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ABSTRACT

In systems neuroscience, most models posit that brain regions communicate information under
constraints of efficiency. Yet, evidence for efficient communication in structural brain networks
characterized by hierarchical organization and highly connected hubs remains sparse. The
principle of efficient coding proposes that the brain transmits maximal information in a
metabolically economical or compressed form to improve future behavior. To determine how
structural connectivity supports efficient coding, we develop a theory specifying minimum
rates of message transmission between brain regions to achieve an expected fidelity, and we
test five predictions from the theory based on random walk communication dynamics. In
doing so, we introduce the metric of compression efficiency, which quantifies the trade-off
between lossy compression and transmission fidelity in structural networks. In a large
sample of youth (n = 1,042; age 8–23 years), we analyze structural networks derived from
diffusion-weighted imaging and metabolic expenditure operationalized using cerebral blood
flow. We show that structural networks strike compression efficiency trade-offs consistent
with theoretical predictions. We find that compression efficiency prioritizes fidelity with
development, heightens when metabolic resources and myelination guide communication,
explains advantages of hierarchical organization, links higher input fidelity to disproportionate
areal expansion, and shows that hubs integrate information by lossy compression. Lastly,
compression efficiency is predictive of behavior—beyond the conventional network efficiency
metric—for cognitive domains including executive function, memory, complex reasoning, and
social cognition. Our findings elucidate how macroscale connectivity supports efficient
coding and serve to foreground communication processes that utilize random walk dynamics
constrained by network connectivity.
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AUTHOR SUMMARY

Macroscale communication between interconnected brain regions underpins most aspects of
brain function and incurs substantial metabolic cost. Understanding efficient and behaviorally
meaningful information transmission dependent on structural connectivity has remained
challenging. We validate a model of communication dynamics atop the macroscale human
structural connectome, finding that structural networks support dynamics that strike a balance
between information transmission fidelity and lossy compression. Notably, this balance is
predictive of behavior and explanatory of biology. In addition to challenging and reformulating
the currently held view that communication occurs by routing dynamics along metabolically
efficient direct anatomical pathways, our results suggest that connectome architecture and
behavioral demands yield communication dynamics that accord to neurobiological and
information theoretical principles of efficient coding and lossy compression.

INTRODUCTION

The principle of compensation states that “to spend on one side, nature is forced to economize
on the other side” (West-Eberhard, 2003). In the economics of brain connectomics, natural
selection optimizes network architecture for versatility, resilience, and efficiency under con-
straints of metabolism, materials, space, and time (Bullmore & Sporns, 2012; Laughlin, 2001;
West-Eberhard, 2003). Brain networks—composed of nodes representing cortical regions and
edges representing white matter tracts—strike evolutionary compromises between costs and
adaptations (Avena-Koenigsberger, Goñi, Solé, & Sporns, 2015; Buckner & Krienen, 2013;
Laughlin, 2001; Reardon et al., 2018; West-Eberhard, 2003; Whitaker et al., 2016). Further,
network disruptions may contribute to the development of neuropsychiatric disorders (Crossley
et al., 2014; Di Martino et al., 2014; Gollo et al., 2018; Kaczkurkin et al., 2018). Because the
limits of computations are intertwined with the limits of communication between brain regions
(Cover, 1999), to understand how the brain efficiently balances resource constraints with
pressures of information processing, one must begin with models of information transmission
in brain networks.

Principles of neurotransmission established at the cellular level suggest that biophysical
constraints on information processing may apply to the macroscopic levels of brain regions
and networks (Laughlin, 2001; Levy & Baxter, 1996; Sterling & Laughlin, 2015). The principle
of efficient coding proposes that the brain transmits maximal information in a metabolically
economical or compressed form to improve future behavior (Chalk, Marre, & Tkačik, 2018).
Efficient coding at themacroscale offers a parsimonious principle of compression characterizing
the dimensionality of neural representations (Mack, Preston, & Love, 2020; Shine et al., 2019;
Stringer, Pachitariu, Steinmetz, Carandini, & Harris, 2019; Tang et al., 2019), as well as a parsi-
monious principle of transmission characterizing a spectrum of network communication
mechanisms (Avena-Koenigsberger et al., 2015, 2017; Avena-Koenigsberger, Misic, & Sporns,
2018; Bullmore & Sporns, 2012; Goñi et al., 2013; Goñi et al., 2014; Mišić et al., 2015).
However, it remains incompletely understood how this principle generalizes from cells and
sensory systems to the macroscale connectome (Chalk et al., 2018; Sterling & Laughlin, 2015).

An unexplored link between the efficient coding of compressed transmissions and macro-
scale brain network communication dynamics is rate-distortion theory, a major branch of
information theory that establishes the mathematical foundations of lossy data compression
for any communication channel (Shannon, 1959). Rate-distortion theory formalizes the link

Efficient coding:
A principle of neural signaling that
predicts a trade-off between
maximizing the amount of
information conveyed under
constraints of limited resources.

Rate-distortion theory:
A mathematical framework of
information theory for
communicating information given a
tolerated level of information
distortion in channels with limited
capacity.

Lossy data compression:
A procedure that sacrifices
information fidelity to improve
compact and economical
transmission.
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between compression and communication by determining the minimum amount of informa-
tion that a source should transmit (the rate) for a target to approximately receive the input sig-
nal without exceeding an expected amount of noise (the distortion) (Shannon, 1959). Lossy
data compression is reducing the amount of information transmitted (rate), accepting some loss
of data fidelity (distortion). Using a rate-distortion model, we sought to explain how the mac-
roscale connectome supports efficient coding from minimal assumptions.

We modeled information transmission as the passing of stochastic messages in parallel
along the wiring of the human connectome (Figure 1A). More precisely, we modeled informa-
tion transmission using a repetition code (Barlow, 1961; Cover, 1999). A repetition code uses
redundancy—here by sending multiple copies of a message—to overcome errors in commu-
nication arising from the stochasticity of neural processes (Cover, 1999; Sterling & Laughlin,
2015). A natural trade-off emerges between the redundancy and efficiency of a message: while
redundant messages are more robust to errors in transmission, they also incur greater cost
(Barlow, 1961). Thus, given an allowed error rate (or, equivalently, an expected fidelity),
maximizing the efficiency of information transmission requires minimizing the redundancy
of messages (Cover, 1999). By quantifying the minimal number of repeated messages needed
to achieve a given fidelity, questions of connectome computation and communication can be
formulated as a tractable mathematical problem using stochastic processes and redundancy
reduction (Avena-Koenigsberger et al., 2018; Sims, 2018; Sterling & Laughlin, 2015).

A parsimonious model of information transmission in connectomes emerges naturally from
two key assumptions. The first assumption is that stochastic transmission entails an economy of
discrete impulses where the immediate future state only depends on the current state (Barlow,
1961; Sterling & Laughlin, 2015). Mathematically, this assumption casts transmission as a
linear process, or a random walk, wherein message copies (identical random walkers) prop-
agate along structural connections with probabilities proportional to the connection’s micro-
structural integrity (Avena-Koenigsberger et al., 2018; Fornito, Zalesky, & Bullmore, 2016).
Biologically, macroscale random walk models are supported by their ability to predict the
transsynaptic spread of pathogens (Henderson et al., 2019; Raj et al., 2015; Zheng et al.,
2019), as well as the directionality and spatial distribution of neural dynamics from structural
connectivity (Abdelnour, Dayan, Devinsky, Thesen, & Raj, 2018; Goñi et al., 2014; Paquola
et al., 2020; Seguin, Razi, & Zalesky, 2019). The second assumption is that the impulse can
lose information but never generate additional information over successive steps of propaga-
tion (Amico et al., 2021). Mathematically, this assumption represents the data processing
inequality, which states that a random walker can only lose (and never gain) information about
an information source (Cover, 1999). Biologically, the assumption is supported by increasing
temporal delay, signal mixing, and signal decay introduced by longer paths (Murray et al.,
2014; Sterling & Laughlin, 2015).

Combining these two assumptions, if packets of information propagate along structural
pathways and information can only be lost with each step, then the shortest pathway between
two brain regions yields an upper bound on the fidelity with which they can communicate.
This key conclusion allows one to formulate the probability that a message propagates along
the shortest path as an effective fidelity for the communication between two regions, thereby
operationalizing the notion of distortion. Moreover, by modeling messages as random walkers,
one can operationalize the notion of rate by computing the number of messages that must be
sent to ensure that at least one transmits along the shortest path, that is, to ensure that at least
one message reaches a specified receiver with maximum fidelity (Goñi et al., 2013). We
applied our model to 1,042 youth (aged 8–23 years) from the Philadelphia Neurodevelop-
mental Cohort who underwent diffusion-weighted imaging (DWI; see Supporting Information

Repetition code:
A simple strategy to overcome noise
that corrupts a transmission by
repeatedly implementing the
sufficient mechanisms to convey a
message for multiple copies.

Redundancy reduction:
A theory for how efficient coding
may be implemented by exploiting
statistical regularities of information
inputs.

Random walk:
A decentralized model of network
communication wherein a brain
region sends an input to a target
region by discrete messages
propagating across the structural
network.
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Figure S1) (Satterthwaite, Elliott, et al., 2014). To operationalize metabolic expenditure, we
used arterial-spin labeling (ASL) MRI, which measures cerebral blood flow (CBF) and is
correlated with glucose expenditure (Gur et al., 2008; Vaishnavi et al., 2010).

To evaluate the validity of the efficient coding model, we assessed five published predic-
tions of any communication system adhering to rate-distortion theory, which we adapted to
connectomes and distinguished from alternative explanations of brain network communica-
tion dynamics (Figure 1B) (Goñi et al., 2013; Goñi et al., 2014; Marzen & DeDeo, 2017; Sims,
2018; van den Heuvel et al., 2012). First, information transmission should produce a charac-
teristic rate-distortion gradient in biological and artificial networks, where exponentially
increasing information rates are required to minimize signal distortion. Second, transmission
efficiency should improve with manipulations of the communication system designed to

Figure 1. The efficient coding principle and associated hypotheses. (A) To model efficient coding, we applied rate-distortion theory, a branch
of information theory that provides the foundations of lossy compression (Shannon, 1959), to a previously proposed network measure of ran-
dom walk dynamics (Goñi et al., 2013). This metric models random walks atop the structural connectome to solve for the number of random
walkers required for at least one to propagate by the shortest path given an expected probability. After determining that the minimal amount of
noise is achieved by signals that randomly walk along shortest paths, we calculated the optimal information rate to communicate between
brain regions with an expected transmission fidelity in the rate-limited (or capacity-limited) structural network. (B) Across the brain, regional
CBF measured from 1,042 participants in our study correlated with the regional cerebral metabolic rate for glucose acquired from published
maps of 33 healthy adults (Pearson’s correlation coefficient r = 0.47, df = 358, pSPIN < 0.001), replicating prior findings and supporting the
operationalization of metabolic expenditure using CBF (Gur et al., 2008; Vaishnavi et al., 2010). We used CBF to investigate the relationship
between metabolic demands and network organization supporting either shortest path routing (a previously posited communication mecha-
nism) or random walks (our posited communication mechanism). (C) Importantly, our model generates five predictions from the literatures of
rate-distortion theory and neural information processing (Marzen & DeDeo, 2017; Sims, 2018; van den Heuvel, Kahn, Goñi, & Sporns, 2012).
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facilitate signal propagation, where information costs decrease when randomly walking mes-
sages are biased with regional differences in metabolic rates and intracortical myelin. Third,
the information rate should vary as a function of the costs of error, with discounts when costs
are low and premiums when costs are high. Fourth, brain network complexity should flexibly
support communication regimes of varying fidelity, where a high-fidelity regime predicts
information rates that monotonically increase as the network grows more complex, and a
low-fidelity regime predicts asymptotic information rates indicative of lossy compression. Fifth
and finally, structural hubs should integrate incoming signals to efficiently broadcast informa-
tion, where hubs (compared to other brain regions) have more compressed input rates and
higher transmission rates for equivalent input–output fidelity. As described below, this model
advances the current understanding of how information processing is associated with behav-
iors in a range of cognitive domains, subject to constraints on metabolic resources and net-
work architecture.

RESULTS

Macroscale Efficient Coding Can Be Understood by Communication Processes of RandomWalks But Not

the Alternative Model of Shortest Path Routing

To understand how the brain balances the transmission rate of stochastic messages and signal
distortion across different network architectures, we developed a model positing random walk
communication dynamics atop the structural connectome. We tested this model by comparing
it to the alternative hypothesis of shortest path routing (see Supporting Information
Modeling/Math Notes). The random walk model and shortest path model are currently viewed
as opposing extremes of a spectrum of communication processes (Avena-Koenigsberger et al.,
2015, 2018; Goñi et al., 2013). In network neuroscience, shortest path routing anchors metrics
of communication dynamics and information integration (Avena-Koenigsberger et al., 2018;
Seguin, van den Heuvel, & Zalesky, 2018; Sporns, 2013). In cognitive neuroscience, the
neural circuit related to behavior is commonly depicted as a subset of brain regions commu-
nicating their specialized information to each other across shortest and direct anatomical
connections (Saleeba, Dempsey, Le, Goodchild, & McMullan, 2019). Although shortest
path routing has acknowledged shortcomings as a model of communication dynamics (see
Supporting Information Modeling/Math Notes), a key extenuating hypothesis of the model is
reduced metabolic cost (Avena-Koenigsberger et al., 2018; Bullmore & Sporns, 2012). Yet,
existing macroscale evidence for this model remains sparse (Várkuti et al., 2011).

We sought to determine how brain metabolism is associated with structural signatures of
shortest path versus random walk models. To quantify the extent to which a person’s brain is
structured to support shortest path routing, we used a statistical quantity known as the global
efficiency (Latora & Marchiori, 2001), a commonly used measure of the average shortest path
strength between all pairs of brain regions. Intuitively, global efficiency represents the ease of
routing information by shortest paths and is proportional to the strength of shortest paths in a
network (Sporns, 2013). As an operationalization of metabolic running cost, we considered
CBF, which is correlated with glucose consumption (Gur et al., 2008; Vaishnavi et al.,
2010). To test the spatial correlation between CBF and glucose consumption, we used a spatial
permutation test that generates a null distribution of randomly rotated brain maps that pre-
serves the spatial covariance structure of the original data; we denote the p value that reflects
significance as pSPIN (Materials and Methods). We observed a linear association between
CBF and glucose consumption (Figure 1C; Pearson’s correlation coefficient r = 0.47, df =
358, pSPIN < 0.001).

Shortest path routing:
A model of network communication
wherein a source brain region sends
an input to a target region by
selecting the shortest pathway
between regions.
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Next, we tested if shortest path routing is linked to a decrease in metabolic expenditure,
operationalized as a negative correlation between global efficiency and CBF (Bullmore &
Sporns, 2012; Várkuti et al., 2011). Controlling for mean gray matter density, sex, mean
degree, network density, and in-scanner motion, we found that the global efficiency was neg-
atively correlated with CBF (r = −0.20, df = 1039, p < 0.001), consistent with prior reports
(Várkuti et al., 2011). Notably, we did not regress out age in the previous analysis in order

Figure 2. Metabolic running costs support brain network architectures for random walk dynamics, not shortest path routing. (A) Global effi-
ciency increased with development while cerebral perfusion declined (Fglobal efficiency,age = 50, estimated df = 3.46, p < 2 × 10−16; FCBF,age =
69.22, estimated df = 3.74, p < 2 × 10−16; confidence intervals displayed as gray bands). Contrary to prior reports, the relationship between CBF
and global efficiency was confounded by age (r = 0.01, df = 1039, p = 0.79). Therefore, the claim of reduced metabolic cost associated with
shortest path routing is weakened. (B) All brain regions are accessible to signals randomly walking across five edges or more. Bluer nodes
represent greater normalized node strengths, reflecting the accessibility of the brain region to a random walker propagating along the structural
connectome with differing walk lengths. Whereas the shortest path routing model predicts that only shortest path walks of length five or less are
associated with CBF, the random walk model predicts that longer random walk paths are also associated with CBF. (C) Global CBF was neg-
atively correlated with the strengths of structural paths with length two or more when controlling for age, sex, age-by-sex interactions, degree,
density, and in-scanner motion (t = −1.59 to −2.81, estimated model df = 11.45). Asterisks denote statistical significance following correction for
multiple comparisons by FDR; blue dashed line: FDR-corrected p = 0.05, red dashed line: Bonferroni-corrected p = 0.05 for 15 tests. Metabolic
expenditure was related to structure supporting random walks rather than shortest path routing. (D) Regional CBF was positively correlated with
high-integrity connections comprising the structural scaffolds supporting differing walk lengths (ρ = 0.12 to 0.14, df = 358, FDR-corrected p <
0.05), controlling for age, sex, age-by-sex interaction, degree, density, and in-scanner motion. Blue dashed line: FDR-corrected p = 0.05, red
dashed line: Bonferroni-corrected p = 0.05 for 15 tests. Together, these data provided some evidence for metabolic cost associated with a
regional profile of white matter path strengths that support random walk dynamics. Individuals with greater path strengths tended to have lower
global metabolic expenditure, while brain regions with greater path strengths tended to have greater metabolic expenditure.
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to align with the prior analysis that we aimed to replicate (Várkuti et al., 2011). We were also
interested in determining whether development had any effect on the relationship between
global efficiency and CBF. Our interest was justified by the positive correlation between age
and global efficiency (Figure 2A; F = 50, estimated df = 3.46, p < 2 × 10−16) and the negative
correlation between age and CBF (F = 69.22, estimated df = 3.74, p < 2 × 10−16). After
controlling for age we did not find a significant relationship between global efficiency and
CBF (r = 0.01, df = 1039, p = 0.79), suggesting that colinearity with age drove the initial
observed association between CBF and global efficiency. This null result undermines the claim
that shortest path routing is associated with reduced metabolic expenditure.

Rather than being driven by shortest path routing, metabolic expenditure could instead be
associated with communication by random walks. Each brain region can reach every other
brain region via random walks along paths of five connections (Figure 2B). A random walker
will likely not take the most efficient paths and must instead rely on the structural strengths of
longer paths. Hence, if brain metabolism is associated with communication by random walks,
then CBF should correlate with the strength of the white matter paths greater than length 5. To
evaluate this prediction, we computed the strength of connections across different path dis-
tances using the matrix exponent of the structural network (see Materials and Methods and
Supporting Information Figure S1B). We then tested the association between longer paths
and metabolic expenditure across individuals (Figure 2C) and across regions (Figure 2D). In
first considering variation across individuals, we found that the average node strengths for
walks of length 2 to 15 were negatively correlated with CBF (t = −1.59 to −2.81, estimated
model df = 11.45, FDR-corrected p < 0.05), after controlling for age, sex, age-by-sex interac-
tion, average node degree, network density, and in-scanner motion (Figure 2C). The negative
correlations between CBF and the average connection strengths suggest that the greater the
connection integrity, the lower the metabolic expenditure. In next considering variation across
brain regions, we found that the average node strengths for walks of length 2 to 15 were
positively correlated with CBF (Spearman’s rank correlation coefficient ρ = 0.12 to 0.14,
df = 358, FDR-corrected p < 0.05), after controlling for age, sex, age-by-sex interaction,
average node degree, network density, and in-scanner motion (Figure 2D). The positive cor-
relations between CBF and the average connection strengths suggest that brain regions with
greater path strengths tended to have higher metabolic expenditure. See Supporting Informa-
tion Figures S2–S4 for metabolic costs associated with other connectivity metrics supporting
random walks. Together, we found no evidence of metabolic expenditure associated with
shortest path routing, whereas the convergent findings of an association between CBF and
random walk path strengths across individuals and regions provided some evidence that
metabolic running costs were linked to random walk communication dynamics.

Using the random walk model, we formalized a rate-distortion model of efficient coding
by assuming that the minimal amount of noise is achieved by messages that randomly walk
along shortest paths (Figure 3A–D). We defined rate as the number of random walkers per
transmission, and distortion as the probability of the random walkers not taking the shortest
path. We evaluated the validity of the redundancy reduction implementation of efficient cod-
ing (Barlow, 1961). Reducing redundancy in repetition coding is equivalent to minimizing
the number of random walkers (Barlow, 1961; Cover, 1999; Shannon, 1959). To understand
how the brain balances information rate and distortion, we measured the number of random
walkers that are required for at least one to randomly walk along the shortest path to a target
cortical region, with an expected probability (Materials and Methods). This measure of ran-
dom walk dynamics is based on a prior metric (Goñi et al., 2013). The number of random
walkers can be used to calculate the transmission length of a neural message (in units of bits)
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Figure 3. Lossy compression supports efficient coding in brain networks. (A) Rate-distortion theory is a mathematical framework that defines
the required amount of information for an expected level of signal distortion during communication through capacity-limited channels. Loss
functions, such as the mean squared error, are defined to map encoded and decoded signals. In a given channel, compressed messages
demand lower information rates at the cost of fidelity. (B) In brain networks, we defined the distortion function as the probability of a randomly
walking signal not taking the shortest path. This definition is reasonable because the temporal delay, signal mixing, and decay introduced by
longer paths collectively increase distortion. (C) The Galton board depicts the problem of determining the minimum number of (random
walkers) that the starting node should prepare to transmit in order for one resource (random walker) to propagate by the specified path given
an expected probability. Formalizing the shortest path distortion function allows analytical solutions to determine the corresponding minimum
rate of information using an established metric (Goñi et al., 2013). This metric provided us with the number of random walkers (or amount of
information) required for at least one walker to propagate by the shortest path with an expected probability. (D) In applying our theory to the
structural connectome, we observed a characteristic curve that was consistent with that predicted by rate-distortion theory. The artificial ran-
dom networks exhibited the rate-distortion gradient also observed in brain networks, supporting the first prediction of rate-distortion theory that
both biological and artificial communication systems are governed by the same information-theoretic trade-offs. The blue curve depicts the
locally estimated scatterplot smoothing fit of the mean rate-distortion gradient across all individuals. The black curve depicts the mean rate-
distortion gradient for Erdős-Rényi random networks whose edges maintain the weights from empirical measurements. The number of random
walkers required of brain connectomes was greater than the number required of random networks, across levels of distortion (F = 9.6 × 105,
df = 29120, bootstrap 95% CI [9.4 × 105, 10.4 × 105], p < 2 × 10−16, adjusted R2 = 99.9%, bootstrap 95% CI [0.9989, 0.999]), highlighting the
established graph theoretical notion that random networks increase shortest path accessibility but demand a biologically unrealistic cost of
materials for structural connections (Goñi et al., 2013). The information content of a random walker can be calculated in order to interchange
the number of random walkers for the transmission length of a neural message in units of bits (see Materials and Methods and Supporting
Information Figure S3). (E) When plotted on a logarithmic axis, the exponential rate-distortion function appears as a straight line. We measured
the individually different slopes as differing compression efficiency. Then, we interpreted variation across individuals in the language of rate-
distortion theory. For example, consider two brain networks functioning at the same low level of distortion. The brain network with the flatter
slope between random walkers and distortion has greater compression efficiency because the network architecture confers information rate
discounts. In comparison, the brain network with a steeper slope has reduced compression efficiency because the network architecture pays a
premium for the same expected fidelity. (F) When we considered variation across individuals, we found that compression efficiency decreased
with age and differed by sex (Supporting Information Figure S5; F = 27.54, bootstrap 95% CI [1.78, 97.52], estimated df = 2.17, p < 0.001;
adjusted R2 = 17.2%, bootstrap 95% CI [0.13, 0.23]; confidence intervals displayed as the colored bands), suggesting that neurodevelopment
places a premium on high-fidelity network communication.
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or the information rate (in units of bits per second; see Materials and Methods and Supporting
Information Figure S3). To evaluate the roles of random walk dynamics and rate-distortion
theory in the brain, we assessed five previously published predictions of rate-distortion theory
and information processing (Figure 1C) (Marzen & DeDeo, 2017; Sims, 2018; van den
Heuvel et al., 2012).

Hypothesis 1: Rate-Distortion Gradient

The first prediction of rate-distortion theory is that communication systems including both
brain networks and artificial random networks should produce an information rate that is an
exponential function of distortion because biological and engineered systems are governed by
the same information-theoretic trade-offs (Sims, 2018). To test this prediction, we computed
the average number of random walkers over all nodes in the network for a given individual,
with the probability of randomly walking along the shortest path ranging from 10% to 99.9%
(Figure 3D). We compared the number of random walkers required of structural connections in
the brain with that of random walkers required of connections in random Erdős-Rényi net-
works, which have larger probabilities of shortest path communication compared among
canonical random networks (Goñi et al., 2013; Latora & Marchiori, 2001). Hence, Erdős-Rényi
networks serve as an optimal benchmark for the efficiency of random walk communication
and shortest path routing (Materials and Methods). For each individual network, the
information-theoretic trade-off between information rate and signal distortion was defined
by a rate-distortion gradient (Figure 3E). The gradient shows that distortion increases as the
information rate decreases, which is the hallmark feature of lossy compression. Next, we con-
sidered the extent to which the brain’s structural connectome prioritizes compression versus
fidelity. We refer to this trade-off as the compression efficiency (Figure 3E), and define it as the
slope of the rate-distortion gradient (Materials and Methods). With random walk communica-
tion dynamics, increased compression efficiency prioritizes lossy compression, while
decreased compression efficiency prioritizes transmission fidelity.

Consistent with the first prediction of rate-distortion theory, we observed an exponential
gradient in every individual brain network and the Erdős-Rényi random networks. Further-
more, the random networks, which are composed of more short connections than empirical
brain networks, required significantly fewer random walkers than the empirical brain net-
works (Figure 3D and Supporting Information Figure S3; F = 10 × 105, df = 29120, p < 2 ×
10−16), consistent with the intuition that a greater prevalence of short connections in the ran-
dom network translates to greater likelihood of shortest path propagation (Goñi et al., 2013;
Latora & Marchiori, 2001). Rate-distortion trade-offs varied as a function of age and sex,
where compression efficiency (Figure 3E) was negatively correlated with age (F = 27.54, esti-
mated df = 2.17, p < 0.001), suggesting that neurodevelopment places a premium on fidelity
(Figure 3F). Compression efficiency was greater on average in females compared to males (t =
9.53, df = 996.82, p < 0.001). The data, therefore, indicate that random walk communication
dynamics on biological brain networks differ from random walks on artificial networks, yet
each accords well with the prediction of rate-distortion trade-offs governing all communica-
tion systems.

Hypothesis 2: Redundancy Reduction

The second prediction of rate-distortion theory is that manipulations to the physical commu-
nication system (the connectome) that are designed to facilitate information transmission will

Compression efficiency:
A metric that quantifies the trade-off
between information compression
and communication fidelity that is
afforded by an individual’s structural
connectivity.
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improve communication efficiency. The prediction stems from two key observations. First,
between the rate-distortion gradients for structural connectomes and random networks
(depicted in Figure 3D) exists a range of possible rate-distortion gradients produced by some
other construction of communication networks (Shannon, 1959). Second, it is well known that
brain signaling relies extensively on metabolic diffusion and devotes much of its metabolic
resources to maintaining a chemical balance that supports neuron firing (Attwell & Laughlin,
2001; Sterling & Laughlin, 2015). At the longer distances of the connectome, myelin in the
white matter and cerebral cortex supports the speed and efficiency of electrical signaling in
subcortical fiber tracts and in cortico-cortical communication (Barbas & Rempel-Clower,
1997; Deco, Roland, & Hilgetag, 2014; Laughlin, 2001). Hence, modifying the connectome
to bias random walk dynamics according to metabolic resources and myelin mimics biolog-
ical investments in communication efficiency.

The second observation above leads to the hypothesis that including biological biases in
random walk probabilities based on the strength of structural connections will improve the
efficiency of information transmission. We hypothesized that biasing random walkers with
metabolic resources and myelin would reduce the information rate required to communicate
a message with a given fidelity compared to random walkers that propagate only by connec-
tome topology. To test this hypothesis, we biased edge weights (Materials and Methods) rep-
resenting structural connection strength by multiplying the edge weight by a bias term. Across
pairs of connected brain regions, the bias term was either defined as the average, normalized
metabolic rate using CBF or the average, normalized cortical myelin content using published
maps of T2/T1w MRI measures with histological validation (Figure 4A) (Glasser et al., 2014).
By modeling network communication dynamics, one can calculate directed patterns of trans-
mission as inputs into (receiver) and outputs from (sender) brain regions (Seguin et al., 2019).
We separately computed the send and receive compression efficiency of brain regions to bet-
ter understand the biological relevance of transmitted information sent or received across the
connectome (Figure 4B; Materials and Methods).

We found that brain regions that prioritized input fidelity and output compression tended
to have greater myelin content (Figure 4B; sender r = 0.23, df = 358, pSPIN,Holm-Bonferroni =
0.02, receiver r = −0.14, df = 358, pSPIN,Holm-Bonferroni = 0.046), consistent with myelin’s
function in neurotransmission efficiency and speed. For a channel communicating at
0.1% distortion (and across all distortions; Supporting Information Figure S6C), biasing
structural edge weights by the biological properties of metabolic and electrical signaling
resulted in more efficient communication by reducing the number of redundant random
walkers required (Figure 4C; tmetabolic = 20.87, bootstrap 95% CI [18.72, 23.14], df =
1993.9; telectrical = 295.93, bootstrap 95% CI [281.19, 312.76], df = 1225.9, p < 0.001). While
both metabolic and electrical signaling supported more efficient communication, electrical
signaling was more efficient than metabolic signaling (Deco et al., 2014; Sterling & Laughlin,
2015). Compared to rewired null networks preserving the degree sequence (Supporting
Information Figure S6D), structural topology andmetabolic resources support communication that
prioritizes fidelity (ttopological,degree-preserving(2074.4) = 121.02, p < 0.001; tmetabolic,degree-preserving

(2025.8) = 87.78, p < 0.001), while myelination supports communication that prioritizes com-
pression efficiency (telectrical,degree-preserving(1208.3) = −122.62, p < 0.001). The minimum number
of random walkers required for distortion levels less than 60% was explained by the interaction
of the distortion level with the type of biased random walk (see Figure 4C, F = 6 × 105, df =
29120, pHolm-Bonferroni < 0.05). Together, these results support the prediction that biological
investments can augment connectivity to support efficient communication, especially when
transmission prioritizes fidelity.
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Figure 4. Connectome architecture and biology support efficient coding. (A) Biased random walks with transition probabilities modified by
regional CBF and myelin content are biologically motivated by two fundamental modes of neural communication: biochemical diffusion and
electrical signaling. Left: A biased random walk attracting walkers to regions of high CBF was modeled by constructing a biased structural con-
nectivity matrix. The weight of an edge between region i and region j was given by the average, normalized CBF between pairs of brain regions
multiplied by theweight of the structural connection. Right: The alluvial diagram depicts our expected results: if CBF acts as a substrate supporting
efficient coding, then we should observe reduced minimum random walkers in random walks biased by CBF compared to random walks prop-
agating only based on connectome topology. (B) Sender and receiver compression efficiency differ regionally across the cortex and describe the
number of randomly walking messages required to leave from or arrive to a brain region with specified signal fidelity (Supporting Information
Figure S6). Regional values were averaged across individuals. Brain regions differ in myelination according to published maps (Glasser, Goyal,
Preuss, Raichle, & Van Essen, 2014). Cortical regions with greater levels of myelin tended to have greater sender compression efficiency (r = 0.23,
pSPIN,Holm-Bonferroni = 0.02) and receiver compression efficiency (r= 0.14, pSPIN,Holm-Bonferroni = 0.046), consistent withmyelin reducing conduction
delay and promoting the efficient trade-off between signal rate and fidelity to reduce the transmission rate while preserving fidelity (see Supporting
Information Figure S7). (C) This plot depicts the number of randomwalkers required to communicate with 0.01% distortion (see Supporting Infor-
mation Figure S6C for distortion ranging from 2% to 90%). In agreement with our second hypothesis that connectome structure and biology
supports efficient coding, the number of required random walkers decreased in random walks biased by CBF (metabolic) compared to unbiased
random walks only based on connectome topology (topological) when the level of distortion was fixed at 0.01% (ttopology,metabolic = 20.87, boot-
strap 95% CI [18.72, 23.14], df = 1993.9). Similarly, fewer random walkers were required to communicate in the intracortical myelin-biased
random walk (electrical) compared to the unbiased random walk (ttopology,electrical = 295.93, bootstrap 95% CI [281.19, 312.76], df = 1225.9).
Random walks on random networks required the least random walkers consistent with the notion that random networks increase shortest path
accessibility but demand a greatermaterials cost (ttopology,random = 405.39, bootstrap 95%CI [386.3, 427.70],df= 1307.3; ***:p<0.001). (D)Here,
we depict rate-distortion gradients per individual structural connectome for communicating across a range of transmission fidelity (1-distortion).
When plotted on a logarithmic axis, the exponential functions appear linear. The level of distortion and type of random walk fully explained
variance in the number of random walkers (F = 8.1 × 105, bootstrap 95% CI [7.8 × 105, 8.5 × 105], df = 58240, adjusted R2 = 99.9%, bootstrap
95% CI [0.9986, 0.9987]; all p values corrected using the Holm–Bonferroni method for family-wise error rate; *: p < 0.05, **: p < 0.01, ***: p <
0.001). According to the third prediction of rate-distortion theory, we should expect asymmetries about the rate-distortion gradient where there
are asymmetric costs of error. Specifically, the cost of error should be greater during neural dynamics requiring high-fidelity communication
compared to low-fidelity communication. Across individual brain networks, the random walkers required for 0.1% distortion were greater than
predicted by the rate-distortion gradient, reflecting a premium placed on very high fidelity signaling. At levels of distortion greater than 2% and
less than 60%, the random walkers required were less than that predicted by the rate-distortion gradient. The premium cost of high-fidelity
communication compared to discounts of low-fidelity communication supports the third prediction of rate-distortion theory.
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Hypothesis 3: Error-Dependent Costs

The third prediction of rate-distortion theory is that the information rate should vary as a func-
tion of the costs of errors in communication systems that interact with their environment. If
errors are more costly for networks operating at high fidelity, then we should observe an infor-
mation rate surpassing the minimum predicted by rate-distortion theory. In contrast, if errors
are less costly for networks operating at low fidelity, then we should observe no more than the
minimum predicted information rate. In testing this prediction, we observed that brain net-
works commit more random walkers than required for very low levels of distortion, such as

Figure 5. (caption on next page)
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0.1%, but allocate the predicted number of random walkers or fewer to guarantee levels of
distortion between 2% and 60% (Figure 4D). Hence, the third prediction of rate-distortion the-
ory was consistent with our observation of a premium placed on very low signal distortion and
a discounted cost of greater distortion.

Hypothesis 4: Flexible Coding Regimes

The fourth prediction of rate-distortion theory proposes that communication systems, including the
connectome, have distinct network properties that support information transmission in a flexibly
high- or low-fidelity regime. With increasing information processing demands, a high-fidelity
regime will continue to place a premium on accuracy, whereas a low-fidelity regime will tolerate
noise in support of lossy compression. The operating regime depends on the behavioral demands
of the environment, indicating the need for a flexible regime that can simultaneously support
both high- and low-fidelity communication. In this section, we assess the fourth prediction of
rate-distortion theory by testing the more precise hypotheses that large brain networks support
communication in a high-fidelity regime, indirect pathways supports a low-fidelity regime, and
hierarchical organization supports a flexible regime. We explain and test each hypothesis in turn.

Large Networks Support a High-Fidelity Regime and Indirect Pathways Support a Low-Fidelity Regime

Rate-distortion theory predicts that, in a high-fidelity regime, the information rate will mono-
tonically increase with the complexity of the communication system in order to continue to
place a premium on accuracy (Figure 5A). To evaluate this prediction, we operationalized

Figure 5. Constraints of compression efficiency and brain network complexity. (A) High- versus low-fidelity communication regimes make
different predictions regarding the minimum number of random walkers required for an expected distortion and system complexity. We define
system complexity as the network size, or the number of functionally and cytoarchitectonically distinct brain regions. In the high-fidelity regime,
the brain should place a premium on high-fidelity signaling by allocating a monotonically increasing information rate to achieve low distortion
despite increasing system complexity. In the low-fidelity regime, the brain should place a premium on lossy compression by asymptotically
capping the information rate despite increasing system complexity. We expected the number of triangular pathways along the shortest path
(i.e., the path transitivity) to approximate the shortest paths with a one-connection longer detour. The fewer the pathways approximating the
shortest and highest fidelity pathway, the lower the fidelity of communication. (B) Number of randomwalkers scaledmonotonically with network
size, consistent with the prediction of a high fidelity regime. Individual brain networks were reparcellated using the Lausanne brain atlases with
83, 129, 234, 463, and 1015 parcels, respectively. Together, the monotonically increasing resource demand highlights a trade-off between high-
fidelity communication and network complexity, indicating an additional evolutionary constraint on brain network size and complexity. (C)
Shortest path complexity is the average number of nodes comprising path transitivity. Number of random walkers scaled asymptotically with
interindividual differences in path transitivity, consistent with a low-fidelity regime for lossy compression and storage savings. The nonlinear
model outperformed a linear model (nonlinear AIC = 7902, linear AIC = 7915; nonlinear BIC = 7964, linear BIC = 7968; confidence intervals
displayed as gray band). Lossy compression of a signal by differing densities of path transitivity is akin to image compression by pixel resolution.
Reduced path transitivity, or pixel resolution, tends to result in more compression, while greater path transitivity supports greater fidelity. (D)
Hierarchical modularity is a form of network complexity that is characterized by small groups of nodes organized successively into increasingly
larger groups (left). A hallmark of hierarchical modularity is a strict scaling of the transitivity and degree, representing the clustering and scale-free
property of nodes (right). Hierarchical organization was evident across the average reparcellated Lausanne brain networks. (E) Hierarchical orga-
nization was monotonically related to increasing resource demands, but to a lesser cost compared to network size. Hence, hierarchical mod-
ularity may support both a high- and low-fidelity regime by increasingly balancing global and local network complexity. (F) Hierarchically
modular brain networks allowed for greater transitivity (clustering) despite increasing network sizes compared to scale-free networks that do
not have a hierarchical architecture. (G) Cortical areal scaling in neurodevelopment reflects patterns of evolutionary remodeling. Brain
regions with greater transitivity, which supports greater fidelity, tended to disproportionately expand in relation to total brain size during
neurodevelopment. (H) Brain regions that have higher sender compression efficiency tended to disproportionately expand in relation to total
brain size during neurodevelopment (r = 0.14, df = 358, pSPIN, Holm-Bonferroni = 0.046). Cortical regions with low receiver compression efficiency,
placing a premium on information processing fidelity, tended to disproportionately expand in relation to whole-brain growth (r = −0.20, df =
358, pSPIN, Holm-Bonferroni = 0.03). Positively scaling regions that prioritize compression-efficient broadcasting of messages arriving with high
fidelity may reflect evolutionary expansion of brain regions with high information processing capacity, whereas negatively scaling regions that
prioritize high-fidelity broadcasting of compressed messages may permit other modes of material, spatial, and metabolic cost efficiency.
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complexity as network size because size determines the number of possible states (or nodes)
available to each random walker (Marzen & DeDeo, 2017). We re-parcellated each individual
brain network at different spatial resolutions to generate brain and random null networks of
five different sizes representing the original network. We compared the rate for brain networks
to the rate for random networks of matched size. In testing this prediction, we observed that
the minimum number of random walkers increased monotonically with network size, consis-
tent with a high-fidelity regime, and at a rate different to random networks with matched sizes
(Figure 5B). Larger brain networks support high fidelity communication by placing a greater
premium on accuracy than do larger random networks.

In addition to high-fidelity communication, in a low-fidelity regime, rate-distortion theory
predicts that the information rate should plateau as a function of network complexity in order
to tolerate noise in support of lossy compression. To evaluate this prediction, we operational-
ized network complexity supporting low fidelity communication by using path transitivity.
Path transitivity quantifies the number of indirect pathways along the shortest path which
are a one-connection longer detour (Figure 5A, Materials and Methods). Along the shortest
paths, the transitivity is the number of triangles formed by one edge in the shortest path and
two connected edges composing an indirect pathway that exits and immediately returns to the
shortest path. Operationalizing low fidelity with path transitivity stemmed from interpreting
path transitivity using our model assumptions of random walk dynamics.

Applying our random walk model assumptions to path transitivity, if the shortest path rep-
resents the structure supporting highest fidelity because longer paths introduce information
loss, then path transitivity’s indirect pathways, which are just one connection longer than
the shortest path, are the next-best paths for fidelity. Thus, path transitivity quantifies indirect
pathways that offer a random walker the best approximations of the highest fidelity path or the
best lossy compression. To operationalize the complexity of the communication system con-
tributing to low-fidelity transmission (better able to tolerate noise in support of lossy compres-
sion), we measured the number of nodes in the indirect pathways of path transitivity, which we
termed shortest path complexity. In testing the prediction that information rate should plateau
as a function of network complexity in low-fidelity regimes, we found that the number of ran-
dom walkers plateaued nonlinearly as a function of shortest path complexity, consistent with
low-fidelity communication (Figure 5C). Model selection criteria support the nonlinear form
compared to a linear version of the same model (nonlinear AIC = 7902, linear AIC = 7915;
nonlinear BIC = 7964, linear BIC = 7968). The nonlinear fit of these data suggest that path
transitivity supports low-fidelity communication that is tolerant to noise.

Hierarchical organization flexibly and efficiently supports both a high-fidelity and a low-fidelity

regime. Our findings suggest that high fidelity depends on network size while low fidelity
depends on network transitivity. Prior work has shown that hierarchical organization supports
the simultaneous presence of networks of large size and high transitivity (Ravasz & Barabási,
2003). Therefore, we hypothesized that if the brain network has hierarchical organization,
then such organization may enable flexible switching between high- and low-fidelity regimes.
Hierarchical organization, wherein submodules are nested into successively larger but less
densely interconnected modules, is thought to support efficient spatial embedding as well
as specialized information transfer (Figure 5D, left) (Bassett et al., 2010). We first sought to
assess if brain networks exhibit hierarchical organization. Hierarchical organization imposes
a strict scaling law between transitivity and degree; the slope of this relationship can be used to
identify the presence of hierarchically modular organization in real networks. This strict
scaling is distinctive of hierarchical networks because increasing the size of a generic
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nonhierarchical network containing highly connected hubs (degree) will tend to diminish tran-
sitivity (clustering); however, hierarchical organization is known to decouple the size and tran-
sitivity of a network, which allows each property to vary individually (Ravasz & Barabási,
2003). The characteristic scaling of reduced transitivity of brain regions with higher degree
was present across the five brain network sizes (83 nodes: t = −15.31, bootstrap 95% CI
[−19.37, −12.29], p < 0.001, R2 = 0.74; 129 nodes: t = −14.82, bootstrap 95% CI [−18.48,
−11.93], p < 0.001, R2 = 0.63; 234 nodes: t = −16.96, bootstrap 95% CI [−20.43, −13.75], p <
0.001, R2 = 0.55; 463 nodes: t = −26.47, bootstrap 95% CI [−30.02, −23.16], p < 0.001, R2 =
0.60; 1015 nodes: t = −41.88, bootstrap 95% CI [−46.10, −38.11], p < 0.001, R2 = 0.63; F =
917.3, df = 1913, p < 0.001; Figure 5D, right). Hence, the connectome exhibits hierarchical
organization.

We next assessed the hypothesis that hierarchical organization permits networks to have
simultaneously large size and transitivity: two core network properties hypothesized to under-
lie high- and low-fidelity communication regimes (Ravasz & Barabási, 2003). Hence, we
sought to test whether hierarchical organization exhibits the hallmarks of both high- and
low-fidelity regimes. If hierarchical organization supports a high-fidelity regime, then the infor-
mation rate will monotonically increase with the complexity of the communication system. In
testing this hypothesis, we found that the scaling characteristic of hierarchical organization in
brain networks was associated with monotonically greater information rate (F = 2002, boot-
strap 95% CI [1946.6, 2061.4], df = 13389, p < 0.001, R2 = 0.62, bootstrap 95% CI [0.62,
0.63], Figure 5E). Considering the slope of the increasing rate, networks with greater hierarchi-
cal organization supported high fidelity communication more efficiently (t = 32.4, bootstrap
95% CI [29.96, 34.79], p < 0.001) than larger networks (t = 2640.32, bootstrap 95% CI
[2556.3, 2725.07], p < 0.001). Taken together, our findings suggest that hierarchical organi-
zation, which is already known to be spatially efficient (Bassett et al., 2010), also supports
high-fidelity network communication and does so more efficiently than large networks without
hierarchical organization.

To enable flexible switching, hierarchical organization should also support a low-fidelity
regime. If path transitivity supports a low-fidelity regime better able to tolerate noise, then
hierarchical organization may support a low-fidelity regime by allowing for greater global
transitivity in hierarchical networks compared to nonhierarchical networks. In testing this
prediction, we found that the hierarchical organization of the connectome exhibited greater
transitivity than nonhierarchical scale-free networks (generated with Materials and Methods);
and this increased transitivity became more pronounced with increasing network size (size-by-
hierarchical network type interaction t = −37.22, bootstrap 95% CI [−40.57, −34.12], p <
0.001; size-by-scale-free network type interaction t = −125.32, bootstrap 95% CI [−131.71,
−118.70], p < 0.001; Figure 5F). Thus, hierarchical organization could contribute to the
flexibility of efficient coding by preserving high network transitivity for low-fidelity communi-
cation that prioritizes noise tolerance and large network size for high-fidelity communication
that prioritizes accuracy.

Brain regions disproportionately scale in relation to regional prioritization of network communication

fidelity or lossy compression. Having found that hierarchical organization preserves high tran-
sitivity despite large network size, we sought to understand how transitivity is associated with
the areal expansion of brain regions. Evolutionarily new connections may support higher order
and flexible information processing, emerging from disproportionate expansion of the associ-
ation cortex (Buckner & Krienen, 2013). In contrast, brain regions that are disproportionately
out-scaled by total brain expansion may save material, space, and metabolic resources. To
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explore how sender and receiver compression efficiency relates to cortical areal expansion,
we used published maps of areal scaling; here, allometric scaling coefficients were defined
by the nonlinear ratios of surface area change to total brain size change over development.
Brain regions that disproportionately expanded in relation to total brain size during neuro-
development tended to have greater transitivity (r = 0.26, df = 358, pSPIN,Holm-Bonferroni =
0.001), which may support noise-tolerant lossy compression with minimal loss of fidelity
in association cortex regions thought to underpin higher order and flexible information pro-
cessing. Disproportionately expanding brain regions tended to have greater sender (r = 0.14,
df = 358, pSPIN,Holm-Bonferroni = 0.045; Figure 5H) and reduced receiver (r = −0.20, df = 358,
pSPIN,Holm-Bonferroni = 0.03; Figure 5H) compression efficiency. While brain regions that dis-
proportionately expanded tend to prioritize messages received with high fidelity, brain
regions that are disproportionately out-scaled by total brain expansion tend to receive com-
pressed messages.

Hypothesis 5: Integrative Hubs

The fifth and final hypothesis of our model posits that the structural hubs of the brain’s highly
interconnected rich club supports information integration of randomly walking signals (van
den Heuvel et al., 2012). To explain the hypothesized information integration roles of rich-
club structural hubs, we investigated the compression efficiency of messages randomly
walking into and out of hub regions compared to that of other regions. In order to identify
the rich-club hubs, we computed the normalized rich-club coefficient and identified 43 highly
interconnected structural hubs (Figure 6A). Next, we computed the send and receive compres-
sion efficiency of rich-club hubs compared to all other regions. In support of their hypothe-
sized function, we found that the rich-club hubs required receiving fewer random walkers
compared to other regions (Wilcox rank-sum test, W = 12829, p < 0.001), suggesting priori-
tization of information compression (or integration). For the rich-club hub to transmit outgoing
messages with a fidelity that is equivalent to the incoming messages, the rich-club hubs
required sending more random walkers compared to other brain regions (W = 64, p <
0.001), supporting the notion that rich-club hubs serve as high-fidelity information broadcast-
ing sources. The function of hubs apparently compensates for high metabolic cost (Collin,
Sporns, Mandl, & van den Heuvel, 2013). However, we did not find evidence of greater
CBF in rich-club hubs compared to nonhubs, suggesting that hubs may be more metabolically
efficient than previously known (Supporting Information Figure S8). This may potentially be
due to hubs being compression-efficient receivers (see Supporting Information Results and
Discussion for additional explanations). Though we did not find evidence of high metabolic
cost, the contrasting roles of prioritizing input compression and output fidelity within rich-
club hubs was consistent with our hypothesis and the current understanding of rich-club
hubs as the information integration centers and broadcasters of the brain’s network (van
den Heuvel et al., 2012).

Compression efficiency predicts behavioral performance. Efficient coding predicts that the brain
should not only balance fidelity and information compression as quantified by compression
efficiency, but should do so in a way that improves future behavior (Chalk et al., 2018; Niven,
Anderson, & Laughlin, 2007). Thus, we next sought to evaluate the association between com-
pression efficiency in rich-club hubs and cognitive performance in a diverse battery of tasks. In
light of trade-offs between communication fidelity and information compression, we hypoth-
esized that compression efficiency would correlate with cognitive efficiency, defined as the
combined speed and accuracy of task performance. Compression efficiency prioritizing lossy
compression and low-dimensionality should predict worse performance (Rigotti et al., 2013).
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Figure 6. Compression efficiency explains the integrative role of rich-club hubs and individual differences in cognitive efficiency. (A) The rich
club consists of highly interconnected structural hubs, thought to be the backbone of the brain connectome. Across participants, the rich club
was comprised of 43 highly connected brain regions. (B) The receiver compression efficiency of rich clubs was greater than other brain regions
(W = 12829, bootstrap 95% CI [9415.6, 16635.34], p < 0.001), suggesting that the organization of the structural network prioritizes integration
and compression of information arriving to rich-club hubs. The sender compression efficiency of rich clubs was reduced compared to other
brain regions, supporting the fidelity of information broadcasting (W = 64, bootstrap 95% CI [13.0, 138.03], p < 0.001). (C) Individuals having
non-rich-club regions with decreased compression efficiency tended to exhibit greater efficiency (combined speed and accuracy) of complex
reasoning (all p values corrected using the Holm–Bonferroni method; t = −4.72, bootstrap 95% CI [−6.63, −2.72], model adjusted R2 = 0.21,
bootstrap 95% CI [0.16, 0.26], estimated model df = 10.50, p = 2 × 10−5), executive function (t = −2.85, bootstrap 95% CI [−4.85, −1.0],
model adjusted R2 = 0.50, bootstrap 95% CI [0.46, 0.56], estimated model df = 10.64, p = 0.03), and social cognition (t = −2.30, bootstrap
95% CI [−4.21, −0.33], model adjusted R2 = 0.22, bootstrap 95% CI [0.17, 0.26], estimated model df = 10.45, p = 0.04), controlling for age,
sex, age-by-sex interaction, degree, density, and in-scanner motion. Non-rich-club compression efficiency was not associated with memory
efficiency (t = −1.61, bootstrap 95% CI [−3.29, 0.07], estimated model df = 9.85, p = 0.11). Individuals with less rich-club compression
efficiency tended to exhibit greater efficiency of complex reasoning (t = −4.73, bootstrap 95% CI [−6.58, −2.82], model adjusted R2 =
0.21, bootstrap 95% CI [0.16, 0.26], p = 1 × 10−7), memory efficiency (t = −2.60, bootstrap 95% CI [−4.41, −0.79], model adjusted R2 =
0.24, bootstrap 95% CI [0.16, 0.26], p = 0.03), social cognition (t = −2.55, bootstrap 95% CI [−4.50, −0.73], model adjusted R2 = 0.22,
bootstrap 95% CI [0.16, 0.25], p = 0.02), and executive function (t = −2.80, bootstrap 95% CI [−4.75, −0.87], model adjusted R2 = 0.50,
bootstrap 95% CI [0.45, 0.56], p = 0.03). Overall, individuals with brain structural networks prioritizing fidelity tended to perform with greater
accuracy and/or speed in various cognitive functions. Asterisks depict significance following family-wise error correction. (D) Individual
differences in complex reasoning efficiency were negatively associated with individual differences in compression efficiency (t = −4.95,
estimated model df = 11.52, p < 0.001; confidence intervals displayed as the gray band), controlling for global efficiency, age, sex, age-
by-sex interaction, degree, density, and in-scanner motion. See Supporting Information Figure S9 for additional scatterplots of the correlation
between cognitive efficiency and compression efficiency, as well as for separated metrics of accuracy and speed. For comparison to a com-
monly used metric of shortest path information integration, we include global efficiency in the model, which was positively correlated with
complex reasoning efficiency (t = 2.68, estimated model df = 11.52, p < 0.01). Global efficiency was not partially correlated with compression
efficiency (r = −0.04, df = 997, p = 0.18), controlling for age, sex, age-by-sex interaction, degree, density, and motion. Hence, reduced com-
pression efficiency prioritizing fidelity explains individual differences in complex reasoning efficiency.
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To assess the relationships between compression efficiency and cognitive efficiency, we used
four independent cognitive domains that have been established by confirmatory factor anal-
ysis to assess individual variation in tasks of complex reasoning, memory, executive function,
and social cognition (Materials and Methods). Consistent with the hypothesis, we found that
individuals having rich-club hubs with reduced compression efficiency, prioritizing transmis-
sion fidelity, tended to exhibit increased cognitive efficiency of complex reasoning (all
p values corrected using the Holm–Bonferroni family-wise error method; t = −4.73, bootstrap
95% CI [−6.58, −2.82], model adjusted R2 = 0.21, bootstrap 95% CI [0.16, 0.26], estimated
model df = 10.59, p = 2 × 10−7), memory (t = −2.60, bootstrap 95% CI [−4.41, −0.79], model
adjusted R2 = 0.24, bootstrap 95% CI [0.16, 0.26], estimated model df = 9.85, p = 0.03), exec-
utive function (t = −2.80, bootstrap 95% CI [−4.75, −0.87], model adjusted R2 = 0.50, boot-
strap 95% CI [0.45, 0.56], estimated model df = 10.69, p = 0.03), and social cognition (t =
−2.55, bootstrap 95% CI [−4.50, −0.73], model adjusted R2 = 0.22, bootstrap 95% CI [0.16,
0.25], estimated model df = 10.47, p = 0.02). See Supporting Information Figure S9 for similar
nonhub correlations, as well as speed and accuracy modeled separately. Our finding that the
compression efficiency of rich-club hubs was associated with cognitive efficiency is consistent
with the notion that the integration and broadcasting function of hubs contributes to cognitive
performance (van den Heuvel et al., 2012). Importantly, compression efficiency explained var-
iation in cognitive efficiency even when controlling for the commonly used shortest path mea-
sure of global efficiency (Figure 6D; compression efficiency t = −4.95, estimated model df =
11.52, p < 0.001; global efficiency t = 2.68, estimated model df = 11.52, p < 0.01). Collec-
tively, individuals with connectomes prioritizing fidelity tended to perform with greater
cognitive efficiency in a diverse range of functions, consistent with the understanding of
high-dimensionality neural representations predicting flexible behavioral performance (Rigotti
et al., 2013; van den Heuvel et al., 2012).

DISCUSSION

The efficient coding principle and rate-distortion theory constrain models of brain network
communication, explaining how connectome biology and architecture prioritize either com-
munication fidelity or lossy compression (Achard & Bullmore, 2007; Avena-Koenigsberger
et al., 2015, 2017, 2018; Bullmore & Sporns, 2012; Goñi et al., 2013; Johansen-Berg,
2010; Laughlin, 2001; Levy & Baxter, 1996; Palmer, Marre, Berry, & Bialek, 2015; Rubinov,
2016). Information compression can improve prediction and generalization, separate relevant
features of information, and efficiently utilize limited capacity by balancing the unreliability of
stochasticity with the redundancy in messages (Olshausen & Field, 2004; Palmer et al., 2015;
Sims, 2016, 2018; Sterling & Laughlin, 2015). We observed a rate-distortion gradient for every
individual, consistent with the conceptualization of the brain structural network as a communi-
cation channel with limited capacity.While each individual’s network adheres to rate-distortion
theory, differences in structural connectivity lead to substantial variance in the compression
efficiency. In addition to some of the variation being explained by age and sex, our results also
indicate that variance could be driven by biological differences, such as in metabolic expendi-
ture and myelin, as well as topological differences, such as transitivity, degree, and hierarchical
organization. We found that biological investments of metabolic resources and myelin in
connectome topology, hierarchically interconnected brain regions, and highly connected
network hubs each supported efficient coding and compressed communication dynamics.
We found evidence consistent with five predictions of rate-distortion theory adapted from prior
literature, corroborating the validity of this theoretical model of macroscale efficient coding
(Marzen & DeDeo, 2017; Sims, 2018; van den Heuvel et al., 2012).
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In addition to these findings, we reported two important null results that could be explained
in part by the macroscale efficient coding model. First, we did not find evidence for the
hypothesis that metabolic savings are associated with shortest path routing communication
dynamics, a key redeeming feature against acknowledged theoretical shortcomings of this
routing model (Avena-Koenigsberger et al., 2018; Bullmore & Sporns, 2012; Várkuti et al.,
2011). Rather, we found evidence of efficient coding, implemented using random walks, as
in other areas of neuroscience (Barlow, 1961; Chalk et al., 2018; Denève, Alemi, & Bourdoukan,
2017; Laughlin, 2001; Laughlin, van Steveninck, & Anderson, 1998; Olshausen & Field, 2004;
Palmer et al., 2015; Sterling & Laughlin, 2015; Weber, Krishnamurthy, & Fairhall, 2019; Wei &
Stocker, 2015). Efficient coding generated unique predictions of communication as a stochastic
process governed by trade-offs between lossy compression and transmission fidelity (MacKay,
2003). The evidence we presented was consistent with these predictions and would be diffi-
cult to explain with alternative models of shortest path routing (see Supporting Information
Modeling/Math Notes and Discussion). This null result challenges the validity of the shortest
path routing model as anchoring one end of a hypothesized spectrum of communication
mechanisms and the usage of shortest path routing metrics to quantify the integrative capacity
of particular brain areas or whole-brain connectivity (Avena-Koenigsberger et al., 2018).
Rather, the macroscale efficient coding model implemented by random walk dynamics pro-
vides strong theoretical interpretation of information integration in hubs as lossy compression
(Chanes & Barrett 2016; van den Heuvel et al., 2012).

Second, we did not find evidence for high metabolic cost associated with structural net-
work hubs. Rather, we found that hubs are regions that receive inputs with greater compres-
sion efficiency; regions prioritizing input compression tend to be disproportionately out-scaled
by total brain expansion during development, consistent with cortical consolidation (thinning
and myelination) (Whitaker et al., 2016). In contrast, regions prioritizing input fidelity tend to
disproportionately expand in relation to total brain growth during development, consistent
with theories positing that evolutionary expansion and new connections support the flexibility
of neural activity for higher-order cognition (Buckner & Krienen, 2013; Bullmore & Sporns,
2012; Glasser et al., 2014; Goldman-Rakic, 1988; Reardon et al., 2018; Scholtens, Schmidt,
de Reus, & van den Heuvel, 2014; Theodoni et al., 2020; Vij, Nomi, Dajani, & Uddin, 2018).
Structural network hubs support unique information integrative processes, apparently offset-
ting high metabolic, spatial, and material costs (Avena-Koenigsberger et al., 2019; Chanes &
Barrett, 2016; Crossley et al., 2014; Oldham & Fornito, 2018; Scholtens et al., 2014; van den
Heuvel et al., 2012; Vértes, Alexander-Bloch, & Bullmore, 2014). Hence, hub dysfunction may
be particularly costly. Our null result motivates reconsideration of metabolic costs, at least for
the simplest and most common definition of a structural connectivity hub using the measure of
degree centrality (see Supporting Information Figure S8, Results, and Discussion) (Oldham &
Fornito, 2018). An alternative hypothesis to high metabolic cost of hubs is that long-run met-
abolic savings depend on frequent usage of hubs to compensate for the expense of maintain-
ing their size and connectivity (Harris & Attwell, 2012; S. S.-H. Wang et al., 2008). Although
further investigation of the metabolic costs of rich-club hubs is warranted, our findings never-
theless reinforce a wealth of evidence emphasizing the importance of the development,
resilience, and function of hubs in cognition and psychopathology (Chanes & Barrett 2016;
Crossley et al., 2014; Gollo et al., 2018; Liang, Zou, He, & Yang, 2013; Mišić et al., 2015;
Scholtens et al., 2014; van den Heuvel et al., 2012; Whitaker et al., 2016).

Our work admits several theoretical and methodological limitations. First, regionally aggre-
gated brain signals are not discrete Markovian messages and do not have goals like reaching
specific targets. As in recent work, our model is a deliberately simplified but useful abstraction
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of macroscale brain network communication (Mišić et al., 2015). Second, although we mod-
eled random walk dynamics in light of prior methodological decisions and information theory
benchmarks (Goñi et al., 2013), compression efficiency can be implemented using alternative
approaches. Several methodological limitations should also be considered. The accurate
reconstruction of white matter pathways using diffusion imaging and tractography remains
limited (Zalesky et al., 2016). While we chose to model structural connections using fractional
anisotropy because it is one of the most widely used measures of white matter microstructure,
future research could evaluate these same hypotheses in structural networks built from different
measures and of other species (Chang et al., 2017; Jones, Knösche, & Turner, 2013; Teich et al.,
2021). Moreover, noninvasive measurements of CBF with high sensitivity and spatial resolution
remain challenging. However, we acquired images using an ASL sequence providing greater
sensitivity and approximately four times higher spatial resolution than prior developmental
studies of CBF (Satterthwaite, Shinohara, et al., 2014). Lastly, our data was cross-sectional,
limiting the inferences that we could draw about neurodevelopmental processes.

In summary, our study advances understanding of how brain metabolism and architecture
at the macroscale supports communication dynamics in complex brain networks as efficient
coding. Our model provides a simple framework for investigating efficient coding at the
whole-brain network level and an important basis to build toward computational network
models of special cases of efficient coding, such as robust, sparse, and predictive coding
(Chalk et al., 2018). In quantifying integrative communication dynamics and lossy compression
of themacroscale brain network, these results are relevant to future research on low-dimensional
neural representations (Rigotti et al., 2013; Shine et al., 2019; Tang et al., 2019), efficient control
of functional network dynamics (Srivastava et al., 2020; Tang et al., 2017), and hierarchical
abstraction of behaviorally relevant cortical representations (Momennejad, 2020; Schapiro,
Turk-Browne, Botvinick, & Norman, 2017; Stachenfeld, Botvinick, & Gershman, 2017). Future
research could investigate whether other biological properties of the network support efficient
coding, such as gradients in brain structure and function (Barbas, 1986; Charvet, Cahalane, &
Finlay, 2015; Charvet & Finlay 2014; Huntenburg, Bazin, & Margulies, 2018; Kingsbury &
Finlay, 2001; Paquola et al., 2020; Vazquez-Rodriguez, Liu, Hagmann, & Misic, 2020). Neuro-
developmental processes vary with the naturalistic environment and socioeconomic back-
ground, suggesting that they are shaped by exposure to different experiences and expectations
(Tooley, Bassett, & Mackey, 2021). We hypothesize that the neurodevelopmental range of
compression efficiency reflects a relationship between source coding (statistics or compress-
ibility of the naturalistic input information) and channel coding (compression efficiency),
which demarcate zones of possible brain network communication (MacKay, 2003; Olshausen
& Field, 2004). Lastly, the compression efficiency metric offers a novel tool to test leading
hypotheses of dysconnectivity (Di Martino et al., 2014), hubopathy (Crossley et al., 2014;
Gollo et al., 2018), disrupted information integration (Chanes & Barrett, 2016; Hernandez,
Rudie, Green, Bookheimer, & Dapretto, 2015), and neural noise (Dinstein et al., 2012) in
neuropsychiatric disorders.

MATERIALS AND METHODS

Participants

As described in detail elsewhere (Satterthwaite, Elliott, et al., 2014), diffusion-weighted
imaging (DWI) and arterial-spin labeling (ASL) data were acquired for the Philadelphia
Neurodevelopmental Cohort (PNC), a large community-based study of neurodevelopment.
The subjects used in this paper are a subset of the 1,601 subjects who completed the cross-
sectional imaging protocol. We excluded participants with health-related exclusionary criteria
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(n = 154) and with scans that failed a rigorous quality assurance protocol for DWI (n = 162)
(Roalf et al., 2016). We further excluded subjects with incomplete or poor ASL and field map
scans (n = 60). Finally, participants with poor quality T1-weighted anatomical reconstructions
(n = 10) were removed from the sample. The final sample contained 1042 subjects (mean
age = 15.35, SD = 3.38 years; 467 males, 575 females). Study procedures were approved
by the Institutional Review Board of the Children’s Hospital of Philadelphia and the University
of Pennsylvania. All adult participants provided informed consent; all minors provided assent
and their parent or guardian provided informed consent.

Cognitive Assessment

All participants were asked to complete the Penn Computerized Neurocognitive Battery
(CNB). The battery consists of 14 tests adapted from tasks typically applied in functional neu-
roimaging, and which measure cognitive performance in four broad domains (Satterthwaite,
Elliott, et al., 2014). The domains included (1) executive control (i.e., abstraction and flexibility,
attention, and working memory), (2) episodic memory (i.e., verbal, facial, and spatial), (3) com-
plex cognition (i.e., verbal reasoning, nonverbal reasoning, and spatial processing), (4) social
cognition (i.e., emotion identification, emotion intensity differentiation, and age differentia-
tion), and (5) sensorimotor and motor speed. Performance was operationalized as
z-transformed accuracy and speed. The speed scores were multiplied by −1 so that higher
indicates faster performance, and efficiency scores were calculated as the mean of these accu-
racy and speed z-scores. The efficiency scores were then z-transformed again, to achieve
mean = 0 and SD = 1.0 for all scores. Confirmatory factor analysis supported a model of four
latent factors corresponding to the cognitive efficiency of executive function, episodic mem-
ory, complex cognition, and social cognition (Moore, Reise, Gur, Hakonarson, & Gur, 2015).
Hence, we used these four cognitive efficiency factors in our analyses. In a factor solution
separately modeling accuracy and speed, the accuracy factors correspond to (1) executive and
complex cognition, (2) social cognition, and (3) memory. The speed factors correspond to (1) fast
speed (e.g., working memory and attention tasks requiring constant vigilance), (2) episodic
memory speed, and (3) slow speed (e.g., tasks requiring complex reasoning).

Image Acquisition, Preprocessing, and Network Construction

Neuroimaging acquisition and pre-processing were as previously described (Satterthwaite,
Elliott, et al., 2014). We depict the overall workflow of the neuroimaging and network extrac-
tion pipeline in Supporting Information Figure S1.

Diffusion-weighted imaging. As was previously described (Baum et al., 2017; Tang et al., 2017),
diffusion imaging data and all other MRI data were acquired on the same 3T Siemens Tim
Trio whole-body scanner and 32-channel head coil at the Hospital of the University of
Pennsylvania. DWI scans were obtained using a twice-focused spin-echo (TRSE) single-shot
EPI sequence (TR = 8,100 ms, TE = 82 ms, FOV = 240 mm2/240 mm2; Matrix = RL: 128/AP:
128/Slices: 70, in-plane resolution (x & y) 1.875 mm2; slice thickness = 2 mm, gap = 0;
FlipAngle = 90°/180°/180°, volumes = 71, GRAPPA factor = 3, bandwidth = 2170 Hz/pixel,
PE direction = AP). The sequence employs a four-lobed diffusion encoding gradient scheme
combined with a 90-180-180 spin-echo sequence designed to minimize eddy current artifacts.
The complete sequence consisted of 64 diffusion-weighted directions with b = 1,000 s/mm2

and 7 interspersed scans where b = 0 s/mm2. Scan time was about 11 min. The imaging
volume was prescribed in axial orientation covering the entire cerebrum with the topmost
slice just superior to the apex of the brain (Roalf et al., 2016).
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Connectome construction. Cortical gray matter was parcellated according to the Glasser atlas
(Glasser et al., 2016), defining 360 brain regions as nodes for each subject’s structural brain
network, denoted as the weighted adjacency matrix A. To assess multiple spatial scales, cor-
tical and subcortical gray matter was parcellated according to the Lausanne atlas (Cammoun
et al., 2012). Together, 89, 129, 234, 463, and 1,015 dilated brain regions defined the nodes
for each subject’s structural brain network in the analyses of Figure 5.

DWI data was imported into DSI Studio software and the diffusion tensor was estimated at
each voxel (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2013). For deterministic trac-
tography, whole-brain fiber tracking was implemented for each subject in DSI Studio using a
modified fiber assessment by continuous tracking (FACT) algorithm with Euler interpolation,
initiating 1,000,000 streamlines after removing all streamlines with length less than 10 mm or
greater than 400 mm. Fiber tracking was performed with an angular threshold of 45, a step size
of 0.9375 mm, and a fractional anisotropy (FA) threshold determined empirically by Otzu’s
method, which optimizes the contrast between foreground and background (Yeh et al.,
2013). FA was calculated along the path of each reconstructed streamline. For each subject,
edges of the structural network were defined where at least one streamline connected a pair of
nodes. Edge weights were defined by the average FA along streamlines connecting any pair of
nodes. The resulting structural connectivity matrices were not thresholded and contain edges
weighted between 0 and 1.

Arterial-spin labeling. CBF was quantified from control-label pairs using ASLtbx (Z. Wang et al.,
2008), as was previously described (Satterthwaite, Shinohara, et al., 2014). We consider f as
CBF, δM as the difference of the signal between the control and label acquisitions, R1a as
the longitudinal relaxation rate of blood, τ as the labeling time, ω as the postlabeling delay
time, α as the labeling efficiency, λ as the blood/tissue water partition coefficient, and M0 as
the approximated control image intensity. Together, CBF f can be calculated according to
the equation:

f ¼ ΔMλR1a exp ωR1að Þ
2M0α

1 − exp −τR1að Þ½ �−1: (1)

Because prior work has shown that the T1 relaxation time changes substantially in devel-
opment and varies by sex, this parameter was set according to previously established methods,
which enhance CBF estimation accuracy and reliability in pediatric populations (Jain et al.,
2012; Wu et al., 2010). As in prior work, the global network CBF was calculated as the
average CBF across all brain regions to obtain an individual participant’s CBF (Satterthwaite,
Shinohara, et al., 2014).

Brain Maps

Cortical myelin. As described previously (Glasser & Van Essen, 2011), cortical myelin content
was calculated by dividing the T1w image signal by the T2w image signal. Specifically, we
define the myelin content x2 in the following manner:

T1w
T2w

≈
x � b
1=xð Þ � b ¼ x2; (2)

where x is the myelin contrast in the T1w image, 1/x is the myelin contrast in the T2w, and b is
the receive bias field in both T1w and T2w images. We used a published atlas generated by
this method (Glasser et al., 2014).
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Cortical areal scaling. As described previously (Reardon et al., 2018), to estimate cortical areal
scaling between the size of cortical regions and the total brain, regression coefficients β were
estimated for log10 (total cortical surface area) as a covariate predicting log10 (vertex area)
using spline regression models that incorporated effects of age and sex on vertex area (Wood,
2004). We used the following relational form:

log 10 Vertex areað Þ∼ s age by ¼ sexð Þ þ BI log 10 total–areað Þ½ �: (3)

When β is 1, the scaling between total brain size and brain regions is linear. When β devi-
ates greater or less than 1, scaling is nonlinearly and disproportionately expanding or contract-
ing. We used the published atlas generated using the same data as in our study (Reardon
et al., 2018; Satterthwaite, Elliott, et al., 2014).

Network Statistics

Global efficiency. In the context of the brain structural connectome, global efficiency repre-
sents the strength of the shortest paths between brain regions supporting efficient communica-
tion. In network neuroscience, global efficiency is commonly used as a metric of a brain
network’s capacity for shortest path routing (Avena-Koenigsberger et al., 2018; Bullmore &
Sporns, 2012; Goñi et al., 2013). We calculated the common global efficiency statistic (Latora
& Marchiori, 2001), which is defined for a graph G as:

Eglob Gð Þ ¼ 1
N N − 1ð Þ

X
i≠j�G

1
dij

; (4)

where N is the number of nodes and dij is the shortest distance between node i and node j.
Intuitively, a high E value indicates greater potential capacity for global and parallel informa-
tion exchange along shortest paths, and a low E value indicates decreased capacity for such
information exchange (Latora & Marchiori, 2001).

Path strengths. Beyond shortest paths between pairs of brain regions, we also sought to mea-
sure the strength of structural connections S comprising the paths of multiple connections. As
global efficiency measures the capacity of brain networks for shortest path routing, path
strengths measure the capacity for stochastic communication. Path strengths are apt for asses-
sing the network capacity for a model of stochastic transmission of impulses because paths can
be represented as random walks p = (i, j, …, k), where p is a path and i, j, and k are nodes in the
path. As in prior work (Becker et al., 2018), the strength of the weighted connections in a path,
denoted ω( p), in the graph G with adjacency matrix A is defined as:

ω pð Þ ¼ A½ �i0i1 A½ �i1i2… A½ �i l−1ð Þii ; (5)

where the matrix products produce the strengths of all possible random walks according to the
length of p, as depicted in the schematic Figure 1B. Then, for walks of length n, the strengths of
the paths from node i to node j are defined as:

An½ �ij ¼
X
p2Pn

ij

ω pð Þ; (6)

where Pn
ij is the set of all walks from node i to node j with length n. When n = 1, the matrix

exponent produces a matrix with elements equal to dij from Equation 1, or the shortest dis-
tance between node i and node j. Intuitively, a high path strength represents structural paths
that consist of higher integrity connections measured by DWI, whereas a low path strength
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indicates paths consisting of low integrity connections. To compute node strengths, the values
for each node were summed. An average value was also calculated across node strengths per
individual participant.

Path transitivity. Shortest paths confer advantages in speed and signal fidelity when messages
are transmitted by random walks. Therefore, we sought to measure a property of brain net-
work architecture supporting random walks by shortest paths. Local detours that first leave
and then re-access the shortest path serve to support such random walks, and the potential
for such local detours can be estimated using a measure called path transitivity (see
Figure 5A, left; Goñi et al., 2014). Path transitivity was previously used to predict functional
BOLD activation comparably to conventional distance or computational models of neural
dynamics. To compute path transitivity, we first calculated the matching index for each pair
of successive nodes i and j along the shortest path πs→t, with neighboring nonshortest path
nodes k as:

mij ¼
P

k≠i;j wik þwjk

� �
Θ wikð ÞΘ wjk

� �
P

k≠jwik þ
P

k≠iwjk
; (7)

where w is the connection weight, and Θ(wik) = 1 if wik > 0, and 0 otherwise. Intuitively, the
numerator is nonzero if and only if there are two locally detouring connections that make a
closed triangle along the shortest path. If either of the two connections wik or wjk does not
exist, then the numerator is 0. With the denominator representing the strength of all cumu-
lative connections of the shortest path nodes, the matching index fraction then represents the
density of closed triangles (i.e., transitivity) around the shortest path.

Whereas the matching index is a pairwise measure of the density of locally returning
detours, path transitivity generalizes the density across the shortest path. Using the computed
matching index mij for each pairwise connection Ω from source node s to target node t by the
set of shortest path edges πs→t, we compute path transitivity M as:

M πs→tð Þ ¼ 2
P

i2Ω
P

j2Ωmij

Ωj j Ωj j − 1ð Þ ; (8)

where the numerator sums the matching index mij for all edges in Ω, the scale factor of 2
indicates an undirected graph, and the denominator sums over all possible edges. Intuitively,
a high path transitivity M indicates that the shortest path is more densely encompassed by
locally detouring triangular motifs. Low path transitivity indicates that the shortest path is
surrounded by connections that deviate from the shortest path without an immediate
avenue of return. An individual-level value of path transitivity was calculated as the
average path transitivity across brain regions.

Modularity. Modularity is a common architectural feature observed in neural systems across
species. A single community contains brain regions that are more highly connected to each
other than to brain regions located in other communities (see Supporting Information Figure
S2A, right). Modularity of brain networks is spatially efficient, supports the development of
executive function in youths, and supports flexibly adaptable functional activations according
to distinct task demands (Bassett et al., 2010, 2011; Baum et al., 2017; Bertolero, Yeo, &
D’Esposito, 2015; Sporns & Betzel, 2016). To assess modularity, we apply a common commu-
nity detection technique known as modularity maximization (Newman, 2006), in which we
used a Louvain-like locally greedy algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre,
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2008) to maximize a modularity quality function for the adjacency matrix A. The modularity
quality function is defined as:

Q ¼ 1
2μ

X
ij

Aij − γPij
� �

δ gi ; gj
� �

; (9)

where μ = 1
2�ij Aij denotes the total weight ofA,Aij encodes theweight of an edge between node i

and node j in the structural connectivity matrix, P represents the expected strength of connec-
tions according to a specified null model (Newman, 2006), γ is a structural resolution parameter
that determines the size of modules, and δ is the Kronecker function which is 1 if gi = gj and zero
otherwise. As in prior work, we set γ to the default value of 1 (Bassett et al., 2011). Intuitively, a
high Q value indicates that the structural connectivity matrix contains communities, where
nodes within a community are more densely connected to one another than expected under
a null model. Modularity maximization is commonly used to detect community structure, and
to quantitatively characterize that structure by assessing the strength and number of communi-
ties (Bassett et al., 2011; Baum et al., 2017; Newman, 2006). Regional contributions to the mod-
ularity quality function were used for analyses of brain regions.

Resource efficiency. A signal that randomly walks along the shortest path between brain
regions confers advantages in speed, reliability, and fidelity (Avena-Koenigsberger et al.,
2018; Bullmore & Sporns, 2012; Fornito et al., 2016). Following prior work, we sought to
compute the number of random walkers beginning at node i that were required for at least
one to travel along the shortest path to another node j with probability η (Fornito et al., 2016;
Goñi et al., 2013). To begin, we consider the transition probability matrix by U, defined as
U = WL−1, where each entry Wij of W describes the weight of the directed edge from node i
to node j, and each entry Lii of the diagonal matrix L is the strength of each node i, defined as
�i Wij. Intuitively, each entry Uij of U defines the probability of a random walker traveling
from node i to node j in one step. Next, to compute the probability that a random walker
travels from node i to node j along the shortest path, we define a new matrix U0(i) that is equiv-
alent to U but with the nondiagonal elements of row i set to zero and Uii = 1 as an absorbent
state. Then, the probability of randomly walking from i to j along the shortest path is given by:

1 −
XN
n¼1

U0 ið ÞH
h i

in
; (10)

where H is the number of connections composing the shortest path from i to j. Similarly, the
probability η of releasing r randomwalkers at node i and having at least one of them reach node
j along the shortest path is given by:

η ¼ 1 −
XN
n¼1

U 0 ið ÞH
h i

in

 !r

: (11)

Setting the above probability to some set value η, we can then solve for the number of
random walkers r required to guarantee (with probability η) that at least one of them travels
from i to j along the shortest path, denoted by:

rij ηð Þ ¼ log 1 − ηð Þ
log
PN

n¼1 U0 ið ÞH
h i

in

: (12)

The number of random walkers rij has been referred to as resources in prior literature
(Goñi et al., 2013). In our analyses, we calculate resources rij over a range of values of η
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for each participant. Finally, to calculate the resource efficiency of each participant, the
resource efficiency of an entire network is taken to be 1/(rij(η)) averaged over all pairs of nodes
i and j. With the right stochastic matrix U0

i, the resource efficiency of brain regions as message

senders is 1/(rij(η)) averaged over i, while brain regions as message receivers is 1/(rji(η)) aver-
aged over j.

Compression efficiency. Rate-distortion theory formalizes the study of information transfer as
passing signals (messages) through a capacity-limited information channel. A signal x is
encoded as x̂ with a level of distortion D that depends on the information rate R. The greater
the rate, the less the distortion. The rate-distortion function R(D) defines the minimum infor-
mation rate required to transmit a signal corresponding to a level of signal distortion (see
Figure 3A). Lossy compression arises from the choice of the distortion function d(x, x̂), which
implicitly determines the relevant and irrelevant features of a signal. With the true signal x
mapped to the compressed signal x̂ described by p(x̂|x), the rate-distortion function is defined
by minimizing the mutual information of the signal and compression over the expected dis-
tortion defined as d(x, x̂)p(x,x̂ ) = �x2X �x̂2X̂ p(x, x̂)d(x, x̂):

R Dð Þ ≡ min
d x;x̂ð Þ

I X ; X̂
� � ¼ X

x2ΩX

X
x̂2ΩX̂

P x̂ jxð ÞP xð Þ log2
P x̂ jxð Þ
P x̂ð Þ

� �
: (13)

By minimizing the mutual information I(X, X̂ ), we arrive at a probabilistic map from
the signal to the compressed representation, where the information gain between the signal
and compression is as small as possible (i.e., high fidelity) to favor the most compact
representations.

Similar to the mathematical framework of rate-distortion theory, we sought to specify a dis-
tortion function reflecting communication over the brain’s structural network. Prior work
building models of perceptual and cognitive performance have inferred distortion functions
through Bayesian inference of a loss function (Sims, 2016, 2018). For instance, the loss
function could be the squared error denoting the residual values of the true signal minus
the compression, L = (x̂ − x)2 (Figure 3A). A neural rate-distortion theory has been theoretically
developed (Marzen & DeDeo, 2017), but remains empirically untested due in part to a lack of
methodological tools at the level of brain systems. Moreover, it has been difficult to define a
distortion function that incorporates both true signals x and compressed signals x̂ in part
because the measurements of these signals in human brain networks remains challenging.
Here, we define an analogous framework of information transfer through capacity-limited
channels in the structural network of the brain. Particularly, we build a distortion function from
the simple intuition that the shortest path is the route that most reliably preserves signal fidelity,
as depicted in Figure 3B.

Given that a random walker propagating from node i along the shortest path to node j
retains the greatest signal fidelity, we define the distortion function of any signal x from brain
region i to a compressed representation x̂ decoded in brain region j as:

d x; x̂ð Þij ¼ 1 − ηð Þ; (14)

where η denotes the probability that a walker gets from node i to node j along the shortest
path. A signal with greater probability η of propagating by the shortest path between brain
region i and brain region j is at a lower risk of distortion (see Figure 3D). Intuitively, increased
topological distance adds greater risk of signal distortion due to further transmission through
capacity-limited channels (i.e., structural connections), temporal delay, and potential mixing

Network Neuroscience 259

Efficient coding in the economics of human brain connectomics



with other signals. Given the measure of resources in Equation 12, we develop and test pre-
dictions of a novel definition of the rate R(D); here, we define R(D) as the resources rij(η)
required to achieve a tolerated level of distortion d(x, x̂)ij:

R Dð Þ ≡ rij d x; x̂ð Þij
� �

; (15)

as in Figure 3D. When the log of resources log(rij) is plotted against our metric of distortion D =
d 2 1 − ηij, the exponential gradient is depicted linearly (see Figure 3E). Because prior work
focused on 50% distortion during analyses, we required the slope to intersect the mean mid-
point rate at 50% distortion (Goñi et al., 2013). In addition to the precedent offered by prior
work, this requirement is also reasonable given that we sought to model both high and low
distortions equitably. The slope denotes the minimum number of resources required to achieve
a tolerated level of distortion, which we refer to as the compression efficiency (Figure 3E,
bottom). A steeper slope (i.e., a more negative relation) reflects reduced compression effi-
ciency, or prioritization of message fidelity. A flatter slope (i.e., a more positive relation) reflects
increased compression efficiency, or prioritization of lossy compression. Individual variation
in compression efficiency can be assessed by using the average resource efficiency across
brain regions. When compression efficiency is computed for sets of brain regions by averaging
across individuals, the slope can denote either messages sent from or arriving to a brain region
by using the average resource efficiency over either all nodes j or all nodes i, respectively.

While prior work calculates the bit rates that arise from the stochasticity of opening and
closing ion channels or releasing a synaptic vesicle (Laughlin, 2001), in this article we specif-
ically chose to focus on macroscale-level neuroimaging data. Our choice stemmed in part
from the fact that the surrounding background literature in neuroimaging motivated many
components of our theory, and in part from the fact that the theory of efficient coding had
not yet been extended to this scale. We sought to understand the role of the whole connec-
tome in supporting efficient communication and information processing.

To calculate numerical measures of bit rates at any spatial scale, we require a probabilistic
information source. In the random walk model of interregional communication, each brain
region is an information source that activates while sending a message—that is, a random
walker—to another region along the wiring of the connectome. The information content of
an individual message is determined by the probability of a message being sent, which, in
our setting, is equivalent to the probability of a brain region changing its activity (activating
or deactivating) in statistical association with behaviors and cognitive functions. At the level of
macroscale neuroimaging data, individual studies describe localized neural activation and
deactivation associated with specific cognitive tasks and behavior. Meta-analyses of these
individual studies can help aggregate and summarize a large quantity of data on the general
probability of brain region activation across a wide range of behaviors and cognitive functions
(Sterling & Laughlin 2015; Yarkoni, Poldrack, Nichols, Essen, & Wager, 2011). We used the
meta-analytic approach of NeuroSynth to obtain probability distributions across statistical
maps of neural activity (Yarkoni et al., 2011). We then used this average probability that a brain
region is active to calculate the information content of each communication event, or the
transmission of one neural message.

To calculate the information content of a neural message, we used the Shannon information
measure to calculate information rate in bits per second (Stone, 2018). Shannon information
derives from the probability of a particular random event. Intuitively, less probable events con-
vey messages with more information content, and vice versa. In the context of macroscale
brain networks, we sought to obtain the probability of a brain region transmitting a neural
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signal measured by fMRI BOLD activation (see Supporting Information Figure S3). The mean
probability of regional activation then is used to calculate the information content per message
as the Shannon information given by the following expression:

H ¼ − log2 P ActivationjTermsð Þð Þ; (16)

where H denotes the information content, or surprisal, of a neural signal measured by fMRI,
and P(Activation|Terms) defines the average conditional probability of brain region activation
given all >3,200 psychological terms encompassing an ontology that spans sensation, behav-
ior, cognition, emotion, and disorders (Yarkoni et al., 2011). The average information content
of a message, which we model with a random walker, is 5.74 bits. A characteristic timescale
of fMRI activity is given by the repetition time (TR) of each measurement, which is 0.72 sec-
onds in the Human Connectome Project neuroimaging sequence (Barch et al., 2013) and can
vary across studies. Hence, the information rate is 5.74 bits/0.72 seconds = 7.97 bits/second
per channel use. As with the estimation of information content, the main results of our paper
do not depend on the choice of a characteristic timescale, because all values are converted
using the same unit of bits per message. In selected early graphs, we include a secondary
y-axis to indicate the conversion between units of random walkers and units of bits. To obtain
the average bits per transmission for different levels of distortion, we multiplied the number of
messages (random walkers) by 5.74 bits/message. We note that our theory can be applied to
different neural activity measurements with connectomes reconstructed from a range of spatial
scales. In future work, it will be important to analyze the predictability of bit rates measured
directly from neural recordings based on theoretical estimates derived from the connectome.

Biased random walk. Given the advantages of random walkers that propagate along the short-
est path, we sought to assess how brain metabolism could support the reliability and fidelity of
signaling. Metabolic diffusion can be modeled as random walks over a structural connectivity
matrix biased by regional CBF (Alt, 1980). Electrical signal propagation could be modeled as
random walks over a structural connectivity matrix biased by regional intracortical myelin
(Glasser & Van Essen, 2011). To model metabolic diffusion of random walkers attracted to
brain regions of high CBF, we used analytical solutions to biased random walks. First, we
defined the matrix T of CBF-biased transition probabilities as:

T α
ij ¼

αijAijP
kαikAik

; (17)

where the element of Tij defines the transition probabilities of a random walker traversing
edges of the structural connectivity matrix A which are multiplied by a bias term α. For
random walkers attracted to brain regions of high CBF, the bias term α was defined as the
average CBF value for each pair of brain regions. Hence, a random walker propagates over
the brain’s structural connections with transition probabilities of Tij that reflect the integrity of
structural connections and the average level of CBF between pairs of brain regions. We then
substituted the U matrix in the resources rij(η) of Equation 12 with Tij in Equation 17 to
compute the number of resources required for a biased random walker to propagate by the
shortest path with a specified probability. To model electrical signal propagation, we per-
formed the same matrix transformation as described above, using regional measurements of
intracortical myelin.

Rich club. Due to the importance of brain network hubs in the broadcasting of a signal
(Avena-Koenigsberger et al., 2018; Bullmore & Sporns, 2012; van den Heuvel & Sporns,
2013), we sought to identify the set of high-degree brain regions in the rich club (see
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Figure 6A) (Colizza, Flammini, Serrano, & Vespignani, 2006). To identify the subnetwork of
rich-club brain regions, we computed the weighted rich club coefficient Φz(k) as:

ϕz kð Þ ¼ Z>kPE>k
l¼1 zrankedl

; (18)

where Zranked is a vector of ranked network weights, k is the degree, Z>k is the set of edges
connecting the group of nodes with degree greater than k, and E>k is the number of edges
connecting the group of nodes with degree greater than k. Hence, the rich-club coefficient
Φz(k) is the ratio between the set of edge weights connected to nodes with degree greater than
k and the strongest E>k connections. The rich-club coefficient was normalized by comparison
to the rich-club coefficient of random networks (Colizza et al., 2006). Random networks
were created by rewiring the edges of each individual’s brain network while preserving the
degree distribution. The rich-club coefficient for the randomized networks Φrandom (k) was
computed using Equation 18. Then, the normalized rich-club coefficient Φnorm (k) was calcu-
lated as follows:

ϕnorm kð Þ ¼ ϕ kð Þ
ϕrandom kð Þ ; (19)

where Φnorm (k) > 1 indicates the presence of a rich-club organization. We tested the statistical
significance of Φnorm (k) using a 1-sample t test at each level of k, with family-wise error
correction for multiple tests over k. Each individual was assigned the value of their highest
degree > k rich-club level and their nodes were ranked by rich-club level. Over the group
of individuals, the nodal ranks were averaged and the top 12% of nodes were selected as
the rich club, following prior work (Collin et al., 2013).

Hierarchical organization. Hierarchical modularity is a form of network complexity that is
characterized by small groups of nodes organized successively into increasingly larger groups.
Networks with hierarchical organization exhibit a distinctive scaling where transitivity (clus-
tering coefficient) decreases exponentially as a function of degree (Ravasz & Barabási, 2003).
This scaling appears linear in a log-log plot, and the slope will be used to assess the hierar-
chical organization as the hierarchy parameter ζ. To assess hierarchical structure, we exam-
ined the relationship between the nodal transitivity (clustering coefficient) and nodal degree
(Ravasz & Barabási, 2003):

C kð Þ ¼ kζ ; (20)

where C is the transitivity (clustering coefficient), k is the degree, and ζ represents the extent of
hierarchical organization. To estimate ζ, we used similar curve-fitting methods as in estimating
the compression efficiency gradient. The transitivity C was defined as:

Ci ¼ 2ni
ki ki − 1ð Þ ; (21)

where n is the number of links between the k neighbors of node i. Intuitively, a high ζ value
indicates hierarchical organization with less clustering about central nodes (with higher
degree), and a low ζ value indicates hierarchical organization with more clustering about
central nodes (with higher degree).

Network Null Models

Random graphs are commonly used in network science to test the statistical significance of
the role of some network topology against null models. We used randomly rewired graphs

Network Neuroscience 262

Efficient coding in the economics of human brain connectomics



generated by shuffling each individual’s empirical networks 20 times, as in prior work
(Maslov & Sneppen, 2002). Furthermore, we generated Erdős-Rényi random networks for
each individual brain network where the presence or absence of an edge was generated
by a uniform probability calculated as the density of edges existing in the corresponding brain
network. Edge weights were randomly sampled from the edge weight distribution of the brain
network. While the randomly rewired graphs retain empirical properties such as the degree
and edge weight distributions of the individual brain networks, the Erdős-Rényi networks do
not. Hence, the randomly rewired null network was used in all analyses where the degree
distribution should be retained (e.g., normalized rich-club coefficient), while the Erdős-Rényi
network was used in analyses assessing the overall contribution of the brain network topology
(e.g., compression efficiency). We used the Erdős-Rényi networks as the null network for two
reasons. First, Erdős-Rényi networks are particularly appropriate for comparing the random
walk model to the alternative shortest path routing model. Prior work found that Erdős-Rényi
were networks with very high global efficiency, though the networks were biologically
implausible due to their connection costs (Sporns, 2013). Thus, the Erdős-Rényi networks
serve as a benchmark for a communication architecture supporting highly efficient shortest
path routing.

Second, we chose to use Erdős-Rényi networks because we sought to compare random
walk communication on brain network connectivity to random walk communication on
synthetic networks that optimally minimize our distortion function—that is, maximizing the
shortest path probability (Goñi et al., 2013). In doing so, we can address the major criticism
of the plausibility of random walk models: inefficiency (Avena-Koenigsberger et al., 2018).
Prior work compared random walks dynamics on canonical graph models, finding that the
Erdős-Rényi networks had the highest probability of shortest path propagation (Goñi et al.,
2013). Thus, we expected that the Erdős-Rényi networks would approximate a limit on the
efficiency for random walk communication dynamics according to the rate-distortion model.
Compared to this approximate limit of efficiency, we aimed to show that biological invest-
ments in brain network communication modeled using random walks could indeed be
efficient. Moreover, we aimed to show that inefficiency, when viewed in the light of the bio-
logically established efficient coding framework, uses the redundancy of communication to
overcome noise introduced by intrinsic stochasticity of neural processes to balance the trans-
mission fidelity and lossy compression of information (Barlow, 1961).

Our tests using the randomly rewired network evaluate the null hypothesis that an apparent
rich-club property of brain networks is a trivial result of topology characteristic of random
networks with some empirical properties preserved, as in prior work (Colizza et al., 2006;
van den Heuvel & Sporns, 2013). The alternative hypothesis is that the brain network has a
rich-club organization beyond the level expected in the random networks. Our tests using the
Erdős-Rényi network evaluate the null hypothesis that the rates in the rate-distortion function
modeling information processing capacity in brain networks does not differ from the rates in
the rate-distortion function of random networks. The alternative hypothesis is that the rate of
the brain network’s rate-distortion function differs from that of random networks, consistent
with the notion that Erdős-Rényi networks have a greater prevalence of shortest paths com-
pared to brain networks. We additionally used the Erdős-Rényi network to assess the hypoth-
esis of rate-distortion theory that synthetic networks should exhibit the same information
processing trade-offs (the monotonic rate-distortion gradient) as empirical brain networks
(Sims, 2018). We selected Erdős-Rényi networks to assess these hypotheses for two reasons.
First, Erdős-Rényi networks do not retain core architectures of brain networks, such as modu-
larity, and therefore reflect an extreme synthetic network. Second, Erdős-Rényi networks are
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commonly used as a benchmark for assessing shortest path prevalence due to the prominence
of uniformly distributed direct pairwise connections (Avena-Koenigsberger et al., 2018;
Sporns, 2013). In light of the central assumption that shortest paths represent the route of high-
est signal fidelity in our definition of distortion, we used Erdős-Rényi networks to verify our
intuition that compression efficiency should be greater in the Erdős-Rényi network than in
brain networks.

Scale-free networks have a degree distribution resulting in a subset of highly connected
hubs. Prior work established that global transitivity decreases exponentially with network
size in a scale-free network, but that networks that are scale-free and have hierarchical
organization can decouple transitivity from size. We created nonhierarchical scale-free
networks using the Barabási-Albert algorithm (with the preferential attachment parameter
set to 1 for linear preferential attachment) and reevaluated whether the structural brain net-
works with hierarchical organization similarly decoupled transitivity and size (Barabási &
Albert, 1999). Decoupling transitivity and size allows for simultaneously high levels of tran-
sitivity despite large size. In the context of efficient coding theory, we chose to compare the
global transitivity of structural brain networks with scale-free networks across five network
sizes to examine if hierarchical organization in the human structural brain networks confers
a similar outcome.

Statistical Analyses

To assess the covariation of our measurements across individuals and brain regions, we
used generalized additive models (GAMs) with penalized splines. GAMs allow for statisti-
cally rigorous modeling of linear and nonlinear effects while minimizing over-fitting (Wood,
2004). Throughout, the potential for confounding effects was addressed in our model by
including covariates for age, sex, age-by-sex interaction, network degree, network density,
and in-scanner motion. Due to the likelihood of inflated estimates of brain–behavior asso-
ciations despite well-powered analyses (Marek et al., 2020), we report bootstrap 95%
confidence intervals for the test statistic and adjusted R2 of each model across 1,000 boot-
strap samples.

Metabolic running costs associated with brain network architectures. We used penalized splines
to estimate the nonlinear developmental patterns of global efficiency (Equation 4) and CBF,
as in prior work (Baum et al., 2017; Satterthwaite, Shinohara, et al., 2014). Then, we assessed
the partial correlation between the residual variance (unexplained by covariates of age, sex,
age-by-sex-interaction, degree, density, and motion) of global efficiency and CBF. The final
models can be written as:

Global efficiency ∼ spline ageð Þ þ sex þ spline age by sexð Þ
þ degreeþ density þmotion;

(22)

CBF∼ spline ageð Þ þ sex þ spline age by sexð Þ þ degreeþ density þmotion; (23)

and

Residual Global efficiencyð Þ∼ residual CBFð Þ: (24)

To evaluate the importance of age as a confound for the relationship between global effi-
ciency and CBF, we also performed sensitivity analyses by removing selected covariates and
reassessing the model. In addition, for consistency with prior work (Várkuti et al., 2011), we
performed the same analysis including covariates for gray matter volume and density.
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To assess the relationship between CBF and the strength of structural paths supporting ran-
dom walks (Equation 6), we again used penalized splines. The final model can be written as:

CBF∼ path strengthþ spline ageð Þ þ sex þ spline age by sexð Þ
þ degreeþ density þmotion:

(25)

Assessments of path strengths were corrected for false discovery rate across the statistical
tests performed over the discrete path lengths.

Trade-offs between modularity and random walk architecture. Next, we sought to evaluate the
metabolic running cost of brain network properties, in line with calls for investigation of the
economic landscape of resource-constrained trade-offs between hallmark brain network archi-
tectures such as modularity (Equation 9) and new measures of brain network organization
(Bullmore & Sporns, 2012). Following our findings that CBF is associated with structural prop-
erties supporting random walks, we investigated path transitivity (Equation 8). We continued to
use penalized splines to model the nonlinear patterns of CBF and brain properties of interest.
The final model can be written as:

CBF∼ path transitivity þmodularity þ path transitivity by modularity
þ spline ageð Þ þ sex þ spline age by sexð Þ þ degreeþ density þmotion:

(26)

To visualize the landscape of CBF as a function of modularity and path transitivity, we plot-
ted the GAM model response function. We described the distribution of modularity and path
transitivity across individuals using frequency histograms. We calculated a map of change in
global CBF with respect to both modularity and path transitivity using first-order derivatives. A
saddle point suggests that adaptive compromises in network architecture are constrained by
dual objectives. To quantify the location of the saddle point coordinate within the change
map, we performed a k-nearest neighbor search of the value 0 in the gradient of first-order
derivatives indicating minima and maxima.

Compression efficiency and development. To assess the possibility of distinct compression effi-
ciency of brain networks compared to random networks, we calculated the resource efficiency
(Equation 12) at 14 levels of distortion and performed an analysis of variance (ANOVA) test.
The ANOVA model can be written as:

Resources∼ distortionþ type of network; (27)

where the type of the network is a categorical variable designating if the network was a brain
network or a random network.

To compute compression efficiency per individual brain network, we used a polynomial
regression function to find the best linear fit to the monotonic rate-distortion function accord-
ing to the prediction of a linear rate-distortion gradient in semilog space (log(resources) as a
function of distortion). Next, we used a GAM model to assess the nonlinear patterns of com-
pression efficiency in development, which we can formally write as follows:

Compression efficiency ∼ spline ageð Þ þ sex þ spline age by sexð Þ
þ degreeþ density þmotion:

(28)

To quantify the differences between the resources calculated from resource efficiency and
the compression efficiency across 14 levels of distortion, we performed two-sample t tests
while controlling for family-wise error rate across multiple comparisons. For each level of
distortion, we calculated the t-statistic comparing all individual resources to all individual
resources predicted by the linear rate-distortion gradient.
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Compression efficiency of biased random walks. To compute the compression efficiency of
metabolic diffusion and electrical signaling, we modified the model of Equation 27 to instead
calculate resource efficiency using the biased random walk matrices from Equation 17. The
model can be written:

Resources∼ distortionþ type of random walkþ distortion by type of random walk; (29)

where the type of random walk is a categorical variable designating unbiased random walks
using the structural network, biased random walks using the structural network biased with
CBF, and biased random walks using the structural network biased with intracortical myelin.
To assess the hypothesis that resources differ according to the type of random walk, we
performed t tests while controlling for family-wise error rate across multiple comparisons.

Compression efficiency in a low-or high-fidelity regime. Next, we sought to test the predictions of
a high- or low-fidelity communication regime. In a high-fidelity regime, minimum resources
given an expected distortion should increase monotonically as a function of network complex-
ity. To assess whether the relationship between resources and network complexity (operation-
alized here as network size) is monotonic, we used a linear model written as:

Log2 resourcesð Þ∼ log10 network sizeð Þ: (30)

In a low-fidelity regime, minimum resources given an expected distortion should plateau as
a function of complexity. We hypothesized that path transitivity is a property of structural
networks that supports lossy compression and storage savings. The complexity of the shortest
path was defined as the number of nodes contributing to path transitivity (Equation 8). To
assess whether the resources nonlinearly plateau as a function of shortest path complexity,
we used a GAM model written as follows:

Log2 resourcesð Þ∼ spline shortest path complexityð Þ: (31)

In light of our interest in network size and shortest path complexity (path transitivity) as mea-
surements of high- and low-fidelity regimes,wenext sought tomeasure hierarchical organization.
Networks that are scale-free and have hierarchical organization can achieve simultaneously
high network size and transitivity (Ravasz & Barabási, 2003). To assess whether hierarchical
modularity supports a high-fidelity regime, we used a linear model written as follows:

Log2 resourcesð Þ∼ hierarchical modularity: (32)

We next evaluated whether brain structural networks with hierarchical modularity and the
scale-free property achieved greater transitivity than random networks with only the scale-free
property, as predicted by prior findings (Ravasz & Barabási, 2003). To evaluate the differences
in transitivity according to the network properties of hierarchical organization and the scale-
free property, we used the ANOVA model written as:

Global transitivity ∼ network sizeþ type of network; (33)

where the type of network is a categorical variable designating either the human brain struc-
tural network or the Barabási-Albert scale-free network.

Compression efficiency and patterns of neurodevelopment. To explore how compression effi-
ciency might relate to patterns of cortical myelination and areal scaling, we assessed the
Spearman’s correlation coefficient between myelination or scaling and send or receive com-
pression efficiency. We also assessed the relationship between cortical areal scaling and nodal
transitivity, in light of our hypothesis that greater path transitivity may support greater fidelity
and the efficient coding hypothesis, which states that the organization of the brain allocates
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neural resources according to the physical distribution of information. To further test corre-
spondence between brain maps, we used a spatial permutation test, which generates a null
distribution of randomly rotated brain maps that preserve the spatial covariance structure of
the original data (Alexander-Bloch et al., 2018). Using spatially constrained null models is the
state-of-the-art for comparing brain maps (Alexander-Bloch et al., 2018). We used a spin test
variant that reassigns parcels with no duplication. This method implements an iterative proce-
dure that uniquely assign parcels based on Euclidean distance of the rotated parcels, ignoring
the medial wall and its location (Váša et al., 2018). Our choice of null model introduces a
trade-off between permitting slightly more liberal critical thresholds than other spatially con-
strained null models and retaining the exact distribution of the original brain map to better test
network-based statistics like compression efficiency and transitivity (Markello & Misic, 2021).
We refer to the p value of this statistical test as pSPIN. Finally, we applied the conservative
Holm–Bonferroni correction for family-wise error across these tests.

Compression efficiency and rich-club hubs. Given the assumed integrative and broadcasting
function of rich-club hubs, we sought to evaluate whether compression efficiency differed
in rich-club hubs compared to other brain regions. We used the Wilcoxon rank-sum test to
compare regional compression efficiency of either receiving or sending messages. Moreover,
we assessed whether there was a difference between CBF in the rich-club hubs compared to
other brain regions. Lastly, we tested the correlation of ompression efficiency in the rich-club
hubs and other brain regions with cognitive efficiency. To model nonlinear patterns of cogni-
tive efficiency, we used penalized splines controlling for potentially confounding covariates.
The final model can be written as:

Cognitive efficiency ∼ compression efficiency þ spline ageð Þ
þ sex þ spline age by sexð Þ þ degreeþ density þmotion:

(34)

Due to previous report of the relationship between cognition and global efficiency (Equation 1),
we determined that compression efficiency and global efficiency were not collinear and there-
fore conducted a sensitivity analysis including global efficiency as a covariate. The model was
written as:

Cognitive efficiency ∼ compression efficiency þ global efficiency
þ spline ageð Þ þ sex þ spline age by sexð Þ þ degreeþ density þmotion:

(35)

Code Availability

Code can be found at https://github.com/dalejn/economicsConnectomics.

Data Availability

Neuroimaging and cognitive test data were acquired from the Philadelphia Neurodevelopmen-
tal Cohort. The data reported in this paper have been deposited in the database ofGenotypes and
Phenotypes under accession number dbGaP: phs000607.v2.p2 (https://www.ncbi.nlm.nih.gov
/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v2.p2). The allometric cortical scaling
maps were downloaded from a NeuroVault repository (Reardon et al., 2018) and the cortical
myelin maps were downloaded from a public resource (Glasser & Van Essen, 2011).

Citation Diversity Statement

Recent work in several fields of science has identified a bias in citation practices such that
papers from women and other minority scholars are under cited relative to the number of such
papers in the field (Bertolero et al., 2020; Caplar, Tacchella, & Birrer, 2017; Chatterjee &
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Werner, 2021; Dion, Sumner, & Mitchell, 2018; Dworkin et al., 2020; Fulvio, Akinnola, & Postle,
2021;Maliniak, Powers, &Walter, 2013;Mitchell, Lange, &Brus, 2013; X.Wang et al., 2021).Here
we sought to proactively consider choosing references that reflect the diversity of the field in
thought, form of contribution, gender, race, ethnicity, and other factors. First, we obtained the pre-
dicted gender of the first and last author of each reference by using databases that store the
probability of a first name being carried by a woman (Dworkin et al., 2020; Zhou et al., 2020).
By this measure (and excluding self-citations to the first and last authors of our current paper),
our references contain 18.07% woman (first)/woman(last), 5.75% man/woman, 23.33%
woman/man, and 52.85% man/man. This method is limited in that (1) names, pronouns, and
social media profiles used to construct the databases may not, in every case, be indicative of
gender identity and (2) it cannot account for intersex, nonbinary, or transgender people. Second,
we obtained predicted racial/ethnic category of the first and last author of each reference by
databases that store the probability of a first and last name being carried by an author of color
(Ambekar, Ward, Mohammed, Male, & Skiena, 2009; Sood & Laohaprapanon, 2018). By this
measure (and excluding self-citations), our references contain 7.38% author of color (first)/author
of color (last), 12.18% white author/author of color, 24.82% author of color/white author, and
55.62% white author/white author. This method is limited in that (1) names and Florida Voter
Data to make the predictions may not be indicative of racial/ethnic identity, and (2) it cannot
account for Indigenous and mixed-race authors, or those who may face differential biases due to
the ambiguous racialization or ethnicization of their names. We look forward to future work that
could help us to better understand how to support equitable practices in science.
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