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ABSTRACT 

We calculate the branching ratio t(p ~t+t-)/r(p ~yy) to 

lowest contributing order in quantum electrodynamics, with a vector 

meson model for the pseudoscalar meson form factor. We treat the 

processes 0+- 0 + - 0 +-K ~ JJ. JJ.; K ~e e ; . Jf ~ e e . 
2 . 2 

Our results are compared with those of previous calculations. 
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I. INTRODUCTION 

The decays of neutral pseudoscalar mesons into lepton pairs 

are of interest because the observation of high branching ratios to 

, these modes may indicate the existence of neutral lepton currents. A 

reliable estimate of the branching ratios due to conventional mechanisms 

is desirable, to give meaning to the notion of "high branching ratios". 

A lower limit for the branching ratio rep -7£+£-)/r(p -7YY) has been 

1 given by Geffen and B.-L. Young. This lower bound. (sometimes called 

the unitarity limit) is model-independent and depends only on the 

assumption that the two-photon intermediate state dominates the 

unitarity sum for the absorptive part of the amplitude for P -7£+£-

(see Fig. 1) . The scale for the branching ratio is set by this 

unitarity limit (",10-5 for + -) 1) -7 1-1 1-1 • But the actual partial decay 

rate into lepton pairs may be an order of magnitude or more larger, 

depending on the size of the real part of the amplitude. Previous 
2 . 4 

calculations by Drell, Berman and Geffen,3 Sehgal, and B.-L. young5 

have, in fact, given some values very much larger than the unitarity 

limit, depending on the cut-off parameters and other details of the 

models. 

Because of the interest by experimenters in a plausible 

theoretical estimate of the branching ratio rep -7 £+ £-) /r(p -7 yy), . 

and because of the wide range in the previous theoretical estimates, 

we present yet another calculation, based on a vector-dominance model 

... 

of electromagnetic couplings. In the main we assume that there are no 
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direct PrY or PVy couplings. All photon couplings then occur via 

the intermediary of vector mesons, as is shown for the relevant 

processes in Fig: l.',~: 

The form.factor fot the transition of apseudoscalar meson 

of massM into two virtual photons, kl 

222 
is therefore proportional to [(~ t kl )(m2 

m2 are vector meson masses. I . th P ~ n.+ n -n e process ~ XI .J:/ 

where and 

such a form 

factor gives a rapidly convergent loop integral. In advance of the 

detailed computation we may anticipate that our result should corres

pon~ roughly to those of Drel12 and Berman and Geffen3,provided their 

cut-off parameters ar,~ 'taken around the vector meson mass. For cdmpari-

son we also evaluate the branching ratio 'with a single vector meson 

propagator, corresponding to the existence of a PVy coupling. This 
, 4 ' 

is the same calculation as was done by Sehgal, 'repe!1ted here because 

Sehgal gave no formulas and only numerical values for decay for 

three choices of cut-off,mass. 

We compute the branching ratio r(T) ~[l+[l-)/r(T) ~rr) as a 

function of vector meson mass. Th~ model is also applied to the 

electronic decays of T), and o 
:rr ; and to the decay 

The resulting branching ratios are somewhat smaller than those obtained 

by previou~authors. 2,-5 To indicate the relative .importance of the 

processes here considered, we include in Appendix C the predicted 

branehing ratios for the competing Dalitz pair and double Dalitz pair 

decays. 

" ~ 

-r 
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Part of our aim in this paper is frankly pedagogical. We 

have included an appendix on our conventions for the calculation of 

Feynman amplitudes and on the evaluation of loop integrals over internal 

four-momenta. In a second appendix we give some of the details of the 

present calculation. 

7 

:. 
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II. MODEL AND CALCULATION 

We assume that ~lectromagnetic decays of ~ proceed through 

intermediate states of two identical vector mesons (V). The Feynman 

diagrams for the processes ~ -7 VV -7 IT and are shown 

in Fig. 1. A form factor for the ~ is needed in the first place to 

circumvent the logarithmic divergence in the amplitude for + -
~-7.e.e, 

which occurs in the limit of a point interaction. The use of identical 

vector mesons is inspired by the SU(3) Hamiltonian for the ~VV 

vertex. The Hamiltonian ~ Tr (v
9
v cJ) . contains the piece 

o 0 
(p P +.ww - 2~~)D· 

A. Radiative Decay 

The Feyrunan amplitude for the process 

€ k k € € 
6p.vcr lA,21l lv 2cr 

. 2 222 
l [kl + Il J[k2 + Il ] 

, 

. * lS. 

where fill' is the ~VV coupling constant, G is theVy coupling 

(1) 

constant, fl is the mass of the vector meson, €. is the polarization 
l 

vector for the ith photon and k. 
l 

radiative decay rate is 

1 
16rc 

where M is the ~ meson mass. 

* 

its momentum. Therefore the 

(2) 

We use the Pauli metric. A complete discussion of our conventions 
is given in Appendix A. 
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B. Leptonic Decay 

For the process + -~ ~£ £ , ,The Feynman amplitude is 

, 

where 

2 . 2 2 " 
k) ,[ (k - q2) + m ] 

(4) 

Here e is the lepton charge, u and v are respectively posi ti ve,-

and negative-energy Dirac spinors, m is the lepton mass, and Ya a 

Dirac matrix. 

The evaluation of (3) and (4) is straightforward; the standard 

techniques of quantum electrodynamics can be brought to bear. The 

manipulations are given in Appendix B. 

C~ Branching Ratio and Unitarity Limit 

The branching ratio for P ~£+£- to P ~yycan be written , 

as 

, (5 ) 

where a is the fine structure constant. The quantities X and Y, 

defined in Appendix B, are proportional to the dispersive and absorptive 

parts of the matrix element, (3). The absorptive part· Y is independent 
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of the model chosen for the T} form factor, depending only upon the 

on-mass-shell amplitudes for T} --? yy and + -yy--?£ £. Hence neglecting 

X in Eq. (5) gives us an almost rigorous lower .bound on the branching 

. . 1 
ratio, as first observed by Geffen and B. -L. Young. The value of Y 

is (see Appendix B) 

Y _ .·1 £nCM + Vif.- 4m
2

\ 

fl4m· 2m ) 
1--

if 

(6) 

The unitarity limit for the branching ratio is thus 

We do not have an equally compact expression for X; it is 

necessary tO'perform numerically the final one-dimensional integration 

(over an auxiliary Feynman. parameter). These last integrals are written 

down explicitly in Appendix B. The results are presented in Section III. 

D. Another Model 

Another possible model for the form factor is a single vector 

meson propagator, corresponding to a direct T}Vy coupling. This model 

provides a somewhat "harder" form factor and comparison of the results 

of the two models will give some indication of the sensitivity of the 

branching ratio to the details of the assumptions about the 'vertex. 

The two calculations are very analogous, the second one involving one 
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less propagator in the denominator of (4). Details again are given in 

Appendix B and the resul tsin Section III. 4 Sehgal calculated the 

branching ratio r(K~ ~~+~-)/r(K~ ~rY) using this model. But his 

paper only sketches the calculation and gives numerical values for just 

three choices of cut-off (vector meson) mass. 

!. -.. 
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III. RESULTS OF THIS CALCULATION; COMPARISON 

WITH PREVIOUS CALCULATIONS 

A. + -TJ-7J.l.fl. 

The lower bouri'd on the branching ratio is given by Eq. (7) 

as 
. , -5' 

1.07 x 10 . Our results are shown as ,a function of vector meson 

mass in Fig. 2. The results of Drel12 and of Berman and Geffen3 for 

the decay can be converted to 

shown in Fig. 2. 

+
TJ-7fl.fl. these are also 

1. Behavior asa function of . fl.; Comparisons with other results 

We first consider the general behavior of the branching ratio 

as a function of vector meson mass. For the two models employed here 

the real part bf l:the amplitude has a zero for ,fl./M f;J 1. This is 

visible in Fig~ 2 for the TJVy model, but occurs at such a small 

value of (fl./M - 1) . for' the TJVV model that it cannot be seen on 

the scale of Fig. 2. For large values of fl./M there i,s a divergence 

of the amplitude as . £n fl., corresponding to the logarithmic divergence 

which occurs for point coupling of TJrr. Explicitly, the asymptotic 

branching ratio for both models is 

lim 

i;?>l 
= (8) 

.. 
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Berman and Geffen3 used the form factor 

= , 

whence 

, 22 
-i[n En M/m + O(m /M-)J (10) 

It is perhaps not surprising that the Berman-Geffen result gives 

numerical values lying between those of our two models, as shown in 

Fig. 2, since their form factor has characteristics intermediate 

between the ~VV and ~Vy form factors. The limiting form of their 

branching ratio can be seen from (10) to be the same as (8). 

Drel12 considered a dispersion relation (in the square of the 

pseudoscalar meson mass) for the form factor describing the decay 

+ -P ~£ E. The imaginary part of the form factor is proportional to 

our Eq. (6), times a form factor G(Q,2) which describes the decay of 

a pseudoscalar meson of mass ..y _Q,2 into two real, photons 

2 2 (' 2 22 [G(Q,) = F(O, 0; -Q), where F kl , k2 ; ~) is our formfactorJ. 

Drell chose 

{ 

1, 

0, 
, (11) 

• 
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where ~ is now a cutoff paramter. This gives for the branching 

ratio 

, (12) 

Drell's result diverges much more rapidly asa function of I-l than 

Eq. (8). We remark here that there is not a clear physical interpreta-

tion for the cutoff parameter I-l in Drell's (or even in Berman and 

Geffen's) calculation. In particular, there is no obvious correspondence 

between the cutoff and our vector meson mass. Consequently one should 

not take too literally the graphs which give all results as a function 

of the same mass parameter. 

2. Branching ratio for realistic vector meson mass values 

For the physical vector meson masses the numerical values of 

the branching ratio for the TjVV' model of the form factor are 

r,+,_ 
~ f.l 
r 
IT { 

1.13) 
, ,1.17 ' ,X 10 -5 

1.29 

compared with the lower limit of -5 1.07 x 10 . 

, 

We note that the real 

part of the amplitude contributes only 10 to 20 percent in the rate. 

The spread in the above values may be taken as an indication 

of the variation expected from the breaking of SU(3) symmetry. But 

it is of interest to consider the symmetry breaking from a somewhat 
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more basic point of view. The nonet model of PVV coupling gives a 

Lagrangian density proporti~nal to (
00 

p p + ww - 2CPCP)Tl, where the 

space-time structure has been suppressed. For the present purposes we 

assume that the couplings are of this form for the physical particles. 

We assume that the photon transforms as 

o 
Y '" P 

o 1 -'12 
P + - W -~. cP 

3 3 ' 
and that the vector meson-

photon coupling constants are of the "universal" form, 

Then the X(J-l) of Eq. (5') and (B.14) is replaced by 

This gives a branching ratio, 

r + _ 
J-l J-l 
r 
IT 

1.'08 x 10-5 , 

G. 
1 

even closer to the unitaritylimit than the value found with 

J-l = m in (13). 
p 

The estimate just made included symmetry breaking in a very 

(14) 

special way (hadronic couplings unbroken, ,photon-vector-meson coupling 

of uni vers,al form, etc.). Clearly there are a myriad of other ways to 

break the symmetry, each one giving a different branching ratio. But 

if 8U(3) symmetry is good to; say, 50,_ accuracy, it is difficult 

to imagine the branching ratio lying outside the interval of from one 

to two times theunitarity bound, at least in our'vector dominance 

model. 
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Similar considerations about symmetry breaking can be made for 

the TjVy model of the form factor. It is clear from Fig. 2 that the 

same conclusion will be reached, and that a result more than three 

times the unitarity limit would be surprising, unless there are other 

mechanisms at work., 

3. Discussion of B.-L. Ypung's results 

Extensive estimates of the branching ratio have been made by 

B.-L. Young. 5 As a model for the Tj form factor, Young has a cutoff 

function times a vertex function which is a linear combination of 

Tjyy, 't]Vy, and TjVV, contributions. The form' factor is schematically 

illustrated in Fig. 3. He uses physical masses of vector mesons and 

SU(3) and empirical estimates for the coupling constants. Young has 

several models for the cutoff function, but the results are not sensitive 

to these variations, provided different models are compared at equiva-

lent effective values of the cutoff par~eter A. in Fig. 4 we have 

plotted the boundaries of Young's various curves which he calculated 

wi th different values of f., g .. , and f O. (c. f. IFig. 3). 
1 lJ 

The range of values for the branching ratio is, at first glance, 

almost ununderstandably large. As a first remark we observe that, while 

the TjVy and TjVV parts of the amplitude need no cut-off, the point 

coupling ,TjIT does. Thus Young' s results diverge logarithmically with 

his cut-off parameter (which has nothingt6 do with the mass of a , 

vector meson) provided lim f(k
1
2, k~) t O,apart from the cut-off 

2 2 ' 
kl,k2~ 00 

, , 
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function, i.e., his Loo ~ 0. The second point is that the detailed 

2 2 
behavior of r(kl , k2) for small or moderate k~ depends on the 

l 

magnitudes and relative signs of the contributions from ~yy, ~Vy, 

and ~VV, and this behavior affects the magnitude of the branching 

ratio. The largest values come from (a) the smallest values of r O 

(obtained from ro(~) Iro (nO)":::: ~ and the nO lifetime); (b) choices 

of signs of f. 
l 

and gijWhich make increase with 

k~, . k; ~ ° until eventually damped by the cutoff function. His 

"dipole model" has' two; cutoff parameters, one fixed and one variable, 

a l1d the behavior of the result is governed mainly by the fixed, 

relatively small cutoff. This produces the lower, flat curve in our 

Fig. 4. 

B. 

For this process the unitarity bound is 
. -5 

1.17xlO. In 

. ;this case" the motivation for our, model is less clear since the decay 

KO ~yy . involves both weak and electromagnetic interactions. But if 

the electromagnetic part is dominated by vector mesons the model 

should provide a fair estimate of the real part of the amplitude. 

In Fig. 5 we display our results for the branching ratio, 

along with those of Drell and of Berman and Geffen for this process 

as a function of vector meson mass. 4 Sehgal!s three values, for 

j.l/~ 1, 2, and 4 are 1.6, 2.0, and 3.5, respectively, in unit;:> of 

10-5 . The first value is considerably larlSer than our resuJ.-t o.f 

1. 26 x 10"'5 at j.l/~:::: 1, but the other two values are in agre.ement 
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with our curve for the KVy model. The relations among the various 

calculations as a function of vector meson mass or cut-off are quite 

similar to those found for ~ decay, although details such as the 

zero in the real part of the amplitude at some value of ~ are 

different because of the somewhat different kinematics. 

Beg6 considered a specific model for decays involving both 

weak and electromagnetic interactions. Although phrased in dispersion 

relation language, the model is effectively equiv~lent to a current

current Hamiltonian for the hadronic part of the weak interactions with 

68= 0, ±l neutral currents. In particular, the 68= 0 vector 

current has a contribution from the o p -meson field and the axial vector 

current from the divergence of the nO field. The decay K~ ~ £+£-
o 0 would then proceed mainly as K2 ~ n via the 68 = 1 neutral hadronic 

curre'nt, and nO ~ rr,rr ... £+£- by one of the models discussed here. 

I' Beg uses Drell's model with ~ 2~, and an upper limit for the 

t . t f 0 0 t . t b 1 t . 11' "".;t ma r1X elemen 0 K2 ~n, 0 glve an approxima e a so u e upper U~ 

( 0 + -) -1 of r K2 ~ ~ ~ < 0.7 sec . Evidently Beg's value for the branching 

ratio r£+£-/rrr is just that of the Drell model. Although not strictly 

relevant for the present considerations, it is perhaps of interest to 

examine the experimental.data on so that Beg's absolute rate 

can be converted into a branching ratio. The most recent and apparently 

most accurate value for the rate of K~ ~rr is that of Banner et al. 7 

They find r(K~ ~rr)/r(K~ ~all) (4.68 ± 0.64) x 10-4, giving an 

absolute rate of r(~ ~ rr) = (8.9 ± 1.3) x 103 sec -1. Beg's upper 

limit then becomes an upper limit on the branching ratio of roughly 

I. 

.. 
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8 x 10-5 . From Fig. 5 we ~ee that Drell's model gives 2.8 x 10-5 

for- ~. = 2m; ('~ /~ = ~. 8) . Wi thin the framework of his model, this 

means that Beg's estimate for the K~ ~rt° matrix element was too 

large by a factor of 1/8/2.8 ~ 1.7, remarkably close considering 

that it was called a "gene~ous upper limit"! 

c. + -
Tj ~ e e and 0+

K ~ e e 
2 

For these extremely rare decay modes, the branching ratios are 

again close to the unitarity bound, for reasonable masses of the vector 

mesons. We therefore state only the lower bounds: 

( 
0 +r K2 ~ e e ) 

o . 
r(K2 ~ IT) 

D. 0+
rt ~ e e 

, The direct decay of the neutral pion into an electron-positron 

pair was the process originally studied bY'Drell,2 and by Berman and 

Geffen. 3 The predictions of Berman and Geffen, and of our calculation 

are, as before, rather insensitive to the val~e taken for the cutoff , , 

or vector meson mass, while Drell's expression is qui,te sensitive to 

the cutoff. The zero in the real part' of. the amplitude occurs in ,this 

case for a rather large value of thecutbff, bpth for 'our models and 
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for that of Berman and Geffen. Consequently, over the range of cutoff 

masses corresponding to intermediate states p, w, cp, the branching 

ratio is decreasing. The predictions for this process are summarized 

in Table I. Only our values for the ftVV model are quoted. 

, " 

..' 
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IV. SUMMARY 

Our calculations indicate that for the vector dominance model 

the branching ratios for the decays (p ~.e+.e-) to{p ~rr) are 

not much larger than the lower bounds given by unitarity. For the 

decay + -
~ ~~ ~ , we therefore expect that 

(0.4-1.0) x 10-5 

Detailed numerical values are given in Section IlIA. For ~deCayS 

the branching ratio r~+2~/pyy is of the same magnitude as for ~. 

decay, but because of the small fraction of decays K~ ~yy,7 the 

0+-
process K2 ~~ ~ will be much less common: 

(0.5-1.0) x 10-8 

In both cases the decay~ to electron pairs are suppressed by an 

additional factor of about -4 4 x 10 . Because of the insensitivity 

of our results to vector meson mass, near the physical masses of 

vector mesons, we believe our predictions for the total branching 

ratios reliable within a factor of two. 
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Table I 

Branching Ratios for .. 
0+-

n: ~ e e 

Cutoff or Vector Meson Mass 
(Units of pion mass) 

1.0 

6.95 

13·90 

'3.16 

9·8 

5·7 (p) 

7·6 (cp) 

10 

UCRL-18487 

4 -8 .7 x 10 

3 x 10-8 

12 x 10-8 

22 x 10-8 

6·7 x 10-8 

5.7 x 10 -8 

6.4 x 10-8 

6.1 x 10 -8 

4.9x 10 -8 
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APPENDIX A: CONVENTIONS,' NOTATION, BASIC FORMULAS 

AND FEYNMAN INTEGRALS 

1. Metric and Dirac Matrices 

The notation for 4-vectors is A = (~, A4 ~ iAO)' so that 
11. 

: scalar products are A·B = ~.~ - AOBo' The spinor notation is that 

. of Pauli's Handbuch article, with Hermitean ,-matrices and '4 

diagonal. Explicitly, 

1 0 

'4 =( ') , o ,-1 

The spin tensor is .' 1 
0' - - (,' ,,) The spinors are normalized 
'~v - 2i 11. v- v 11. • , 

according to (uu) = 2m, (vv) -2m. They satisfy the free-particle 

equitions, (i,.p + m) u(p) o and (i,·p - m) v(p) = O. For an 

antiparticle of momentum £ and helicity A it is sometimes conven-

. ( A-l/2 
ient to use VA 12.) = (-1) '5u-A(12.)' 

2. S-Matrix Formulas 

The invariant amplitude I?? is related to the S-matrix through 

the relation, 

S ." . ~ex 
~ ~ -1· (2"".) 4~ (4) ( ) 'Yn / .... t;r.r; (2E ) 
u f-A'" ". u p~ - Pex '1 ~ex Vi' i (A.l) 

where ex and ~ are the initial and final state labels and the product 

of factors (2E) is over both initial and final states. For a decay 
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process ex -7 (1,2,' .. ,n) the transition probability is 

dW~ex 

3 2ffn d p. (4) 11? I . J.. 0 (p + .. '+p - p ) 
~i=l (2rr)3(2E

i
) 1 n ex 

(A.2) 

For a two-particle final state, 

dw~ex 

where 

3. The Evaluation of Feynman IntegralS8 

In general, the integral over the undetermined loop momentum 

k in a Feynman diagram takes the form 

where 

I 

a. 
J. 

1 

(2rr)4 

s. is a linear combination of external momenta p. 
J. . J. 

m. are the (internal and external) masses in the 
J 

problem, and 

F is a polynomial in the components of k. 

(A.4) 

, -. 

,. 
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To evaluate such an integral, it is convenient to introduce auxiliary 

parameters,8 through one of the following identities. 

1 1 

=: (n - 1): ~ dz ... 
1 ~ 

1 
a ... a 

2 n 

DC t z. - 1) 

X 
. i=l 1 

[ f a.z. r . 1 1 1 
1= 

1 zl zn_2 

Sn (n - 1) ~ J dZl I dZ2 
... J dZn_l 

0 0 () 

1 

Sn (n - l)~ ~ 

Some other useful relations are 

1 

~ 

dz 
n 

1 

~ dz n-l 

(A·S) 

(A.6) 

(A·7) 

(A.8) 
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1 

~ dx 
n(A-B) 

n+l 
[(A - B)x +' BJ 

An integral of the form (A.4) can always be brought to the 

schematic form 

I = 

4 

J .... J J d k F(k; Pi;mj ) 
, '" '2 2 n 
[(k - R) + a J 

(one-dimensional 
integrals) 

(A.10) 

The exact form will depend on which of the above identities one chooses 

to employ. If the k-space integral is at worst logarithmically diver-

gent, we can make a cha~ge ,of variable, 

I 
k k - R (A.ll) 

without changing the value of the integral (nor adding any finite 

number for the case of a logarithmic divergence). Hence we can always 

bring the k-space integral to the form 

(A.12) 

Because of the symmetry of the range of integration, the odd powers of 

k in F do not contribute. To get to the final, usable form we 
iJ. 

must average over k , 
iJ. 

which amounts to the substitutions 

, , , 
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k k = ~ 5 k
2 

fl v '+ flV 

k k k kl [k2
J2 [5 5 + 5 5 + 5 5 ] 

fl V P a 24 flV pO flP va flo vp 

etc. 

Therefore we need only evaluate integrals of the form 

\ 

~ . mn J 4 (k2)m-2 
= -~k-:~~+-a-!2::-J-n-

, ~ 

(A.13) 

which exist, provided n > m > O. 

Q.uite clearly the major task in the evaluation of Feynman 

integrals is the computation of the integrals over the auxiliary 

parameters. 

'. 
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APPENDIX B: DETAILS OF THE CALCULATION 

We begin with Eqs. (3) and (4) of Section II. Use of the 

Dirac equation for the leptons and various identities allows us to 

wri te the effective value of c:r in the form, 

, (B.l) 

where 

B if- + 2k'p (B.2) 

and 

D 
222 2 22 22 

k (k + JJ. )(p - k) [(p - k) + JJ. J[(k - q2) + m rf: 
(B.3:) 

The evaluation of u(ql)~v(q2) in the helicity representation leads 

to a matrix element, 

, 

where ~" , 

I 

(B.4) 
" 

The quantitie~ X and Y, appearing in Eq. (5) of Section II for the 

branching ratio, are related to I by 



'., 
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I 

The evaluation if I is straightforward, but the presence of 

five denominators necessitates some manipulation. As a preliminary we 

remark that the change of variables, k ~p - k, leaves the numerator 

in (B.4) invariant and leaves D unchanged except for q2 ~ql' 

Furthermore, in the frame where ~ p = 0, the transformation 

causes 2 (p - k) 

invariant. These two changes of variable can be used to simplify the 

integrand in (B.4), as follows: 

12 2 _2 2 2 2 
D[4~k + [~ + (p - k) - k ] } 

The third term in the curly:: bracket gives zero contribution to the 

integral, as can be seen by the above, changes of variable. The last 

term can be written 

1 

Similar use of partial fractions and the above changes of variables 

can be used to reduce I to a sum of terms involving only three 

denominators. The result can be written as 
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where 
.. 

. (2 ')2 
J ( 0, 0) .- 2 • ~ - 1 . J ( 0, iJ.) 

2 
L L 
~ 

(B.6) 

i 

(211)4 J 4 2 2· 22 2 2 ,,:,1 
.d k((k +~)[(p - k) + m

2
][(k - q) + m ]} 

(B·.7) 

and 

L (B.8) 

The simple~ integral L. can be evaluated immediately using 

Feynman parameterization. The result is 

.~ 
. 2 2 n l+ll-y 

L = ~ £n (.~) - ~ 1 - 4~£n ~. 
m .;' 2m iJ. 1 _ " 1 _ 4m 

. 2 
iJ. 

In passing we note that for large vector meson mass (iJ./m» 1), L 

has the asymptotic value, 

L ~ in(~) + 0(1) 

The remaining integral J(~, m2 ) Call, by means of the 

Feynman parameterization, be expressed as a double integral, the 

first of which can be performed in terms of elementary functions. 
I 

The resultant is 

(B.10) 



: .. 

1 J(m.. ,m2 ) = --
.L 16rr2 

where 

J 
o 
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1 
. [ 2 1. . (~ 

dx ... r. .en 2 
V6 (~ 

2 2 .2 2 2 2 .2 2 2 
(~ + m2 - M"x) - 4~m2 - 4M"m (1 - x) . (B.12) 

The remainirig integral over x is most conveniently done numerically 

for the specific (~, m2) values needed in (B.6). 

Before displaying the final forms suitable for numerical 

computation it is of interest to consider the question of the unitarity 

limit [Eq. (7)J. This bound comes from the existence of a model-

independent absorptive part from physically allowed two-photon inter-

mediate states in Fig. l(bt" This absorptive part can be calculated 
~'~l 

directly from unitarity equations and the physical amplitudes for 

+ -
TJ -7 yy and IT -7.e .e , as in Ref. 1, or by replacing the propagators 

by delta functions, as discussed by Sehgal. 4 Alternatively, it must 

emerge directly from any model calculation. If it is assumed that the 

vector meson mass is large enough that neither yV nor· VV inter:-
j 

mediate states are physical, then in the expression (B.6'), only 

J(O, 0) can give rise to an absorptive (imaginary) part:. 
! 

This is 

because J(~, m2) corresponds to a simple splnless triangle graph 

of the form of Fig. l(b) with the diagonal internal legs having masses 

and To see explicitly how the imaginarY,part emerges; 

consider . (B.ll) and' (B.12) with ~ = m2 = O. We have, 
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+ x 

J(o,o) 
- x 

(B.13) 

where, for the moment, the sign of the argument of the logarithm should 

be considered as not yet certain because of the ambiguity in 

.en(f2) == 2.en(±f). To ascertain the proper sign we note that for ;: <0 

there can be no physically allowed intermediate state and hence no absorp-

tive part. ' By inspection of (B.13) as it stands it is easily verified 

that J(O,O) is real for ~ < 0. Now we can consider ~ > 0. The 

, 

eM )-1 square root in (B.13) is now real and less than x for 2m, + 1,' < x < 1 

and imaginary for ° < x < (~m + 1 ) -1. This means that the integral 

receives a real contribution over the whole range of integration and an 

eM ")-1 imaginary contribution for x on the range, 2m + 1 < x < 1: 

8J1~ 11 1m J ( ° , ° ) 1 

4m2 ( )2 
~ 1 - x 

M, 1 
2m + ' 

Evaluation of this integral leads directly to the expression Y in 

Eq. (6) of Section II. ' 

The reader who finds the explicit evaluation of the imaginary 

part of J(O,O) too specific can consider the analytic properties of 

the triangle graph represented by (B.7) or (B.ll), using techniques 

developed for arbitrary Feynman diagrams. 13 

We now return to the task of exhibiting the final forms of 

J(ml ,m2) needed in (B.6). The features of the integrand of J(O,O), 

.. 
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noted above, imply that the logarithm becomes an arctangent over part 

of the range of integration. For· J(O,~) the log form holds over 

the whole range, while for J(~,~) the arctangent. The complete 

expression for X = Re Z from (B.6) is 

where 

x = A + 2 (l -1 )2 A _ (4~2 - 1) A - l A4 
1 2 2 2 32' 

~ M M 

+; J 
a 

1 

dx 1 .en[·x+~-V(x-a)(x+b)l 
'S-V(x - a)(x + b) x - 'SI/(x a)(x + b) 

1 

~n J 
° 
1 

;1 
° 

dx 1 

'SV(c - x)(d -

dx 1 [arctan· 
~l/(e - x)(f + x) 

lITm
2 

- - 1 - - .en 2 2 
~ 

1 g 2 
+ 1 _ 4~ 

. ~ 

1 _ ~ 1 _ 4~2 
~ 

(B.14) 



and 

a 

c 
(~~ + 1) 
(~m + 1 ') 

~I: 

2 
(-Jm

2
M2 

M2 4m
2 e 

f 

-32-

b 

d 

4
22 4 

m J.l + J.l 

22 4' 
- 4m J.l + J.l, 
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(' -1) 
(~m - 1) 

2 _ 2m2] + J.l 

In Al and A3 the arctangents 'are to be chosen on the interval 

(0, ~). 

The calculation for the second mo~el, with a single vector 

meson propagator (~Vy coupling, instead of ~VV) closely parallels 

the previous one. The denominator (B. 3) is replaced as follows: 

1" ,~' [k2 + 2 ( k)2 2] ~ , J.l +p - D + J.l 
D 2J.l2 D 

" 

.1.) 
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Here, for convenience, we have written a form explicitly symmetric 

2 2 -2 
in k and (p - k). and have included a factor of f.l Use of 

the same transformation of variables as discussed below (B.5) yields 

an integrand to replace that in (B.4)of the form: 

1 

.( .... if) : 
.•. 2" + 1. . ... 
. f.l _2p·k 

+2 2 2 2 2 
k + f.l fl(k + fl ) 

( ~-lY 
2 2 

(p - k) + f.l 

Only the last term gives a new integral, not present in the first 

model. The expression repl~cing (B.6) is therefore 

. z' 
8Jtif . 

where 

( 
2)2 1 2 (.. if) J(O, 0) - ~ - 1 J(O, fl) - . ~ L 1 + ---
if· l6Jt2if if f.l2 

L' 

2 
~L' 
if 

, 

1 f 4 (-p·k) 
2"" dk 2 2 2- 2 2 Jt i . k (k + fl i(k - q) + m ] 

. (B.15) 

(B.16) 

Explici tly we have 

L I := M22 [L - £n ( ~) - 1] 
).j.m • m 
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The final result for X in th:Ls model is 

XI 

where the integrals Ai are defined below ( B .14) . 

.. . 
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APPENDIX C: RATES FOR COMPETING PROCESSES 

The branching ratios for the Dalitz pair and double Dalitz 

pair decay modes of the ~ meson have been calculated by Jarlskog 

and Pilkuhn, 9 using standard methods of Q,ED. Applying their results· 

to the decays of ~, and 11
0, we obtain the following branching 

ratios. 

( + - + -) 
~ ~I-L I-L e e 

(~ ~ yy) 

. ~8 

~ 6x 10 

= 4 x 10-6 

+ - ) . -2 
-- - = 1. x 10 -"Cr· _~~.e:;...-,;e~r;;L.: 6 

~ ~ yy) 

. + - + -
(~~eeee) 

h ~yy) 

o + - + -
(K2 ~ fJ. I-L I-L I-L ) 

o 
(K

2 
~ yy) 

0+- + -
(K2 ~ J.l J.l e e ) 

o 
(K

2 
~ yy) 

- 6.6 x 10-5 

6 -8 
~ x 10 

4 x 10-6 

-2 
1.6 x 10 
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o + - + -(K2 -7 e e e e ) 

o 
(K2 -7 rr) 

= 

0' +(:n: -7e e y) 
o 

, -2 
= 1.19 x 10 ; 

(:n: -7 yy) 

E . t 10 1 1 0 04 10-2 xperlmen :' . 7 ± . x 

o + - + -(:n: -7 e e e e ) 
o 

(:n: -7 rr) 
= 

,11 -5 
Experiment: 3.18 ± 0.30 x 10 

~he single Dalitz pair formation is perhaps of most interest 

because of its possible pres'ence as a background for the , + -
1-1 1-1 decay 

mode; We calculate the branching ratio p = reT} -71-1+I-1-y)/r(T} -7YY), 

using our model for the T} form factor. The process in the numerator 

is Dalitz pair production + -T}-7yy -71-1 1-1 Y; we ignore contributions 

from inner Bremsstrahlung + - + -T}-71-1 1-1 -71-1 1-1 y. The latter process is 

suppressed by a factor of about a compared with We 

find 

p = 
2a 
3:n: 

2 
M 

J ds 
'. 2(s 
4m2 .s 

4 
+ 2m2)( 1 - 4m2 / s y~ ( 1 - s / if ) 3 ---'2~1-1;....-.----::" 

(I-l 

where- . s is the effective-mass-squared of the lepton pair, and other 

symbols have been defined previously. This is Eq-. (13) of Kroll and 

Wada,12 with the additional factor 1-14 / (~t2 - s)2 in the integrand. 

• 



• 
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The spectrum in s is strongly peaked towards small s, corresponding 

to "almost real" intermediate photons converting into the lepton pair. 

Hence the presence or absence of the vector meson propagator is of 

little qonsequence. 

Using a p-meson intermediate state, we find for. T]-decay, 

p = 7.8 x 10-4 ; and for K~ decay p = 5.6 :ic 10-
4

. These branching. 

ratios are N50 times the branching ratio for the direct decay 

+ - . 
1] ~~ ~ of experimental interest. However, high effective masses 

of the system are strongly suppressed, so that an experiment 

with reasonable mass resolution can minimize the contamination. To 

show this quantitatively, we plot in Fig. 6 the fraction of Dalitz 

pairs.with effective mass-squared greater than minimum accepted values 

of mass~squared.For example, an experiment with resolution of 
- . . 

0:3(~- 4m2 ) ~ 0.08 G~V2 l,in the effective mass squared, would accept 
., 

about 1 Dalitz pair for every 2 directly-produced pairs. 

Finally we note that "inner Bremsstrahlung" gives rise to a 

tail on the mass-square distribution of the directly-produced pairs, 

which·can easily be treated separately.14 
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FIGURE CAPTIONS 

Fig. 1. Feynman diagrams for the decay processes. 

Fig. 2. 

(a): 1] -71'Y; 

Branching ratio 

(b) : 

r ~ -fr for eta decay as a function of 
Il Il IT 

vector meson_or cutoff mass. Dotted·line: Drell; Dashed 

line: Berman and Geffen; Solid line: Present 1]VV m~del; 

long dashes: Present 1]Vy model; Dot-dashed line: Lower 

bound from unitarity. 

Fig. 3. Schematic representation of Young's form factor. 
\. 

Fig. 4. Range of branching ratios obtained by Young versus his cutoff 

Fig. 5. 

Fig. 6. 

parameter. 

Branching ratio r +" fr,. 
iJ.f-l- IT 

for decay as a function of 

vector meson or cutoff mass. (Same labels as Fig. 2.) 

Fraction of Dalitz pairs in + -
1] -7YIl Il with effective mass-

squared> lower limit accepted by experiment, sO' Multiply 

tight-hand scale by 0.72. for decay. 

• 

.' 
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"7 -----+---- -------- m 
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( a ~ ( b) 

Fig. 1. XBL689-6809 
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1------------------~----------------~----~~ f 5 10 50 100 
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Fig. 2. XBL689-6810 
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Y k 
2 
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k. 

7J Vi 

gij 
Vj 

)( [Cutoff function] 

k2 

- ( k2 = 0 part) 
• 

-(k2 =Opart) 
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Lower bound (unitarity) 
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