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ABSTRACT
We calculate the branching ratio. n(p —>E+E')/F(P —yr) to
lowest contributing order in quantum electrodynamics,vwith a vector
meson model for the pseudoscalar meson form factor. We treat the
- - . + -
processes 0 —>p+u'; .- ete s Kg —>u+u H Kg —ye+e 5 m o —ee .

Our results are compared.with those of previous éaléulations.
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I. TINTRODUCTION

The'decays of neutral pseudoscalar mesons intovleptOﬁ pairs

are of interest because the observation of high branching fatios to
" these modes may indicate.the existence of néutral lepton currents. A
reliable estimate of the branching ratios due to conventional mechanisms
is desirable, to givg meaning to the notion of "high branchiﬁg ratios™.
A lower limit for the bfaﬁching ratio T(P —>z+£—)/F(P —>YY) has been
given by Geffen and E.-L. Young.l This lower bound . (sometimes called
the unitarity limit) is model-independent and dependsvonly on ﬁhe
assumption that the two-photon intermediate sﬁate dominates thé
unitarity sum for the tabsprptive part of the amplitude for P —>Z+£_ '
(see Fig. 1). The scélé fof the bfanching ratio is set by this
unitarity limit (~1o'5_f51¢ 1 —»>up'u”). But the actual partial decay
rate into lepton pairs may be an order of magnitude ér more larger, i
dependiﬁg on the size of the real part of the amplitude. Previous
calculations by Drell,2 Berman and Geffen;5 Sehgal{u and B.-L. Young5
-have, in fact, given some values very much larger than the unifarity
limit, depending on the cut-off parameters and other details of the
models.

Because of the interest by experimenters'in_a plausible

theoretical estimate of the branching ratio T'(P ->£+£_)/F(P -TT),.

>

and because of the'wide range in the previous theoretical estimates,7
we present yet another calculation, based on a vector-dominance model

of electromagnetic couplings. In the main we assume that there are no
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direct Pry or PVyr cbuplings. All.photon‘couplings then océur via

the fnfermedidry of vector mesons, as is §hown fér thékrelevant
procésses in Fig:vl:_E | ..

The.form.fégtor fo;'the traﬁsition_of a‘pseudoécaiar meson
F(ki,_kgé W), |

1 and k

is therefore proportional to [(mi + ki)(mg + kg)]-l;"where m, and
- . : L : .

of mass ‘M into two virtual photons, k o3

- m, are Vvector meson masses. In the process P > 474 ‘such a form
factor gives a_rapidly convergent loop integral. In advance of the

detailed computation we may anticipate that our result should corres-

3

_pon@_roughly to those of Drell?‘and Berman and Geffen”, provided their

cut-off pafameters arg’taken afound the vector meson mass."For_cdmpari-
 son we glso evaluat¢ the branching ratiowith a sipgle'vectbr meson

’ propﬁgafor, correspéﬁ&ing to the existence of a PVy éoupling. This
&is:the same Calcﬁlatién'aé was done by S;hgal,h‘fepegted'here because

Sehgal gave no formulas and only numerical values for KO decay for

2
three choices of cut-off mass.
We compute the branching ratio T(7n —>u+u-)/P(ﬂ -7Tr) as a

function of vector meson mass . Thé model is also applied to the

electronic decays of 71, Kg’ and ﬁo; anq to the decay Kg —>u+ui.
The resulting branching ratios are:somewhat smaller than those obtained

_ — . 2- -
. by previous authors. 55 To indicate the relative importance of the
processes here considered, we include in Appehdix C the predicted

Branehing ratios for the competing Dalitz pair and double Dalitz pair

decays.

I
Iy
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Part of our aim in this paper is_frankly pedagogical. We
have included an appenaix on our conventioné for the calculation of
Feynmén amplitudes and on‘the evaluation of loop integrals over internal
four—momenfa. In a second appendix we give some of the details of the

present calculation.
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IT. MODEL AND CALCULATION

. We assume that glectromagnetic”decays of 1 proceed through
intermediate states ofutwo identical véctor mesons (V). Thé Feynman
-diagrams for the processeé; N —>VW —-7yy and n—-VV ->z+2' are shoﬁn
in Fig. 1. A form factor‘for‘the_ 71 is needed in the first.place to
circumvent the logarithmic divergence in4the amplitude for 7 —>Z+Z;,
which occurs in the limit of a pOint iﬁteraction. - The use of identical
vector mesons is insyired by the SU(3) Hamiltonian for the nvv
vertex. The Hamiltoniag l%VP =v Tr(Véng)v.contains the piecgl_

00
(oo + ww - 200)7.

A. Radiative Decay

F

~ The Feynman amplitude for the process n-—ary is”

£ 2 Suvelneut1y 20 o
777YY = 0% T35 25 5. (1)
ifk] + pT]kg +p ]

where f/u’ ié_the_ NVV  coupling constant, G 'is thev'VY coupling |
: constaﬁt, p‘ is the mass df‘the vectqr meson, €. is the polarizatién
" vector for the  iﬁh photon and ki its momentum. Therefore the
radiative decay rate‘is

r i 1 f2 GLL M3 . : (2)
v = 1lé6x u1o ’

where M is the 17 meson mass.

* N . . ) . > . I}
We use the Paulil metric. A complete discussion of our conventions

is given in Appendix A..
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'B. Leptonic Decay

For the proceés N —>£+E', The Feynman amplitude is
£ 2 2 '
tyo = (q, ) <9’v<q2 ;o | (3)

where

d' e (p - k) Y [m - ip(k - a,) Ir,,

ot XEVG A
K+ 0 [ - 07+ 0F)0 - 050k - a7 + a0 ]

(4)

.Here e ié the lepton charge, u and v are respectively positive-

and negative~-energy Dirac spinors, m is the lepton mass, and Yd a
Dirac matrix. ‘

The evaluation of (3) and () is straightférward; fhe standard
fechniques of gquantum electrodynamiés cén bé Erdughf'tb béar;  The

manipulatioﬁs are given in Appendix B.

C: Branching Ratio and Unitarity Limit

The branching ratio for P » 44 to P S ¥y can be written

as

1 - — [X2+Y2]

I’Il2 ( )
. = — y b} 5
r v o M2 M2 ,

where « 1s the fine structure constant. The quantities X and Y,

‘defined in Appendix B, are proportional to the dispersive and absorptive

parts of the matrix element, (3). The absofptive part - Y 1s independent

.
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of the model chosen for the 17 form factor, depending ogly upon the
on-mass-shell amplitudeé for 7 -»yr and fy ->z+z'. Hence neglecting
X in Eq. (5) gives us an almost rigoréus ldwer,bound on the braﬁching
ratio, as first observed by Geffen and B.fL. YoUng,l The value of Y

is (see Appendix B)

L '__ @V“‘LI} ‘(6_)

The unitarity limit for the branching'ratio is thus

Tyty- y 22m2 <M+ VF 5)
T 7 4 =5
128 M2‘\/1 - __;

M2

We do not have an equally compact .expression for X; it is
hecessary'to'perform,numerically the final one-dimensional integration
(over an auxiliary Feynman parameter). These last-integrals are written

down explicitly in Appendix B. The results are presented in Section IIT.

D. Another Model

Another possiblé model fér the f§rm factor is a single vector
meson ﬁropagator, corresponding to a direct nVy coupling. This model
: provides a somewhat "harder" form factor and comparison of the results
of the fwo mbdels will give some indication of the sensitivity of the
branching ratio to the detaills of the assumptidhs about the vertex.

The two calculations are very analogous, the second one involving one
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less propagator in the denominator of (4). Details again are given in
Appendix B and the résults--in Section IIT. Sehga,lh caiculated the
branching ratio I‘(Kg -—>p.+p,")/1"(Kg — 1Y) using this model. But his
paper only sketches the .rc;a,lculation and gives numerical values for jﬁst

three choices of cut-off (vector meson) mass.
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III. RESULTS OF THIS CALCULATION; COMPARISON

WITH PREVIOUS CALCULATIONS =
! + o
A, 1 - SRy

The loWer bouﬁévon the bianching ratio'is given by Eq. (7)
as 1;07'x lOfS. Our results afe shown as a function of vector meson
mass in Fig. 2. The results of Dré112 and‘of Berman and‘Geffen5 for
the'deéay O %>e+é" can be converted to 1 ;>p+gf; these are éléd'

shownAin Fig. 2.

1. Behavior as a function of . u; Comparisons with other results

We first considervthe génerai behavior of the branching fatio
as a fﬁnction of vector meson masé. For the fwo models employed here
the real part cfkphe amplitude has a zero for M/M 2 1. This is
visible'in Fig: érfor the “ﬁVY model, but occurs at such a small
value of (u/M - 1) for the 7TVV model that it cannot be seen on
the scale of Fig. 2. For large values of u/M there is'a divergence
kof the amplitude as . gn u, cOrrespdnding to the légarithmic_divergence
wvhich occurs fbr poiﬁt coupling of 7nyy. Explicitly, the asymptotic

branching ratio for both models is

lim  Tgtg- 18

b1 Ty T2 :;_g[gn(%)] ' @

$
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Berman and Geffen3 used the form factor
. 5 7
2 2-
F[k*, k5] = ——r> ) (9)
1 2 2 +'k2 N k2
H 1 2
whence
L, O‘-Ef RIS
T - M -2
‘Y“Y‘.

N o= [(4n/m)° - 30 M/m - 3/2 n 2/ + 2/12 - 9/8 + 00F /)]
-i[x 4n M/m + O(mQ/ME)] . (lO)v

It is perhaps not surprising thét the Berman-Geffen fesuit gives
numerical values lying between those of our two models, as shown in‘
Fig.‘2, since their form féctor has characteristics intermediate
bctween the nVV and nVy form facfoié. The limiting form cf their
branching ratio can be secn from (10) to be the same as t8). |
Drellg'considered é dispersion iélation (in the square of the
pseudoscalaf meson mass)ifor thc form factof_describing the decay
P ->zfz'. The imaginary partvof the form factor is proportionai to
our Eq. (6), times a form factor G(Qg) which describes the decay of
- a pseudoscaiér meson of mass \[:;f_ into twb redi.photchs |
%)

_ [G(Qg) = F(0, 0; -Q7), where F(ki, kgg M2) is»our fcrm‘factor];

Drell chose

6(Q°) = o 5 s _- @)
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where p is now a cutoff paramter. This gives for the branching

‘ ey =) () () [ CE) - e

Drell's result diverges much more rapidly as a function of u thén‘

Eq. (8). ‘We.remark here that there is not a clear physical interpréta;
tion for tﬁe cutoff parametér g in Drell's (or even in.Berman and
Geffen's) calculation. In particular, there is no obvious correspondence
between the cutoff and our vector meson mass;r_Consequently one shouid
.not také téo literally the graphs which give all results as a function

of the same mass parameter.

2. Branching ratio for realistic vector meson mass values

For the physical vector meson masses the numerical values of

the branching ratio for the nVV - model of the form factor are

1.13

P,+~_ : X X _5v p .

S - (117 ) x 10 for w = {(m -, (13)
A4 1.29 |

 compared with the lqwer limit of '1.67 X 10_5. We note that the real
part'of the amplitude contributes oniy 10 to 20 percent in the rate.

The spread in the above values may be faken és an indication
of the variation expected from thé breaking of 8SU(3) symmetry. But

it is of interest to consider the symmetry breaking from a SOmewhatA

-
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more basic point of view. The nonet model of PVV coupling gives d
ﬁagrangian density proportional to (popo + W - 2¢¢)n;; where the
space-time’structure'haé been suppressed. For the present purposes we
assume that’the'couplings a}e of this fofm'for the physical particles.

We assume that the photon transforms as

Y'N po + ;%: wg = po + % W -'lég» @, and that the vector meson-
3
photon coupling constants are of the "universal" form, Gi = emi/rv .

Then the X(p) of Eq. (5) and (B.14) is replaced by

X »2Mx(m) + & x(n) - o X(m)] . (14)

I3

This gives a branching ratio,

'+ - : : '
L - 108 %1207 A : (15)

even closer to the unitarity limit than the value found with
wo=m in (13).

The estimate just made included symmetry breaking'in a very
special way (hadronic_couplings unbroken,.photoﬁ-vector-meson coupling
of universal form, etc.). Clearly there are a myriad of other ways tov
break the symmetry, each one-giving a different branching ratio. But
if Su(3) symmetry is good to; say, 50% accuracy, it is difficult
to imagine the branching ratio lying outside the inferval of from bne
to two times theunitarity bound, at least in our'vector.déminénce |

model.
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Similar considerations about symmetry breaking can be made fof
the nVy model of the form factor. It 1s clear from Fig. 2 that the
same conclusion will be reached, and that a result more than three
times- the unitarity limit: would be surprising, unless there are other

mechanisms at work..

3. Discuésioﬁ of B.-L. Young's results

Ex£ensive,esfimates-bf the‘branching'ratio have been made by
B.-L. Young.5 As a model for.the n form factoi, Young has a cutoff
function fimés a vertex function which is a linear combination bf
Yy, nVY,'and. v - cohtributionsm The form factor is SChematiCally
illustratediin\Fig. 3. He uses physical masses of vector mesons and
SU(3) and empirical estimates for the coupling constants. Young has
several models for the cuéoff functidn, but the résulfs are not sensitive
to thesé variationé{ provided different modeis are compared at équiva—
lent effective value; of the cutoff parameter A. In Fig.'ﬁ.we have
‘plotted the boundarieé of Ybung's various curves which he calculated
- with different vaiués of fi,l gij,v and FO_(c.f. Fig. 3).
l The range of values fqr:thé branghiﬁé }atio is, at first glance,
almostJununderstandablytlarge. As a first remark we observe that, while
the TVy and 1NVV parts of the amplitude need no cut-off, the point
coupling mwr does. Thus Young's resuits diverge-logarithmically with

his cut-off parameter (which has nothing t¢ do with the mass of a

2

" vector meson) provided lim P(kl,
2,2
kK, k> o

1772

kg) 4+ O,apart from the cut-off
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function, i.e., his Lw‘* 0. The second point is that the detailed

2

o o
behavior of F(kl, k

) for small'or moderate ki depends on the
magnitudes and relative signs of fhe contributions from nyy, 7Vy,
and nNVV, and this behavior affects the magnitude of the branching
ratio. The largest values come from (a) the smallgét valﬁes‘of Ty
(obtained from fb‘??/Po(ié?nz i[% and'thé .ﬂo lifetime); (b) choices
| increasé with.

‘ . ' R : o .2
of signs of f, and 8 5 which make P(kl, k2)
2

x5, :kg 1 0 until eventually damped by the cutoff function. His
"dipole model” has two .cutoff parameters, one fixed and one variable,
and the behavior of the result is governed'mainly:by7the fixed, -

rélatively small cutoff. This produces the lower, flat curve in our-

Fig. L.
0 + -
B. K2 SHp

For this,proceSS the unitafity bound is'.l.l7 X 10_5. In
.#this case,,thé motivation for our model is léss élear”sincé the decay
;KQ =YY ;inQOlves'both weak and.electromagnetié'interactions. But if
:the elec£romagnetic’part'iévdominatedﬁby vector mesoﬂs the_modél
should provide a fair estimate of the real part of the‘amplitude.

In Fig. 5 we diéplay our'fésulté fo? the branching iatio,
along with those of Drell and»éfiBerman and Geffen for this.ﬁrécess‘
as a function of vector_mesén maéél Sehgal;s fhree values,u’for
u/mK =1, 2, and 4 are 1.6, 2.Q‘and 3.5, respectively,.in units of
1072, The first value is'conside?ably larger fhén our fesult of

- 1.26 x 107 at p/mK = 1, but the other two values are in agreement
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with our curve for the 'KVf model. The relations among the various
calcﬁlétions as a function of vector meson mass or cut-off are quite
similar to thoge found for 17 decay, although details such as’ the
zero in the real part of the amplitude at some value of u are
different because of the somewhat different kinematics.

Bég6 cpnsidered a specific modél for decays involving both
weak and electromagnetic interactions. Althqugh phrased in dispersion
rélation language, the model is effectively equivglent to a current-
current Hamiltoqian for thé hadronig part of the weak interactions with
AS =0, *1 néﬁtrél currénts.‘ In particulér, the AS =0 vector
current has a contributioﬁ from fhe po—méson fieid and the axial vector
current from the divergence'of the ﬂo field. The decay Kg - £+£'
would then proceed mainly as Kg —ano via the AS =.l neutral hadronic
curréﬁt, and ﬁO - T, 17‘—a£+2f by one of the models diséussed here.
Bég uéés‘Drell's model with p = 2mN, and an upper limit for the
matrix element of Kg —eno, to give an approximate absolute upper limit
of F(Kg —>p+p-) < Q.7>sec_l.' Evidently Bég's value for the branching
ratio Fﬂ+é'/PYT is just tbat of the Drell model. Although not stricﬁly
relevant for thg present-considerations,_it is perhaps of interest to
examine the experimental‘dafa on Kg =YY so that Bég's absdlﬁte rate
can be converted into a branching ratio. The'mostvfecent and apparently
mest accurate value for the rate of .Kg - yy is that of Baﬁner et al.7
The§ find F(Kg ->YY)/F(K2 —»all) = (u.68 + 0.64) x 1o'u, giving an
absolute rate of P(Kg -yy) = (8.9 +1.3) x 107 sec”T. Bég's uppér‘

limit then becomes an upper iimit on the branching ratio of roughly
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8 x 10-5. From Flg 5 we gee that Drell's model glves 2.8 x lO_5

..forW7n'='2mN(p/mK = 5.8) Within the framework of his model, this

means that BEg's estimite for the Kg —aﬂo matrix element was too

large by a factor of V8/2.8 ~ ‘1.7, remarkably close considering

that it was called a "generous upper limit"!

C. ﬂ?—>e+e— and Kg Se'e”

For these extremelyvrare decay modes, the branching ratios are
agaln close to the unltarlty bound, for reasonable masses of the vector

mesons. We therefore state only the lower bounds.

> L5 x 1077 ;'

I‘(Kg Sete)

— > 5.3 x 10-9.
F(K2 "‘)YY) ‘

+
D. no—eee

, The directrdecay of the neutral pion into an eleefron—positron
pair was the proceés originally studied bnyrell,2 and by Berman and
Geffen.3 The predictions of* Berman and deffen, and of our'calculation
are,'ae before,‘rather'insensitive to fhe value teken‘forvfhe cutoff
or vector meson mass, while Drell’s expreésionvis quite sensiti#elto'
the cutoff. The zero in»the real partlof:fhe anplitude oceurs in{this

case for a rather large value of the cutoff, beth for ‘our modelS‘and
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for that of Berman and Geffen. Consequently, over the range of cutoff
masses corresponding to intermediate states o, w, ®, the branching
ratio is decreasing. The prédictions for this'process are summarizéd

in Table I. Only our values for the ‘%#VV model are quoted.
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 IV. SUMMARY

Our caldulations indicate that for the vector dominance model
the branching ratios for the decays (P _>z+z') to (P -»yr) are
not much larger than the lower bounds given by unitarity. For the

decay 10 —au+u-, we therefore expect that

, NG o _ )
& T Sell) " (0.4-1.0) x 10

Detailed numerical values are given in Section ITIA. For Kg .decays

the bfanching ratio .PE+Z~/PTY is of ‘the same magnitude as for n
decay, but because of the smail fraction of decays Kg —>YY:7 thé

process Kg.—>u+u- will be much less common:

oo
T, - g
~ (0.5-1.0) x 10°

P(Kg —all)

-

In both cases the deca&s‘fo electron pairs éré>3uppréésed by an
Iadditional factor of about 4 x lO-u. Beéause of the insensiﬁivity
-of our results to vector méson mass, neér-the physical masses 6f
vector mesons, we believe‘our pfédictions.for the totai‘brahching

ratios reliable within a factor of two.
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Table T

Braq¢hing Ratios for ﬂO —e e

Cutoff or Vector Meson Mass P(no —ae+e-)/P(nO —>YT)

Soﬁrcev (Units of pion mass)

 Unitarity - -— . | k.7 x 1070
Drell 10 - 5 x 1070
Drell ‘ . 6.95 12 x107®
Drell » 13,90 | 20 x 1070
Berman and Geffen '3.16 | o | 6.7 x 1078
Berman and Geffén ' © 9.8 | 5.7 X 1078
This Calculationﬂi‘ s 5.7 (p) . 6.4 x 1070
This Calculation 7.6 (9) | | , 6.1 x 1070
-8

This Calculation .10 I 4.9 x 10
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APPENDIX A: CONVENTIONS, NOTATION, BASIC FORMULAS

AND FEYNMAN INTEGRALS

1. Metric and Dirac Matrices

The notation for L-vectors is AFL = (4, A, = iAO), so that
' .scalar products are A:B = A-B - AOBO. The spinor notation is that
of Pauli's Handbuch article, with Hermitean y-matrices and )

diagonal. Explicitly, : .

0 -ig . 1 o ' 0 -1
=( D) () me () )
The épin_tehsor is -éhv = %I (YMYV'YVYM)' The spinqrs ar§ normalized
according ‘to (au) = 2m, (éﬁ) = -2m. They satisfy the free-particle
eqﬁétions, (iy.p + m) u(p) =0 and (iy-p - m) v(p) = O. For an
antiparticle of momentum p and helici£y A it is sometimes Eonven—

ient to use Vx(g) = (-l)x-l/2 Y5u-x(3)‘

2. S-Matrix Formulas

The invariant amplitude.??? is related to the S-matrix through

the relation, o
o = P 100 (o - 2p) VT (a1)

‘where o and B are the initial and final state labels and the product

of factors (EEi).-is over both initial and final states. For a decay
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process o — (1,2,--+,n) the transition probability is

o -
e = 17’7 ﬂ o (py oo, - Po) -

(2n) (2E)
(A.2)
For a‘two-particle,final state,
a0 ’
’ i M CM
dea = ]7n8a - - . (A.3)
e
where - :
L2 o w21 (o Cm.21
om o1, TRy l_(’“l 2
n 2 T K n, T m,
a V .

3. The Evaluation of Feynman Integrals8

In general, -the integral over the undetermined loop momentum

k in a Feynman diagram takes the form

L . '
1 - & fdk'F(k’ Pi’ mi) | (A1)
ZE;;H e e, A o A
whére
a; = (k - si) x m,

S isva lineaf combinaﬁion of external momenta 1
m, are the (internal and external) masses in the
?roblem, and

F is a polynbmial in the compohents of k.
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To evaluate such an integral, it is convenient to introduce auxiliary

pa.rameters,8 through one of the following identities.

. 1 1
Eh = - = (n-1)! dz, **- dz
n - a.l a2 an . : 1 n
n .
6< z; - l>
~i=1 :
X n n (A.5)
Z a.z
[i:l * 1]
1 B Zn-2
— - 1
En = (n - 1)t f dz, I dz, f dz__,
o - 0 0
o) ivets (a - -n
X[Zn_l(an afn-l)_‘+‘ n—2(a‘n-l an_2)+ ‘Tzl'(ag al) + al]_
1 ' 1 1 (A.6)'
- - ' n-2 n-3%
g, = (on-1) [ N dzl[ Z, dz, f dz, _;
0 0
. _ o
X [z Z;2 Zn-l(a‘l ag-) + 2y 7, zn_g(a,2 aB) Henet an]
o (a)
Some other useful relations are
n = n+l b (A. )
nA"B .

o [Ax + B(1 - x)]
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L

1 n(A-B) , .
-1 L dx . (A.9)
An Bn _]; - [(A - B)x + B]n+l _ T

An integral of the form (A.4) can always be brought to the

schematic form

.

S

[(1‘. + a ]

(one~dimensional
integrals)
The exact form will depend on which of the above.identities_one chooses
to employ. If the k-space integral is at worst logarithmically“diver—

gent, we can make a change of variable,

k' = k-R , . . , (A.11)
without changing the value of the integral'(nOr adding any finite
number for the case of.a;logarithmic divergence). Hence we can always

bring the k-space iﬁtegral to the form

" 4
d k F(k + R; D3 mj)

(A.12)
[k2 + a2]n
- Because of the symmetry of the range of integration, the odd powers of
ku, in F do not contribute. . To get to the final, usable form we

must average over ku, which amounts to the substitutions
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"k k
VY

i
o
o
=
<
o

: 1 .22 , '
kukvkpkc = -EH[k ] [5wapo + 6Hpaw + aucavp]

ete.

Therefore we need only evaluate'integrals of the form
3 - de (D)2 52 m-1) (nem-1)
‘ . = _ = = . — T )
Yo [k2 + aEJn (aE)n mo (n - 1)!

| (8.13)

‘which exist, provided n > m> O. |
Quifé ¢clearly the major task_in the evaluafion of Féynman

integrals is the computation of the integrals over the auxiliary

parameters.
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APPENDIX B: DETAILS OF THE CALCULATiON

We begin with Egs. (3) and (4) of Section II. Use of the
Dirac equation for the leptons and various identities allows us to

write the effective value of (J in the form,

@’: —(j)g f a*x = (mA.+.iBY-k)r5 y (B.1)
where 7'

‘A = u? - 2kep, B = W+ 2k-p ‘ (B.2)
and- |

D = K0 + 1) - 0o - ¥)° 2100 - a)? +

| (B.3)
The evaluation of E(ql)CEyv(qg) in the helicity representation leads

to a matrix element,

where-

_ D 2, 2 2
I - 1 /duk (M2A +D21§.pB) __ b . fduk M7k +D(k-p) ]
(2x) (2r) . |
(B.L4)
The quantitiess X and Y, appearing in Eq. (5) of Section II for the

branching ratib, are related to I by
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7 = ‘X'+iY = 18 M (ﬁ)LL I‘ . (B-5)

The evaluation if I is straightforward, but the presence of
five denominators necessitates some manipulation. As a preliminary we
remark that ‘the change of variables, k —p ~ k, leaves the numerator
in (B.l4) invariant and leaves D wunchanged except for a5 —>ql.
Furthermore, in the frame where §9= O; the transformation ¥ -» -k

2 2 o . 2 2
causes (k - ql) - (k - q2) , while leaving k° and (p - k)
invariant. These two changes of variable can be used to simplify the

integrand in (B.4), as follows:

2+ (kp)?)

%;(MMEKQ + M+ (p - k) - ¥°)°)
- %{ML‘ PR 4 2P (p - kK)° - k2] + [(p - X)° - k219 .

The third term in the curly: bracket gives zero contribution to the
integral, as can be seen by the above changes of variable. The last

term can be written

-0 -0P 11 N A1 N,
P | (k2 tpik)2><k2+u2_"(p-k)ng)

y 1 _>_2___< 1 1 ) 1
[(k-q2)2+m2] A -l e [(kv-q2)2+m2]

‘Similar use of partial fractions and the above changes of variables
can be used to reduce I to a sum of terms involving only three

denominators. The result can be written as
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(E> I = J(O 0) —2(-—--1> J(0, )

(Eﬁ-l) T(uy p) - — P—g- L
M2 -,, 81(21‘42‘1\42. .’

(B.6)-

where

S ,my) = o fdk{k +m1>[<p-k> e m2IL0 - @) ¢ 21
(B.7)
anq

o, ,
L= B ‘[dhk[kg(kg F )k - )° + w211 . (B.8)

7t i

The simpler integral 'L can be evaluated iinmédiately using

Feynman parameterization. The result is

—
2 2

L = %ﬂn(% - B - (B.9)
m . 2m

In passing we note that for large vector meson mass (u/m>> 1), L

has the aSy"mptdtic value,
L —>zn<}*—2> + o(1) . - : (B.10)
m _ .

The remaining integral. J(ml,' mé) can, by means of the
Feynman parameterization, be expressed as a double -_intengal, the
“first of w[hich can be performed in terms of elementary functions.

The resultant is
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e e e -'+',x'27-
J(ml,m)z'_lf Loy (m - m, (VA + 1) ,
20 162 Vo o Ll - u2)® - (Va- wx)?

0 (B.11)

where
A= (o +nd - )2 - bn‘ns - fnd(1 ) _x)g . (B.12)

- The remaining integral over X is most con&eniently dohevnumerically
T ¢
for the specific (ml, mQ) values needed in (B.6).
| Before_displaying the final forms suitable for numerical
comﬁutation it is of interest to cohsider the question ef the‘unitarity
limit [Eq. (7)]. This bound comes frem the existence of a model-
independent absorptive part from physically allowed.two—photen inter-

mediate states in Fig. l(b) This absorptive part can be calculated

directly from unitarity eqeations and the physical_amplitudes for

N ->yy and vy -az+£f, as in Ref. 1, or by replacing the propagators
by delta fuqctions, as discussed by Sehgal.u 'Alternatively, it must
emerge directly from>any model calculationt If it is aesumed that the'
vector meson mass is large enough that neither yV nor iVV ‘inter-
mediatevstateé are physical, then in.fhe expression (B.é), only

IJ(O, C) can give fise to an absorptive (imaginarj) parq. This 18
because J(ml, m2) eorresponde to a simple spinless triapgle gfaph
of.fhe’form of Fig. 1(b) with the diagonai internalrlegé having masses
my and m2.' To see explicitlyvhew‘the imaginary part emerges,

consider .(B.11l) andt(B.lQ) with m =m, =0. We have .
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o 2
1 ‘»%2 ._'i’rzn" (l-X)2+x

' 1 1
J(0,0) = '—E'[ dx - — ,zn = )
2 ‘ : 2
, 8x 0 e \LE - &E—(l - x)e,, 1V42'— ﬁé— (r - x)2 - x

(B.13)

wheré, for the moment, fhe sign of the érgument of the logafithm should

be considered as not yet certain bécause of the ambiguity in

2n(f2) = 22n(if). To ascertain the proper sign we note that for Mg <0
there can be no physically allowedvintermediate state and hegce no absorp-
tive part. . By inspection of (B.13) as it stands it is easily verified

that J(Q,O) is real for. M2 < 0. Now we can cénsidér. M?v> 0. The

square root in (B;lB)‘is now real and leés than x for (:%5-+]_>_1< x <1
and imagindry for 0 < x < (g—rﬁ + J_>-l. This meaﬁs that the, integral
receives/a real éontribufioﬁ over the whole range of integration and an

‘Nel
imaginary contribution for x on the range, (%ﬁ + l) < x<1l:

1
8a€ » Im J(0,0) = - dx 12
M e
= +1 :
2m .

Evaluation of this integra}'leads diréctly to the expression Y in
| Eq. (6) of Section II.. |
The reader who finés the explicit evaluation of the imaginary
part of J(0,0) to0 specific can consider the analytiq properties of
the triangle gréph represented by (B!?) or (B.11), using techniques
deveioped for arbitrary_Feynhan diagrams.l5 |
" We now return to the task of exhibiting the final forms of

J(ml,mg) needed in (B.6). The features of the integrand of J(0,0),
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noted above, imply that the logarithm becomes an arctangent over part

‘of the range of integration. TFor J(0, w) the log form holds over .

the whole range, while for J(u, p) the arctangent. The complete

expression for X = Re Z from (B.6) is

}x = Al+2(M2._ ) A, - <M2 -1>A5~- 5 A s (B.1k4)

where

foT gf ax = -[ai“ctan‘ ,<§V(ba - x)(vb + x))_ %}
' O _ E:"\/(a-x)(b + x) ' ‘ | X .

[ = L gn'[“fé‘[@-a)(xw)]
£V (x - a)(x + b) x —g\/_(x— a)(x + D)

1 , E;—(x-‘E,V(c -x)(d—x)>§!

1 M

A = = dx An
2 L e V(e - x)(a - x) ;; - <3c £V (e - x)(a - X))2

1
A = g-j A% e ‘ [arctan' ’(EV(G -X)(f+g)—'g—]
Pl Ve -0 L X
4 . . 2 - \
L2 X e 1+ 1'%’
- =B ’ B - ...._m_' . =
Ay, = ﬂmz*ﬁn(%> s\t - 2N N
. » B l-'\[l'—r'n—
: 2
{ ’ L




-32- o ~ UCRL-18487

and

uve
1

=
t

®
I
PN
[=
+
'_l
\/’I
l_l
B
_||
7N
2=
]
I_J
N/
G

e = —2—-2——-—2 [ M - hmepg + ph’ + ug - 2m2}
. 'M™ - linm ‘
£ = ——2———[ m2M2 - hmgug + p_h - M2 + 2m2] .
2 2
M~ = km

In Al and A, the arctangents are to be chosen on the interval

(0,

R
~

The calculation for the second model, with a single vector
meson propagator (nVy coupling, instead of nVV) closely parallels

the previous one. The ‘denominator (‘B.3) is replaced as follows:

.,~9 i k2 . H2 . (p - k)2 +‘“2
2 D D
2u .

=l L
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“Here, for cbnvénience, ﬁe;have'written a form explicitly symmetric
in k2 and (p - k)2 and have included a factor of u ?} Use'of
the same transformatlon of variables as discussed below (B. 5) yields

an integrand to replace that in (B.4) of the form:

WP v (2p)?) 1 M
D K(k - )% + 0] -0 (p-w)
___opk
WBE )

Only the last term gives a. new integral, not present in the first

model. The expression replacing (B.6) is therefore

2 N2 | 2 , .

2~ 50,0 -( E-1) 0, w) - —2— . (1 ME— .

gaf 1O (Mﬂ) ©w - hz i)

o

- CE L, (B.1

'8“2M2 B (B.15)
where.

' = ;i; e (-p:k) N B.16
o1 jf K2 (k7 + ugﬂ(k - q)® + n°] a ( . )

Explicitly we have

L' = W [L-En<L> -1] . . (za7)

hm
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The final result for X in this model is
' 2 o 2 | I S
X' = A+ B -1 YA, -Esa (1 +S5 v+ ) ; '
1 (Mz ) 2" P u( 2 2m?> -
(% )+ 1]
m m .

where ﬁh'e'integrals A; are defined below (B.1k).

o+

g
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APPENDIX C: RATES FOR COMPETING PROCESSES

The branching ratibs for the Dalitz pair and double Dalitz
pair decay modes of the 1 meson have been calculated by Jarlskog
and Pilkuhn,9 using standard methods of QED. Applying their results

to the decays of 1, KO

o) and no, we obtain the following branching

ratios.

(ﬂ E}pif;i;u-) ~ 6 x‘1o;8

ooy s
T — 11 o .

(n z}eif;j;e—) - 6.6 x 107

]

it

0 + o= =y
(K »puppp)

— ~ 6x1070
(X5 —7r)
0 T -
.(K2 sppee ) » 6
O = 4 x 10
.(K2 ->77)
0 + - :
(K2 —eer) 5
= 1.6 x 10

0
(K5 = ¥vr)
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(Kg seteeTe)

. = 6.3 x107°
0+ - ,
,(“-O‘*e °¥) . 1.19x 1078
(7 =7vr)

Experiment:lo 1.17 + 0.0k x 107°

) 3.5 x 10'5;A

O  + -+
(" seeee
) 0
(" =71r)
Expériment:ll 3.18 + 0.30 x 1077

‘ The single Dalitz pair formation is perhaps of most interest

because of its possible presence as a background for the -p+u' decay

mode: We calculate the branching ratio p = I'(n —)p+p—Y)/F(n -Y7),

using our model for the 1 form factor. The process in the numerator

is Dalitz pair production 7 - Yy —>p+p—Y; we ignore contributions

from inner Bremsstrahlung ﬂ'—>u+p- —9u+p-Y. The latter process is

suppressed by a factor of about o compared with 1 —>p+pq. We

find

where . s 1is

symbols have

Wada,'® with

o ' , . _
s v )1 - nP/e)2(1 - spf)D —p
| m2 s _ ' (= - s)

b4

(c.5)

the effective-mass-squared of the lepton pair, and other
been defined previously. This is Eq. (13) of Kroll and

the additional factor pu/(u2 - 5)2 in the integrand.

&y
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The speétrum in s  is stronély'pedkedatowards small: S, corresponding
to "aimost'real” infermediate photons édnverting into the lepton pair.
Hence the pfeseﬁce or absgﬁce'of the vector meson prdpagator is of
little Qonsequenéé. |

ﬁsing é p-meson intermediate stafe, we find for n-decay,

o=17.8x 1o'u; and for Kg

“decay p = 5.6'x% lO_A. These branching.
ratios are ~50 times the branching ratio for the:direét decay |
'n _;u+u_ df'experimental'intéfest. However, high effective masses
of the u+p_' system are strongly suppressed, so that an expefiment
with reasdnable mass resolﬁtion can minimize the contamination. To
show this quantitativély; ﬁe ﬁlot in Fig. 6 the fraction of balitZ'
pairsvmﬁth effective.mass-squared greaﬁer than minimum aécepted valueé
of méssfsquared. ;For exampie, an experimeﬁt with resolution of
QLE(Mg - Am2) ~ 6.08 Gévgiﬁin the effective mass squaréd;\would aécept
about 1 Dalitz pair;fo} every 2 directiy-produced_pairs.'

Finally we note tﬁat "inner ﬁreméstrahlung" gives rise to a
tail oh the mass-square distribution_of,the directly-produced pairs;

which-can easily be treated séparately;l
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FIGURE CAPTIONS -

Fig. 1. TFeynman diagrams for the decay processes.

(8): morrs  (0): msT”

Fig. 2. Branching ratio qi+u'/FYT for eta decay as a function of
vector meson_or cutoff_mass; Dotted line: Drell; Dashed
line: Berman.and Geffen; Solid lineﬁ' Présent nVvapdel;
l&ng -dashes:“' Present 1Vy model; Dof-dashed line: Béwer
bound ffom unitarity.

‘Fig. 3. .Schematic reéfeséntation of Young's fprﬁvfactbr.

Fig; 4, Range offbranching'ratios obtaiﬁed 5y Young versus his cutoff
parameter: |

Fig. 5. Branching ratio rﬁ*u‘/PYY for KO decay as a function of

2

vector meson or cutoff mass; (Same labels as Fig. 2.)
Fig. 6. Fraction of Dalitz pairs in 1 —ayp+u_ with effective mass-

squared > lower limit accepted by experiment, 5g- Multiply

0

right-hand scale by 0;72 for K, decay.

)
»
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Fig- 1, XBL689-6809
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Fig. 2. . XBL689-6810
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2.2y .
T (kik3) = x [Cutoff function]
B -(kf=.k§ = O part) -(kf=0 part)
-(kg = O part) XBL689- 6811
L Fig. 3.
=
8



Branching ratio X 10°: T (n—putu) / F(n——}’y)

-42.- o S '~ UCRL-18487
{100 T T T TTT] T T T T T T
50 [~ -
gl _ |
10 | " Range of B-L Young's ]
— ' Various curves -
51 — .
y L 11 [ e |
1 5 10 50 100

Cutoff mass, units of eta mass (&()_'r vector meson moss_) :

Fig. 4. XBL689-6812



UCRL-18487

 -44-

o - 95 < paionbs-ssow
Usm sipd-7 o4 (AL+L) g/ (A L) 1 oyos Buyouoiq (x ,OF)
® o N g N o - o o ®
N N © s} < M 5. o = s O
_ _ | .
| _ _ _ [ 1 | I 1B @
B O
=
o
172}
] 5
(72}
B (o}
£
I v o
QO Q
=
B @ 4
L Q
S e
B S %
— E
>3
E
€
. £
— . , o
o o ® N~ . OQ 0 < M N - o

Og < pesonbs-ssow ypm sitod-7 z4pg 30 UOI}IDI

XBL689-6814

Fig, 6.



Branching ratio x105: I'(K3—~ pt) /T (KS=yy)

W
O

o

(6}

|

-43- i "UCRL-18487
T T 1 T T T rr] T 1T T T 1T
N\ :
2 \
. Qk...o Shi 4
- o \0 \1‘//{’

Lower bound (unitarity)

{

~ Cutoff mass or vector meson mass, units of K5 mass

Fig. 5.

XBL689-6813

L

F



&

¥/

This report was prepared as an account of Government
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