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Contributed by Jason G. Cyster, May 13, 2015 (sent for review March 30, 2015)

Gamma delta (γδ) T cells represent a major IL-17 committed T-cell
population (γδT17 cells) in the mouse dermis. Following exposure
to the inflammatory agent imiquimod (IMQ) the Vγ4+ subset of
γδT cells produce IL-17 in the skin and expand rapidly in draining
lymph nodes (LNs). Local IMQ treatment in humans is known to
exacerbate psoriasis skin lesion activity at distant sites. Whether
expanded γδT17 cells sensitize distant sites to inflammation has been
unknown. Here we show that expanded Vγ4+ γδT17 cells egress from
LNs in a fingolimod (FTY720)-sensitive manner and use C-C chemokine
receptor type 2 to accumulate in inflamed skin where they augment
neutrophil recruitment and inflammation. They also travel to nonin-
flamed skin and peripheral LNs and remain in elevated numbers at
these distant sites for at least 3 mo. Sensitized mice show more rapid
skin inflammation and greater proliferation and IL-17 production by
Vγ4+ γδT cells upon imiquimod challenge. Transfer experiments con-
firm that memory-like Vγ4+ γδT17 cells respond more rapidly.
Memory-like Vγ4+ γδT17 cells are distinguished by greater IL-
1R1 expression and more proliferation in response to IL-1β. These
findings establish that local skin inflammation leads to faster and
stronger secondary responses to the same stimulus through long-
term and systemic changes in the composition and properties of
the dermal γδT-cell population.

immunological memory | γδT cells | inflammation

The skin is a crucial barrier organ that protects us from in-
fection while also harboring a diverse commensal microbial

population (1). The immunological properties of the skin that allow
responses against pathogens but limit reactions against innocuous
agents, or provide responses that are supportive for commensals,
are incompletely understood (1). Recent studies identified a pop-
ulation of migratory γδT cells in the mouse dermis (2–4). The
majority of dermal γδT cells express C-C chemokine receptor type
6 (CCR6) and are precommitted to interleukin 17 (IL-17) pro-
duction (referred to as γδT17 cells) (3–5). In C57BL/6 mice roughly
half of these cells express a T-cell receptor (TCR) containing Vγ4
(Heilig and Tonegawa nomenclature is used throughout) (6), and
some of these cells are also Vδ4+ (7–9). Vγ4+Vδ4+ γδT17 cells
were first identified in studies of the lymph node (LN) response
to intradermal injection with collagen in complete Freund’s ad-
juvant (CFA) (10). Studies in mice expressing photoconvertible
proteins have provided evidence that a fraction of the steady-state
γδT17 cells in skin-draining LNs are derived from the skin (7, 11).
However, γδT17 cells are rare in blood in the steady state (7). Their
production in the thymus peaks in the late embryonic and perinatal
period and it is thought that in adult mice the cells are largely
replenished locally in the skin (2, 7, 8, 12). During inflammation,
additional types of γδT cells can be recruited to the skin, in par-
ticular CD27+ interferon-γ–secreting cells (13).
IL-17 family cytokines have well-established roles in antibac-

terial and antifungal defense. A prominent condition in IL-17–
deficient humans is mucocutaneous candidiasis (14). IL-17 also
has an established role in chronic inflammatory conditions in
humans, including psoriasis (3, 15, 16). Treatment of murine skin

with the Toll-like receptors 7 and 8 and purinergic receptor
agonist-containing cream imiquimod induces skin lesions with
features similar to human psoriasis (17). Studies in mice lacking
γδT cells or deficient in Sox13, a transcription factor crucial for
Vγ4+ γδT-cell development, have established that dermal γδT17
cells contribute to the development of these lesions (5, 7, 8, 18).
This involves an early phase of IL-17 production by skin resident
cells and marked expansion of Vγ4+ γδT cells in skin-draining
LNs, after which these expanded LN cells can home efficiently to
the inflamed skin (3, 5, 7). Dermal γδT cells are also activated to
produce cytokines [IL-17, IL-22, tumor necrosis factor (TNF)]
following treatment with IL-1β and IL-23, during bacterial in-
fection, and in an atopic dermatitis model (2, 3, 11, 19, 20).
A central feature of adaptive immunity is the ability to mount

responses that are faster and of greater magnitude on secondary
challenge with the same agent. Memory responses are a defining
feature of the conventional αβT-cell compartment, yet whether
γδT cells develop immune memory has been investigated less.
Recent studies of Vγ6+ intestinal and peritoneal cells have begun
to provide support for γδT-cell memory responses (21, 22).
However, it is not yet clear whether dermal γδT17 cells can take
on memory characteristics.
Here we show that the Vγ4+ γδT17 cells that expand in

draining LNs following skin imiquimod (IMQ) sensitization
travel via the blood to distant skin sites and LNs where they
persist for months. Upon secondary challenge at a distant skin
site, memory-like Vγ4+ γδT17 cells increase in number more
rapidly and produce more IL-17 than upon primary challenge,
leading to a faster skin inflammatory response. In addition to
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persisting in greater numbers, the cells have elevated interleukin 1
receptor, type I (IL-1R1) expression and respond more vigorously
to IL-1β.

Results
IMQ-Activated Vγ4+ γδT17 Cells Egress from LNs and Accumulate in
Inflamed Skin in an Fingolimod-Sensitive Manner. Previous work
established that Vγ4+ γδT17 cells that also express Vδ4+ expand
markedly in LNs draining IMQ-treated skin and when trans-
ferred into the blood they home to inflamed skin (7). In this
study, as before (7), quiescent γδT17 cells were identified as
Vγ4+ cells expressing high levels of CCR6; however, IMQ-acti-
vated γδT17 cells down-regulate CCR6 (see below) and were
therefore tracked by coexpression of Vγ4 and Vδ4. To in-
vestigate whether IMQ-activated cells normally travel from LN
to skin, we tested the effect of fingolimod (FTY720), a drug that
causes S1PR1 down-modulation and inhibits LN egress of con-
ventional T cells (23). As expected (7), Vγ4+Vδ4+ cells accumu-
lated in draining LN after 5 d of IMQ treatment (d5) and
decreased by d7. Vγ4+Vδ4+ cells also increased in the blood at d5
and d7, whereas only increasing in skin at d7 (Fig. 1A). FTY720
administration during the IMQ treatment led to an even more
marked accumulation of Vγ4+Vδ4+ cells in responding LNs and
blocked their increase both in blood and in inflamed ear skin (Fig.
1A). Consistent with direct action, Vγ4+Vδ4+ cells at d5 of the LN
response expressed surface S1PR1 which was down-modulated
following FTY720 treatment (Fig. 1B). These findings suggest that
following expansion in the draining LN, γδT17 cells egress into the
blood in an S1PR1-dependent manner and subsequently migrate to
and accumulate in inflamed skin.

C-C Chemokine Receptor Type 2 Influences the Accumulation of
Activated Vγ4+ γδT17 Cells in Inflamed Skin. Movement of cells
from blood into inflamed skin typically involves expression of
cutaneous lymphocyte antigen (CLA) that serves as a ligand for
E- and P-selectins (24). Activated (d5) Vγ4+ cells had high CLA
expression and showed strong binding of E- and P-selectin (Fig.
1C and SI Appendix, Fig. S1A). The chemoattractant require-
ments for cell homing to sites of skin inflammation are complex
and are often thought to involve multiple chemokines. In an
IL-23 model of psoriasis, CCR6 was important for the develop-
ment of inflammation and trafficking of γδT cells from dermis to
epidermis (25). Although Vγ4+ γδT17 cells express CCR6 (5, 7),
levels of this receptor were reduced on activated Vγ4+ cells
(SI Appendix, Fig. S1B). C-C chemokine receptor type 2 (CCR2)
plays a role in homing of macrophages to inflamed skin and is
present on dermal γδT cells (3, 26, 27). IMQ-expanded LN Vγ4+
Vδ4+ cells expressed high levels of CCR2 (Fig. 1D). Additionally,
activated Vγ4+Vδ4+ cells recruited to inflamed skin expressed
higher levels of CCR2 than those present in control skin (Fig. 1D).
The ligand chemokine (C-C motif) ligand 2 (CCL2) is expressed
in psoriatic skin in humans (28) and was up-regulated in IMQ-
inflamed mouse skin (Fig. 1E). IMQ activated LN Vγ4+ γδT
cells migrated toward CCL2 in vitro (Fig. 1F). When cells were
transferred from LNs of d5 IMQ-treated mice into congenically
marked mice that were treated with IMQ on ear skin, Ccr2−/− Vγ4+
cells showed reduced skin accumulation after 3–8 h compared with
WT cells (Fig. 1G). By contrast, CCR2-deficient cells were present in
slightly augmented numbers in the draining LNs of recipient mice
(Fig. 1G). These data indicate that CCR2 contributes to Vγ4+
γδT17 cell recruitment to or retention within inflamed skin.

LN Activated Vγ4+ γδT17 Cells Accelerate Inflammation at a Distal
Site. Given the efficient homing of LN-derived cells to the ini-
tiating site of skin inflammation, we next asked whether these
cells are capable of accelerating lesion development at a distant
site. Mice that had been IMQ or control treated for 5 d on their
left ear were then IMQ treated on the right ear and ear thickness
and cell numbers were monitored. This analysis revealed a strong
augmentation in appearance of Vγ4+Vδ4+ cells in the newly
inflamed site that was associated with heightened neutrophil

recruitment (Fig. 2 A and B) and a trend to more rapid ear
thickening (Fig. 2C). These findings indicate that LN-activated
γδT cells responding to inflammation at one skin region are able
to migrate to and accelerate the response to an inflammatory
stimulus occurring at a new site.

IMQ-Expanded Vγ4+ γδT17 Cells Persist in Inflamed Skin and Peripheral
LNs. We then asked whether Vγ4+Vδ4+ cell expansion in LN and
recruitment to inflamed skin is transient or persistent. Ear skin of
mice was treated with IMQ for 5 d, and Vγ4+Vδ4+ cell frequen-
cies were determined at different times. Beginning at d7, there was
an ∼20-fold increase in Vγ4+Vδ4+ cell frequency in the previously
inflamed skin. Importantly, this increase in cell composition was
persistent, declining only slightly in skin over a 3-mo period (Fig.
3A). The frequency of Vγ4+Vδ4+ cells was also increased in dis-
tant skin-draining LNs, blood, and spleen. This increase was
preferential to skin-draining LNs, as there was only a minor in-
crease in mesenteric LNs (Fig. 3A and SI Appendix, Fig. S2).
Numbers declined modestly over time in skin-draining LNs and
blood, but even here they remained above baseline at 3 mo (Fig.
3A and SI Appendix, Fig. S2).
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Fig. 1. Egress of IMQ-activated Vγ4+ γδT17 cells from LNs and migration to
inflamed skin. (A) Cell number or frequency of Vγ4+Vδ4+ cells in draining
cervical LN (CLN) (Left), blood (Middle), or ear skin (Right) at indicated times
after IMQ treatment. FTY720-treated mice are indicated by FTY. Data from
at least two experiments with 2–3 mice of each type. (B) S1PR1 expression on
Vγ4+Vδ4+ cells from draining LNs at d5 of IMQ treatment, mice received PBS
or FTY720 24 h before analysis. Representative of 2 mice per condition.
(C) CLA expression on Vγ4+Vδ4+ cells from CLN of mice treated with IMQ or
control (CTL) cream for 5 d. Representative of at least 10 mice of each type.
(D) CCR2 expression on Vγ4+Vδ4+ cells from CLN as in C (Left) or from ear skin
of mice treated with IMQ for 7 d (Right). CCR2-deficient cells are depicted by
the solid histogram. Representative of at least 4 mice of each type. (E) RT-
PCR analysis of Ccl2 mRNA in ear skin from control (−) or mice treated with
IMQ for 3, 5, or 7 d. Data are pooled from at least two experiments with two
mice of each type; bars indicate mean ± SEM. (F) Transwell migration of CLN
Vγ4+ γδT17 cells to medium or CCL2 (100 ng/mL) from mice treated with IMQ
on ear skin for 5 d. Representative of three experiments in duplicate; bars
indicate mean ± SEM. (G) Efficiency of CCR2 KO versus WT Vγ4+Vδ4+ cell
homing to skin and LN of mice that had been IMQ treated for 2 d. Tissues were
analyzed 3–12 h after cell transfer. Data represent six independent experi-
ments with at least two recipients each. *P < 0.05, **P < 0.01, ***P < 0.001.
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IMQ-Expanded Vγ4+ γδT17 Cells Sensitize Distant Skin Sites to Secondary
Responses. To determine whether expanded Vγ4+ γδT17 cells were
able to reach noninflamed skin and, if so, whether they could
persist, we treated back skin of mice with IMQ for 5 d, and analyzed
uninvolved ear skin at different times. Remarkably, 30 d after IMQ
treatment of back skin, there was a ∼20-fold increase in the
Vγ4+Vδ4+ cell numbers in uninvolved healthy ear skin, which per-
sisted for at least 7 mo (Fig. 3B). The increase in Vγ4+Vδ4+ cells did
not appear to be at the expense of the other major T-cell types in the
skin (Fig. 3B). As seen with imiquimod treatment of ear skin above,
expanded Vγ4+Vδ4+ cells persisted in peripheral LNs (SI Appendix,
Fig. S3). These data demonstrate that after local IMQ-mediated
skin inflammation, expanded LN Vγ4+ γδT17 cells not only migrate
to inflamed skin, but also colonize previously uninflamed skin and
skin-draining LNs where they persist for months.
To test whether the persisting Vγ4+ γδT17 cell population

could mount a memory-type response, mice that had been IMQ
sensitized on back skin were IMQ challenged 1 mo later on
previously untreated ear skin. In line with the results in untreated
skin (Fig. 3B), analysis at day 3 of IMQ treatment revealed sig-
nificantly more Vγ4+Vδ4+ cells in the ear skin of sensitized
compared with nonsensitized mice (Fig. 4A). Compared with
controls, sensitized WT mice displayed a more rapid increase in
the extent of ear thickening and neutrophil accumulation (Fig. 4
B and C). The accelerated response in sensitized WT mice was
due to the increase in Vγ4+Vδ4+ cells, as this worsening was not
seen in sensitized Sox13-mutant mice that lack the Vγ4+ γδT17
cell population (7) (Fig. 4 B and C). Indeed, the response to
IMQ in sensitized Sox13-mutant mice did not approach even that
of control WT mice, further emphasizing the role of Vγ4+ γδT17
cells in this model. Transcript analysis of WT whole ear skin at
d3 showed higher levels of Il17a, Il17f, defensin genes Defb3 and
Defb4, and chemokine (C-X-C motif) ligand 2 (Cxcl2) mRNA in
sensitized compared with control ear skin (Fig. 4D). Histological
analysis demonstrated more acanthosis and neutrophil infiltration
in the epidermis of IMQ-treated ear skin of sensitized compared
with control mice (SI Appendix, Fig. S4). There was a greater
frequency of IL-17–producing cells in d3 inflamed skin of sensi-
tized mice (Fig. 4 E and F). In contrast to control skin, where the
Vγ4+Vδ4+ cell population was a minor IL-17 source, Vγ4+Vδ4+
cells were the major producers of this cytokine in sensitized mice
(Fig. 4G). Moreover, in skin of sensitized mice, the IL-17A level per

cell was elevated (Fig. 4H). IMQ treatment of sensitized mice re-
sulted in expansion of Vγ4+Vδ4+ cells in the draining LN at d3, a
time point before any proliferation of cells in draining LNs of control
mice (Fig. 4I). Consistent with the earlier expansion, more of the
Vγ4+Vδ4+ cells in the draining but not the nondraining LNs of
sensitized and challenged mice were enlarged (SI Appendix, Fig. S5).
To determine whether previously activated Vγ4+Vδ4+ cells

had intrinsic properties allowing for more rapid activation and
proliferative response, we isolated d5 IMQ-expanded cells from
draining LNs and transferred them to untreated recipients. After
allowing IMQ-expanded cells to home to unperturbed skin and
LNs of recipients and become quiescent for 2–4 wk, hosts were
IMQ treated on ear skin daily for 3 d. At d3, a higher fraction of
transferred Vγ4+Vδ4+ cells were producing IL-17A compared
with host cells (Fig. 5 A and B) and the donor cells that
responded in the ear-draining LNs were larger and more rapidly
incorporated BrdU (Fig. 5 C and D).

Increased Cell Surface Expression of IL-1R1 on Memory-Like Vγ4+ γδT17
Cells. The i.p. administration of mannan was recently reported to
result in psoriasis-like skin inflammation over the course of 5–6 d,
at least in part through activation of γδT17 cells (29). Interestingly,
whereas treatment with mannan resulted in skin inflammation as
measured by ear thickening, sensitization with IMQ 1 mo before
mannan injection did not worsen this process (Fig. 6A). We next
examined the response by Vγ4+Vδ4+ cells in LNs 5 d after
mannan dosing. This time point represents the height of the
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IMQ-induced proliferative response. In contrast to the IMQmodel,
there was only limited proliferation of Vγ4+Vδ4+ cells in response
to systemic mannan, as evidenced by a small increase in the number
of Vγ4+Vδ4+ cells in control mice treated with mannan and by
an increase in cellular size (Fig. 6B). Importantly, proliferation of
Vγ4+Vδ4+ cells in response to mannan was not enhanced in the
IMQ-sensitized mice (Fig. 6B). These data suggest a context spec-
ificity to the secondary response of previously activated memory-like
Vγ4+Vδ4+ cells.
To test whether the IMQ stimulation involved TCR signaling

we attempted to use Nur77-GFP reporter mice (30). Increased
Nur77-GFP was observed in skin Vγ4+ γδT17 cells, although not
in draining LN cells, after 2 d of treatment (SI Appendix, Fig. S6
A and B). However, in vitro culture experiments showed that
whereas TCR signaling induced Nur77-GFP in Vγ4+ γδT17 cells
most strongly, it was also induced by IL-1β and IL-23 signaling
(SI Appendix, Fig. S6C). Therefore, further studies will be
needed to determine whether Vγ4+ γδT17 cell activation fol-
lowing IMQ treatment involves TCR signaling.
IL-1β and IL-23 are sufficient to promote proliferation of

dermal Vγ4+ γδT17 cells, and IL-1R1 is important in the acti-
vation of dermal γδT17 cells in response to IMQ (8). Conversely,
mannan-induced IL-17 expression and skin inflammation can be
prevented by TNF but not IL-1β blockade (29). We hypothesized
that enhanced responsiveness to specific cytokines may form
the basis for the more rapid in vivo proliferative response of
Vγ4+Vδ4+ cells in sensitizedmice following IMQ rechallenge. Indeed,
compared with controls, we found elevated IL-1R1 surface levels
in Vγ4+ γδT17 cells from LNs of 1 mo IMQ-sensitized mice (Fig.
6C). Following intradermal injection of IL-1β into the ear, there
was greater accumulation of Vγ4+Vδ4+ cells in the draining LN of
sensitized compared with control mice (Fig. 6D). When tested in
vitro, the cells underwent greater amounts of proliferation in re-
sponse to IL-1β (Fig. 6 E and F). IL-1β activation of Vγ4+ γδT17
cells results in increased CD25 surface expression, which was en-
hanced in cells from sensitized compared with control mice (Fig. 6
G and H). These data suggest that memory-like Vγ4+Vδ4+ γδT17
cells have an intrinsically increased sensitivity to IL-1β, an

adaptation that likely contributes to their ability to respond more
rapidly during secondary exposure to inflammatory stimuli.

Discussion
The above findings establish that Vγ4+Vδ4+ γδT17 cells ex-
panded by IMQ-induced inflammation travel to and persist in
healthy skin and skin-draining LNs and support more rapid
secondary responses. This memory feature of skin exposure to
IL-17–inducing inflammatory agents is likely to enhance pro-
tection against repeat exposure to skin-penetrating bacteria or
fungal pathogens. The strong ability of γδT17 cells to expand and
contribute to inflammation at a distant skin site may also provide
an explanation for the ability of IMQ treatment to induce flares
of disease at nontreated sites in some psoriasis patients (31).
Whereas immunological memory is well established for αβT

cells, relatively little is known about the ability of γδT cells to
mount memory responses. A recent study of the intestinal
response against Listeria monocytogenes showed that expanded
Vγ6+ γδT cells homed to and persisted in the intestine and
responded more effectively to a secondary mucosal infection by
Listeria (21). In another study, peritoneal infection with Staphy-
lococcus aureus led to the persistence of an expanded population
of Vγ6+ γδT cells. Again the expanded cells showed restricted
tissue tropism, persisting in the peritoneum and draining LNs
(22). Our findings for Vγ4+Vδ4+ cells provide further evidence
for the ability of γδT cells to acquire memory characteristics
including accelerated activation and proliferation after reen-
countering a stimulus. Importantly, each type of “trained” γδT-
cell appears to retain the central properties of its precursor in
terms of homing and cytokine secretion profiles.
The mechanism of IMQ-induced expansion of γδT17 cells in-

volves induction of IL-1β and IL-23 by skin cells and possibly also
by cells in the draining LNs. Both cytokines can promote dermal
γδT17 cell activation and proliferation (3, 4, 8). IL-7 can also in-
duce Vγ4+ γδT17 cell proliferation (2, 32). Although we did not
observe increased IL-7 transcripts in IMQ-exposed skin or LNs (SI
Appendix, Fig. S7), we do not rule out the possibility that γδT17
cells are exposed to more IL-7 under inflammatory conditions. It
remains unclear whether γδT17 cell expansion following IMQ
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treatment involves TCR engagement. Although the selective
expansion of Vγ4+Vδ4+ cells would be consistent with this
possibility, it could also reflect signaling through other surface
molecules unique to these cells.

The high expression of CLA on activated Vγ4+Vδ4+ cells is
consistent with the cells engaging P- and E-selectins to gain ac-
cess to skin. In addition to being present on inflamed endothe-
lium, E-selectin is constitutively expressed on dermal microvessels
making it likely that LN emigrant Vγ4+Vδ4+ γδT cells are able
to undergo CLA–E-selectin–supported rolling interactions with
healthy dermal endothelium (33). The contribution of CCR2 to
γδT-cell accumulation in the skin adds to data showing a role for
CCR2 in γδT-cell homing to the pleural cavity (34).
It is notable that γδT17 cells are locally maintained in the skin

(2, 7, 8, 12); yet population representation in adult mice can be
strongly influenced by input from circulating precursors. Con-
sistent with local maintenance during homeostasis, the frequency
of γδT17 cells was similar in the skin of adult control and LTβR-
deficient mice, which lack LNs (SI Appendix, Fig. S8) (35). Still
to be addressed is whether in the memory-like condition the
shifted cell representation is again locally maintained or depends
on ongoing input from LNs.
In germ-free mice, dermal γδT17 cell numbers are reduced

(36). It seems possible that the marked expansion and persistence
of dermal γδT17 cells observed here in response to a strong in-
flammatory stimulus may represent an exaggerated form of the
response occurring to skin commensals. That is, commensal colo-
nization of skin may provide low grade inflammatory signaling that
causes expansion and an increase in the number of dermal γδT17
cells at all skin sites. The elevated frequency of γδT17 cells observed
inmice with defects in skin barrier function (37, 38) or skin immunity
(16) could in turn be a consequence of skin commensal dysbiosis.
The pathogenesis of psoriasis is not understood and likely

involves genetic as well as environmental factors. In a subset of
patients, psoriasis is triggered or exacerbated after streptococcal
throat or skin infections, and, in some patients with recurrent
streptococcal pharyngitis and psoriasis, improvement has been
found after tonsillectomy (39). We speculate that local skin or
oral inflammation may result in expansion of IL-17–producing
cells in responding LNs, which could then home to the skin and
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act to generalize cutaneous inflammation. In this regard, γδT
cells capable of producing IL-17 have been identified in the
blood and skin of patients with psoriasis (3, 15, 16).
Whereas expanded Vγ4+Vδ4+ γδT17 cells may preferentially

migrate to skin given CLA expression, it is possible that they may
be recruited to other inflamed tissues where they could aggravate
disease. In an arthritis model, intradermal injection of collagen in
CFA led to an accumulation of Vγ4+Vδ4+ cells in both the LN
and joints (10). Whether the accrual of γδT17 cells in the joint
resulted from recruitment or local expansion was not examined.
Of note, a subset of patients with psoriasis develop inflammatory
arthritis, and γδT cells are an important source of IL-17 in a
murine model of this joint disease (29). In addition, IL-17+Vγ4+
γδT cells infiltrate the CNS during the development of experi-
mental autoimmune encephalomyelitis (19). Thus, redistribution
of γδT17 cells through their recirculation may aggravate in-
flammation in multiple tissues. Our finding that the FDA-
approved drug FTY720 inhibits Vγ4+Vδ4+ γδT17 cell migration
from LNs to skin highlights a possible therapeutic strategy to
limit involvement of these cells in autoimmune processes.
In summary, we show that in response to local inflammation,

Vγ4+Vδ4+ γδT17 cells expand in responding LNs and redistribute
in the skin and peripheral LNs where they persist as memory-like
cells capable of altering the set point for induction of inflammation.
We hypothesize that similar responses may occur in patients with
chronic diseases such as psoriasis and speculate that inhibition of
this redistribution may alter the natural history or the complica-
tions of this disease.

Materials and Methods
Mice, Treatments, and Tissue Preparation. All experiments conformed to the
ethical principles and guidelines approved by the University of California San
Francisco Institutional and Animal Care and Use Committee. Induction of
psoriasis-like inflammation was done as described (7). Lymph nodes and
spleen were dissected free of fat and fasciae and disaggregated by passing
through a 100-μm nylon sieve (BD Bioscience) in DMEM containing penicillin,
streptomycin, and Hepes buffer, pH 7.2. Ear skin preparation and flow
cytometry of cell suspensions were performed as described (7). Additional
details, including mice strains, adoptive transfers, and in vivo BrdU labeling,
are provided in SI Appendix, SI Materials and Methods.

In Vitro Assays and Molecular Methods. For proliferation assays, LN cells from
WT CD45.1+ control or IMQ-sensitized WT CD45.2+ mice were mixed, CTV
labeled, and cocultured in medium alone or medium plus different con-
centrations of IL-1β for 3 d. Additional details, including chemotaxis assays
and real-time PCR, are provided in SI Appendix, SI Materials and Methods.

Statistical Analysis. Prism software (GraphPad) was used for all statistical
analysis. Ear-thickness changes were compared by two-way analysis of var-
iance. The two-tailed, unpaired t test was used for chemotaxis comparisons.
The Mann–Whitney u test was used for comparisons of all other datasets.
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