smaller split stacks [76] and design a fault-aware malloc(). For SDELC,

one could design more sophisticated recovery policies using stronger forms of SI, and use profiling

methods to automatically annotate program regions that are likely to experience faults.

2.9 Conclusion

We proposed FaultLink and SDELC, two complementary techniques to improve memory resiliency

for IoT devices in the presence of hard and soft faults. FaultLink tailors a given program binary to

each individual embedded memory chip on which it is deployed. This improves both device yield

by avoiding manufacturing defects and saves runtime energy by accounting for variation-induced

parametric failures at low supply voltage. Meanwhile, SDELC implements low-overhead heuristic

error correction to cope with random single-event upsets in memory without the higher area and

energy costs of a full Hamming code. Directions for future work include designing a FaultLink-

compatible remote software update mechanism for IoT devices in the field and supporting new

failure modes with SDELC.
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CHAPTER 3

Parity++: Lightweight Error Correction for Last Level Caches

As the size of on-chip SRAM caches is increasing rapidly and the physical dimension of the SRAM

devices is decreasing, reliability of caches is becoming a growing concern. This is because with

increased size of caches, the likelihood of radiation-induced soft faults also increases. As a result,

information redundancy in the form of Error Correcting Codes (ECC) is becoming extremely

important, especially to protect the larger sized last level caches (LLCs). In typical ECCs, extra

redundancy bits are added to every row to detect and correct errors. There is additional encoding

(while writing data) and decoding (while reading data) procedures required as well. In caches,

these additional area, power and latency overheads need to be minimized as much as possible. To

address this problem, we present in this chapter Parity++: a novel unequal message protection

scheme for last level caches that preferentially provides stronger error protection to certain “special

messages”. This protection scheme provides Single Error Detection (SED) for all messages and

Single Error Correction (SEC) for a subset of messages. Thus, it is stronger than just a basic SED

parity and has∼9% lower storage overhead and much lower error detection energy than a traditional

Single Error Correcting, Double Error Detecting (SECDED) code. We also propose a memory

speculation procedure that can be used with any ECC scheme to hide the decoding latency while

reading messages when there are no errors.

Collaborators:

• Clayton Schoeny, UCLA

• Prof. Lara Dolecek, UCLA

• Prof. Puneet Gupta, UCLA
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3.1 Introduction

As demand and size of on-chip caches is increasing rapidly and the physical dimension and noise

margins are decreasing, reliability of caches is increasingly becoming an important issue. As given

in [77, 78], the vulnerability of SRAM caches to soft errors grows with increase in size. Also with

reduction in physical dimensions of these devices, the critical charge required to flip the content of

a cell due to a particle strike decreases. As a result, the soft error rate is higher for large capacity

caches. The widely used technique to guarantee reliability of storage devices is using information

redundancy in the form of Error Correcting Codes (ECC). In typical ECCs, extra redundancy bits are

added to every row to detect and correct errors. There are additional encoding (while writing data)

and decoding (while reading data) procedures required as well. Thus ECCs come with encoding

and decoding mechanisms that incur additional overheads in terms of latency and energy. Both

these overheads are critical for caches and hence, ECC protection was not widely used in caches till

recently. However, due to the increased reliability concerns of large capacity caches and processor

performance degradation due to occurrence of errors, cache protection using ECC schemes is

becoming increasingly popular. Nevertheless, these additional area, power and latency overheads

need to be minimized in caches as much as possible.

We present Parity++: a novel unequal message protection scheme for last level caches that

preferentially provides stronger error protection to certain “special messages”. As the name suggests,

this coding scheme requires one extra bit above a simple parity Single Error Detection (SED) code

while providing SED for all messages and Single Error Correction (SEC) for a subset of messages.

Thus, it is stronger than just basic SED parity and has∼9% lower storage overhead than a traditional

Single Error Correcting, Double Error Detecting (SECDED) code. Error detection circuitry often lies

on the critical path and is generally more critical than error correction circuitry as error occurrences

are rare even with an increasing soft error rate. Our coding scheme has a much simpler error

detection circuitry that incurs lower energy and latency costs than the traditional SECDED code.

Thus, Parity++ is a lightweight ECC code that is ideal for large capacity last level caches. We also

propose a memory speculation procedure that can be generally applied to any ECC protected cache

to hide the decoding latency while reading messages when there are no errors.
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3.2 Background and Related Work

3.2.1 Error Correcting Codes

Error-correcting codes (ECCs) increase the resiliency of communication and storage systems by

adding redundant bits (or symbols, but in this work we focus on the binary regime). A code C can

be thought of as an injective mapping of messages of length k to codewords of length n. Let r be the

number of redundant bits, i.e., r = n− k. A binary code is considered linear if the sum of any two

codewords in C is also a codeword in C .

A linear block code is described by either its (k×n) generator matrix G or its (r×n) parity-

check matrix H, with the relation GHT = 0. A particular message m is encoded to its corresponding

codeword c by multiplying it with the generator matrix as follows: mG = c. Each row of H is a

parity-check equation that all codewords must suffice, thus HcT = 0. We define the received vector

at the output of the channel as y = c+ e, in which e is the error-vector representing which bits

have been flipped. The receiver calculates the syndrome, s = HyT, and if s 6= 0, then it is known

that the received vector is not a valid codeword. At this point, the decoder can either attempt to

determine the most likely originally transmitted codeword or it can simply raise a flag that an error

was detected (depending on the system goals and design). We say a code is systematic if a message

is directly embedded in the codeword, i.e., each message bit is equal to a specific codeword bit.

A useful parameter of a linear code is its minimum distance, dmin, which is the minimum

Hamming distance between any two (non-identical) codewords. Additionally, since a linear code

must include the 0 codeword, the minimum distance of a linear code is simply the minimum weight

of any (non-zero) codeword in the code:

dmin = min
c1,c2∈C ;

c1 6=c2

[dH(c1,c2)] = min
c∈C ;
c6=0

[wt(c)].

A linear code guarantees correction of up to t = b1
2(dmin− 1)c bit-errors, or detection of up to

(dmin− 1) bit-errors (without any correction guarantees). For even values of dmin, a linear code

simultaneously guarantees correction of up to t bit-errors and detection of up to (t +1) bit-errors.

Further explanation of the fundamental properties of codes can be found in classic textbooks

[79, 80].
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3.2.2 SRAM Reliability and Error Detection and Correction in Caches

As mentioned before, SRAM reliability concerns are growing. Although the soft error rate of SRAM

cell has almost been constant at 10−3 FIT/bit [81, 82], the likelihood of a particle striking the array is

increasing with increase in size. Most of the recent processors with large capacity caches have ECC

protected L2 and/or L3 caches. Some of the common and recent examples include Qualcomm’s

Centriq 2400 processor [83], AMD’s Athlon [84] and Opteron [85] processors as well as IBM

Power 4 [86] processors. Most of the commercially available processors use traditional (72,64)

SECDED [87] code on each 64-bit word in the cache line. A lot of past works have suggested

decoupling error detection and correction mechanisms so as to reduce the complexity and overhead

of error detection since that is more critical than error correction. In [88], the authors suggest using

SRAM for only error detection and storing the ECC correction bits within the memory hierarchy to

reduce the overhead. In another work on ECC in caches, the authors of [89] suggest protecting

only those cache lines that have been recently used. Thus, they trade-off protection with area and

energy. Some past works like [90] have also focused on ECC protection schemes for L1 cache.

3.2.3 Application Characteristics

Data or instructions in applications are generally very structured. Frequencies of instructions in

most applications follow power law distribution [91]. This means that some instructions get more

frequently accessed than the rest. If the opcode (that primarily determines the action taken by the

instruction) in a certain instruction set architecture (ISA) is, for example, the first x bits, then the

relative frequency of the opcodes of the common instructions are high. This means most instructions

in the memory would have the same prefix of x-bits. Table 3.1 shows the fraction of the two most

frequently occurring opcode over each of the benchmark suites. The benchmarks were compiled for

32-bit RISC-V (RV32G) [33] instruction set v2.0 were the least significant 7 bits are designated as

the opcode. This is true not just for instructions but also for data. In most applications, the data in

the memory is usually low-magnitude signed data of a certain data type. However, these values get

represented inefficiently, for e.g., 4-byte integer type used to represent values that usually need only

1-byte. Thus, in most cases, the MSBs would be a leading-pad of 0s or 1s. Table 3.1 shows that, for a
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wide range of data sets, most stored data starts with a leading pad of zeros. Our approach of utilizing

these characteristics in applications complements recent research on data compression in cache and

main memory systems such as frequent value/pattern compression [92, 93], base-delta-immediate

compression [94] and bit-plane compression [95]. However, our main goal is to provide stronger

error protection to these special messages that are chosen based on the knowledge of data patterns

in context.

Table 3.1: Fraction of Special Messages per Benchmark Within Suite

Top Two Most Freq Opcodes First 6 bits are 0

(Data Memory) (Instruction Memory)

Benchmark Suite Max Mean Max Mean

AxBench 0.51 0.46 0.92 0.86

SPEC CPU2006 0.56 0.37 0.99 0.89

3.3 Lightweight Error Correction Code

3.3.1 Theory

The code we developed in this work, which we call Parity++, is a type of unequal message protection

code, in that we a priori designate specific messages to have extra protection against errors. As in

[96], there are two classes of messages, normal and special, and they are mapped to normal and

special codewords, respectively. When dealing with the importance or frequency of the underlying

data, we refer to the messages; when discussing error detection/correction capabilities we refer to

the codewords.

Codewords in Parity++ have the following error protection guarantees: normal codewords

have single-error detection; special codewords have single-error correction. Let us partition the

codewords in our code C into two sets, N and S , representing the normal and special codewords,

respectively. The minimum distance properties necessary for the aforementioned error protection
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guarantees of Parity++ are as follows:

min
u,v∈N ,u 6=v

dH(u,v)≥ 2, (3.1)

min
u∈N ,v∈S

dH(u,v)≥ 3, (3.2)

min
u,v∈S ,u 6=v

dH(u,v)≥ 3. (3.3)

A second defining characteristic of the Parity++ code, is that the length of a codeword is only

two bits longer than a message, i.e., n = k+2. Comprehensive comparisons between Parity++ and

other popular ECCs are included in some of the subsequent sections.

For the context of this work, let us assume that our Parity++ always has message length k as a

power of 2. The overall approach to constructing our code is to create a Hamming subcode of a

SED code [97]; when an error is detected, we decode to the neighboring special codeword. The

overall code has dmin = 2, but a block in G, corresponding to the special messages, has dmin ≥ 3.

For the sake of notational convenience, we will go through the steps of constructing the (34,32)

Parity++ code (as opposed to the generic (k+2,k) Parity++ code).

We begin by creating the generating matrix for the Hamming code whose message length is at

least as large as the message length in the desired Parity++ code; in our case, we use the (63,57)

Hamming code. Let α be a primitive element of GF(26) such that 1+x+x6 = 0, then our generator

polynomial is simply gS(x) = 1+ x+ x6 (and we construct our generator matrix using the usual

polynomial coding methods). We then shorten this code to (32,26) by expurgating and puncturing

(i.e., deleting) the right and bottom 30 columns and rows. Now, we add a column of 1s to the end,

resulting in a generator matrix, which we denote as GS, for a (33,26) code with dmin = 4.

For the next step in the construction of the generating matrix of our (34,32) Parity++ code,

we add GN on top of GS, where GN is the first 6 rows of the generator matrix using the generator

polynomial gN(x) = 1+ x, with an appended row of 0s at the end. Note that GN is the generator

polynomial of a simple parity-check code. By using this polynomial subcode construction, we have

built a generator matrix with overall dmin = 2, with the submatrix GS having dmin = 4. At this point,

notice that messages that begin with 6 0s only interact with GS; these messages will be our special

messages. Note that Conditions 3.1 and 3.3 are satisfied; however, Condition 3.2 is not satisfied. To
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meet the requirement, we add a single non-linear parity-bit that is a NOR of the bits corresponding

to GN, in our case, the first 6 bits.

The final step is to convert GS to systematic form via elementary row operations. Note that

these row operations preserve all 3 of the required minimum distance properties of Parity++. As a

result, the special codewords (with the exception of the known prefix) are in systematic form. For

example, in our (34,32) Parity++ code, the first 26 bits of a special codeword are simply the 26 bits

in the message (not including the leading run of 6 0s).

At the encoding stage of the process, when the message is multiplied by G, the messages

denoted as special must begin with a leading run of log2(k)+1 0’s. However, the original messages

we deem to be special do not have to follow this pattern as we can simply apply a pre-mapping

before the encoding step, and a post-mapping after the decoding step.

In our (34,32) Parity++ code, observe that there are 226 special messages. Generalizing, it is

easy to see that for a (k+2,k) Parity++ code, there are 2k−log2(k)−1 special messages.

3.3.2 Error Detection and Correction

We separate the received–possibly erroneous–vector y into two parts, c̄ and η , with c̄ being the

first k+1 bits of the codeword and η the additional nonlinear redundancy bit (η = 0 for special

messages and η = 1 for normal messages). There are three possible scenarios at the decoder: no

(detectable) error, correctable error, or detected but uncorrectable error.

First, due to the Parity++ construction, every valid codeword has even weight. Thus, if c̄ has

even weight, then the decoder concludes no error has occurred, i.e., c̄ was the original codeword.

Second, if c̄ has odd weight and η = 0, the decoder attempts to correct the error. Since GS is in

systematic form, we can easily retrieve HS, its corresponding parity-check matrix. The decoder

calculates the syndrome s1 = HT
S c̄. If s1 is equal to a column in HS, then that corresponding bit in

c̄ is flipped. Third, if c̄ has odd weight and either s1 does not correspond to any column in HS or

η = 1, then the decoder declares a DUE.

The decoding process described above guarantees that any single-bit error in a special codeword

will be corrected, and any single-bit error in a normal codeword will be detected (even if the bit in
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error is η).

Let’s take a look at two concrete examples for the (10,8) Parity++ code. Without any

premapping, a special message begins with log2(3) + 1 = 4 zeros. Let our original message

be m = (00001011), which is encoded to c = (1011010110). Note that the first 4 bits of c is the

systematic part of the special codeword. After passing through the channel, let the received vector

be y = (1001010110), divided into c̄ = (1001010110) and η = 0. Since the weight of c is odd and

η = 0, the decoder attempts to correct the error. The syndrome is equal to the 3rd column in HS,

thus the decoder correctly flips the 3rd bit of c̄.

For the second example, let us begin with m = (11010011), which is encoded to (0011111101).

After passing through the channel, the received vector is y = (0011011101). Since the weight of c̄

is odd and η = 1, the decoder declares a DUE. Note that for both normal and special codewords, if

the only bit in error is η itself, then it is implicitly corrected since c̄ has even weight and will be

correctly mapped back to m without any error detection or correction required.

3.3.3 Architecture

Figure 3.1 shows the flow of a normal read operation in a cache with any ECC protection scheme.

Due to the protection mechanism, there is additional error detection/correction latency. Error

detection latency is more critical than error correction as occurrence of an error is a rare event when

compared to the processor cycle time and doesn’t fall in the critical path. The data/instruction being

read from the cache goes through the ECC error detection engine first. If there are no errors then the

decoded message moves ahead. In case of an error, the received message goes through an additional

correction engine to retrieve the correct message and then the message can be used in the rest of the

computation flow.

When using Parity++, the flow almost remains the same. Parity++ can detect all single bit errors

but has correction capability for “special messages”. When a single bit flip occurs on a message,

the error detection engine first detects the error and stalls the pipeline. If the non-linear bit says it is

a “special message”(non-linear bit is ‘0’), the received message goes through the Parity++ error

correction engine which outputs the corrected message. This marks the completion of the cache
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access. If the non-linear bit says it is a non-special message (non-linear bit is ‘1’), it is checked if

the cache line is clean. If so, the cache line is simply read back from the lower level cache or the

memory and the cache access is completed. However, if the cache line is dirty and there are no

other copies of that particular cache line, it leads to a crash or a roll back to checkpoint. Note that

both Parity++ and SECDED have equal decoding latency of one cycle that is incurred during every

read operation from an ECC protected cache. The encoding latency during write operation does not

fall in the critical path and hence, is not considered in our analyses.

Figure 3.1: Flow of a read operation in a cache with ECC protection

Next in this chapter, we present a memory speculation scheme that helps to hide the latency

incurred by the error detection engine when there are no errors.

3.3.3.1 Memory Speculation

Figure 3.2 shows the flow of a read operation when the memory speculation scheme is used. The

basic idea behind this speculation scheme is to predict the original message from the encoded

codeword without having to go through the decoding/error detection circuitry in order to hide the

additional latency incurred by the decoding/detection mechanism. While the decoding happens,

the predicted instruction/data can move forward to the next stages in the pipeline. If the predicted

value is correct, then no action is required and pipeline goes ahead as usual without any additional

stalls. In case an error is detected, the mis-predicted instruction or all the dependent instructions that

received the mis-predicted data needs to be squashed. This prediction scheme for ECC protected
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caches is similar to what was proposed in [98] for stronger error protection in on-chip memories.

Figure 3.2: Flow of read operation in cache with memory speculation and Parity++ protection

schemes

This speculation scheme is most effective when the encoded ECC codewords are systematic.

When systematic, the original message can be easily retrieved by truncating the additional redundant

bits that are generally added to the end of the actual message in case of no errors in the received

codeword. Instead of waiting for the decoding to get done, the original message can be speculated by

truncating the redundant bits. Thus, the computation moves ahead with the predicted data/instruction

without any stalls while the decoding for error detection happens in parallel. A major difference

between SECDED and our scheme, Parity++ is that all codewords under SECDED are systematic

while only the special messages for Parity++ are systematic. As a result, for Parity++, speculation is
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used only if the message is special. If not, computation is stalled for one cycle while decoding/error

detection happens. Special messages can be distinguished from non-special messages using the

non-linear bit.

3.3.3.2 Additional Cache Support for Speculation

Figure 3.3 depicts the additional circuitry that needs to be added to a traditional cache to support

the memory speculation scheme with Parity++.

Figure 3.3: Cache architecture to implement Parity++ with memory speculation

The non linear bit is first checked. If it is a special message, then speculation is triggered and

the speculated value is forwarded to the next stage. This speculated value comprises of the lower

26-bits of the received codeword to which the special prefix is separately appended. Meanwhile,

the decoding and the error detection circuitry works in parallel. If an error is detected, the control

module initiates a squash operation to squash all the dependant instructions that used the mis-

predicted data and the ECC correction engine provides the correct output. The control module also

stalls the pipeline when the non linear bit indicates that the message is not special and hence, the

codeword is not systematic. Therefore, speculation cannot be used and the pipeline needs to be

stalled for one cycle till the original message is decoded. The stall latency is, of course, greater

than one cycle when an error is detected and the ECC correction engine needs to be triggered. This

additional control module is simple and has minimal overhead in terms of area and energy.
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3.3.4 Coverage and Overheads

3.3.4.1 Detection/Correction Coverage

Single-bit parity detects any single-bit error. Our Parity++ scheme keeps this single-bit error

detection guarantee, and additionally provides single-bit error correction for special messages. Also,

any 2-bit error on a special message in our Parity++ scheme is guaranteed detectable.

The coverage of SECDED and DECTED codes can be understood from their names. SECDED

codes guarantee correction of any single bit error and detection of any double bit error; DECTED

codes guarantee correction of any double bit error and detection of any triple bit error.

Table 3.2: Error Detection and Correction Coverage for Parity++ along with some widely used

ECC schemes

ECC scheme Error Bits Detected Error Bits Corrected

Parity- Single Error

Detecting (SED)
1 0

Parity++ Special Messages - 2 Special Messages - 1

Non-Special Messages - 1 Non-Special Messages - 0

SECDED 2 1

DECTED 3 2

3.3.4.2 Storage Overhead

Single-error detection requires only a single parity bit; our Pairty++ scheme adds an additional

parity-bit for a total of 2. The most efficient SEC code is the Hamming code. Assuming our message

length, k, is a power of 2, then the number of redundancy bits required for the (shortened) Hamming

code is log(k)+1. Since the Hamming code has a minimum distance of 3, we can create a SECDED

code—the extended Hamming code—with the addition of a single parity bit, yielding a total of

log(k)+2 redundancy bits. Similarly, we can use a (shortened) extended BCH code as a DECTED

code, with 2 log(k)+3 redundancy bits.

49



Figure 3.4: Storage overhead of different commonly used ECC schemes along with our scheme

Parity++

3.3.4.3 Latency and Energy Overhead

The encoding and decoding latencies when writing to/reading from the memory are almost identical

for Parity++ and SECDED. They would both require an additional one cycle for each of the two

operations. Error correction in case of Parity++ requires an extra matrix multiplication. However,

this latency is not critical as occurrence of errors is a rare event compared to the cycle time of the

processor. With the proposed memory speculation scheme, SECDED incurs no additional decoding

latency when there are no errors. For Parity++ the one cycle extra decoding latency happens only

when it is a non special message (only 20-25% of messages are typically non-special).

The encoding energy overhead is almost similar for both Parity++ and SECDED. The decoding

energy overheads are slightly different. For SECDED, the original message can be retrieved from

the received codeword by simply truncating the additional ECC redundant bits. However, all

received codewords need to be multiplied with the H-matrix to detect if any errors have occurred.

For Parity++, the original message can be retrieved using truncation when it is a special messages.

For the 20-25% non special messages, the non-systematic received codeword needs to be multiplied

with a decoder matrix to get the original message. This decoder matrix multiplication has ∼4x

higher energy overhead than the H-matrix multiplication of SECDED since the Parity++ decoder

is larger than the SECDED H-matrix. However, for Parity++, the error detection scheme is much

simpler. It is just a chain of XOR gates and hence consumes ∼10x lower energy than the H-matrix
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multiplication of SECDED required for error detection. In short, for SECDED, every message needs

to be multiplied with H-matrix for error detection even though all original messages can be retrieved

through truncation of received codewords. For Parity++, all messages go through the chain of XOR

gates for error detection and only the non special messages need to be multiplied with the decoder

matrix to retrieve the original message. Since the error detection in Parity++ is much cheaper in

terms of energy overhead than SECDED and the non special messages only constitute about 20-25%

of the total messages, the overall read energy in Parity++ turns out to be much lesser than SECDED.

Also, with reduced array size for caches with Parity++ due to lower storage overhead, the leakage

energy is also less than that in caches with SECDED.

Figure 3.5: Comparing Normalized Execution Time of Processor-I with SECDED and Parity++

(with memory speculation)

Figure 3.6: Comparing Normalized Execution Time of Processor-II with SECDED and Parity++

(with memory speculation)
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3.4 Experimental Methodology

We evaluated Parity++ over applications from the SPEC 2006 benchmark suite. Two sets of core

micro-architectural parameters (provided in Table 3.3) were chosen to understand the performance

benefits in both a lightweight in-order(InO) processor and a larger out-of-order(OoO) core. Per-

formance simulations were run using Gem5 [99], fast forwarding for 1 billion instructions and

executing for 2 billion instructions.

The first processor is a lightweight single in-order core architecture with a 32kB L1 cache for

instruction and 64kB L1 cache for data. Both the instruction and data caches are 4-way associative.

The LLC is a unified 1MB L2 cache which is also 8-way associative. The second processor is a

dual core out-of-order architecture. The L1 instruction and data caches have the same configuration

as the previous processor. The LLC comprises of both L2 and L3 caches. The L2 is a shared 512kB

SRAM based cache while the L3 is a shared 2MB cache which is 16-way associative. For both the

baseline processors it is assumed that the LLCs (L2 for the InO processor and L2 and L3 for the

OoO processor) have SECDED ECC protection.

The performance evaluation was done only for cases where there are no errors. Thus, latency

due to error detection is taken into consideration but not error correction as correction is rare when

compared to the processor cycle time and doesn’t fall in the critical path. In order to compare the

performance of the systems with Parity++ against the baseline cases with SECDED ECC protection,

the size of the LLCs were increased by ∼10% due to the lower storage overhead of Parity as

provided in Section 3.3.4. We call this iso-area since the additional area coming from reduction in

redundancy is used to increase the total capacity of the SRAM. The iso-area evaluation was done

for both with and without memory speculation. The analysis was also done for the iso-capacity

where the memory capacity of the systems with Parity++ and SECDED remain same and their

performances are measured. As mentioned before, SECDED allows speculation in all cases and thus,

incurs no additional read latency due to error detection when there is no error. But for Parity++, only

the special messages are systematic and thus, for all non-special messages, there is an additional

one cycle read latency due to the error detection circuitry. This additional latency for non-special

messages was also taken into consideration for our simulations.
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Table 3.3: Core Micro-architectural Parameters

Processor-1 Processor-2

Cores 1, InO (@ 2GHz) 2, OoO (@ 2GHz)

L1 Cache per core 32KB I$ 32KB I$

64KB D$ 64kB D$

4-way 4-way

L2 Cache 1MB (unified) 512KB (shared, unified)

8-way 8-way

L3 Cache - 2MB (shared)

16-way

Cache Line Size 64B 64B

Memory Configuration 4GB of 2133MHz DDR3 8GB of 2133MHz DDR3

Nominal Voltage 1V 1V

3.5 Results and Discussion

In this section we discuss the performance results obtained from the Gem5 simulations (as mentioned

in Section 3.4). Figures 3.5 and 3.6 show the comparative results for the two different sets of core

micro-architectures across a variety of benchmarks from the SPEC2006 suite when using memory

speculation. In both the evaluations, performance of the system with Parity++ was compared against

that with SECDED. The evaluation was further split into iso-area and iso-capacity as explained in

Section 3.4.

For both the core configurations, the observations for the iso-area case are almost similar. With

memory speculation it is seen that with additional memory capacity for iso-area, the system with

Parity++ has upto ∼4% better performance (lower execution time) than the one with SECDED.

This improvement in performance happens in spite of the additional one cycle latency incurred

on non special messages in the case of Parity++. The applications showing higher performance

benefits are mostly memory intensive. Hence, additional cache capacity with Parity++ reduces

overall miss rate to an extent such that the slight increase in average LLC hit time gets offset. For

most of these applications, this performance gap widens as the LLC size increases for Processor-II.

The applications showing roughly similar performances on both the systems are the ones which

already have a considerably lower LLC miss rate. As a result, increase in LLC capacity due to
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Parity++ doesn’t lead to a significant improvement in performance. The same evaluation was also

done for the case where there is no memory speculation, i.e., both Parity++ and SECDED protected

caches have additional hit latency of one cycle for all read operations. The results show that with the

exact same hit latency, Parity++ has upto 7% lower execution time than SECDED due to additional

memory capacity.

A more significant result is the iso-capacity case with memory speculation. It is seen that even

with additional one cycle latency for non special messages in Parity++, the performance of the

system with Parity++ is at par with that of SECDED. This means that by using our lightweight error

correction scheme, we manage to save about 5-9% last level cache area (excluding decoder and

peripheral circuit area) with negligible hit in performance. Since the LLCs constitute more than 30%

of the processor chip area, the cache area savings translate to a considerable amount of reduction in

the chip size. This additional area benefit can either be utilized to make an overall smaller sized chip

or it can be used to pack in more compute tiles to increase the overall performance of the system.

The iso-capacity results also imply that Parity++ can be used in SRAM based scratchpad

memories used in embedded systems at the edge of the Internet-of-Things (IoT) where hardware

design is driven by the need for low area, cost and energy consumption. Since Parity++ helps in

reducing area (in turn reducing SRAM leakage energy) and also has lower error detection energy, it

provides a better protection mechanism than SECDED in such devices.

3.6 Conclusion

In this work, we present a novel lightweight error protection scheme, Parity++, for last level caches

based on unequal message protection. From our analysis, we find that about 80% of messages/words

have same prefix bits (leading 0’s) and we denote these as special messages. For a 64 bit word,

Parity++ uses only 2 additional redundant bits and provides SECDED protection for these special

messages while providing only SED for the non-special messages. In iso-area evaluations, up

to about 4% performance benefit can be obtained, while iso-capacity evaluations showed almost

negligible (<0.2% in all but one case) performance degradation with ∼9% lower storage overhead

than a traditional SECDED scheme which translates to about 5% cache area savings.
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CHAPTER 4

Conclusion

This chapter reviews the key contributions of this thesis and outlines directions for future work.

4.1 Overview of Contributions

A series of techniques were proposed to cope with hardware variability and errors in on-chip

memories. With increase in size of on-chip memories and decrease in physical dimensions of cells,

memory reliability is becoming a growing concern. The challenge with these memories is that the

fault tolerance techniques need to effective but with minimal overhead.

4.1.1 FaultLink and SDELC

FaultLink and SDELC provided a holistic virtualization-free fault tolerance methodology to deal

with hard and soft faults in software managed embedded memories in IoT devices. Hardware

design in most of these IoT devices is driven by the need for low cost and low power. One way

to reduce power consumption is to lower the supply voltage. But as the VDD is lowered, some

of the weak SRAM memory cells begin to fail. Hence, low cost protection against hard faults in

memory is required if these devices have to be run at low voltage. FaultLink does exactly that

with almost no hardware overhead. In software managed memories, data placement in memory is

orchestrated by the software. Thus, application programmers, with the help of tools like compiler

and linker, explicitly partition data into physical memory regions that are distinct in the address

space. FaultLink utilizes exactly that property of software managed memories and makes loading

application in faulty memory plausible. It takes a pre-compiled binary of an application and links

it to the memory in such a way that the application would not access the bad locations. Thus, the
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application is compiled once but the final linked binary image is unique for every chip. SDELC,

on the other hand, helps to recover from unpredictable single bit flips in the memory that occur

during runtime. It helps to localize the error to a smaller chunk in a 32/64-bit message and then

tries to heuristically recover from it using software defined policies that leverage on the available

side information about memory contents to choose the most likely candidate codeword. Overall,

FaultLink and SDELC together opportunistically copes with memory errors in low-cost IoT devices

and helps in improving the longevity of these devices.

4.1.2 Parity++

Parity++, like SDELC, is another lightweight error recovery scheme. But Parity++ tackles the

problem of miscorrections that might occur with SDELC during the heuristic recovery. Instead

of trying to recover from errors heuristically, Parity++ preferentially provides stronger protection

to certain “special messages”. While it provides stronger protection than a basic Single Error

Detection parity, it has lower overhead than a full single error correcting Hamming code. With

just two additional bits of redundancy per message, this code is ideal for last level caches. We also

propose a memory speculation scheme that can be used to further hide the decoding latency that

comes with using any error correcting code. Parity++ can be extended to embedded scratchpad

memories as it has much lower area overhead and can be opportunistically used to reduce the chip

area.

4.2 Directions for Future Work

There are many future possibilities for Lightweight Fault Tolerance in Memory Systems. Firstly

a FaultLink-compatible remote software update mechanism for IoT devices in the field need to

be designed and new failure modes with SDELC need to be supported. Also for FaultLink, the

stack and heap in applications were not split. A split stack and heap would lead to smaller program

sections, which, in turn, would allow the user to tolerate more faults and thus run at ever lower

supply voltages. Parity++ can be extended to server class systems with large sized last level caches

where the chip area savings would be considerable and can be utilized to increase the number of
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cores or the size of the memory to improve overall system performance. Alongside these extensions

to the techniques proposed in the thesis, a possible direction for future work would be fault tolerance

in emerging memory devices that have been suggested as potential replacements for SRAM based

on-chip embedded memories and lasrger sized last level caches. Reliability is the current biggest

concern facing these non-volatile memories (NVM) that can potentially eclipse the density and

energy benefits these technologies promise. A lot of work needs to be done in this area before

these emerging random access NVMs such as STT-MRAM, MeRAM, ReRAM, etc. start replacing

on-chip or off-chip memories. The stochastic bit failures in NVMs is similar to the radiation induced

soft errors in DRAM and SRAM and occur without any warning and hence both these techniques

can be extended to deal with these random bit errors. For example, a stronger version of Parity++,

which can provide double error correcting to certain “special messages” with just one extra bit as

compared to the commonly used SECDED code can be used in these NVMs with high bit error

rate.
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