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ABSTRACT OF THE DISSERTATION

Dynamics of Population Flow Networks

By

Peng Huang

Doctor of Philosophy in Sociology

University of California, Irvine, 2024

Chancellor’s Professor Carter T. Butts, Chair

Taking a relational and systemic approach, this dissertation offers theoretical, methodolog-

ical, and empirical advancements in understanding the social forces that drive or inhibit

human migration. We consider migration flows among geographical areas as a network sys-

tem, analyzing its dynamics using the exponential-family random graph models (ERGMs)

and simulation methods.

Chapter 2 grapples with the computational hurdle for modeling valued/weighted networks

using ERGMs. We propose and implement an efficient parallelizable subsampled Maximum

Pseudo-Likelihood Estimation (MPLE) scheme, which enables fast and accurate computa-

tion of ERGMs for big valued networks with high edge variance. The comparative simulation

experiments further show whether and how the performance of existing computational ap-

proaches vary by the network size and the variance of edge values, providing guidelines for

choosing and tuning those methods for different use cases.

Chapter 3 applies the implemented method to study intercounty migration in the United

States (U.S.), whose migration rates have declined for decades and reached a historical low.

We found a pattern of “segmented immobility,” where fewer people migrate between coun-

ties with dissimilar political contexts, levels of urbanization, and racial compositions. We

also propose a “knockout experiment” framework to quantify the impact of segmentation

xi



on population immobility. The chapter reveals the social and political cleavages that un-

derlie population immobility in the U.S., bridging the scholarly domains of (im)mobility,

segregation, and polarization.

Motivated by debates about California’s net migration loss (“California Exodus”), Chapter

4 examines the scale of and the mechanisms behind the migration-induced population redis-

tribution among U.S. states. We combine ERGMs, knockout experiments, and a protocol for

functional form visualization to understand the complex effects of political climates, hous-

ing costs, racial dynamics, and urbanization. The chapter offers an analytical framework

for migration-induced population redistribution and demonstrates how generative statistical

models can provide mechanistic insights beyond hypothesis-testing.
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Chapter 1

Introduction

What drives people to migrate and what inhibits them from migrating? Where do migrants

come from and where do they move towards? To tackle these fundamental questions about

human migration, this dissertation conducts macrosociological research on the dynamics of

population flows, using intercounty migration in the United States as the study case. We

model the population flows between geographical locations as a network system, where the

nodes/vertices represent places and edges represent the sizes of population migrating from

one place to another.

Network analysis of migration flow systems offers three unique insights thanks to its three

features: macroscopic, relational, and systemic. The majority of sociological research about

migration happens at the micro-level, taking individuals and households as analytical units.

Using qualitative and quantitative data collected mostly from migrant-sending regions, they

identified how individual, household and sometimes neighborhood characteristics influence

people’s likelihood of migration, and the decision-making process involved (e.g. Chu 2010;

Garip 2019; Liang et al. 2008; Lu et al. 2013; Massey et al. 1990; Massey and Espinosa 1997).

Notwithstanding their rich discoveries, this well-developed approach, viewing through a wide-

1



angle lens, is in essence case studies of migration flows, such as migration from Mexico to

the U.S. or from rural to urban Thailand (Windzio 2018). They also tend to focus on cases

that have extensive population flows, overlooking migration flows of smaller sizes and the

mechanisms that hinder more migration from happening. As macrosociological research,

this dissertation complements existing micro-level migration studies. We will analyze all of

the 9.9 million possible intercounty migration routes in the U.S., avoiding selection biases

towards major migration flow cases. The macro-level analysis also reveals how social contexts

at larger geographical scales shape migration, such as the construct of state boundary, and

the variation in political climates across counties. Furthermore, the dissertation will directly

examine the key features of the whole migration system, including the size of internal migrant

population in the U.S. and the scale of migration-induced population redistribution among

U.S. states, as well as their social, economic, and political determinants.

The second feature of the following analysis is the relational perspective it takes. Extant

macro-level research about migration, especially internal migration in the U.S., typically

take geographical areas such as states and counties as research units (e.g., Greenwood, 1997;

Partridge et al., 2012; Treyz et al., 1993). This approach is convenient and insightful about

how local characteristics of a place can influence its migration rates. However, migration,

which is population moving from one place to another, is by nature relational. This approach

has to separate migration into two processes: immigration, and emigration, overlooking the

possibly joint and interactive influence of origin and destination on migration. As Chapter

3 will show, the dissimilarity between counties play a critical role in influencing the scale of

migration. This can only be discovered when taking a relational view, where migration is not

a feature of one place (origin or destination), but a pair of places (origin and destination).

Modeling the migration flow system as network operationalizes this perspective, where a

migration flow is defined as an edge from its origin to its destination.

Lastly, as the migration systems theory has argued (de Haas, 2010; Mabogunje, 1970), popu-

2



lation flows are not independent from each other, but form a system with internal dynamics,

where the change in one migration flow can spillover to the other flows. This means that,

statistically speaking, migration flows are autocorrelated, a feature that should be accounted

for in order to draw valid inference. Moreover, the structure of the autocorrelation carries

substantively meaningful information about the endogenous mechanisms of the migration

flow system, such as whether and how migration flows are reciprocated (a larger flow from

place A to place B promotes a larger flow in reverse from B to A). Network analysis offers a

useful tool in understanding the systemic pattern of migration. Specifically, the exponential-

family random graph models (ERGMs) is a parametric statistical tool that can explicitly

specify the structure of interdependence of edges (migration flows) alongside other covariates

that are exogenous to the network system, offering a path to reveal the internal dynamics of

the migration flow system.

The macroscopic, relational, and systemic thinking has a long tradition in migration studies

and can be traced back to the classic piece by Ravenstein (1885). Recent years have witnessed

a rise in apply this thinking by using network methods, including ERGMs (e.g., Abramski

et al., 2020; Akbari, 2021; DeWaard et al., 2020; Leal, 2021; McMillan, 2024; Windzio, 2018).

The dissertation advances this inquiry in the following three areas:

First, computational methods for large-scale high-edge-variance valued network analysis us-

ing ERGMs. While network analysis can offer unique insights in studying migration flow

systems, there exists one challenge. Most network methods are designed to model binary

relationships, where an edge either exists or not at all. For migration systems and other flow

systems, however, researchers are usually interested in more than whether there exist a flow

at all, but the magnitude of the flow. This requires the model to be capable of handling net-

works of weighted/valued edges. Scholars have extended existing network methods for valued

relationships (e.g., Opsahl et al., 2010), including ERGMS (Cranmer and Desmarais, 2011;

Krivitsky, 2012; Krivitsky and Butts, 2017). Nevertheless, computation remains a hurdle for

3



ERGMs of valued networks (Valued ERGMs). As a result, network analyses of migration

systems have to either be descriptive (Akbari, 2021), or perform data reduction (such as

dichotomizing edges or putting them into quintiles) (Leal, 2021; McMillan, 2024; Windzio,

2018), losing information and running the risk of underestimating variability (Altman and

Royston, 2006).

To address this issue, Chapter 2 proposes and implements an efficient parallelizable sub-

sampled Maximum Pseudo-likelihood Estimation (MPLE) method for Valued ERGMs. We

further test it against other existing computational methods via comparative simulation

experiments. The experiments reveal how the performance of each parameter estimation

method vary by the size of the network and the variance of edge value, providing guidance

for choosing and tuning those methods for different tasks. Results show that MPLE offers

accurate but much more efficient estimation of Valued ERGMs for high-edge-variance net-

works. This makes possible to model the quantitative features of large-scale network systems

using Valued ERGMs, such as the inter-U.S.-county migration flow network with thousands

of nodes and edge value ranging from zero to tens of thousands.

Second, macrosociological research about immobility. In recent years, scholars have realized

the “mobility bias” in migration studies (Schewel, 2020), where researchers have extensively

examined the social forces that drive migration, but largely neglected the counter forces

that inhibit people from moving. Theoretical and empirical works on immobility are in a

rise (e.g., Carling and Schewel, 2018; Liu and Peng, 2023; Mata-Codesal, 2015), yet less

study immobility at the population and system level. This is especially relevant to the

case of internal migration in the U.S., where migration rates have been declining for decades

(Fischer, 2002; Molloy et al., 2011; Hyatt et al., 2018), but the reasons behind the population

immobility is still inconclusive.

In response, Chapter 3 interrogates the lingering question about the social forces that limit

migration, with an empirical focus on internal migration in the United States. We propose a
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systemic, network model of migration flows, combining demographic, economic, political, and

geographic factors and network dependence structures that reflect the internal dynamics of

migration systems. Using Valued ERGMs and MPLE developed in Chapter 2, we model the

network of intercounty migration flows from 2011 to 2015. Our analysis reveals a pattern

of “segmented immobility,” where fewer people migrate between counties with dissimilar

political contexts, levels of urbanization, and racial compositions. We further proposes a

“knockout experiment” framework to quantify the impact of segmentation on population

immobility. Results suggest that one would have observed approximately 4.6 million (27

percent) more intercounty migrants each year were the segmented immobility mechanisms

inoperative. The chapter offers a systemic view of population immobility. It also reveals

the social and political cleavages that underlie geographic immobility in the United States,

showing the theoretical and empirical connections between immobility, segregation, and po-

larization from a relational perspective.

Lastly, investigation on the contribution of migration to population redistribution. Migration

is a critical channel that fuels population redistribution across geographical space, with

urbanization as a well-known and influential example (Lichter and Brown, 2011; Ravenstein,

1885). Nonetheless, migration does not always lead to population redistribution; population

redistribution happens when migration is asymmetric, where the inflows and outflows of

population are imbalanced. This means that the analytical framework useful for migration

might not be effective when directly applied to study population redistribution. Researchers

have developed measurements for and documented population redistribution via migration

(Bell et al., 2002; Rees et al., 2017), but less is known about the driving forces behind and

how to model them. This question is also empirically appealing, an example of which is

the popular debates about “California Exodus” in public discourse (Bahnsen, 2021; Beam,

2021). Journalists and the public have been debating about the scale and causes of the net

migration loss of California to other U.S. states, which has not yet received much research

in demography or sociology.
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Motivated by the empirical question about “California Exodus,” Chapter 4 develops analyti-

cal tools to model the mechanisms behind population redistribution. We introduce a protocol

to visualize the complex effects on asymmetric flows in network systems, and advance the

knockout experiment framework with positive and negative controls. Building on a modified

model of the Valued ERGMs in Chapter 3, we identify the effects of political climate, urban-

ization level, racial composition, and housing costs on California’s net migration exchange

with other U.S. states. Moreover, we also show that the severity of the California Exodus

depends on how one measures it, and California is not the state with the most substantial

population loss. The chapter demonstrates how generative statistical models can provide

mechanistic insights beyond simple hypothesis-testing, and provides a framework to model

migration-induced population redistribution and its underlying mechanisms.

Chapter 5 concludes the dissertation, summarizing the contributions, limitations, and direc-

tions for future work.
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Chapter 2

Parameter Estimation Procedures for

Exponential-family Random Graph

Models on Count-Valued Networks: A

Comparative Simulation Study

2.1 Introduction

Binary relations - relations in which edges can be approximated as simply “present” or “ab-

sent” - form the backbone of the social network field, with decades of theoretical, methodolog-

ical, and empirical progress in understanding their structure and function. Valued relations,

while by no means neglected, are less well-understood, and our tools for studying them less

well-developed. Yet, the “strength of social ties” is at core of many scientific questions in a

range of social settings (Granovetter, 1973; McMillan, 2022). Examples of valued relations

include the frequency of interaction in interpersonal contact networks (Bernard et al., 1979),
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number of cosponsored bills shared among legislators (Cranmer and Desmarais, 2011; Fowler,

2006), communication volume within and among organizations (Drabek et al., 1981; Butts

et al., 2007), encounters among non-human animals (Faust, 2011), and trade and migration

flows among nations (Windzio, 2018; Ward et al., 2013). The need for rich information

about social relations is particularly acute for networks involving interactions among aggre-

gate entities such as nations, geographical areas, gangs, or formal organizations: because

ties in such networks are themselves frequently aggregations of lower-level interactions, it is

often the case that one’s interest is not in the mere existence of trade, migration, homicide,

communication, or other interactions, but their volume, frequency, or other quantitative

features. In such settings, modeling edge states is of considerable substantive importance.

The earliest statistical modeling of valued relations was accomplished via network regres-

sion methods (Krackhardt, 1988); these provide only least-squares estimates of covariate

effects, although autocorrelation-robust null hypothesis tests for such effects are well-known

(Dekker et al., 2007), and some generalization via generalized linear models (GLMs) and

related techniques is possible. Some forms of dependence can, further, be controlled semi-

parametrically using latent structure models (e.g., Nowicki and Snijders, 2001; Hoff et al.,

2002; Vu et al., 2013; Aicher et al., 2015), allowing estimation of covariate effects while ac-

counting for unobserved mechanisms that can be written in terms of mixing on unobserved

variables. Parametric models for valued graphs with general classes of dependence effects

have been longer in coming, the current state of the art being exponential family random

graph models (ERGMs) defined on sets of valued graphs (Block et al., 2022; Desmarais and

Cranmer, 2012b; Krivitsky, 2012; Krivitsky and Butts, 2017); but see also Robins et al.

(1999) for a pioneering example using categorical data and pseudo-likelihood estimation).

Although ERGMs for valued graphs are not complete in the sense that they are for unvalued

graphs (i.e., for most types of edge values, it is not always possible to write an arbitrary

distribution on the order-N valued graphs in ERGM form), they are still highly general fam-

ilies, able to flexibly specify a wide range of effects. Since their introduction, they have been
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applied in a number of settings, ranging from networks of collaboration in government, and

networks of migration flows, to networks of functional connectivity between brain regions

(Huang and Butts, 2024a, 2023; Simpson et al., 2013; Ulibarri and Scott, 2017; Windzio,

2018).

Notwithstanding their broad applicability, parameter estimation for ERGMs in practice can

be computationally demanding, a problem that is especially acute for valued networks. This

issue has clearly had an impact on empirical network analyses in the published literature,

forcing researchers to employ compromises or workarounds. As an example, Aksoy and

Yıldırım (2024) noted in their paper that they could not obtain convergence for a single

81-node network using Valued ERGMs. For research that managed to obtain ERGM esti-

mation of their valued networks, they had to either dichotomize the data and fall back to

binary models (Leal, 2021), or coarsen the counts into quintiles (Windzio, 2018; Windzio

et al., 2019); data transformation of this type greatly reduces computational difficulties, but

in the meantime brings information loss and underestimation of variability (Altman and

Royston, 2006). In short, even though methodological advances in valued network modeling

have made it possible for researchers to capture quantitative features of relations beyond di-

chotomizational operations (Cranmer and Desmarais, 2011), the computational load remains

a lingering hurdle to fully exploit the potential of these methods in scientific applications.

The major computational cost of ERGM estimation comes from the normalizing factor in its

likelihood function, which is generally an intractable function involving the sum or integral of

an exponentiated potential over the set of all possible network configurations. Although much

is made over the fact that these sums have too many elements to explicitly evaluate (except

in the case of extremely small unvalued graphs, e.g. Vega Yon et al., 2021), this is not the

major obstacle to computation: rather, the difficulty rises from the extreme roughness (i.e.,

high variance) of the exponentiated potential over the support, which (in the absence of an

explicit analytical solution) renders naive attempts at numerical approximation ineffective.
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This problem can be amplified in the valued case, particularly where edge values vary greatly;

valued edges can also pose challenges for some approximate estimation procedures that are

successful in the case of unvalued ERGMs, as they must now explore a larger per edge state

space. This high cost of estimation puts a priority on computationally efficient approximation

methods. However, there has not been to date a systematic study of how well such methods

perform, either in terms of improved computational efficiency or quality of estimation.

This chapter provides a look at this issue, evaluating estimation quality and computa-

tional cost for a number of alternative Valued ERGM estimation techniques. We focus on

ERGMs for count-valued networks, i.e. relations whose edges take values on the unbounded

non-negative integers, evaluating estimators via a simulation study based on intercounty

migration-flow networks in two U.S. states. We vary the variance of edge values and the

(node) size of the network, to simulate different data structures. The methods examined

include the two currently implemented “standard” strategies - contrastive divergence (CD;

Krivitsky, 2017) and Markov Chain Monte Carlo maximum likelihood estimation (MCMLE;

Hunter et al., 2012) - as well as one approach not previously used in this setting, maximum

pseudo-likelihood estimation (MPLE). MPLE is a workhorse approximation method in the

binary ERGM case (Strauss and Ikeda, 1990), but requires special implementation measures

for the count-data case, and to our knowledge has not previously been used for count-data

ERGMs with general dependence. We also compare the performance of MPLE and CD as

two seeding options for MCMLE. For all methods, we evaluate their computational speed,

bias, variability, accuracy, calibration of estimated standard errors and confidence coverage.

The remainder of the chapter proceeds as follows. Section 2.2 briefly reviews ERGMs for

valued networks, with applicable estimation strategies discussed in Section 2.3. Our simula-

tion study design is described in Section 2.4, with results reported in Section 2.5. Section 2.6

discusses implications for method selection, and Section 2.7 concludes the chapter.
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2.2 Count-valued ERGMs

An ERGM family for count data can be written as,

Pr(Y = y|θ,X) =
h(y) exp(θTg(y,X))∑

y′∈Y h(y′) exp(θTg(y′, X))
, (2.1)

where y is a realization of the network random variable Y on support Y , the elements of which

are graphs whose edges take values on the set {0, 1, . . .}. (Here, we further assume that Y is a

subset of the order-N count-valued graphs, though generalization is possible.) g : Y , X 7→ Rk

is a vector of sufficient statistics, determined by exogenous covariates X and the graph state

y, with corresponding parameter vector θ. Finally, h : Y 7→ R≥0 is the reference measure,

which defines the limiting behavior of the model as θ → 0. Often tacitly taken to be constant

for binary ERGMs, the reference measure is essential for Valued ERGMs, as it determines the

marginal distribution of edge values under the reference (Krivitsky, 2012). Leaving h(y) ∝ 1

leads to a marginal Boltzmann baseline distribution, while choosing

h(y) =
∏

(i,j)∈Y

(yij!)
−1 (2.2)

where Y is the set of edge variables, and yij is the value of the (i, j) edge, leads to a marginal

Poisson baseline distribution of edge values. Other choices are also possible, some of which

may have specific substantive interpretations (see e.g. Butts, 2019, 2020, for examples in the

binary case).

As with binary ERGMs, we may specify the conditional probability that a given i, j edge

variable will take a specified value. Again interpreting Y and y as random adjacency matrices,

let Y c
ij (respectively ycij) refer to the set of all edge variables other than the ijth, and let the

notation z ∪ Y c
ij refer to the network formed by Y with the ijth edge variable set to value z.
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Then we have

Pr(Yij = yij|Y c
ij = ycij, θ,X) =

h(yij ∪ ycij) exp(θ
Tg(yij ∪ ycij, X))∑∞

ℓ=0 h(ℓ ∪ ycij) exp(θ
Tg(ℓ ∪ ycij, X))

(2.3)

=

[
∞∑
ℓ=0

h(ℓ ∪ ycij)

h(yij ∪ ycij)
exp

[
θT

(
g(ℓ ∪ ycij, X)− g(yij ∪ ycij, X)

)]]−1

.

(2.4)

While the derivation is identical to the binary case (as can be appreciated by noting that

Eq. 2.3 would reduce to the usual logistic form if ℓ were restricted to be ≤ 1), we note the

computationally important difference that the conditional edge probability itself now has a

non-trivial normalizing factor. In the general case, this has no analytical solution, and since

it involves an infinite sum it cannot be explicitly evaluated otherwise. Although this does

not impact e.g. the acceptance calculations for typical Markov Chain Monte Carlo (MCMC)

algorithms (since the conditional odds of one graph versus another does not depend upon

either normalizing factor), it does affect computation for the MPLE (which does depend on

the conditional edge probability). Here, we formulate a finite sum approximation to Eq.2.3

for MPLE, as described below.

2.3 Estimation strategies for count-valued ERGMs

While many approaches to parameter estimation are possible, we focus here on approxima-

tions to the maximum likelihood estimator (MLE). Here, we briefly review the strategies

employed, including special considerations for the count-data case. We note that some alter-

native schemes explored in the binary case (e.g., variational methods (Mele, 2017; Tan and

Friel, 2020; Wainwright and Jordan, 2008)) may be adapted to the count data problem, but

for purposes of this chapter we limit our study to approaches that have been established as
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broadly useful, and (with the exception of MPLE, which we extend) for which count-valued

implementations currently exist.

2.3.1 Monte Carlo Maximum Likelihood Estimation

There are currently two widely used schemes for MCMC-based maximum likelihood esti-

mation: stochastic approximation (Snijders, 2002; Wang et al., 2009), which is based on

attempting to match the expected sufficient statistics to their observed values (exploiting

the coincidence of methods-of-moments and MLE for exponential families); and the Geyer-

Thompson method (Geyer and Thompson, 1992; Hunter et al., 2008b) (supplemented in

current implementations by Hummel stepping (Hummel et al., 2012)), which uses an impor-

tance sampling scheme to directly optimize the log-likelihood surface. We here employ the

former in its statnet implementation (Hunter et al., 2008b; Krivitsky et al., 2012).

MCMLE methods are the current gold-standard techniques for ERGM maximum likelihood

estimation, with good theoretical properties (Snijders, 2002; Handcock, 2003) and strong

performance in simulation studies for binary networks (van Duijn et al., 2009). An important

bottleneck impacting the use of MCMLE, however, is the ability to produce relatively high-

quality draws from the specified ERGM distribution (without which, the algorithms will not

converge correctly). While it is known that conventional MCMC algorithms can in principle

mix arbitrarily slowly (Snijders, 2002; Bhamidi et al., 2008), in actual practice this problem

has been observed primarily in badly specified models that are degenerate or near-degenerate,

and hence of limited relevance in typical social network applications (Hunter et al., 2012).

That said, estimation time can still become long on very large networks, particularly for

models with strong edgewise dependence.

This cost issue becomes more acute for Valued ERGMs, especially where edge values are

highly variable. Intuitively, good MCMC mixing requires the Markov chain to explore the
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space of high-probability graphs, whose size increases substantially when edge values vary

over a large range. For instance, for a simple random walk MCMC algorithm that proposes

perturbing edges at random,1 O(N2) toggles may be needed to ensure that every edge

variable in an unvalued graph has a high probability of having the “opportunity” to change

state. If edges typically vary over some interval of order R, then a similar random walk

scheme that increments or decrements edge values will need at least O(RN2) for each edge

to have the “opportunity” to cover its range of values. For networks with large counts (e.g.,

migrant-flow networks), one can easily obtain R ≫ N , in which case simulation costs can

rapidly become prohibitive. Although this problem can be alleviated by coarsening edge

values to a much smaller range (as done e.g. by Windzio, 2018; Windzio et al., 2019), this

both loses information and distorts the resulting model (since e.g., coarsening artificially

reduces the entropy of the graph distribution). In principle, improved MCMC algorithms

offer a better way to address this problem in the long-term, but current implementations

do not seem to scale well for high-variance count models (e.g. Aksoy and Yıldırım, 2024).

As we show below, MPLE can often deliver comparable estimation quality to MCMLE for

high-R Valued ERGMs, where the latter suffers substantial increases in computational cost.

2.3.2 Contrastive Divergence

One alternative to either numerical approximation of expected statistics or of log likelihood

ratios is to use a local approximation to the gradient of the likelihood in regions of the

support “near” the observed data. This is the essential idea behind contrastive divergence

(CD) (Hinton, 2002), a method originally introduced in the machine learning literature for

scalable inference that is particularly well-suited to ERGMs and other exponential families

(Asuncion et al., 2010; Krivitsky, 2017). CD can be employed for both valued and unvalued

graphs, and greatly reduces computational time by using using only very short MCMC chains

1Practical implementations often use slightly different proposals, but the basic intuition carries.
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starting at the observed data, depending on neither sample convergence nor burn-in. It is,

however, an approximate technique that optimizes a function closely related to the pseudo-

likelihood (Asuncion et al., 2010), and thus shares some of the drawbacks of the MPLE.

These properties make CD a reasonable seeding method that offers MCMLE with starting

values for estimators, as starting values close to the MLE is known to help reduce iteration

rounds and avoid convergence failures for MCMC algorithms. Krivitsky (2017) found that

MPLE typically outperformed CD as a seeding method for MCMLE in the binary ERGM

regime; but since MPLE has not yet been implemented for Valued ERGMs, CD currently

serves as the default seeding method for MCMLE in the statenet package for valued graphs.

Here, we evaluate CD both as a standalone method and a seeding method, in comparison

with MPLE, for MCMLE.

2.3.3 Maximum Pseudo-Likelihood Estimation

Although maximum pseudo-likelihood estimation (MPLE) has not to our knowledge been

studied or implemented for count-valued ERGMs, it is an otherwise well-known technique

(being the first practical method for general ERGM estimation (Strauss and Ikeda, 1990)).

MPLE optimizes the product of the conditional likelihoods of each edge variable (the epony-

mous pseudo-likelihood (Besag, 1974)). In the unvalued case, this reduces to a logistic

regression problem, allowing the MPLE to be obtained using standard regression algorithms

(a fact that was instrumental in its early adoption, see e.g. Anderson et al., 1999). The

MPLE is known to be consistent in some asymptotic scenarios (Hyvärinen, 2006; Strauss

and Ikeda, 1990). For finite scenarios, in the special case of edgewise independent ERGMs,

the MPLE coincides with the MLE; this ceases to be true for dependence models, though the

MPLE is generally close enough to the MLE to be used as a standard method for initializing

MCMLE estimators, and its first-order performance on large networks can be very good

(An, 2016; Schmid and Desmarais, 2017). Because it does not fully account for interactions
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among edge variables, the pseudo-likelihood function tends to be excessively concentrated,

leading to poor calibration of standard error estimates (as shown in binary ERGMs: Lubbers

and Snijders, 2007; van Duijn et al., 2009). However, MPLE computation can be quite effi-

cient, further aided by the fact that (1) the pseudo-likelihood itself can be approximated by

subsampling edge variables, rather than computing on all of them, and (2) the calculations

in question are embarrassingly parallel, making it possible to greatly reduce wall-clock time

on multi-core CPUs.

As noted above, MPLE computation in the count-data context is more complex than in

the binary case, and to our knowledge it has not been previously studied for count-valued

ERGMs with dyadic dependence. We thus consider it here in greater detail. As in the binary

case, the MPLE is defined by

θ̂MPLE = argmax
θ

∏
(i,j)∈Y

Pr(Yij = yij|Y c
ij = ycij, θ,X), (2.5)

where the conditional probabilities in question are given by Eq. 2.3 and 2.4. Per Eq. 2.4,

these latter conditionals depend upon a sum over the possible edge states of products of two

factors: one involves the ratio of the reference measure at the observed edge value versus its

alternative values, and the other involves the exponentiated difference in sufficient statistics

between the observed network and the same network with the focal edge taking on alternative

values. For the former, we observe that (in the case of the Poissonian reference), we have

h(ℓ ∪ ycij)

h(yij ∪ ycij)
=

(ℓ!)−1
∏

(k,l)∈Y\(i,j) (ykl!)
−1

(yij!)−1
∏

(k,l)∈Y\(i,j) (ykl!)
−1

=
yij!

ℓ!
, (2.6)
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while the latter is simply

exp
[
θT∆ij(y, ℓ)

]
,

where ∆ is the “generalized” changescore

∆ij(y, ℓ) = g(ℓ ∪ ycij, X)− g(yij ∪ ycij, X).

There is not, in general, a simple form for the sum of these terms over all ℓ. However, we

observe that the ratio of Eq. 2.6 falls very rapidly (as roughly ℓ−ℓ) for ℓ ≫ yij, and it is

hence possible in practice to approximate the infinite sum by truncation. More generally,

we employ several techniques for improving computational performance, as described in the

following subsections.

Pre-caching of ratios and differences

We note that neither the ratio of reference measures nor the changescores depend upon θ.

Considerable computational savings can hence be had by pre-computing the ratios of Eq. 2.6

and the ∆ values for the necessary range of ℓ values on each edge. This carries a storage cost

that scales with the product of the ℓ range and the number of edge variables used, but avoids

frequent recalculation of these (expensive) quantities on each pseudo-likelihood evaluation.

Edge sum truncation and/or coarsening

Per Eq. 2.3, the conditional log-likelihood of each edge variable involves as sum over ℓ ∈

0, . . . ,∞. As noted above, we may approximate this sum by instead evaluating it over

ℓ ∈ 0, . . . , ℓmax, where ℓmax is large enough to be dominated by the decline in yij!/ℓ!. Where

the marginal distributions of each edge variable can be approximated as roughly Poissonian,
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choosing ℓmax = λmax(i,j)∈Y yij with e.g. λ ≈ 4 is an extremely conservative approach. (This

is based on the observation that a Poisson random variable with expectation z ≥ 2 has a

99.9% quantile for 4z, assuming conservatively the expectation is the maximum observed

value). λ can be further reduced as its max observed value increases (because the quantile

of λz grows with z).

Truncation using the above method is adequate for small networks, or networks with low

edge counts. However, when edge counts become extremely large, considerable computa-

tional effort may be wasted in computing conditional probabilities for small ℓ values when

the observed value is large, or for large ℓ when the observed value is small. Using the same

Poissonian approximation, we may further improve performance by working with the edge-

wise doubly-truncated sum over ℓ ∈ ℓijmin, . . . , ℓ
ij
max, with ℓijmin = max[0, yij − 4λ

√
yij] and

ℓijmax = yij + 4λ
√
yij. Because it is common to have network effects that can strongly sup-

press edges, however, we also recommend retaining some very small edge values as a buffer.

Valued social networks usually have right-skewed distributions of edge values, so adding a

few small edge values can also effectively cover the empirical distribution without significant

increase in computation load. Our code by default retains integers from 0 to 5, although we

strongly encourage extending coverage to the closest integer of sample mean of y, [µ] when

feasible. This also defines the support of edges whose observed value is zero. The approach

then leads to sums over ℓ values of the form ℓ ∈ {0, . . . , [µ]} ∪ {ℓijmin, . . . , ℓ
ij
max}. This usually

retains O(
√
yij) terms per sampled edge, which is often a substantial savings as yij values

become large.

When dealing with extremely large counts, storing and computing even
√
y terms can become

prohibitive (particularly if many edge variables are needed for adequate statistical power).

In such cases, a coarsened approximation to the sum is another option. To coarsen, we select

k evenly spaced values from ℓijmin, . . . , ℓ
ij
max, and compute the associated contributions to the

edge sum only for these terms. We also include, however, the gap (in terms of the number of
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“skipped” ℓ values) between subsequent calculated terms, and weight each computed term

by the number of elements in the gap; this is equivalent to approximating the sum via a

step function, with knots at the computed ℓ values. Our experience with this method has

been promising, although problems can ensue if the sum becomes heavily concentrated on

a range of terms that lie within adjacent knots. We thus do not employ this technique in

this chapter, although we offer it as a promising target for future research. Of course, other

approximation methods are also possible (e.g., integral approximations), and may be useful

in the large-count regime.

Edge variable sampling

Although the exact calculation of the pseudo-likelihood is at least O(RN2), the log pseudo-

likelihood can easily be approximated by random sampling of edge variables; this reduces

both storage and computational cost. As shown by our experiments, subsampled MPLE can

yield high-quality estimates with less time consumed. Our implementation offers different

sampling schemes such as uniform random sampling, as well as weighted (i.e., importance)

sampling schemes analogous to the “Tie-No Tie” proposal method frequently used in ERGM

MCMC (Morris et al., 2008). The two schemes are almost identical in our study case because

the binary density is close to 0.5, and we use the random sampling scheme in this chapter

for simplicity.

Parallel evaluation of conditional log-likelihoods

Because the log of the pseudo-likelihood is linearly separable, its calculation is an embar-

rassingly parallel problem. In practice, we divide sampled edge variables into batches, and

calculate their conditional log-likelihoods independently on different cores. This leads to

wall-clock time reductions, as the pseudo-likelihood calculation time scales with the inverse
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of the number of available cores. This (combined with edge variable sampling) can make the

MPLE an attractive choice for very large valued networks, especially when many cores are

available.

Taken together, the above computational techniques allow the MPLE to be used even for

very large networks with highly dispersed counts (although not all of them are needed when

counts are less variable, or on smaller networks). As we show, valued MPLE is very fast,

and the resulting estimator can have low bias and high accuracy for valued networks; it

offers high-quality calibration of uncertainty when the edge variance is large, but is prone

to overconfidence for dependence terms (i.e., underestimation of the standard error) and

conservative for nondependence terms when the edge variance is small.

2.4 Study design

We evaluate the above estimation techniques via a parameter recovery study, in which we

generate networks from a realistic generative model based on an initial fit to real-world social

networks, estimate models to the simulated draws using each respective technique, and then

examine the properties of the resulting estimators. Our generative model was created by

fitting a Valued ERGM to an empirical case (see below) using MCMLE; we then obtained

500 high-quality draws from the fitted ERGM using MCMC. For each draw, we obtained

point and standard error estimates from each of the three study methods (MCMLE, CD,

MPLE), evaluating the results with respect to wall-clock estimation time, bias, variance of

the estimator, overall accuracy, and calibration (accuracy of estimated standard errors and

confidence coverage). All modeling and analysis was performed using statnet (Handcock

et al., 2008), specifically using the ergm 4.2.1 (Hunter et al., 2008b; Krivitsky et al., 2022),

ergm.count 4.1.1 (Krivitsky et al., 2012), and sna 2.6 (Butts, 2008) libraries. Our MPLE

implementation also made use of the Rcpp library (Eddelbuettel and Balamuta, 2018). The
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following subsections detail the data and model used, the setup of the estimation procedures,

and the performance metrics.

2.4.1 Case Study and Model Definition

To examine the performance of estimation methods for data with different network sizes

and edge value variances, we construct the following study cases. They are based on real-

world datasets of migration flows between counties in two U.S. states (New Mexico and

North Carolina), collected and released by the American Community Survey (U.S. Census

Bureau, 2019). The New Mexico data consists of 33 nodes and the North Carolina data 100

(henceforth the “small” network and the “large” network, respectively). For the New Mexico

data, we generate two networks with different edge value distributions. The large-variance

case uses the count of migrants between each directed county pair as the edge value, which

ranges in integers from 0 to 3,862 with standard deviation 201. For comparison, the edge

value of the small-variance case takes the natural logarithm of migrant count (plus one),

rounded to the nearest integer. Its edge value ranges from 0 to 8, with standard deviation

2. Ideally, we would generate large-variance and small-variance cases for the large network

as well. Unfortunately, the large-variance large-network case turned out to be prohibitively

computationally expensive for a simulation study comparing all standard methods, and we

hence just include the small-variance large network case; the edge value is generated by the

same manner discussed above, and the distribution is similar to the small network case,

ranging from 0 to 9 with standard deviation 2. Table 2.1 displays the descriptive statistics

of the three study cases.

Our ground-truth model is created by fitting a count-valued ERGM to the above networks.

The sufficient statistics include a Sum term (intercept, the summation of all edge values),

a Nonzero term (the count of nonzero edges), three exogenous covariates, and two depen-

21



Table 2.1: Network Descriptive Statistics of the Studied Cases

Network Binary Edge value
size density min max mean std. dev.

Large-variance small network 33 0.50 0 3,862 46.15 200.54
Small-variance small network 33 0.50 0 8 1.64 1.95
Small-variance large network 100 0.41 0 9 1.32 1.84

dence terms. The exogenous covariates are the population sizes of the sending and receiving

counties (called Nodeocov and Nodeicov respectively), and the distance between counties

(Edgecov) (all on natural log scale), using 2010 Census data (National Bureau of Economic

Research, 2016; U.S. Census Bureau, 2011b). The first dependence term, mutual, measures

the reciprocity of the network, defined as

gm =
∑

(i,j)∈Y

min{yij, yji}

The second dependence term, flow, is adapted from empirical analyses of inter-county mi-

gration networks in the United States (Huang and Butts, 2024a, 2023). It calculates the

summation of the volumetric flow of each node, which is the minimum of total inflow and

total outflow for a node. It is a count-valued version of two-paths or mixed-two-star terms

for binary networks (Morris et al., 2008). Formally,

gf =
∑
i∈V

min{
∑
j∈V\i

yij,
∑
k∈V\i

yki}

where V is the vertex set. This model encompasses a diversity of different sufficient statistics

commonly used in valued ERGMs, including graph-level baseline statistics (Sum, Nonzero),

covariate effects (Nodeicov, Nodeocov, Edgecov), and dependence terms at the dyadic level

(Mutual) and the triadic level (Flow). Although our aim here is to produce a deliberately

simple model for purposes of evaluation (as opposed to a substantively detailed model of

migration), our choice of statistics was informed by prior work on migration, and previous
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empirical analyses on migration-flow networks in particular (Boyle et al., 2014; Huang and

Butts, 2024a, 2023; Windzio, 2018; Zipf, 1946).

2.4.2 Methods under Evaluation

As described above, we estimate parameters from the simulated network draws using three

procedures: Contrastive Divergence (CD), Maximum Pseudo-Likelihood Estimation (MPLE),

and Monte Carlo Maximum Likelihood Estimation (MCMLE). Estimation for each method

was performed as follows.

For CD, we use the default settings of the ergm.count package, performing 8 Metropolis-

Hastings steps, raising one proposal in each step. We also tried using more steps and/or

more proposals within each step for CD. As is shown in the Appendix, its estimation bias

and calibration usually do not improve systematically as we increase the tuning parameters,

and when it does, it fails to match other methods in comparable time. Therefore, we keep

the most time efficient setting in our comparison.

For MPLE, we implement the procedure described in Section 2.3.3. To examine the per-

formance of MPLE with various sample sizes, we consider three subsampled MPLE in each

study case: the fast, the mid, and the full, which corresponds to uniformly sampling 50%,

75% and 100% of the edge variables in random, respectively; this corresponds to 528, 792,

1056 dyads for small networks, and 4950, 7425, 9900 dyads for the large network. We also

consider the impact of multiple cores on execution time, calculating the wall-clock time for

models estimated using 1,4, and 20 cores, respectively. In terms of edge support trunca-

tion, for small-variance cases, we use a uniform non-edgewise truncation; the support covers

integers from 0 to λ times the max edge value of the network, where λ = 4 for the small

network and λ = 1.5 for the large network as the latter has more information with more

edge variables. Edgewise support truncation becomes a powerful tool to reduce computation
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time for large-variance networks; we set λ = 4 for the doubly-truncated edgewise support

(see the second paragraph of Section 2.3.3). We also coerce the support to include integers

from 0-value to the 80% quantile of the edge distribution for every edge variable, whose

upper bound ranges from 43 to 48 and is typically close to the mean of the edge distribution.

This is a conservative scheme for an edgewise support truncation with wide intervals and

without coarsening, but is fast enough to have one order of magnitude less wall-clock time

than MCMLE.

For MCMLE, we use the stochastic approximation method in ergm.count, a workhorse

method that is also implemented and served as the default method in PNET (Wang et al.

2009). We made a few adjustments from the default setting to improve its performance based

on the data structure of the study case and our exploratory experiments. First, we set the

proposal distribution of Metropolis-Hastings algorithm in MCMC to be random, where every

dyad has equal chance to be toggled. By default, the proposal distribution in statnet favors

toggling nonzero edges than nulls, with the rationale that social networks tend to be sparse

(for binary networks); we revoke this penalty towards nulls since the binary density of the

network is high (0.4-0.5) in the study cases (removing the need for biased proposals), and the

random proposal reduces the computational time of the MCMLE. Second, by default, the

MCMC thinning interval is 1024 and the sample size of network statistics in each distribution

returned by the algorithm is also 1024.2 This setting is sufficient for the small-variance small

network case, but for the other two cases, we increase these two parameters to be ten

thousand; this helps with convergence and further increasing those parameters no longer

brings performance gain based on our experiments. We evaluate the use of both CD and

MPLE as seeding methods for MCMLE, referring to them as CD-MCMLE and MPLE-

MCMLE, respectively. We employ default settings for CD, given that longer chains do not

consistently enhance performance (see Appendix). For the small-variance small network

case, we use the “mid” MPLE for MCMLE seeding, but for the large-variance and the

2We follow the default of statnet that sets MCMC burnin as 16 times the length of the thinning interval.
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large network cases, we use the “fast” MPLE since the fast MPLE yields good-enough point

estimations. It turns out that CD-MCMLE fails to converge for some of the large-variance

cases; we detect this by examining the MCMC diagnostics plot, and reruning those cases

until convergence (details in Table 2.2 in Section 2.5). We also turn off the bridge sampler

that calculates the log likelihood to reduce the MCMLE computational time, since this is

not involved in estimation.

All models were fit on a 44-core server, with 256GB RAM. The processors are dual Intel

Xeon E5-2699 2.2GHz CPUs (22 cores/CPU). Estimation using R 4.1.1 was performed on

Ubuntu 20.04.1. All procedures reported are based on a single core, except for the multi-core

MPLE conditions.

2.4.3 Evaluation Criteria

Since the methods of interest involve speed/quality trade-offs, it is necessary to evaluate

these two dimensions simultaneously. To evaluate computational cost, we compute the wall-

clock time for each method, as mean seconds needed to fit the target model to a simulated

network. Since the speed of MPLE is dependent upon the number of parallel processes, we

repeat the process using 1, 4, and 20 cores, respectively.

To evaluate estimation quality, we consider the bias, variance, overall accuracy, and calibra-

tion of each estimator using the following metrics.

We first compute the absolute relative bias (ARB) of estimators for each coefficient, using

ARB =

∣∣∣∣∣ 1m
m∑
i=1

θ̂i − θ

θ

∣∣∣∣∣
taking the average acrossm experiments, where θ̂ is the estimator and θ is the true value from
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the model that simulated the networks. The smaller the ARB, the less bias is introduced by

the estimation procedure.

We also compute the variability for each estimator, via the (true) standard error of the

estimated coefficient. Formally,

SE =

√√√√ 1

m

m∑
i=1

(θ̂i −
1

m

m∑
j=1

θ̂j)
2

The smaller the variability, the more efficient and more precise the estimator is.

While bias and variance are each important, we are also interested in the total accuracy of

the estimator (the extent to which it deviates, on average, from the true value). We measure

this via the root-mean-square error (RMSE) i.e.

RMSE =

√√√√ 1

m

m∑
i=1

(θ̂i − θ)2

The smaller the RMSE, the more accurate the estimator is on average.

Finally, we consider how well calibrated each estimator is, in terms of the associated estimates

of uncertainty. To evaluate the bias in our second moment estimate, we compare the real

standard error se and the estimated standard error ŝe using

Calibration = log

[
1

m

m∑
i=1

ŝei
se

]

A positive number suggests the method is conservative, while a negative number suggests the

method is overconfident. We also examine confidence coverage, specifically the proportion of
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cases in which the nominal 95% confidence interval (CI) for each parameter actually covers

the true coefficient. Specifically, the coverage rate is computed by

Coverage =
1

m

m∑
i=1

1{θ ∈ [θ̂i − z · ŝei, θ̂i + z · ŝei]}

where z = 1.96 for 95% CI. The closer to 95% the coverage is, the better calibrated the esti-

mate is. Coverage rates above 95% suggest that the method is conservative, while coverage

rates less than 95% suggest that the method is overconfident.

2.5 Results

2.5.1 The Small-variance Small Network Case

Starting from the simplest case of the small-variance small network, we display the perfor-

mance of each method in Figures 2.1 and 2.2. Panel A in Figure 2.1 shows the absolute

relative bias (ARB) of the coefficient estimates. It shows that all methods produce very

small numerical biases, 3% or less across all covariates and methods. CD and fast MPLE

introduces larger biases; but as the sample size of MPLE increases, its bias reduces and gets

close to that of MCMLE, seeded by either CD or MPLE. This finding is consistent with

research on binary ERGMs finding that the MPLE introduces little bias in parameter esti-

mation (van Duijn et al., 2009; Schmid and Desmarais, 2017). The lack of appreciable bias

is an encouraging sign, suggesting that point estimation of valued ERGMs for small-variance

small network is easy to acquire using whichever method we tested.

We also evaluate the (im)precision or variability of estimation (sometimes called efficiency),
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A. Absolute Relative Bias
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Figure 2.1: Bias, variability, and RMSE of small-variance small network
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D. Calibration
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Figure 2.2: Calibration, confidence coverage, and wall-clock time of small-variance small
network
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i.e. the true standard error of each estimator. Panel B in Figure 2.1 shows that the variability

of the MPLE decreases with more edges sampled, and that full MPLE and MCMLE are the

most efficient methods. In general, variations of estimators using all methods are close to

each other, suggesting that they have similar efficiency.

We then evaluate the total accuracy of estimators using the root-mean-square error (RMSE).

A more holistic metric, the accuracy measurement combines bias and variation of estimation

evaluated above, and smaller RMSE is preferred. Panel C of Figure 2.1 displays RMSE

scores, whose distribution is almost identical to the variability scores in Panel B. The sim-

ilarity between RMSE and variability reveals that biases contribute very little to the total

RMSE, with accuracy being dominated by the performance in variability. Methods with good

variability score thus also have decent accuracy. Full MPLE and MCMLE has the smallest

RMSE, though RMSEs for all methods under evaluation show only mild differences.

Besides performance in coefficient estimation, performance in estimating uncertainties is also

evaluated, shown in the first two panels in Figure 2.2. Panel D displays calibration of each

method. An indicator of the bias in standard error estimation, a positive calibration score

suggests overestimation of the uncertainty, and a negative calibration suggests underestima-

tion. Noticeably, CD overestimates standard errors for all covariates by a large margin; CD’s

calibration scores are all above 1.9, indicating that the estimated standard error is more than

6.6 (i.e., e1.9) times its true value. We experimented with different tuning parameters for

CD, but could not find settings with both improved calibration and reasonable execution

time (see Table 2.A2 in Appendix). In summary, CD is too conservative to offer useful

uncertainty estimations of covariates for small-variance small networks.

For MPLE, we find that it underestimates the uncertainties for the dependence terms (mutual

and flow), but overestimates uncertainties for non-dependence terms, though the degree of

inflation is very small. Previous simulation studies found similar patterns for MPLE on

binary ERGMs (Lubbers and Snijders, 2007; van Duijn et al., 2009). Interestingly, the bias
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in standard error estimation increases with the sample size for MPLE. This is in part because

the bias of estimation in statistical uncertainty is trivial when the numerical uncertainty is

the main source of uncertainty for the MPLE (as is the case with small sample sizes); as the

numerical uncertainties decrease with more edges sampled, the bias in statistical uncertainty

becomes non-negligible. The calibration of MPLE is not as far off as that of CD, but its

underestimation of standard errors is noticeable for dependence terms in the small-variance

small network case.

While CD and the MPLE show varying degrees of error in standard deviation, both CD-

MCMLE and MPLE-MCMLE have almost perfect calibration, suggesting that MCMLE is

the best method for standard error estimation of small-variance small network.

Another metric that considers uncertainty estimation, confidence coverage is the proportion

of model fits in which the true value of a given coefficient is covered by the estimated 95%

confidence interval (CI), as is shown in Panel E of Figure 2.2, where the dotted line is the

95% reference line and the solid line represents 100%. The figure tells a similar story to

Panel D’s calibration score, because confidence coverage performance is largely determined

by performance in calibration of uncertainty when the bias of coefficient estimations is small.

The figures show that CD overestimates standard errors so much that its CIs always cover

the true value, making them conservative but uninformative. The MPLE’s CIs cover the

true values more than 95% for non-dependence terms, but under-cover the true values for the

dependence term, with this deviation becoming larger as sample size increases. On the other

hand, both CD-MCMLE and MPLE-MCMLE have coverage rates that are extremely close

to 95%, showing its characteristic calibration advantage for small-variance small network of

valued ERGMs estimation.

Lastly, Panel F of Figure 2.2 displays the wall-clock time of each method. As expected,

the wall-clock time for computing the MPLE can be greatly compressed by using a sample

of edges to approximate the joint pseudo-likelihood function, or by using multiple cores to
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calculate conditional likelihoods. The fastest methods are CD followed by MPLE using 20

processors. Overall, the wall-clock time for different methods is short and varies modestly for

this simple computation case, costing half a minute at most. Interestingly, while MCMLE

is commonly believed to be a slow method, it is very fast in this simple case.

In summary, for small-variance small network data, all methods offers accurate and minimally-

biased point estimates. CD offers uninformatively conservative uncertainty estimates, and

MPLE’s uncertainty estimation for dependence terms is noticeably overconfident. All meth-

ods are reasonably fast in this regime. With great performance in all metrics, MCMLE is

an ideal method for valued ERGMs estimation for small-variance small network data.

2.5.2 The Small-variance Large Network Case

The small-variance large network case has similar edge value distribution to the previous

small network case, but its network size is 3 times bigger, meaning that its dyad count is 9.4

times the count of the previous case. Comparing these two cases offers insights about the

influence of network size on estimation performance for each method.

Figure 2.3 shows that, again, all methods introduce very little bias. One noticeable difference

is that the bias of subsampled MPLE gets smaller in comparison with other methods. This

suggests that the absolute number of edge variables sampled influences the performance of

subsampled MPLE; for small networks, one needs to sample a larger proportion of edges,

while for large networks, the percentage can be lower. This means that for the large network

case, the fastest MPLE is already less biased than CD (whose bias from a larger tuning

parameter setting gets outperformed by following up CD with MCMLE, see Table 2.A1

in Appendix); this translates to the less biased performance of MPLE-seeded MCMLE,

compared to the CD-seeded MCMLE as the figure shows. Panels B and C in Figure 2.3

reveal almost identical patterns in variability and RMSE compared to the small-variance
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A. Absolute Relative Bias
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Figure 2.3: Bias, variability, and RMSE for small-variance large network
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D. Calibration
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Figure 2.4: Calibration, confidence coverage, and wall-clock time for small-variance large
network

34



small network case. Variability decreases as MPLE’s sample size increases, and all methods

share similar variability. The RMSE distributions resembles those of the variability as the

bias of all methods are largely ignore-able.

Comparing Panels D and E in Figure 2.4 with those in the previous Figure 2.2 suggests

that patterns of uncertainty estimation performance across methods are generally invariant

to network size. We again find that CD greatly overestimates uncertainty, leading to over-

coverage of the confidence intervals; MPLE underestimates the uncertainty for dependence

terms and the confidence intervals under-covers their true values. MCMLE offers great

uncertainty estimation again, although, on close inspection, CD-MCMLE shows a (very)

small tendency towards overconfidence that the MPLE-MCMLE lacks.

Panel F in Figure 2.4 shows that the wall-clock time of MPLE and MCMLE scales with

the network size, while that does not apply to CD. Subsampling and use of multiple cores

effectively reduce the computational time of MPLE; this advantage becomes larger with

network size, since larger networks require a greater share of computing time to be used for

change score calculation. Since changescore calculations are embarrassingly parallelizable,

gains from multi-core calculations grow accordingly in this regime. Overall, this scenario

shows clear superiority of CD for computational time, followed by MPLE using subsampling

and multi-core strategies. MCMLE becomes quite slow here (with mean times between ≈ 13

minutes and roughly half an hour), making speed a potentially important consideration.

To recap, comparing the two small-variance cases with small and large network sizes suggests

that the estimation quality of each method is largely invariant to the network size. The larger

number of edge variables for the large network means that subsampled MPLE requires

a smaller share of edge variables for good performance, and fast MPLE becomes a less

biased and a better seeding method than CD for MCMLE (though the difference is small

in the study cases). All methods have good first-order performance, though MCMLE is

clearly superior for calibration (with CD being unacceptably poor). The major performance
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difference coming from the network size is that the superiority in computational efficiency

for CD and multi-core subsampled MPLE becomes substantial when the network size grows.

2.5.3 The Large-variance Small Network Case

Given the consistency seen in the two small-variance cases, we might expect the large vari-

ance, small network case to behave similarly. However, we observe very different results in the

small network case when the variance of edge values becomes large. First of all, we observe

that CD-MCMLE simply fails to converge for some of the simulated networks, as reflected

by their MCMC diagnostics plots; here we follow the common procedure of rerunning them

until convergence, though failure to attend to diagnostics could lead to problems in casual

use. Table 2.2 summarizes the number of rounds CD-MCMLE went through before seeing

convergence. Overall, it took 1.22 rounds on average for CD-MCMLE to converge (with a

few cases taking more than five). The following results are based on their final (converged)

rounds, as estimators from the failed rounds were very far from the true values.

Table 2.2: Number of rounds for CD-MCMLE before convergence

N of Rounds 1 2 3 4 5 6 7
Count 434 38 17 9 0 1 1

Percentage (%) 86.8 7.6 3.4 1.8 0 0.2 0.2

Panel A in Figure 2.5 shows that CD introduces relatively larger biases for the large-variance

case, 5.2% and 3.8% for the nonzero and the flow terms, respectively. Although those biases

are arguably not huge, they lead to failures in convergence for CD-MCMLE. On the contrary,

MPLE introduces very little bias in its estimates, the largest bias of 1.8% coming from the

fast MPLE for the flow term. That makes it an excellent seeding method, and indeed all

MPLE-MCMLE models converged in their first attempt. This signifies that, similar to the

binary ERGM scenario, MCMLE for valued ERGMs is sensitive to the seeding quality, and

small improvements in biases of the seeding methods can make a difference. Another notable

36



A. Absolute Relative Bias

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Sum

%

0.0 0.2 0.4

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nonzero

%

0 1 2 3 4 5

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Mutual

%

0.0 0.2 0.4

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Flow

%

0 1 2 3 4 5

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeicov

%

0.00 0.15 0.30

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeocov

%

0.00 0.15 0.30

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Edgecov

%

0.00 0.15 0.30

Subsampled MPLE:

fast:  50% sample,   528 dyads

mid:  75% sample,   792 dyads

full: 100% sample, 1056 dyads

B. Variability

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Sum

0.00 0.10

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nonzero

0 2 4 6

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Mutual

0.000 0.010

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Flow

0.000 0.008

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeicov

0.000 0.006

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeocov

0.000 0.006

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Edgecov

0.000 0.010

C. Root−Mean−Square Error

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Sum

0.00 0.10

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nonzero

0 2 4 6

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Mutual

0.000 0.010

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Flow

0.000 0.008

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeicov

0.000 0.006

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Nodeocov

0.000 0.006

CD−MCMLE*
MPLE−MCMLE

full MPLE
mid MPLE
fast MPLE

CD
Edgecov

0.000 0.010

Figure 2.5: Bias, variability, and RMSE of large-variance small network

Note: CD-MCMLE* results are from their final rounds with convergence.
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D. Calibration
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Figure 2.6: Calibration, confidence coverage, and wall-clock time of large-variance small
network

Note: CD-MCMLE* results are from their final rounds with convergence. Its wall-clock time
is simple summation of all rounds of computation.
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feature is that MPLE actually outperforms MCMLE in the bias metric, with the latter having

a bias of about 5% for the triadic dependence term (flow).

Panel B in Figure 2.5 shows that CD generally has larger variability than other methods,

especially for the nonzero term. MPLE’s variability decreases with more edge variables

sampled, and gets close to MCMLE when all edges are utilized. Panel C in Figure 2.5

demonstrates that, again, when biases are generally small, the accuracy metric resembles

that of the variability.

Panel D in Figure 2.6 shows that CD substantially overestimates the standard errors, so

overly conservative uncertainty estimation is a consistent behavior for CD across all network

size and edge variance structures studied. By contrast, MPLE no longer suffers from calibra-

tion difficulties for the large-variance case, producing high-quality standard error estimates

that match the performance of MCMLE, seeded by either CD or MPLE. Note that for the

nonzero term, CD did not return an estimate for 22 of the 500 simulated networks, meaning

that the calibration of CD for the nonzero term could actually be worse; we did not rerun

them, as CD’s uncertainty estimates are not useful even when the algorithm did converge.

Panel E in Figure 2.6 reveals that CD’s confidence intervals have the over-coverage issue for

every covariate except the nonzero term, which suffers from a larger first-order bias. MPLE

and MCMLE, both with small bias in point estimation and uncertainty estimation, offer

confidence coverage very close to the 95% benchmark.

Lastly, Panel F in Figure 2.6 shows that for the large-variance network, MCMLE is an order

of magnitude slower than CD and MPLE. Subsampling and use of multiple cores are still

effective ways of reducing computational time for MPLE, and MPLE with 20 processors

becomes even faster than CD. We should also note that the time reported here for CD-

MCMLE is the simple summation of their all rounds of wall-clock time. In reality, users

need to spend more time digging into the diagnostics of MCMC after each round, and this

makes CD-MCMLE even more slower than running MPLE-MCMLE.
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Overall, we observe that the variance of edge values makes a substantial difference in the

behavior of these estimation methods. CD generates fair point estimates in a speedy manner

(albeit less accurate than its peers), but its calibration is overly conservative to the point

of being unusable. The larger biases of CD estimators sometimes prevents convergence of

CD-MCMLE, making MPLE a better seeding method in this scenario. MCMLE, seeded by

either CD or MPLE, once converged, offers high-quality estimates at correspondingly high

cost. Strikingly, however, we find that in this case MPLE generates estimators that match

MCMLE in all metrics and introduces even less bias. Considering that MPLE is also an order

of magnitude faster than MCMLE, it is clearly the superior method for the large-variance

case. If higher-quality estimates are needed, one can increase the sample size of MPLE or

follow it up with MCMLE, though the former is a much faster option.

2.6 Discussion

Overall, this comparative simulation study reveals that the variance of the edge value makes

a substantial difference in the performance of estimation methods for Valued ERGMs, while

network size primarily impacts computational cost. For small-variance data, all methods

perform very well in point estimation, while CD greatly overestimates the uncertainty, and

MPLE underestimates uncertainties of dependence terms. MCMLE seeded by either CD or

MPLE offers high-quality estimates under all metrics. Wall-clock time of the methods are

close to each other for small-variance small networks, but the speed advantages over MCMLE

gets larger for CD and subsampled/multi-core MPLE as the network size increases. For very

large graphs (especially when large numbers of cores become available), the relative speed

advantage of the MPLE can become substantial, and may be a reasonable consideration in

method selection.

For large-variance data, CD fails to offer reliable uncertainty estimates; its relatively high
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bias compared to MPLE also makes CD-MCMLE more prone to convergence failure. Both

MPLE and MCMLE (given convergence of the latter) perform well in all quality evaluations,

but MPLE is an order of magnitude faster than MCMLE, and can be further sped up by

subsampling and parallel computing. Again, we observe that the speed advantages of MPLE

become larger as graph size and edge variance increase.

The results suggest that for small networks with low-variance edges, MCMLE continues to

serve as the estimation method of choice: it delivers high-quality point estimates and ex-

cellent calibration while still being computationally accessible in this regime. As network

size increases, MCMLE becomes increasingly cumbersome, as its computational time scales

up faster than other methods. When MCMLE is too slow to perform well, CD and MPLE

can serve as useful tools for tasks that only require first-order point estimation, such as

exploratory analysis, prediction, or generating models for network simulation. The subsam-

pling and multi-core features of MPLE offer useful tools for fast computation of models on

large networks, and the numbers of edge variables that must be sampled for strong per-

formance are an increasingly small fraction of the total dyad count as network size grows,

further enhancing its computational advantages. Although MPLE calibration is certainly

good enough to be useful (especially for independence terms), we clearly see the tendency

towards overconfidence in dependence terms found in binary ERGM studies, and nominal

confidence intervals for these terms are likely to be too small. Analyses relying on coverage

for such terms should be regarded as heuristic (though the maximum extent of miscalibra-

tion seen here may provide some guidance with respect to the degree of error that could be

present).

For networks with large edge variance, MPLE could be the go-to method, yielding accurate

estimators with good calibration. Besides subsampling and parallel computing choices, our

implementation of edgewise support truncation further offers MPLE an edge in speed without

compromising its estimation quality (as edgewise and nonedgewise truncation of MPLE
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offers commensurate results in quality metrics for large variance data). This enables the

use of MPLE to estimate Valued ERGMs that were previously blocked by computational

barriers, such as high-dimensional models on large networks with high edge variance. It also

offers a flexible framework to make trade-offs between estimation quality and computational

time, by tuning the sample size of the edge variables and the structure of the edge support

truncation. While MPLE has been seen as a sub-optimal choice for binary ERGMs (van

Duijn et al., 2009), this comparative simulation study reveals an area where it can be the

effective approach.

Our experiments also offer insights about MCMC-based estimation methods. This chapter

shows that MCMLE for Valued ERGMs depends on high-quality starting values, especially

for large-variance networks. Both CD and MPLE are useful tools for MCMLE seeding, but

the relatively larger biases of CD for large-variance data makes CD-MCMLE more fragile.

One potential reason for this fragility is the difficulty of CD in reproducing the dichotomized

density of the networks (i.e. the proportion of nonzero edges). With larger ranges of edge

values, the toggling of values between zero and one become more unlikely, and the difficulty

of matching the target density increases. (This is, of course, a special case of zero-inflation,

a common phenomenon in count data models beyond network settings.) This is reflected

by the phenomenon that the sufficient statistic consistently observed to fail in CD-MCMLE

was the nonzero edge count in the large-variance experiment. The issue can be worsened

by the mismatch of the MCMC algorithm design and typical properties of valued networks.

Compared to their binary counterparts, valued social networks are frequently denser (in the

dichotomized density). However, MCMC algorithms in existing software are optimized for

sparse, unvalued social networks. We observed improvement in computational time when

switching from an MCMC proposal that favors toggling nonzero edges (so-called TNT, or

more accurately “tie-random dyad”) to a random proposal, which is the one that offers

the highest likelihood of toggling empty edges among existing algorithms. To improve the

performance of MCMC-based methods for Valued ERGMs, future research could consider
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experimenting with MCMC algorithms that pay more attention to the toggling between

value zero and one, such as proposals that favors toggling zero-value edges.

As with any simulation study, one trades off the “realism” of performance on a realistic

case against some degree of generality. Although we vary the network size and edge value

variance to emulate different application settings, we cannot rule out the possibility that some

methods studied here may perform better or worse under other conditions. We encourage

future research using simulation studies based on different use cases and model specifications,

including non-Poissonian reference measures. Given that we find that the edge value variance

plays an important role in influencing the performance of Valued ERGM estimation, it would

be of interest to experiment with more fine-grained classification of the scale of edge variance,

in search of an empirical rule of thumb for when MCMLE or MPLE would be the better

choice.

Our study also suggests the continuing relevance of the MPLE to ERGM methodology. Our

implementation of MPLE for Valued ERGMs enables estimation for large-variance data in

feasible time and with high-quality results. With good overall accuracy, high speed, and

flexible tunability, MPLE would be an excellent general use estimation method for Valued

ERGMs if its calibration could be improved for small-variance networks. Our findings suggest

the value of work on methods that may help further improve calibration of MPLE in the

count-valued case; such advances may build on methods that shown to help calibration for

binary ERGMs, such as bootstrap resampling (Desmarais and Cranmer, 2012a; Schmid and

Desmarais, 2017) and regularization (van Duijn et al., 2009).

Lastly, we should emphasize that it is important to perform model evaluation after estima-

tion for generative network models like ERGMs. While this should be a standard procedure

regardless of the estimation method, it is an especially important reminder as the field ob-

serves the revival of non-simulation and local-simulation methods such as MPLE and CD,

thanks to emerging methodological innovations and new data structures. These methods are
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less prone to convergence failures, which can have the hidden liability of making it harder to

spot poorly-behaved models (an issue encountered in the early use of the MPLE before the

availability of simulation-based evaluation, as discussed by Snijders (2002)). We recommend

that researchers evaluate model adequacy by simulating networks from the fitted model and

comparing their key network features and specified sufficient statistics with their observed

counterparts, e.g. following the procedure of Hunter et al. (2008a), where feasible. Fortu-

nately, simulation-based evaluation is computationally much cheaper than simulation-based

estimation, as the former only requires simulation from one model while the latter needs to

explore a set of models in the parameter space; thus, even when MCMLE is computation-

ally prohibitive for evaluation, MCMC adequacy checks (a.k.a. goodness-of-fit checks) are

often feasible. For sufficiently large, high-variance systems in which even this is infeasible,

alternative checks are needed. Although this regime remains an open problem, conditional

simulation using e.g. Held-Out Predictive Evaluation (Wang et al., 2016; Yin et al., 2019)

may be one useful approach, provided that enough dependence-graph adjacent edge variables

are held out simultaneously to permit detection of degeneracy. Some work has been done on

bounding techniques for dichotomous networks that can in some cases rule out degeneracy

without resorting to simulation (Butts, 2011); it is unclear whether similar techniques can

be developed for count-valued networks, but if so such methods could prove useful where

simulation is impractical. In general, evaluation for networks that are too large for complete

simulation (in the count-data case or otherwise) is an important frontier for future work.

2.7 Conclusion

ERGMs, especially for valued networks, can be computationally expensive to estimate. In

searching for a fast and reliable computational method, we implemented MPLE for count-

valued ERGMs, and performed a comparative simulation study using three methods: CD,
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MCMLE, and MPLE. We found that the variance of edge values is critical in determining the

performance of computational methods for Valued ERGMs, while the network size mainly

influences their relative merit in computational efficiency. For small-variance networks, point

estimates are easy to acquire using whichever method, while CD greatly overestimates un-

certainties and MPLE underestimates them for dependence terms. All methods have similar

wall-clock time. For large-variance networks, both MPLE and MCMLE offer strong per-

formance for estimating both coefficient and uncertainties, although MPLE is an order of

magnitude faster than MCMLE.

On the basis of this study, we recommend that researchers pay attention to the variance of

edge values in choosing computational methods. For small-variance data, MCMLE should

be the default method where feasible, although CD is useful for point estimations; MPLE

is suited for large networks and high-dimensional models, especially with a large number

of available processors, but caveats should be given for interpreting its standard errors for

dependence terms. For large-variance networks, MPLE is a solid method, and researchers

can design the size of edge sample and the structure of edge support truncation based

on the computational resources at hand and the requirements of estimation quality. Our

experiments also demonstrate that both CD and MPLE are useful tools for MCMLE seeding,

although CD is better for simpler cases with its speed advantage and MPLE is better able

to offer high-quality seeds across all scenarios.

In summary, with insights about the behaviors of each method under different network sizes

and edge variances, this chapter offers a guideline for choosing and tuning computational

methods for Valued ERGM estimation. The implementation of a flexible subsampled paral-

lelizable MPLE framework is demonstrated to be a powerful tool; we envision it to empower

researchers with large-variance big network data and high-dimensional model design, freeing

them from the need to employ data-reduction and model-simplification compromises because

of computational constraints.
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2.8 Appendix: Contrastive Divergence with Different

Parameters

Results in Section 2.5 showed that despite its time efficiency, CD has two limitations.

First, its bias is larger than subsampled MPLE, making it a suboptimal seeding method for

MCMLE (especially when the edge variance is large). Second, its calibration of uncertainty

is overly conservative, making it an uninformative method for second moment estimates.

This leads to the question of whether one could tweak its tuning parameters to trade its

time efficiency for less biased and better calibrated estimations. In this regard, we study

the quality of CD estimators when we vary CD’s major parameters: steps and multiplicity.

“Steps” determines the number of Metropolis-Hastings steps, and “multiplicity” determines

the number of proposal for each step. The default setting in ergm.count package for CD is

8 steps and 1 multiplicity, which was the setting reported in Section 2.5. Here we compare

that with different combinations of modified tuning parameters.

Table 2.A1 shows the bias and the wall-clock time for CD under different tuning parameters

versus MPLE under its configuration for MCMLE seeding using a single processor. In this

section, we only report performance for the dependence terms because of space limitation, but

estimators for other covariates generally share similar patterns. For both the small-variance

small network and the large-variance small networks, increasing either steps or multiplicity

or both does not monotonically reduce the bias, while the wall-clock time increases mono-

tonically as expected. For this reason, the default CD configuration seems to be the optimal

choice as a seeding method for MCMLE. For the small-variance large network, although

larger multiplicity does not bring less bias, increasing steps does brings monotonic decrease

in bias estimation. However, CD’s bias is always larger than that of MPLE, even when its

wall-clock time surpasses MPLE’s. This suggests that for small-variance large networks, one

can increase steps to reduce the bias of CD, but it is not as efficient as using MPLE instead,
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Table 2.A1: Bias and time of CD vs. MPLE

Contrastive Divergence MPLE
Steps 8 80 8 80 800 8000
Multiplicity 1 1 10 10 1 1
Small-Variance Small Network
Bias(Mutual) (%) 0.07 0.64 1.07 1.31 0.64 0.53 0.66
Bias(Flow) (%) 1.64 1.38 0.51 0.68 2.54 3.53 0.35
Wall-clock time (s) 0.60 1.92 2.01 21.55 30.77 342.95 26.14
Small-Variance Large Network
Bias(Mutual) (%) 0.93 0.55 1.66 0.60 0.34 0.30 0.12
Bias(Flow) (%) 2.35 1.10 1.98 1.17 0.89 0.72 0.15
Wall-clock time (s) 1.15 6.00 6.34 69.82 96.63 2177.46 769.77
Large-Variance Small Network
Bias(Mutual) (%) 0.42 79.94 87.41 99.4 139.9 116.13 0.05
Bias(Flow) (%) 3.86 591.9 469.13 261.75 97.59 29.45 1.78
Wall-clock time (s) 5.22 12.57 13.02 94.71 81.46 876.71 18.83

Note: We use the chosen seeding setting for MPLE: 50% sample sizes for large-variance and
large-network data, 75% for small-variance small network data. Wall-clock time of MPLE is
from the slowest setting using one core.

which offers better estimators with less time used. To recap, increasing either or both tuning

parameters for CD usually fails to yield less biased estimators, and even when that does, it

is not as time-efficient as using MPLE.

Table 2.A2 displays the calibration for the two dependence terms and wall-clock time of CD

under various tuning parameters versus the benchmark MCMLE, seeded by MPLE with a

single processor. For both the small-variance small network and the small-variance large

network, increasing multiplicity does not lead to better calibrated standard errors, but in-

creasing steps is associated with monotonic improvement in calibration. Nonetheless, CD

fails to offer as well-calibrated estimates as MCMLE in comparable time spans. This suggests

that, for small-variance data, compared to increasing steps for CD, it is a better choice to di-

rectly use MCMLE for a time-efficient and well-calibrated second-moment measurement. For

large-variance small-network data, although increasing steps and/or multiplicity in general

alleviate its overestimation of uncertainty, increasing steps beyond a certain point can lead
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Table 2.A2: Calibration and time of CD vs. MCMLE

Contrastive Divergence MCMLE
Steps 8 80 8 80 800 8000
Multiplicity 1 1 10 10 1 1
Small-Variance Small Network
Mutual 2.11 1.04 2.73 1.75 0.22 0.05 0.04
Flow 1.88 0.93 2.57 1.51 0.19 -0.02 -0.03
Wall-clock time (s) 0.60 1.92 2.01 21.55 30.77 342.95 30.16
Small-Variance Large Network
Mutual 2.91 1.99 3.21 2.75 0.95 0.16 -0.03
Flow 2.76 1.88 3.10 2.53 0.98 0.21 -0.09
Wall-clock time (s) 1.15 6.00 6.34 69.82 96.63 2177.46 1673.59
Large-Variance Small Network
Mutual 2.55 0.97 1.06 0.36 -0.33 -0.56 -0.05
Flow 2.63 0.33 1.23 0.05 -0.70 -0.96 -0.11
Wall-clock time (s) 5.22 12.57 13.02 94.71 81.46 876.71 307.35

Note: MCMLE is seeded by MPLE under the specified setting in Results using one core.

to underestimation of uncertainty. Regardless, its calibration never beats MCMLE. Overall,

our experiments suggest that increasing tuning parameters beyond the default setting in

statnet does not always improve its calibration, and when it does, it is not as time-efficient

as using MCMLE for calibration.
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Chapter 3

Rooted America: Immobility and

Segregation of the Intercounty

Migration Network

3.1 Introduction

While the active drivers of migration have been extensively studied, there has been less

attention to the factors that hinder migration – a research gap that has been called the

“mobility bias” within the migration literature (Schewel, 2020). The relatively overlooked

phenomenon of immobility is important in its own right, having substantial consequences

for the social world. As migration influences the functioning of labor market (Hyatt et al.,

2018), the landscape of stratification and social mobility (Jasso, 2011), and the sociocultural

meanings in everyday lives (Bauman, 2000; Mata-Codesal, 2015), mechanisms that impede

migration can have outcomes that extend far beyond the migration system itself.

Understanding immobility is an especially apt challenge in the context of the modern United
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States. Long thought of as a “rootless society” (Fischer, 2002) with high geographical mo-

bility (Long, 1991; Steinbeck, 1939), the U.S has arguably turned into a “rooted America”

after a decades-long decline in migration rates (DeWaard et al., 2020; Frey, 2009). While

the reality of low migration rates is clear, explanations for current population immobility are

less well-developed. Macroeconomic studies have so far found that demographic and socioe-

conomic structures are not sufficient to explain observed levels of immobility, and neither

are the business composition of labor market nor properties of the housing market (Hyatt

and Spletzer, 2013; Hyatt et al., 2018; Molloy et al., 2011, 2017). A broader sociological view

suggests the potential for cultural, political, and other social forces as possible explanatory

factors (Tiebout, 1956; Massey and Denton, 1993; Gimpel and Hui, 2015; Stockdale and

Haartsen, 2018). Moreover, the migration system has its own intrinsic feedback mechanisms

that could endogenously sustain or undermine further migration (Bakewell, 2014; de Haas,

2010), which may also play a role in the population immobility. Probing the combined in-

fluence of these myriad factors requires a systemic treatment of the U.S. internal migration,

allowing us to simultaneously examine the joint impact of social, economic, political, and

demographic mechanisms on flows of migrants throughout the country. This chapter pursues

such an analysis, with the objective of identifying the factors associated with both mobility

and immobility in contemporary America.

Broadly, extant research on drivers of U.S. migration and immobility shares two characteris-

tics. First, most research examines migration from an economic perspective, assuming that

most, if not all, migration is labor migration, driven by economic incentives.1 Yet, decisions

regarding residential settlement are not purely economic (Ryo, 2013): political climate, racial

composition, and urbanization of local communities are potential contributors to the phe-

nomenon (Brown and Enos, 2021; Cramer, 2016; Massey and Tannen, 2018). This chapter

incorporates the sociocultural and political perspectives into the analysis of U.S. immobility.

1As an example, Eeckhout (2004:1431) contends that “the central thesis in this chapter: population
mobility is driven by economic forces.”
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A second dominant characteristic of the extant literature on U.S. migration is an approach

that treats migration as a feature of geographical areas, examining the correlates between

net migration rates into or out of states or counties and their demographic or economic

characteristics. Although convenient, this practice of reducing the interconnected migration

system into local features of areal units introduces two limitations. First, by aggregating

across origins and destinations for migrants emigrating from or immigrating into a given

area, it obscures the interactive effects from the sending and receiving areas, such as their

political or cultural similarity and differences in employment rates. Second, it does not allow

for treatment of the internal dynamics of the migration system (de Haas, 2010), in particular

the presence of mechanisms such as return or stepwise migration, where the flow of migrants

from one place to another can in turn affect the flow of migrants from that destination to

others. Since migration is a relational process between places of origin and destination, and

migration flows can influence each other, this chapter takes a systemic, network approach

that shifts analysis from the migration rates of areal units to the migration flows between areal

units. By leveraging migration systems theory and social network methods, we show that

dissimilarities between counties are important contributors to the immobility of American

society.

To advance our understanding of the social forces behind geographical immobility in modern

America, we here adopt a comprehensive theoretical framework incorporating geographical,

demographic, economic, political, and social influences on migration and perform a systemic

analysis of internal migration as an evolving valued network of migration flows.2 Using

valued temporal exponential-family random graph models (valued TERGMs), this chapter

analyzes the network of intercounty migration flows of the United States from 2011 to 2015.

We identify a pattern of segmented immobility, where, net of other factors, less migration

happens between counties with dissimilar political contexts, levels of urbanization, and racial

2By valued network (or weighted network), we refer to networks whose ties are not binary (present or
absent), but are associated with a quantitative value; specifically, tie values in this study indicate the volume
of migration flows between directed pairs of U.S. counties.
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compositions. We probe this mechanism using an in silico “knockout experiment,” which

suggests that in a counterfactual world without segmented immobility (but holding all other

factors constant), we would expect to have seen approximately 4.6 million (27%) more in-

tercounty migrants in the United States each year. This implies that social and political

cleavages in America are substantial contributors to immobility, and potentially exacerbate

growing trends towards geographical segregation. Further, we also examine the relationship

between internal and international migration flows, showing that - contrary to the balkaniza-

tion thesis (Frey, 1995a,b) - international migration into a county is positively associated

with its overall domestic mobility, and does not promote net outflows of residents. The

model also identifies the internal dynamics of migration systems (de Haas, 2010), including

a suppression of what we dub “waypoint” flows (i.e., balanced in- and out-flows of an areal

unit) alongside strong patterns of reciprocity and perpetuation. While the data availability

constraints us to focus on understanding population immobility in the 2010s, the empirical

evidence together with our proposed theoretical and methodological frameworks opens the

door to unpack the long-term phenomenon of population immobility. This chapter thus joins

the growing literature that grapples with the mobility bias in migration studies (Schewel,

2020), demonstrating how a comprehensive analytical framework and a systemic, network

approach offers new insights about immobility, and more broadly, the dynamics of population

movement among social and geographical spaces.

3.2 Theory

Existing literature defines immobility as “continuity in an individual’s place of residence

over a period of time” (Schewel 2020:344). Since immobility is not only an individualistic

phenomenon, but also a population and social one, here, we offer a macrosociological defi-

nition of immobility, which is a lack of population exchange between localities. Drivers of
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immobility, in terms of this framework, are defined as factors that reduce migration rates rel-

ative to what would be expected in their absence. The scarcity of migration in an immobile

society has substantial impacts. Since migration is a critical channel for people to respond to

fluctuations of local economy, population immobility implies a rigid labor market with lower

productivity, higher unemployment rate, and more prolonged recession when experiencing

economic shocks (Hyatt et al., 2018). Moreover, migration also serves as a way of improving

life chances (Jasso, 2011; Weber, 1922) and coping with adverse events (Spring et al., 2021).

Population immobility thus has important ramifications for social mobility, stratification,

and poverty (Briggs et al., 2010; Clark, 2008; Jasso, 2011).

Immobility is not merely the flip side of mobility, but carries its own sociocultural meanings.

As the aspiration-ability model argues, migration requires both aspiration to migrate and the

ability to realize that aspiration (Carling and Schewel, 2018). This means that immobility

is not necessarily a passive outcome of simply staying in place, but can be a conscious

choice to remain. In line with this view, recent literature has begun augmenting the widely

discussed notion of “cultures of migration” with the notion of “cultures of staying” that

facilitate and maintain immobility (Stockdale and Haartsen, 2018). The level of population

(im)mobility can in turn impact the broader social norms of a society; a mobile society may

have a prevailing nomadic culture, while the dominant culture of an immobile society may

be sedentary (Bauman, 2000; Mata-Codesal, 2015).

Understanding immobility is especially relevant in the American case. From the earliest

observations of Tocqueville (1834) and Ravenstein (1885) to Steinbeck (1939), America has

long been considered a “restless” or “rootless” society with high geographical mobility. Yet,

after a decades-long decline in its migration rate, the contemporary America has arguably

become a “rooted” society with considerable population immobility. However, as Herting

et al. (1997:267) have noted, sociological research on U.S. mobility has “narrowed and now

focused almost exclusively on mobility of a purely economic or occupational variety,” with
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much less focus on mobility across geographic space. In migration studies, research has been

historically focused on studying the social forces that lead to migration, but largely neglected

the counter forces that inhibit people from moving, a tendency that Schewel (2020) described

as the “mobility bias.” A lack of research on geographical mobility in American sociology,

together with the scarcity of theoretical and empirical work on immobility in migration stud-

ies, has led to gap in our knowledge regarding the mechanisms behind population immobility

in contemporary American society.

3.2.1 Culture and Politics of Immobility

While the immobility of the U.S. population has received less sociological attention, economists

and geographers have conducted empirical analyses on this matter (e.g., Cooke, 2013; Jia

et al., 2023; Kaplan and Schulhofer-Wohl, 2017; Treyz et al., 1993). These studies have

identified important connections between the labor market and migration rates, but their

findings largely rely on the assumption that most, if not all, migration is labor migration,

driven by economic incentives. The economic perspective has a fundamental role in explain-

ing migration and immobility; the relative gains in moving, and costs associated with both

transaction costs and losses of specialized local investments are factors that shape migration.

But there also exist other factors, such as regionally specific cultural values and locally con-

ventional ways of understanding opportunity (Carling, 2002; Carling and Schewel, 2018), as

well as preferences for particular local policies or political regimes (Tiebout, 1956). Indeed,

recent research on American economy has shown that over the past several decades, migra-

tion has not been effective in responding to fluctuations and shocks in labor markets (Dao

et al., 2017; Jia et al., 2023). Relatedly, macroeconomic factors have not been found to have

a strong correlation with migration rates in the U.S (Hyatt et al., 2018; Hyatt and Spletzer,

2013; Molloy et al., 2017). Therefore, while economic forces are important ingredients in

a viable model of the migration system, a comprehensive analysis of immobility demands
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considerations of other social institutions.

Although thinking on internal migration in the large has been dominated by labor market

considerations, sociologists have given considerable attention to other factors when studying

migration at smaller scales (e.g., across neighborhoods). For instance, research on residential

segregation has long identified how people with different racial identities and political beliefs

become segregated from each other (Bishop and Cushing, 2009; Krysan and Crowder, 2017;

Massey and Denton, 1993), including the accumulated influence of even relatively weak

preferences for same-group interaction (Schelling, 1969; Sakoda, 1971); the latter can act as

a powerful macro-level sorting force, even in the presence of economic or other factors (e.g.,

Butts, 2007). While much of this work has focused on racial segregation, more recent work

has also probed segregation along political or cultural axes. For instance, Brown and Enos

(2021) found that a large proportion of American adults live in neighborhoods where most

residents share the same partisanship. Gimpel and Hui (2015) used a survey experiment to

show that people evaluate more favorably towards properties in areas with predominantly

co-partisan neighborhoods. As social cleavages might deter people from settling in places

with distinct identities and beliefs, the social gaps between rural and urban areas and those

among different parts of the continent such as the South and the coastal regions (Cramer,

2016; Hochschild, 2018), may also contribute to the inhibition of geographical movement. At

another scale, in the contexts of international migration, migration studies have long stressed

the roles of cultures and politics in shaping population mobility (Castles et al., 2013; Cohen

and Sirkeci, 2011; Jennissen, 2007; Massey et al., 1999; Vögtle and Windzio, 2022; Waldinger

and Fitzgerald, 2004). Following this thread, this chapter incorporates the political, racial

and rural-urban structures in investigating American immobility.
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3.2.2 Systemic Theories of Migration

The second characteristic of the extant literature on U.S. immobility is that studies usually

view migration as a feature of geographical areas. This approach examines the characteristics

of an areal unit that influence its net immigration and emigration rates, such as percentages of

current residents who are immigrants and/or emigrants. It is in essence a marginal approach

that sums up (i.e., marginalizes) the migration flows from/to each areal unit across all

destinations/origins to describe the overall mobility of each place. The marginal approach

is empirically straightforward, and has unquestionably contributed to our understanding

regarding the driving forces of migration by identifying the associations between demographic

and economic features of an areal unit and the scale of its population inflows or outflows

(e.g., Partridge et al., 2012; Treyz et al., 1993). Yet, migration - by definition, population

moving from one place to another - is inherently relational, having properties that cannot

be reduced to the features of individual areal units. For instance, studies considering net

in- or out-migration rates in isolation must choose either the sending or receiving area as

focus of analysis (thereby obscuring the joint roles of areas as origins and destinations), or

must merge in- and out- migration to obtain a net migration rate (which confounds inflows

and outflows). Beyond the fact that every pairwise migration flow among sending and

receiving areas depends on both the properties of the sender and the receiver, such studies

are unable to account for relational factors, such as geographical proximity and political

difference between areal units. Neither can this approach consider the interactions among

migration flows, such as reciprocal population exchange (A → B & B → A) arising from

return migration. Probing such mechanisms requires a different theorization of the migration

process, a systems theory of migration.

Such systemic thinking has a long tradition in migration studies under the umbrella of migra-

tion systems theory (MST, Bakewell (2014); Fawcett (1989); Kritz et al. (1992); Mabogunje

(1970); Massey et al. (1999). A comprehensive theory that concerns the complex interactions
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among various elements related to migration, such as flows of people, information, (formal

and informal) institutions, and strategies (Bakewell, 2014), MST identifies interconnectivity

as a key feature of migration. As de Haas (2010:1593) summarized, a migration system is

“a set of places linked by flows and counter-flows of people, goods, services and information,

which tend to facilitate further exchange, including migration, between the places.” The

theoretical focus on flows between origin and destination suggests a relational analysis of

migration, integrating push and pull factors in one single analytical framework (Lee, 1966).

Fawcett (1989) demonstrates this with a theoretical framework of “linkages” in MST, focus-

ing on how various linkages between origin and destination shape the migration in between.

Among the linkages Fawcett (1989:677) discusses, here we focus on the relational linkages,

“derived from comparison of two places.” Instead of studying how a state’s or a county’s

political climate influences its net marginal migration rate (e.g., Charyyev and Gunes, 2019;

Preuhs, 1999), an analysis of relational linkages examines how the difference in political

climates between counties influences the number of people migrating from one to the other.

Another critical implication from the interconnectivity feature of migration systems is the

presence of internal dynamics of migration (Bakewell et al., 2016b; de Haas, 2010; Mabogunje,

1970). As Mabogunje (1970:16) put it, the migration system is “a circular, interdependent,

progressively complex, and self-modifying system in which the effect of changes in one part

can be traced through the whole of the system.” Similarly, Fawcett (1989:673) argued that

the migration systems framework “brings into focus the interconnectedness of the system,

in which one part is sensitive to changes in other parts.” This means that migration is not

a pure product of exogenous social forces. It forms a system with endogenous processes,

where one migration flow can promote or suppress another migration flow. For example,

since migrants transmit information and social connections when they move, the migration

flow from Arizona to Texas brings job information and personal contacts along, potentially

inspiring migration in the opposite direction. Internal dynamics like this can lead to an

endogenous accumulation of migration net of exogenous social and economic influences.
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3.2.3 Migration Systems Through a Network Lens

The insight of interconnecitivity from MST resonates with that of social network analy-

sis. Indeed, past research has employed social network analysis to study migration systems

(Charyyev and Gunes, 2019; Desmarais and Cranmer, 2012b; DeWaard et al., 2012; De-

Waard and Ha, 2019; DeWaard et al., 2020; Hauer, 2017; Leal, 2021; Liu et al., 2019; Nogle,

1994; Vögtle and Windzio, 2022; Windzio, 2018; Windzio et al., 2019). This school of MST,

called by Bakewell (2014) the “abstract system,” interrogates the macro-level migration pat-

terns by analyzing migration networks consisting of localities (in network terms, nodes and

migration flows between each directed pairs of localities (in network terms, edges).3 Net-

work analysis effectively captures the two critical implications of MST, relational linkages

and internal dynamics of migration systems, bringing new perspectives compared to the

marginal approach of migration, commonly employed in studies of U.S. immobility. Rather

than viewing localities/places as units of analysis, the network approach takes migration

flows between places as analytical units. This perspective preserves information regarding

emigration and immigration processes, enabling analysis of how characteristics of origin and

destination interact to influence migration flows, a relational account of linkages in migration

systems. The network approach also examines the internal dynamics of migration systems,

by studying the dependence structure among migration flows. The dependence structure

identifies how migration flows are associated with each other, net of the exogenous contexts

such as the economic and political environments. Taking the above-mentioned example of

reciprocity, the network approach measures whether and to what extent, an increase of one

3Bakewell (2010, 2014) and DeWaard and Ha (2019) have debated about whether and how studies of
migration networks contribute to MST. As this chapter shows, echoing Leal (2021), we agree with DeWaard
and Ha (2019) that network analysis is an effective way of theorizing and testing the structures and dynamics
of migration across geography; we also recognize Bakewell’s critique that network analysis of migration flows
is one of the many approaches to study migration systems, and that students of MST should beware the
pitfall of abstract and static descriptions of migration systems. In this regard, this chapter leverages theories
and empirical findings in migration studies to motivate tests about structures and patterns of migration
networks. We also call for more research with different levels of analysis to triangulate our findings for a
comprehensive understanding of migration and immobility.
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Figure 3.1: Schematic illustration of the marginal approach versus the network approach

Note: The marginal approach takes geographical areas as units of analysis, and tends to con-
dense the in- and out- migration flows into a single number about net migration rate/count
of a geographical area. The network approach takes each migration flow between a directed
pair of geographical areas as an analytical unit. This approach incorporates origin and des-
tination in understanding their joint influence on migration flows; it also preserves the local
structural properties of migration flows, allowing systemic patterns to be examined.

migration flow (e.g., Los Angeles to Baltimore) is associated an increase in its opposite flow

(Baltimore to Los Angeles), net of other factors. The dependence structure can further go

beyond a pair of places and describes how the whole network system of migration flows are

interconnected, such as how the migration inflows of Denver are associated with its out-

flows, which in turn serve as the inflows of another places, Dallas, Atlanta, etc. Figure 3.1

illustrates the network approach in contrast to the marginal approach.

While the network approach introduces unique perspectives overlooked by the marginal ap-

proach, its insights has not yet been fully appreciated. One notable characteristic of prior

research on migration networks is the focus on the “diversity” rather than the “intensity”

of migration flows (DeWaard and Ha, 2019; Leal, 2021; Vögtle and Windzio, 2022; Windzio,

2018; Windzio et al., 2019). In other words, extant research examines the number of migra-
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tion flows rather than their magnitudes. This is associated with the practice of dichotomizing

migration flows into two statuses, either no migrants versus at least one migrant, or few mi-

grants versus many migrants (though Windzio (2018) and Windzio et al. (2019) divide them

into more (5) statuses in some parts of their research). This approach is compatible with the

common practice in social network research of approximating social relations by a binary

form, facilitating the use of existing network theories and methods to describe the migra-

tion system. While analyzing the “diversity” of migration flows offers useful knowledge

about the migration system, it ignores the rich information about the variation in migration

magnitudes. The intensity of migration flows becomes a critical question when it comes to

understanding population immobility. In particular, DeWaard et al. (2020) find that the

decline of U.S. migration is not due to the decline in the diversity of migration flows (the

number of county pairs with population exchange), but the decline in the intensity of mi-

gration flows (their average count of migrants). Studying the intensity of migration flows

requires describing migration networks in a valued form, where the edges are not binary,

but take quantitative values. Since the quantitative feature of migration intensity is criti-

cal in grappling with the question of population immobility, this chapter bridges migration

systems theory and recent advances in statistical and computational methods for valued

network analysis (Huang and Butts, 2024b; Krivitsky, 2012). We formally theorize the re-

lational linkages and internal dynamics in the expressions of valued networks, developing a

roadmap to quantitatively describe and test the interconnectivity of population flows.

On the side of migration systems, new theoretical insights are needed for studies of immobil-

ity. MST is not an exception from the mobility bias critique of migration theories (Schewel,

2020). As de Haas (2010) argues, MST has historically focused extensively on migration-

facilitating mechanisms that lead to the perpetuation of migration flows, but largely over-

looked the migration-undermining mechanisms that lead to the decline of migration flows.

Building on this critique, a line of theoretical and empirical research studies why some in-

stances of pioneer migration drive the formation of migration systems while others do not,
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and the endogenous mechanisms that can undermine the migration system (Bakewell et al.,

2012, 2016a; de Haas, 2010). Bakewell et al. (2016a) further go beyond the MST framework,

as they pursue the notion of incorporating scenarios where the migration systems fail to form

or perpetuate. Unquestionably, this is a promising direction to further the theorization of

migration dynamics. Yet, for our focus of internal migration in the contemporary U.S., the

migration system has been in existence for generations, and is unlikely to vanish in the near

future. Therefore, the migration system is still a useful research subject and perspective,

where we explore the social mechanisms that immobilize population from migrating.

The network approach inspires us to consider population immobility from a relational per-

spective. We conceptualize the pattern of segmented immobility, that in a society where

people cluster in geographical segments based on their cultural and political traits, immo-

bility can occur due to people’s tendency to avoid migrating towards places with divergent

environments. By jointly incorporating origin and destination in an analytical framework,

the relational perspective allows us to examine the influence of dissimilarity between coun-

ties on the magnitude of migrant populations moving between them, connecting population

immobility with segregation and polarization. Apart from examining the pattern via a hy-

pothesis testing lens, we further utilize the idea of “knockout experiments” broadly employed

in the experimental sciences to directly quantify its contribution to immobility. Originating

in biomedical research, a knockout experiment probes the functional role of a system compo-

nent by removing or inactivating it, comparing normal system behavior with behavior when

the component is “knocked out” (Hall et al., 2009; Vogel, 2007). In social sciences, knockout

experiments are performed in silico, where researchers simulate the potential social outcomes

when certain social forces were removed. The knockout experiment can be considered as a

model-based thought experiment (Gedankenexperiment, (Einstein et al., 1935), in which we

predict the social outcomes of interest under a counterfactual scenario where certain social

effects are inoperative. In our case, we compare the total number of migrants observed in the

real world to that simulated when segmented immobility mechanisms are knocked out. This
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theoretical exercise allows us to leverage the power of modern, generative network models

to gain insights into the functioning of the migration systems.

3.3 Hypotheses

3.3.1 Relational Linkages: Political Segregation and Segmented

Immobility

Decisions about migration, a behavior aiming at improving life chances (Jasso, 2011), typ-

ically come out of a comparison between place of departure and destination. Moving from

current place of residence, will the destination be adaptive? One critical dimension in drawing

an answer is the political environment of the origin and the putative destination communi-

ties. Rising political polarization has divided Americans along the party lines (Levendusky,

2009), where social cleavage by political ideology extends to a growing array of public opin-

ions (Baldassarri and Gelman, 2008; DellaPosta, 2020) and choice of lifestyles (DellaPosta

et al., 2015), and has lead to segregated social networks and tensions in relationships such as

familial interactions (Chen and Rohla, 2018; DiPrete et al., 2011). This political alignment

also happens across space, with distinct political consciousness across geographical regions,

rural and urban lands, and local neighborhoods (Bishop and Cushing, 2009; Cramer, 2016;

Hochschild, 2018). Recent spatial analysis on partisan isolation reveals that a large fraction

of American adults lives in places where almost no one in their neighborhood votes in a

manner opposed to their own (Brown and Enos, 2021). They also found that this pattern is

prevalent nationwide and is a distinct pattern from segregation in other dimensions such as

across racial lines. This state of affairs is also overtly recognized within American political

discourse, where media outlets routinely make distinctions between “red” (conservative) and

“blue” (liberal) regions, and ascribe (correctly or not) a large body of cultural and political
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traits to both the regions and their inhabitants (Badger et al., 2018; Wallace and Karra,

2020). To the extent that individuals are likely to both affiliate with the political culture

of their area, and regard their opposites on the political spectrum with suspicion and even

hostility (Iyengar et al., 2012, 2019), people may be unwilling to migrate between regions

with differing political cultures. Even setting aside motivations arising from political culture,

according to the public choice theory and the consumer-voter model, people should still be

more willing to migrate to regions whose governments most closely match their own pol-

icy preferences (Dye, 1990; Tiebout, 1956), with those from solidly “red” areas preferring to

move to other “red” areas, and likewise for those from “blue” areas. Empirical analyses using

various data and methods generally confirm the existence of migration preference towards

co-partisanship (Tam Cho et al., 2013; Gimpel and Hui, 2015; Liu et al., 2019), though with

some counter evidence (Mummolo and Nall, 2016). Together they motivate the following

hypothesis:

Hypothesis 1.1: Ceteris paribus, the more dissimilar counties are in their average political

orientation, the lower the migration flow between them.

The limited population exchange between geographical segments with dissimilar social envi-

ronments, or what we call segmented immobility, may not be unique to the political dimen-

sion, but would rather be a pervasive pattern arising from people’s evaluation of places along

multiple dimensions. One of the underlying mechanisms that can lead to such a pattern is

homophily. Homophily refers to people’s tendency to be connected to and interact with those

similar to themselves in various characters such as racial and ethnic identity, religious belief,

political ideology, personality, and normative inclination like altruism (DiPrete et al., 2011;

Leszczensky and Pink, 2019; McPherson et al., 2001; Moody, 2001; Smith et al., 2014; Wil-

son et al., 2009). Homophily occurs not only within personal networks, but is also a spatial

phenomenon, where people tend to live close to others with similar racial identity, economic

background, or political ideas (Bishop and Cushing, 2009; Massey and Denton, 1993; Intra-
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tor et al., 2016). A social process that can give rise to this spatial pattern is that residents

choose to migrate towards places where people similar to them concentrate, but avoid desti-

nations with identities different from their own (Crowder et al., 2012; Massey et al., 1994b;

Schelling, 1969). Although literature about this residential sorting process focuses primarily

on mobility among neighborhoods in urban areas, we argue that a similar process may also

work at a larger scale. When choosing a county to reside in, people may favor places with a

significant presence of their co-ethnics and those that host like-minded residents. Likewise,

opportunities to migrate may be turned down if they would lead to settings in which the

mover would find themselves socially isolated or targets of discrimination.

Segmented immobility can also arise in more subtle ways: even if individuals do not avoid

living with dissimilar others, they may exclude potential migration destinations that are not

able to offer the lifestyle and cultural consumption they are used to. Moving from Manhattan

to rural Texas, the New Yorker would miss the coffee shop at the street corner, while a Texan

migrating in reverse might feel nostalgia for the country music scene back home. Hence,

migration between rural and urban areas, and across culturally different states is likely to

be disfavored. Racial demographics can also be a determinant of the cultural and economic

conditions of a place, where a racially diversified area not only offers a diversity of cultural

affordances (as reflected by cuisines and music genres, for example), but also provides vital

economic opportunities and ethnic capital for ethnic minorities (Fernández-Kelly, 2008; Lee

and Zhou, 2017; Zhou, 1992). Similarly, migrants from rural counties might find themselves

excluded from jobs in urban areas because they demand skills hard to obtain in their rural

hometown, potentially leading to circulation of poor rural migrants among non-metropolitan

counties (Lichter et al., 2022). These together suggest an economic dimension to segmented

immobility, in which migration between dissimilar places is suppressed when these places

have different economic structures, making it difficult for migrants to utilize human capital

accumulated in their place of origin. As services, cultural activities, and modes of production

become specialized to a local social ecology, those adapted to both producing and consuming
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within that ecology will find it increasingly difficult to utilize opportunities in ecologically

distinct localities. Together, these mechanisms lead to the following hypotheses:

Hypothesis 1.2: Ceteris paribus, the more dissimilar counties are in their levels of urbaniza-

tion, the lower the migration flow between them.

Hypothesis 1.3: Ceteris paribus, the more dissimilar counties are in their racial compositions,

the lower the migration flow between them.

The hypothesis of segmented immobility is based on the assumption that most residents and

migrants identify themselves with their current residence, which is also the place of departure.

However, if we were to suppose that the majority of the migrating population moved to

escape their current residence in favor of one more to their liking, then migration flows would

preferentially occur between dissimilar areas; this would lead to “mobility across segments,”

in contrast to “segmented immobility.” This type of process was proposed by Tiebout (1956)

as a mechanism of political sorting, and at the micro-level similar processes have been occur

in personnel turnover (Krackhardt and Porter, 1986) and cascade-like relocation phenomena

(Schelling, 1978). We contend that such sorting flows are unlikely to be the major force

of the contemporary internal migration in the United States. This is because research has

not documented substantive social changes that drove massive redistribution of American

population since the fading of the Great Migration of Black Americans in 1970s (Sharkey,

2015; Tolnay, 2003), and the continuing decline of internal migration for the past decades

seems to suggest a scenario of equilibrium, or “an inflection point” (Molloy et al., 2011):

173). Analyses of voting behaviors also reveal that internal migrants tend to hold political

orientations consistent with those of their origins (Preuhs, 2020). Nevertheless, we consider

it as a competing hypothesis to the segmented immobility hypotheses above, and will directly

test them in our analysis.
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3.3.2 Internal Dynamics: Reciprocity and Perpetuation

The network approach also brings the opportunity to formally examine the interrelationships

among migration flows themselves, thereby revealing the internal dynamics of the migration

system. This is particularly true for the valued network models used here, which allow us to

examine quantitative questions that go beyond the simple presence or absence of migration.

Here, we focus on several mechanisms motivated by prior theory on migration behavior at

the micro-level, which lead to hypotheses regarding interdependence among macroscopic

migration flows.

We begin by considering the relationship between one migration flow (e.g., from Seattle

to Austin) and its opposite flow (e.g., from Austin to Seattle). As has been argued by the

transnationalism school in the context of international migration, migration is not a one-way

process, but an enduring reciprocal exchange of people, goods, and cultures between sending

and receiving countries (Schiller et al., 1995; Waldinger, 2013). These same mechanisms

could also apply to movement within countries: in his classic work, Ravenstein (1885:187)

documented the “universal existence” of “counter-currents of migration” between counties in

the United Kingdom, where population not only moved from agricultural areas to commercial

and industrial areas, but each of these migration currents corresponded to a current running

in the reverse direction. Considering that migration control policies suppress the circulation

of international migrants between states (Czaika and de Haas, 2017; Massey et al., 2016),

we expect even stronger reciprocity of migration flows in the context of internal migration in

the U.S., where there is no state control over migration. The reciprocity can arise from the

sharing exogenous properties of the bidirectional flow; for example, geographical proximity

is a driver of reciprocal population exchange, as it facilitates migration in both directions.

Nevertheless, we argue that reciprocity is also an internal dynamic of the migration flow

system, such that net of exogenous factors, a larger migration flow in one direction is still

associated with a larger migration flow in the opposite direction.
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The endogenous, systemic pattern of reciprocity could result from at least two micro-

mechanisms in the American migration system. First, migration in one direction actively

motivates the flow in the opposite direction. Migrants bring information and social con-

nections from their origin to destination, inspiring and facilitating migration in the opposite

direction. Second, return migrants participate in flows in both directions, contributing to the

positive association between the pair of flows. For example, Spring et al. (2021) find family

ties to be a decisive factor for people separated from their spouses or cohabiting partners to

return to their hometowns. von Reichert et al. (2014a,b) show that migrants returning from

urban to rural areas are mainly driven by social connections rather than economic opportu-

nities, and they usually bring people in their family network along when they return. Given

the plausibility of both mechanisms, we posit the following macro-level hypothesis:

Hypothesis 2.1: Ceteris paribus, the flow of migration from county A to county B increases

with the flow of migration from county B to county A.

As is implied above, an important feature underlying the macro-level pattern of reciprocity

is the presence of (interpersonal) migrant networks that link persons in the sending and

receiving regions, so as literature on transnationalism points out (Lubbers et al., 2020; Mouw

et al., 2014; Verdery et al., 2018). Migrant networks, according to the definition of Massey

et al. (1993:448), “are sets of interpersonal ties that connect migrants, former migrants,

and nonmigrants in origin and destination areas through ties of kinship, friendship, and

shared community origin.” We have argued that, theoretically, migrant networks should

contribute to the reciprocity of migration-flow networks, by migrants bringing resources to

destination and triggering population moving in the opposite direction, and by motivating

return migrants moving between regions in both directions. Yet, reciprocity is not the only

pattern that emerges from migrant networks. As the cumulative causation theory argues, the

formation and development of migrant networks are a key contributor to the perpetuation

of migration flows, which suggests the presence of inertia (aka. a positive association) of the
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same migration flow over time (Massey, 1990; Massey et al., 1993). Specifically, migrants

not only bring information and social connections of origin to their destination, triggering

migration in reverse, but also take those kinds of resources from destination back to their

origin, by returning home or via communication with nonmigrants back home; this lowers

the costs and potentially raises the aspiration of migrating to the same destination, making

future migration more likely to happen (Garip, 2008; Garip and Asad, 2016; Liang et al.,

2008; Liang and Chunyu, 2013; Lu et al., 2013; Massey et al., 1994a; Palloni et al., 2001).

Therefore, we hypothesize the perpetuation of migration flows in the system:

Hypothesis 2.2: Ceteris paribus, the flow of migration from county A to B increases with the

past flow of migration from county A to county B.

3.3.3 Waypoint Flows

We now turn to the internal dynamics at the level of triads, i.e., among three localities (Davis

and Leinhardt, 1972). Specifically, we examine the waypoint structure in the migration flow

networks. Similar to a layover airport that mainly serves connecting flights, the “waypoint”

is a place where its scales of migrant inflows and outflows are similar to each other. Demon-

strated in Figure 3.2, County A, B, C have the same amount of associated migration events

in total (six), but their distributions of immigration and emigration are different. County A

is an example of waypoint, where inflows and outflows are evenly distributed, while County

C is a counter-example that has few inflows but many outflows, and County B is in be-

tween. The difference can be represented by the measure of waypoint flow, which is the total

amount of migration flows moving in and out of a focal place. When we hold constant the

total number of migration events, a high volume of waypoint flow represents a high level of

equality between their inflows and outflows. In Figure 3.2, the volume of waypoint flows for

County A, B, C are three, two, one, respectively, indicating that County A has the most
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A B C

Figure 3.2: Waypoint flows

Note: County A, B and C have the same number (six) of associated migration events, but
their levels of equality in the in- and out-migration flows vary. This is reflected on their
volumes of waypoint flow, three for the most equal County A, two for the medium equal
County B, and one for the least equal County C.

balanced inflows and outflows, followed by B and C.

Waypoint flows can arise from chain-like migration processes (Leal, 2021), such as stepwise

migration and relay migration. Stepwise migration refers to movements of migrants that

pass through at least one waypoint before reaching the final destination (Conway, 1980).

Originally theorized in the classic piece of Ravenstein (1885), stepwise migration has been

widely documented to happen under various social contexts (Freier and Holloway, 2019; Paul,

2011, 2017; Riddell and Harvey, 1972), including internal migration in the United States

(DeWaard et al., 2016). Stepwise migration usually happens when the final destination is

not directly reachable because of the high financial burden or the hardship in acquiring

visas for international migration; migrants respond to this challenge by first migrating to

waypoints that facilitate their accumulattion of capital of various kinds before moving to

their ultimate stop (Paul, 2011). Another migration process that gives rise to waypoints

is relay migration, where exodus of local residents leave vacancies in the labor market that

attract inflows of migrants (Durand and Massey, 2010). Relay migration can also happen

in the reverse order, where the influx of migrants triggers outflows of local residents (Leal,

2021). The key difference between stepwise migration and relay migration is that the former

is about the same migrant taking a multiple-step move, but the latter involves different

populations participating in the inflows and outflows of waypoints.4 The two processes are

not distinguishable in aggregate migration flows, but both reflect the interconnectedness of

4We thank an anonymous reviewer from the American Sociological Review for pointing out this distinction.
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the migration system, where the change of one migration flow could alter another via their

shared connection at the waypoint.

While existing literature has studied the migration processes that can generate waypoint

flows, less is known about their prevalence in the migration systems. This knowledge gap

drives us to further theorize chain-like migration processes by considering them against

other migration processes. Since migration is an arduous undertaking with substantial risks,

costs and barriers (Carling and Schewel, 2018; Liang et al., 2008; Schewel, 2020), prolonging

one-step migration into stepwise is not a desirable choice unless necessary. Compared to

international migration, internal migration in the U.S. is usually more affordable and less

constrained by state regulations; an American internal migrant is thus less likely to opt for

stepwise migration than a Filipino who wishes to settle in Spain. Relay migration is not a

universal pattern, either. It requires substantial inflows or outflows that can alter the local

labor and housing market or socio-political contexts to trigger further migration flows. This

means that waypoint flows arising from relay migration is conditioned on uncommon inci-

dents such as major economic shocks or environmental disasters that bring mass population

movements.

Moreover, a deficit in waypoint flows can also be a structural signature of inequality in

migration flow networks, where the majority of counties either receive many migrants but

send few, or send many migrants but receive few. This imbalance between in- and out-

migration flows can arise when the difference in the level of attractiveness across places

remain unaccounted for; in this case, a county is either popular so to attract and retain

migrants, or the reverse. A lack of waypoint flows can also occur endogenously. For instance,

potential migrants may take current levels of migration rate as social or economic signals

about the long-term desirability of an area, and adjust their own decisions accordingly. This

tendency creates a feedback loop in which influx of migrants to an area leads potential out-

migrants from the area to instead remain, which in turn feeds an imbalance between in- and
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out-migration (in > out) that motivates yet more potential migrants to move in. By turns,

this same mechanism may lead to a Schelling-like exit cascade (Schelling, 1978), in which

an initial out-migration shock both encourages further exit from those now in the location

and makes the location appear less-desirable to potential in-migrants, thus leading to poorer

in/out balance (in < out), and further net out-migration.

Clearly, then, there are interesting and plausible hypotheses in both directions. For simplic-

ity, we hypothesize a high-waypoint scenario, reflected by a balanced distribution of inflows

and outflows:

Hypothesis 3: Ceteris paribus, the inflows of migration to a county increase with its outflows.

It should be noted that the waypoint flow is a network structure related to but distinct from

the transitive hierarchy studied in some international migration network research (Leal, 2021;

Windzio, 2018). Both are triadic structures concerning migration flow among three places

(i, j, k). The waypoint flow is the backbone of the transitive hierarchy, as the former considers

migration flows of i → j and j → k, while the latter involves the co-presence of i → k flow.

This means that networks with a lack of waypoint flow will have few closed transitive triads

(i → j, j → k, i → k).5 We thus focus on the more fundamental waypoint flow structure to

explore the more basic form of endogenous mechanism in the migration network.

3.3.4 Internal Migratory Response to Immigration

Lastly, this chapter considers the relationship between international migrant (i.e., immi-

grant) inflows and internal migrant flows in the United States. Debates about the impact

5This is because transitive hierarchy is a network structure built on waypoint flow, and an underrepre-
sentation of the former necessarily implies an underrepresentation of the latter. It is possible that in this
circumstance there can be net tendency for waypoint flows to be transitively rather than cyclically closed
where they occur. But one will still see fewer transitive closures (as there are fewer paths to close in the
first place) than one would expect by chance. Put another way, standard transitivity effects measure the
overrepresentation of both waypoint flow and transitive closure, not merely the latter.
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A B C D

Figure 3.3: Hypothesized relation between internal and international migration

Note: vertical grey arrows denote international immigration flows and horizontal dark arrows
denote internal migration flows. Arrow width denotes the magnitude of migration flows.
According to the hypothesis of Frey (1995a), larger population are expected to migrate from
County A that has high immigrant inflows towards County B that has low immigrant inflows,
while less population would leave County C that has low immigrant inflows towards County
D that has high immigrant inflows, net of other factors.

of immigration on internal migration provoked much research in 1990s, which provided in-

sights about the demographic and economic influence of immigration, the structure of labor

markets, and the social cohesion of American society. Frey (1995a) hypothesized that im-

migration to the U.S. would lead to demographic balkanization, in which immigrant inflows

trigger outflows of internal migrants and deter their inflows. Figure 3 visualizes this hypoth-

esis from the perspective of internal migration flows, where larger population are expected

to migrate from County A that has high immigrant inflows towards County B that has

low immigrant inflows, while less population would leave County C that has low immigrant

inflows towards County D that has high immigrant inflows, net of other factors. This mech-

anism was proposed to lead to a “balkanized” regionalization of the U.S., with immigrants

and natives increasingly segregated in different regions.6 Empirical findings were inconclu-

sive about the relationship between internal and international migration flows, with some

supporting evidence for Frey’s (1995a) hypothesis (Borjas, 2006; Frey, 1995a,b; White and

Liang, 1998), and other opposing evidence (Card, 2001; Kritz and Gurak, 2001; Wright et al.,

1997). This chapter revisits this debate with new data about migration in 2010s of all U.S.

counties. Following Frey’s (1995a) proposal, we hypothesize, from the perspective of internal

migration flows, that:

6Since the phrasing of “balkanization” can be construed to carry certain normative connotations regarding
immigration, we follow the practice in Kritz and Gurak (2001), and phrase the phenomenon as the internal
migratory response to immigration.
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Hypothesis 4: Ceteris paribus, an internal migration flow increases with international im-

migration inflow in the sending county, but decreases with international immigration inflow

in the receiving county.

3.4 Data and Methods

3.4.1 Valued TERGMs

We use the valued temporal exponential-family random graph models (valued TERGMs) to

study the intercounty migration-flow network within the United States. Exponential-family

random graph models (ERGM) offer a flexible framework that describes the probability of

observing certain network structure as a function of their nodes’ covariates, edges’ covariates,

and the dependence structure among edges (Hunter et al., 2008b; Wasserman and Pattison,

1996). This empowers us to simultaneously model the characteristics of areal units (nodes’

covariates), the relational linkages (edges’ covariates), and the internal dynamics (depen-

dence structure) hypothesized to characterize migration-flow networks. Previous research

has employed ERGMs in a wide range of social network settings, including friendship net-

works in schools (Goodreau et al., 2009; McFarland et al., 2014; McMillan, 2019), inmate

power relationships in prison (Kreager et al., 2017), collaboration networks in firms (Sri-

vastava and Banaji, 2011), online social networks (Lewis, 2013, 2016; Wimmer and Lewis,

2010), and various types of gang networks (Lewis and Papachristos, 2019; Papachristos et al.,

2013; Smith and Papachristos, 2016). While most studies model social relations as binary

networks (i.e., encoding only whether or not relationships exist), it is more accurate and

informative to model migration-flow systems as valued networks, where edges represent the

size of population migrating between county pairs. Although valued ERGMs (VERGMs)

are to date less well-studied than binary ERGMs, we employ the count-data ERGM frame-
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work of Krivitsky (2012) to capture migration rates in a quantitative fashion. Our model

also incorporates temporal effects (the perpetuation pattern), making it a valued temporal

ERGM, or valued TERGM).

We detail the model setup, computation methods and procedures in Appendix (3.7.2). We

also develop and report a model adequacy check for VTERGMs, detailed in Appendix (3.7.5).

3.4.2 Knockout Experiments

Exploiting our ability to quantitatively model the magnitude of migration flows using VTERGMs,

we perform in silico “knockout experiments” to show the impact of modelled social mecha-

nisms in influencing the size of the migrant population, tackling the question of how partic-

ular social forces give rise to immobility. Originating and widely used in the experimental

sciences (Hall et al., 2009; Vogel, 2007), this way of thinking has also been applied in the

social sciences (e.g., Han et al., 2021; Lakon et al., 2015; Xie and Zhang, 2019), especially

in the context of agent-based modelling (Miller and Page, 2009). For social science re-

search, the knockout experiment can be considered as a model-based thought experiment

(Gedankenexperiment, Einstein et al., 1935), where we use models to predict social outcomes

of interest (e.g., total number of migrants) under a counterfactual scenario where certain

social mechanisms are removed (e.g., the political segmentation effect) while other factors

are held constant. A flexible and powerful tool, in silico experiments require careful research

design before its utilization, as elaborated in Appendix (3.7.3). This approach is particularly

powerful for nonlinear, systemic models like those used here, where seemingly small, local

effects can have global consequences.

Our knockout experiments are performed as follows. Starting with a VTERGM calibrated us-

ing empirical migration data, we compute the total expected number of intercounty migrants

when either the political segmentation mechanism (per se) or all of the three segmentation
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mechanisms (jointly) are knocked out, and compare this number with the observed migrant

population size. The differences in total migrant population between these scenarios thus

offer an insight about the scale of mobility suppression from these segmentation mechanisms

- i.e., if we could “turn them off,” what would we hypothetically expect to see? The counter-

factual scenario was simulated by the Markov chain Monte Carlo (MCMC) algorithm based

on the network model with zero coefficient values for the specified knockout social effects,

or equivalently setting all dissimilarity measures equal to zero.7 The simulated migration

system can be interpreted as a representation of a counterfactual scenario where all U.S.

counties had the same political climate, urbanization level, and racial composition, generat-

ing zero dissimilarity among all county pairs. It can also be interpreted as a representation of

a counterfactual scenario where segmentation had no influence on migration (under certain

model assumptions), as indicated by zero coefficient values for dissimilarity effects.8 Since

the network model specifies the dependence structure between migration flows, it accounts

for both direct impacts of the segmentation between each county pair on their own migra-

tion flows, and the indirect impact arising from the internal dynamics of migration systems

that spillover this exogenous impact. It thus offers a systemic depiction of the segmented

immobility pattern.

3.4.3 Data

We analyze the intercounty migration flow data for from the American Community Sur-

vey (ACS) (U.S. Census Bureau, 2019). As a political unit with reliable demographic and

economic data, counties serve as a level of geographical area that effectively describes the

7We also simulated networks using the full model (without knockouts), and calculated the difference in the
total migrant size between the full-model simulation and the observed, as a measurement of bias introduced
in the procedure. We then corrected the total population sizes in knockout scenarios by extracting that
difference. As the difference is 0.7% of the observed migration volume, corrected and uncorrected estimates
are nearly identical.

8We offer further discussions about designing and interpreting the knockout and other in silico experi-
ments in Appendix (3.7.3).
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social contexts of residents such as political environments and rurality (Lobao and Kelly,

2019; Mueller and Gasteyer, 2023; Schroeder and Pacas, 2021). Movement across a county

boundary is a frequently-used definition of internal migration in the literature (Brown and

Bean, 2016; DeWaard et al., 2020; Hauer, 2017; Partridge et al., 2012). Administered by U.S.

Census Bureau, ACS surveys respondents’ location of residence one year ago and estimates

the population size that migrated between each pair of counties each year.9 Their released

data reports the averaged annual migrant counts in a five-year time window in order to have

enough monthly samples for reliable estimation at the inter-country level. The outcome of

interest is the count of migrant population flowing between 3,142 counties in the United

States during 2011-2015.

The explanatory variables are from 2010 United States Census and ACS 2006-2010 (U.S.

Census Bureau, 2011a,b). Specifically, the intercounty distance was calculated based on the

2010 Census by National Bureau of Economic Research (2016). We use presidential election

turnout in 2008 to indicate the political climate of each county (MIT Election Data and

Science Lab, 2018). Data sources for each covariate are listed in Appendix (3.7.1).

3.4.4 Variables

Dependent edge variable. The model predicts the count of migrants moving between each

directed pair of counties during 2011-2015 from the American Community Survey. Because

the count-valued ERGM effectively operates through a logarithmic link (see Krivitsky (2012),

we are able to directly predict untransformed migrant counts in the model.

9Another dataset that reports counts of county-to-county migration flows is offered by the Internal Rev-
enue Service (IRS) (Hauer and Byars, 2019). While ACS is a nationally representative demographic survey,
the representativeness is a potential concern of the IRS data, as it only contains people filing tax returns,
and therefore are not representative of the elder, the low-income, and the immigrant populations. Further,
the IRS data of the post 2011-2012 period currently suffers from systemic problems that are not yet re-
solved (DeWaard et al., 2022). Nonetheless, the IRS reports migration data annually, and can be useful for
fine-grained dynamic analysis of migration before 2011.
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Dissimilarity score for segmented immobility. The segmented immobility thesis contends that

less migration happens between places with different political climates, levels of urbanization,

and racial compositions. To test the hypotheses, we measure the dissimilarity within each

pair of counties along these dimensions as edge covariates for migration flows. We use

the L1 distance measure, or what was called the dissimilarity score in social segregation

literature (Massey and Denton, 1988). For difference in political climates, we follow Liu

et al. (2019) and calculate the absolute difference in percentage of votes for the Democratic

candidate in the 2008 presidential election, a behavioral measure of partisanship.10 For levels

of urbanization, we calculate the absolute difference in percentage of population residing in

rural areas, a standard urbanization measurement reported in 2010 Census. For racial/ethnic

composition, we use a function of the sum of absolute differences in population share for each

racial category. Formally, we describe relationship between counties A and B by

RAB =
1

2

n∑
i=1

∣∣∣∣P (A)i
P (A)

− P (B)i
P (B)

∣∣∣∣
where RAB is the dissimilarity score of racial composition between county A and county B,

P (A) is the total population size of county A and P (A)i is the population size of the i-th

racial group in county A. We follow the Census to consider the following five racial/ethnic cat-

egories, Hispanic or Latino, Non-Hispanic Black or African American, Non-Hispanic Asian,

Non-Hispanic White, and population with the other racial identifications. The difference is

divided by two to make the theoretical value of the score range from 0 to 1. The higher the

dissimilarity score, the more different the two counties are in the measured dimension, and

10Given how Hawaii and Alaska calculate their election results, we conduct the following operations to
map their local election data to counties. Since Kalawao County, HI is regarded as a part of Maui County,
HI for election purposes, we input the election results of both counties with their pooled results. Election
results in Alaska were reported by election districts rather than counties. We used the map to match election
results of the 40 districts with the 28 counties. The result of a county was input with that of its district
if the county was affiliated with one single district. We take the mean of the results of the districts that a
county spans if the county is affiliated with multiple districts. The approximation would underestimate the
political difference between counties, but the bias should be minor as the affected county takes less than 1%
of the sample. We thank the election offices of Hawaii and Alaska for clarification and maps of the election
districts during 2002-2013 in Alaska.
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the less migration is expected according to the hypotheses.

Network covariates. We utilize the mutuality statistic in the ergm.count R package to

measure reciprocity in migration flows (Krivitsky and Butts, 2013).The reciprocity statis-

tic calculates the summation of minimum value of each pair of edges by dyad. Formally,

gm(y) =
∑

(i,j)∈Ymin(yij, yji), where Y denotes the set of all i, j pairs. A positive coefficient

for indicates reciprocity within the network, such that a large migration flow is more likely

to have a larger counter current rather than a smaller one, ceteris paribus.

The model also includes the number of migrants in the past 5-year window during 2006-2010

in log scale from ACS as an edgewise covariate, to account for the association of migration

flows over time, utilizing the temporal feature of TERGMs. A positive coefficient for this

term suggests the perpetuation of migration flows over time, while a negative coefficient

suggests negative dependence between past and present flows.

Waypoint flow is captured by the summation of the volumetric flow for each county in the

network. Intuitively similar to the notion of the flow volume “through” or “across” an areal

unit in the field of fluid mechanics, the flow associated with a given unit is the minimum of

its total inflows and its total outflows.Formally: gf =
∑

i∈Vmin{
∑

j∈V,j ̸=i yij,
∑

k∈V,k ̸=i yki},

where V is the set of all vertices/nodes (counties), and yij, yki are values of the edge from

county i to j and k to i, respectively. The term is similar to the 2-paths or mixed-2-

stars in binary ERGMs, which is the number of times a node receives an edge and sends

another (Morris et al., 2008). A positive coefficient for the flow term indicates that the

observed network has larger volumes of waypoint flows than would be expected given all other

mechanisms and covariates specified in the model, suggesting a relatively equal distribution

of in- and out-migration flows across counties, and a negative coefficient would indicate

otherwise.

To examine the relationship between internal and international migration flows, for each
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intercounty migration flow, the model measures its associations with the total immigrant

inflows of its sending and receiving counties in the same time window (2011-2015). The

international immigrant population is transformed by taking the natural logarithm.

Demographic covariates. The model also accounts for areal characteristics that might influ-

ence intercounty migration. These include demographic characteristics of the sending and

receiving counties, from basic geo-demographic statistics to demographic compositions.

Classic models from spatial econometrics (a.k.a. the gravity model) suggest that migration

rates are positively associated with the population sizes of the sending and receiving re-

gions, but negatively associated with their distance, with a general power law form (Boyle

et al., 2014; Poot et al., 2016; Zipf, 1946, 1949). Such models can be expressed by a linear

combination of population and distance in the log space. Formally,

log(MAB) = β0 + β1log(PA) + β2log(PB) + β3log(DAB) + ε

whereMAB is the migration volume from A to B, P is the regional population, D is the inter-

regional distance, β is a covariate vector, and ε is the residual. Almquist and Butts (2015)

suggest that this may arise from the volume of interpersonal contacts between regions, which

also frequently scales in power law form. Although we do not use a regression model of this

type here, we emulate this class of effects within our own model by incorporating (1) the log

populations for the sending and receiving counties and (2) the log distance between counties

(in kilometers) as predictors of intercounty migration rates; this means that our models can

be considered as an extension of the gravity model. We also include population densities

of sending and receiving counties (in thousand people per squared-kilometer), since Cohen

et al. (2008) has shown that population density is a critical factor in predicting international

migration flows. We use data from the 2010 Census for the covariates listed above.

For demographic composition, the model first considers the age structure of sending and
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receiving counties, as Kim and Cohen (2010) found that migrants are more likely to leave

younger countries towards older countries in the context of international migration. Using

the 2010 Census, the potential support ratio (PSR) equals to the ratio of population aging

15-64 over population aging 65+, which is the inverse of dependency ratio in demography

literature; the higher PSR, the younger the population.

Racial composition could influence the mobility of population as well, as extant literature

found different patterns of internal migration between racial groups (Crowder et al., 2012;

Sharkey, 2015). Hence, besides the dissimilarity of racial composition between counties, we

also consider the racial composition of the sending county to account for the varying mobility

of different groups, as measured by the proportion of each racial category in the population.

Economic covariates. Economic structures of origins and destinations could potentially in-

fluence their migration flows. Since renters on average are more mobile than house owners

(Frey, 2009; Molloy et al., 2011) even after controlling for demographic and socioeconomic

factors (Jia et al., 2023), the model includes the percentages of housing units occupied by

renters for both origin and destination, using 2010 Census data. The model also controls

the percentage of population with a college degree using the 2006-2010 ACS. This is because

human capital may offer greater ability and opportunities for migration, and previous anal-

ysis found that population with higher education attainments have higher migration rates

in the U.S. (Frey, 2009).

Neoclassical economic theory predicts that people migrate towards economic opportunities

(Massey et al., 1993; Todaro, 1976). The theory also predicts that regions with more eco-

nomic opportunities will send more migrants, since their population have more capital to

finance their migration (Massey and Espinosa, 1997). We thus include the unemployment

rate of the origin, and the difference in the unemployment rate between the destination and

the origin. In combination of neoclassical economic theory and the aspiration-ability model
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(Carling, 2002), we hypothesize that more migration will come from counties with lower

unemployment rate given their greater ability to move, and more migration will happen

when the destination has lower unemployment rate than the origin, offering more economic

opportunities and higher aspiration for migration. Similarly, the models incorporate the

logarithm of median monthly housing costs of the origin and the difference in log housing

costs between destination and origin.

Geographical covariates. Besides distance between counties, the model also controls for

regional differences in mobility. Previous research found that migration rates and their

trends in different parts of America vary significantly (Frey, 2009). We believe that the

regional difference may not be fully explained by difference in social contexts indicated

by the covariates above. Dummy variables are created to indicate whether the origin and

destination is in the West, the Midwest, the South, with the Northeast as the reference

group, based on the definition of U.S. Census Bureau (2013).

Administrative boundaries are likely to influence migration flows as well. Charyyev and

Gunes (2019) found that, marginally speaking, the majority of intercounty migration in the

U.S. happens within a state, and in this chapter we further examine whether state boundary

influences migration flows after controlling for distance and dissimilarity between counties.

Intrastate intercounty migration could be more prominent than cross-state migration because

compared to intrastate migration, the cross-state migration creates extra burdens ranging

from adaptation to unfamiliar legal and cultural environments, to navigation of administra-

tive procedures such as change in occupational licensing for workers in certain occupations

(Johnson and Kleiner, 2020). Yet, the opposite hypothesis is plausible under the consumer-

voter model, which contends that people vote by their feet (Dye, 1990; Tiebout, 1956); as

means of pursuing favorable policies, cross-state migration is more effective if people migrate

to seek lower tax rates or more welcoming policies and climates for immigrants (Preuhs,

1999; Schildkraut et al., 2019). The model creates a dummy variable indicating whether the
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two counties are affiliated with the same state. A positive coefficient would suggests that

intrastate intercounty migration is more prominent, and a negative coefficient suggests that

inter-state migration is more prominent.

Variable Setup. We report two models in the following results section. The first model

contains every covariate except the rural dissimilarity score, which is later included in the

second model, the full model. Since the level of urbanization is strongly associated with

their political environment, comparison between the two models could reveal how much of

the total effect of political dissimilarity might be explained by their difference in the level

of urbanization. Besides the sum term serving as an intercept, we add to models a term

that counts the number of nonzero dyads of the network to account for the zero-inflation

of migration flow data (Krivitsky and Butts, 2013). Its negative coefficients in Table 3.1

indicate the sparsity of migration flow network, that a county pair is more likely to have

no migrants moving between than otherwise, even after controlling for all the covariates in

the model. Summaries of descriptive statistics and data sources are attached in Appendix

(3.7.1).

3.5 Results

3.5.1 Bivariate Analyses of Migration and Political Division

To explore the pattern of segmented immobility by political orientation, we first perform bi-

variate analyses between intercounty migration and political division, as visualized in Figure

4. We divide counties into two broad groups, Democratic counties and Republican counties.

Democratic counties are counties where the Democratic candidate (Obama) received more

votes than the Republican candidate (McCain) in the 2008 presidential election, and vice

versa for the Republican counties. The sociogram in Panel A of Figure 4 visualizes the
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Figure 3.4: Immobility from political division

Note: The sociogram (A) represents the magnitude of migration flow within and between
Democratic counties (node D in blue) and Republican counties (node R in red), which
is proportional to the width of the edge. The spineplot (B) represents the magnitude of
migration flow within and between the two groups by the area of each block. The shaded
blocks represent migration within each group. Scatterplots (C) show the relationship between
percentage of Democratic votes in 2008 of a county and the composition of its in-migrants
and out-migrants. The lines are fitted bivariate linear regression lines.

magnitude of migration within and between Democratic and Republican counties, which is

proportional to the width of edges. The sociogram shows that migration flows within each

group has thicker edges than flows between, suggesting that more migration happens from

one Democratic county to another, or from one Republican county to another, than between

a Democratic county and a Republican county. The spineplot in Panel B represents the mag-

nitude of migration flow within and between groups by the area of each block. The shaded

blocks are migration happening within Democratic or Republican county groups, suggest-

ing again that more migration happens on either side of the party line than across it. The

color of each block indicates whether the origin of the migration flow is from a Democratic

(blue) county or a Republican (red) county. The spineplot indicates that only 31% of the
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migrants moving into a Democratic county come from a Republican county, and just 44% of

the migrants moving into a Republican county come from a Democratic county.

Panel C of Figure 4 visualizes the relationship between the percentage of the Democratic

votes in the 2008 election and the composition of the in-migrants and out-migrants for each

county. The upper left panel shows that the higher the Democratic vote in 2008, the larger

the proportion of migrants coming from a Democratic county, and the smaller the proportion

of migrants coming from a Republican county, as shown in the lower-left panel. Similarly,

the right-hand column suggests that a larger share of 2008 Democratic votes within a county

is associated with a larger proportion of out-migrants moving to a Democratic county, and

a smaller proportion to a Republican county. Overall, the figures reveal a clear and strong

pattern of political sorting, where less population migrate between counties with distinct

political environments than those with similar political environments.

3.5.2 Segmented Immobility

The bivariate analysis is suggestive that intercounty migration is immobilized by political

divisions in the United States. We further examine this using VTERGMs that incorporate

the demographic, economic, geographical and political factors at the county and intercounty

levels, together with explicit specifications of internal dynamics of migation systems. Table 1

displays the results. Model 1 suggests that, holding all other factors constant, a larger differ-

ence in political environments between counties predicts less migration between them. Since

the political environment is associated with the level of urbanization of a county (Cramer,

2016), Model 2 further includes the dissimilarity of urbanization between counties. From

Model 1 to Model 2, the effect size of political dissimilarity becomes modestly smaller, sug-

gesting that the effect of political difference can be partly (but not completely) explained by

their difference in the level of urbanization. The smaller BIC of Model 2 further indicates that
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difference in the level of urbanization is effectively explaining the variation in the magnitude

of migration flows. Nonetheless, in Model 2, larger political dissimilarity is still a statistically

significant predictor of less migration between counties, offering empirical evidence for Hy-

pothesis 1.1. Holding other factors constant, a pair of counties with 10% larger difference in

2008 voting outcome is expected to have 2.5% (i.e., [1− exp(−0.256×10%)]) fewer migrants

than another county pair. Similar to political segmentation, Model 2 also reveals that larger

differences in levels of urbanization and racial compositions of two counties predict fewer

migrants moving between, holding other factors constant, lending support for Hypotheses

1.2 and 1.3. The VTERGM results do suggest that migration is inhibited between places

with dissimilar political contexts, levels of urbanization, and racial compositions.

Table 3.1: Valued TERGMs for Intercounty Migration Flows, 2011-2015

Model 1 Model 2
Estimate SE Estimate SE

Segmented Immobility
Political dissimilarity -.368*** .007 -.256*** .007
Rural dissimilarity -.399*** .004
Racial dissimilarity -.361*** .006 -.217*** .006
Network Patterns
Mutuality .054*** .002 .045*** .002
Log(past migrant flow) .303*** <.001 .300*** <.001
Waypoint flow -.014*** .001 -.015*** .001
Destin.log(immigrant inflow) .062*** .001 .056*** .001
Origin.log(immigrant inflow) .040*** .001 .035*** .001
Demographics
Destin.log(population size) .351*** .002 .351*** .002
Origin.log(population size) .370*** .002 .373*** .002
Destin.log(population density) -.077*** .001 -.083*** .001
Origin.log(population density) -.062*** .001 -.069*** .001
Destin.PSR .018*** .001 .017*** .001
Origin.PSR .013*** .001 .013*** .001
Origin.P(White) (reference group)
Origin.P(Hispanic) -.012 .007 -.064*** .007
Origin.P(Black) .147*** .008 .117*** .008
Origin.P(Asian) .408*** .020 .467*** .020
Origin.P(other race) 1.031*** .015 .993*** .015
Economics
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Table 3.1: (continued) Valued TERGMs for Intercounty Migration Flows, 2011-2015

Model 1 Model 2
Estimate SE Estimate SE

Destin.P(renter) .405*** .011 .348*** .011
Origin.P(renter) .507*** .012 .476*** .012
Destin.P(higher education) .327*** .011 .359*** .011
Origin.P(higher education) .157*** .012 .153*** .012
Difference.log(housing costs) -.135*** .004 -.153*** .004
Origin.log(housing costs) -.248*** .005 -.277*** .005
Difference.P(unemployment) -1.305*** .040 -1.300*** .040
Origin.P(unemployment) -3.039*** .052 -3.012*** .052
Geographics
Log(distance) -.563*** .001 -.568*** .001
Same state .501*** .002 .510*** .002
Northeast (reference group)
Destin.South .258*** .003 .253*** .003
Origin.South .047*** .003 .046*** .003
Destin.West .384*** .004 .374*** .004
Origin.West .193*** .004 .184*** .004
Destin.Midwest .203*** .003 .197*** .003
Origin.Midwest .085*** .003 .080*** .003
Baseline
Sum -1.609*** .040 -1.193*** .040
Nonzero -13.966*** .028 -13.917*** .028
BIC 2,221,363 2,210,125
Note: *p < 0.05; **p < 0.01; ***p < 0.001 (two-tailed tests).

Table 3.2: Migrant Population Sizes under Observed and Knockout Scenarios

Total Migrants Increment in Count and Rate

Observed 17,176,675

Remove political segregation 17,965,336 788,661 4.6%

Remove all segmentation 21,741,021 4,564,346 26.6%

To quantify the contribution of segmented effects to immobility, we perform knockout exper-

iments to compute the total migrant population under counterfactual scenarios where these

effects are inoperative, and compare that with the observed scenario. Table 3.2 shows that

when the political segregation effects on migration flows were knocked out, the expected

intercounty migrant population each year would increase by 789 thousand, 4.6% higher than
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the observed. At the absence of all three segmentation patterns, we would expect to observe

26.6% more internal migrants in the United States, that is 4.56 million more people moving

from one county to another each year.11

Results of the VTERGMs and knockout experiments together suggest that segmented im-

mobility serves as a critical and substantial social mechanism behind the immobility of the

contemporary American society. These social mechanisms may be partly driven by economic

forces (although supplementary analysis shows that dual labor and housing markets make

little impact on the described segmentation pattern, see Appendix (3.7.4)); it may also reflect

people’s preference for residing in an environment that is culturally and politically familiar

to them. This tendency not only implies social cleavages along party lines, between urban

and rural lands, and across communities with varying racial demographics; it could also con-

tribute to a growing geographical segmentation along those lines. As has been known since

the classic works of Sakoda and Schelling, even a small preference for homophily can lead

to substantial segregation in residential settlement patterns (Fossett, 2006; Sakoda, 1971;

Schelling, 1969).

3.5.3 Network Dynamics Influencing Migration Flows

The VTERGMs also consider the network patterns of the migration flow system. That all

coefficients are significant in the Network Patterns section in Model 2 of Table 3.1 confirms

that they play a significant role in determining the directions and magnitudes of intercounty

migration flow. In Model 2, the positively significant mutuality term confirms Hypothesis

2.1, that reciprocity is present in the migration-flow networks: a larger flow from county A

11We note that this conclusion depends on the assumption that the context dissimilarity influences people’s
decision of whether to migrate or not, and not merely influencing their choice of destination. We would
thus not expect this model to accurately predict involuntary migration in response to events like political
turmoil or natural disasters, which dominate people’s decision of migrating or not under those circumstances.
However, these seem unlikely to have been significant drivers of internal migration in the U.S. during the
study period. We thank an anonymous reviewer from the American Sociological Review for pointing out this
assumption.
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to B is positively associated with a larger flow from county B to A, holding other effects con-

stant. Joining research on global migration and intercounty migration in U.K. (Ravenstein,

1885; Windzio, 2018), we show that reciprocity is also a network pattern found within U.S.

migration. It is interesting to note that some prior studies not observe reciprocity effects

in their analyses (Desmarais and Cranmer, 2012b; Windzio et al., 2019); this might come

from omission of some regional characteristics that influence the attractiveness of regions to

migrants, or their operation of data transformation for the migrant count variable. Future

research may replicate the analysis of reciprocity using count-data network models under

various social contexts to understand whether reciprocity is a prevalent phenomenon, or can

be suppressed by some social forces.

Model 2 also reveals that a larger migration flow during 2006-2010 is significantly associated

with a larger migration flow during 2011-2015, even after holding all exogenous and en-

dogenous factors constant. This confirms Hypothesis 2.2 regarding the perpetuation of the

migration flow system, showing that migration-facilitating mechanisms offer the system its

own momentum, promoting future migration net of exogenous factors such as demographic

structures of a region (de Haas, 2010).

The significantly negative coefficient of the flow term indicates a lack of waypoint structures

of intercounty migration, refuting Hypothesis 3. The negative waypoint flow effect implies

that relatively little migration is proceeding in the chain-like manner such as stepwise and

relay migration. After holding other factors constant, counties generally have an imbalance

or inequality in the scales of their migration inflows and outflows, either sending many

migrants but receiving few, or receiving many migrants but sending few. This may represent

emergent attractiveness effects, in which in-migration makes a county seem more attractive

to other possible migrants, and out-migration makes a county seem correspondingly less

attractive. It may also reflects unobserved heterogeneity in attractiveness arising from other

factors; the specification of waypoint flows in the model thus controls for this possible source
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of autocorrelation, beyond its substantive interest.

Note that the inequality identified by a lack of waypoint flows in this intercounty migration

network is different from the inequality captured by an abundance of transitive hierarchy in

other cross-national migration networks (e.g., Leal, 2021). The transitive hierarchy requires

many waypoints serving as the “mildly structurally attractive position,” between the highly

and the minimally “structurally attractive positions” (Leal, 2021): 1086). In analogy, that

implies a multi-layer hierarchy of the global system with countries positioned in the core, the

semi-periphery and the periphery (Wallerstein, 2011). On the contrary, in this network with

a lack of waypoint flows, there is an absence of semi-periphery areas serving as waypoints

between the core and the periphery; in comparison with the international migration system,

the U.S. migration system is relatively bipolar, with counties tending to be, ceteris paribus,

either structurally attractive or unattractive, with few in the middle ground.

The model also examines the relationship between internal and international migration. It

shows that larger immigrant inflows from 2011 to 2015 are positively associated with larger

intercounty inflows and outflows in the same period. This finding does not correspond to

either side in the debate about internal migratory response to immigration, which contends

that large immigrant inflows are either associated with small internal migrant inflow and

large outflows, or not associated with internal migrant flows. Rather, the results suggest

that counties with large immigrant inflows are active in both sending and receiving inter-

county migrants. Further, the larger coefficient of destination effect than the origin effect

suggests that, increasing immigrant inflows to a county is associated with larger increase

of internal inflow than internal outflow. In other words, immigration is actually associated

with net population increase from internal migration. Overall, the finding shows a com-

mon mobility pattern for internal and international migration, wherein counties popular

among international immigrants are also popular in receiving and active in sending internal
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migrants.12

3.5.4 Demographic, Economic, and Geographic Determinants of

Migration

Alongside segmented immobility and network patterns, the models also consider other fac-

tors that could influence intercounty migration. For demographic characteristics, Model 2

confirms findings from spatial econometrics (gravity) models that population sizes in both

sending and receiving regions are positively associated with migrant flow (Boyle et al., 2014;

Zipf, 1946, 1949). A 10% increase in destination’s population size is associated with a 3.4%

(i.e., [1.10.351 − 1]) increase in the number of migrants, and a 10% increase in origin’s popu-

lation size is associated with a 3.6% (i.e., [1.10.373 − 1]) increase in the number of migrants,

holding other factors constant. Population density has a significantly negative effect for

both the number of in-migrants and out-migrants, holding population size and other factors

constant. One possible mechanism is that higher population density leads to larger shares

of local connections for their residents (Butts et al., 2012; Hipp et al., 2013; Thomas et al.,

2022), where more job transitions and housing transactions can happen locally thanks to

these connections, reducing migration across county borders.

With respect to demographic composition, larger migration flows are significantly more

likely to be observed between counties with younger populations, in line with the migration

schedule literature finding that younger adults are more mobile than older adults (Raymer

and Rogers, 2007; Rogers and Castro, 1981). The model also shows that counties with

larger shares of Hispanic population tend to send fewer migrants, but counties with larger

12Since this is an aggregate-level analysis of population flows, the finding does not distinguish the char-
acteristics of internal migrants, such as their race and ethnicity or socioeconomic status. Hence, we do not
directly engage with more fine-grained debates about whether immigration deters in-migration and promotes
out-migration of certain population categories as predicted by some literature (Frey, 1995a), which requires
more detailed data.
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shares of Non-Hispanic Black, Non-Hispanic Asian and Other races populations tend to

send more intercounty migrants. Note that these effects do not directly describe the mobil-

ity of each racial/ethnic population, since they are predicting the magnitude of migration

flow for all racial and ethnic populations. Decomposing migration flows into migrants of

each racial/ethnic population is necessary to further reveal the variation of mobility between

people with different racial/ethnic identities.

Economic covariates in Model 2 show that larger migration flows exist between counties with

higher shares of renters and people with college degrees, consistent with previous literature

observing that renters and people with higher education credentials are more mobile than

their counterparts (Frey, 2009). We also see that larger migration flows happen when the

route offers greater declines in housing costs, indicating a tendency of mobility towards

cheaper housing (Plantinga et al., 2013). Holding other factors constant, counties with

lower housing costs have higher out-migration. This might be due to the better financial

conditions renters have in low housing cost areas, enabling them to move and relocate. It is

also compatible with previous findings that lower housing equity is associated with higher

mobility rates (Coulson and Grieco, 2013). For unemployment rates, the model suggests that

the lower the unemployment rate at the origin, and the larger the decline in unemployment

rate from origin to destination, the more intercounty migration. These results are compatible

with the cost-benefit model of the neoclassical economic theory of migration that population

move towards economic opportunities (Todaro, 1976), and that more economic opportunities

financing migration makes migration more likely to happen (Massey and Espinosa, 1997).

The relational approach employed here enables empirical analysis of the aspiration-ability

model (Carling, 2002; Carling and Schewel, 2018), revealing that both the aspiration, as

influenced by the relative economic conditions of origin and destination, and the ability, as

influenced by the economic conditions of the origin, matter to migration behaviors.

In terms of geographical factors, the model suggests a negative association between distance
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and number of migrants flowing between two counties, as the gravity model predicts (Zipf

1946, 1949). A 10% increase in distance between two counties is associated with a 5.3%

(i.e., [1− 1.1−0.568]) decrease in intercounty migration. Administrative boundaries also influ-

ence migration flows; migration flows within the same state are expected to be larger than

those across states, holding other factors constant. Additionally, different U.S. regions have

varying mobilities. The model indicates that compared to the Northeast, every other region

receives and sends more intercounty migrants, ceteris paribus. This suggests the existence

of some latent characteristics inhibiting the mobility of the Northeast, which deserves more

examination in future work.

Lastly, to check the model adequacy, we simulate networks based on Model 2 (the full

model) in Table 1 using MCMC algorithms. We then calculate the total in-migrant and out-

migrant count for each county, and compare the observed distribution with the simulated

distribution. We find that the fitted model recapitulates the county-level migration data

(see Appendix (3.7.4)). We also calculate the Pearson’s correlation between observed and

simulated distributions, which are all above 0.95. We conclude that the model effectively

reproduces the quantitative features of observed migration flow networks.

3.6 Discussion and Conclusion

This chapter offers a comprehensive analysis of the intercounty migration structure encom-

passing not only economic, demographic and geographical factors, but also political, cultural

factors and internal dynamics of the migration system. Network models reveal a pattern of

segmented immobility in America, in which less migration happens between counties with dis-

similar political environments, levels of urbanization, and ethnic/racial compositions. Yet,

we do not observe segmentation between internal migrants and international immigrants;

rather, the model shows that counties active in receiving many international immigrants are
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active in both sending and receiving many internal migrants as well. Our analysis also sug-

gests the significance of internal dynamics of the migration flow system; we observe strong

patterns of reciprocity and perpetuation, along with a suppression of waypoint structure.

These results lend empirical evidence to the systemic theory of migration (Bakewell, 2014;

de Haas, 2010; Mabogunje, 1970; Fawcett, 1989), showing that the population flows assemble

an interdependent network system that carries its own momentum.

This chapter identifies segmentation as a critical mechanism behind population immobility

in the contemporary American society, which could potentially have deterred millions of

people from migrating each year, as suggested by the knockout experiments. This finding

implies people’s tendency of choosing residency in localities that match with their politi-

cal affiliations and sociocultural attributes, potentially leading to geographical segmentation

between people with different political identities (Brown and Enos, 2021) and increasing

the homogeneity of their social relations (DiPrete et al., 2011). Such sorting could possibly

reinforce political polarization (DellaPosta and Macy, 2015), and can also serve as a mech-

anism that maintains and even exacerbates residential segregation along other dimensions

(Fossett, 2006; Sakoda, 1971; Schelling, 1969). While classic analyses of segregation have fo-

cused on local communities within urban areas (Bishop and Cushing, 2009), the effects seen

here could potentially contribute to macro-level segmentation across the whole country (Liu

et al., 2019). From a migration perspective, although internal migration in the U.S. does not

involve border-crossing in international migration or other forms of governmental restrictions

(such as the household registration system in China, hukou), population movement is never

free of constraints. Rather, as our analysis shows, Americans today are separated by the

invisible borders and walls standing along the party lines, at the midway between rural and

urban landscapes, and over the gap across communities with varying racial demographics.

The analytical framework in this chapter provides an example of structural and systemic

analysis of mobility and immobility, broadly defined. The relational approach connects
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the perspectives of emigration and immigration to examine how characteristics of origin

and destination jointly influence migration, which enables revelation of the segmented im-

mobility in the U.S. migration system. The formal specification of the interdependence

between migration flows under the ERGM framework identifies the structural signature of

networks, reflecting the internal dynamics of migration systems. The knockout experiment

offers model-based insights into how the system might react to social change. Lastly, lever-

aging advances in scalable VERGM estimation and simulation allows quantitative analysis

of the magnitude of population flows and their determinants in large social systems. The ap-

plicability of this framework extends beyond the population movement between geographical

areas, encompassing mobility in the occupational system for the study of social stratifica-

tion and mobility (Cheng and Park, 2020), the exchange of personnel between organizations

(Sparrowe and Liden, 1997), and the migration of scholars between institutions and research

domains in the sociology of knowledge (Burris, 2004; Gondal, 2018; McMahan and McFar-

land, 2021).

While our study enables a much richer examination of the mechanisms driving or inhibit-

ing internal migration at a larger scale than what has been possible in extant literature,

it is not without its own limitations. First, as a macrosociological study about the “func-

tioning of a social system” (Coleman, 1986): 1312), this chapter informs an aggregate-level

social phenomenon, i.e., population immobility. While analysis of the migration flow net-

work facilitates a systemic understanding of migration and its relation to segmentation from

a holistic viewpoint, it does not directly describe the patterns of individual migration be-

havior. Although we can test for the structural signatures of such micro-level processes,

unpacking those fine details requires information on decision making and behavior patterns

at the individual level. For example, distinguishing stepwise migration and relay migration

requires data about the migration trajectories of individual migrants. Studies like this are

hence complementary to micro-level analyses (both quantitative and qualitative) that could

shed further light on processes at the individual and household levels (e.g., DeLuca et al.,
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2019; Fitchen, 1994; Lichter et al., 2022; Quillian, 2015). Research that aims to bridge indi-

vidual behaviors and aggregate social outcomes are deemed to be fruitful, which is still an

open problem in sociology, but a promising program to pursue (Cetina and Cicourel, 2014;

Coleman, 1986).

Second, since the American Community Survey did not start collecting data until 2005, our

analysis only includes migration-flow networks for two time points (2006-2010, 2011-2015).

This data limitation prevents us from conducting dynamic analysis about changes in inter-

county migration patterns throughout the past decades, and therefore, our findings do not

speak directly to the reasons behind the long-term decline of migration. Yet, our identifi-

cation of drivers and especially inhibitors behind migration flows could serve as a starting

point for this inquiry. For example, since political division across geographical areas deters

migration, it may be worthwhile for future research to examine how the geography of politics

and preference about political homophily have changed over time, and how the evolution of

political landscapes and polarization relates to the long-term decline of migration. Studies

of the changing patterns of immigrant inflows and the relationship between internal and

international migration flows can illuminate the change of population dynamics over time.

Integration of knockout experiments via network simulation and historical data about polit-

ical climate and migration/immigration flows might be one approach to advance the inquiry

into the social forces behind the growing immobility in the United States. In addition, future

research might also benefit from exploring the changing balance of forces of the competing

internal dynamics of the migration system over the past decades. Given that the VTERGM

framework we employ here is capable of handling networks with multiple time steps, our

analytical framework could be employed for dynamic analysis once migration-flow data for

more time points becomes available.

In like vein, the time period we analyzed covers the Great Recession (Grusky et al., 2011).

Despite our controls of various economic factors, it is possible that some aspects of our
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findings may be particular to this period, as economic shocks can influence migration patterns

(Monras, 2018; cf. Molloy et al., 2011). Specifically, since economic recession can suppress

migration, it is possible that fewer waypoint flows are consequence of the period effect that

temporarily suppresses stepwise migration. Nevertheless, the formal expressions of relational

linkages and network patterns, and the modeling of migration-flow networks using ERGMs

are generally applicable to study migration flows of different periods and regions at different

scales. Future research may consider replicate and compare analysis of relational and network

patterns of migration flows in different time and space using similar frameworks; they will

reveal what patterns are context-specific in certain spatial-temporal settings, and which are

generalizable to migration in other societies.

Furthermore, another fruitful direction for future work is to complicate the analysis of in-

ternal dynamics of migration system by examining higher-order dependence structure of

(valued) networks. One example is network transitivity, a structural feature associated with

hierarchy within the migration system (Leal, 2021). We do not observe a strong transitive hi-

erarchical system in the U.S. internal migration system, as indicated by the lack of waypoint

flows, ceteris paribus.13 Nevertheless, transitivity is in general a theoretically-interesting

dependence structure for study of mobility networks, and should ideally be examined in

valued networks so to consider the quantitative feature of migration flows. This requires

theoretical and methodological developments in formal specification of dependence terms in

the valued network setting, e.g., clarifying the properties of different definitions of transitiv-

ity and their relationship to network degeneracy (Krivitsky, 2012). It also demands further

advancements in computational methods for valued network models to allow for evaluation

13As discussed in Hypotheses, both waypoint flow and transitivity are triadic features that concern edge
structure in an (i, j, k) triple; waypoint flow captures the“backbone” of flow within the triple (i → j → k),
while transitive triads involve the co-presence of waypoint flow and a direct i → k flow. The negative effect
for waypoint flow in our models means that triples with strong i → j → k paths are suppressed, which also
necessarily suppresses transitive triples net of other effects in the model. Interestingly, while the waypoint
flow (and its binary-network version, two-paths) is a more basic lower-level dependence structure, which
carries motivations from social behavior patterns such as those detailed in this chapter, it receives relatively
less examination in the network literature. We hope this chapter helps draw more attention to waypoint
flow and other triadic network structures of potential substantive importance for flow networks.
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of more complicated dependence structures in large networks.

Last but not least, as population immobility has become a long-term phenomenon in the

U.S., it poses important questions about its broader social implications. Future research

could explore the relationship between geographical mobility and social mobility, and how

the divergent geographical mobility patterns across various social groups may influence their

life chances and well being. A lack of population exchange, especially between localities with

different cultural and political climates, could have ramifications on the social divisions of the

country. Two decades ago, Putnam’s (2000 Bowling Alone embarked the great debates about

the “collapse of American communities,” marked by the detachment and disengagement of

individuals from their communities. Observing the population segmentation and immobility,

it raises the question whether we are witnessing the “tribalization of American communities,”

where local communities diverge in their demographics, culture, and policy, with limited

interaction, communication, and cooperation among people and organizations from dissimilar

local communities.

In conclusion, grappling with the mobility bias in migration studies, this chapter utilizes

migration systems theory and network methods to study the mechanisms behind population

immobility in the United States. We identify segmentation as a significant feature of the

American migration landscape, which has potentially immobilized millions of intercounty

migration each year in the 2010s. The chapter demonstrates how network and simulation

methods can contribute to a systemic understanding of mobility and population dynamics.

We also call for more theoretical and empirical research about the interrelationships between

migration, segregation, and polarization, and how they shape the foundation of social lives

in America and beyond.
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3.7 Appendix

3.7.1 Descriptive Statistics

Table 3.A1: Descriptive Statistics of Intercounty Migration Flow Networks

2011-2015 2006-2010
Vertices 3,142 3,142
Edges 274,197 241,526
Density 0.028 0.024
Mean degree1 175 154
Total migrants 17,176,675 17,248,855
Mean migrants per county2 10,934 10,980
Mean migrants per flow 63 71

Note: 1. The reported degree is the total degree (Freeman degree), which equals the summa-
tion of in and out degree (Freeman 1978). For a closed network system, the mean in-degree
equals to the mean out-degree. 2. Similarly, the mean migrant per county is the summation
of mean in-migrants and mean out-migrants per county (and mean in-migrants equals to
mean out-migrants).
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Table 3.A2: Descriptive Statistics of Vertex/County Covariates

Mean Str Dev Source
Networks
Immigrant inflow 593.9 2744.3 ACS2011-2015
Politics
Democrat poll (%) 41.6 13.9 Presidential Election Returns 2008
Demographics
Population size 98,262.0 312,946.7 Census2010
Population density (/km2) 100.0 665.8 Census2010
Potential Support Ratio (PSR) 4.4 1.5 Census2010
White (%) 78.3 19.9 Census2010
Black (%) 8.7 14.4 Census2010
Hispanic (%) 8.3 13.2 Census2010
Asian (%) 1.1 2.5 Census2010
Other race (%) 3.5 8.3 Census2010
Economics
Renter (%) 27.8 7.7 Census2010
Higher education (%) 19.0 8.7 ACS2006-2010
Unemployment (%) 7.5 3.4 ACS2006-2010
Housing costs ($/month) 707.5 272.3 ACS2006-2010
Geographics
Rural population (%) 58.7 31.5 Census 2010
Northeast (%) 6.8 U.S. Census Bureau
South (%) 45.3 U.S. Census Bureau
West (%) 14.3 U.S. Census Bureau
Midwest (%) 33.6 U.S. Census Bureau

Table 3.A3: Descriptive Statistics of Dyadic/County-Pair Covariates

Mean Str Dev Source
Dissimilarity
Political dissimilarity (%) 15.6 11.8 Presidential Election Returns 2008
Rural dissimilarity (%) 36.1 26.1 Census2010
Racial dissimilarity (%) 24.8 20.0 Census2010
Geographics
Distance (km) 1,439.5 961.3 Census2010
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3.7.2 Model Setup and Computation

Model Setup

The exponential-family random graph models, formally speaking, specify the probability

of observing a specific network configuration, out of all possible configurations, given the

vertex/node set and covariates (Hunter et al. 2008b). In our context, this constitutes the

probability of obtaining the observed migration flow structure among the 3,142 U.S. counties,

versus the other structures that could have been observed. Formally, our model family is

defined by

Pr(Y t = yt) =
h(yt) exp

(
θTg

(
x, yt, yt−k

t−1

))
κ(θ)

(3.1)

where Y t is the valued network structure at time t (with observed value yt), g(x, yt, yt−k
t−1)

is a vector of sufficient statistics, and θ is a vector of coefficients. The model statistics

are functions of (valued) graph structure, together with covariates (x) and past history

(represented by the lagged variable yt−k
t−1 = (yt−1, . . . , yt−k)). The exogenous covariates are

characteristics not determined by network configurations, including demographic, economic,

political, and geographical attributes of individual counties or county pairs. g may also

include statistics relating to endogenous structure, such as reciprocity and the waypoint

structure. The use of lagged network predictors allows us to incorporate predictors related

to network dynamics (Hanneke et al. 2010) in analogy to a lagged multivariate regression

model.

In equation 3.1, κ(θ) is the normalizing factor for the exponential family model, the sum-

mation of the quantity of the numerator for all possible network configurations:

κ(θ) =
∑
y′∈Y

h(y′) exp(θTg(x, y′, yt−k
t−1)
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where Y is the set of all possible network configurations. The reference measure, h(y), is a

function that determines the baseline distribution to which the model converges as θ → 0.

This is particularly important for valued ERGMs (Krivitsky 2012), as different choices of h

can lead to very different distributions of edge values (just as different choices of reference

measures for one-dimensional exponential families differentiate e.g. the binomial, geometric,

and Poisson random variables in generalized linear models). Here, we use the form

h(y) = 1/
∏

(i,j)∈Y

yi,j!

where Y is the set of all dyads, and yi,j is the value of the edge from county i to j. This leads

to a model where edge values are Poisson-like in the absence of dependence effects; just as a

conventional ERGM can be viewed as a network logistic regression extended to incorporate

dependence, this family can be viewed as a network Poisson regression with dependence

among the edge variables. (Note, however, that the addition of dependence terms renders

the model non-Poissonian, and a model of this form can accommodate e.g., over-dispersion

and/or zero-inflation by appropriate choice of terms, as is done here.)

Computation

Estimation for ERGMs can be computationally demanding, since the normalizing factor κ re-

quired for likelihood computation is too expensive to compute directly. This is especially the

case for large and high-variance valued networks such as intercounty migration-flow networks,

where the number of edge variables is extremely large (nearly ten million), and the edge value

ranges from zero to tens of thousands. Researchers typically use Markov Chain Maximum

Likelihood Estimation (MCMLE) for ERGM parameter estimation when modeling binary

networks, which uses a Markov Chain Monte Carlo (MCMC) algorithm to produce impor-

tance samples of network structures that are subsequently used for approximate maximum
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likelihood inference (Geyer and Thompson 1992; Snijders 2002). Unfortunately, current

MCMLE implementations for valued networks (including both Geyer-Thompson-Hummel

and stochastic approximation methods) do not scale well enough to be feasible for networks

studied here, with such large network size and edge variance, as the space of potential random

networks is too large for the MCMC sampler to converge in feasible time. Instead, we employ

an efficient parallelizable subsampled regularized Maximum Pseudo-Likelihood Estimation

(Huang and Butts 2024b). Maximum Pseudo-Likelihood Estimation (MPLE) is a classical

computational method for ERGMs (Besag 1974; Strauss and Ikeda 1990; Wasserman and

Pattison 1996), which continues to be employed as an efficient strategy for computationally

intensive ERGMs (An 2016; Schmid and Desmarais 2017). MPLE approximates the network

likelihood function as the product of the conditional probability functions of each edge; this

approximation becomes exact in the limit of weak edgewise dependence. This allows parallel

computing and subsampling of edges to reduce computation time. While MPLE performance

is not always equal to MCMLE performance for binary ERGMs, simulation studies find that

for count-valued ERGMs with large edge variance, MPLE can match or even outperform

MCMLE with reliable and nearly unbiased estimates, while its computational cost is sub-

stantially smaller (Huang and Butts 2024b). We further incorporate an L2 (ridge) regularizer

to our likelihood function, making it Regularized MPLE, following the suggestion of using

regularization to improve MPLE performance in the literature (van Duijn et al. 2009).

Since calculating the likelihood function of valued TERGMs based on all 9.87 million dyads

is computationally infeasible, we use the subsampling implementation of MPLE to approx-

imate the likelihood function using one million dyads. The sampled dyads were selected

using Tie-No-Tie (TNT) sampling, which puts equal weight on selecting zero-valued dyads

and nonzero-valued dyads. TNT is an efficient sampling method for ERGMs when the

network density is low, as in the present case where the majority of county pairs have no

migrants. This results in including all the 274 thousand directed county pairs with at least

one migrant, and randomly sampling the other 726 thousand directed county pairs without
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any migrant; this stratification is then corrected for using inverse probability weighting in

the likelihood calculation.14 L2 regularization (parameter=0.01) was incorporated in the

likelihood function to avoid the convex hull problem and improve estimation performance

(van Duijn et al. 2009).

14The standard errors calculated from the sampling method are expected to be slightly larger than using the
full network data (Huang and Butts 2024b), as the former uses fewer observations, making our inference more
conservative. Since our main findings are statistically significant at the level of 0.001 under a conservative
protocol, we expect the effects to be significant if the computational constraints had allowed us to use the
full network for calculation.
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3.7.3 Notes about In Silico Experiments

In silico experiments are thought experiments demonstrated by computer simulation. Some-

times based on an empirically calibrated model, the experiment constructs counterfactual

scenarios that are not observable. This offers great flexibility for researchers to posit various

scenarios and gain insights. On the other hands, it requires users to ponder the study design

and the assumptions made.

There are different ways of probing the model via in silico experiments. This chapter fo-

cuses on the knockout experiment, which examines the scenario where certain effects were

eliminated. Adopting the terminology from Butts (2023), one can also knock up (enhance)

certain effects or knock down (reduce, but not eliminate) them. One may also knock in

effects by including effects not described in the model. Moreover, one can perform context-

shifting experiments, altering the covariate value to examine counterfactual social contexts.

As we will discuss below, although knockout and context-shifting experiments answer distinct

questions, the former has some intrinsic connection to the latter.

Focusing on the knockout experiment, it is critical to consider how the model specifies

the baseline scenario. When knocking out an effect, we assume the system returns to its

baseline state, rather than the observed one shaped by the effect of interest. The baseline

state can be clear and obvious in some cases; for instance, when knocking out an intervention

(e.g., vaccination, financial aid), we return to a state where this intervention does not exist.

However, the baseline state can sometimes be implicit. Taking the example in this chapter

about the effect of political climate on migration rate, what is the baseline migration rate

when political climate no longer matters? According to our model, political dissimilarity

between counties has a negative effect on their migration rate: E(Yij) = f−1(β0+β1 ·Dij).
15

15For simplicity, we focus on a specific migrant count from county i to j, Yij , and use a generalized linear
model description, with f(·) serving as the link function, and E(·) as expectation. Dij = |Xi − Xj | is
the dissimilarity in political climate X, and β1 is its association with migrant count.β0 is intercept, or for
multi-covariate model is the summation of the intercept and the rest of model parameters that will be held

104



We knock out this effect by assuming no influence from political dissimilarity, setting the

coefficient to zero: β1
.
= 0. This gives us E(Y a

ij) = f−1(β0) = E(Yij|Dij = 0), which is

equivalent to the scenario where the political dissimilarity between these two counties is

zero. So this model specifies a baseline state where no political dissimilarity occurs. In

other words, the model believes that when political climate does not influence migration, it

is as if there exists no political dissimilarity; the observed political dissimilarity suppresses

migration, so when the suppressive effect is knocked out, migration rate is elevated.

Alternatively, one can specify an opposite model believing that when political climate does

not influence migration, it is as if there exists no political similarity (Sij
.
= 100% − Dij =

0) between two counties; that is to have one county with 0% Democratic voter and the

other with 100%. Then, the observed political similarity boosts the migration rate, and

knocking out this boosting effect reduces migration rate. Formally speaking, the model is

E(Yij)) = f−1(β′
0 + β′

1 · Sij), and the knockout scenario is E(Y b
ij) = f−1(β′

0) = E(Yij|Sij =

0) = E(Yij|Dij = 100%). The two models offer distinct knockout results because they have

distinct assumptions about the baseline scenarios. These assumptions are well defined in the

model, though one should examine their sensibility before performing in silico experiments.

Exploiting the idea that knocking out an effect means returning the system to the baseline

state specified by the model, one can also interpret the knockout experiment as a result

of altering the covariate value. Mathematically, since the effect is expressed as β1 · Dij,

it is equivalent to eliminate the effect by having β1
.
= 0 or by having Dij

.
= 0. In the

previous example, knocking out dissimilarity effect generates a counterfactual migration

system equivalent to the one generated by assuming no dissimilarity exists, a world where

all U.S. counties have the same political climate. So the knockout experiment performed

in this chapter simultaneously answer two distinct questions: 1) what is the migration rate

when political dissimilarity does not influence migration, and 2) what is the migration rate

constant in experiment βT g).
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when no political dissimilarity exist among counties.

There are two caveats when performing and interpreting in silico experiments by altering

covariate values. First, altering covariate values and knocking out effects (coefficients) are

not always equivalent. The example in the next chapter demonstrates this point: when one

covariate (e.g., housing costs) influence the outcome (e.g., migration rates) in multiple ways

(as expressed by multiple terms in the model), having one mechanism turned off by setting

its coefficient to zero is not equal to altering its covariate, because the latter will impact

the outcome via other specified mechanisms. Second, it is also necessary to consider the

sensibility of the counterfactual world specified by the altered covariate. For instance, in the

alternative similarity model specified above, it is problematic to assume a world where all

pairs of counties having 100% dissimilarity.16

It is also worth noting that, although we use reverse coding (similarity v.s. dissimilarity) as a

way of demonstrating different possible baseline assumptions, what really matters here is not

the choice of coding, but more fundamentally the counterfactual scenario one is interested in.

For instance, knocking out dissimilarity (Dij
.
= 0) is equivalent to knocking up similarity to

its maximum (Sij
.
= 100%); we can answer the same question under different coding choices.

Lastly, while in this chapter the outcome of interest of the experiment coincides with the

outcome of interest of the empirically calibrated model, namely the migrant count, this need

not to be the case. Researchers can simulate counterfactual scenarios and examine outcomes

different from that of the model. As demonstrated in the next chapter, for example, we can

use a similar model to simulate and examine the asymmetry in migration flows in revelation

of relative migration gain and loss among U.S. states. The reason of performing simulation is

that the macro-level outcome is not always a simple summation of its micro-level processes

in complex systems, such as networks (see also Duxbury, 2023); model-based simulation

16This is because that will require all dyads to have one node’s covariate value=0, the other=1. In that
case, for a closed system, we will always find dyads connecting two nodes with both covariate values=0 or
=1.
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takes into account the spillover of local effects and other types of endogenous processes

exemplified by the internal dynamics of migration systems discussed in this chapter. As long

as the outcome of interest is reasonably calibrated by the empirical model (i.e., the model

can adequately captures this feature), it is suitable to serve as a target of examination.
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3.7.4 Supplementary Analysis

This section considers a potential confounding social process that could be correlated with

our main findings.17 Since people with and without college degrees may respond to different

labor market segments under the dual labor market theory (Piore 2018), it is possible that

college graduates are more likely to migrate to another place with concentrated college

graduates, where there tends to be more job opportunities that they fit into; the same logic

holds for people without college degrees. This means that larger migration can occur between

counties with similar proportion of college graduates, because of the match in labor market

supply and demand. Similarly, we may observe larger migration flow between counties with

similar proportion of renters. The proportions of college graduates and renters of a county

correlate with its political environment, urbanization level, and racial compositions, so it

is desirable to examine how the hypothesized processes may be associated with our major

findings. We add covariates of the absolute differences in college graduate share and renter

share in Model 3 of Table S4, displayed alongside with the model in the main text (Model

2). The results show that in Model 3, the coefficients representing segmented immobility

patterns all remain statistically significant, with little change in its scale for the political

covariate, a modest decrease for the urbanization covariate, and a modest increase for the

racial composition covariate. The analysis shows that this social process does not confound

our main findings.

Table 3.A4: Valued TERGMs for Intercounty Migration Flows, 2011-2015

Model 2 Model 3
Estimate SE Estimate SE

Segmented Immobility
Political dissimilarity -.256*** .007 -.257*** .008
Rural dissimilarity -.399*** .004 -.298*** .004
Racial dissimilarity -.217*** .006 -.246*** .006
Network Patterns

17We thank an anonymous reviewer from the American Sociological Review for suggesting this possible
social process.
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Table 3.A4: (continued) Valued TERGMs for Intercounty Migration Flows, 2011-2015

Model 2 Model 3
Estimate SE Estimate SE

Reciprocity .045*** .002 .036*** .002
Waypoint flow -.015*** .001 -.016*** .001
Log(past migrant flow) .300*** <.001 .296*** <.001
Destin.log(immigrant inflow) .056*** .001 .056*** .001
Origin.log(immigrant inflow) .035*** .001 .034*** .001
Demographics
Destin.log(population size) .351*** .002 .355*** .002
Origin.log(population size) .373*** .002 .376*** .002
Destin.log(population density) -.083*** .001 -.086*** .001
Origin.log(population density) -.069*** .001 -.073*** .001
Destin.PSR .017*** .001 .020*** .001
Origin.PSR .013*** .001 .016*** .001
Origin.P(White) (reference group)
Origin.P(Hispanic) -.064*** .007 -.029*** .007
Origin.P(Black) .117*** .008 .106*** .008
Origin.P(Asian) .467*** .02 .592*** .02
Origin.P(other race) .993*** .015 .972*** .016
Economics
Destin.P(renter) .348*** .011 .318*** .012
Origin.P(renter) .476*** .012 .409*** .012
Dissimilarity.P(renter) .309*** .010
Destin.P(higher education) .359*** .011 .624*** .012
Origin.P(higher education) .153*** .012 .440*** .013
Dissimilarity.P(higher education) -1.051*** .009
Difference.P(unemployment) -1.3*** .040 -.969*** .040
Origin.P(unemployment) -3.012*** .052 -2.297*** .052
Geographics
Log(distance) -.153*** .004 -.171*** .004
Same state -.277*** .005 -.327*** .005
Northeast (reference group)
Destin.South -.568*** .001 -.572*** .001
Origin.South .510*** .002 .518*** .002
Destin.West .253*** .003 .255*** .003
Origin.West .046*** .003 .053*** .003
Destin.Midwest .374*** .004 .379*** .004
Origin.Midwest .184*** .004 .191*** .004
Baseline
Sum .197*** .003 .197*** .003
Nonzero .080*** .003 .086*** .003
BIC 2,210,125 2,196,016
Note: *p < 0.05; **p < 0.01; ***p < 0.001 (two-tailed tests).
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3.7.5 Model-Adequacy Checks

We develop a procedure to evaluate the model adequacy for VERGMs emulating that for

binary ERGMs (Hunter et al. 2008a). Based on Model 2 in Table 1 (the full model), we

simulate 100 networks using MCMC algorithms using ergm.count package in R, and calcu-

late the distributions of in- and out-volumes of edge values, i.e. the total in-migrants and

out-migrants, for each node (county). We plot the distributions of in- and out-volumes by

county against their observed statistics, and calculate the correlations between them. An

adequate model specification is expected to reproduce the observed statistics with distribu-

tion centered on and close to observed values, and have high correlations between observed

and simulated statistics.

Figure 3.A1 and 3.A2 visualize the simulated distributions against the observed statistics of

in- and out-migrants, respectively. To make the comparison more viewable than stacking

3,142 counties in one plot, we sample four states from the West, the Midwest, the Northeast,

and the South; the y-axis is re-scaled by taking logarithm considering their high skewness.

Noticeably, the simulated interval of each county looks very narrow compared to the full range

of in- and out-migrant count in each state, especially compared to the common goodness-

of-fit plots for binary ERGMs. This indicates that the support of the valued ERGMs is

tremendously huge, suggesting that reproducing the migrant distribution is a difficult task.

The task is also more difficult because we compare simulated distribution with observed

statistics for each county, rather than comparing network-level statistics for an unlabelled

graph, which does not consider whether the simulated statistics match the observed at the

node level. Nevertheless, the figures show that the simulated distribution is centered around

and close to the observed statistics, and the Pearson’s Correlations are all above 95%. We

conclude that the model effectively reproduces the migrant distribution across counties, and

accounts for its variation.
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Figure 3.A1: Model-adequacy plots (involume)

Note: The solid dark lines indicates the observed statistics, the dotted dark lines is the
median of simulated distributions, grey lines are the min and max values of simulated dis-
tributions and the grey polygon is the 95% simulation interval of the distribution.

111



Utah

Pearson's Correlation= 0.98
Rank

O
ut
−m

ig
ra

nt
s

1 5 10 15 20 25 30

100

1,000

20,000

Minnesota

Pearson's Correlation= 0.97
Rank

O
ut
−m

ig
ra

nt
s

1 20 40 60 80

100

1,000

5,000

50,000

New York

Pearson's Correlation= 0.99
Rank

O
ut
−m

ig
ra

nt
s

1 10 20 30 40 50 60

150

1,000

10,000

75,000

Louisiana

Pearson's Correlation= 0.96
Rank

O
ut
−m

ig
ra

nt
s

1 10 20 30 40 50 60

1,000

5,000

20,000

Figure 3.A2: Model-adequacy plots (outvolume)
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Chapter 4

California Exodus? A Network Model

of Population Redistribution in the

United States

4.1 Introduction

The “California Exodus” - a putative phenomenon in which large numbers of individuals are

allegedly leaving California and migrating to other U.S. states, has become an increasingly

common topic in public discourse surrounding migration and policy in the United States (e.g.

Bahnsen, 2021; Beam, 2021; Dorsey, 2021; Hiltzik, 2020; Song, 2021). Popularized within

conservative media circles (Bahnsen, 2021; Dorsey, 2021), the notion of a “California Exodus”

serves as a focal point for a political narrative in which the state of California exemplifies

the failure of the ruling Democratic party governance, and its associated social and policy

regimes. Despite this politicized narrative, the net loss of California population via domestic

migration is a long-term phenomenon, well-documented in demographic data. Nor is this
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a recent development: contrary to popular impression, California’s net migration rate has

been negative since 1989 (Hiltzik, 2020). The migration pattern of America’s most populous

state illuminates important trends of population redistribution in the United States, and

could potentially shift the country’s economic and political landscape. Historically, internal

migration has played a key role in shaping the spatial distribution of population, with the

most well-known and general example being urbanization (Ravenstein, 1885). In the U.S.,

internal migration has also played a critical role in its demographic change, including the

great migration of African Americans from the South to the North (Tolnay, 2003), the

westward shift of population towards the Pacific coast (Plane, 1999), and the ex-urbanization

process (Plane et al., 2005).

Yet, compared to its intense treatment in popular discourse, the California Exodus as a real

and persistent (if less dramatic) phenomenon receives scant attention in scientific research

(c.f. Henrie and Plane, 2008). Arguably, this may be in part due to the difficulty of modeling

the complexity of internal migration systems, which requires incorporating a wide range of

factors influencing migration. Moreover, as migration systems theory contends (Bakewell,

2014; de Haas, 2010; Mabogunje, 1970), the migration system has endogenous feedback mech-

anisms, where migration flows are interdependent to each other. This further complicates

mathematical models of migration flows - and their calibration to empirical data - requiring

them to account for the autocorrelation structure of the system.

In this chapter, we use recently developed generative network models of the internal migra-

tion system in the U.S. to help unravel the mechanisms sustaining the California Exodus,

with an eye to identifying factors that may or may not contribute to this feature of the

current U.S. migration system. We model the U.S. internal migration system as a network

comprising counties (nodes/vertices) and migration flows between each directed pairs of

counties (edges). Compared to the conventional approach that considers places as analytical

units, the relational approach takes migration flows between places as units of analysis, which
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allows us to capture how the characteristics of origin and destination jointly influence their

migration flows, such as the difference in political climates and costs of living. The systemic

view also considers the endogenous feedback mechanism of the migration system (de Haas,

2010), reflected by the interdependence among migration flows, which gives the system its

own momentum, strengthening or ameliorating the exogenous effects from the economic or

political landscapes. This is achieved by specifying the network dependence structure, which

accounts for the autocorrelation pattern among migration flows. The network models thus

can reveal how demographic, economic, political, and geographical characteristics, together

with the endogenous feedback mechanisms, shape the direction and magnitude of internal

migration flows in the United States.

While computational and statistical constraints have traditionally limited network models

of migration to dichotomous or coarsened representations of migration flows, we use re-

cent innovations in valued exponential-family random graph modeling (Valued ERGMs or

VERGMs) to estimate a fully quantitative model of interdependent U.S. migration flows at

the county level. Motivated by the popular discourse surrounding the California Exodus and

existing theoretical and empirical research regarding U.S. internal migration, we focus on

four potential social forces that contribute to population redistribution. They include costs

of living, political environments, levels of urbanization, and racial demographics.

This relational view offers new opportunities for insight, but also poses challenges. For in-

stance, interpretation of the relationship between nodal or dyadic attributes’ impacts on

migration (i.e., covariate effects) can be complex, as such relationships are subject to both

the origin’s and the destination’s attribute values, and they can take various functional

forms. Further, the superposition of forms from multiple effects can make the model difficult

to interpret. Such complexities reflect the inherent challenges of capturing an interactive

system in quantitative detail, and are thus not unique to migration systems, but are partic-

ularly acute when considering networks with valued edges. We here propose a visualization
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protocol that showcases how multiple mechanisms involving origin and destination attributes

combine to influence the expected number of migrants between origin and destination re-

gions. We utilize this approach to display how the political, racial, rurality, and housing

covariates influence the predicted migration flow intensity across different scenarios, offering

a quantitative exploration the impact of dyadic factors on migration.

Another advantage of the VERGM approach is that it offers generative models, which can

themselves be used to probe the effects of inferred or hypothetical mechanisms beyond the

dyadic level. Here, we use our empirically-calibrated migration model to perform in-silico

knockout experiments to investigate how various social, economic, and demographic mecha-

nisms contribute to observed patterns of population redistribution - including, specifically,

maintenance of the California Exodus. These knockout experiments simulate migration flow

networks under counterfactual scenarios where certain social effects are inoperative (Huang

and Butts, 2023). Comparing the extent of California’s relative net migration loss in the

knockout scenarios with that in the observed scenario offers quantitative insights about the

impacts of social effects on the pattern of population redistribution.

The remainder of the chapter proceeds as follows. We begin in Section 4.2 with a brief review

of different approaches to modeling migration systems, and the extant empirical research

that motivates our hypotheses regarding population redistribution in the U.S. Section 4.3

describes the data and variables we use, the model setup including the functional form speci-

fication, derivation of the visualization protocol, and the knockout experiment procedure. In

Section 4.4, we first offer an overview of the population redistribution pattern in the United

States, and the pattern of net migration exchange between U.S. states. We then report our

findings regarding the drivers of migration patterns from the ERGM analysis, and show how

contributing effects can be visualized. The section concludes with results from knockout

experiments. The last section summarizes our empirical findings, our contributions to the

mathematical modeling of complex social systems, and some directions for future work.
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4.2 Background

4.2.1 Modeling Migration Systems

Migration flows among geographical areas form a complex system, a perspective that has

received extensive theoretical discussion in migration studies, in the school of Migration Sys-

tems Theory (MST, Bakewell et al., 2016a; DeWaard and Ha, 2019; Fawcett, 1989; Kritz

et al., 1992; Mabogunje, 1970). MST introduces two insights regarding migration. First, a

migration system consists of flows of people, goods, information, cultures, and other insti-

tutions that interact with each other (Bakewell, 2014). This suggests that understanding

migration processes demands a comprehensive survey of various factors and mechanisms,

incorporating economic, political, geographical, and demographic analyses. Second, MST

emphasizes the interdependent feature of migration systems, reflected in their conceptual-

ization of “internal dynamics” (de Haas, 2010) or “feedback mechanisms” (Bakewell, 2014).

The central idea is that there exist endogenous processes, where change in one part of the

system can diffuse and alter other parts, creating a systemic momentum. This means that

migration flows are correlated to each other. For instance, the migration flow from Seattle to

Chicago is associated with the reverse flow from Chicago to Seattle, partly because migrants

can carry social connections and useful information from their origin to their destination,

motivating and facilitating migration in the reverse direction. Such interdependence among

migration flows requires mathematical models of migration to account for the autocorrelation

among their observations, and ideally, to also formally and explicitly describe the structure

of the dependence.

Researchers have developed various methods to model migration across disciplines including

econometrics, geography, statistics, and sociology. A convenient and widely used approach

is to treat migration as a feature of areal units, analyzing how the characteristics of a place

are associated with marginal migration rates into and out of it (e.g., Partridge et al., 2012;
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Treyz et al., 1993). This approach has offered many useful insights and serves as a powerful

framework for building predictive models of demographic change (Azose and Raftery, 2015,

2018). Methodologically, techniques to account for the autocorrelation in this data structure

(areal/lattice data) are well developed in spatial statistics (Banerjee et al., 2014). However,

migration is by nature a relational process between two places: origin and destination. The

above approach by construction marginalizes migration either from an origin perspective or

a destination perspective (or condenses both), obscuring how origin and destinations jointly

and interactively shape the migration flows between them; such interactions are known

to be of considerable importance, as articulated in the classical “push-pull” factor model

(Lee, 1966) of migration. From a network analytic perspective, such models are equivalent

to modeling the migration network purely in terms of expected outdegree and indegree

effects (sometimes called expansiveness and popularity in the ERGM literature (Holland and

Leinhardt, 1981)). Although simple, such models are very constraining - they are essentially

similar to a single-dimensional singular value decomposition (SVD) approximation of the

adjacency matrix - and are limited in their ability to represent complex structure.

A second model family is the so-called “gravity model” (widely used in spatial econometrics),

whose unit of analysis is no longer a geographical area but flow within an ordered pair of

geographical areas (i.e., an edge variable). The original idea of this model family is that

the extent of migration flow from origin i to destination j (Mij) is positively associated

with population sizes in origin and destination (Pi, Pj) and negatively associated with the

distance between (Dij), with the decay usually posited to follow a power law (Zipf, 1946),

thus superficially resembling gravitational attraction.1 Formally, this family is written as

Mij ≈ C ·
Pα
i · P β

j

Dγ
ij

,

where C, α, β, γ are positive parameters. Although nonlinear on its original scale, the power

1This formulation is also used to describe other types of spatial interactions such as international trade;
see e.g. the review of Anderson (2011).
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law model is intrinsically linear, as shown via the log space representation

logMij = µ+ α log(Pi) + β log(Pj)− γ log(Dij) + ϵij.

where µ = logC and log error ϵij are unknowns. Factors other than distance and population

size may be incorporated by choosing a suitable regression form for µ. The linear form has

facilitated further elaboration, e.g. using a GLM structure to capture discrete outcomes

(e.g., Biagi et al., 2011). Although the gravity model does not provide a means of specifying

dependence among flows, some extensions in this direction have been proposed (see reviews

by Patuelli, 2016; Poot et al., 2016).

The gravity models have always been in close relationship with network models, with abun-

dant shared knowledge and mutual development. Fundamentally, gravity models constitute a

particular class of network regression models (albeit not necessarily OLS network regression,

e.g. Krackhardt (1988)), a very flexible and successful family. Substantively, the functional

form of the gravity model arises naturally as a model for tie (or interaction) volumes between

regions under power-law spatial interaction functions, a widely observed functional form for

interaction probabilities at the individual level (Butts and Acton, 2011); this, along with

the strongly predictive power of distance itself for social networks (Butts, 2003), has been

argued to provide a mechanistic explanation for why aggregate interactions are often well-

approximated by gravity models (Almquist and Butts, 2015). The identification of gravity

models with network regression also points to their limitations: while very flexible in specify-

ing relationships between covariates and tie values, network regression models do not specify

dependence among edge variables. While workarounds such as quadratic assignment pro-

cedure (QAP) tests (Dekker et al., 2007; Krackhardt, 1988) can provide statistical answers

that are robust to dependence effects, parameterization and/or generation of networks with

dependence requires other approaches.
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The specification of models for networks with complex dependence among edge variables

is a major concern of work on exponential-family random graph models, which we discuss

in detail in Section 4.3.2. ERGMs provide a rich language for specifying interdependencies

among edges, as well as associated statistical theory and methodology for inferring such

dependencies from observed network data. Importantly, ERGMs are generative - i.e., they

provide a full probability model for the target network, and thus can be used for hypothetical

realizations of an inferred data generating process. This makes them especially well-suited

to mechanistic investigation using approaches such as in silico “knockout” experiments and

other computational techniques. The increasing availability of scalable and valued-data

ERGMs opens the door to modeling migration systems in a substantively-richer and more

statistically-rigorous way.

As noted, one advantage that ERGMs have is the ability to explicitly and formally describe

the interdependence of edges within networks. In connection with MST, researchers have

utilized this feature to formalize and test the patterns and mechanisms of the endogenous

feedback processes in migration systems (Huang and Butts, 2023; Leal, 2021; Windzio et al.,

2019). Specifying dependence structure can also improve statistical inference. The autocor-

relation among migration flows can not only introduce associations in residuals, but may

as well impose more general autoregressive structure. In this case, methods that focus on

correcting for correlation in the residuals (e.g., QAP) could be insufficient, running the risk

of failing to account for the impact of endogenous factors on covariate effects.

Likewise, the generative aspects of ERGMs are particularly relevant in the context of study-

ing migration systems. The ability to simulate from empirically calibrated or a priori mod-

els allows researchers to extrapolate models across spatial and temporal contexts and even

investigate counterfactual scenarios. Although there is work in this direction (including ap-

plications to the study of migration systems (Huang and Butts, 2023)), it is arguably an

under-appreciated property of this model family, which has been mostly employed as a tool
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for hypothesis testing. This chapter aims to exploit the generative capacity of ERGMs to

quantify the contribution of various drivers of population redistribution to the California

Exodus.

Despite these advantages, using ERGMs to study migration systems poses a number of

challenges. First, it can be computationally intensive to fit (and sometimes to simulate

draws from) such models, since closed-form (or even directly computable) expressions for the

likelihood are not attainable except in special circumstances. Moreover, generative models

for valued/weighted networks are less developed than binary networks, in terms of formal

specifications of dependence structures, theoretical justifications of those specifications, and

efficient computational tools; this means that researchers sometimes have to dichotomize

migration flows, losing critical information about the scale of migration flows. While it is

not the focus of the chapter to advanced generative models for valued/weighted networks, we

employ recent advances in this area to offer a quantitative understanding of the population

redistribution pattern within the United States.

Moving beyond ERGMs per se, a general challenge in modeling relational data such as

migration system data is understanding the combined effects of multiple influences, since

prediction of a specific migration flow usually involves attributes from different sources (e.g.,

origin and destination) that can be combined in different ways. The usual approach of

interpreting coefficients separately under the ceteris paribus condition is often unhelpful

here, as these covariates are intrinsically inter-related. For example, often it is substantively

natural to include covariate factors (e.g., housing costs) of origin, destination, and their

absolute difference, where the last term can no longer be interpreted only as a dissimilarity

measure since the statistic is fixed once we hold constant the origin and destination covariates.

This chapter tackles this problem by introducing a visualization protocol that helps interpret

the multiplex of inter-correlated functional forms that is common in relational data analysis.
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4.2.2 Drivers of Population Redistribution

This section examines possible drivers of population redistribution, with an empirical focus

on the case of California Exodus. The first potential driver is the cost of living, suggested by

the allegation that people migrate out of California because it is too expensive to live in (e.g.,

Bahnsen, 2021; Beam, 2021). This is in correspondence to the neoclassical economic theory

of migration, that migration happens when the move brings net profit, and lower living costs

in destination can be a substantial source of net profit. This motivates our hypothesis:

H1: The migration rate from origins with high costs of living to destinations with low costs

of living is higher than the reverse.

Following the popular narrative that the California Exodus is a political outcome (Bahnsen,

2021), we hypothesize that political environment could also serve as a driver of population

redistribution. Public choice theory and the consumer-voter model consider migration as a

means of realizing people’s policy preferences (Dye, 1990; Tiebout, 1956). Empirical research

on U.S. internal migration has also repeatedly observed Americans “voting with their feet”

(Huang and Butts, 2023; Liu et al., 2019; Preuhs, 1999; Tam Cho et al., 2013). The allega-

tion that Californians leaving their liberal state behind are “leftugees” fleeing Democratic

governance (Dorsey, 2021) motivates our second hypothesis:

H2: The migration rate from liberal-leaning origins (i.e. those with higher share of support-

ers for the Democratic Party) towards conservative-leaning destinations is higher than the

reverse.

Since population redistribution goes hand in hand with urbanization (Lichter and Brown,

2011; Ravenstein, 1885), it is possible that California Exodus is a reflection of the ex-

urbanization process. Henrie and Plane (2008) and Plane et al. (2005) documented the

shift of U.S. population from urban areas to rural areas in the 1990s. If this is still happen-
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ing in 2010s, that might be an underlying mechanism behind California’s net migrant loss.

We therefore hypothesize that:

H3: The migration rate from urban origins to rural destinations is higher than the reverse.

Last but not the least, racial dynamics play a critical role in American lives, including

migration decisions (Crowder et al., 2006, 2012). According to the literature, “White flight”

is a frequently observed phenomenon (Boustan et al., 2023; Frey, 1979; Woldoff, 2011), where

members of the non-Hispanic White population migrate out of racially-diverse places and

settle in White-dominant areas. While White flight is associated with the ex-urbanization

process, previous literature has identified racial factors to be a unique and non-negligible

contributor to this movement (Frey, 1979; Kruse, 2013). Considering California’s diverse

racial demographics, White flight could hypothetically contribute to the exodus, and we

thus hypothesize that:

H4: The migration rate from origins with low non-Hispanic White concentration to destina-

tions with high non-Hispanic White concentration is higher than the reverse.

These hypotheses embody a combination of conventional wisdom and notions motivated by

migration patterns seen elsewhere. But are any of them true - and, more importantly, can

they account for the California Exodus? For this, we turn to our empirical analysis.

4.3 Materials and Methods

4.3.1 Data

We model the intercounty migration flow network among all 3,142 U.S. counties. The out-

come of interest is the average number of migrants moving between each directed pair of
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counties each year during 2011-2015, which is calculated and released by the American Com-

munity Survey (ACS) administered by U.S. Census Bureau (2019).

The key covariates capture the characteristics of origin and destination in their costs of liv-

ing, political climates, level of urbanization, and racial compositions, using 2010 Decennial

Census and 2006-2010 ACS (U.S. Census Bureau, 2011a,b). The cost of living is measured

by the median housing costs in 2006-2010 ACS; the political climate is represented by the

percentage of voters that voted for the Democratic candidate (Obama) in the 2008 presiden-

tial election, as that was the latest national-level election before the study period. The level

of urbanization is indicated by the proportion of rural population of a county, estimated by

the 2010 Decennial Census. Lastly, the feature of a county’s racial composition is described

by its Non-Hispanic White population in the 2010 Census, as this is the most populous

racial-ethnic category in the U.S.

The model also considers other covariates that can potentially influence the magnitude of

migration flows. The demographic covariates include the (log) population size, log population

density (in thousand people per squared kilometers), and age structure (potential support

ratio, PSR: ratio of population that are 15-64 years old over population that are 65+ years

old), all using 2010 Census Data. The economic covariates include percentage of renters

(in contrast to home owners) using 2010 Census, unemployment rates, and percentage of

population with higher education attainment, both using 2006-2010 ACS. The geographic

covariates include the log distance between origin and destination counties (in kilometers), a

dummy variable indicating whether they belong to the same state, and fixed effects for the

four major U.S. regions (Northeast, South, Middle West, and West). We also include log

migration flow in the previous time period (2006-2010) of the focal migration flow, and the

network dependence terms specified in the following section.
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4.3.2 Valued TERGMs

We first model the migration patterns using the valued temporal exponential-family ran-

dom graph models (valued TERGMs, or VTERGMs) (Krivitsky, 2012). The ERGM is a

parameteric generative model that impose an exponential family distribution to describe the

network structure of interest:

Pr(Y = y|θ,X) =
h(y) exp(θTg(y,X))∑

y′∈Y h(y′) exp(θTg(y′, X))
, (4.1)

where Y is the random variable of network with realization y. g(·) is a vector of sufficient

statistics with corresponding parameters θ. The sufficient statistics can be flexibly specified

to incorporate both structural covariate effects (e.g., housing price differences and migration

flow in the last time point, making it a temporal ERGM or TERGM), and endogenous

dependence terms that capture autocorrelations among migration flows. In this chapter, we

include two dependence terms, mutuality and waypoint flow, to account for the endogenous

mechanisms that contribute to the symmetry at the dyad-pair level and the node level,

beyond the specified covariate effects. Mutuality captures the scale of reciprocated flow

within dyad pairs (i → j, j → i) by calculating the summation of the minimum edge value

across all dyad pairs:

gm(y) =
∑

(i,j)∈Y

min(yij, yji). (4.2)

The larger the reciprocated flow within a dyad pair, the larger the statistic. For example,

if there are 6 migrant exchange between counties i, j, a distribution of {3,3} will have the

largest reciprocated flow and the corresponding statistic (3), and a distribution {0,6} will

have the smallest (0). Therefore, a positive coefficient will indicate an endogenous pattern
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of dyad-level reciprocity, and vice versa. The waypoint flow takes a similar formula, but

captures the volumetric flow through each node by examining its total inflows and outflows:

gf =
∑
i∈V

min{
∑

j∈V,j ̸=i

yij,
∑

k∈V,k ̸=i

yki}. (4.3)

The larger the volumetric flow moving in and out of a node, the larger the statistic. A

positive coefficient will indicate an endogenous pattern of node-level symmetry, and vise

versa.

h(y) is a reference measure that determines the probability distribution of the networks when

θ → 0. As a Valued ERGM, since our outcome of interest is the count of migrants between

two counties, we specify the shape function as a Poissonian reference measure:

h(y) =
∏

(i,j)∈Y

(yij!)
−1 (4.4)

This amounts to the assumption that migration events are indistinguishable within edges.

The denominator of the equation 4.1 is the normalizing factor that defined on Y , the set of

all possible network configurations based on the same vertex set. This intractable function is

the source of computational complexity for ERGMs, as it is a function of both the parameter

to be estimated, and the set of possible network structures. This is especially the case for

Valued ERGMs, since each dyad now can take not only two values for binary networks, but

all natural numbers. The more than three-thousand nodes also increases the computational

load of our model. To grapple with this challenge, we employ a parallelizable subsampled

Maximum Pseudo-likelihood Estimation procedure for Valued ERGMs (Huang and Butts),

which is efficient and shows good estimation quality for high-edge-variance networks such as
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ours.

4.3.3 Functional Form Specification

There are many possible functional forms for network models even just considering linear

formats, since the edge-based models jointly account for the covariates of origin and desti-

nation. We thus formulate our key covariate effects based on our theoretical assumptions of

their mechanisms that influence migration.

For the cost of living, we include the housing costs of origin and their the difference between

destination and origin (destination minus origin). Drawing on the aspiration-ability model

of migration (Carling, 2002; Carling and Schewel, 2018), we posit that origin housing costs

influences people’s financial well-being, which translates into their capacity to migrate; the

difference in housing costs influence the utility gain of migrating, altering their aspiration of

the migration.

In terms of political, rurality, and racial covariates, we include a dissimilarity measure,

implemented as the absolute difference between origin and destination in the corresponding

covariate. This follows the operationalization of previous analysis (Huang and Butts, 2023),

which reveals a segmental effect in which less migration happens between counties with

larger difference in political climates, levels of urbanization, and racial compositions. Since

our interest is population redistribution generated from asymmetric migration, we further

include two directional effects. The first is the covariate level of the origin, and the second

is a sign function (+1 when destination has a higher covariate level than origin, -1 when the

reverse, and 0 when equal).
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4.3.4 Visualizing Functional Forms

The composite functional forms of each covariate effect pose the question of how to unpack

and interpret their joint effects. We develop a visualization protocol that tackles this prob-

lem. For each functional form, the protocol calculates the expected edge value under each

possible combination of the covariate value of the origin and destination. To make it more

comparable across functional forms, we then normalize it by calculating the ratio of this ex-

pected value over the expected value that would be obtained if both origin and destination

took the average observed value of the covariate.2 We describe this formula as follows.

In the absence of dependence terms, a Poissonian Valued ERGM is identical to a network

regression model with a independent Poisson distributions on each edge (Krivitsky, 2012),

where there expected value of the i, j edge is:

E(Yij) = exp(θT∆0→1
ij g(y,X)) (4.5)

where ∆ denotes the change in the sufficient statistics when the focal edge’s value goes from

zero to one. If we only focus on one covariate fk(Xij) (whose sufficient statistic in ERGM

will be fk(Xij) · yij), then we have:

E(Yij) ∝ exp(θk · fk(Xij)) (4.6)

so we can express the conditional expected value as a function of origin’s and destination’s

covariate level by calculating the exponentiated product of the functional form and the

corresponding coefficient in equation 4.6. We further add a normalizer to center the expected

value and make it more comparable across different functional forms. The normalizer is the

2For political, racial and rurality covariates, we use the population-weighted national mean, treating
every county as if it had the same share of Democratic voters, non-Hispanic Whites and rural population as
the national percentage. For housing prices, we use the national median, as the functional form takes the
logarithm of the prices.
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expected edge value when the covariate of the origin and destination is set to the average

value (described in the previous footnote) across the vertex set (X0):

E(Yij) ∝ exp(θk · [fk(Xij)− fk(X0)]) (4.7)

The formula is in essence the ratio between the expected value of a focal edge under a specific

origin-destination covariate vector over the expected value where the origin and destination

has the covariate value equal to the average value.

When we need to calculate the ratio for composite expected value, we can simply take the

product of their ratios for each form. In the Results section, we will display the functional

form of both separate effects (e.g. origin housing costs) and composite effects (e.g. origin

housing costs plus difference in housing costs).

Note that this is not exactly the same as the conditional expectation ratio in our specified

model, since the model contains dependence terms that distort the edge distribution away

from a regular Poisson distribution. A rigorous calculation of the exact expectation ratio

is, however, computationally prohibitive, as it requires numerical integration of all possible

edge values times their probability function for every realization of the covariate vector.

Nevertheless, the knockout experiment in the following subsection takes the dependence into

control, offering a closer look at the functioning of the Valued ERGM with dependence terms.

4.3.5 Knockout Experiments via Network Simulation

The visualization of functional forms offers structurally “local” insights about how each so-

cial force influences migration patterns. Building upon that, we want to quantify how theses

social forces contribute to the social phenomenon of interest on a global scale, specifically

population redistribution and the California Exodus. We achieve this by leveraging the gen-
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erative feature of ERGMs to perform in silico knockout experiments via network simulation.

A knockout experiment as employed in a social science context is a model-based thought

experiment that examines counterfactual scenarios where certain posited social forces are

inoperative, while all other forces are left at their observed levels (Huang and Butts, 2023).

The change in outcomes of interest relative to the behavior of the full model is used to probe

the impact of the knocked-out mechanism. Here, we implement knockout of mixing effects

by simulating migration flows with all counties having their covariates of interest fixed at

an identical value average that is specified in the previous footnote (removing differential

mixing). Simulating flows obtained under these conditions, we compare California’s ranking

in net migration loss across all states under the knockout scenarios with the observed models.

This allows us to probe the connection between the mechanisms captured by the model and

our social phenomenon of interest. For example, if under the hypothetical condition where

every U.S. county has the same housing cost, California’s relative net migration loss is not

as severe as the observed situation, it would suggest that housing-cost effects on migration

could be a contributor to the California Exodus; by turns, if eliminating housing disparities

has no impact on asymmetric migration, we can rule it out as a driver of migration loss.

To assist the interpretation of the quantitative results from knockout experiments, we include

positive and negative controls in simulation, alongside knockouts of our key covariates of

interest: political, racial, rurality, and housing attributes. Originating in the experimental

sciences, positive and negative controls are experimental conditions that researchers expect

to produce positive and null results, respectively; the controls validate the experimental

procedures, serving as the benchmark for other regular experimental settings. In an in silico

setting, controls remain important to verify that the model is sensitive to manipulations

that should have an impact on the outcome of interest (and, by turns, that it is not overly

sensitive to manipulations that should not have an impact). Here, we knock out distance

effects as a negative control, treating all dyads as having a common log distance set at

national mean. We expect the knockout of non-directional distance effects to not alter the
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rankings of net migration loss across the country, and the difference between this case and

the full model can be considered as a combination of numerical noises and some second-order

impacts (since we include complex network dependence terms). The removal of population

effects by equally distributing population across all counties serves as a positive control case,

as we expect the removal of population effect to have a large impact on the population

redistribution pattern. The purpose of these two controls is not substantive interpretation of

the fundamental distance and population effects, as the counterfactual scenario is arguably

radical and unrealistic, but rather, to provide insights into the question of “how small is

small” and “how big is big” in terms of altering migration ranking.

4.4 Results

4.4.1 General Patterns of Population Redistribution

Table 4.1: Annual Population Change in the United States, 2011-2015

Count Crude Rate (%)
Population 308,739,316
Natural Change
Births 3,961,037 1.28
Deaths 2,598,956 0.84
Natural Increase 1,362,081 0.44
International Migration
Immigration 1,841,695 0.60
Intercounty Migration
Total migrants 17,176,675 5.56
Node-level asymmetry 1,523,550 0.49
Dyad-level asymmetry 3,844,434 1.25

To offer a broad view of population change in the study period, Table 4.1 shows the annual

population changes from different demographic processes and their crude rates (normalized

by the total population size).3 Compared to natural change and international migration,

3The population size comes from 2010 Census, the natural change data comes from U.S. Center for
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Figure 4.1: Net migrant count, net migration rate, and migration imbalance index by state

intercounty migration in the U.S. is a more substantial demographic process with a larger

share of population involved. When it comes to population change, the asymmetric internal

migration is similar to the scale of immigration and natural increase, all of which have a

modest share of population, whcih is around 0.5% to 1%. This confirms that as a developed

country, the U.S. has a relatively modest population change in the 2010s (Rees et al., 2017).

Figure 4.1 examines the phenomenon of the California Exodus by comparing the net migrant

loss of California (shaded in blue) across three metrics against other U.S. states and the

District of Columbia (DC). The left panel displays the net migrant count, which is the total

in-migrants minus the total out-migrants. It shows that California has a large net migrant

Diease Control and Prevention, and the international and internal migration comes from ACS 2011-2015.
The natural increase is the number of births minus the number of deaths. The dyad-level asymmetry is

the sum of absolute difference across all dyad pairs divided by two: Ad =
∑

i,j |Yij−Yji|
2 , and the node-level

asymmetry is the sum of absolute difference across all nodes in their inflows and outflows divided by two:

An =
∑

i |
∑

i Yij−
∑

i Yji|
2 .
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loss, only second to New York among the 51 states and DC.

Yet, considering the fact that California is the most populous state (roughly 25% more than

the second populous state, Texas, in 2010), the middle panel calculates the net migration

rate, which is the net migrant count divided by the state’s population. The normalized

metric observes California to have a less extreme net migration loss. While it still ranks at

the lower end of the list, it is not very different from the majority of the U.S. states, which

are within the range of -1% to 1%. In other words, the large net outflows of migrants from

California can be partly explained by its largest population size.

Although the middle panel may suggest that there is nothing to be explained - the California

Exodus is simply a size effect - examining the relative asymmetry of migration to and from

California gives a richer picture. The right panel calculates the migration imbalance index

(MII) of each state, which is the net migrant count divided by the sum of in-migrants and

out-migrants.4 The measurement indicates the proportion of related migrant flows that are

inflows of a focal place, capturing the level of imbalance between inflows and outflows of

migrants. The right panel reveals that migration imbalance generally has larger variation

across states than the net migration rate, as the former focuses on a smaller population,

i.e. the migrant population. California has relatively lower ranking in migration imbalance

than net migration rate, and its value is farther away from other U.S. states, suggesting a

noticeable imbalance in its in/out-migration flows.

In summary, Figure 4.1 reveals that California is indeed experiencing net migration loss,

although the severity relative to other parts of the country vary by the metric we read.

Moreover, despite the popularity of the California Exodus narrative, California is actually

not the place with the most net migration loss: the New York state has stronger net loss

4MII coincides with the migration efficiency/effectiveness index in some migration literature (Bell et al.,
2002; Shryock et al., 1973). It is also directly related to the external-internal (E-I) Index in social network
analysis (Krackhardt and Stern, 1988), although the latter focus on external flows, so MII is equal to one
minus the E-I index.
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Figure 4.2: Quantiles of California’s attributes

Note: Boxes represents California counties, and blue diamonds represents the whole Califor-
nia state (weighted by county’s population size).

than California across all metrics, and the net migration rate and migration imbalance of

Alaska is substantially lower than the rest of the states. These other cases poses important

empirical questions that future research should consider.

Lastly, as we consider the possible contributor of California’s outstanding net migration

loss, we examine California’s attributes in Figure 4.2. The boxplots shows the quantiles

of California counties in those attributes across all U.S. countires, and the blue diamonds

indicate the quantiles of California across the 51 states and DC. Compared to other parts

of the country, California is indeed a place with stronger left-leaning political environments,

expensive housing, larger racial and ethnic minority population share, and higher levels of

urbanization. These dimensions are characteristics where California stands out, and therefore

has the potential of explaining its migration patterns.
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Table 4.2: Valued TERGM for Intercounty Migration Flows, 2011-2015

Estimate Std Err
Political Covariates
Dissimilarity P(Democrat) -.257*** .007
Origin P(Democrat) .024** .009
To higher P(Democrat) -.008*** .001
Racial Covariates
Dissimilarity P(NH-White) -.172*** .006
Origin P(NH-White) -.044*** .007
To higher P(NH-White) .011*** .001
Rurality Covariates
Dissimilarity P(rural) -.457*** .004
Origin P(rural) .330*** .006
To higher P(rural) .018*** .001
Housing Covariates
Origin log(costs) -.283*** .005
Difference log(costs) -.148*** .004
Control Covariates (included)
Note: **p < 0.01; ***p < 0.001 (two-tailed tests).

4.4.2 Functional Forms of Migration Driving Forces

Estimated Effects

To explain the underlying patterns of intercounty migration, we estimate a VERGM for the

migration flow network, with the results of the key covariates of interest listed in Table 4.2.

The model suggests that, on average, less migration happens between counties with larger

differences in their political climates, rurality, and racial compositions as reflected by the

percentage of the non-Hispanic White population. In terms of directional effects, the model

predicts larger migration flows from counties with higher Democratic Party voter share, and

towards counties where the Democratic party voter share is lower. The directionality of the

political effects is largely in correspondence to the “lefugee” Hypothesis 2 that population

are generally leaving from Democratic-party-leaning areas towards Republican-party-leaning

areas. The racial effects also run in the direction predicted by the “White flight” Hypothesis

4. Holding other factors constant, counties with smaller proportions of non-Hispanic White
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population send out more migrants, and larger migration flows exist along the way that lead

to a county with a higher share of non-Hispanic White population.

When it comes to rurality, the model is consistent with the ex-urbanization Hypothesis 3

that migration flows are larger when they are moving towards counties with a higher share

of rural population than the origin. Yet, the model also shows that counties with higher

rurality on average send more migrants out than those with lower rurality. In other words,

more migration flows are moving towards more rural regions, but more of them come from

a rural county. The housing effects also offer mixed evidence in light of the neoclassical-

economic Hypothesis 1. Although migration flows are larger where moving brings greater

declines in housing costs from origin to destination, counties with lower housing costs also

observe larger out-migration flows. This means that migration typically happens from places

with inexpensive housing to places with even less expensive housing.

The model also controls for a series of other covariate effects and endogenous dependence

structure, reported in Table 4.A in the Appendix. The positive mutuality and the negative

waypoint flow patterns suggest that, holding other covariate effects constant, the observed

migration flow network is more reciprocal at the dyad-pair level and less symmetric at the

node level than a random network configuration. This implies the existence of endogenous

network patterns discussed in prior literature (Leal, 2021; Huang and Butts, 2023). For

example, the practice of return migration could promote dyad-level reciprocity, and the

signaling effects of county attractiveness can lead to endogenous node-level asymmetry (large

migration inflows signaling the popularity of this county, retaining potential migrants from

leaving, resulting in an imbalanced in&out-flow of the county).
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Figure 4.3: Function forms for political, rural, racial and housing effects

Visualizing Functional Forms

For a typical research paper using parametric models, the results section usually stops at

the previous subsection, after summarizing whether the directionality of the key effects

confirms or refutes the hypothesis. While it is informative to use parametric models as tools

for hypothesis testing by evaluating their qualitative behavior, there are more insights one

could gain from further the examination of the models.

First of all, besides the signs of the coefficients and their corresponding p-values, their mag-
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nitudes also carry critical information about the scale of the effects of interest. Taking the

political covariates in Table 4.2 as an example, the coefficient of origin effects and binary

directional effects look an order of magnitude smaller than that of the dissimilarity effect.

However, it is difficult to directly interpret the parameter magnitudes, which is subject to

the scaling of the covariate distribution.

The second question is about how to interpret holistically the effects of interest, as the dif-

ferent effects (origin, difference, dissimilarity) are interdependent, and holding other factors

constant to interpret each single functional form can be unrealistic. This could be a critical

question as sometimes different effects offer mixed evidence about substantive hypotheses,

such as the rurality and the housing effects in our model. It is of substantive interest to

understand how these different effects jointly shape the migration pattern.

To quantify the magnitude of the modeled effects and more concretely understand the sepa-

rate and joint roles of the functional forms, we visualize the (normalized) predicted migration

flow size as a function of origin’s and destination’s covariate values, displayed in Figure 4.3.

Each row presents one chunk of covariate effects, and each column presents a type of func-

tional form, where the higher value in the heatmap indicates the model predicts the migration

flow to be higher under these origin-destination covariate values.

The first row of Figure 4.3 shows that the directional functional forms (sending and direc-

tionality effects) produce very little alternation of the expected migration flow, compared

to the undirectional functional forms (dissimilarity effects). The middle two panels show a

tiny gradient in its coloring, and the total effects largely resemble the dissimilarity effect,

suggesting that the sending and directionality effects make little contribution to the overall

effect of political climate. Similarly, in the second row, directional effects of racial covariates

also appear negligible, and the undirectional dissimilarity effect dominates the total effect of

racial composition. These visualizations tell us that while the directional effects of political

and racial covariates run in the direction that correspond to the hypotheses, their effect sizes
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are small compared to the nondirectional dissimilarity effects.

In the third row of Figure 4.3, although the directionality effect of rurality still resembles

those of the previous political and racial covariates, bringing small variation in the expected

migration scale, the rural sending effect is strong, and alters the rural total effect to be

asymmetric. The bottom row shows that while the sending and difference effects predict

substantial variation of expected value across different housing values, their combination

offsets each other in the bottom right panel; the gradient of the total effect largely evolves

along the y = x line, meaning that swapping the housing costs of origin and destination

does not leads to major change in the expected migrant counts. This means that the total

housing effect is largely symmetric.

Visualizing Functional Forms: The San Francisco County Case

To further aid our interpretation of the total effects, Figure 4.4 examines the case of San

Francisco (SF) county, California, and evaluates its expected migration flows towards and

from other counties based on their corresponding covariate value. The first column is a

replication of the last column in the previous figure, but adds reference lines that indicate

the covariate level of SF county. The middle column extracts from these two reference

lines and plot the expected number of immigrants to (brown solid lines) and emigrants

from (grey dotted lines) SF county as a function of the origin/destination county’s covariate

level. The upper right panel of each row summarizes the middle column by getting the

difference of immigrant ratio and the emigrant ratio, where a positive ratio difference (shaded

in solid brown lines) suggests an expected net migration gain for SF county, while a negative

ratio difference (shaded in dotted grey lines) suggests an expected net migration loss for

SF county. The bottom right panel of each row plots the histogram of U.S. population

about the covariate level of their residing counties. The juxtaposition of the last two plots

reflects whether the country’s population gravitate towards counties that SF county has net
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Figure 4.4: Function forms for migration effects involving San Francisco county.

Note: (left) Dyadic effects, with vertical and horizontal lines showing SF attributes. (cen-
ter) Net immigration (solid lines) and emigration (dotted lines) effects for SF, given ori-
gin/destination county attributes; vertical line shows SF position. (right) Areas between
curves (net immigration) from the center plot by origin/destination county attributes; his-
tograms show population-weighted distributions of U.S. counties, with brown columns indi-
cating population in net SF-immigration counties.
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migration gain from (shaded in brown), or counties that SF county has net migration loss

towards (shaded in grey), offering a first-order approximation to whether the social effects

promote or suppress population loss from a county like San Francisco.

Focusing on the right column of Figure 4.4, we observe that SF county receives net migration

gains from counties with more Democratic-party voter share, which comprise a small share

of U.S. population. By turns, it loses migrants to counties with less Democratic-party voter

share, which comprise a large share of U.S. population. Similarly, in the second row, SF

county receives net migration gains from counties with less non-Hispanic White population

share, which comprise a small share of U.S. population. The functional form of rurality for

SF county is a bit more complicated, as the county takes the extreme value of 0% rural

population. The county is expected to have no net migration exchange with other counties

that have 0% rural population, which consist 7% of the total U.S. population. SF county is

expected to lose population to counties with rural population larger than zero but smaller

than 13%, which includes about 51% of the total U.S. population. In other words, on average,

there are slightly more persons residing in counties that SF county has net migration loss

towards. However, once the county deviates from the extreme case of the fully urbanized,

the trend reverses, with more of the U.S. population residing in places from which the focal

county has net migration gain. Lastly, the bottom right panel shows that the majority of

the U.S. population resides in counties with cheaper housing than SF county, areas to which

SF would be expected (ceteris paribus) to lose population. Overall, for the SF county case,

across all covariates, the model predicts an overall net migration loss from SF county; this is

not because all factors unilaterally favor emigration from SF, but rather because in each case

SF’s attributes favor immigration from a relatively small number of counties (with relatively

low total population) relative to those to which they favor emigration.
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Table 4.3: California’s Average Simulated Ranking with and without Knockouts

Net Count Net Rate Imbalance Index
Ranking Change Ranking Change Ranking Change

Full Model 50.00 42.08 45.55
Remove Distance Effect 50.00 0.00 41.92 -0.16 45.35 -0.20
Remove Population Effects 48.75 -1.25 28.30 -13.78 46.63 +1.08
Remove Political Effects 50.00 0.00 42.00 -0.08 45.16 -0.39
Remove Housing Effects 50.00 0.00 41.92 -0.16 44.95 -0.60
Remove Racial Effects 50.00 0.00 39.36 -2.72 42.49 -3.06
Remove Rurality Effects 50.00 0.00 43.00 +0.92 47.49 +1.94

4.4.3 Knockout Experiments for the California Exodus

The visualization of covariate effects offers us some quantitative insights about how different

social forces operate across different origin/destination pairs. However, our examination of

the SF case underscores the intuition that the way in which such forces play out depends

upon the global distribution of population (and covariates), which is challenging to infer

from direct inspection. For instance, the high level of urbanization in SF county makes it an

interesting but special case, and it becomes difficult to visualize every possible rurality level

that California counties take and integrate them to offer a holistic evaluation of the rurality

effect on the California Exodus. Building on these exploratory insights, this section aims to

explicitly examine the connection between migration patterns incorporated into the model

with specific social outcomes of interest, such as the California Exodus.

We achieve this by performing in silico knockout experiments, with results displayed in

Table 4.3. The first column suggests that California’s ranking in net migrant count stays

constant throughout all the knockout scenarios except the positive control that knocks out

population, contributing to a 1.25 position improvement its ranking (smaller ranking means

less net migrant loss). Notice that only knocking out population effects in the positive control

alters California’s average ranking in net migrant count, and that in the second column, the

net migration rates under normalized state population lead to fluctuations of California’s
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average rankings under all knockout scenarios. This suggests that California’s status as the

largest U.S. state is a major explanation for its substantial net emigration in absolute terms.

In the second column of Table 4.3, the removal of political and housing effects improves

California’s ranking in net migration rate at a scale smaller than or roughly equal to the

negative control of removing distance effects. Although political and housing effects seem to

operate in a direction that contributes to California exodus as hypothesized, their influence

on net migration rate is substantively negligible. Knocking out racial effects and rural effects

improves and worsens California’s relative net migration rate, respectively, indicating that

racial effects contribute to California Exodus (from a migration rate angle), while rural effects

actually buffer California from even larger population loss. These two changes are larger in

their scale than the negative control of distance effects, but not comparable to the positive

control of population effects, suggesting their impacts to be moderate.

The last column in Table 4.3 shows California’s ranking of migration imbalance. As with the

case of net migration rate, removing political, housing, and racial effects reduces California’s

relative migration imbalance, while removing rurality effects worsens it. Quantitatively

speaking, the impact of knockouts of political and housing effects are again similar to that

of the negative control of distance effect, while the removal of racial and rural effects bring a

ranking change even larger than that from the positive control case of population effects. The

small alteration from the positive case is understandable, as the origin and destination effects

of population are not hugely different in our model (as well as in many other gravity models,

Boyle et al. (2014)); while changing the total size of migrant population (symmetrically) can

alter state rankings of net migration rate given a constant total population denominator,

for migration imbalance that solely focuses on the migrant population, this is no longer the

case. The fact that none of the knockouts alters California’s relative migration imbalance in

a sizable way suggests that California’s migration imbalance does not result from one single

social effect.
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4.5 Discussion

Leveraging a large-scale valued network model, this chapter studies population redistribution

patterns in the United States, and in particular the heatedly discussed case of the “Califor-

nia Exodus.” Our analyses show that California indeed experienced net migration loss in

the 2010s, although its scale varies depending on the metrics one examines; the exodus is

substantial in absolute terms but relatively small in its crude rate (count per capita), while

still being fairly considerable in its imbalance between in-migration and out-migration flows.

Valued TERGM analysis reveals the direction of the political, rural, racial, and housing

effects on population redistribution, which largely work in directions that would contribute

to net migration loss for highly populous counties like San Francisco. Knockout experiments

further show that racial effects contribute to the California Exodus, rurality effects work

against the California Exodus, and while political and housing effects contribute to the Cali-

fornia Exodus, their effects are largely negligible. The scale of these effects on the California

Exodus varies by the migration metric used, but none of the knockout scenarios (except a

positive control case for population distribution) alter California’s ranking in net migration

loss in a substantial way. This suggests that the California Exodus is not governed by one

single social effect, but is a joint outcome of complex systemic patterns.

Methodologically, this chapter offers a roadmap that aids interpretation of composite func-

tional forms in parametric relational models via visualization. It also demonstrates the

insights generative models such as ERGMs could offer by designing simulation experiments

for relevant counterfactual questions. In our view, this provides a reminder that network

models are not merely statistical hypothesis-testing tools, but flexible and powerful genera-

tive devices that can reveal emergent effects of multiple mechanisms on outcomes of interest

in complex social systems.

In closing, we note that while statistical network models have seen great advances over the
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past 20 years, important challenges remain. Among these is the problem of accounting

for measurement error (a persistent challenge for the field since the famous call-to-arms of

Bernard et al. (1984)). As with the vast majority of work in both social network analysis

and demography, this chapter considers the data as a fixed input without accounting for

measurement error. However, even Census data is imperfectly measured, a concern that

becomes greater when considering the O(30002) migration rates that must be estimated to

measure the U.S. county-level migration system. Assessing the nature and consequences of

measurement error in migration networks remains an open problem, as does the estimation

of count-valued ERGMs in the presence of measurement error. These would seem to be

important directions for further work.

Likewise, in defining a network, one’s choice of nodes and edges imposes a certain level of

granularity on one’s representation, which in turn impacts what effects it can distinguish

(Butts, 2009). Here, we examine the network of migration flows among U.S. counties, which

could itself be seen as an aggregation of an ensemble of migrant flow networks for smaller

subsets of the U.S. population; although we can hypothesize how these subflows contribute

to the aggregate flow network, we are limited in our ability to disaggregate them here. For

example, we do not have information about whether and to what extent the larger migra-

tion flow from low-White-concentration counties to higher-White-concentration counties is

driven by movement of the non-Hispanic White population, versus members of minority

populations following on the heels of earlier migration by non-Hispanic Whites (an effect

seen in some past research, e.g. Woldoff (2011)). Distinguishing the migration patterns of

different population groups within a joint model imposes significant challenges both from a

data availability/accuracy and computational standpoint, but could provide further insights

if feasible.

Last but not least, we note that there exist other states whose population redistribution

patterns are stronger than California, such as New York State and Alaska, despite receiving
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less public attention. The impacts of the pandemic on internal migration, over both the

short term and the long term (e.g., potential enhancement of ex-urban migration), are also

critical research topics. We encourage future research to examine these cases to offer a more

comprehensive understanding regarding the evolution of the U.S. migration system and its

implications for American society.
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4.6 Appendix

Table 4.A: Valued TERGM for Intercounty Migration Flows, 2011-2015 (Full Model)

Estimate Std Err
Key Covariates in Table 2 (included)
Dependence Structures
Mutuality .047*** .002
Waypoint flow -.013*** .001
Log(past migrant flow) .300*** <.001
Demographic Covariates
Origin log(population size) .353*** .002
Origin log(population size) .374*** .002
Destination log(population density) -.081*** .001
Origin log(population density) -.055*** .001
Destination PSR .017*** .001
Origin PSR .017*** .001
Destination log(immigrant inflow) .057*** .001
Origin log(immigrant inflow) .043*** .001
Economic Covariates
Destination P(higher education) .386*** .012
Origin P(higher education) .314*** .013
Destination P(renter) .404*** .012
Origin P(renter) .421*** .012
Difference P(unemployment) -1.229*** .041
Origin P(unemployment) -2.948*** .052
Geographical Covariates
Log(distance) -.569*** .001
Same state .500*** .002
Northeast (reference group)
Destination South .257*** .003
Origin South .053*** .003
Destination West .384*** .004
Origin West .225*** .004
Dstimation Midwest .202*** .003
Origin Midwest .096*** .003
Baseline
sum -1.421*** .042
nonzero -13.965*** .028
Note: *p < 0.05; **p < 0.01; ***p < 0.001 (two-tailed tests).
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Chapter 5

Conclusion

This dissertation examines the social forces that drive and inhibit migration. Using exponential-

family random graph models (ERGMs) for valued networks, we model the structure of inter-

U.S.-county migration flows from a systemic and relational perspective. The dissertation

contributes to the fields of social networks, migration, spatial demography, and methodology

in the following ways:

• Chapter 2 proposes and implements a fast and accurate parameter estimation proce-

dure for count-valued ERGMs, removing the computational hurdle to model large-scale

high-edge-variance network systems. The comparative simulation experiments further

show how the network size and the variance of edge values influence the performance

of the available computational methods, providing a guideline for choosing and tuning

those methods for different use cases.

• Chapter 3 identifies and quantifies how segmentation across geography in political

environment, racial composition, and urbanization can contribute to the population

immobility in the United States. It advances the scholarship of immobility with the-

orization and empirical evidence of the connections between segregation, polarization,
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and (im)mobility.

• Chapter 4 develops an analytical framework to study migration-induced population

redistribution and its underlying mechanisms. It offers empirical evidence to a popu-

lar public discourse about the scale and the drivers of migration-induced population

redistribution between California and other U.S. states.

• The dissertation demonstrates the power of using network generative models such as

ERGMs to study social systems. When studying flow systems consisting of exchange of

people, information or goods among places, organizations, occupations or other social

categories, network models can describe the interactive effects of origin and destination

on the flows. The models can also reveal the endogenous mechanisms in the system by

describing the structure of interdependence among flows. Furthermore, we show that

generative models are more than hypothesis testing tools and can be used to probe

mechanisms via in silico experiments, exemplified by the knockout experiments.1

The dissertation has the following limitations:

• The analyses are based on one dataset about inter-U.S.-county migration flows during

2011-2015, so results might not be generalizable to other settings. Simulation exper-

iments in Chapter 2 do not guarantee that methods evaluated will have the same

performance when applied to data with different structures or properties. Chapter 3

reveals segmentation as a contributor to U.S. population immobility during 2011-2015,

but the lack of longitudinal data prevents us from addressing whether and how much

it can explain the decline of migration rates in the past decades. Similarly, empirical

results in Chapter 4 might not be identical to migration and population redistribution

patterns in other times, such as during and after the COVID-19 pandemic in 2020s.

1We recommend future users of in silico experiments read our notes in Appendix (3.7.3).
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• The analyses use aggregate-level data of population flows without information about

individual behaviors. While these analyses can directly speak to the macrosociolog-

ical questions of interest about population immobility and population redistribution

across geography, they do not capture the micro-level processes behind. Qualitative

and quantitative data at individual, household, and/or community levels is needed to

answer questions such as how prospective migrants weigh different aspects of poten-

tial destinations, how family members negotiate about moving, and how migration

aspiration translates or fails to translate to migration behavior.

• Although we set up the Valued ERGMs at their state of the art and the limit of

computation feasibility, it may not be the optimal way of modeling the structure of

population flow networks. Since the microscopic dynamic process that can give rise to

the dependence structure specified in Valued ERGMs is still not well understood, the

functional forms used to describe reciprocity and waypoint flows might not be the most

effective and sensible ones. The computational hurdle also deters the consideration of

higher-order dependence structure such as transitivity of population flows.

• The models do not fully account for uncertainty. While migration flow data from

the American Community Survey is an estimate, the models treat the data as fixed

input without measurement errors, due to the lack of information about the covariance

structure of those errors, and a lack of methods that deal with measurement errors in

Valued ERGMs. Moreover, as Duxbury (2023) notes, our knockout experiments only

use point estimation of coefficients, without considering uncertainties from coefficient

estimations, which demands another level of computational capacity for this large

valued network system.

These limitations suggest the following directions for future research:

• Study population flow systems in other time and space, and in longitudinal analysis
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when data allows. For U.S. internal migration, fruitful questions include: 1) whether

and how the decline in migration rates over the past decades is related to the growing

political polarization across geography and other spatial segmentation patterns; 2)

how the long-term decline in migration rates impact various aspects of social lives; 3)

what explains the substantial net migration loss of Alaska to other U.S. states during

2011-2015 and whether similar trends happen in other times; and 4) how the internal

migration and population redistribution patterns have changed since the COVID-19

pandemic.

• Based on the population-level migration patterns revealed in this dissertation, collect

and analyze micro-level data to triangulate the findings, such as studying how people

in the U.S. understand and evaluate political climate, rural-urban divisions, racial

dynamics, and housing costs when deciding about and practicing migration.

• Advance the theory, method, and computation of valued network models such as Valued

ERGMs. This includes: 1) deriving stochastic processes that can give rise to depen-

dence structures in valued networks and their corresponding specifications in ERGMs

and/or other models, 2) developing methods that account for measurement errors for

valued networks in both data collection and data analysis stages, 3) implementing even

more time-efficient parameter estimation procedure. An example of the last point is to

improve uncertainty measurement of pseudo-likelihood-based estimation for networks

with small edge variance to broaden its applicability.
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