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Amygdala- cortical collaboration in reward 
learning and decision making
Kate M Wassum1,2,3,4*

1Department of Psychology, University of California, Los Angeles, Los Angeles, 
United States; 2Brain Research Institute, University of California, Los Angeles, Los 
Angeles, United States; 3Integrative Center for Learning and Memory, University of 
California, Los Angeles, Los Angeles, United States; 4Integrative Center for Addictive 
Disorders, University of California, Los Angeles, Los Angeles, United States

Abstract Adaptive reward- related decision making requires accurate prospective consider-
ation of the specific outcome of each option and its current desirability. These mental simulations 
are informed by stored memories of the associative relationships that exist within an environment. 
In this review, I discuss recent investigations of the function of circuitry between the basolateral 
amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and 
use of associative reward memories. I draw conclusions from data collected using sophisticated 
behavioral approaches to diagnose the content of appetitive memory in combination with modern 
circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC 
collaborate to help us encode detailed, outcome- specific, state- dependent reward memories and 
to use those memories to enable the predictions and inferences that support adaptive decision 
making. Whereas lOFC→BLA projections mediate the encoding of outcome- specific reward memo-
ries, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit 
decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide 
decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific 
predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted 
events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and 
provide new testable hypotheses as well as implications for both adaptive and maladaptive decision 
making.

Introduction
To make good decisions we use the time machine that is our brain to cast ourselves into the future, 
consider the likely outcomes of our choices, and evaluate which one is currently most desirable. This 
time machine is programed by our memories. To know what is in the future, we often rely on the 
past. Previously learned associative relationships (e.g. stimulus- outcome) support decision making by 
enabling us to mentally simulate likely future outcomes Balleine and Dickinson, 1998a; Delamater, 
2012; Fanselow and Wassum, 2015. These memories support understanding of the predictive 
‘states’ that signal available or forthcoming outcomes. Such states are fundamental components of the 
internal model of environmental relationships, aka cognitive map Tolman, 1948, we use to generate 
the predictions and inferences needed for flexible, advantageous decision making Delamater, 2012; 
Fanselow and Wassum, 2015; Dayan and Daw, 2008; Balleine, 2019. For example, during the 2020 
quarantine many of us learned that the stimuli (e.g. restaurant logos) embedded in food- delivery apps 
signal the availability of specific types of food (e.g. tacos, sushi, pizza). These cues allow us to mentally 
represent each predicted food, consider its value, and decide if it is a suitable dinner option. To ensure 
flexible behavior, these representations must be detailed. To choose the best dinner option, it is not 
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sufficient to know that each leads to something ‘good’ or to ‘food’. Rather, the identifying, sensory 
features of each food (e.g., flavor, texture, nutritional content) must be represented. You might have 
just had Mexican for lunch, rending tacos undesirable. If you develop gluten intolerance, you will know 
to avoid pizza. After your doctor suggests increasing your Omega- 3 intake, you may consider sushi a 
better option. Rich, outcome- specific, appetitive, associative memories enable expectations, ensure 
rapid behavioral adjustments to internal and environmental changes, and allow one to infer the most 
advantageous option in novel situations Balleine and Dickinson, 1998a; Delamater, 2012; Fanselow 
and Wassum, 2015; Delamater and Oakeshott, 2007. Failure to properly encode or use such memo-
ries can lead to absent or inaccurate reward expectations and, thus, ill- informed motivations and 
decisions. This is characteristic of the cognitive symptoms underlying substance use disorder and 
many other psychiatric conditions, including obsessive- compulsive disorder, compulsive overeating, 
schizophrenia, depression, anxiety, autism, and even aspects of neurodegenerative disease Hogarth 
et al., 2013; Morris et al., 2015; Seymour and Dolan, 2008; Alvares et al., 2014; Gleichgerrcht 
et al., 2010; Hogarth et al., 2013; Dayan, 2009; Voon et al., 2015; Heller et al., 2018; Chen et al., 
2015; Huys et al., 2015; Culbreth et al., 2016. Thus, my broad goal here is to discuss recent findings 

Table 1. Key findings.

Outcome- specific learning Outcome- specific decision making

Sensitivity to devaluation

Hub
Stimulus- 
Outcome

Action- 
outcome Incentive value

Pavlovian- to- 
instrumental transfer Pavlovian responses Instrumental choice

Incentive 
value

BLA

Necessary 
Sias et al., 
2021

Necessary 
Corbit et al., 
2013

Necessary 
Malvaez et al., 
2019; Parkes 
and Balleine, 
2013; Wassum 
et al., 2009; 
Wassum et al., 
2011

Necessary Sias et al., 
2021; Ostlund and 
Balleine, 2008; Corbit 
and Balleine, 2005; 
Hatfield et al., 1996; 
Blundell et al., 2001; 
Malvaez et al., 2015, 
Lichtenberg et al., 
2021

Necessary Sias et al., 
2021; Hatfield 
et al., 1996; 
Johnson et al., 
2009, Lichtenberg 
et al., 2021; Murray 
and Izquierdo, 
2007; Málková 
et al., 1997; West 
et al., 2012

Necessary Parkes 
and Balleine, 2013; 
Johnson et al., 
2009; Murray and 
Izquierdo, 2007; 
Balleine et al., 2003; 
Coutureau et al., 
2009

Necessary 
Malvaez 
et al., 2019

lOFC

Necessary 
Sias et al., 
2021 X38

Necessary 
& Sufficient 
Malvaez et al., 
2019; Baltz 
et al., 2018

Necessary Ostlund 
and Balleine, 2007

Necessary Ostlund 
and Balleine, 2007 X40 ?

mOFC ?

Necessary 
Bradfield 
et al., 2015; 
Bradfield 
et al., 2018 ?

Necessary Bradfield 
et al., 2015; Bradfield 
et al., 2018 ?

Necessary & 
Sufficient Bradfield 
et al., 2015; 
Bradfield et al., 
2018; Gourley 
et al., 2016

Necessary 
& Sufficient 
Malvaez 
et al., 2019

Pathway

lOFCàBLA

Necessary 
Sias et al., 
2021 ?

Necessary 
& Sufficient 
Malvaez et al., 
2019 X20 ? ? X22

mOFCàBLA ? ? X22

Necessary 
Lichtenberg et al., 
2021

Necessary 
Lichtenberg et al., 
2021 X31

Necessary 
& Sufficient 
Malvaez 
et al., 2019

BLAàlOFC ? ? ?
Necessary Sias et al., 
2021

Necessary Sias 
et al., 2021 X20 ?

BLAàmOFC ? ? ? X31

Necessary 
Lichtenberg et al., 
2021 X31 ?

Pavlovian- to- instrumental transfer refers to outcome- selective Pavlovian- to- instrumental transfer; X, not necessary; ?, no evidence known to the author 
currently in the literature.
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on the neuronal systems that support outcome- specific, appetitive, associative memory and its influ-
ence on decision making.

In recent years, our understanding of the neuronal circuits of appetitive associative learning and 
decision making has grown dramatically. There has been considerable work on the bidirectional 
connections between the basolateral amygdala and orbitofrontal cortex. I review recent discoveries 
made about the function of this circuit using sophisticated behavioral approaches to diagnose the 
content of appetitive memory in combination with modern circuit dissection tools. Table 1 summa-
rizes key findings. I focus on work in experimental rodents in which these tools have been most 
commonly applied, but provide some functional comparison to primates, including humans. I finish 
with emergent conclusions, hypotheses, and future directions.

Anatomy
Basolateral amygdala
The amygdala is a highly conserved, temporal lobe, limbic system structure with basolateral, central, 
and medial subcomponents Duvarci and Pare, 2014; Ehrlich et al., 2009; Janak and Tye, 2015; 
Sah et al., 2003; LeDoux, 2007. I focus on the basolateral amygdala (BLA) which consists of lateral, 
basal, and basomedial nuclei and contains glutamatergic principle neurons, inhibitory interneurons, 
and potentially GABAergic projection neurons Birnie et al., 2022. GABAergic intercalated cells flank 
the BLA Ehrlich et al., 2009; Marowsky et al., 2005. The BLA is heavily innervated by glutamatergic 
projections from sensory thalamus and cortex McDonald and Jackson, 1987; Ledoux et al., 1987; 
Linke et al., 2000; McDonald, 1998. It also receives midbrain monoaminergic input Sadikot and 
Parent, 1990; Lutas et al., 2019; Brinley- Reed and McDonald, 1999; Fallon and Ciofi, 1992. The 
BLA sends unidirectional projections to the central amygdala, ventral and dorsal striatum, and the 
bed nucleus of the stria terminalis Kelley et  al., 1982; Kita and Kitai, 1990; McDonald, 1991b; 
McDonald, 1991a. The glutamatergic projections between the BLA and cortex are reciprocal, posi-
tioning the BLA to both influence and be influenced by cortical activity. Thus, the BLA is a site of 
anatomical convergence well positioned to influence the activity of the broader learning and decision- 
making circuit.

Orbitofrontal cortex
The orbitofrontal cortex (OFC) is a prefrontal cortical region in the ventral frontal lobe Izquierdo, 
2017; Hoover and Vertes, 2011; Heilbronner et al., 2016. OFC structure differs between rodents 
and primates, in particular, granular cortex (dense granular cells in layer IV), which rodents lack 
Preuss, 1995. But rodent OFC has anatomical and functional homology with portions of primate 
OFC (Heilbronner et al., 2016; Price, 2007; Rudebeck and Izquierdo, 2022). The OFC is divided 
into lateral (lOFC) and medial (mOFC) subdivisions. The lOFC, as opposed to mOFC, receives inputs 
from sensory- processing regions Carmichael and Price, 1995; Ongür and Price, 2000. There is also 
evidence of distinct connectivity based on the anterior- posterior axis Barreiros et al., 2021. The OFC 
has many cortico- cortico connections Carmichael and Price, 1995; Ongür and Price, 2000. It also 
receives input from the hippocampus and midbrain Ongür and Price, 2000; Barreiros et al., 2021. 
The OFC is reciprocally connected with mediodorsal thalamus, hypothalamus, and amygdala Lichten-
berg et al., 2021; Ongür and Price, 2000; Barreiros et al., 2021. Among the OFC outputs are critical 
projections to the striatum, with anatomical segregation between OFC subregions Heilbronner et al., 
2016. Thus, lOFC and mOFC are well positioned to detect associations between external and internal 
information and to support learning and decision making within a broad network.

Orbitofrontal cortex-basolateral amygdala circuit
Owing to their well- documented, dense, excitatory, bidirectional connections reported in both 
rodents and primates Malvaez et al., 2019; Lichtenberg et al., 2021; Kita and Kitai, 1990; Hoover 
and Vertes, 2011; Heilbronner et al., 2016; Barreiros et al., 2021; Reppucci and Petrovich, 2016; 
Lichtenberg et al., 2017; Morecraft et al., 1992, the BLA and OFC are long- standing collaborators. 
Both lOFC and mOFC send dense intermingled projections across the anterior- posterior extent of the 
BLA Malvaez et al., 2019. The BLA also projects back to both lOFC and mOFC, with lOFC- projectors 
being slightly more prominent in anterior BLA Lichtenberg et al., 2021. The BLA pathways to mOFC 
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and lOFC are largely distinct, with very few BLA neurons collateralizing to both lOFC and mOFC 
Lichtenberg et  al., 2021. Thus, the BLA and OFC are well positioned to engage in bidirectional 
communication.

Basolateral amygdala function
The BLA is widely known as a processing hub for emotionally significant events. Such events are 
major contributors to learning and decision making and, thus, the BLA is a good entry point to under-
standing the neuronal circuits of such processes. The BLA’s function in aversive emotional learning 
has been well demonstrated. BLA lesion or inactivation severely disrupts the acquisition and expres-
sion of conditional fear and active avoidance Davis and Smith, 1992; Fanselow and LeDoux, 1999; 
Killcross et al., 1997; Lázaro- Muñoz et al., 2010. By contrast, such manipulations have little or no 
effect on general measures of appetitive Pavlovian (e.g. goal- or cue approach responses to reward- 
predictive stimuli) or instrumental (e.g. pressing a lever that earns reward) behavior Wassum and 
Izquierdo, 2015. This has led to the notion that the BLA is a brain locus for fear.

But the BLA does way more than fear. Null effects of BLA manipulations can arise because behavior 
can be guided by multiple different control systems. Humans and other animals can encode the rela-
tionship between a Pavlovian cue and the specific outcome it predicts (stimulus- outcome), as well 
as an instrumental action and the outcome it earns (action- outcome). These associative memories 
contribute to an internal model of the structure of an environment that enables predictions and infer-
ences for flexible, advantageous decision making Delamater, 2012; Fanselow and Wassum, 2015; 
Dayan and Daw, 2008; Balleine, 2019; Doll et  al., 2012, for example, considering which dinner 
option to choose based on current circumstances. However, this is not the only type of memory we 
form. For example, we and other animals also form habits Balleine, 2019; Sutton and Barto, 2022; 
Malvaez and Wassum, 2018, response policies performed relatively automatically based on their 
past success without forethought of their consequences, e.g., always order pizza on Fridays. Specific 
predicted outcomes are not encoded in this memory system Balleine, 2019; Sutton and Barto, 2022; 
Malvaez and Wassum, 2018. General Pavlovian or instrumental behaviors do not typically require any 
consideration of their specific outcome, so they can be controlled by either system. Thus, BLA lesion 
or inactivation could shift behavioral control strategy without any ostensible effect on behavior.

Using tests that reveal the content of associative memory and, thus, behavioral control system 
guiding behavior, the BLA has been shown to play a fundamental role in encoding, updating, and 
retrieving detailed, outcome- specific reward memories critical for the predictions and inferences 
that support flexible decision making Wassum and Izquierdo, 2015; Chesworth and Corbit, 2017; 
Balleine and Killcross, 2006. The most canonical of these tests is outcome- selective devaluation. 
When making a decision, we consider the current value of the potential outcome. If using a stimulus- 
outcome or action- outcome memory, we will reduce performance of a behavior when its outcome has 
been devalued by selective satiation or pairing with illness. This will occur even without the oppor-
tunity to learn that the particular behavior leads to a devalued outcome. Memories of the predicted 
reward allow inferences about how advantageous it would be to pursue. For example, you can infer 
Mexican might not be great for dinner if you just had tacos for lunch (sensory- specific satiety) or you 
will avoid ordering sushi from a particular restaurant if you became ill the last time you had it (condi-
tioned taste aversion). Similarly, animals will press less on a lever that earns a devalued outcome 
relative to a valuable reward, or will show fewer food- port approach responses to a cue signaling a 
devalued outcome relative to a valuable one. Although BLA lesion or inactivation does not disrupt 
general Pavlovian or instrumental behavior, it does render these behaviors insensitive to post- training 
devaluation of the predicted outcome Parkes and Balleine, 2013; Hatfield et al., 1996; Johnson 
et al., 2009; Murray and Izquierdo, 2007; Málková et al., 1997; West et al., 2012; Balleine et al., 
2003; Coutureau et al., 2009; Pickens et al., 2003. Thus, the BLA is important for stimulus- outcome 
and action- outcome memory.

The BLA also helps to learn the value of a reward and adapt decisions accordingly. A reward’s 
value as an incentive is dependent on current motivational state. For example, a food item has a high 
value and incentivizes robust pursuit when hungry, but low value supporting less pursuit when sated. 
This incentive information is encoded during experience in a relevant motivational state (i.e. incen-
tive learning; Wassum et al., 2011; Dickinson and Balleine, 1994; Dickinson and Balleine, 1990; 
Balleine et al., 1995). For example, if a friend serves you pizza when you are hungry, you will learn that 
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pizza is delicious and satisfying (i.e. valuable) when you are hungry and will be more likely to order it 
yourself when hungry again in the future. Likewise, after being trained sated to lever press for a partic-
ular food reward, non- continent experience with that food while hungry will cause animals to increase 
pressing when they are hungry subsequently. The converse is also true; after experiencing a particular 
food when sated, animals will decrease actions that earn that food when they are sated again in the 
future. The BLA mediates such incentive learning Malvaez et al., 2019; Parkes and Balleine, 2013; 
Wassum et al., 2009; Wassum et al., 2011.

In both these cases, the value manipulation is outcome specific. For example, having tacos for 
lunch will make you less inclined to select them for dinner, but will not affect the desirability of pizza 
or sushi. What you learn about the pizza at your friend’s house is unlikely to change your decisions for 
sushi or tacos. Likewise, changes to the value of one food reward (e.g. sucrose) by feeding to satiety, 
pairing with malaise, or experiencing it while hungry, will primarily affect behaviors for that specific 
and not other foods (e.g. pellets; Dickinson and Balleine, 1994). Thus, the BLA is critical for detailed, 
outcome- specific reward memory.

Further supporting BLA function in outcome- specific reward memory is evidence that the BLA is 
required for outcome- specific Pavlovian- to- instrumental transfer (PIT) Ostlund and Balleine, 2008; 
Corbit and Balleine, 2005; Hatfield et  al., 1996; Blundell et  al., 2001; Malvaez et  al., 2015. 
Subjects first learn that two different cues each predict a unique food reward (e.g., pellets or sucrose) 
and, separately, that they can press on one lever to earn one of the foods and another lever to earn 
the other. The PIT test assesses the ability to use the cues to mentally represent which specific reward 
is predicted and use this to motivate choice of the action known to earn that same unique reward 
Kruse et al., 1983; Colwill and Motzkin, 1994; Gilroy et al., 2014; Corbit and Balleine, 2016. This 
is consistent with the notion that the subjects use the cue to infer which reward is more likely to be 
available and, thus, which action is most advantageous. For example, a billboard advertising an appe-
tizing pizza on your way home may make you think about pizza and order it for dinner instead of tacos 
or sushi. Pre- or post- training BLA lesions will disrupt the expression of outcome- specific PIT Ostlund 
and Balleine, 2008; Corbit and Balleine, 2005; Hatfield et al., 1996; Blundell et al., 2001; Malvaez 
et al., 2015. BLA lesion will not, however, prevent cues from motivating behavior more broadly. For 
example, the BLA is not needed for general Pavlovian- to- instrumental transfer in which, absent the 
opportunity to seek out the specific predicted reward, a cue will invigorate performance of an action 
that earns a different reward (although typically one of the same class, e.g. food) Corbit and Balleine, 
2005. Thus, the BLA is critical when adaptive appetitive behavior requires a detailed representation 
of a specific predicted outcome Janak and Tye, 2015; Wassum and Izquierdo, 2015; Balleine and 
Killcross, 2006.

Recent evidence indicates that the BLA contributes to both forming and using outcome- specific 
reward memories. During appetitive Pavlovian conditioning, BLA principle neurons are robustly 
activated at the time of stimulus- outcome pairing (reward delivery during the cue) Sias et al., 2021; 
Crouse et al., 2020. This activity is necessary for outcome- specific, appetitive associative memories 
to be formed, so that they can later influence decision making Sias et al., 2021. Similarly, BLA gluta-
mate activity tracks the encoding of a reward’s value Malvaez et al., 2019. BLA NMDA Malvaez 
et al., 2019; Parkes and Balleine, 2013 and mu opioid receptors Wassum et al., 2009; Wassum 
et al., 2011 support such incentive learning. Thus, the BLA is activated by rewarding events and 
this is necessary to link the specific reward to the associated cue and to encode its incentive value. 
Following conditioning, the BLA is activated by reward- predictive cues Sias et al., 2021; Malvaez 
et al., 2015; Lutas et al., 2019; Crouse et al., 2020; Schoenbaum et al., 1998; Tye and Janak, 
2007; Paton et al., 2006; Belova et al., 2008; Sugase- Miyamoto and Richmond, 2005; Beyeler 
et al., 2016; Schoenbaum et al., 1999; Muramoto et al., 1993; Tye et al., 2008; Beyeler et al., 
2018. During the cue, transient outcome- specific BLA glutamate signals selectively precede and 
predict choice of the action that earns the predicted reward Malvaez et al., 2015. Correspond-
ingly, the BLA is required to use outcome- specific stimulus- outcome memories to guide adaptive 
behavior and choice (e.g. express PIT) Ostlund and Balleine, 2008; Malvaez et al., 2015; Johnson 
et  al., 2009; Lichtenberg and Wassum, 2017. BLA glutamate activity prior to bouts of reward 
seeking Wassum et al., 2012 also reflects the learned value of the predicted reward Malvaez et al., 
2019; Wassum et al., 2012 and activation of both BLA NMDA and AMPA receptors is necessary for 
value- guided reward- seeking Malvaez et al., 2019. Thus, the BLA is activated by cues and during 
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decision making and this activity is critical for using information about the predicted reward to 
guide choice.

These data indicate that the BLA mediates both the formation of outcome- specific reward memo-
ries and the use of these memories to inform decision making. They also suggest the BLA is important 
for using states to predict information about associated rewards. Stimulus- outcome memories are 
state- dependent: the external cue sets the state predicting a specific rewarding outcome. Incentive 
value is gated by motivational state. Internal physiological conditions dictate the incentive value of 
a particular reward. Thus, BLA activity is critical for linking specific rewarding events to the states, 
defined by both by external cues and internal physiological signals, with which they are associated and 
for using those memories to guide adaptive reward pursuit choices.

Other recent evidence also supports a role for the BLA in appetitive learning and decision making. 
For example, optical inhibition of BLA neurons disrupts risky decision making Orsini et al., 2017. 
When applied prior to choice, BLA inhibition will decrease choices of the larger risky reward Orsini 
et al., 2017, likely by preventing the subject from retrieving the incentive value of that large reward. 
This can also occur with less temporally- specific BLA inactivation Ghods- Sharifi et al., 2009. When 
applied during outcome experience, BLA inhibition will promote risky decision making, perhaps by 
preventing encoding of the punishing outcome Orsini et al., 2017 or by forcing learning to occur via 
another, less punishment- sensitive system. Indeed, post- training BLA lesions will also increase risky 
choice Zeeb and Winstanley, 2011; Orsini et al., 2015 and chemogenetic BLA inhibition prevents 
learning from positive or negative outcomes to update cue- response strategies Stolyarova et al., 
2019.

The BLA also encodes information relevant for learning and using state- dependent, outcome- 
specific reward memories. BLA neurons can signal the unsigned Roesch et al., 2010; Esber et al., 
2012, positive, or negative Esber and Holland, 2014 prediction errors that support learning. Popu-
lations of BLA neurons can reflect taste- specific gustatory information Fontanini et  al., 2009 and 
respond selectively to unique food rewards Liu et al., 2018; Courtin et al., 2022, which could support 
the generation of outcome- specific reward memories. In both rodents and primates, BLA neuronal 
responses to predictive cues can encode the value of the predicted reward Schoenbaum et  al., 
1998; Paton et al., 2006; Belova et al., 2008; Jenison et al., 2022; Saddoris et al., 2005; Belova 
et al., 2007, inferences about reward magnitude Lucantonio et al., 2015, prospectively reflect goal 
plans Hernádi et al., 2015, and predict behavioral choices Grabenhorst et al., 2012. BLA neurons 
also encode state- dependent exploratory behaviors in distinct neuronal ensembles Fustiñana et al., 
2021. Thus, during decision making BLA activity reflects critical state- dependent decision variables. 
The extent to which BLA neuronal ensembles encode outcome- specific predictions during decision 
making is an exciting open question.

Both reward learning and expectation signals have also been detected in human amygdala Elliott 
et al., 2004; Hampton et al., 2007; Yacubian et al., 2006, with some evidence that these occur in BLA 
in particular Prévost et al., 2011. BLA activity in humans also relates to the ability to use an internal 
model of environmental structure to guide decision making Prévost et al., 2013, including the ability 
to use cues to generate the outcome- specific reward expectations that influence PIT Prévost et al., 
2012. Thus, BLA function in learning and using outcome- specific reward memories is conserved in 
humans.

Orbitofrontal cortex → basolateral amygdala pathway
The OFC is a likely candidate for supporting the BLA’s function in forming state- dependent, outcome- 
specific reward memories and using them to guide decision making. It has been implicated in both 
learning and using information about rewarding events to inform flexible decision making Wilson 
et al., 2014; Schuck et al., 2016; Bradfield and Hart, 2020; Shields and Gremel, 2020; Sharpe 
et al., 2019; Wikenheiser and Schoenbaum, 2016; Rudebeck and Rich, 2018; Gardner and Schoen-
baum, 2020. Like the BLA, OFC lesion or inactivation does not disrupt general Pavlovian conditional 
approach responses but does render this behavior insensitive to devaluation of the predicted outcome 
Ostlund and Balleine, 2007; Pickens et al., 2003; Gallagher et al., 1999; Pickens et al., 2005. The 
OFC is also required to use cues to both bias choice in the PIT test Ostlund and Balleine, 2007 and 
to make inferences about available reward Jones et al., 2012. Thus, much like the BLA, the OFC 
is critical for using cues to represent future possible rewards and inform predictions and inferences 
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about how advantageous a particular course of action might be. Such findings have contributed to 
the notion that the OFC is a critical element in the brain’s cognitive map Wilson et al., 2014; Schuck 
et al., 2016; Bradfield and Hart, 2020; Shields and Gremel, 2020; Sharpe et al., 2019; Wikenhe-
iser and Schoenbaum, 2016; Rudebeck and Rich, 2018, an internal model of the associative relation-
ships (e.g. stimulus- outcome) within an environment required for mentally simulating future potential 
outcomes to inform decisions. The OFC may achieve this function via its interactions with the BLA. 
Indeed, as described above, the BLA also mediates the formation and use of the state- dependent 
reward memories that contribute to cognitive maps. Both lOFC and mOFC participate in appetitive 
behavior, though have unique functions Izquierdo, 2017; Bradfield and Hart, 2020; Wallis, 2011. 
Accordingly, recent evidence indicates unique functions of lOFC→BLA and mOFC→BLA projections.

Lateral orbitofrontal cortex → basolateral amygdala pathway
The lOFC→BLA pathway helps to link specific rewarding events to predictive states. Optical inhibi-
tion of lOFC→BLA projections during stimulus- outcome pairing attenuates the encoding of specific 
stimulus- outcome memories as evidenced by the inability of subjects to later use those memories to 
allow cues to bias choice behavior during a PIT test Sias et al., 2021. Similarly, inhibition of lOFC→BLA 
projections attenuates encoding of the positive incentive value of a particular food reward Malvaez 
et al., 2019. Thus, lOFC→BLA pathway activity mediates encoding of state- dependent, outcome- 
specific reward memories. lOFC→BLA activity is also sufficient to drive subjects to assign a high value 
to a particular reward Malvaez et al., 2019. Pairing optical stimulation of lOFC→BLA projections with 
non- contingent experience of a food reward causes animals to subsequently seek out that specific 
food, but not other foods, more vigorously. Thus, lOFC→BLA pathway activity is capable, at least in 
part, of elevating the incentive value of a specific reward, information that later informs reward- seeking 
decisions. Together these data indicate that lOFC via its direct projections to the BLA mediates the 
ability to link rewarding events to the external and internal states with which they are associated and, 
thus, regulates the formation of an internal model, aka cognitive map, that enables the predictions 
and inferences needed for flexible, advantageous decision making.

This is consistent with evidence that lOFC is important for learning about rewarding events. The 
lOFC mediates incentive learning Baltz et al., 2018 and helps link cues to their value in dynamic 
learning environments Noonan et al., 2010; Walton et al., 2010; Chau et al., 2015; Noonan et al., 
2017. It is also consistent with evidence, across species, that lOFC can encode high- dimensional, 
outcome- specific representations of predicted rewards and their value Wilson et al., 2014; Rudebeck 
and Rich, 2018; McDannald et al., 2014; Howard et al., 2015; Klein- Flügge et al., 2013; Gottfried 
et  al., 2003; Howard and Kahnt, 2017; Rich and Wallis, 2016; Farovik et  al., 2015; Lopatina 
et al., 2015; Suzuki et al., 2017; Rudebeck and Murray, 2014. lOFC neurons respond to rewarding 
events during learning to signal reward expectations that may support learning in downstream struc-
tures, such as the BLA Stalnaker et al., 2018b; Stalnaker et al., 2018a. Indeed, OFC lesion disrupts 
expected outcome and decision- related activity in BLA Wassum et al., 2012; Saddoris et al., 2005; 
Lucantonio et al., 2015.

lOFC→BLA projections do not mediate the retrieval of reward memories or use of this information 
to guide decisions. Chemogenetic inhibition of lOFC→BLA projections does not disrupt value- guided 
reward seeking Malvaez et al., 2019 or the ability to use reward cues to bias choice (express PIT) 
Lichtenberg et al., 2017. Stimulation of this pathway will not promote reward seeking Malvaez et al., 
2019. Thus, lOFC→BLA projections mediate the encoding, but not retrieval or use of state- dependent 
reward memories. This is not to imply that the lOFC does not participate in using reward memories to 
guide decision making. It does Ostlund and Balleine, 2007; Pickens et al., 2005; Jones et al., 2012; 
Howard et al., 2020; West et al., 2018. This function is likely to be achieved via projections other 
than those to the BLA, for example to the striatum Hoover and Vertes, 2011; Gremel and Costa, 
2018; Gremel et al., 2016; Gourley et al., 2013.

This conclusion seemingly contradicts evidence that optical inhibition of lOFC→BLA projections 
disrupts cue- induced reinstatement of cocaine seeking Arguello et  al., 2017, ostensibly a task in 
which cue- drug memory influences drug seeking. This effect could be due to unintended inhibition 
of collateral projections to other brain regions. However, it is more easily reconciled by considering 
that cue- induced reinstatement contains a learning process: action reinforcement by drug cues. This 
conditional reinforcement could be mediated by lOFC→BLA projections.
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The lOFC→BLA pathway also supports performance in more dynamic learning and decision 
scenarios. For example, lOFC→BLA lesion influences performance during reversal learning, in which 
subjects must learn, integrate, and use information about reward availability and option value Groman 
et al., 2019a. The above evidence from tasks that parse learning and retrieval processes suggests that 
lOFC→BLA projections may primarily support reward learning in such dynamic scenarios.

Medial orbitofrontal cortex → basolateral amygdala pathway
In contrast to the lOFC→BLA pathway, mOFC→BLA projections do regulate the influence of reward 
memories over decision making. mOFC→BLA projection activity is critical for using environmental 
cues to know which specific reward is predicted and the current value of that option. Chemogenetic 
inactivation of this pathway disrupts the ability to use reward cues to guide choice during an outcome- 
specific PIT test and prevents subjects from adapting cue responses following selective devaluation of 
the predicted reward Lichtenberg et al., 2021. mOFC→BLA projections are also necessary for using 
the previously encoded incentive value of an expected reward to ensure its adaptive pursuit Malvaez 
et al., 2019. Stimulation of this pathway can even facilitate the ability to use a subthreshold reward 
value memory to incentivize seeking of a specific reward Malvaez et al., 2019. Thus, mOFC→BLA 
projections mediate the use of the current state, defined both by external cues and internal physio-
logical signals, to inform decision making. In each above experiment, the tests were non- reinforced, 
forcing subjects to use their memories of the predicted rewards to guide decisions. When such 
memories are not required or have not been encoded, mOFC→BLA projection activity is dispens-
able Malvaez et al., 2019. mOFC→BLA projections, therefore, mediate the use of state- dependent, 
outcome- specific reward memories to guide decisions.

This is consistent with evidence that mOFC itself participates in appetitive decision making Malvaez 
et al., 2019; Bradfield et al., 2015; Bradfield et al., 2018; Gourley et al., 2016; Noonan et al., 
2010; Noonan et al., 2017; Stopper et al., 2014; Münster and Hauber, 2018; Dalton et al., 2016; 
Bray et al., 2010; Rudebeck and Murray, 2011; Yamada et al., 2018 and is especially important 
for using knowledge of the structure of the environment to make predictions about currently unob-
servable events Bradfield et  al., 2015. It also accords with data that mOFC represents general 
information about expected events that is used to make decisions based on value estimations or 
comparisons Suzuki et al., 2017; Rudebeck and Murray, 2011; Lopatina et al., 2016; Burton et al., 
2014; Kennerley et al., 2011; Plassmann et al., 2010; Levy and Glimcher, 2011; Lopatina et al., 
2017; Padoa- Schioppa and Assad, 2006; Pritchard et al., 2005. These data suggest that mOFC’s 
function in representing future events to guide decision making is, at least in part, achieved via direct 
projections to BLA.

Although critical for using state- dependent reward memories to guide decision making, the 
mOFC→BLA pathway is not needed to encode these memories. Chemogenetic inactivation of 
mOFC→BLA projections does not disrupt incentive learning, and optical activation of this pathway 
will not promote value encoding Malvaez et al., 2019. Thus, lOFC→BLA and mOFC→BLA pathway 
function in forming and using reward memories is doubly dissociable. This specialization of OFC→BLA 
pathways for learning associative information (lOFC→BLA) v. using it to make decisions (mOFC→BLA) 
is consistent with similar evidence of lOFC v. mOFC encoding v. decision functions in non- human 
primates and humans Noonan et al., 2010; Noonan et al., 2017. The primate lOFC has been shown 
to be involved in credit assignment Noonan et al., 2017; Rudebeck and Murray, 2011 and value 
updating following devaluation Murray et al., 2015. Whereas primate mOFC has been implicated 
in value- guided decision making Noonan et al., 2017; Rudebeck and Murray, 2011. These func-
tions are achieved, at least in part, via projections to the BLA. Together these data indicate that the 
lOFC→BLA pathway mediates the formation of state- dependent, outcome- specific reward memories 
and the mOFC→BLA pathway facilitates the use of this information to guide adaptive reward- related 
decisions.

Basolateral amygdala → orbitofrontal cortex pathway
Projections back to the OFC are likely candidates for the BLA output pathways responsible for using 
state- dependent, outcome- specific appetitive memories to guide decision making. Indeed, the OFC- 
BLA circuit is bidirectional and the OFC has been implicated using knowledge of the associative 
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relationships within an environment to inform the predictions and inferences necessary for flexible 
decision making Wilson et al., 2014; Schuck et al., 2016; Bradfield and Hart, 2020; Shields and 
Gremel, 2020; Sharpe et  al., 2019; Wikenheiser and Schoenbaum, 2016; Rudebeck and Rich, 
2018; Gardner and Schoenbaum, 2020. Pathway- specific BLA→OFC manipulations indicate these 
functions are facilitated, in part, via input from the BLA and are distinct between the BLA→lOFC and 
BLA→mOFC pathways.

Basolateral amygdala → lateral orbitofrontal cortex pathway
BLA→lOFC projections mediate the ability to use state- dependent, outcome- specific stimulus- 
outcome memories to guide reward- seeking decisions. Chemogenetic inactivation of this pathway 
disrupts the ability to use reward cues to guide choice behavior during a PIT test and to adapt cue 
responses following devaluation of a predicted reward Lichtenberg et al., 2017. lOFC→BLA projec-
tions are particularly important when predicted outcomes are not readily observable and memo-
ries of environmental relationships must be used to guide decisions Lichtenberg et al., 2017. Thus, 
BLA→lOFC projections are critical for using stimulus- outcome memories to inform decision making, 
including the identity and current desirability of the predicted reward. Whether BLA→lOFC function 
in value is secondary to representing reward identity (if you do not know which reward is predicted, 
then you cannot represent its value) is a critical open question.

BLA→lOFC projection function in using stimulus- outcome memories to enable cues to inform deci-
sion making is consistent with evidence that the BLA itself is activated by reward- predictive cues Sias 
et al., 2021; Malvaez et al., 2015; Lutas et al., 2019; Crouse et al., 2020; Schoenbaum et al., 1998; 
Tye and Janak, 2007; Paton et al., 2006; Belova et al., 2008; Sugase- Miyamoto and Richmond, 
2005; Beyeler et al., 2016; Schoenbaum et al., 1999; Muramoto et al., 1993; Tye et al., 2008; 
Beyeler et al., 2018 and necessary for using outcome- specific, stimulus- outcome memories to guide 
adaptive behavior and choice Ostlund and Balleine, 2008; Malvaez et al., 2015; Johnson et al., 
2009; Lichtenberg and Wassum, 2017. This BLA function is mediated, at least in part, via BLA→lOFC 
projections. lOFC is critical for using stimulus- outcome memories to inform flexible reward- related 
behaviors and choice Ostlund and Balleine, 2007; Pickens et  al., 2003; Gallagher et  al., 1999; 
Pickens et  al., 2005 and can encode high- dimensional rewarding representations Wilson et  al., 
2014; Rudebeck and Rich, 2018; McDannald et al., 2014; Howard et al., 2015; Klein- Flügge et al., 
2013; Gottfried et al., 2003; Howard and Kahnt, 2017; Rich and Wallis, 2016; Farovik et al., 2015; 
Lopatina et al., 2015; Suzuki et al., 2017; Rudebeck and Murray, 2014. This is likely achieved via 
direct input from the BLA. Indeed, BLA lesion will disrupt outcome encoding in lOFC Schoenbaum 
et al., 2003b.

The lOFC and BLA are well positioned to collaborate in a bidirectional circuit to form (lOFC→BLA) 
and subsequently use (BLA→lOFC) outcome- specific reward memories. This was recently tested using 
a pathway- specific, serial, circuit disconnection, achieved by multiplexing unilateral optogenetic 
inhibition of lOFC→BLA projections during stimulus- outcome learning with unilateral, contralateral 
chemogenetic inhibition of BLA→lOFC projections during the use of those memories at a PIT test. 
This indicated that the outcome- specific associative information that requires lOFC→BLA projections 
to be encoded also requires activation of BLA→lOFC projections to be used for decision making. 
Thus, lOFC→BLA→lOFC is a functional learning and decision circuit. lOFC→BLA projections regulate 
the encoding of state- dependent, outcome- specific reward memories and BLA→lOFC projections 
mediate the subsequent use of these memories for adaptive decision making.

Basolateral amygdala → medial orbitofrontal cortex pathway
The BLA→mOFC pathway also mediates BLA function in using reward memories to influence deci-
sions, but differently than the BLA→lOFC pathway. Unlike BLA→lOFC, chemogenetic inactivation of 
BLA→mOFC projections does not disrupt the expression of outcome- specific PIT Lichtenberg et al., 
2021. The BLA→mOFC pathway is, therefore, not required to retrieve outcome- specific stimulus- 
outcome memories or use them to influence decision making. BLA→mOFC inactivation does, however, 
prevent subjects from adapting cue responses following devaluation of the predicted reward Licht-
enberg et al., 2021. Thus, the BLA→mOFC pathway is critical for using cues to represent the value, 
but not identity, of future rewards. This value information is critical for inferring how advantageous it 
would be to respond to the cue.
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BLA→mOFC pathway function in adapting behavior based on the current value of a predicted 
reward is consistent with evidence that the BLA itself is needed for the sensitivity of cue responses to 
devaluation Ostlund and Balleine, 2008; Johnson et al., 2009 and with evidence that BLA neuronal 
responses to cues can represent the value of the predicted reward Schoenbaum et al., 1998; Paton 
et al., 2006; Belova et al., 2008; Saddoris et al., 2005; Belova et al., 2007. This function is achieved, 
at least in part, via BLA→mOFC projections. mOFC is itself critical, across species, for appetitive 
decision making Malvaez et al., 2019; Bradfield et al., 2015; Bradfield et al., 2018; Noonan et al., 
2010; Noonan et al., 2017; Stopper et al., 2014; Münster and Hauber, 2018; Dalton et al., 2016, 
especially when the value of rewarding options must be mentally simulated Bradfield et al., 2015; 
Bray et  al., 2010 and/or compared Gourley et  al., 2016; Noonan et  al., 2010; Stopper et  al., 
2014; Rudebeck and Murray, 2011; Yamada et al., 2018. mOFC neuronal activity can represent a 
cue- reward memory Namboodiri et al., 2019 and unobservable future states Lopatina et al., 2017; 
Elliott Wimmer and Büchel, 2019. The mOFC can also represent general information about expected 
events to make value estimations Suzuki et al., 2017; Rudebeck and Murray, 2011; Lopatina et al., 
2016; Burton et al., 2014; Kennerley et al., 2011; Plassmann et al., 2010; Levy and Glimcher, 
2011; Lopatina et al., 2017; Padoa- Schioppa and Assad, 2006; Pritchard et al., 2005. BLA→mOFC 
projections might facilitate the ability to use cues to generate value estimations in mOFC, at least for 
deciding whether or not to respond to a cue.

The function of the BLA→mOFC pathway is different from the mOFC→BLA pathway. mOFC→BLA 
projections are critical for using predictive states to know which specific reward is predicted and the 
current value of that option Malvaez et al., 2019; Lichtenberg et al., 2021. BLA→mOFC projections 
are only needed for the latter Lichtenberg et al., 2021. Whether BLA and mOFC function in a bidirec-
tional circuit, like the lOFC- BLA circuit, is an important open question. For example, do mOFC→BLA 
projections enable BLA→mOFC projection function in using cues to adapt behavior based on the 
value of the predicted reward, or vice versa? This is plausible, if not likely, given that both mOFC→BLA 
and BLA→mOFC projections are needed for this behavior. But the BLA→mOFC pathway is unlikely to 
contribute to mOFC→BLA function in using cues to predict reward identity. This mOFC→BLA func-
tion is likely achieved via another BLA output, perhaps that to lOFC which is also needed for such 
predictions Lichtenberg et al., 2017. Another important open question is whether the BLA→mOFC 
pathway mediates the use of internal state- dependent incentive value, like the mOFC→BLA pathway. 
BLA→mOFC projections have thus far only been studied in the context of external states.

Together these data indicate that BLA outputs to the OFC mediate the ability to use stimulus- 
outcome memories to influence adaptive reward choices. The BLA→lOFC pathway allows one to use 
cues to predict specific available rewards, whereas BLA→mOFC pathway enables predictions of the 
value of forthcoming events. The extent to which BLA→lOFC and BLA→mOFC pathways participate 
in encoding reward memories is a ripe question for future investigation.

What the orbitofrontal cortex – basolateral amygdala circuit 
does not do
Although the boundary conditions of OFC- BLA function remain to be fully delineated, emerging 
evidence suggests the OFC- BLA circuit may specialize in learning about and using states to make 
predictions about available rewards and their value, information that supports flexible decision making.

The OFC- BLA circuit is not necessary for the acquisition or expression of general conditional 
response policies. Inactivation of neither OFC→BLA, nor BLA→OFC pathways prevents subjects from 
approaching the goal location (e.g. food- delivery port) during a cue Lichtenberg et al., 2021; Licht-
enberg et al., 2017. This is consistent with evidence that neither the BLA, lOFC, nor mOFC is needed 
for this behavior Corbit and Balleine, 2005; Hatfield et al., 1996; Malvaez et al., 2015; Bradfield 
et al., 2015; Bradfield et al., 2018; Everitt et al., 2000; Parkinson et al., 2000; Morse et al., 2020. 
Although influenced by positive outcome valence, such general cue responses do not require an 
outcome expectation and can be executed via a previously learned response policy that relies instead 
on past success. The BLA- OFC circuit is not necessary for stamping in or expressing such a response 
policy and, therefore, is not simply necessary for assigning valence to predictive events. Rather the 
BLA- OFC circuit is critical when one must use cues to access a representation of the predicted reward 
to support reward pursuit or decision making.
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Thus far, the OFC- BLA circuit has not been found to be important for accessing knowledge of the 
specific consequences of an instrumental action (i.e. action- outcome memories). OFC- BLA pathway 
manipulations do not to affect general instrumental activity, consistent with evidence from BLA and 
OFC lesions Ostlund and Balleine, 2008; Corbit and Balleine, 2005; Murray and Izquierdo, 2007; 
Balleine et al., 2003; Ostlund and Balleine, 2007 and BLA- OFC disconnection Fiuzat et al., 2017; 
Baxter et al., 2000; Zeeb and Winstanley, 2013. BLA→lOFC, BLA→mOFC, or mOFC→BLA pathway 
inactivation also does not disrupt sensitivity of instrumental choice to devaluation of one of the 
predicted rewards Lichtenberg et al., 2021; Lichtenberg et al., 2017. Thus, these pathways are not 
needed to retrieve or use simple action- outcome memories. Both BLA and mOFC are required for 
this Ostlund and Balleine, 2008; Johnson et al., 2009; Balleine et al., 2003; Bradfield et al., 2015; 
Bradfield et al., 2018; Gourley et al., 2016. They likely achieve this function via alternate projec-
tions, perhaps those to the striatum Corbit et al., 2013; Gremel and Costa, 2018; Gremel et al., 
2016; Morse et al., 2020; van Holstein et al., 2020, a region heavily implicated in action- outcome 
memory Malvaez and Wassum, 2018; Malvaez et al., 2018; Malvaez, 2020; Yin et al., 2005. It 
remains unknown whether lOFC→BLA projections are important for sensitivity of instrumental choice 
to devaluation. This is unlikely because lOFC→BLA projections are not needed for other tasks that 
require action- outcome and outcome value information Malvaez et al., 2019; Lichtenberg et al., 
2017 and this pathway has generally been found to be primarily important for learning, rather than 
using, reward memories. The lOFC is also itself not required for sensitivity of instrumental choice 
to devaluation Parkes et  al., 2018; Ostlund and Balleine, 2007. The lOFC is, however, involved 
in action- outcome memory. It becomes needed for sensitivity of instrumental choice to devaluation 
after action- outcome contingencies have been switched Parkes et al., 2018. This nuanced function 
in action- outcome memory may rely on lOFC function in state- dependent memory. After the contin-
gencies change, one must use the latent state to know which set of action- outcome contingencies 
are at play. This may also explain why lOFC- BLA disconnection will disrupt choice behavior following 
a degradation of one action- outcome contingency Zimmermann et al., 2017. Thus, a critical open 
question is whether components of the OFC- BLA circuit contribute to action- outcome memory by 
facilitating the use of states to retrieve current action- outcome relationships.

That OFC- BLA circuitry is not necessary for the sensitivity of instrumental choice to outcome 
devaluation (at least in its simple form) ostensibly contradicts evidence from BLA- OFC disconnec-
tions Fiuzat et al., 2017; Baxter et al., 2000; Zeeb and Winstanley, 2013. Using cross lesions to 
disconnect OFC and BLA, these studies demonstrate OFC- BLA connectivity is critical for adapting 
choices following post- training devaluation of the predicted reward. There are three ways to reconcile 
these findings. First, cross lesions will disconnect both direct and multisynaptic OFC- BLA connections. 
The broader effects of OFC- BLA disconnection could be via the multisynaptic connections. Second, 
cross lesions disrupt the devaluation learning process, which is spared with more temporally- restricted 
manipulations. This may account for their effects on later choice. Indeed, lOFC→BLA projections 
mediate reward value learning Malvaez et al., 2019. Third, although involving instrumental choices, 
the disconnection tasks included cues (e.g. objects, visual stimuli) associated with the actions and 
outcomes, such that OFC- BLA disconnection could have impacted the ability to use those cues to 
guide instrumental performance, similar to pathway- specific OFC circuit function Lichtenberg et al., 
2021; Lichtenberg et al., 2017.

That the mOFC→BLA pathway is required for adjusting instrumental reward seeking based on the 
hunger- state- dependent incentive value of the predicted reward Malvaez et al., 2019 but not for 
sensitivity of instrumental choice to sensory- specific satiety devaluation Lichtenberg et al., 2021 is 
another seemingly contradictory set of results. This discrepancy may be explained by differences in 
the type of value learning. Incentive value is a long- term, consolidated, motivational state- dependent 
memory Dickinson and Balleine, 1994. Subjects learn the value of the reward in a particular state 
(e.g. hunger) and then 24 hr or more later are tested for their ability to use that information to guide 
their reward seeking. By contrast, the influence of sensory- specific satiety devaluation is typically 
tested immediately, with no opportunity for sleep or consolidation. The mOFC→BLA pathway is, 
therefore, important for using consolidated memories of the relationship between an internal physio-
logical state and an expected outcome’s value to guide reward- pursuit decisions. This interpretation 
is consistent with mOFC→BLA function in the expression of outcome- specific PIT and sensitivity of 
Pavlovian conditional responses to devaluation, both of which require the use of consolidated external 
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cue state memories to know which specific rewards are predicted. Thus, the mOFC→BLA pathway 
is important when previously learned states, whether internal or external, are needed to generate 
reward predictions. This implies that the mOFC→BLA pathway is recruited to support decision making 
with memory consolidation. This could be further tested by comparing mOFC→BLA pathway activity 
and necessity in instrumental choice following sensory- specific satiety devaluation with Balleine and 
Dickinson, 1998b and without the opportunity for memory consolidation.

Orbitofrontal cortex – basolateral amygdala circuit function
The OFC- BLA circuit is critical for learning and memory processes that support decision making. 
There is a tendency to think BLA is primarily important for assigning general valence to predictive 
cues Pignatelli and Beyeler, 2019; Smith and Torregrossa, 2021; O’Neill et al., 2018; Correia and 
Goosens, 2016; Tye, 2018. It is. But, the above data reveal that the BLA, with support from OFC, 
helps to link information beyond valence, sensory- specific features of rewarding events to the external 
and internal states with which they are associated. And then, via its outputs to OFC to use that infor-
mation to enable the predictions and inferences needed for flexible decision making. Thus, the BLA, 
via its connections with the OFC, is a critical contributor to decision making. The OFC has long been 
thought to support adaptive decision making. The data above reveal that many of these functions are 
supported via direct connections with BLA.

Each pathway in the OFC- BLA circuit makes a unique contribution to its overall function in forming 
state- dependent, outcome- specific reward memories and using this information to inform the predic-
tions and inferences that guide reward- seeking decisions (Figure 1). When a rewarding event is expe-
rienced, activity in the lOFC→BLA pathway helps to link that specific reward to predictive states. For 
example, while eating the pizza you ordered via delivery, the lOFC→BLA pathway helps you link that 
specific pizza to the associated logos in the food- delivery app and to learn that meal is desirable when 
you are hungry. Later, activity in the mOFC→BLA pathway facilitates the ability to use these memories 
to guide decision making Sias et al., 2021; Malvaez et al., 2019; Lichtenberg et al., 2021. When you 
are hungry and see those logos in the future, the mOFC→BLA pathway helps you know pizza might be 
a good dinner option. Activity in BLA neurons projecting to the OFC enable state- dependent reward 
memories to guide decision making. BLA→lOFC projections contribute to using detailed represen-
tations of expected rewards to support decision making Sias et al., 2021; Lichtenberg et al., 2017. 
This pathway helps you to know what specific food is predicted by the restaurant logos (e.g. New York 
style pepperoni pizza). BLA→mOFC projections mediate the ability to adapt behavior based on the 
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Figure 1. Schematic of OFC- BLA circuit function.
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value of the predicted upcoming event Lichtenberg et al., 2021. This pathway helps you to know 
how desirable that pizza is, making you less likely to order it if you just had pizza for lunch. Together 
this circuit helps to form the associative memories we need to build an internal model of the world 
that we can later use to generate predictions about forthcoming events and inferences about how 
advantageous a certain course of action might be.

Hypotheses and future directions
Recent work on the OFC- BLA circuit has opened many questions critical for understanding the func-
tion of this circuit and the neuronal substrates of appetitive associative memory and decision making 
more broadly.

Neuronal encoding
Perhaps the most obvious question is the precise information content conveyed by each component 
of the OFC- BLA circuit and how it is used to shape neuronal encoding and representations in the 
receiving structure. Bulk activity recordings of each pathway will provide a useful entry point. Such 
investigations would benefit from multisite recordings to assess information flow across the circuit. A 
full understanding of OFC- BLA circuit function will, however, require cellular resolution investigation 
of each pathway’s activity during reward learning and decision making. These will, ideally, include 
pathway- specific manipulations to ask how each pathway contributes to the neuronal encoding down-
stream. These studies will have strong footing in the deep existing literature on the neuronal activity 
patterns of OFC and BLA Wassum and Izquierdo, 2015; Sharpe et  al., 2019; Wikenheiser and 
Schoenbaum, 2016; Gardner and Schoenbaum, 2020; Wallis, 2011; O’Neill et al., 2018; Bissonette 
and Roesch, 2016; Salzman et al., 2007; Morrison and Salzman, 2010; Knudsen and Wallis, 2022; 
Enel et al., 2021; Sosa et al., 2021; Rich et al., 2018; Murray and Rudebeck, 2018; Averbeck and 
Costa, 2017; Sharpe and Schoenbaum, 2016. Several exciting hypotheses have emerged from these 
hub recordings and the pathway- specific functional investigations described above. Broadly, individual 
and/or ensembles of neurons in the OFC- BLA circuit are likely to be activated predictive states and 
to convey multifaceted information about predicted rewards, including their sensory- specific features 
and value, that is important for decision making. lOFC→BLA neurons might be activated by rewarding 
events during learning and encode information important for linking the sensory- specific and value 
features of those rewards to predictive states. mOFC→BLA neurons may carry information about 
reward- predictive states that relates to choices made in those states. BLA→lOFC projection neurons 
may show selective responses to unique reward- predictive cues and encode identifying features of the 
predicted reward and/or be required for such encoding in lOFC. BLA→mOFC projection neurons are 
also likely to be activated by reward- predictive cues and to either encode themselves or to facilitate 
encoding in mOFC of expected reward value.

Mechanism
Of course, there are many levels at which mechanism can, and should, be explored. One possibility is 
that BLA cells that project to the lOFC and mOFC undergo synaptic, morphological, and/or molecular 
changes during learning to enable their function in state- dependent reward memory. Indeed, the 
ionotropic glutamate receptors known to regulate BLA synaptic plasticity Bauer et al., 2002; Müller 
et al., 2009 are required for encoding and using reward memories to guide decision making. An 
enticing hypothesis is that these neuroplastic changes are, at least in part, driven by lOFC→BLA input, 
and that mOFC→BLA inputs access activity in these neurons to mediate the ability to use predictive 
states to guide decision making. lOFC and mOFC axons are intermingled in the BLA Malvaez et al., 
2019, but whether they make synaptic contact with the same cells or networks of cells is unknown. 
More broadly, information on direct and multisynaptic connections between each pathway is needed 
to better understand the extent and mechanisms of their interactions. The role of OFC and BLA inter-
neurons will be important in this regard. It will also be important to explore the role of memory system 
consolidation in the neuroplastic changes that enable OFC- BLA circuit function. Although OFC- BLA 
projections are known to be excitatory, glutamatergic neurons Malvaez et al., 2019; Kita and Kitai, 
1990; Hoover and Vertes, 2011; Heilbronner et al., 2016; Barreiros et al., 2021; Reppucci and 
Petrovich, 2016; Morecraft et  al., 1992, little else is known about them. Whether the pathways 
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between the OFC and BLA include molecularly- unique subpopulations and whether such potential 
populations are functionally distinct are ripe questions for future mechanistic investigation.

Refining function
The tasks that have defined OFC- BLA circuit function all involved decisions in novel situations. For 
example, the PIT test is the first time subjects choose between the two actions and, moreover, those 
actions are unreinforced. Faced with these novel circumstances, subjects must use their knowledge 
of stimulus- outcome relationships to infer what to do. The incentive learning test requires subjects to 
pursue a reward for the first time while hungry. Following outcome- specific devaluation, the external 
environment is unchanged, but the internal state is new, the predicted reward is devalued. The OFC- 
BLA circuit is critical for the learning and memory processes that support decisions in these novel 
situations. Is this circuitry also involved in even more novel situations that require one to construct 
the value of a predicted reward on- the- fly using its attributes? Studies in humans suggest so. lOFC 
can represent an expected outcome’s constituent features Suzuki et al., 2017. The outcome’s value 
can be decoded from this information and is integrated to compute value in more medial cortical 
regions, including mOFC Suzuki et al., 2017. Is this circuitry involved in more well- practiced decision 
scenarios? Recent theories suggest perhaps not Gardner and Schoenbaum, 2020. OFC is needed for 
the learning that supports decision making, but not always for decision making itself Constantinople 
et al., 2019; Miller et al., 2020; Keiflin et al., 2013; Gardner et al., 2020. For example, neither lOFC 
nor mOFC are required for well- practiced, but still model- based, decisions Gardner et al., 2020. The 
extent to which novelty, inference, and on- the- fly decision making are critical features of OFC- BLA 
circuit function is a ripe question for future investigation.

Another critical question is whether the mOFC→BLA, BLA→lOFC, and BLA→mOFC pathways 
participate in memory retrieval v. the use of those memories to support decision making. That is, 
accessing memories of predicted rewards so they can be mentally represented v. using those represen-
tations to support the predictions and inferences that enable decisions. Given the BLA’s long- standing 
role in emotional memory Janak and Tye, 2015; Wassum and Izquierdo, 2015; LeDoux, 2000, it is a 
reasonable speculation that the BLA supports decision making, at least in part, via a memory retrieval 
process. One view is that memories are stored in the activity of ensembles of neurons Poo et al., 
2016; Josselyn et al., 2015; Tonegawa et al., 2015. The BLA is one hub for this. Indeed, during 
fear conditioning the neuronal ensemble representing a cue becomes similar to that of the predicted 
aversive event. Thus, the BLA encodes the aversive association. These neurons are reactivated during 
memory retrieval Reijmers et al., 2007; Gore et al., 2015 and regulate the behavioral expression of 
that learning Han et al., 2009; Yiu et al., 2014. The information content of these BLA memory traces 
is not well known. Nonetheless, these findings suggest learning and memory retrieval processes might 
subserve BLA function and interactions with the OFC in decision making. However, the OFC is not 
required for well- practiced model- based decisions Gardner et al., 2020 that, presumably, require 
memory retrieval, but not on- the- fly inferences about option value. Thus, whereas the BLA may be 
important for retrieving reward memories, its projection to the OFC may be primarily important for 
using that information for the inferences that support decisions in novel situations. The BLA’s function 
in encoding and, likely, retrieving stimulus- outcome memories could serve other decision processes, 
including more practiced decisions, via alternate pathways including to the dorsal and ventral striatum 
and other cortical regions.

Many BLA- OFC pathway investigations capitalized on experimental control to parse reward learning 
from the use of this information to guide decisions. This enabled dissociation of function in learning 
(e.g. lOFC→BLA) v. using (mOFC→BLA) reward memories. But learning and decision making are often 
intertwined. For example, when cue- and action- reward contingencies are volatile. Reversal learning 
is one such dynamic scenario in which OFC, BLA, and lOFC→BLA projections have been implicated 
Groman et al., 2019a; Schoenbaum et al., 2002; Schoenbaum et al., 2003a; Burke et al., 2009; 
Izquierdo et al., 2013; Rudebeck and Murray, 2008; Churchwell et al., 2009; Chudasama et al., 
2009; Butter et al., 1963; Boulougouris et al., 2007; Manning et al., 2021. More information is 
needed on the contribution of the OFC- BLA circuit to learning and decision making in dynamic and 
volatile situations.

Here I focused on state- outcome associative structures. These are important, but simple, compo-
nents of the internal model of associative relationships that exist in the world. Environments often 
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contain more complex and sequential structures. Particular actions are often needed to transition 
between states in these structures. For example, there are many intervening steps between seeing 
the pizza restaurant logo in a food- delivery app and actually eating the pizza. You select the pizza and 
place it in your cart, then check out, receive a notification that your order was placed, then picked up, 
then delivered, at which point you gather your meal, open the packaging, and then, finally, enjoy the 
pizza. Whether and how the OFC- BLA circuit participates in the encoding and use of complex sequen-
tial associations and the actions required to transition between states are important open questions. 
Evidence of hub function across species suggests the OFC- BLA circuit is likely involved. Human OFC 
activity can reflect multistage Pavlovian stimulus- stimulus contingencies Pauli et al., 2019 and encode 
a cognitive map of a complex state space Schuck et al., 2016. Non- human primate amygdala neurons 
can reflect plans in a multistage task Hernádi et al., 2015. In rodents, OFC dopamine tone correlates 
with model- based behavior in a multistage decision task Miller et al., 2020; Groman et al., 2019b 
and OFC inactivation disrupts model- based planning in such a task Miller et al., 2017. Even putatively 
single- step associative structures involving food reward (e.g. tone- pellet), such as those in which the 
OFC- BLA circuit was implicated above, actually include multiple state transitions. The tone signals 
the food, which can be more immediately signaled by tone offset and/or the subtle click of the pellet 
dispenser, food- port entry is required to transition from the state predicting the pellet to actually 
consuming it, the taste of the pellet itself predicts subsequent satiation. Thus, an important question 
for future investigation is the extent to which the OFC- BLA circuit contributes to encoding and using 
multistage associative models that are characteristic of model- based reinforcement learning and plan-
ning. In such investigations it will be important to evaluate whether OFC- BLA circuitry encodes each 
step in a multistage association and/or links initial predictive states to rewarding outcomes further 
away in the state space. Both navigational (e.g. maze) and multistage operant tasks will benefit these 
investigations Behrens et al., 2018. Of course, OFC- BLA circuit activity may not perfectly map onto 
existing model- based reinforcement learning structures, but such structures will provide a crucial 
theoretical framework.

Generalizing function
Another important question is whether OFC- BLA circuit function in encoding state- dependent, 
outcome- specific memories and using such memories to guide decision making applies to the aver-
sive domain. It does seem plausible, if not likely. Like the BLA, both lOFC and mOFC contribute to 
aversive behavior Orsini et al., 2015; Plassmann et al., 2010; Zimmermann et al., 2018; Ma et al., 
2020; Verharen et  al., 2019; Turner et  al., 2021; Jean- Richard- Dit- Bressel and McNally, 2016; 
Ishikawa et al., 2020; Shih and Chang, 2021; Metereau and Dreher, 2015; O’Doherty et al., 2001; 
Fullana et al., 2016. lOFC activity influences sensitivity to punishment. In some cases, it is important 
for guiding choices away from punishment Jean- Richard- Dit- Bressel and McNally, 2016. In others, 
it is important for pursuing reward despite risk of punishment Orsini et al., 2015; Ishikawa et al., 
2020. mOFC is critical for sensitivity to punishment Ma et al., 2020; Verharen et al., 2019, especially 
when it is infrequent requiring subjects to rely on their memory of the aversive outcome Ma et al., 
2020. Both lOFC and mOFC are also needed to use contexts to know when aversive events are and 
are not expected Shih and Chang, 2021. Thus, OFC is involved in making choices based on both 
potential appetitive and aversive outcomes. Whether the OFC- BLA circuit mediates state- dependent, 
outcome- specific aversive memories and their influence over decision making is, thus, a ripe question. 
To answer this question, it will be important to assess outcome- specific aversive memories. This has 
been procedurally difficult. Classic outcome revaluation tasks from Rescorla, 1973; Rescorla, 1974 
and aversive PIT Lewis et al., 2013; Campese, 2021 will be a good start. These investigations will also 
benefit from consideration of the procedural differences between aversive and appetitive learning. 
For example, aversive learning typically involves far fewer training trials and days than appetitive 
learning. Aversive shocks can be immediately delivered, whereas appetitive outcomes typically have 
to be collected from a delivery port. There may also be inherent differences in the nature of the 
outcomes. Foods produce a taste and later satiation. Aversive events produce an immediate aver-
sive experience that can have longer- lasting emotional consequences. Such differences are likely to 
contribute to the neuronal circuitry involved.

The BLA and OFC have also been implicated in learning about different types of rewarding events 
Wassum and Izquierdo, 2015; Rosenberger et al., 2019; Walum and Young, 2018; Song et al., 
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2021. So, it will be also interesting to explore the extent to which the OFC- BLA circuit supports the 
encoding and use state- dependent, outcome- specific memories of non- food rewards, including social 
interactions and addictive substances. These investigations will also benefit from new methods to 
access memory content, state dependency, and inference.

Of course, it will also be important to uncover how the OFC- BLA circuit works with broader 
cortical- thalamic- basal ganglia systems to support learning and decision making. For example, it will 
be interesting to know whether the BLA supports other prefrontal cortex regions in their contributions 
to decision making in a manner similar to its support of OFC. Likewise, it will be important to know 
what other subcortical regions support the OFC in learning and decision making. BLA and OFC inter-
actions at the level of the striatum, a major interface for action execution, is also an important avenue 
for investigation. In understanding the broader circuit, it will help to know whether the architecture 
exposed here relates to other bidirectional corticolimbic circuits. For example, are there other corti-
colimbic systems with separate learning v. retrieval input channels or top- down learning signals that 
drive bottom up retrieval?

Implications for learning and decision models
These neurobiological investigations have implications for our understanding of the psychological 
processes that control learning and decision making.

A reward’s identity can be neurobiologically dissociable from its value. When the BLA→mOFC 
pathway is inactivated subjects can use cues to represent the identity of the predicted reward (needed 
to express outcome- specific PIT) but cannot represent its value (needed for sensitivity of the condi-
tional response to devaluation). Thus, reward identity and value are likely separate nodes in the asso-
ciative structure that animals use to allow cues to generate predictions for adaptive behavior and 
choice.

External and internal states may share some associative coding structure. The states that access 
information about reward identity and value can be both external (i.e. environmental cues) and internal 
(e.g. physiological, homeostatic signals). The encoding and use of both forms of memory have partially 
overlapping neuronal substrates: lOFC→BLA and mOFC→BLA pathways. There are neurobiological 
similarities in how we learn that a logo predicts a specific food and that a particular food will be tasty 
when we are hungry. Thus, there may be associative coding structures that support both state types. 
External and internal state information could converge in the BLA- OFC circuit or could be coded in 
different streams, perhaps defined by different cell types, within the circuit. Regardless, external and 
internal states are poised to interact in the OFC- BLA circuit. Indeed, the BLA receives and integrates 
information about external cues and internal homeostatic states Livneh et al., 2017.

Implications for maladaptive learning and decision making
Deficits in the ability to learn and/or use information about expected rewarding outcomes can lead 
to ill- informed decisions and this is characteristic of the cognitive symptoms that can underlie several 
psychiatric illnesses, including substance use disorder Hogarth et  al., 2013; Dayan, 2009; Voon 
et al., 2015; Schoenbaum et al., 2016; Everitt and Robbins, 2016; Volkow et al., 2013, depression 
Seymour and Dolan, 2008; Heller et al., 2018; Chen et al., 2015; Huys et al., 2015, anxiety Alvares 
et al., 2014, and schizophrenia Morris et al., 2015; Culbreth et al., 2016. These conditions have also 
been associated with altered activity in BLA and OFC as well as OFC- BLA connectivity Ressler and 
Mayberg, 2007; Price and Drevets, 2010; Sladky et al., 2015; Liu et al., 2014; Passamonti et al., 
2012; Goldstein and Volkow, 2011; Tanabe et al., 2009; Linke et al., 2012; Hahn et al., 2011; Xie 
et al., 2021. Thus, OFC- BLA circuit dysfunction might underlie some of the learning and decision- 
making symptoms of substance use disorder and other mental illnesses. The above data exposed 
vulnerabilities in the circuit whereby disrupted activity might cause maladaptive decision making. 
For example, one may be able to know which rewards are available but unable to understand their 
current value (e.g., BLA→mOFC dysfunction). This could lead to continued drug pursuit despite nega-
tive consequences or, conversely, lack of motivation for actions that earn valuable outcomes, despite 
knowledge of those outcomes (e.g. consuming healthy food or going to work). Or one might have 
learned about a predicted reward but be unable to use that memory to inform choices in the moment 
(mOFC→BLA dysfunction). For example, one may have learned about the negative consequences 
of a drug, or positive effects of eating healthy foods, but be unable to use that information when 
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presented with drug or food cues, leading to poor decisions. Further understanding of the function 
of the OFC- BLA circuit in both adaptive and maladaptive decision making is likely to aid our under-
standing and treatment of substance use disorder and other mental illnesses.

Conclusion
The OFC- BLA circuit helps us to encode detailed, outcome- specific memories of rewarding events 
and to access those memories under the right circumstances to enable the predictions and inferences 
that support adaptive decision making. There is much to be learned about the precise function of each 
pathway, information flow through the circuit, and the extent to which the circuit function generalizes 
to other types of outcomes. More mechanistic insight is clearly needed. Yet, the recent investigations 
make clear that the OFC- BLA circuit is a critical contributor to learning and memory processes that 
underlie the considerations we use to make daily decisions and that are disrupted in myriad psychi-
atric diseases.
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