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UCI-TR-2015-12, INT-PUB-15-032

Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch
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1California Institute of Technology, Mail Code 350-17, Pasadena, California 91125, USA
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4Center for Cosmology and Astroparticle Physics (CCAPP),
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(Dated: July 27, 2015)

We perform a detailed study of the weak interactions of standard model neutrinos with the
primordial plasma and their effect on the resonant production of sterile neutrino dark matter.
Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals
that could be due to sterile neutrino decay, we consider 7 keV-scale sterile neutrinos. Oscillation-
driven production of such sterile neutrinos occurs at temperatures T & 100 MeV, where we study
two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of
an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution
analytically above and below the quark-hadron transition, and match with lattice QCD calculations
through the transition. We estimate opacities due to tree level processes involving leptons and
quarks above the quark-hadron transition, and the most important mesons below the transition.
We report final sterile neutrino dark matter phase space densities that are significantly influenced
by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-
hadron transition. We also provide transfer functions for cosmological density fluctuations with
cutoffs at k ' 10 h Mpc−1, that are relevant to galactic structure formation.

PACS numbers: 95.35.+d,14.60.Pq,14.60.St,98.65.-r

I. INTRODUCTION

Deep in the radiation dominated epoch of the Universe,
the three neutrinos present in the standard model (SM)
of particle physics [1] make up a significant population
of relativistic species within the primeval cosmic plasma.
We have strong evidence of their existence at these early
epochs from probes of the primordial Universe such as
the Cosmic Microwave Background (CMB) (probing tem-
perature T ∼ 0.25 eV) [2], and the synthesis of light
elements during the epoch of Big Bang Nucleosynthesis
(BBN) which depends on the neutron-to-proton ratio set
at Tdec ∼ 1.5 MeV [3], the temperature of weak neutrino
decoupling. Above this temperature, SM neutrinos inter-
act with species that carry weak charge, through which
they remain coupled to the primordial plasma [4].

There is a long history of speculation about additional
neutrino species (see Ref. [5] for a recent review). Owing
to the precise measurement of the invisible decay width
of the SM Z boson [1], any extra neutrino species must be
“sterile” (i.e. electroweak singlets) [6]. Furthermore, pre-
cise measurements of the CMB [2, 7] and of the primeval
abundance of light elements [8, 9] strongly constrain the
presence of extra relativistic species in the early Universe.
These constraints indicate that (i) unlike SM neutrinos,
light sterile neutrinos never fully thermalize with the rest
of the cosmic plasma [10–14], or (ii) that sterile neutri-
nos are massive enough to form the inferred population
of dark matter (DM) in the Universe (see e.g. Ref. [15]).
Sterile neutrinos with masses in the keV range act as
DM in the CMB era, but are relativistic in the BBN era,

when they do not significantly impact the expansion rate
due to their negligible energy density (compared to the
Fermi-Dirac value).

Early works in this direction studied right-handed ster-
ile neutrinos with masses ms ≈ 0.1− 100 keV, produced
by the oscillation of left-handed SM neutrinos [16–20].
The mixing angle between the SM and sterile neutrinos
is fixed by the present day DM abundance. In the original
Dodelson-Widrow scenario [17], sterile neutrinos are pro-
duced with a momentum distribution reflecting that of
the active neutrino species, and thus constitute “warm”
DM [21–24]. However, small-scale structure formation
[25–32] and X-ray observations [33–37] appear in signifi-
cant conflict with the fiducial Dodelson-Widrow scenario,
hence prompting the search for alternative sterile neu-
trino production mechanisms [18, 38–55].

In this paper, we examine in detail the resonant pro-
duction of sterile neutrinos in the presence of a small
primordial lepton asymmetry. Originally proposed by
Shi and Fuller [38], this production mechanism makes
use of a small lepton asymmetry to modify the plasma’s
interaction with SM neutrinos in such a manner as to res-
onantly produce sterile neutrinos at particular momenta
[18, 41, 56]. This generically results in ‘colder’ DM dis-
tribution which improves consistency with models of cos-
mological structure formation [57–65], while requiring a
modest primordial lepton asymmetry, which is relatively
poorly constrained [66–70].

Sterile and active neutrino mixing, which is needed for
the former’s production, also leads to their decay [71,
72]. For typical values of the sterile neutrino mass this
predicts an X-ray flux from the DM distribution in the
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low redshift Universe [18, 33]. This has been the subject
of much recent interest, due to hints of an excess flux
at ∼ 3.5 keV in stacked X-ray spectra of several galaxy
clusters [73] and in observations of M31, the Milky Way,
and Perseus [74, 75]. There is currently an active debate
on the existence, significance and interpretation of this
excess [76–83]. In the present work, we use this tentative
signal as a motivation to study in detail the physics of
sterile neutrino production in the early Universe, but the
machinery we develop is more generally applicable to the
broader parameter space of the Shi-Fuller mechanism.

We present here an updated calculation of resonantly-
produced sterile neutrinos and relax several simplifica-
tions that had been adopted previously in the litera-
ture. Furthermore, we leverage recent advances in our
understanding of the quark-hadron transition in order
to include a more realistic treatment of the strongly-
interacting sector. Our motivation is twofold: a) improve
the treatment of lepton asymmetry, which is a crucial
beyond-SM ingredient in the mechanism, and b) provide
realistic sterile neutrino phase space densities (PSDs)
and transfer functions for matter fluctuations, which are
starting points for studying cosmological implications on
small scales. Our improvements to the sterile neutrino
production calculation can broadly be classified in three
categories.

Firstly, we study how the cosmic plasma reprocesses a
primordial lepton asymmetry. For models that can ex-
plain the above X-ray excess, the majority of sterile neu-
trinos are produced at temperatures above 100 MeV [56].
At these temperatures, there is a significant population
of either quarks or mesons, depending on whether the
temperature is above or below the quark-hadron transi-
tion. Since these hadronic species are coupled to neu-
trinos and charged leptons through weak processes, the
establishment of chemical equilibrium among the differ-
ent constituents of the cosmic plasma will automatically
transfer a primordial lepton asymmetry to the hadronic
sector. An illustrative example is the reaction

νµ + µ+ 
 π+, (1)

which can redistribute an initial neutrino asymmetry into
charged lepton and hadronic asymmetries. At lower tem-
peratures, the asymmetry is redistributed to a lesser de-
gree between the leptonic flavors. As we discuss in the
body of the paper, this redistribution modifies the dy-
namics of the resonant sterile neutrino production, re-
sulting in a modified final PSD.

Secondly, we incorporate several new elements to the
calculations of the neutrino opacity (i.e. the imaginary
part of the self-energy) at temperatures 10 MeV ≤ T ≤
10 GeV. Accurate neutrino opacities are needed since
they basically control the production rate of sterile neu-
trinos through cosmic epochs. Early works on neutrino
interactions in the early Universe [4, 18, 84] assumed that
neutrinos largely scattered off relativistic particles and
thus scaled their cross-sections with the center-of-mass
(CM) energy. In addition, these calculations also ne-
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FIG. 1: Sterile neutrino DM parameter space: shaded
regions are consistent with the X-ray signal at 1, 2 and 3 σ.
The best determined parameters are from the MOS stacked
clusters of Ref. [73]. Statistically consistent signals are found
in their core-removed Perseus spectrum, and M31 [74]. The
lines show constraints at the 90% level from Chandra
observations of M31 (H14) [87], stacked dwarf galaxies (M14)
[88], and Suzaku observations of Perseus (T15) [89]. Stars
mark the models that we study in the body of the paper.

glected the effects of particle statistics. Under these two
simplifying assumptions, the opacity Γ(Eνα) for an input
neutrino of energy Eνα is of the form

Γ(Eνα) = λ(T )G2
FT

4Eνα , (2)

where GF is the Fermi coupling constant, and λ(T ) is a
constant that depends on the number and type of avail-
able relativistic species in the cosmic plasma. References
[20, 85] subsequently developed a framework to include
particle masses, loop corrections, and particle statistics
in the neutrino opacity calculation. In the present work,
we add previously-neglected contributions to the opacity
such as two- and three-body fusion reactions, and also
use chiral perturbation theory to compute the hadronic
contribution to the opacity below the quark-hadron tran-
sition. We find both quantitative and qualitative mod-
ifications to the form of Eq. (2). Wherever we present
matrix elements, we use the ‘–+++’ metric signature.

Thirdly, we fold the asymmetry redistribution and
opacity calculations into the sterile neutrino production
computation, and provide updated PSDs for the range of
parameters relevant to the X-ray excess. As part of this
process, we carefully review and correct the numerical
implementation of the sterile neutrino production used in
Ref. [63]. Our sterile neutrino production code is publicly
available at https://github.com/ntveem/sterile-dm.
We finally use the updated sterile neutrino PSDs in a
standard cosmological Boltzmann code [86] and provide
new dark matter transfer functions.

We organize the paper such that the beginning sections

https://github.com/ntveem/sterile-dm
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deal with SM physics, while the later ones apply their
results to sterile neutrino DM. We introduce the produc-
tion mechanism in Sec. II. We then study the asymmetry
redistribution in Sec. III and active neutrino opacities in
Sec. IV. Finally, we apply these results to sterile neutrino
production in Sec. V, evaluate transfer functions for mat-
ter fluctuations in Sec. VI, and finish with a discussion of
our assumptions and uncertainties in Sec. VII. We collect
technical details into the appendices.

II. OVERVIEW OF RESONANT STERILE
NEUTRINO PRODUCTION

In this section, we briefly review the resonant pro-
duction of sterile neutrinos in the early Universe. We
first present the specific scenario that we consider in this
work, and then discuss the Boltzmann formalism used
to compute the out-of-equilibrium production of sterile
neutrinos. We finally discuss how the presence of the
thermal bath and lepton asymmetry change the neutrino
self-energy and govern the sterile neutrino production.
We refer the reader to Refs. [18, 38, 56] for more details.

A. Assumptions

In our current study, we focus on the following sce-
nario.

1. We consider an extra sterile neutrino species, νs,
that is massive compared to the SM neutrinos
νe/µ/τ , which we take to be effectively massless.
The propagation (light/heavy) and interaction (ac-
tive/sterile) eigenstates are related by a unitary
transformation, the most general version of which
is a 4× 4 matrix. We assume that the sterile neu-
trino mixes with only one of the SM ones, which
we take to be the muon neutrino, i.e.,

(
Ψνµ

Ψνs

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Ψ0

Ψms

)
. (3)

The fields on the left- and right-hand sides are in-
teraction and mass (ms) eigenstates, respectively,
and θ is the active-sterile mixing angle. The choice
of a muon neutrino is arbitrary, and reflects the
choice of previous work [18, 63].

2. We assign a non-zero lepton asymmetry to the pri-
mordial plasma. In the general case, each SM flavor
has its own asymmetry, but we assume a non-zero
value only for the mu flavor (i.e. the one that mixes

with the sterile neutrino):

∆n̂να + ∆n̂α− ≡ L̂α = δαµL̂µ, (4)

where the dimensionless asymmetry ∆n̂A in species
A is the temperature-scaled difference between the
particle and anti-particle densities, ∆n̂A ≡ (nA −
nĀ)/T 3, and δαµ is the Kronecker delta. In general,
entropy-scaled asymmetries are preferable, since
they are conserved through epochs of annihilation.
However, the definition used in Eq. (4) simpli-
fies comparison with lattice QCD calculations in
Sec. III. We fix by hand the mu lepton asymmetry
at high temperatures to produce the canonical DM
density, ΩDMh

2 = 0.1188 in the current epoch [2].

In the rest of the paper, we use a hat to indicate tem-
perature scaled quantities. We choose to study the pa-
rameter space of interest for resonantly produced ster-
ile neutrino DM consistent with the recent X-ray signal.
Figure 1 shows a section of the ms and sin2 2θ plane with
contours for the unidentified lines of Refs. [73, 74], along
with constraints from Chandra observations of M31 [87],
stacked dwarf galaxies [88], and Suzaku observations of
Perseus [89]. The stars show a range of mixing angles at
a specific value of ms, and mark models that we study in
Sections V and VI.

For all these models, the bulk of the sterile neutrinos
are produced at temperatures well below the masses of
the weak gauge bosons (∼ 80 GeV), but above weak de-
coupling at T ∼ 1.5 MeV [56]. Active-active neutrino
oscillations in the primordial plasma are suppressed at
these temperatures [90], hence it is consistent to assign
individual asymmetries in Eq. (4) and neglect electron
and tau neutrino mixing in Eq. (3).

B. Boltzmann Formalism

In its full generality, out-of-equilibrium sterile neutrino
production (via oscillations) is best described by the evo-
lution of the two-state density matrix of the neutrinos in
the active–sterile (interaction) basis [91–94].

For the parameter range in Fig. 1, most sterile neutri-
nos are produced above temperatures T & 100 MeV. At
these temperatures, the two state system is collisionally
dominated, i.e. the interaction contribution dominates
the vacuum oscillations. In this regime, the evolution
of the density matrix separates out and yields a quasi-
classical Boltzmann transport equation for the diagonal
terms, which are the PSDs of the active and sterile com-
ponents [95–97]. The Boltzmann equation for the sterile
neutrino PSD is

∂

∂t
fνs(p, t)−H p

∂

∂p
fνs(p, t) =



4

∑

νx+a+···→i+...

∫
d3pa

(2π)32Ea
. . .

d3pi
(2π)32Ei

. . . (2π)4δ4(p+ pa + · · · − pi − . . . )

× 1

2

[
〈Pm(νµ → νs; p, t)〉 (1− fνs)

∑
|M|2i+···→a+νµ+...fi . . . (1∓ fa)

(
1− fνµ

)
. . .

−〈Pm(νs → νµ; p, t)〉fνs
(
1− fνµ

)∑
|M|2νµ+a+···→i+...fa . . . (1∓ fi) . . .

]
. (5)

We can write an analogous equation for the antineu-
trinos. Here, the f(p) are PSDs for particles with three-
momentum p and energy E, and H is the Hubble expan-
sion rate. The right-hand side sums over all reactions
that consume or produce a muon neutrino. The symbol∑
|M|2 denotes the squared and spin-summed matrix

element for the reaction, and the multiplicative factors
of (1 ∓ f) implement Pauli blocking/Bose enhancement
respectively. The factor of 1/2 accounts for the fact that
only one (i.e. the muon neutrino) state in the two-state
system interacts [91–93]. The Pm are active–sterile os-
cillation probabilities in matter, which depend on the
vacuum mixing angle θ, and are modified by interactions
with the medium. The latter are parametrized by the
neutrino self energy [84], and the ‘quantum damping’
rate for active neutrinos. In terms of these quantities,
the oscillation probabilities are [96, 97]

〈Pm(νµ ↔ νs; p, t)〉 = (1/2)∆2(p) sin2 2θ

×
{

∆2(p) sin2 2θ +D2(p)

+
[
∆(p) cos 2θ − V L − V th(p)

]2}−1

. (6)

We have introduced the symbol ∆(p) for the vacuum os-
cillation rate, ∆(p) ≡ δm2

νµ,νs/2p, and split the neutrino

self energy into the lepton asymmetry potential V L, and
the thermal potential V th (the asymmetry contribution
enters with the opposite sign in the version of Eq. (6)
for antineutrinos). The quantity D(p) is the quantum
damping rate, and equals half the net interaction rate of
active neutrinos [the factor of half enters for the same
reason as it does in Eq. (5)]. The net interaction rate for
a muon neutrino is

Γνµ(p)

=
∑

νx+a+···→i+...

∫
d3pa

(2π)32Ea
. . .

d3pi
(2π)32Ei

. . .

× (2π)4δ4(p+ pa + · · · − pi − . . . )

×
∑
|M|2νµ+a+···→i+...fa . . . (1∓ fi) . . .

(7)

We simplify the phase-space integrals in Eq. (5) by us-
ing detailed balance to equate the forward and back-
ward reaction rates. The resulting Boltzmann equation
for quantum-damped and collisionally-driven sterile neu-
trino production is [18]

∂

∂t
fνs(p, t)−H p

∂

∂p
fνs(p, t)

≈
Γνµ(p)

2
〈Pm(νµ ↔ νs; p, t)〉

[
fνµ(p, t)− fνs(p, t)

]
,

(8)

with a related equation for antineutrinos. There are sub-
tleties with the effects of quantum-damping in the case
of resonance [98], but tests with the full density matrix
formalism find that the quasi-classical treatment is ap-
propriate [56].

C. Asymmetry and Thermal Potentials

We now expand on the origins of the asymmetry and
thermal potentials appearing in Eq. (6). These potentials
encapsulate the self energy of propagating active neutri-
nos due to interactions with the plasma. Under the con-
ditions we are interested in, there are three contributions
to the neutrino self energy: a) an imaginary part pro-
portional to the net neutrino opacity, b) a real part due
to finite weak gauge boson masses (V th), and c) a real
part proportional to asymmetries in weakly interacting
particles (V L). We follow the treatment in Ref. [84], and
recast it in terms of the quantities that we compute later.

Figure 2 shows lowest-order contributions to active
neutrinos’ self energy. Thick red lines are thermal prop-
agators of weakly charged species in the background
plasma. There are two corrections - bubbles and tad-
poles, shown in Fig. 2a and 2b respectively. The back-
ground fermion is a lepton of the same flavor in the for-
mer, and any weakly charged species in the latter.

A massless active neutrino’s ‘dressed’ propagator is

G−1
να (pνα) = 6pνα − bνα(pνα) 6u (1− γ5) /2, (9a)

bνα(pνα) = b(0)
να + b(1)

να ωνα , ωνα = −pνα · u. (9b)

Here, pνα and u are the neutrino and plasma’s four-
momenta, 6v is shorthand for γµvµ, and bνα is the left
handed neutrino’s self energy. Equation (9b) divides this
self energy into two contributions that affect the particle
and anti-particle poles of Eq. (9a) differently. Figure 3
illustrates their association with asymmetry and thermal
potentials:

V L
να = b(0)

να , (10)
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Ψνα Ψνα

W±, Z0

Ψf

(a) bubble diagram

Ψνα Ψνα

Z0

Ψf

(b) tadpole diagram

FIG. 2: Lowest order contributions to a propagating active
neutrino’s self energy. Red lines are thermal propagators. In
(a), f is any species with weak charge. In (b), f = να, α

−.

V th
να (Eνα) = b(1)

ναEνα . (11)

Ref. [84] computes these terms by summing over all
species in Fig. 2. Both kinds of diagrams contribute
to the asymmetry potential, while only bubble diagrams
contribute to the thermal potential. We write the answer
in terms of the leptons’ asymmetries, and the densities
of the strong fluid’s conserved quantities:

V L
να =

√
2GF

[ ∑

β∈{e,µ,τ}

(
δαβ −

1

2
+ 2 sin2 θW

)
∆nβ−

+
∑

β∈{e,µ,τ}

(1 + δαβ) ∆nνβ −
1

2
∆nB

+
(
1− 2 sin2 θW

)
∆nQ

]
, (12a)

V th
να (Eνα) = −8

√
2GF

3

[
ρνα
M2
Z

+
ρα
M2
W

]
Eνα . (12b)

In the above equations, θW is the weak mixing angle,
and MZ/W are the masses of the weak gauge bosons.
The symbol δαβ is a Kronecker delta, the quantities ρα
and ρνα are net energy densities of charged and neutral
leptons, respectively, and ∆nB and ∆nQ are densities of
the baryon number B, and electric charge Q, respectively.
The standard model baryon number asymmetry is small
compared to the lepton asymmetry of interest [3], hence
can be set to zero for the purposes of this calculation.

According to the assumptions in the first part of this
section, the plasma starts out with a net lepton asymme-
try in the mu flavor. As we showed in Sec. I, this asymme-
try is redistributed between muons and muon neutrinos.
Moreover leptons of other flavors acquire asymmetries
that respect Eq. (4), and the strong fluid acquires a net
electric charge density ∆nQ to maintain overall neutral-
ity. Equation (12a) shows how the asymmetry poten-
tial depends on the redistributed asymmetries, which we
study in the ensuing section.

Re(ωνα)

Im(ωνα)

Eνα = |pνα |
V L + V th

Γ/2
V L − V th

FIG. 3: Matter potentials for massless neutrinos in the
plasma’s rest frame: filled and un-filled circles are poles at
finite and zero temperature, respectively. See Sec. IV for the
imaginary shift.

III. REDISTRIBUTION OF AN INPUT
ASYMMETRY

Weak processes couple leptonic and hadronic degrees
of freedom in the primordial plasma. In this section, we
study this coupling’s effect on lepton asymmetries1. We
define relevant suceptibilities in Sec. III A, and compute
them over a range of temperatures in Sec. III B.

A. Definitions and parametrization

Let us consider the primordial plasma at temperatures
above the quark-hadron transition temperature, TQCD.
The following reactions couple leptons of different flavors,
and the quark and lepton sectors:

να + β− 
 νβ + α−, (13a)

να + α+ 
 a+ b̄, (13b)

where a and b are quarks with charges of +2/3 and −1/3
respectively. Free quarks no longer exist at temperatures
below TQCD, and the reactions in Eq. (13b) transition to
ones involving mesons, like Eq. (1).

In principle, we could study the effect of all these
reactions on input asymmetries, but it is a daunting
task; one that is further complicated by the quark-
hadron transition. The following consideration of the
relevant timescales suggests a solution. In the radi-
ation dominated era, the Hubble rate is H ≈ 2 ×
105 s−1 g∗

1/2(T/GeV)2. At temperatures above the
quark-hadron transition, the rates of reactions in (13)
are Γ(T ) ' G2

FT
5 ≈ 2 × 1014 s−1 (T/GeV)5, while the

relevant rates below the transition are those of pion de-
cays. The most important channel for the latter is the

1 During this preparation of this manuscript, we became aware of
Ref. [99], which points out the relevance of this effect to ster-
ile neutrino production, and estimates it under the simplifying
Stefan-Boltzmann approximation for free quarks.
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muonic decay, π+ → µ+ + νµ, which is faster than the
Hubble rate (Γπ+→µ++νµ = 3.8 × 107 s−1). Thus, a sig-
nificant number of the reactions in Eq. (13) are faster
than the Hubble rate2.

This has two primary consequences. Firstly, high re-
action rates enforce kinetic equilibrium, i.e. all active
species’ PSDs approach the Fermi-Dirac or Bose-Einstein
forms. Secondly, forward and backward reactions are in
chemical equilibrium, one effect of which is to equate the
chemical potentials for both sides (the Saha equation).
However, it has another implication – the plasma’s com-
plicated internal dynamics can be abstracted into a few
parameters or susceptibilities that completely specify its
response to small external ‘forces’, or in this case, input
asymmetries. All that remains is to compute the suscep-
tibilities relevant to our problem.

We now define a few useful quantities and notation.
Given any conserved quantity F , the symbol µF denotes
its chemical potential. The asymmetry ∆n̂A, in a particle
A, is a function of its chemical potential µ̂A ≡ µA/T . The
quantities ∆n̂A and µ̂A are small, and in the linearized
limit, related by

∆n̂A = χ̂Aµ̂A, (14)

where χ̂A ≡ χA/T
2 is the number-density susceptibility.

The lepton asymmetries in the three flavors are

L̂α = ∆n̂α− + ∆n̂να
= χ̂α− µ̂α− + χ̂να µ̂να , α ∈ {e, µ, τ}. (15)

The strong fluid is described by the densities of its con-
served quantities: the charge and baryon-number densi-
ties ∆n̂Q and ∆n̂B, respectively3. The chemical equilib-
rium of the reactions in Eq. (13) implies

µ̂να − µ̂α− − µ̂Q = 0, α ∈ {e, µ, τ}. (16)

Here µ̂Q is the chemical potential for adding a unit of
electric charge. The conserved quantities’ densities are
related to their chemical potentials by their susceptibili-
ties:

(
∆n̂Q

∆n̂B

)
=

(
χ̂Q

2 χ̂QB
11

χ̂BQ
11 χ̂B

2

)(
µ̂Q

µ̂B

)
. (17)

2 The electronic channel for the pion decay, π+ → e+ + νe is
helicity-suppressed (Γπ+→e++νe

= 4.7 × 103 s−1) and of the
order of the Hubble rate at temperatures T ' 50 MeV, hence
one might worry that leptons with electronic flavor depart from
equilibrium. This is resolved by the observation that they are
coupled to muonic species by other non-helicity suppressed, and
consequently faster, reactions such as e+ + νe ↔ µ+ + νµ and
µ+ ↔ e+ + νe + ν̄µ.

3 We do not follow the strangeness, S. since it is not con-
served in weak reactions. Above the transitions, it disap-
pears at the Cabbibo–suppressed rate ΓS ' |Vus|2G2

FT
5 ≈

1013s−1(T/GeV)5, while below the transition the relevant rate
is the Kaon inverse lifetime, ΓK± = 8.1× 107 s−1.

Equation (17), along with net charge and baryon number
conservation, yields the constraint equations

∆n̂B = χ̂BQ
11 µ̂Q + χ̂B

2 µ̂B ≈ 0, (18)

0 = χ̂Q
2 µ̂Q + χ̂QB

11 µ̂B −
∑

α∈{e,µ,τ}

∆n̂α−

= χ̂Q
2 µ̂Q + χ̂QB

11 µ̂B −
∑

α∈{e,µ,τ}

χ̂α− µ̂α− . (19)

Equations (15), (16), (18) and (19) are eight linear equa-
tions for eight unknowns. The resulting asymmetries
(obtained via their chemical potentials) are the ‘redis-
tributed’ input lepton asymmetries Lα.

We symbolically represent the solutions as

µ̂A =
∑

α∈{e,µ,τ}

∂µ̂A

∂L̂α
L̂α, (20)

where the coefficients (∂µ̂A/∂L̂α) depend on the suscep-
tibilities of both the leptons and the strong fluid. We
also express the redistributed asymmetries as

∆n̂A =
∑

α∈{e,µ,τ}

∂∆n̂A

∂L̂α
L̂α =

∑

α∈{e,µ,τ}

χ̂A
∂µ̂A

∂L̂α
L̂α. (21)

At the temperatures of interest, the lepton susceptibili-
ties are essentially given by the free particle, or Stefan-
Boltzmann, formula:

χ̂A(m̂A) = −gA
π2

∫ ∞

0

dp̂ p̂2n̂′F

(√
p̂2 + m̂2

A

)
. (22)

In this equation, gA and m̂A ≡ mA/T are the
spin degeneracy and mass respectively, n̂′F(x) =
(d/dx){1/[exp (x) + 1]} is the derivative of the Fermi-
Dirac distribution. The strongly interacting fluid’s sus-
ceptibilities are considerably more complicated, espe-
cially near the quark-hadron transition. We evalu-
ate them using a number of techniques: perturbative
quantum chromodynamics (QCD) at high temperatures,
matching to lattice QCD results near the transition, and
a hadron resonance gas (HRG) approximation at low
temperatures.

B. Susceptibilities of the strongly-interacting
plasma

In this section, we compute the strongly-interacting
plasma’s susceptibilities to baryon number and electric
charge fluctuations. The susceptibilities are the following
derivatives of the QCD pressure

χ̂X2 =
∂2p̂QCD

∂µ̂2
X

∣∣∣∣
µ̂X=0

, (23)

χ̂XY11 =
∂2p̂QCD

∂µ̂X∂µ̂Y

∣∣∣∣
µ̂X ,µ̂Y =0

, (24)
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where X, Y ∈ {B, Q}, µ̂X ≡ µX/T is the chemical po-
tential of the conserved charge X, and the pressure p̂QCD

is given by the logarithm of the QCD partition function
ZQCD.

p̂QCD ≡
pQCD

T 4
=

1

V T 3
lnZQCD(V, T, µQ, µB), (25)

where V is the volume. In Eq. (24), the off-diagonal term
χ̂XY11 encodes the correlation between the fluctuations of
conserved charges X and Y . Note that the susceptibili-
ties in Eqs. (23) and (24) are dimensionless.

The sterile neutrino production calculation carried in
the present work requires knowledge of these suscepti-
bilities over a broad range of temperatures, both above
and below the quark-hadron transition. At very high
temperatures T � TQCD, the QCD pressure can be com-
puted using a standard perturbative approach, while at
intermediate temperatures T ' TQCD, perturbative tech-
niques become inadequate; we must rely on lattice cal-
culations (see e.g. [100, 101]) to compute susceptibilities
through the quark-hadron transition. At low temper-
atures T < TQCD, we compute the QCD pressure using
the hadron resonance gas (HRG) model [102, 103], which
approximates the QCD partition function as a sum over
all known hadronic resonances. Our strategy to compute
the susceptibility tensor over the whole required range
of temperatures is as follows: we first separately calcu-
late it both above and below the quark-hadron transition
using either perturbative or HRG techniques, and then
smoothly join the results with those from lattice QCD
computations in the regions of overlap.

1. High-Temperature Limit: Perturbative Approach

We follow the approach of Ref. [104] to perturbatively
compute the QCD pressure and its derivative up to order
O(g2

s ), where gs is the standard QCD gauge coupling
constant. The starting point is to write the QCD pressure
as

p̂QCD = αMS
E1 + g̃2

3α
MS
E2 , (26)

where g̃3 is the effective gauge coupling

g̃2
3 = g2

s +
g4

s

(4π)2
αMS

E7 , (27)

and the functions αMS
En are given by

αMS
E1 = dA

π2

45
+ 4CA

Nf∑

i=1

F1

(
m̂2
i , µ̂i

)
, (28)

αMS
E2 = −dA

Nf∑

i=1

{
1

6
F2

(
m̂2
i , µ̂i

) [
1 + 6F2

(
m̂2
i , µ̂i

)]

+
m̂2
i

4π2

(
3 ln

µ̄

mi
+ 2

)
F2

(
m̂2
i , µ̂i

)

−2m̂iF4

(
m̂2
i , µ̂i

)
}
− dACA

144
, (29)

αMS
E7 =

22CA

3

[
ln

(
µ̄eγE

4πT

)
+

1

22

]

−2

3

Nf∑

i=1

[
2 ln

µ̄

mi
+ F3

(
m̂2
i , µ̂i

)]
. (30)

Here, dA ≡ N2
c − 1 and CA ≡ Nc stand for the gauge-

group constants for the adjoint and fundamental repre-
sentation of SU(Nc), respectively. In this work, we adopt
the standard value of Nc = 3. In the above, Nf is the
number of quark flavors, µ̄ is the energy scale at which
the masses and the coupling constant are evaluated (not
to be confused with the chemical potentials), and γE is
the Euler-Mascheroni constant. The functions F1, . . . , F4

are given in appendix A.
We also need a prescription for the running of the cou-

pling constant gs and of the quark masses with the energy
scale µ̄. As in Ref. [104], we adopt a simple 1-loop run-
ning which yields

g2
s (µ̄) =

24π2

(11CA − 4TF) ln (µ̄/ΛMS)
, (31)

mi(µ̄) = mi(µ̄ref)

(
ln (µ̄ref/ΛMS)

ln (µ̄/ΛMS)

) 9CF
11CA−4TF

, (32)

where TF = Nf/2, CF = (N2
c − 1)/(2Nc), and ΛMS is the

MS renormalization scale. Here, we take µ̄ref = 2 GeV.
We follow Ref. [105] and use the criterion of minimal
sensitivity to set the scale µ̄

µ̄ = 4πTe−γEe
−Nc+4Nf ln 4

22Nc−4Nf . (33)

To compute the susceptibilities, we substitute Eq. (26)
into Eqs. (23) and (24), remembering that the relation
between the quark chemical potentials and those of the
conserved baryon number and electric charges is

(
µ̂u
µ̂d

)
=

(
1
3

2
3

1
3 −

1
3

)(
µ̂B

µ̂Q

)
, (34)

where µ̂u and µ̂d are the chemical potentials for up- and
down-type quarks, respectively. We numerically evalu-
ate the integrals in the functions F1, . . . , F4. The tem-
peratures relevant to sterile neutrino production are well
below the top quark mass; we therefore adopt Nf = 5.
We use quark masses evaluated at the reference scale µ̄ref

from Ref. [1]. The only free parameter in the perturba-
tive calculation is the MS renormalization scale, which
we set so as to match with the lattice calculation in the
regime where both approaches are valid. This entails us
setting ΛMS = 105 MeV; the results are only logarithmi-
cally dependent on the particular value we choose.
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2. Intermediate Temperatures: Lattice Calculations

Susceptibilities at temperatures close to the quark-
hadron transition have been previously studied in the
context of heavy ion collision experiments [106], where
the crossover is signaled by fluctuations in the plasma’s
quantum numbers [107, 108]. At zero chemical poten-
tial, these are studied in lattice QCD by mapping to
the expectation values of traces. Their auto- and cross-
correlations are directly related to the diagonal and off-
diagonal elements of the susceptibility matrix of Eq. (17)
[109].

We directly use the susceptibilities so computed at in-
termediate temperatures. Specifically, we use the results
from the Wuppertal-Budapest (WB) lattice QCD collab-
oration [100] and the HotQCD collaboration [101]. Even
though the groups use different staggered fermion actions
on the lattice, their results are broadly consistent with

one another. They report the susceptibilities χ̂Q
2 , χ̂B

2 ,

and χ̂QB
11 , together with their estimated errors, in (2+1)-

flavor QCD extrapolated to the continuum limit4. The
lattice QCD results are in good agreement with the per-
turbative calculations described above for the tempera-
ture range 250 MeV . T . 300 MeV, above which they
underpredict the primeval plasma’s susceptibility owing
to the charm quark’s influence [110]. Therefore, we do
not consider the lattice QCD calculations at tempera-
tures above T & 300 MeV to avoid biasing our results.

3. Low-Temperature Limit: Hadron Resonance Gas

At temperatures below the quark-hadron transition,
we model the strongly-interacting sector as a gas of
hadronic resonances. In this HRG model, the pressure
entering Eq. (25) is given by

p̂HRG =
1

V T 3

( ∑

i∈mesons

lnZM
i (V, T, µQ) (35)

+
∑

j∈ baryons

lnZB
j (V, T, µQ, µB)

)
,

where

lnZM
i = −V T

3

2π2
di

∫ ∞

0

dp̂ p̂2 ln (1− zie−
√
p̂2+m̂2

i ),(36)

lnZB
i =

V T 3

2π2
di

∫ ∞

0

dp̂ p̂2 ln (1 + zie
−
√
p̂2+m̂2

i ), (37)

where di denotes the degeneracy factor of species i, and
zi is the fugacity

zi = eBiµ̂B+Qiµ̂Q . (38)

4 The WB collaboration does not directly report χ̂QB
11 , but we infer

it from their results via a change-of-basis operation.

Here Bi and Qi are the baryon number and electric charge
of species i, respectively. We construct the partition func-
tion given in Eq. (35) by summing over all hadron res-
onances with mass below 2 GeV from the particle data
group [1]. We then compute the susceptibilities using
Eqs. (23) and (24). We numerically perform the inte-
grals in Eqs. (36) and (37).

We find that the HRG results are in good agreement
with the lattice QCD calculations for temperatures 125
MeV. T . 150 MeV, and we smoothly match the HRG-
derived susceptibilities to those from the lattice technique
in this regime.

4. Susceptibilities at all Temperatures

We combine results from the three regimes into a sin-
gle smooth susceptibility tensor, valid over the range of
temperatures relevant to the production of sterile neu-
trinos with masses of order O(10 keV). Figures 4a, 4b,

and 4c display the susceptibilities χ̂Q
2 , χ̂B

2 , and χ̂QB
11 for

temperatures satisfying 10 MeV < T < 10 GeV. The
thick solid black lines are our smooth fits to the three
regimes, while the dashed red and cyan dotted lines are
the HRG and perturbative results, respectively. We also
show the results from the WB lattice QCD collaboration
in the neighborhood of the quark-hadron transition. For
comparison, we also show the susceptibilities computed
in the Stefan-Boltzmann limit, i.e., assuming free quarks
throughout and using Eq. (22).

We observe that the HRG calculation agrees well with
the lattice QCD result for T . 150 MeV, but systemati-
cally overpredicts the susceptibilities at higher tempera-
tures. The perturbative approach is consistent with the
available lattice QCD data at T & 225 MeV, but again
systematically overpredicts the susceptibilities at lower
temperatures. Generally, the Stefan-Boltzmann approxi-
mation overestimates the susceptibilities by a factor of or-
der unity, except near the quark-hadron transition. Inter-
estingly, we observe an accidental cancellation in the off-

diagonal susceptibility, χ̂QB
11 , in the (2+1)-flavor model

which does not appear in the Nf = 5 theory. This arises
because the sum of the electric charges of the up, down,
and strange quarks exactly vanishes. Hence, we expect

χ̂QB
11 → 0 for temperatures above the strange quark mass

in the (2+1)-flavor model. In the Nf = 5 model however,
the charm quark becomes rapidly important at T & 300

MeV, leading to a sharp turnover in χ̂QB
11 near this tem-

perature.

Given a set of infinitesimal lepton asymmetries, we
solve for the chemical potentials using the above suscep-
tibilities in Eqs. (15), (16), (18) and (19), We obtain the
redistributed asymmetries in all the constituent species
by using these chemical potentials, along with the ap-
propriate susceptibilities in Eq. (21). Figure 4d plots the
redistributed asymmetries for an infinitesimal input mu
leptonic asymmetry. We note the following features:
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FIG. 4: Panels (a)-(c): Components of the quadratic susceptibility tensor for the primordial plasma’s electric charge and
baryon number. In all panels, the thick solid black line shows our smooth fit used in the computation of sterile neutrino
production. At low temperatures, we illustrate the HRG results with dashed red lines, while the high-temperature
perturbative results are shown with dotted cyan lines. We also show the results from the WB lattice QCD collaboration[100]
with green errorbars. For comparison, we also display the Stefan-Boltzmann approximation to the susceptibilities assuming
free quarks at all temperatures. Panel (d): Effective populations of all leptonic degrees of freedom after the redistribution of
an infinitesimal mu leptonic asymmetry at all temperatures.

1. At temperatures T > 2 GeV, the redistribution is
efficient and ' 60% of the mu leptonic asymmetry
ends up in the muons. All the charged leptons are
effectively massless at this epoch, hence the popu-
lations of the electron and tau flavors are identical.

2. The rise in the mu and tau lepton populations
above temperatures of ' 25 MeV and 300 MeV
reflects, in part, the rise in their particle number
susceptibilities as the temperature becomes com-
parable to their masses [see Eq. (22)]. However,
the largest contribution to the former is from the
disappearance of the hadronic degrees of freedom
below the quark-hadron transition, and the associ-
ated drop in the strongly interacting fluid’s suscep-
tibilities.

3. The ‘kink’ in all the redistributed asymmetries

close to temperatures T ' 170 MeV is a signa-
ture of the sharp change in the strongly interacting
fluid’s susceptibilities at the quark-hadron transi-
tion [see Figs. 4a, 4b and 4c].

4. At lower temperatures, T . 30 MeV, the redis-
tribution is inefficient and most of the asymmetry
ends up in the muon neutrinos. Moreover, the elec-
tron neutrino and the muon have identical (small)
populations. This is characteristic of inelastic neu-
trino scattering, νµ + e− → νe + µ−, which is
the most important channel at these temperatures
(the hadronic susceptibilities are negligible at this
epoch).

These redistributed asymmetries impact sterile neu-
trino production via the asymmetry potential, V L

νµ .

Equation (12a) expresses this potential in terms of the
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FIG. 5: Asymmetry potential V L per unit unscaled mu
lepton asymmetry: Solid line shows the effect of
redistribution using a combination of perturbative QCD,
lattice calculations and the HRG approximation. Dashed
line shows the result using Stefan-Boltzmann approximation
for free quarks. The value is constant (= 2

√
2 = 2.83) in the

absence of redistribution [see Eq. (12a)]. The redistribution
is a ' 10% correction at the most relevant temperatures for
sterile neutrino production (T & 100 MeV).

asymmetries in the populations of the individual charged
and neutral leptons, along with those in the charge and
baryon number of the strongly interacting fluid. As ear-
lier, for an infinitesimal input mu leptonic asymmetry,
the individual asymmetries are formally represented by
the functions in Eq. (21); the solutions for the charged
and neutral leptons are as plotted in Fig. 4d. We ob-
tain the electric charge density of the strongly inter-
acting fluid, ∆nQ, using net electric charge neutral-
ity, i.e. Eqs. (17) and (19). Tables of susceptibili-
ties, along with the functions in Eq. (21) at a num-
ber of temperatures from 10 GeV down to 10 MeV can
be found at https://github.com/ntveem/sterile-dm/
tree/master/data/tables.

Figure 5 shows the potential per unit physical µ lepton
asymmetry using these solutions; this quantity is con-
stant and equals 2

√
2 = 2.83 in the absence of redistri-

bution. As shown in the figure, asymmetry redistribu-
tion corrects the potential at the ten-percent level above
temperatures T & 100 MeV, which is where the bulk
of the sterile neutrinos are produced. This contribution
changes the resonant momenta, and the resultant sterile
neutrino dark matter’s phase-space densities; we explore
this further in Sec. V.

IV. NEUTRINO OPACITY

In this section, we outline our calculation of muon neu-
trino opacities in the early universe. Initial work in this
area focused on reactions involving leptons, in the con-

text of neutrino decoupling, active–active neutrino os-
cillations and supernova calculations [4, 111, 112]. In
particular, Ref. [111] lists a number of relevant matrix
elements. Our calculations apply to earlier epochs, with
a larger number of reactions due to the population of
hadronic species above the quark-hadron transition.

Early work on sterile neutrino production used simple
prescriptions for the resultant increase in reaction rates
[18, 56]. Recent work in Refs. [20, 85] provides a theoreti-
cal framework to include particle masses and statistics in
the neutrino opacity calculation, and formalism for loop
corrections. We include a number of additional contri-
butions to the neutrino opacities that are significant at
the temperatures relevant to sterile neutrino production.
We adopt the following simplifying assumptions:

1. We neglect small asymmetries in the participating
species’ populations (as for the thermal potential).
This is justified since the scattering rates are non-
zero even in a CP symmetric plasma. Moreover,
we assume thermal and kinetic equilibrium, due
to which the populations of all active species are
Fermi-Dirac/Bose-Einstein distributions.

2. We integrate out the massive gauge bosons, Z and
W± and approximate the weak interaction by a
four-fermion contact term. Consequently, the re-
actions separate into leptonic and hadronic pro-
cesses, depending on the species involved. More-
over, we neglect the thermal populations of Z0 and
W±. These steps are valid at low temperatures and
momentum transfers, i.e., T, s/t/u � MW±/Z0 ≈
80 GeV. We operate in the temperature and energy
ranges

10 MeV < T < 10 GeV, (39)

10−4 < Eνµ/T < 20. (40)

The approximation fails at the higher energies at
the upper end of the temperature range. However,
as we see in Sec. V, the bulk of the sterile neutrinos
are produced at lower temperatures.

3. We assume incoming and outgoing particles to be
non-interacting within two limits – below and above
the quark-hadron transition (see §3.3 of Ref. [113]).
Below the transition, we include hadronic channels
with pseudoscalar and vector mesons5, and neglect
the small population of baryons. Above the transi-
tion, we include reactions with free quarks, i.e. we
neglect the strong coupling constant.

This approximation fails at temperatures T '
TQCD [104]. We show opacities interpolated
through the transition using a few prescriptions,
whose consequences for sterile neutrino production
we explore in Sec. V.

5 We also include quark production in s-channel reactions at high
CM energies. See Sec. B 1 a for details.

https://github.com/ntveem/sterile-dm/tree/master/data/tables
https://github.com/ntveem/sterile-dm/tree/master/data/tables
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TABLE I: Two-particle to two-particle leptonic reactions
contributing to the muon neutrino opacity: antineutrinos are

similar. Symbol α runs over the other leptonic flavors, i.e.

α ∈ {e, τ}, and
(−)
ν stands for ν/ν̄.

s-channel t-channel mixed

νµ + µ+ → να + α+ νµ + α± → νµ + α± νµ +
(−)
ν µ → νµ +

(−)
ν µ

νµ + ν̄µ → να + ν̄α νµ +
(−)
ν α → νµ +

(−)
ν α νµ + µ± → νµ + µ±

νµ + ν̄µ → α− + α+ νµ + α− → µ− + να νµ + ν̄µ → µ− + µ+

νµ + ν̄α → µ− + α+

The collision integral for a massless muon neutrino is

C[fνµ(Eνµ)] = −Γ(Eνµ)fνµ(Eνµ)

+ Γ(Eνµ)e−Eνµ/T (1− fνµ(Eνµ)), (41)

where Γ and fνµ are the interaction rate (opacity) and
PSD, respectively (This expression satisfies detailed bal-
ance, see assumption # 1). The interaction rate is given
by a sum over all reactions that consume the muon neu-
trino [see Eq. (7)].

It is useful to define the scaled interaction rate

Γ̃(Eνµ) =
Γ(Eνµ)

G2
FT

4Eνµ
. (42)

In the limit where all the particles involved are relativis-
tic, weak cross-sections are proportional to the squared
energy in the CM reference frame. If we ignore parti-
cle statistics, reaction rates follow the scaling of Eq. (2),
hence the scaled rate is proportional to the number of
relativistic degrees of freedom involved [84]. We present
the scaled rates in the rest of this section, in order to
contrast our results with this intuition.

In the rest of the section, we enumerate reactions con-
tributing to the opacity and present final rates under the
above approximations. We elaborate the calculation of
matrix elements in Appendix B.

Table I lists the purely leptonic two-particle to two-
particle reactions contributing to the muon neutrino
opacity. It is similar to the list in Ref. [111], albeit
with tau leptons, which are important at temperatures
T & 400 MeV. We also include ‘three-body fusions’, since
they arise at the same level of approximation. These are
generated by omitting in turn the products in the reac-
tions of Table I, adding their charge conjugates to the re-
actants, subject to the constraint that the product’s rest
mass is strictly greater than the sum of the reactants’. An
example is tau lepton production via νµ+µ+ + ν̄τ → τ+.

Figure 6 shows the leptonic contribution to the muon
neutrino opacity at a temperature T = 100 MeV, using
the matrix elements for reactions in Table I, and related
three-body fusions. For convenience, we only show re-
actions in the top five at any particular momentum bin.
In the numerical implementation, we evaluate the dimen-
sionless quantity Γ(Eνµ)/G2

FT
5 (proportional to the un-

scaled rates) to an accuracy of 10−6 after simplifying the
collision integrals in Eq. (B7) and (B25).

10−4 10−3 10−2 10−1 100 101

Êνµ ≡ Eνµ/T
10−2

10−1

100

101

102

103

Γ̃
(Ê

ν
µ
)

νµµ
+ → νee

+

νµν̄ee
− → µ−

νµ
(−)
ν → νµ

(−)
ν

νµτ
− → µ−ντ

νµe
± → νµe

±

νµµ
± → νµµ

±

νµe
− → µ−νe

νµν̄e → µ−e+

FIG. 6: Scaled muon neutrino opacities through leptonic
reactions, vs energy at T = 100 MeV. Only reactions in the
top five at any particular momentum bin are shown. The

symbol
(−)
ν stands for ν/ν̄.

The quark-hadron transition considerably complicates
the hadronic reactions. We appeal to assumption # 3
and evaluate their rates in two limits: at low and high
temperatures, i.e. T < TQCD and T > TQCD respectively.
Table II lists the hadronic two-particle to two-particle re-
actions contributing to the muon neutrino opacity. At
high temperatures, we list all reactions involving free
quarks, while at temperatures T . TQCD, we assume that
all incoming hadronic degrees of freedom belong to the
pseudoscalar meson nonet (the heaviest member of which
is the eta meson, with a mass of mη = 547.8 MeV). As
in the leptonic case, we also include three-body fusions
involving pseudoscalar mesons or quarks. Examples are
K0 and charm quark production via νµ+µ+ +π− → K0

and νµ + µ+ + s→ c, respectively.

A complication is that at low temperatures, free quark
and parton currents contribute to the initial and final
states for large momentum transfer in the t- and s-
channel respectively (see Appendix B 1 a). For s-channel
reactions, we thus treat individual meson resonances for
center of mass energies < 1 GeV, and use the free quark
model for inclusive cross sections at > 1 GeV. Also im-
portant are ‘two-body fusions’, i.e. reactions with two
particles in the initial state and one in the final state,
with the latter being a pseudoscalar or vector meson.
Table V in Appendix B 2 lists all such reactions included
in our opacities.

Figure 7 shows the hadronic contribution to the muon
neutrino opacity at low and high temperatures, using the
matrix elements for two-particle to two-particle reactions
in Table II, the associated three-body fusions, and two-
body fusions in Table V of Appendix B 2. As earlier, we
only show reactions in the top five at any momentum bin;
the numerical implementation of the first two classes is
unchanged.
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TABLE II: Two-particle to two-particle hadronic reactions
contributing to the µ neutrino opacity: antineutrinos are

similar. Symbols a and b run over quarks with charge

+(2/3)e, and −(1/3)e, respectively, and
(−)
a stands for a/ā.

s-channel t-channel

T > TQCD

νµ + µ+ → a+ b̄ νµ +
(−)
a → νµ +

(−)
a

νµ + ν̄µ → a+ ā νµ +
(−)

b → νµ +
(−)

b

νµ + ν̄µ → b+ b̄ νµ + b→ µ− + a

νµ + ā→ µ− + b̄

T < TQCD
a

νµ + µ+ → π+ + π0 νµ + π± → νµ + π±

νµ + µ+ → K+ +K0 νµ +K± → νµ +K±

νµ + µ+ → π+ +K0 νµ + π− → µ− + π0

νµ + µ+ → K+ + π0 νµ +K− → µ− +K0

νµ + µ+ → K+ + η νµ + π− → µ− +K0

νµ + ν̄µ → π+ + π− νµ +K− → µ− + π0

νµ + ν̄µ → K+ +K− νµ +K− → µ− + η

νµ + π0 → µ− + π+

νµ +K0 → µ− +K+

νµ +K0 → µ− + π+

νµ + π0 → µ− +K+

νµ + η → µ− +K+

a Input neutrinos can produce quarks (s-channel) or probe
mesons’ quark content (t-channel) at T < TQCD for large
momentum transfer in Z0,W±. See Appendix B 1 a for details.

Figure 8a shows the total opacities with muon neutrino
energy at temperatures of 100 MeV and 2 GeV. We note
a few salient features of these rates.

Firstly, we note that the leptonic and hadronic two-
particle to two-particle reaction rates approach the scal-
ing of Eq. (2) at large energies; the downturn at lower
energies is due to Pauli blocking.

Secondly, both sets of rates exhibit a rise at low en-
ergies, which reflects non-zero limiting values of the un-
scaled rates. This is due to the behavior of cross sections
for inelastic collisions involving massive particles, such
as the three body collision νµ + e− + ν̄e → µ− or the
scattering process νµ + µ+ → νe + e+. We illustrate this
by calculating the cross-section for the latter, while ne-
glecting the positron’s rest mass and Pauli blocking for
simplicity. The squared and spin-summed/averaged ma-
trix element for this process is

〈
|M|2

〉
= 128G2

F

(
pνµ · pe+

) (
pµ+ · pνe

)
. (43)

In the limit of zero neutrino energy

(
pµ+ · pνe

)
= −m2

µ/2 +O
(
Eνµ

)
, (44)

which implies that modulus squared is

〈
|M|2

〉
= −64G2

Fm
2
µ

(
pνµ · pe+

)
+O

(
Eνµ

)
. (45)

10−4 10−3 10−2 10−1 100 101
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)
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νµµ
+π− → K0

νµK
− → µ−π0

νµµ
+π0 → K+

νµµ
+ → π+

νµπ
± → νµπ

±

νµπ
− → µ−π0

νµπ
0 → µ−π+

νµµ
+ → π+π0

νµµ
+ → ρ+

νµν̄µ → ρ0

νµµ
+ → ud̄

νµν̄µ → dd̄

(a) T = 100 MeV
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νµµ
+d→ c

νµd→ µ−u

νµµ
+ → ud̄

νµū→ µ−d̄

νµs→ µ−c

(b) T = 2 GeV

FIG. 7: Scaled muon neutrino opacities through hadronic
reactions, vs energy: panels (a) and (b) show rates at
T = 100 MeV and 2 GeV, respectively. Only reactions in the
top five at any particular momentum bin are shown.

Hence the cross section for the µ−neutrino, integrated
over outgoing particles’ directions, is

σνµ =
G2

Fm
2
µ

π
+O

(
Eνµ

)
. (46)

Such non-zero limiting values are responsible for the rise
in the scaled rates for soft neutrinos in Figs. 6 and 7

Thirdly, the hadronic opacities at low temperatures,
i.e. T < TQCD, exhibit a series of peaks. These are sig-
natures of two-body fusions, which are broad resonances
in the propagators of the weak gauge bosons. These in-
clude the production of pseudoscalar mesons (e.g. pion
production via νµ + µ+ → π+) and vector mesons (e.g.
ρ0 production via νµ + ν̄µ → ρ0). In the total opacities
of Fig. 8a, the former is visible as a peak at intermedi-
ate momenta, while the latter are smeared out at large
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(d) Tc = 1000 MeV

FIG. 8: Scaled muon neutrino opacities for a range of energies and temperatures: panel (a) shows total, leptonic, and
hadronic opacities vs energy at T = 100 MeV and 2 GeV. Panel (b) shows opacities at high energies (Eνµ = 20T ) vs
temperature: black lines are two interpolations through TQCD. They are cubic splines labeled by their cutoff temperature, Tc,
as defined in the text. Colored lines are numbers of relativistic degrees of freedom: g∗,KT under assumption # 3, i.e., that of
Kolb and Turner [113] with TQCD = 210 MeV, chosen to match Ref. [104] whose results are g∗,LS(2006). Panels (c) and (d)
show interpolated opacities vs energy and temperature. Blue dashed lines mark ranges where the two values of g∗ differ by
more than 10%, and are a rough guide to where these rates can be trusted. Red dotted lines mark the cutoff temperature.

momenta.

Finally, we observe from Fig. 8a that the total opacities
at high energies exhibit a jump as the temperature passes
through TQCD. This is due to the increase in the number
of hadronic degrees of freedom, as evidenced by the sizes
of the jumps in hadronic- and leptonic contributions (the
latter due to the tau lepton turning on).

This is shown clearly in Fig. 8b, which shows the scaled
muon neutrino opacities at high energies for a range of
temperatures. Note that these rates assume that the

hadronic species above and below the transition are free
quarks and mesons respectively (assumption # 3 in our
list above). For comparison, the figure shows the num-
ber of relativistic degrees of freedom, g∗, both under this
assumption and from Ref. [104], which implements the
running of the strong coupling constant. We note the
significant deviation close to the quark-hadron transition
(TQCD = 210 MeV in the lattice calculations underlying
Ref. [104]).

Motivated by this, we explore two methods of interpo-
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lating opacities through the quark-hadron transition. In
each of them, we choose a cutoff temperature, Tc, above
which we use the free quark results, and use a cubic spline
interpolation in between. We emphasize that this is not
physically motivated; the actual rates, and their matrix
elements, need to incorporate the strong coupling con-
stant and its running. The figure shows interpolations
with Tc = 250 MeV and 1000 MeV, which we expect to
bracket the range of rates.

With this caveat, Figs. 8c and 8d show interpolated µ
neutrino opacities for a range of energies and tempera-
tures, with Tc = 250 MeV and 1000 MeV, respectively.
In the rest of the paper, we use these scattering rates
and the potentials defined in Sec. II to study sterile neu-
trino production via oscillation in the early universe. We
use both interpolations through the quark-hadron tran-
sition in order to illustrate the results’ sensitivity to the
scattering rates.

V. STERILE NEUTRINO PRODUCTION

In this section, we incorporate the standard model cal-
culations of Sections III and IV into the sterile neutrino
production mechanism, whose broad outline we provided
in Sec. II.

We evolve the sterile neutrino and anti-neutrino PSDs,
fνs(p) and fν̄s(p), using the Boltzmann equation of
Eq. (8). We use the primordial plasma’s temperature
T as a clock, and numerically integrate a thousand log-
arithmically spaced Lagrangian momentum bins from a
temperature of 10 GeV down to 10 MeV. For the mod-
els illustrated by stars in Fig. 1, the vast majority of the
production happens between these temperatures. We use
the muon neutrino opacities derived in Sec. IV and pro-
vide results using the two interpolation scheme presented
in Fig. 8, which bracket the range of uncertainties due
to the quark-hadron transition. We use Eq. (12b) for
the thermal potential V th

νµ , and the results presented in

Fig. 5 for the asymmetry potential V L
νµ incorporating the

redistribution of Sec. III.

In order to close the system of equations, we also need
the evolution of the plasma temperature T and mu lep-
tonic asymmetry L̂µ with coordinate time t. Before dis-
cussing the details of the sterile neutrino production, we
briefly review these two relations.

A. Time-temperature relation

In this subsection, we derive the time-temperature re-
lationship prior to the epoch of weak decoupling. The
Hubble rate, H, is

d

dt
ln a = H =

√
8π

3m2
P

(ρSM + ρνs), (47)

where a is the scale factor, mP = 1.2 × 1019 GeV is the
Planck mass, and ρSM and ρνs are energy densities in
standard model particles and sterile neutrinos, respec-
tively. The latter is given by an integral over the PSDs,
ρνs = (1/2π2)

∫
p2dp

√
p2 +m2

s [fνs(p) + fν̄s(p)]. During
Hubble expansion from a to a+δa: a) the sterile neutrino
PSDs evolve to fνs/ν̄s(p) + δfνs/ν̄s(p) due to a combina-
tion of mixing with muon neutrinos, and their momentum
redshifting as pa ≡ const. b) due to large neutrino opaci-
ties, all active species maintain equilibrium PSDs with a
common temperature, whose evolution is affected by the
production of sterile neutrinos.

The continuity equation for the total stress-energy ten-
sor is

3
d

dT
ln a = − d

dT
(ρSM + ρνs) (ρSM + PSM + ρνs + Pνs)

−1
,

(48)

where PSM/νs are SM and sterile neutrino pressures, re-
spectively. The sterile energy density evolves according
to

dρνs
dT

=
∂ρνs
∂ ln a

d ln a

dT
+
∂ρνs
∂t

dt

dT
. (49)

The two terms on the right-hand side are the free-
streaming and oscillation contributions, respectively.

∂ρνs
∂ ln a

= −3(ρνs + Pνs), (50)

∂ρνs
∂t

=

∫
dp p2

2π2

√
p2 +m2

s

∂

∂t
[fνs(p) + fν̄s(p)] . (51)

We substitute Eqs. (49) and (50) into Eq. (48) and solve
for the relation between the scale factor and temperature

3
d ln a

dT
= −

(
dρSM

dT
+
∂ρνs
∂t

dt

dT

)
(ρSM + PSM)

−1
. (52)

Substituting Eq. (47), we obtain the time-temperature
relation6

dT

dt
= −3H[ρSM + PSM] + (∂ρνs/∂t)

dρSM/dT
. (53)

Defining the number of SM relativistic degrees of freedom
for the energy and entropy densities via

ρSM =
π2

30
g∗T

4, (54)

sSM =
ρSM + PSM

T
=

2π2

45
g∗,sT

3, (55)

we have the final form of the time-temperature relation

dT

dt
= −4Hg∗,sT

4 + (30/π2)(∂ρνs/∂t)

d[g∗T 4]/dT
. (56)

We use numbers of relativistic degrees of freedom g∗ and
g∗,s from Ref. [104] in our numerical implementation.

6 We note that we correct here an error introduced in Ref. [18].
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FIG. 9: We illustrate the temperature-evolution of the
sterile neutrino’s PSD for the central model of Fig. 1 with
(ms, sin

2 2θ) = (7.1 keV, 4× 10−11). Solid and dashed lines
distinguish results with neutrino opacities from Fig. 8c and
8d, respectively.

B. Time-evolution of asymmetry

The temperature-scaled muon asymmetry, L̂µ, evolves
both from the depletion of relativistic degrees of freedom
due to annihilations and from the production of sterile
neutrinos. There are subtleties in dealing with the lat-
ter in the case of resonant production [114], but for the
semi-classical approach outlined in Sec. II B, we can write
down the contribution in terms of the evolution of sterile
neutrino PSD. Keeping in mind the definition of the lep-
ton asymmetry in Eq. (4), the asymmetry evolution due
to both contributions together is

dL̂µ
dt

=
d

dt

∫
dp̂ p̂2

2π2

[
fνµ(p)− fν̄µ(p) + 2fµ−(p)− 2fµ+(p)

]

= −3

[
H +

d lnT

dt

]
L̂µ −

∫
dp̂ p̂2

2π2

∂

∂t
[fνs(p)− fν̄s(p)] ,

(57)

where the symbol p̂ is the temperature-scaled momen-
tum, p̂ ≡ p/T . The first term in the square bracket
in the last line above can be evaluated with the help of
Eqs. (47) and (56), while the second term can be eval-
uated using Eq. (8). Our large number of momentum
bins (1000) allows us to use spline integration at every
time step in order to perform the momentum integrals in
Eqs. (57) and (51). We set up our Lagrangian momen-
tum bins such that 5× 10−3 ≤ p/T ≤ 20 at temperature
T = 10 GeV. We have checked that this range is more
than sufficient to accurately capture the most relevant
range of the sterile neutrino PSDs.

C. Resonant Production

As described in Sec. II, the presence of a lepton asym-
metry leads to a resonant production of sterile neutrinos
with specific momenta. Through Eq. (8), the resonant
momenta at a particular temperature satisfy

∆(p) cos 2θ − V L − V th(p) = 0. (58)

Substituting the definition of ∆(p) and the potentials
from Eq. (12), we obtain

m2
s

2p
− dV L

dLµ
Lµ −

dV th(p)

dp
p = 0. (59)

There are two roots, i.e. two momenta resonant at any
temperature [18]. Consideration of the terms’ approx-
imate temperature scaling shows that each scaled root
(p̂ ≡ p/T ) sweeps to larger values at lower temperatures
(ignoring changes in the numbers of relativistic degrees
of freedom). This is reflected in Fig. 9, which shows
the sterile neutrino PSD’s evolution with temperature
for the central model in Fig. 1 with ms = 7.1 keV and
sin2 2θ = 4× 10−11. We observe that most of the neutri-
nos are produced at the lower resonance and at tempera-
tures close to TQCD. This is illustrated by Figs. 10a and
10c, which show the evolution of the entropy-scaled7 µ
lepton asymmetry and the net sterile neutrino and an-
tineutrino density for the range of models marked by
stars in Fig. 1. The latter is also sensitive to thermal
(nonresonant) production, which operates at all temper-
atures, but is subdominant for the mixing angles of in-
terest.

Figures. 10b and 10d show the sterile neutrino and
antineutrino PSDs at T = 10 MeV for these models.
We note that the sterile antineutrinos are produced off-
resonance for the positive lepton asymmetries we con-
sider here, and their abundance is thus significantly sup-
pressed compared to that of the sterile neutrinos. Solid
and dashed lines in Fig. 10 show results for the two inter-
polations of the µ neutrino opacities through TQCD pre-
sented in Fig. 8, which differ in the temperature range
150 MeV < T < 1 GeV. For small values of the mixing
angle, we observe that there is little difference between
the PSDs computed using our two different interpola-
tion schemes for the neutrino opacity. For these models,
most of the production happens at temperature below the
quark-hadron transition where our two opacity approx-
imation schemes are essentially the same, hence leading
to similar PSDs. As the mixing angle is increased, the
production is pushed toward higher temperatures (see
Fig. 10c) where the difference between our two interpo-
lation schemes is greater, leading to a larger uncertainties
in the final PSDs.

7 We show this scaling rather than the one with temperature, since
it is conserved through epochs of annihilation.
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(d) sterile antineutrino PSDs at T = 10 MeV

FIG. 10: Sterile neutrino production mechanism: Panels (a) and (c) show the entropy scaled mu lepton asymmetry and the
net sterile number density with temperature. For each model with a given mass and mixing angle, the mu lepton asymmetry
at high temperatures is tuned by hand to produce the right relic abundance. Panels (b) and (d) show sterile neutrino and
antineutrino PSDs, respectively, at T = 10 MeV. Colors differentiate models in Fig. 1, and solid and dashed lines distinguish
results with neutrino opacities from Fig. 8c and 8d respectively. Note the different numerical factors multiplying the y-axis of
panels (b) and (d). The dotted line in panel (b) is a massless Fermi-Dirac distribution with degeneracy g = 0.003.

Table III lists parameters describing the production
and final sterile neutrino DM PSDs for the models
marked in Fig. 1. Also provided are the ranges for differ-
ent interpolated µ neutrino opacities through the quark-
hadron transition as in Fig. 8. Note that the sterile PSDs
in Figs. 10b and 10d are non-thermal; we show the mean
momentum 〈p/T 〉 relative to the active neutrino temper-
ature scale.

A key element to take away from Table III and
Figs. 10b and 10d is that the ‘warmer’ models with larger
values of 〈p/T 〉 are less sensitive to the uncertainty in the
quark-hadron transition. This is important since these
warmer models can be most easily constrained by small-
scale structure formation. Therefore, uncertainties in the
strong plasma near TQCD are unlikely to affect the ro-
bustness of the these constraints.

VI. TRANSFER FUNCTIONS FOR MATTER
FLUCTUATIONS

In this section, we study the effect of sterile neutri-
nos on the growth of density fluctuations in the early
universe. We focus on the lepton asymmetry-driven
mechanism outlined in Sec. II, and on modes of the
matter distribution with co-moving wavenumbers k ∈
[1, 100] hMpc−1. These scales are probed by the Lyman-
α forest in quasar spectra (see [115] and references
therein), and populations of dwarf galaxies in the Local
Group (see [116, 117] and references therein). All these
scales enter the horizon after the redshift zH ' 4 × 107,
when the temperature of the photon-baryon plasma is
T ' 10 keV. The sterile neutrino models shown in Fig. 1
cease to be produced below temperatures T ∼ 100 MeV;
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TABLE III: Parameters for the models marked in Fig. 1,
with ms = 7.1 keV and ΩDMh

2 = 0.119 [2]. The ranges
displayed in the three last columns account for the

uncertainties in the neutrino opacities near the
quark-hadron transition.

sin2 2θ (Lµ/sSM)i (Lµ/sSM)f 〈p/T 〉 a

at T = 10 GeV at T = 10 MeV

×10−11 ×10−5 ×10−5

0.800 13.0 – 13.1 6.95 – 7.03 2.60 – 2.61

1.104 10.80 – 10.88 4.74 – 4.81 2.45 – 2.47

1.523 9.57 – 9.64 3.51 – 3.58 2.28 – 2.32

2.101 8.81 – 8.88 2.76 – 2.83 2.12 – 2.16

2.899 8.32 – 8.39 2.27 – 2.34 1.95 – 2.01

4.000 7.96 – 8.03 1.93 – 2.00 1.80 – 1.87

5.519 7.69 – 7.76 1.68 – 1.74 1.66 – 1.74

7.615 7.45 – 7.53 1.47 – 1.54 1.53 – 1.62

10.506 7.20 – 7.29 1.28 – 1.36 1.43 – 1.52

14.496 6.95 – 7.05 1.09 – 1.18 1.35 – 1.44

20.000 6.7 – 6.8 0.9 – 1.0 1.29 – 1.38

a The sterile DM distributions are non-thermal; we compute
〈p/T 〉 using the active neutrino temperature. Below the epoch
of e± annihilation, the latter is related to the CMB
temperature by the factor (4/11)1/3 = 0.714. We note that for
a Fermi-Dirac distribution 〈p/T 〉 ' 3.15

hence we can assume they are essentially collisionless in
this section.

The main effect of such a collisionless component on
matter fluctuations is suppression due to free-streaming
in the epochs where it is relativistic [118, 119]. Previ-
ous works extensively studied this in the context of warm
and/or neutrino DM models (see Refs. [120, 121] and ref-
erences therein), and identified the characteristic scales
at which the suppression set in as a function of the neu-
trinos’ mass and mean momentum [18].

In order to obtain the suppression’s detailed form, we
need to incorporate the PSDs of the sterile neutrinos
and antineutrinos into the Boltzmann equation for the
DM component. This entails solving a perturbed form
of Eq. (8), with additional terms due to inhomogeneities,
but without the source (production) terms. The scales
of interest are non-linear in the current epoch, but we
only provide the linear transfer functions at z = 0, which
can be used as initial conditions for cosmological N-body
simulations.

We use the publicly available CLASS solver [86] to in-
tegrate the perturbed linear Boltzmann equation8. We
initiate the solver with the Planck background param-
eters [3], except with the CDM component replaced by

8 Our choice was motivated by the availability of well-documented
modules to deal with non-cold relics. We have checked our results
against those obtained from a modified version of the publicly
available CAMB solver [122].
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FIG. 11: Suppression of the transfer functions of overall
density fluctuations relative to the ΛCDM ones for sterile
neutrino models in Fig. 1, as a function of wavenumber.
Dashed and dotted lines show results for the interpolated µ
neutrino scattering rates of Figs. 8c and 8d, respectively.
The solid black line is the numerical fit for a thermal warm
DM transfer function as given in Ref. [124].

collisionless components with PSDs as shown in Figs. 10b
and 10d. Since we are interested in the detailed shape
of the transfer function, we turn off the default fluid ap-
proximation for non-cold relics [123].

Figure 11 shows the resulting suppression as a function
of the comoving wavenumber. We illustrate the sup-
pression in the fluctuations’ transfer functions relative
to their values in ΛCDM. Also shown is the commonly-
used fit to a thermal warm DM transfer function given
in Refs. [23, 124] with an ‘equivalent thermal mass’ of
mth = 2.2 keV; fits for models marked with stars in Fig. 1
have a range of 1.6 to 3.2 keV.

However, the strong difference in shape with the ther-
mal WDM transfer function warrants use of the exact
sterile neutrino dark matter transfer functions. The ther-
mal warm DM PSDs relevant to the fit are rescaled ver-
sions of the Fermi-Dirac distribution; as can be seen from
Fig. 10b, the resonantly-produced DM’s PSD has an ex-
cess at low momenta that cannot be reproduced by such
a rescaling. Hence, our DM transfer functions do not ex-
hibit the fits’ steep∼ k−10 dependence at large wavenum-
bers and the resultant severe suppression of power on
small scales. This indicates that the models considered
in the present work are more likely to be in agreement
with small-scale structure formation constraints, as re-
cently pointed out in Refs. [57–62, 65].

VII. DISCUSSION AND CONCLUSIONS

Sterile neutrinos are a well-motivated extension of the
standard model of particle physics, and offer a promising
candidate for the inferred DM population of the Uni-
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verse. In this paper, we performed a detailed study of
the resonant production of sterile neutrinos with masses
and mixing angles relevant to the recent X-ray excess.
In doing so, we explored the rich phenomenology asso-
ciated with the active neutrinos’ weak interaction with
the primordial plasma. These interactions efficiently re-
distribute primordial lepton asymmetries among all the
available degrees of freedom, and impact the tempera-
ture and momentum dependence of neutrino opacities.
We incorporated these effects into the sterile produc-
tion calculation, corrected and extended the existing nu-
merical implementation, and obtained revised DM phase
space densities. We finally computed transfer functions
for fluctuations in the matter density, which can be used
as starting points for N -body simulations of cosmological
structure formation.

For the parameters relevant to the X-ray excess, reso-
nant sterile neutrino production coincidentally occurs in
the vicinity of the quark-hadron transition (see Fig. 10c).
Strongly interacting degrees of freedom affect the pro-
duction in two ways: a) they influence both asymmetry
redistribution and neutrino opacities through their inter-
action with the weak gauge bosons (Z and W±), and b)
the transition from free quarks to hadrons at TQCD influ-
ences the time-temperature relation [Eq. (56)]. We now
consider the robustness of each of these elements to the
remaining uncertainties in the quark-hadron transition.

The asymmetry redistribution among the strongly-
interacting degrees of freedom depends on the suscepti-
bility of the quark-hadron plasma to baryon number and
electric charge fluctuations. At high temperatures, we
use tree-level perturbative QCD to compute the suscep-
tibilities. There are uncertainties concerning the exact
values of the quark masses, loop corrections, and the ex-
act implementation of the MS renormalization scheme.
We expect these to have little effect on the final ster-
ile neutrino PSDs since the bulk of the production oc-
curs at lower temperatures, where the lattice QCD- and
HRG-derived susceptibilities are most relevant. Thus,
uncertainties in the asymmetry redistribution are likely
dominated by systematic errors in the lattice calculations
[100], measurement errors in the hadronic resonances’
masses, and inaccuracies inherent in the HRG approach
near the quark-hadron transition. Our confidence in the
fit we use in this work is bolstered by the facts that a)
an independent lattice QCD calculation [101] find very
similar susceptibilities to those we used, and b) the HRG
approach – without any free parameter – is in very good
agreement with the lattice calculation for T . 150 MeV.
It is therefore unlikely that uncertainties in the suscepti-
bilities will lead to dramatic changes in the sterile neu-
trino PSDs.

The validity of our neutrino opacities is much less clear
– we have attempted to calculate them in as much detail
as possible, but the hadronic parts still retain significant
uncertainties due to the quark-hadron transition. We
expect that opacities at high and low temperatures are
well described by the rates of reactions involving free-

quarks, and the lightest pseudoscalar and vector mesons,
which are shown in Sec. IV. For temperatures near TQCD,
we have considered two interpolation schemes (shown in
Fig. 8) that we expect might bracket the range of pos-
sibilities. We have computed the sterile neutrino PSDs
for both cases and shown that they are fairly robust to
the choice used, especially for models with larger values
of the average momentum 〈p/T 〉. We leave the calcula-
tion of self-consistent opacities through the transition to
future work. Yet another approximation we have made
is that of equilibrium distributions for all active species,
which has been studied in a different context in Ref. [125].
We expect this to be valid at the temperatures relevant
to the models we study.

To compute the Hubble expansion rate and time-
temperature relation, we have used the plasma’s equa-
tions of state provided in Ref. [104], which are obtained
by matching to the lattice QCD results of [126]. As the
former’s authors point out, this result is still uncertain
at temperatures close to the quark-hadron transition. It
would interesting to update their result with the latest
lattice QCD computations, which suggest a lower tran-
sition temperature [127]. We expect the uncertainties
associated with the plasma’s equation of state to be at
most similar in magnitude to those coming from the neu-
trino opacity [20].

Another simplification we adopted is the semi-classical
Boltzmann equation, which greatly facilitates our study
of the oscillation-driven production. As mentioned in
Sec. II B, the most general analysis considers the evolu-
tion of a two-state density matrix, rather than phase-
space densities. The validity of the semi-classical ap-
proach rests on the assumption that collisions domi-
nate the off-diagonal element of the Hamiltonian that
is responsible for vacuum oscillations [95–97]. For
typical momenta at the temperatures of interest, the
ratio of these terms is ∆(T ) sin2 2θ/D(T ) ' 0.6 ×
(T/100 MeV)−6(ms/7keV)2(sin2 2θ/10−11)1/2. The pro-
duction of sterile neutrinos happens at temperatures
above, but close to where these terms become compa-
rable (note the ratio’s steep temperature dependence).
Thus, we expect that the results in this paper are rela-
tively unaffected by this approximation, but further work
in this direction can settle this question.

Finally, we examine the assumptions underlying the
model itself, which were enumerated in Section II A. If
there is indeed an extra neutrino that is an electroweak
singlet, it is not restricted to mix with only one fla-
vor. However, the general case where the sterile neutrino
mixes with all flavors introduces extra mixing angles,
which cannot be constrained as easily from observations.
The same can be said about the assumption of a lepton
asymmetry in a single flavor. We briefly remark on the
possibility of the sterile neutrinos mixing with electron
or tau flavors instead. The redistribution of Sec. III is
almost identical for the cases with electronic and muonic
lepton asymmetries, but is different in the tauonic case.
This is due to the significantly larger mass of the corre-
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sponding charged lepton (mτ = 1.77 GeV [1]), which an-
nihilates away at higher temperatures. Thus most of an
input tau asymmetry ends up in the tau neutrino below
T . 400 MeV, and the quark hadron transition does not
impact the redistribution. The electron and tau neutrino
opacities are different from the muonic case, and so is the
balance between the thermal and asymmetry potentials,
which affects the resonant momenta and ultimately the
final dark matter PSDs – we leave for future work the
possibility of sterile neutrinos mixing with those flavors.

Also worth considering is active–active neutrino mix-
ing, which does not conserve asymmetries in the individ-
ual flavors. This was studied in Ref. [90], which showed
that such asymmetries are frozen in at the temperatures
of interest. An interesting possibility is to revisit this
study and use the redistributed asymmetries of Sec. III
to calculate the active neutrino self energies at this epoch.

In conclusion, we find remarkable that sterile neutrino
models that are in agreement with the X-ray excess have
transfer function shapes that can significantly impact
structure formation on subgalactic scales. Fixing the lep-
tonic asymmetry to produce the right DM relic density,
the resonantly-produced sterile neutrino transfer func-
tion goes from ‘warm’ to ‘cold’ as the mixing angle is
increased from small to large values. This indicates that

upcoming X-ray observations [128, 129] and ongoing ef-
forts to study small-scale structure can together cover all
of the allowed mixing angle parameter space, and conse-
quently confirm or disfavor the model.
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Appendix A: Functions for high-temperature QCD pressure

The functions defined in section III B 1 are [104]

F1(y, µ̂) ≡ 1

24π2

∫ ∞

0

dxx

[
x

x+ y

] 1
2 [
n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

]
, (A1)

F2(y, µ̂) ≡ 1

8π2

∫ ∞

0

dx

[
x

x+ y

] 1
2 [
n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

]
, (A2)

F3(y, µ̂) ≡ −
∫ ∞

0

dx
1

x

[
x

x+ y

] 1
2 [
n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

]
, (A3)

F4(y, µ̂) ≡ 1

(4π)4

∫ ∞

0

dx1

∫ ∞

0

dx2
1√

x1 + y
√
x2 + y

×

{
[
n̂F(
√
x1 + y − µ̂)n̂F(

√
x2 + y + µ̂) + n̂F(

√
x1 + y + µ̂)n̂F(

√
x2 + y − µ̂)

]

× ln

[√
x1 + y

√
x2 + y + y −√x1x2√

x1 + y
√
x2 + y + y +

√
x1x2

]

+
[
n̂F(
√
x1 + y − µ̂)n̂F(

√
x2 + y − µ̂) + n̂F(

√
x1 + y + µ̂)n̂F(

√
x2 + y + µ̂)

]

× ln

[√
x1 + y

√
x2 + y − y +

√
x1x2√

x1 + y
√
x2 + y − y −√x1x2

]}
, (A4)

where n̂F(x) = 1/[expx+ 1] is the Fermi-Dirac distribution.
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TABLE IV: Representative examples of two-particle to two-particle reactions that contribute to the neutrino opacity, along
with their matrix elements written using a four-fermion vertex for the weak interaction (for reactions involving leptons and
quarks) and three quark chiral perturbation theory (for reactions involving the pseudoscalar meson octet). For a reaction

νµ +A→ B + C, the momenta pi : i = 1, 2, 3, 4 within matrix elements are mapped to νµ, A,B and C respectively.

Reaction S
∑
|M|2 Remarks

Reactions involving leptons

νµ + τ− → µ− + ντ 128G2
F (p1 · p2) (p3 · p4)

Reactions involving quarks

νµ + µ+ → u+ d̄ 384|Vud|2G2
F (p1 · p4) (p2 · p3) T > TQCD

Reactions involving the pseudoscalar meson octet

νµ + µ+ → π+ + π0 8|Vud|2G2
F

[
2p2 · (p4 − p3) p1 · (p4 − p3)− (p1 · p2) (p4 − p3)2

]
T < TQCD, s-channel a

νµ + π+ → νµ + π+ 4
(
1− 2 sin2 θW

)2
G2

F

[
2p3 · (p4 + p2) p1 · (p4 + p2)− (p1 · p3) (p4 + p2)2

]
T < TQCD, t-channel b

a Input neutrinos can produce quarks at low temperatures, T < TQCD, for large CM energies in the s-channel.
b Input neutrinos can probe the quark content of mesons at low temperatures, T < TQCD, for large momentum transfers in the t-channel.

Appendix B: Neutrino opacities: matrix elements and collision integrals

In this appendix, we expand on the details underlying the neutrino opacities that were presented in Sec. IV. Under
the set of assumptions presented therein, we add contributions from a large number of reaction rates, which we present
in an organized manner in the rest of this section.

1. Rates for neutrinos to go to two-particle final states

We compute reaction rates for momenta and temperatures where we can integrate the weak gauge bosons out and
approximate the weak interaction by a four-particle vertex. For tree level processes under this approximation, if one
of the ingoing particles is a neutrino, one of the other particles is either a neutrino or a charged lepton belonging to
the same generation. We classify reactions as leptonic or hadronic based on the nature of the remaining two particles.

We now describe our calculation of these reactions’ matrix elements, and the associated contributions to the neutrino
opacity.

a. Matrix elements for two-particle to two-particle reactions

It is a lengthy, but straightforward, task to enumerate all leptonic reactions that contribute to the neutrino opacity.
Ref. [111] lists a complete set of reactions at temperatures of a few MeV. Our calculations extend to higher tempera-
tures, hence we also include reactions involving tau leptons. The reactions are enumerated in Table I. It is harder to
study hadronic reactions in a consistent manner through the quark-hadron transition temperature, TQCD. We adopt
assumption # 3 of Sec. IV: we neglect the strong coupling constant and its running at temperatures T > TQCD,
and hence calculate opacities with free quarks. We enumerate all reactions involving quarks in the same manner as
the leptonic ones, but with standard model quark currents that couple to Z0 and W±. These reactions are listed in
the upper half of Table II. Table IV shows squared and spin-summed matrix elements for a representative reaction
involving only leptons, and for one involving quarks.

The physical rates for hadronic reactions diverge from our calculated ones close to the transition, since the strong
coupling constant is non-zero. Treating this self-consistently is beyond the scope of this paper. In the main body, we
present results for a few unphysical interpolations through the transition. At even lower temperatures, T < TQCD,
we cannot use the free quark approximation. The most important hadronic degrees of freedom are the pseudoscalar
meson octet, which are pseudo-Goldstone bosons associated with the spontaneous breaking of the axial part of an
approximate SU(3)L×SU(3)R flavor symmetry [130]. We use three quark chiral perturbation theory (3χPT) to write
down the currents that couple to Z0 and W±, and through them evaluate the mesonic contribution to the neutrino
opacity.

Consider a 3× 3 unitary matrix, U(x), which represents low-lying hadronic excitations at temperatures T < TQCD.
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We express U(x) in terms of the pion fields πa(x) as follows:

U(x) = exp
[
2i
πa(x)T a

fπ

]
, a ∈ [1, 8], (B1)

2πa(x)T a

fπ
=

1

fπ




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K0 − 2√

3
η


 , (B2)

where fπ is an energy-scale associated with the breaking of the SU(3)A symmetry, and T a are generators of SU(3).
The most massive member of this octet, the η meson, has a mass of mη = 547.8 MeV [1]. We only use this prescription
at T ≤ 150 MeV, so these low lying excitations are sufficient to describe all relevant incoming hadronic degrees of
freedom.

In the framework of 3χPT, the dynamics of the pion fields are described by an effective Lagrangian for U(x) coupled
to matrix valued SU(3)L and SU(3)R gauge fields lµ and rµ, respectively. The first approximation to the Lagrangian
is the lowest term in a derivative expansion:

L = −1

4
f2
πTr[DµU†DµU ], with DµU = ∂µU − ilµU + iUrµ. (B3)

The gauge fields lµ and rµ are Hermitian matrices, which we decompose as

(l/r)µ = (l/r)aµT
a + (Vµ ∓Aµ)I, a ∈ [1, 8]. (B4)

The fields Vµ and Aµ are vector and axial-vector parts of lµ and rµ. We identify the electroweak gauge bosons of
the standard model, Z0

µ,W
±
µ and Aµ [or equivalently, the underlying SU(2) × U(1) gauge fields Aaµ and Bµ], with

elements of (la/ra/V/A)µ by equating their action on the pion fields πa(x) or the excitation U(x) via the right-hand
side of Eq. (B3). The results of this procedure are

g2A
1
µ = l1µ, (B5a)

g2A
2
µ = l2µ, (B5b)

g2A
3
µ = l3µ +

1√
3
l8µ −

1

12
Vµ +

1

12
Aµ, (B5c)

eAµ = l3µ + r3
µ +

1√
3
l8µ +

1√
3
r8
µ. (B5d)

Here g2 is the SU(2) coupling constant, and e = g2 sin θW. The overlap of A3
µ with the anomalous Aµ is an artifact

of the omission of the charm quark from our analysis. If the charm quark were included (as it has to be to make the
SM non-anomalous) then there is no coupling to an anomalous current. As long as there are no charm quarks (always
true at the temperatures where 3χPT is applied) this current looks like that associated with the anomalous U(1)A.

We read off the currents that couple to the gauge fields using the definition J
(a)µ
l/r/V/A = ∂L/∂(la/ra/V/A)µ, and

the Lagrangian of Eq. (B3). We transform the resultings to obtain the currents that couple to the SM electroweak
gauge fields, Z0

µ,W
±
µ and Aµ:

J+µ =
1√
2

[
V ∗ud

(
fπ∂

µπ+ + iπ0
↔

∂µπ+ − i√
2
K0

↔

∂µK+
)

+ V ∗us

(
− i√

2
K0

↔

∂µπ+ +
i

2
π0
↔

∂µK+ +

√
3i

2
η
↔

∂µK+
)]

, (B6a)

J−µ =
1√
2

[
Vud

(
fπ∂

µπ− − iπ0
↔

∂µπ− +
i√
2
K0

↔

∂µK−
)

+ Vus

( i√
2
K0

↔

∂µπ− − i

2
π0
↔

∂µK− −
√

3i

2
η
↔

∂µK−
)]

, (B6b)

Jµz = Jµ3 − sin2 θWJ
µ
EM, (B6c)

Jµ3 =
1

2

[
fπ

(
∂µπ0 +

1√
3
∂µη

)
+ iπ+

↔

∂µπ− + iK+
↔

∂µK−
]
, (B6d)

JµEM = iπ+
↔

∂µπ− + iK+
↔

∂µK−. (B6e)

These currents agree with the leading order parts of the functionals computed in Ref. [131]. The lower half of Table
II enumerates the allowed reactions involving pseudoscalar mesons. Table IV shows the squared and spin-summed
matrix elements for two such reactions, computed using the currents listed in Eq. (B6)



22

A final complication is that 3χPT, and the currents derived from it, are valid only when the momentum in the
intermediate weak gauge bosons is low compared to the energy scale 4πfπ ∼ 1 GeV [130]). The physical currents that
couple to the SM electroweak gauge fields are continuous functions of this momentum; they approach the SM free
quark currents for large momentum values. This manifests as the production of quarks in the large CM energy limit in
s-channel reactions, and as ‘deep-inelastic scattering’ off the mesons’ quark content in the large momentum-transfer
limit in t-channel reactions. These limits are important to consider at the higher energies for which we calculate
neutrino opacities using 3χPT (the total energy range is shown in Figures 8a and 8).

We do not self-consistently compute these corrections to the currents, as it is beyond the scope of this paper.
Instead, we modify the s-channel reaction rates in a phenomenological manner: we apply a cutoff in the CM energy
at 1 GeV with a width of 50 MeV, below which we use the 3χPT currents, and above which we use the SM free quark
currents. We do not incorporate any corrections to t-channel reactions; this would involve some knowledge of the
parton distribution functions for the mesons involved.

We observe that the squared and spin-summed matrix elements for tree level processes, be it for processes involving
leptons and free quarks (computed using the SM currents), or for those involving pseudoscalar mesons (computed
using 3χPT), are at-most quadratic functions of the Mandelstam variables. This greatly facilitates a semi-automated
computation of the two-particle to two-particle reactions’ contribution to the neutrino opacity, which we very briefly
describe next.

b. Rates for two-particle to two-particle reactions

Consider a general two-particle to two-particle reaction, να+A→ B+C, that consumes a massless input neutrino,
να. The particles A,B and C can all be fermions (leptons or quarks), or contain a pair of bosons (pseudoscalar
mesons). We expand Eq. (7) to write down the following expression for the scattering rate as a collision integral:

Γ(Eνα) =
1

2Eνα

∫
d3p̃Ad

3p̃Bd
3p̃C(2π)4δ(pνα + pA − pB − pC)S

∑
|M|2fA(EA)(1∓ fB(EB))(1∓ fC(EC)), (B7)

where the symbol d3p̃ is shorthand for the Lorentz invariant phase space volume element d3p/[(2π)32E(p)], the
symbol

∑
|M|2 is the absolute value of the matrix element squared and summed over all spin states, S is a symmetry

factor for identical particles in the initial and/or final states, and the f(E)s are appropriate Bose-Einstein/Fermi-
Dirac phase space distributions depending on the statistics of the particles, with plus and minus signs for bosons and
fermions respectively.

We follow the treatment in Ref. [111] to reduce the nine-dimensional phase space integral of Eq. (B7) to a numerically
manageable three-dimensional integral over the variables |pA|, |pB | and µB = p̂B · p̂να . This procedure involves using
the delta function to perform the integral over pC , and using the form of the matrix elements for tree level processes
to analytically perform the integral over µA = p̂A · p̂να . We refer the reader to Ref. [111] for more details. The form
of the matrix elements also lends itself to easy parameterization in terms of a small number of classes; along with
the procedure described above, this enables a simple numerical implementation of the calculation of these reactions’
contributions to the neutrino scattering rate.

2. Rates for neutrinos to go to one-particle final states

We must also consider the contribution to the neutrino interaction rate, Γ(Eνα), from interactions with two-particle
final states (“fusion” or inverse decay). A four-fermion interaction such as the weak interaction (at E � mW ,mZ)
can produce such a final state in two ways. One, applicable at T < TQCD, is two-body fusion to produce a meson, e.g.
νµ + µ+ → π+. The other is the ‘three-body fusion’, e.g. νµ + ν̄e + e− → µ−. By construction, these fusion processes
are the inverse of a decay process. We describe our treatment of these processes in the rest of this section.

a. Kinematics of two-body fusion

A two-body fusion process must involve a meson in either the initial or the final state, and – if it is to absorb a
neutrino – must then be semi-leptonic. The neutral current processes of this form (e.g. a neutral meson is created by
the fusion of ναν̄α → π0) are helicity-forbidden and have zero amplitude at tree level. The charged current processes
can have either the meson in the initial state and the charged lepton in the final state (e.g. K−ντ → τ−) or the meson
in the final state (e.g. νµµ

+ → π+). The “charged lepton in the final state” case is possible only if the charged lepton
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is more massive than the meson, i.e. if that lepton is a τ ; at T < TQCD this not energetically feasible for typical
values of the incoming particles’ momenta, since mτ � TQCD. Therefore, for the rest of this section, we focus on the
problem of a charged meson in the final state. The reaction is

να + α+ → A+ (B8)

where α = e or µ and A = π or K. We are interested in the thermal absorption rate Γfusion for the neutrinos as a
function of temperature T and neutrino energy Eν .

The simplest solution to this problem is to calculate the rate of the inverse reaction of Eq. (B8) and use detailed
balance. In thermal equilibrium, there is a rate of decays given by

dN

dV dt
= gAΓvac

A+→ναα+

∫ ∞

0

4πp2
A dpA

(2π)3

∫ 1

−1

dµ′

2

mA

EA
fA(EA)[1− fνα(Eνα)][1− fα(Eα)], (B9)

where µ′ is the cosine of the angle of emission of the neutrino in the rest frame of the A+, and the factor of mA/EA
is the inverse-Lorentz factor that accounts for the longer lab-frame lifetime of A+ at high energies. The degeneracy
factor is gA = 1 for pions and kaons, but we include it for later use with heavy mesons.

With the help of relativistic kinematics, we see that the lab-frame neutrino energy is

Eνα =
1

2

(
1− m2

α

m2
A

)
(EA + pAµ

′), (B10)

so that Eq. (B9) can be re-written in terms of a rate of decays per unit volume per unit neutrino energy:

dN

dV dt dEνα
= gAΓvac

A+→ναα+

∫ ∞

pA,min

4πp2
A dpA

(2π)3

1

(1−m2
α/m

2
A)pA

mA

EA
fA(EA)[1− fνα(Eνα)][1− fα(Eα)]. (B11)

The kinematically allowed range of A+ momenta is given by

1

2

(
1− m2

α

m2
A

)
(EA − pA) ≤ Eνα ≤

1

2

(
1− m2

α

m2
A

)
(EA + pA) (B12)

or – using pA =
√
E2
A −m2

A and with some algebraic manipulation –

EA ≥ EA,min =
(1−m2

α/m
2
A)2m2

A + 4E2
να

4Eνα(1−m2
α/m

2
A)

. (B13)

Turning the integral into one over the energy EA of A+ gives

dN

dV dt dEνα
= gA

Γvac
A+→ναα+

1−m2
α/m

2
A

∫ ∞

EA,min

4πmA dEA
(2π)3

fA(EA)[1− fνα(Eνα)][1− fα(Eα)]. (B14)

Now this should equal the fusion rate of neutrinos, which is

dN

dV dt dEνα
=

4πE2
να

(2π)3
fνα(Eνα) Γfusion(Eνα). (B15)

We therefore conclude that

Γfusion(Eνα) =
gAmAΓvac

A+→ναα+

(1−m2
α/m

2
A)E2

να

∫ ∞

EA,min

fA(EA)
1− fνα(Eνα)

fνα(Eνα)
[1− fα(Eα)] dEA. (B16)

Next we substitute in the Bose-Einstein or Fermi-Dirac phase space distributions, and note that Eα = EA − Eνα ,
yielding

Γfusion(Eνα) =
gAmAΓvac

A+→ναα+

(1−m2
α/m

2
A)E2

να

∫ ∞

EA,min

eEνα/T

(eEA/T − 1)(e−EA/T eEνα/T + 1)
dEA

=
gAmAΓvac

A+→ναα+T

(1−m2
α/m

2
A)E2

να

Φ

(
EA,min

T
,
EA,min − Eνα

T

)
. (B17)
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Here we have defined the dimensionless integral

Φ(a, b) =

∫ ∞

0

ea−b dx

(ex+a − 1)(e−x−b + 1)

=

∞∑

j=0

∞∑

k=0

∫ ∞

0

ea−b(−1)ke−(1+j)(x+a)e−k(x+b) dx

= ea−b
∞∑

j=0

∞∑

k=0

(−1)ke−(1+j)a−kb

1 + j + k

= ea−b
∞∑

m=1

e−ma

m

m−1∑

k=0

(−ea−b)k

= ea−b
∞∑

m=1

e−ma

m

1− (−ea−b)m

1 + ea−b

=
1

eb−a + 1

[ ∞∑

m=1

e−ma

m
+

∞∑

m=1

(−1)m−1 e
−mb

m

]

=
1

eb−a + 1

[
− ln(1− e−a) + ln(1 + e−b)

]

=
1

eb−a + 1
ln

1 + e−b

1− e−a
. (B18)

Recall that EA,min is a function of Eνα and is given by Eq. (B13). We then achieve the final simplification:

Γfusion(Eνα) =
gAmAΓvac

A+→ναα+T

υ(1 + e−Eνα/T )E2
να

ln
1 + eEνα/T e−(υ2m2

A+4E2
να

)/(4υEναT )

1− e−(υ2m2
A+4E2

να
)/(4υEναT )

, (B19)

where υ = 1 − m2
α/m

2
A. Note that the numerical calculation of the logarithm must be treated carefully since for

EA,min − Eνα � T we are taking the logarithm of a number that is very close to 1. For calculational purposes, we
replace the logarithm in Eq. (B19) by a truncation of its Taylor expansion at the fifth order wherever the argument
deviates from unity by less than ε = 10−3.

b. Rates for two-body fusion processes

The rate parameters for the key two-body fusion reactions are shown in Table V.
Some parameters were not available in the Review of Particle Properties. Key among these are the decay parameters

for the weak decays of the ρ, ω(782), and K∗(892) vector mesons. These mesons are actually extremely broad
resonances, and their principal decay mode is into lighter mesons. Electromagnetic and especially weak decay modes
are less common. Note that the helicity suppression arguments that forbid e.g. π0 → νeν̄e do not apply to the vector
mesons.

The relevant decays of the charged vector mesons ρ+ and K∗(892)+ can be obtained by noting that the virtual-W
diagram results in an effective vertex

Leff 3 i
e

2
√

2 sin θW
¯̀
Xγ

µ(1− γ5)νX
1

m2
W

e

2
√

2 sin θW
Vudmρfρ[ε(ρ

−)]µ + h.c., (B20)

where fρ is the ρ decay constant, and [ε(ρ−)]µ is the polarization of the “on-shell” ρ meson. The advantage of this
Lagrangian is that the well-measured decay τ+ → ρ+ν̄τ is related to the decay of ρ+ to a charged lepton and a
neutrino (predicted branching fraction ∼ 2 × 10−11). From a tree-level calculation with this Lagrangian, we infer a
ratio

Γ(ρ+ → µ+ν̄µ)

Γ(τ+ → ρ+ν̄τ )
=

2m3
τ (m2

ρ −m2
µ)2(2m2

ρ +m2
µ)

3m3
ρ(m

2
τ −m2

ρ)
2(2m2

ρ +m2
τ )
. (B21)

These rates are included in Table V.
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TABLE V: The parameters for reactions that go into Eq. (B19). Reactions relevant for the neutrino opacity are shown;
antineutrinos are similar. Particle masses are obtained from the Particle Data Group. Decay partial widths are obtained from

the sources indicated. All reactions in which a neutrino can produce a hadronic resonance below 1 GeV are included.

Reaction mA gA υ Γvac
reverse Rate method

MeV MeV

Reactions involving the pseudoscalar meson octet

νe + e+ → π+ 139.57 1 0.999987 3.110× 10−18 PDG

νµ + µ+ → π+ 139.57 1 0.4269 2.528× 10−14 PDG

νe + e+ → K+ 493.68 1 0.9999989 8.41 × 10−19 PDG

νµ + µ+ → K+ 493.68 1 0.95419 3.38 × 10−14 PDG

Reactions involving vector mesons with nonzero isospin

νX + ν̄X → ρ0 775.26 3 1 9.78 × 10−12 Average of τ decay and e+e− → ρ0; assumed isospin SU(2)a

νe + e+ → ρ+ 775.26 3 0.9999996 7.00 × 10−11 τ decay

νµ + µ+ → ρ+ 775.26 3 0.98143 6.80 × 10−11 τ decay

νe + e+ → K∗(892)+ 891.66 3 0.9999997 5.45 × 10−12 τ decay

νµ + µ+ → K∗(892)+ 891.66 3 0.98596 5.33 × 10−12 τ decay

Reactions involving vector mesons with zero isospin

νX + ν̄X → ω(782) 782.65 3 1 7 × 10−13 e+e− → ω(782); assumed quark content (ūu+ d̄d)/
√

2

a The τ decay gives 1.01× 10−11 and the e+e− → ρ0 computation gives 9.5× 10−12.

The rate for ρ0 → νX ν̄X can be obtained by replacing the terms in Eq. (B20) with the Z couplings and propagator:

Leff 3 i
e

4 sin θW cos θW
ν̄Xγ

µ(1− γ5)νX
1

m2
Z

e√
2 sin θW cos θW

(
1

2
− sin2 θW

)
mρfρ[ε(ρ

0)]µ + h.c.. (B22)

Here the coupling of the vector Z current to the ρ0 meson was related to the coupling of the vector W current to the
ρ+ using isospin SU(2) symmetry. The conclusion is that

Γ(ρ0 → νeν̄e)

Γ(τ+ → ρ+ν̄τ )
=

8m3
τm

3
ρ

3(m2
τ −m2

ρ)
2(2m2

ρ +m2
τ )

(1/2− sin2 θW )2

|Vud|2
, (B23)

and similarly for the other two flavors. In this relation, we have used that mW = mZ cos θW .
The same decay rate can be obtained by taking the ratio

Γ(ρ0 → νeν̄e)

Γ(ρ0 → e+e−)
=

1

2

(
1

2 sin θW cos θW

)2
(
m2
ρ

m2
Z

)2(
1

sin θW cos θW

〈0|(gu,V ūγiu+ gd,V d̄γ
id+ gs,V s̄γ

is)|α0〉
〈0|( 2

3 ūγ
iu− 1

3 d̄γ
id− 1

3 s̄γ
is)|ρ0〉

)2

.

(B24)
Note that the reaction ρ0 → e+ + e− is mediated principally by the photon instead of the Z. The 1

2 is due to the fact
that the photon couples to right-handed as well as left-handed electrons. The factor of mα/mρ is a combination of
kinematic factors appropriate if the decay constant is the same for all octet members. The factor of 1/(2 sin θW cos θW )
is the ratio of the Z coupling to νe,L to the photon coupling to eL (or eR). The factor of m2

ρ/m
2
Z is the ratio of Z to

photon propagators. The last term is the ratio of Z coupling to α0 to γ coupling to ρ0, with gu,V = 1
4 −

2
3 sin2 θW

and gd,V = gs,V = − 1
4 + 1

3 sin2 θW . For the ρ0, the last term can be computed using isospin symmetry.

The agreement between τ decay and e+e− → ρ0 is good: the former predicts a partial width for ρ0 → νeν̄e of
1.01 × 10−11 MeV, and the latter predicts 9.5 × 10−12 MeV, a difference of only 6%. The average is shown in the
table.

No similar decay is allowed (i.e. it is not possible with a single intermediate vector boson propagator) for the
K∗(892)0 or K̄∗(892)0 mesons because the current that couples to the Z cannot change strangeness.

It is less clear how this procedure should be applied to the ω(782) meson, which has no isospin. One might

approximate it as a pure (ūu + d̄d)/
√

2 state (i.e. with no strange quark), and repeat the argument used for the
ρ0 → e+e− calculation with Eq. (B24). This result is shown in the table; it is much more uncertain than the calculation
for the ρ0 since mixing with s̄s is allowed. Nevertheless, the small rate for ω(782) production (as compared with ρ0)
suggests that it leads to an overall small correction to neutrino opacities.
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c. Three-body fusion processes

The final set of reactions that contribute to the neutrino opacity are three-body fusions. As earlier, these reactions
can be either leptonic or hadronic in nature. We adopt the prescription outlined in Sec. B 1 a for the hadronic
reactions. Given the hadronic and leptonic currents coupling to the SM electroweak gauge bosons, we can enumerate
all three-body reactions that contribute to the neutrino opacity in same manner as earlier. We must keep in mind
the kinematic constraint that the rest mass of the product must be greater than that of the reactants.

The matrix element for any three-body fusion reaction is related to one for a two-particle to two-particle reaction
by crossing symmetry. Thus, we do not need to compute any new matrix elements for this section. However, we need
to modify the treatment of the kinematics from the previous case. Consider a general three-body fusion reaction,
να +A+B → C. The scattering rate for an input neutrino energy Eνα is given by the collision integral:

Γ(Eνα) =
1

2Eνα

∫
d3p̃Ad

3p̃Bd
3p̃C(2π)4δ(pνα + pA + pB − pC)S

∑
|M|2fA(EA)fB(EB)(1∓ fC(EC)). (B25)

All the symbols are defined identically to Eq. (B7). The procedure to reduce the dimensionality of this integral is
exactly analogous to that in Sec. B 1 b and Ref. [111], with one important difference. The variables finally left to
numerically integrate over are, as earlier, |pA|, |pB | and µB = p̂να · p̂B . If we consider the integration domain for the
two-particle to two-particle case, for a given value of |pA|, energy constraints allow a maximum value of |pB |. For a
three-body fusion, |pB | has no upper bound, which greatly expands the allowed phase-space. With this caveat, the
rest of the procedure proceeds as it did for the other case.
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[103] E. Meǵıas, E. Ruiz Arriola, and L. L. Salcedo, Nuclear Physics B Proceedings Supplements 234, 313 (2013),

arXiv:1207.7287 [hep-ph].
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