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Ecosystem groundwater use enhances carbon assimilation and tree growth 
in a semi-arid Oak Savanna 

Sophie Ruehr a,b,*, Manuela Girotto a, Joseph G. Verfaillie a, Dennis Baldocchi a, Antione Cabon c, 
Trevor F. Keenan a,b 

a UC Berkeley Department of Environmental Science, Policy and Management, Berkeley, CA, USA 
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c Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Groundwater 
Carbon cycling 
Plant hydraulics 
Dendrochronology 
Machine learning 

A B S T R A C T   

Ecosystem reliance on groundwater, defined here as water stored in the saturated zone deeper than one meter 
beneath the surface, has been documented in many semi-arid, arid, and seasonally-dry regions around the world. 
In California, groundwater sustains ecosystems and mitigates mortality during drought. However, the effect of 
groundwater on carbon cycling still remains largely unresolved. Here we use 20 years of eddy covariance, 
groundwater, and tree growth measurements to isolate the impact of groundwater on carbon cycling in a semi- 
arid Mediterranean system in California during the summer dry season. We show that daily ecosystem 
groundwater use increases under positive groundwater anomalies and is associated with increased carbon 
assimilation and evapotranspiration rates. Negative groundwater anomalies result in significantly reduced 
ecosystem groundwater uptake, gross primary productivity, and evapotranspiration, with a simultaneous in
crease in water use efficiency. Three machine learning algorithms better predict gross primary productivity and 
tree growth anomalies when trained using groundwater data. These models suggest that groundwater has a 
unique effect on carbon assimilation and allocation to woody growth. After controlling for the effect of soil 
moisture, which is often decoupled from groundwater dynamics at the site, wet groundwater anomalies increase 
canopy carbon assimilation by 179.4 ± 25.7 g C m− 2 (17 % of annual gross primary productivity) over the course 
of the summer season relative to dry groundwater anomalies. Similarly, annual tree growth increases by 0.175 ±
0.035 mm (17.7 % of annual growth) between dry and wet groundwater anomalies, independent of soil moisture 
dynamics. Our results demonstrate the importance of deep subsurface water resources to carbon assimilation and 
woody growth in dryland systems, as well as the benefits of collocated, long-term eddy covariance and ancillary 
datasets to improve understanding of complex ecosystem dynamics.   

Key points 

Long-term eddy covariance flux and ancillary data enable detec
tion of ecosystem reliance on groundwater 

High rates of ecosystem groundwater use correspond to increased 
evapotranspiration and carbon assimilation 

Observations of groundwater anomalies improve machine 
learning algorithm prediction of carbon assimilation and tree 
growth 

Wet groundwater conditions directly increased annual carbon 

assimilation and tree growth increased by 19.9 % and 17.7 %, 
respectively, compared to dry conditions 

Data availability 

Tonzi Ranch eddy covariance flux tower and groundwater datasets 
are available through the AmeriFlux server at https://ameriflux. 
lbl.gov/doi/AmeriFlux/US-Ton/. Dendrochronology data are 
available at https://datadryad.org/stash/dataset/doi:10.5061/ 
dryad.15dv41nzt. Additional groundwater data spanning 2000- 
2022 from a Calfironia Department of Water Resources well 
(#07N08E36B001M) are available at https://wdl.water.ca.gov/. 
Reconstructed terrestrial water storage time series are available at 
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http://doi.org/10.5905/ethz-1007-85. TerraClimate historic 
monthly climate and climatic water balance data are available at 
https://doi.org/10.7923/G43J3B0R.   

1. Introduction 

Access to groundwater by plants is often ignored by earth system 
models that compute fluxes of water and carbon. Since 1900, terrestrial 
ecosystems have sequestered enough carbon via photosynthesis to avoid 
85 ppm (187 Pg) of additional atmospheric CO2 and 0.3 ◦C of warming 
(Shevliakova et al., 2013). The strength of the terrestrial carbon sink is 
limited by water resources, like soil moisture, which can become 
depleted during drought (Green et al., 2019; Stocker et al., 2018). Many 
terrestrial ecosystems rely also on groundwater, which is water stored in 
the saturated zone, typically greater than one meter (m) below the 
surface in dryland systems, or in fractured bedrock. Groundwater is 
often recharged by subsurface lateral flow and can become decoupled 
from shallower soil moisture in the vadose zone (<1 m deep) (Maxwell 
et al., 2014). Therefore, groundwater may provide an alternative water 
source to vegetation during drought, allowing terrestrial ecosystems to 
survive and continue assimilating carbon even under dry soil moisture 
conditions (Chitra-Tarak et al., 2021; Neumann and Cardon 2012; Yan 
and Dickinson 2014; Meyers et al., 2021; Baldocchi et al., 2021). 

Climate change is increasing the frequency and intensity of extreme 
weather events, including regional drought in the western United States 
(Zhang et al., 2021). Drought diminishes the ability of vegetation to 
sequester carbon, resulting in a positive feedback to climate change 
(Anderegg et al., 2015; Xu et al., 2019), especially in semi-arid regions, 
where ecosystems are highly sensitive to soil water availability (Li et al., 
2022). As semi-arid regions account for a large portion of inter-annual 
variability in the terrestrial carbon sink, improved understanding of 
groundwater reliance in semi-arid systems will benefit carbon cycle 
modeling (Ahlström et al., 2015; Humphrey et al., 2018), as well as 
understanding ecosystem responses to drought (Mu et al., 2021) and 
mortality events (Goulden and Bales 2019; Kibler et al., 2021). 

Access to groundwater depends largely on below-ground structure, 
including bedrock fracturing, impermeable clay layers, and soil char
acteristics. Rooting depth and distribution, for example, determines 
access to subsurface water resources and is highly correlated with 
climate (Tumber-Dávila et al., 2022; Canadell et al., 1996). Semi-arid, 
arid and seasonally-dry climates maintain greatest maximum rooting 
depths (Fan et al., 2017; Canadell et al., 1996). Although the majority of 
roots are constrained to the top 2 m of the soil column in many systems 
(Jackson et al., 1996), a small but important fraction of plant roots ex
ceeds 2 m and may extend to >60 m in some regions (Fang et al., 2017; 
Yang et al., 2016; Canadell et al., 1996), allowing plants to tap into deep 
water sources during drought (Chitra-Tarak et al., 2021; McCormick 
et al., 2021). Deep tap roots have up to 38 times greater hydraulic 
conductivity than shallow roots and can efficiently redistribute large 
volumes of water upwards (McElrone et al., 2004). Plant hydraulic 
redistribution between deep and shallow roots maintains plant func
tionality during periods of water stress (Mu et al., 2021) or dry seasons 
(Neumann and Cardon 2012) and may benefit the water and nutrient 
budget of entire ecosystems (Burgess et al., 1998). Recent work has even 
suggested that 37 % of vegetated surfaces on Earth access water re
sources >2 m deep (Stocker et al., 2023). However, rooting behavior 
remains exceedingly challenging to quantify over larger spatial extents, 
with different methods suggesting divergent estimates of rooting depth 
(Liu et al., 2021; Stocker et al., 2023). 

Remote sensing and eddy covariance flux data have been used to 
examine ecosystem dependence on groundwater and how these re
lationships depend on plant hydraulic traits (Thompson et al., 2011; 
Orellana et al., 2012; Anderegg et al., 2018, 2020; Ma et al., 2016). 
Terrestrial water storage, a proxy of total water in the soil column 

including groundwater, influences growing season dynamics (Geruo 
et al., 2020), and many regions in the continental United States with 
shallow soils regularly use water stored in fractured bedrock (McCor
mick et al., 2021). Mass forest mortality events in the Sierra Nevada 
have also been linked to long term depletion of groundwater resources 
(Goulden and Bales 2019), suggesting widespread use of bedrock water 
in mitigating drought-induced mortality. Groundwater data collected at 
high temporal resolution suggest ecosystem reliance on groundwater 
comprises a significant portion of evapotranspiration (ET) in 
seasonally-dry sites (Butler et al., 2007; Steven et al., 2005; Miller et al., 
2010; Ridolfi et al., 2006; Baldocchi et al., 2021). Previous studies that 
parameterized groundwater in models found groundwater influences 
evapotranspiration rates, with an increase in evapotranspiration (Lee 
et al., 2005; Maxwell and Condon 2016), and optimizing rooting depth 
can improve terrestrial biosphere model predictions of carbon assimi
lation rates (Kleidon and Heimann, 1998b). ET increased by ∼40 %, 
with a simultaneous increase in ecosystem productivity, over the 
Amazon when hydraulic redistribution was parameterized in coupled 
atmospheric circulation and hydrology models (Lee et al., 2005; 
Maxwell and Condon 2016). However, coupling groundwater and land 
surface models is computationally costly and to date has been accom
plished only at regional scales (Maxwell and Condon 2016). 

Ecosystem reliance on groundwater specifically for carbon assimi
lation and woody growth remains highly uncertain. Groundwater- 
vegetation relationships are challenging to quantify due to a dearth of 
reliable groundwater datasets, long term records, and rooting depth 
measurements (Dawson et al., 2020). Therefore, 
groundwater-vegetation dynamics are typically not included in most 
global climate models and reanalysis systems (Roebroek et al., 2020). 
For example, in MERRA-2, a global reanalysis system that provides 
gridded estimates of land surface and atmospheric variables, the rooting 
zone is constrained to 1 m depth, precluding meaningful representation 
of groundwater-vegetation relationships, which may occur much deeper 
underground (Draper et al., 2018; Gelaro et al., 2017; ; Kleidon and 
Heimann, 1998a, 1998b). Furthermore, groundwater-vegetation dy
namics vary over space by plant functional type, landscape positioning, 
and underlying soil, water table and bedrock structure (Geruoa et al., 
2015; Roebroek et al., 2020; Koirala et al., 2017; Fang et al., 2017), 
resulting in heterogeneity that poses challenges for quantifying terres
trial ecosystem dependence on groundwater across spatial scales 
(Dawson et al., 2020; McCormick et al., 2021). In addition, most studies 
regarding groundwater-vegetation relationships have relied on static 
maps of water table depth (WTD, the depth below the surface of the 
saturated aquifer) that do not account for inter-annual variation in 
groundwater availability (Roebroek et al., 2020; Koirala et al., 2017). 
WTD varies seasonally and from year to year, which may determine 
whether plants can access water resources (McCormick et al., 2021). 
Another challenge is delineating the effect of groundwater from soil 
moisture, both of which are highly coupled in many ecosystems. Finally, 
few studies have explicitly considered how groundwater conditions 
affect carbon assimilation rates and long-term carbon sequestration in 
vegetation; therefore, the effect of groundwater on the carbon cycle 
remains largely unresolved. 

In this study, we synthesize several independent data streams from 
Tonzi Ranch, an AmeriFlux core site (US-Ton), which has been opera
tional since 2001. Measuring fluxes over a semi-arid woody savanna in 
the foothills of the Californian Sierra Nevada, US-Ton is a well- 
instrumented site that is representative of the region, where collocated 
groundwater, tree growth, and eddy covariance flux tower data provide 
an opportunity to explore dynamics between groundwater and 
ecosystem carbon cycling. The long-term dataset offers an opportunity 
to examine ecosystem dependence on groundwater independent from 
soil moisture dynamics, which have been inferred but not explicitly 
quantified at the site in previous studies. 

We hypothesize that plant-accessible groundwater sustains 
ecosystem function under soil moisture drought. We expect that 

S. Ruehr et al.                                                                                                                                                                                                                                   

http://doi.org/10.5905/ethz-1007-85
https://doi.org/10.7923/G43J3B0R


Agricultural and Forest Meteorology 342 (2023) 109725

3

enhanced groundwater-derived transpiration corresponds to less con
servative water use strategies in which the ecosystem fixes more carbon 
while maintaining lower water use efficiency. We also expect that 
groundwater measurements will improve model predictions of carbon 
fixation and respiration and tree growth rates. Finally, we hypothesize 
positive groundwater anomalies and increased groundwater use will 
increase carbon assimilation and respiration and tree growth relative to 
groundwater drought. 

2. Site description 

Tonzi Ranch is a Mediterranean oak savanna in the foothills of the 
Sierra Nevada, California. The site is dominated by blue oak (Quercus 
douglasii) and some gray pine (Pinus sabiniana) (Osuna et al., 2015). The 
under story is a mixture of C3 grasses (Brachypodium distachyon, Hypo
chaeris glabra, Bromus madritensis) that green during the rainy season in 
the winter (November-March). These grasses desiccate as soil moisture 
is depleted over the course of the dry season, which typically spans May 
to October. The shallow soil (< 1 m) is underlain by fractured bedrock 
(Koteen et al., 2015), which stores water that trees access through deep 
tap roots (Miller et al., 2010; McCormick et al., 2021). Older and larger 
trees at Tonzi maintain a narrow, deep rooting system, suggesting root 
penetration through bedrock (Raz-Yaseef et al., 2013). The mean depth 
to the saturated zone (i.e., water table depth, WTD) at Tonzi Ranch is –8 
m below the surface, with a range of –10.9 to –2.2 m over the course of 
the time series (2001-present, Fig. S1). Anthropogenic, tidal, atmo
spheric pressure, and temperature effects were previously determined to 
have little effect on diel groundwater variations at the site (Miller et al., 
2010). The aquifer is recharged by a combination of precipitation and 
lateral flow from snow melt in the Sierra (Ma et al., 2016). 

Booms and busts in rainfall have resulted in a system well-adapted to 
seasonal drought (Ma et al., 2016). Groundwater-derived transpiration 
has been documented at the site: on average 87 mm of 420 mm (21 %) of 
total annual ET is derived from groundwater (Baldocchi et al., 2021). 
Isotope studies at the site suggest >80 % of evapotranspiration is 
derived from subsurface waters during the dry summer months (Miller 
et al., 2010), and groundwater controls leaf water potentials throughout 
the dry season (Osuna et al., 2015). Tonzi Ranch is representative of 
other groundwater-dependent ecosystems throughout Mediterranean 
California (Kirchner et al., 2020; Klos et al., 2018; Dawson et al., 2020; 
Meyers et al., 2021), presenting a unique opportunity to isolate the ef
fect of groundwater on regional carbon cycling. 

3. Data and methods 

3.1. Data collection & processing 

Eddy covariance measurements collected at 30-minute intervals 
from Tonzi Ranch span 2001 to May 2022. Variables measured at the 
flux tower include incoming photosynthetic flux density (PPFD, µmol 
Photon m− 2 s− 1), vapor pressure deficit (VPD, hPa), air temperature 
(TA, C), precipitation (PRECIP, mm) and soil moisture at 10, 20 and 30 
cm depth, which were averaged to obtain soil water content (SWC,%). 
Estimates of gross primary productivity (GPP, g C m− 2 day− 1) and 
ecosystem respiration (RECO, g C m− 2 day− 1) were derived with the 
eddy covariance method via nighttime partitioning (Baldocchi 2003). 
Water use efficiency (WUE) is the ratio of carbon gained to water lost via 
latent heat flux in an ecosystem (GPP/ET). Data were downloaded from 
the AmeriFlux BASE product, using the principal investigator’s gap 
filling and quality control procedures (GPP_PI_F and RECO_PI_F), which 
exclude values outside of valid ranges or conditions that fail to meet the 
turbulent conditions necessary for eddy covariance (Ma et al., 2023). At 
Tonzi Ranch, gap filling is at a minimum during the dry season, with a 
maximum of 10 % (in May) and a mean of 6.5 % of gap filled data. Gap 
filled data correlate well with known measurements; therefore, gap 

filled data were included in this study. 
Bimonthly WTD measurements were collected manually from 2006 

to 2022 with a water level meter (Solinst Canada Ltd.). WTD measure
ments were extended to January 2001 via a modeling approach (Sup
plemental Material) using reconstructed terrestrial water storage data 
(Humphrey et al., 2017) and a California Department of Water Re
sources (DWR) well (number 07N08E36B001M) located 7 km southeast 
of the site, which provided biannual WTD data 1955 to present, repre
senting the approximate seasonal cycle of minimum and maximum 
WTD. 30 min WTD measurements were collected with an automatic 
probe (Global Water Instrument, Model WL 16 U) from 2018 to 2022. 
Tree ring data from 20 individuals at the site were collected by Cabon 
et al. (2022) and date back to the mid-1800s (Fig. S3). Together, these 
long time series enable detection of ecosystem reliance on groundwater 
for carbon assimilation and allocation to woody growth (Fig. S1). 

30 min flux tower data were processed to daily time steps by taking 
daily averages, except for GPP and RECO, which were summed daily. 
Bimonthly WTD measurements were linearly interpolated to the daily 
scale. To minimize the confounding effect of soil moisture, data were 
subset to the dry season, which was defined as the period between the 
date of maximum GPP (calculated for each year based on a Tukey 
smooth curve, typically in May) to October 1. Anomalies were calcu
lated using mean day of year values and then normalized by their 
standard deviation to obtain z-scores. 

We used dendrochronology data to quantify the effect of ground
water on carbon sequestration by building tree ring chronologies using 
cross-dated measurements from Quercus douglasii at the site (Cabon 
et al., 2022). We detrended series from individual trees with a spline of 
50 % frequency cutoff of 30 years, which removed tree size, age, and 
low-frequency climate signals. At Tonzi ranch, the chronology is 165 
years long (dating back to 1856), includes 39 individual series, and has a 
signal-to-noise ratio of 13.8 (Cabon et al., 2022). To compare this long 
record with water availability at the site, we used historic estimates 
spanning 1958-present of PPFD, VPD, TA, and SWC derived from the 
TerraClimate dataset, which were bilinearly extracted from the pixel 
over Tonzi (Abatzoglou et al., 2018) (Supplemental Material, Fig. S3). 
Yearly median growth values for the growing season (Februrary-Sep
tember) were calculated across all individuals to reduce noise. The tree 
growth and eddy covariance flux tower data sets represent independent 
estimates of carbon fluxes at Tonzi ranch over different time scales 
(daily vs. annual). 

The following two sections outline methods to test our hypotheses. 
First, we calculate daily ecosystem groundwater use from continuous 
WTD measurements. We then outline three machine learning algorithms 
to predict GPP, RECO and tree growth anomalies and isolate the effect of 
groundwater on carbon cycling. 

3.2. Diurnal groundwater depletion 

Continuous WTD measurements provide insight into daily ecosystem 
groundwater use. Slopes of WTD drawdown and recharge between 
diurnal minima and maxima can be used to approximate daily 
ecosystem groundwater use following the White method (Steven et al., 
2005; Butler et al., 2007). Taking the difference between rates of 
recharge at night and drawdown during the day allows for approxima
tion of ecosystem groundwater usage (Fig. 2). Tg (mm day− 1), the daily 
vegetative groundwater uptake, can be approximated from diurnal 
fluctuations (Steven et al., 2005): 

Tg = Sy ∗
(Δsday

t
+R

)

where Sy is the specific yield (estimated for this site to be 0.056, 
dimensionless) (Miller et al., 2010), Δsday is the difference (mm) be
tween maximum and minimum WTD from 6:00 to 15:00, t is the time 
(hours) between these time steps, and R is the rate (mm hr− 1 ) of recharge 
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between 22:00 and 5:00. Recharge is likely driven by snowmelt from the 
Sierra Nevada (Ma et al., 2016). Fig. 2 shows time series of continuous 
WTD measurements during the dry season and over the course of a week 
in June 2020. 

The White method relies on the following assumptions: (1) daytime 
water draw down is the sum of recharge and depletion by the ecosystem, 
(2) plants are not drawing water from groundwater during the night, (3) 
the rate of recharge is constant throughout both day and night, and (4) 
the specific yield can be determined (Loheide II, Butler Jr., and Gorelick 
2005). Trees may continue redistributing water from deeper water 
sources during the night via hydraulic redistribution (Lee et al., 2005). 
This would result in a depressed recharge rate at nighttime and smaller 
total Tg. The values of Tg presented herein are potentially an underes
timate and ecosystem use of groundwater may be even higher than 
calculated if hydraulic redistribution occurs. The White method has 
been used previously at Tonzi Ranch by Miller et al. (2010), who showed 
that atmospheric pressure, nearby water bodies, and anthropogenic 
pumping have no effect on continuous WTD measurements at the site 
(Miller et al., 2010). 

Tg can be used to explore ecosystem reliance on groundwater for 
both carbon assimilation and transpiration. 

3.3. Statistical methods 

To isolate the effect of WTD on carbon cycling, three machine 
learning algorithms of varying complexity were trained to predict GPP, 
RECO and tree growth anomalies. The algorithms included a random 
forest (RF), neural network (NN), and generalized additive model 
(GAM). Using a variety of models provides improved prediction power 
as well as insight into model structure and variable importance. For each 
algorithm, two models were trained: one including (FULL) and one 
without (No-WTD) WTD anomaly data. Both the FULL and No-WTD 
models included PPFD, SWC, TA and VPD training data. GPP (GPPr), 
RECO (RECOr), and growth (Growthr) residuals were calculated by 
subtracting observed from predicted GPP, RECO and growth anomalies 
from the No-WTD models. GPPr, RECO (RECOr), and Growthr therefore 
correspond to the isolated effect of WTD on GPP, RECO and tree growth, 
respectively, with the assumption that no other variables besides PPFD, 
VPD, SWC, and TA affect carbon cycling. FULL models provide infor
mation about the importance of WTD in predicting carbon assimilation, 
respiration, and sequestration at the site when compared to No-WTD 
models. Further discussion on GAM and NN model structure and 
training is provided in the Supplemental Material. 

Random forest (RF) algorithms were trained using the randomForest 
package in R, and hyperparameter tuning was accomplished with a grid 
search with 500, 500 and 50 trees for the GPP, RECO and tree growth 
datasets, respectively, using the ranger package in R to optimize mini
mum node size and sample size. Trees were trained on a random 80 % 
sample of data. RF models are less prone to overfitting than other model 
approaches by using a bootstrap bagging approach (Breiman 2001). 
Variable importance values for the RFs were determined by their mean 
positioning within the RF trees, with variables closer to initial nodes 
receiving higher importance. 

4. Results and discussion 

4.1. WTD and SWC decoupling 

Given the lack of precipitation in the summer months, WTD vari
ability exceeds SWC variability in the dry season. Soil moisture and 
groundwater have different temporal and seasonal dynamics, with soil 
moisture beginning to decline in late April, before WTD reaches its peak 
in early June (Figs. S1 and S2). Daily soil moisture and WTD anomalies 
are largely decoupled during the dry season (R2 = 0.14) when precipi
tation is rare, maintaining dry surface conditions, while lateral flow 
from melting snow pack in the Sierra Nevada replenishes groundwater 

(Baldocchi et al., 2021; Ma et al., 2016). Fig. 1 shows the extent of 
decoupling between WTD and SWC anomalies each year during the dry 
season. SWC anomalies often plateau near 0 (reaching average condi
tions) in the late summer as the shallow soil column desiccates, while 
WTD anomalies often remain larger in magnitude throughout the dry 
season. For example, in 2017, WTD anomalies were positive, while SWC 
anomalies remained near 0, suggesting dry to normal soil water condi
tions but wetter-than-average groundwater conditions. This pattern is 
also visible in Figure S2, which shows that WTD has much greater 
variability during the summer than SWC. While SWC and WTD some
times contain overlapping information, WTD also has distinct dynamics 
that may uniquely affect carbon cycling, especially under soil moisture 
drought. 

4.2. Daily WTD use 

Continuous WTD data at the site reveal the ecosystem uses more 
groundwater during periods of greater carbon assimilation and evapo
transpiration (Fig. 3). Linear regressions between daily GPP, ET, and 
WUE all show significant relationships (p<0.01) with daily vegetative 
groundwater uptake (Tg) during the dry season. As these data are 
derived from a variety of soil moisture conditions, the explanatory 
power of Tg on GPP, ET and WUE is only moderate, with R2 values of 
0.182, 0.211, and 0.061, respectively. Generally, larger Tg is generally 
associated with higher ET and GPP, shallower WTD, and lower WUE. 
Alternatively, smaller Tg corresponds to diminished ET and GPP, deeper 
WTD and higher WUE. Differences of GPP, ET and WUE are greater 
between extreme Tg percentiles (0–10 and 90–100 %, representing low 
and high groundwater use, respectively), all of which demonstrate sig
nificant differences (p<0.01) using a Student’s unpaired t-test (Table 1). 
GPP increases by 6.79 ± 0.97 g C m− 2 day− 1 and by 11.96 ± 0.72 g C 
m− 2 day− 1 between extreme low and high Tg and WTD percentiles, 
respectively. ET rates show a similar increase under high WTD and Tg, 
and WUE decreases under high Tg and WTD. Higher rates of ground
water use correspond to a less conservative water use strategy, in which 
WUE is decreased and the system fixes more carbon. 

Low values of Tg under dry WTD conditions suggests diminished use 
of groundwater below a threshold of approximately ∼–8 m, the mean 
WTD over the course of the 20-year time series, corresponding to 
depressed GPP (Fig. 2). This suggests that mean maximum rooting depth 
at Tonzi may be shallower than –8 m, below which individuals have 
difficulty accessing groundwater. Although oaks in California have been 
shown to grow roots up to 21 m deep to reach groundwater, there is 
significant spatial heterogeneity, with rooting depth following the 
capillary fringe just above the water table to avoid anoxic conditions 
(Lewis and Burgy 1964). WUE represents plant strategy to conserve 
water while continuing to fix carbon during periods of water stress and is 
related both VPD and SWC (Peters et al., 2018). The oaks are 
well-adapted to extreme drought and can withstand large negative 
water potential gradients of –6.8 MPa and are able to closely regulate 
transpiration and WUE (Xu and Baldocchi 2003; Chen et al., 2008). Oaks 
opportunistically use groundwater depending on its availability, draw
ing down groundwater more quickly when it is plentiful and conserving 
water during groundwater drought to reach similar fall WTD levels 
regardless of spring WTD (Baldocchi et al., 2021), or when WTD falls out 
of reach (Fig. 2). 

The site exhibits spatially heterogeneous soil depth and bedrock 
structure (Raz-Yaseef et al., 2013), and one WTD probe may not be 
representative of absolute WTD for the entire site. However, the 
continuous probe WTD levels correlate well (R2 = 0.97, data not shown) 
with two other wells nearby within the flux tower footprint, suggesting 
the well is representative of mean relative WTD depth across the 
ecosystem. 
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4.3. Model performance 

GPP, RECO, and tree growth anomaly predictions improved when 
WTD was included (FULL models) for the RF algorithm (Fig. 4, Table 2). 
R2 increased from 0.70 to 0.79, with a decrease in root mean squared 
error (RMSE) of 0.089 (from 0.56 to 0.47) between the No-WTD and 
FULL models, respectively, for GPP. Similarly, R2 increased from 0.72 to 
0.79, with a decrease in RMSE of 0.07 (from 0.55 to 0.48) between the 
No-WTD and FULL models, respectively, for RECO. Linear regression 
slopes between predicted and observed GPP and RECO remained rela
tively unchanged between FULL and No-WTD algorithms. For tree 
growth, R2 increased from 0.72 to 0.80, with an improvement in slope 

from 1.55 to 1.41 and decrease in RMSE of 0.07 (from 0.44 to 0.37), 
between the No-WTD and FULL models, respectively. NN and GAM GPP 
algorithms produced similar results, with increases in R2, decreases in 
RMSE, and little change in slope, between No-WTD and FULL models 
(Fig. S4, Table S1). 

WTD emerged as the second-most important variable in predicting 
GPP and RECO anomalies after SWC in the FULL models, and incorpo
rating WTD led to a decrease in SWC importance from the No-WTD to 
the FULL models. Similar results were found for GPP in the GAM and NN 
algorithms (Fig. 9). These findings suggest that, as expected, WTD and 
SWC are related and contain some overlapping information; however, as 
model predictive ability significantly increased when WTD was included 
for GPP and RECO (p<0.05), WTD also has a unique effect on carbon 
cycling at the site. 

WTD was the third-most important variable in predicting tree growth 
anomalies in the FULL model after VPD and PPFD. SWC importance 
significantly diminished in the FULL models relative to the No-WTD 
models, suggesting SWC and WTD contain overlapping information 
(Fig. 4). This large difference may also be due to a small training dataset 
(n = 58 years) or colinearity between input variables like PPFD and VPD. 
Finally, individual drivers may have diminished effects on tree growth at 
the annual scale (Cabon et al., 2022). Despite these limitations, the RF 
algorithm demonstrated significant improvement in predictive ability 
between No-WTD and FULL models, suggesting that WTD uniquely and 
significantly affects carbon allocation to woody growth at the site. 

Figure S5 shows details of the FULL GAM algorithm smooth terms, a 
visual representation of the relationships between all training variables 
and GPP anomalies. Smooth terms are appropriate given expected re
lationships between GPP and its various drivers. For example, GPP 
saturates at high PPFD, corresponding to a light saturation response, and 

Fig. 1. Dry season water table depth (WTD, blue) and soil water content (SWC, red) scaled Z-score day-of-year anomalies (unitless) by year, 2002–2021. Gray dotted 
lines at y = 0 represent mean conditions for each day of year. r values denote correlation coefficients between WTD and SWC for each year. 

Table 1 
Outcome of Student’s t-tests between extreme negative (0–10 %) and positive 
(90–100 %) WTD and Tg percentiles for GPP, ET and WUE. For WTD, these 
correspond to red and blue boxes in Fig. 3, and for Tg, dark blue and green. 0–10 
% and 90–100 % are mean values of GPP, ET and WUE under extreme negative 
and positive WTD and Tg anomalies, respectively. Δ is the difference in means 
between extreme WTD and Tg percentiles. For Tg, Δ represents the change in 
GPP, ET, and WUE between low and high groundwater use. For WTD, Δ rep
resents the change in GPP, ET, and WUE between periods of dry and wet 
groundwater conditions.   

Variable T-value P-value 0–10 % 90–100 % Δ 

Tg GPP 6.99 <0.001 5.31 12.10 6.79 ± 0.97  
ET 6.78 <0.001 0.28 0.95 0.67 ± 0.10  
WUE –2.82 0.006 21.87 16.20 –5.67 ± 2.01 

WTD GPP 16.66 <0.001 3.54 15.49 11.96 ± 0.72  
ET 14.50 <0.001 0.19 1.40 1.21 ± 0.08  
WUE –6.73 <0.001 26.50 12.29 –14.22 ± 2.11  
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Fig. 2. Continuous water table depth (WTD) levels correspond to groundwater-derived transpiration (Tg). Continuous WTD measurements over a) the dry season by 
day of year (colors mark years from 2018 to 2022) and b) a week in June 2020 (dotted lines mark midnight), with Δsday and R depicted in blue and red, respectively. 
c) WTD vs. Tg, colored by gross primary productivity anomalies (GPP) with a loess smooth (solid black line) and standard error (gray shading). Mean WTD over the 
course of the 20-year time series is –8 m (dashed line), which also corresponds to a threshold below which Tg and GPP anomalies are significantly (p<0.001) 
diminished relative to shallower WTD, suggesting limited access to groundwater. 

Fig. 3. Continuous WTD measurements reveal ecosystem use of groundwater. a) Tg versus GPP with linear regression and colors representing extreme dry (0–10 %, 
red), wet (90–100 %, blue) and normal (11–89 %, gray) WTD anomaly percentiles. b) Boxplot of GPP binned by extreme dry (0–10 %, red), average (50–60 %) and 
extreme wet (90–100 %) WTD percentiles. c) GPP binned by Tg percentiles of low (0–10 %, dark blue), average (50–60 %, gray) and high (90–100 %, green) 
groundwater use. d and g) Same as a), but for ET and WUE, respectively. e and h) Same as b), but for ET and WUE, respectively. f and i) Same as c), but for ET and 
WUE, respectively. For box plots, thick lines mark median, boxes represent interquartile range, and whiskers show 5 and 95 percentiles. 
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high TA and VPD correspond to depressed GPP, as expected under 
stressful conditions (Farquhar et al., 1980). These smooth terms suggest 
that the model correctly identifies physiological relationships and in
creases confidence in its output. WTD and SWC smooth terms have 

similar shapes, with GPP anomalies increasing with increasing WTD and 
SWC, and a saturating effect at high positive anomalies. Extreme posi
tive WTD and SWC anomalies led to a slight decrease in GPP, potentially 
indicating saturated anoxic root conditions that limit carbon assimila
tion (Skelton et al., 2021). 

4.4. WTD dependency 

With the assumption that no other variables drive carbon cycling at 
the site besides VPD, PPFD, SWC, TA and WTD, GPPr, RECOr and 
Growthr represent isolated relationships between GPP, RECO, tree 
growth and WTD. Fig. 4 (rightmost column) shows GPPr, RECOr and 
Growthr versus negative, median, and positive WTD anomalies. For all 
variables, No-WTD RF model residuals suggest that WTD drought 
significantly reduces carbon assimilation, respiration and allocation to 
woody growth at Tonzi Ranch. 

GPPr is significantly (p < 0.001) reduced under extreme negative 
WTD anomalies (0–10 percentiles, WTD0− 10%) compared to extreme 

Fig. 4. Random forest predictive skill and importance of WTD for ecosystem function and tree growth. a) Predictions from FULL random forest (RF) model (including 
WTD) vs. flux tower estimates of canopy GPP (unitless scaled anomaly), with a linear regression (red) equation, R2, p-value and root mean squared error (RMSE) and 
1:1 line (dashed black) for reference. b) Variable importance (unitless) in both FULL (blue) and No-WTD (red) RF models in predicting GPP. c) Residuals from the No- 
WTD model (GPPr) binned by 0–10 % (extreme dry/deep WTD, brown), 50–60 % (normal WTD, gray) and 90–100 % (extreme wet/shallow WTD, green) percentiles 
(m). D-f) Same as a-c, but for RECO. g-i) Same as a-c, but for tree growth. For box plots, thick lines mark median, boxes represent interquartile range, and whiskers 
show 5 and 95 percentiles. 

Table 2 
Model predictive performance with (FULL) and without (No-WTD) WTD 
included in training data of random forest (RF) for flux tower RECO and esti
mated GPP and tree growth. Models are evaluated via a linear regression be
tween model predictions of and observed daily RECO and GPP and annual 
median tree growth anomalies. For all models, p<0.001.  

Variable Model Intercept Slope RMSE R2 

GPP FULL 0.009 1.153 0.47 0.79  
No-WTD − 0.014 1.156 0.56 0.70 

RECO FULL –0.006 1.203 0.48 0.79  
No-WTD –0.004 1.202 0.55 0.72 

Growth FULL 0.002 1.406 0.37 0.80  
No-WTD 0.08 1.55 0.44 0.72  
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positive WTD anomalies (90–100 percentiles, WTD90− 100%). Similarly, 
extreme negative WTD anomalies result in significant reductions in 
RECO compared to positive WTD anomalies (p < 0.001). Finally, tree 
growth is significantly reduced for negative WTD (WTD0− 33%) compared 
to positive WTD (WTD67− 100%) anomalies. For NN and GAM algorithms, 
groundwater drought also results in decreased GPP, and wet ground
water conditions result in increased GPP (Figure S4). RECO and tree 
growth exhibit similar patterns in NN and GAM models (data not 
shown). 

Table 3 shows the outcomes of unpaired Student’s t-tests of GPPr, 
RECOr and Growthr rescaled from Z-score anomalies to physical values, 
grouped by positive and negative WTD anomaly bins for each No-WTD 
RF model. A significant (p<0.01) increase between negative and positive 
WTD bins is observed for all variables. In Table 3, Δr represents the 
increase in GPP, RECO (g C m− 2 day− 1) and growth (mm yr− 1) between 
negative and positive WTD anomalies. RF models predict an increase of 
1.4 g C m− 2 day− 1, 0.69 g C m− 2 day− 1, and 2.56 mm yr− 1 for GPP, 
RECO and tree growth, respectively, under wet WTD relative to drought 
conditions. Summed over the course of the dry season (May-September), 
this represents a 19.9 % increase (+210.3 ± 19.4) in total annual GPP 
(mean annual GPP = 1056 ± 145). Oak savanna systems comprise 
45,000 km2 in California; scaling our results over this area, wet 
groundwater conditions would result in GPP enhancement of 3.8 PgC 
(1.8 ppm) per century compared to dry conditions. NN and GAM models 
suggest an even larger GPP enhancement of 319.05 and 384.6 g C m− 2 

yr− 1, respectively. 
GPP is a proxy of ecosystem carbon assimilation but does not 

represent carbon sequestration through increases in soil carbon and 
biomass. Ecosystems release a large fraction (40–45 %) of fixed carbon 
via autotrophic and heterotrophic respiration back to the atmosphere 
after assimilation (Van Oijen et al., 2010). Residuals from the RF models 
suggest RECO also increases under positive relative to negative WTD 
anomalies, which is to be expected given increased carbon assimilation 
rates. However, RECO increases to a lesser degree than GPP (1.4 ± 0.13 
vs. 0.69 ± 0.08 for GPP and RECO, respectively, or l50 % of GPPr). As 
RECO measurements represent the sum of canopy and understory 
respiration, this difference may suggest a more limited effect of 
groundwater on soil respiration. Scaling the difference in GPP and RECO 
over the dry season, Tonzi Ranch acts as a net sink of 106.5 ± 31.5 (g C 
m− 2) under wet WTD conditions compared to dry conditions, or 10.1 % 
increase in the net annual carbon sink. 

Tree rings measure rates of carbon storage in woody growth, a long- 
lived carbon pool (Cabon et al., 2022). Results from the tree growth 
analysis suggest that WTD independently affects tree growth after ac
counting for the effects of other environmental variables. In the RF 
model, wet groundwater conditions increased growth by 0.176 ± 0.04 
mm per year, or 17.7 % of mean annual growth, relative to dry 
groundwater conditions. The divergence between net carbon sink 
(+10.1 %) and tree growth (+17.7 %) rates under wet WTD conditions 
relative to drought may be the result of differences in data coverage. 
Instead of being isolated to the dry season, tree ring data is integrated 

over the full calendar year. Therefore, the increase in growth under wet 
groundwater conditions suggests groundwater affects carbon allocation 
to woody growth year-round, with increased allocation to above ground 
biomass under greater groundwater availability. This divergence may 
also stem from a gradual shift in ecosystem function, with more recent 
years experiencing diminished effects of groundwater (potentially due 
to long-term declines in WTD from reduced snowpack or increased 
rooting depth allowing continuous access to groundwater even under 
drought). 

Additional analysis comparing on GPPr and RECOr from the RF 
model to unscaled WTD and SWC measurements reveals that WTD has 
the largest effect on GPPr and RECOr during June, July, and August 
(Fig. 5). These months correspond to the hottest, driest, most stressful 
conditions at the site. Independent relationships between GPPr, RECOr 
and WTD are most prominent when SWC becomes depleted during the 
dry season. When SWC variability is low, WTD plays a more prominent 
and significant role (Table S2), potentially due to a reduction in cavi
tation and increase in stomatal aperture under stressful VPD and TA 
conditions. However, early in the dry season (e.g., May), groundwater 
and GPPr and RECOr become decoupled. This corresponds to wetter soil 
moisture conditions and suggests that the ecosystem experiences 
decreased reliance on groundwater during this period, or perhaps uses 
hydraulic redistribution to replenish soil moisture reserves (Orellana 
et al., 2012). Alternatively, this decoupling could point to groundwater 
limitation, when deep tap roots are exposed to anoxic conditions (as 
suggested by the GAM smooth terms during extreme positive WTD 
anomalies (Fig. S5)). 

The results from the GPP, RECO and tree growth models validate our 
hypothesis that wet groundwater conditions enhance the net carbon sink 
and tree growth relative to drought conditions at the site. These findings 
confirm previous work that showed groundwater maintains GPP during 
surface soil moisture drought at groundwater-dependent sites with 
increasing importance throughout the dry season (Goulden and Bales 
2019; Chen et al., 2019). Groundwater not only acts as a buffer against 
drought, allowing ecosystems to survive and continue assimilating car
bon during dry surface conditions (Mueller et al., 2005; Baldocchi et al., 
2021), but also enhances ecosystem productivity in periods of excess 
(Koirala et al., 2014). In a system that is highly adapted to drought 
(Baldocchi et al., 2021), oaks at Tonzi employ an opportunistic strategy 
in which groundwater is used to enhance productivity and growth under 
wet conditions and sustain the ecosystem during surface drought 
conditions. 

Other conditions at the site also influence carbon cycling, including 
the fraction of absorbed photosynthetically active radiation (fPAR), a 
measurement of canopy cover and density. fPAR varies seasonally 
depending on water conditions at the site, with drought deciduousness 
decreasing total leaf area (Osuna et al., 2015). fPAR anomalies are not 
highly correlated with WTD anomalies at Tonzi Ranch during the dry 
season (R2 <0.02). fPAR does not vary over the course of the day, unlike 
WTD, which demonstrates diurnal cycles significantly correlated to GPP, 
ET and WUE (Section 4.1). To avoid over fitting, we did not include fPAR 
in training datasets. This choice was shown to have little effect on re
sults, as fPAR was not significantly correlated to GPP residuals from any 
algorithm, suggesting that its effect on GPP anomalies is minimal during 
the dry season or is captured by other variables. However, future work 
should consider the effects of canopy density as well. 

5. Conclusion 

Carbon assimilation, respiration and allocation to woody growth at 
Tonzi Ranch are sensitive to groundwater conditions during the dry 
season. Continuous WTD data show that, relative to negative anomalies, 
positive WTD anomalies correspond to increased groundwater use, ET, 
GPP, and decreased water use efficiency. Predictive ability of tree 
growth and dry season GPP and RECO is significantly improved by 
incorporating WTD measurements in machine learning algorithms. 

Table 3 
Outcome of Student’s t-tests for GPP, RECO and tree growth rescaled residuals 
from RF models between positive and negative WTD anomalies. − WTD and +
WTD are mean values of daily GPPr and RECOr (g C m− 2 day− 1) under extreme 
negative and positive WTD anomalies (0 − 10% and 90 − 100%), respectively, 
and mean values of annual median Growthr (mm yr− 1) under negative and 
positive WTD anomalies, respectively (0 − 33% and 64 − 100%). Δr is the dif
ference in means between extreme WTD anomalies, representing declines under 
dry groundwater conditions with standard error.  

Variable T-value P-value − WTD + WTD Δr 

GPPTr 10.86 <0.001 –1.34 0.07 –1.40 ± 0.13 
RECOr 8.29 <0.001 –0.78 –0.082 –0.69 ± 0.08 
Growthr 4.98 <0.001 0.91 1.09 –0.176 ± 0.04  
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Extreme negative WTD anomalies correspond with significant decreases 
in GPP, RECO and growth, suggesting that groundwater drought di
minishes carbon assimilation and respiration, while wet groundwater 
conditions enhance GPP, RECO and tree growth. Over the course of the 
dry season, wet groundwater conditions increase carbon assimilation by 
210.3 ± 19.4 g C m− 2, or 17.7 % of annual GPP. Relative to extreme 
drought conditions, positive WTD anomalies correspond to a 19.9 % 
increase in annual tree growth. WTD and SWC contain overlapping in
formation but have unique effects on GPP, RECO, and tree growth, as 
dry surface conditions can become decoupled from deeper groundwater 
availability during the dry season. 

Differences in GPP, RECO and tree growth rates provide additional 
insight into ecosystem function. A diminished response of RECO to 
groundwater drought suggests soil (heterotrophic) respiration is less 
affected by groundwater, as expected given the depth to the water table 
at the site and limited soil moisture during the dry season. Decoupling 
between GPPr and WTD during May suggests WTD limitation during the 
wet season, when the water table may introduce anoxic root conditions. 
Finally, tree growth demonstrates large increases (19.9 % yr− 1) under 
positive WTD anomalies, suggesting that groundwater may support 
allocation to woody growth throughout the calendar year. Indeed, oak 
trees in the region have been shown to grow roots up to 21 m deep, 
regardless of tree diameter, height, or subspecies (Lewis and Burgy, 
1964), and rock moisture is a stronger predictor of oak evapotranspi
ration than soil moisture at a similar blue oak site (Hahm et al., 2022). 

The majority of field campaigns at the site and throughout the region 
have been limited in scope, focusing on one or two growing seasons. 
Furthermore, the majority of terrestrial biosphere models do not include 
groundwater-vegetation interactions and lack complex subsurface 
parameterization (Maxwell and Condon, 2016; Fisher et al., 2014). 

These omissions make it difficult to quantify groundwater-vegetation 
feedbacks and identify regions where groundwater-vegetation dy
namics are most tightly coupled. Our results show that deep subsurface 
water availability is an important resource in semi-arid and 
seasonally-dry phreatophytic ecosystems. Therefore, incorporating 
physiological relationships between GPP, biomass accumulation, and 
groundwater may improve carbon cycle modeling and projections. 

Groundwater deficits are increasing throughout California (Margulis 
et al., 2016; Mote et al., 2018). Since 1930, dates of peak snowpack have 
been becoming earlier at a rate of 0.6 days per decade, resulting in 
diminished summer snowpacks (Kapnick and Hall, 2010). These 100 
km-distant snowpacks recharge groundwater at Tonzi (Ma et al., 2016). 
Increased human consumption is further diminishing groundwater re
sources in California and globally (Dettinger et al., 2015; Meixner et al., 
2016). Intensifying groundwater drought may decrease carbon assimi
lation and long term woody biomass accumulation at Tonzi and similar 
systems, resulting in a positive feedback to climate change. Access to 
groundwater, however, also may enhance ecosystem resilience under 
extreme drought (Brodrick and Asner 2017). Mediterranean oak sa
vannas are well-adapted to dry climates, closely regulating their water 
use strategies based on water resource availability. 

At Tonzi Ranch, a core AmeriFlux site, the combination of eddy 
covariance flux towers and long-term ancillary data sets, such as 
groundwater measurements and tree growth, enables detection of subtle 
ecosystem dynamics that would otherwise be challenging to quantify. 
Therefore, this study also documents the importance of long-term 
ancillary data, which provide critical contextual information to flux 
measurements and enable broader understanding of ecosystem function. 

Fig. 5. Effect of groundwater on carbon cycling by month. Water table depth (m) versus residuals from the GPP (GPPr) and RECO (RECOr) No-WTD RF models (top 
and bottom rows, respectively) by month (panels) and soil water content (SWC (%), colors). P-values in top left corners are for linear regressions (black) with 
standard error (gray shading). 
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