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Abstract Following is an elaboration on D. G. B. Edelen’s (1972–1973) nonlinear generalization of the clas-
sical Rayleigh-Onsager dissipation potentials and the implications for the models of viscoplasticity. A brief
derivation is given via standard vector calculus of Edelen’s potentials and the associated non-dissipative or
“gyroscopic” forces and fluxes. It is also shown that certain extensions of Edelen’s formulae can be obtained
by means of a recently proposed source-flux relation or “inverse divergence,” a generalization of the classical
Gauss-Maxwell construct. The Legendre–Fenchel duality of Edelen’s potentials is explored, with important
consequences for rate-independent friction or plasticity. The use of dissipation potentials serves to facilitate
the development of viscoplastic constitutive equations, a point illustrated here by the special cases of Stokesian
fluid-particle suspensions and granular media. In particular, we consider inhomogeneous systems with particle
migration coupled to gradients in particle concentration, strain rate, and fabric. Employing a mixture-theoretic
treatment of Stokesian suspensions, one is able to identify particle stress as the work conjugate of the global
deformation of the particle phase. However, in contrast to past treatments, this stress is not assumed to be a
privileged driving force for particle migration. A comparison is made with models based on extremal dissipa-
tion or entropy production. It is shown that such models yield the correct dissipative components of force or
flux but generally fail to capture certain non-dissipative, but mechanically relevant components. The signifi-
cance of Edelen’s gyroscopic forces and their relation to reactive constraints or other reversible couplings is
touched upon. When gyroscopic terms are absent, one obtains a class of strongly dissipative or hyperdissipative
materials whose quasi-static mechanics are governed by variational principles based on dissipation potential.
This provides an interesting analog to elastostatic variational principles based on strain energy for hyperelastic
materials and to the associated material instabilities arising from loss of convexity.

1 Introduction

As an extension of the classical quadratic forms of Rayleigh and Onsager, Edelen gives a mathematical
construct of a more general dissipation potential [8–11] which applies to any strictly dissipative process,
linear or nonlinear. Familiar physical examples are provided by discrete networks of nonlinear electrical
resistors, by systems of chemical reactions [3] and by various continuum models of plasticity [6,32,36,49,51],
viscoplasticity [19], or fracture [5].

Presented at the 8th European Solid Mechanics Conference in the Graz University of Technology, Austria, 9–13 July 2012.
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2240 J. D. Goddard

Dissipation potentials are not only interesting in their own right, but they are also essential to long-standing
variational principles of continuum mechanics, [16,17,33], a subject that is revisited in the present work.
We recall that the same principles have found application in the field of homogenization, i.e., the derivation
of effective continuum models for microscopically heterogeneous media. For the special case of strongly
dissipative systems considered below, the dissipation potential plays a role analogous to that of strain energy
in elastic systems, with variational methods providing bounds on constitutive parameters such as viscosity
[29]. This same idea is of course more broadly applicable to the homogenization of plastic and viscoplastic
systems.

The existence and derivation of dissipation potentials, dubbed “quasi-potentials” by Maugin [35], are
sometimes predicated on extremum principles such as maximal (or extremal) dissipated power and entropy
production [49,51] or on related thermodynamic or physical postulates [6,25,35,38,43]. Otherwise, they are
assumed as a matter of convenience, as seems the case in the treatise of Hill [26], who cites earlier works on
plasticity as motivation, or, finally, they are invoked axiomatically in mathematical treatments such as that of
Moreau [37]. By contrast, Edelen’s elegant mathematical derivation is virtually free of special assumptions
and, as such, it seems to merit much more attention than it has apparently received, particularly in the field of
continuum mechanics. Notable exceptions are the treatises of Maugin (Sect. 3) [35], and Eringen [14], and the
recent paper of Ostoja-Starzewski and Zubelewicz [39], all of whom acknowledge the work of Edelen [9,10]
but without elaboration on its several consequences.

The purpose of the present work is multifold: To provide a straightforward derivation of Edelen’s formu-
lae, to explore certain far-reaching consequences of the associated Legendre–Fenchel duality, and to consider
selected applications to the mechanics of Stokesian fluid-particle suspensions and granular media. As a side-
light, the Appendix shows how an extension of Edelen’s formulae may be derived from a recently proposed
source-flux formula [21] or “inverse divergence”, which also provides a foundation for the “peridynamics” of
Silling and co-workers (and references therein) [30]. In one interesting form of this result, the Green’s function
for the Laplace operator yields the classical Gauss-Maxwell formula for a flux as gradient of a potential with
given source.

By focusing on strictly dissipative systems, we circumvent a broader and long-standing thermodynamic
framework [6,24,27,35,38], with conventional thermodynamic potentials (or free energies) depending on
dissipative internal variables and their conjugate forces. Without attempting to establish a connection with this
approach, we note that small elastic effects in stiff systems may be described by a combination of elastic and
dissipative potentials [20].

As mathematical background, a brief derivation of Edelen’s formulae is given in Sect. 2, with generalization
deferred to the Appendix. Then, in Sect. 3, we show how convexity and duality guarantee the existence of
viscoplastic moduli assumed in the previous work [19] and imply certain flow rules for rate-independent
plasticity and friction. At the same time, it is shown that Edelen’s gyroscopic terms, which represent a failure
of generalized Onsager symmetry, lead to asymmetric moduli. A brief discussion is given in Edelen’s previous
work on the subject [12,10] and the possible significance of such terms.

For most of the discussion of Sects. 1, 2, 3, we suppress Edelen’s notation for dependence of forces and
fluxes on the local thermodynamic state, which as pointed out by Eringen [14] (Section 2.4) may also be
regarded as dependence on thermomechanical history. This is illustrated in Sect. 4 of the present paper by the
dependence of force-flux relations on evolutionary parameters such as particle fraction and fabric that depend
on past history of deformation.

2 Edelen forms and transforms

In his treatise on exterior calculus [11] (Chapts. 4, 5 & 8), Edelen shows how his theory of dissipation potential
follows from a homotopy operation, which also provides the basis for Poincaré’s Lemma. A closely related
result is given by Eq. (79) in the Appendix of the present paper, and a somewhat more transparent derivation
based on standard vector calculus is given1 in the paragraphs below.

In the discussion immediately following, we employ the notation x, j for generalized force-flux pairs, in lieu
of the Onsager notation X, J employed by Edelen. As a slight variant of Edelen’s work, we deal with various
tensor fields τ (x) over an n-dimensional linear vector space x ∈ X equipped with smooth (i.e., differentiable)
norm ||x||, which we denote simply by |x|, and with dual space X

∗ of linear functions X → R.

1 With all due respect to Edelen’s view [10] (p. 76) that the “increased generality and understanding” is worth the time required
to acquire facility in exterior calculus.
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Edelen’s dissipation potentials 2241

For the most part. we employ the direct notation for abstract vectors and physical-space tensors, with
vectors denoted by lower case Roman font and tensors of arbitrary rank denoted by lower case bold Greek. In
the later applications, we denote second-rank tensors in physical space by upper case Roman. When deemed
essential for clarity, we employ the notation

τ = τ i1,i2,...,im gi1 ⊗ gi2 · · · ⊗ gin =̂ [τ i1,i2,...,im ] (1)

to specify for an mth rank tensor on a general basis gk . i.e., we suppress notation for the basis and display
in square brackets the components, shown here as contravariant. The standard symbols ⊗ denotes tensor (or
dyadic) products and ⊕ the direct sum of vector spaces.

As done in (1), we employ the standard tensor-summation convention. In the conventional way, we can
associate contravariant and covariant components, respectively, with tangent and cotangent spaces for X,
representing vectors in X and co-vectors in the dual space X

∗ of linear functions. Thus, if yˆ= [yi ] refers to
an element of X

∗, the dual space of X with elements x =̂ [xi ], we let dot-product y·x = x·y =̂ yi xi denote a
pairing between x and linear function y, X → R. Depending on the setting, y can be interpreted as the flux
of Onsager and Edelen, or, equivalently, as the generalized velocity of others works [49,37], with dissipation
given by D = y·x.

Given a vector field y = j(x), with x ∈ X, j ∈ X
∗, where j represents flux and x conjugate force, then

Eqs. (2.15)–(2.16) of Edelen [9] are represented in conventional vector notation as:

j(x) = ∇ϕ(x)+ u(x), with x·u = 0, (2)

a relation which is obtained by taking m = 1, � = j, ϕ = ϕ, υ = u in the more general form (79) given in
the Appendix. Then, the dissipated non-negative-definite power is given by

D = j·x = x ·∇ϕ ≥ 0, (3)

where equality applies if and only if x = 0.
The roles of x and j in the preceding formulae can be reversed, and the relevant conjugate forms are

made explicit below. Also, in keeping with the analysis of the preceding section and as done (2), we employ
metric-based gradients ∇ in the following, in lieu of the metric-free partial derivatives ∂x =̂[∂/∂xi ] employed
by Edelen [8,9].

Referring to Eqs. (2.15)–(2.16) in Edelen [9], as represented here by (2), we can obtain his Eqs. (2.17)–
(2.18) for ϕ,u by means of the projective decompositions of co-vectors:

j ≡ e∗e·j + (I − e∗⊗ e)j = e∗ jr + je, with jr = e·j, je = (I − e∗⊗ e)j,

and ∇ϕ ≡ e∗e·∇ϕ + (I − e∗⊗ e)∇ϕ ≡ e∗∂rϕ + 1

r
(I − e∗⊗ e)∂eϕ,

where r = |x|, e = x
r
, e∗ = ∇r, e∗ · e = 1, ∇e = 1

r
(I − e∗⊗ e), (4)

with e defining points on S = {x : r = 1}.
We adopt a general norm |x| in lieu of the Euclidean form employed by Ziegler [49] and others, which

assumes a uniform metric for various force and flux components, such that e∗ ≡ e.
Then, (2) follows from the projections in (4) provided that

e·∇ϕ = ∂ϕ

∂r
(x) ≡ jr (x) = e·j, and u = (I − e∗⊗ e)·(j − ∇ϕ), (5)

where u is unique up to the gradient of a scalar. This relation indicates explicitly that u involves a projection
onto tangent planes of the hypersurface r = constant.

Now, the first equation in (5) is satisfied by integration with respect to r at constant e:

ϕ(x) =
r∫

0

e·j(r ′e)dr ′ + ϕ0(e) =
1∫

0

x·j(λx)dλ+ ϕ0(e), (6)

which is equivalent to the second member of (79), with � = j, and identical with Eq. (2.17) of Edelen [9],
provided that ϕ0 ≡ 0. Since x·∇ϕ0 = 0, ∇ϕ0 could be incorporated into the orthogonal term u. However, to
render that term unique, we must take ϕ(x) = 0 at x = 0.
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2242 J. D. Goddard

To obtain Edelen’s formula for u, note that for any co-vector field w(x), we have that

(I − e∗⊗ e)w = r(∇e)w = r [∇(e·w)− (∇w)e]
= r

{
∇(e·w)+ [(∇w)T − ∇w]e − e·∇w

}
= r

{
∇wr + [(∇w)T − ∇w]e − ∂w

∂r

}
.

However, with w = j − ∇ϕ, (5) gives wr ≡ 0, u ≡ w and, hence,

u + r
∂u
∂r

= x · Curl j(x), where Curl j(x) = ∇j − (∇j)T, (7)

where the notation “Curl” is introduced in the Appendix. Then, integrating the final relation with respect to r ,
we obtain skew-symmetric pseudo-linear forms:

u = �(x)x, with � = −�T = −Curl g(x), where g(x) =
1∫

0

j(λx)dλ, (8)

which is equivalent to Eq. (2.18) of Edelen [9] and is subsumed by the last member of (79) in the Appendix.
Finally, (3) and (6), with ϕ0 ≡ 0, give the relation between dissipation potential ϕ(x) and dissipation

function D = D(x) = D(re) as an elementary linear integro-differential transform:

ϕ(x) = E{D} :=
1∫

0

D(λx)
dλ

λ
=

r∫

0

D(r ′e)dr ′

r ′

with D(x) = E−1{ϕ} = x·∇ϕ(x) = r
∂ϕ

∂r
, (9)

provided that D(x) = o(rν) with ν > 0, for r → 0. The relations of (8) and (9) represent a special case of
the general homotopy operation defined by Edelen in Eqs. (5–3.2) and (8.5.3) [11]. We note that (9) defines
the so-called perspective of D(x), a scaling transformation that preserves positivity and convexity, which has
found application in other fields [13,34].

We henceforth assume that D is a convex function vanishing at the origin x = 0, so that the first member
of (9) implies the same properties for ϕ. We consider below the special case where {D, ϕ} are homogeneous of
degree p ≥ 1, such that D(x) ≡ pϕ(x), i.e., such that p is an eigenvalue of E−1. Hence, whenever a given set
of homogeneous functions is complete in a properly restricted function space, it provides the corresponding
spectral representation of E−1. Prominent examples are multivariate Taylor series expansions in x for C∞
functions, which involve a discrete spectrum, or the multivariate (inverse) Mellin transform with continuous
spectrum. Thus, expansions in polynomial invariants, such as those employed by Ziegler [53] and Edelen
[12] for Reiner-Rivlin fluids (see below), may be viewed as spectral representations in homogeneous forms of
successively higher degree.

3 Convex duality, dissipative moduli and Onsager symmetry

To emphasize the duality and to provide a connection to certain past works [6,35,37,49], we employ the
notation anticipated above, with y =̂ [yi ] denoting an element of X

∗, the dual space of X. Depending on the
setting, y can be interpreted as the flux of Onsager and Edelen, or, equivalently, as the generalized velocity of
others works [37,49], with dissipation given by D = y·x. In the following, we occasionally refer to y simply
as “rate.”

Thus, as an improvement on a previous treatment [21], we first invoke the Legendre–Fenchel duals or
convex conjugates2 [17,35,37,49]

ϕ(x)+ ψ(y) = y·x, (10)

2 The notation ϕ,ψ is that employed by Ziegler [49] (p. 144) for the dissipative analogs of Gibbs and Helmholtz free energies,
while [37] and [35] denote ψ, y by the mathematically more suggestive ϕ∗, x∗. Also, our dot-product represents the conventional
symbol 〈 , 〉.
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Edelen’s dissipation potentials 2243

where ϕ : X → R, and ψ : X
∗ → R are assumed convex and differentiable, with invertible maps

x = ξ(y) = ∇yψ, and y = η(x) = ∇xϕ, with ξ = η−1 (11)

arising from the dual extrema:

ψ(y) = max
x

{y·x − ϕ(x)} , and ϕ(x) = max
y

{y·x − ψ(y)} , (12)

discussed further below.
If ϕ or ψ is only piecewise differentiable, then max should be replaced by sup in (12) and the respective

gradients ∇ in (11) should be interpreted as sub-gradients (set-valued sub-differentials), of the type associ-
ated with the “fan of normals” at vertices on non-smooth plastic limit surfaces [35,37].3 At such points of
discontinuity the invertibility assumed in (11) no longer applies.

Wherever (11) does apply, we may write:

ϕ(x) = x·∇x�(x)−�(x) where �(x) =
1∫

0

[ϕ(λx)− λx·∇xϕ(0)]
dλ

λ2 + x·∇xϕ(0),

and

ψ(y) = y·∇y	(y)−	(y) where 	(y) =
1∫

0

[
ψ(λy)− λy·∇yψ(0)

] dλ

λ2 + y·∇yψ(0). (13)

Hence,
∇xϕ = x·∇x∇x�, and ∇yψ = y·∇y∇y	, (14)

which depend on the existence of second-derivatives, a more restrictive condition than assumed by Edelen [8].
With this restriction, (3)–(14) lead to the pseudolinear forms:

y = η(x) = ∇xϕ = Lx, and x = ξ(y) = ∇yψ = Ry,

with L(x) = ∇x∇x�, R(y) = ∇y∇y	 = L−1,

and D = D(x) = x·Lx = L ijx
i x j = D∗(y) = y·Ry = Rij yi y j , (15)

with dissipative moduli L and R = L−1 (resp., conductance or mobility and resistance), whose symmetry is
evident and whose positivity is ensured by the convexity of the conjugate potentials. Rewriting (6), with j = y
and ϕ0 ≡ 0, one obtains the dual of (9) connecting ψ(y) and D∗(y).

The relations (15) define secant moduli to be distinguished from the tangent moduli M and its inverse
compliance K = M−1 defined by the incremental forms:

dy = dη(x) = Kdx, and dx = dξ(y) = Mdy,
with K(x) = ∇x∇xϕ(x) & M(y) = ∇y∇yψ(y). (16)

The first two relations in (15) serve to generalize and supersede the pseudolinear viscoplastic moduli invoked
previously [19].

Generalized Onsager symmetry

Without appeal to the moduli (15), the relation (11) yields the basic symmetry restrictions on forces and fluxes:

∂xi

∂y j
= ∂x j

∂yi
, and

∂ yi

∂x j
= ∂ y j

∂xi
, (17)

the analogs of the Maxwell relations of equilibrium thermodynamics that may offer useful consistency tests
of constitutive equations.

3 More general derivatives of “superpotentials” have been proposed by others [40].
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2244 J. D. Goddard

The failure of x(y) or y(x) to satisfy (17) does not rule out the dissipative potentials, but rather serves to
define Edelen’s gyroscopic terms by means of the relations

u(x) = y(x)− η(x), with u· x = 0, v(y) = x(y)− ξ(y), with y· v = 0, (18)

cf. Bataille et al. [4] and Edelen (p. 92) [10]. Given sufficient differentiability, the state of affairs can be made
formally explicit in terms of asymmetric moduli as follows.

In light of (8) and (15), it is clear that we can set down the dual pseudo-linear forms:

y = 
(x)x, with 
 = L + � and �(x) = −�T(x) = −
1∫

0

Curlx η(λx)λdλ,

x = 
∗(y)y, with 
∗ = R + �∗ and �∗(y) = −�∗T(y) = −
1∫

0

Curly ξ(λy)λdλ,

(19)

where the obvious relation 
∗ = 
−1 requires the following connection between � and �∗:

� = L1/2WL1/2, W = −W∗(I + W∗)−1, with W∗ = L1/2�∗L1/2. (20)

If one defines L∗ := L−1 = R, one has complete symmetry between starred and unstarred quantities. The
symmetry and positivity of L or R together with the skew symmetry of � and �∗ ensure the validity of the
implied matrix operations, which become transparent in terms of the diagonal forms of L and R on their mutual
principal axes.

The relations (19) represent dual forms of Edelen’s nonlinear generalization of Onsager’s theory. At the
same time, they serve to define strongly dissipative systems, for which � = �∗ ≡ 0, with the relations (17)
satisfied identically. Otherwise, we encounter the failure of generalized Onsager symmetry, the possibility of
which is envisaged by Edelen’s postulated non-dissipative stresses in viscous fluids [12], [10, pp. 110 ff.],
and by the comments of Eringen [14, Section 2.4], who questions the general validity of Onsager symmetry
for nonlinear processes. It is the opinion of this author that this breakdown of symmetry may be attributed to
non-dissipative coupling, generally non-holonomic, between certain kinematic degrees of freedom. Since the
physical origins of such gyroscopic effects are not clear, we shall restrict attention in the balance of this paper
to strongly dissipative systems.

3.1 Homogeneous potentials and singular limits

We now consider the important special case of homogeneous potentials where norms play a paramount role.
Without detailed specification of the norms,4 one obtains the counterparts in X

∗ of those indicated on the last
line of (4), where ∇ = ∇x:

s = |y|∗, f = y
s
, f∗ = ∇ys, f∗ · f = 1, ∇yf = 1

s
(I − f∗⊗ f), (21)

where |y|∗ denotes an arbitrary norm in X
∗. Then, (11) takes on the “radial” or normal forms:

ηr = η·e = D(x)
r

= ∂

∂r
ϕ(r, e), and ξs = f ·ξ = D∗(y)

s
= ∂

∂s
ψ(s, e∗). (22)

These components of rate and force give only their dissipative contributions, which are distinguished from
their magnitudes given by the norms:

σ(x) = |η(x)|∗, and ρ(y) = |ξ(y)| (23)

which figure prominently in the following.

4 A standard example is r = (G ijxi x j )1/2 and s = (H ij yi y j )
1/2, with positive matrices [G ij], [H ij].
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Edelen’s dissipation potentials 2245

Limit surfaces

The formulae (10)–(11) yield the textbook case [47] of homogeneous functions D(x) and D∗(y) of respective
degrees p > 1 and q > 1:

ϕ(x) = 1

p
D(x) = D0

p

(
r

r0

)p

, ψ(y) = 1

q
D∗(y) = D∗

0

q

(
s

s0

)q

,

with

1

p
+ 1

q
= 1,

ρ

ρ0
=

(
s

s0

)q−1

,
σ

σ0
=

(
r

r0

)p−1

(24)

where ρ, σ refer to functions defined by (23), and

f(e) =
[

e∗ + 1

p
(I − e∗ ⊗ e)∂e ln

D0

r p
0

]
f ·e, with e∗(e) = ∇xr,

e(f) =
[

f∗ + 1

q
(I − f∗ ⊗ f)∂f ln

D∗
0

sq
0

]
f ·e, with f∗(f) = ∇ys,

where e·f = D0(e)
r0(e)s0(f)

= D∗
0(f)

r0(e)s0(f)
, ρ0(f) = r0(e), σ0(e) = s0(f).

(25)

Specification in (25) of D0, r0 and f · e as functions of e or of D∗
0 , s0 and f ·e as functions of f , provides

parametric maps between fiducial (hyper)surfaces s = s0(f) in X
∗ and r = r0(e) in X, maps that become

simpler for iso-dissipative surfaces D0 = D∗
0 = constant.

It is easy to see that the moduli in (15) must take on the form:

L =
(

r

r0

)p−2

L0(e), R =
(

s

s0

)q−2

R0(f), (26)

and for p = q = 2 in (26), one obtains quadratic forms representing the Rayleigh-Onsager dissipation with
linear force-rate relations provided L0 and R0 are independent of e and f . Otherwise, one obtains a more
general degree-two homogeneity, with pseudolinear forms of the type mentioned above [21].

In the marginal limit q → 1, p → ∞, appropriate to rate-independent friction or plasticity, the relations
(24)–(26) yield ψ(y) ≡ D∗(y), together with

ξ = ρ0(f)
(

s

s0

)q−1

e → ρ0(f)e(f) (27)

for q → 1 with fixed s > 0, with ξ otherwise indeterminate. On the other hand, for bounded functions D0(e)
with bounded derivatives, it follows from (25) that

η = σ0

(
r

r0

)p−1

f →
{

0, for r < r0(e),
σ0(e)f(e), for r = r0(e),

with

f(e) → (f ·e)
[

e∗ − 1

r0
(I − e∗ ⊗ e)∂er0(e)

]
≡ (f ·e)∇x [r − r0(e)]|r=r0 ,

(28)

for p → ∞, where, because of (25) and (27), r0 may be taken an upper bound for r . The relation (28), which
represents a multidimensional generalization of the sgn function appearing in one-dimensional versions of
rigid plasticity, is depicted schematically in Fig. 1.

Thus, the assumption of rate-independent force, corresponding to the marginal limit of convexity, leads
to bounding (hyper)surfaces in X and X

∗. Hence, the assumed yield surface of continuum plasticity arises
quite naturally as a mathematical consequence of rate-independence and convex duality. While this situation
is appreciated by others, [6,35,37], the present treatment makes it more palpable.
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Fig. 1 Map from X to X
∗ for rate-independent forces
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Fig. 2 Conical limit surfaces for Coulomb friction

Rate-independence also rules out a material time scale, so that the quantities s0, σ0 are arbitrary up to a
multiplicative factor familiar in classical theories of rigid plasticity, a factor which is determined by externally
imposed rates.

As a further point, we see that the rate η in (28) is collinear with the gradient of r − r0(e) and, hence,
“orthogonal” to the limit surface r = r0(e) provided the latter is sufficiently regular.

An important exception to the above state of affairs arise in the singular case of Coulomb friction represented
by a cone K, where r0 may be defined formally as the piecewise-constant, set-valued function:

r0(e) = ∞, for e ∈ K, and r0(e) ∈ [0,∞), for e ∈ ∂K. (29)

In this case, the limit of f in (28) may be taken formally to be (f·e)e∗. Thus, Coulomb friction can be represented
by

s0(e) = 0, for e ∈ K, and f(e) = L0e, with L0 = cosφ f e∗⊗ e∗, for e ∈ ∂K, (30)

which represents a non-normal flow rule with power factor cosφ f (e) = f · e prescribed as function of e, where
φ f (e) represents the so-called angle of internal friction. The situation is depicted schematically in Fig. 2 for
the case of circular (Drucker-Prager) cones, suggesting that a general cone in X represents a solitary plastic
“vertex”.

We note that the dual of (28), with

{y, r, q,L, e} ⇔ {x, s, p,R, f}, with p → 1, q → ∞, (31)

corresponds to the peculiar notion of force-independent rate and a strictly dissipative form of “locking” behavior
[17,41].

It should also be noted that the above theory covers the case of “stiff elastoplasticity” with small elastic
deformation superposed on large plastic deformation. The plastic moduli invoked in a previous work [20] can
now be regarded secant moduli of the form (15), with the resulting elastoplastic model described by two scalar
potentials, one plastic and one elastic. With potentials that depend on parameters such as particle fraction and
fabric tensor discussed below, one readily obtains models of history-dependent elastoplasticity.

4 Visco-plasticity of suspensions and granular media

We summarize briefly the application of the preceding ideas to the rheology of fluid-particle systems, ranging
from suspensions of rigid particles in viscous fluids to dry granular media composed of rigid frictional particles.
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Most of the background, with references to related work, is presented in a recent paper [19] dealing with fluid-
particle suspensions.5

For the present purposes, we set aside Edelen’s non-dissipative terms, assuming that our materials are
strongly dissipative or else that non-dissipative terms may be added a posteriori, as done by Edelen [12] for
viscous fluids and by the present author [20], to represent the dilatancy of granular media.

We now revert to the notation of Edelen, with J and X denoting rates and conjugate forces, and ∂J denoting
derivatives with respect to J. We also employ x,∇ as conventional notation for physical space positions and
gradients. Finally, we employ Sym and Skw to denote symmetric and skew parts of second-rank tensors.

Then, we are concerned with a class of visco-plastic constitutive models in which the local Cauchy stress
T(x)=̂[T ij] depends on local velocity gradient ∇v though the objective deformation rate

D(x) = Sym[∇v(x)] =̂ [Dij] = [(v j;i + vi; j )/2], (32)

the local solid fraction φ, and an additional objective, traceless and symmetric second-rank “fabric” tensor
A=̂[Aij] = AT representing a restricted form of shear-induced anisotropy. The latter depends on the past
history of the velocity gradient ∇v at given material point through an appropriate evolution equation, which
will be left unspecified in the present paper (cf. a previous paper [19]).

We shall also consider the case of mobile particles involving a local particle flux j which depends also on
the spatial gradients of φ,∇v and A.

Whereas the previous analysis [19] was predicated on the existence of dissipative moduli, these are sub-
sumed in the above general theory of dissipation potentials, and we now focus on the rate-dependent potential
ψ(J).

4.1 Rheological models of Stokesian fluid-particle suspensions

We consider neutrally buoyant suspensions of rigid non-Brownian particles in incompressible liquids, whose
microscopic dynamics are assumed to be governed by the well-known Stokes equations. The linearity of these
equations should also apply to Stokesian suspensions [19], so that any nonlinear rheological effects must
arise solely from the dependence of the underlying Stokesian dynamics on the past history of the kinematics,
assumed for simplicity to be represented by the fabric A.

Spatially homogeneous suspensions

Previous works [19] (and references therein), borrow the representation of Cowin [7] for fabric-dependent
anisotropy in linear-elastic solids in order to deduce the corresponding constitutive model T′ = X(A,D), with
linear dependence on J = D, where T′ denotes deviatoric stress, and tr D=0. While this leads to a fourth-
rank viscosity tensor, the analog of the elasticity tensor, this representation and the associated symmetries are
subsumed by the above general theory of a dissipation potential ψ(A,D), with X = ∂Jψ .

The corresponding model of flow-induced anisotropy in Stokesian suspensions is obtained by taking ψ to
be a quadratic in D, given by a linear combination of the joint isotropic scalar invariants of D and A:

tr D2, (tr AD)2, (tr A2D)2, tr AD2, tr A2D2, (tr A2D)(tr AD), (33)

with coefficients depending on tr Ak, k = 1, 2, 3. It is readily seen that derivatives ∂D of (33) reproduce the
results found previously [19] by much more lengthy arguments.

One obtains more general models, which we designate as quasi-Stokesian, by simply including additional
non-Stokesian quadratic forms involving |D| = √

tr D2 in the list (33), and the same is true for the models
considered in the following Subsection.

5 As correction of typographical errors, Eqs. (11)–(12) should respectively read

μab
i1...im , j1... jn (m, n) =

∫
x∈A

∫
x∗∈B

ra
i1
. . . ra

im
nk(x)μim k jnl(x, x∗)rb

j1 . . . r
b
jn nl(x∗)dS(x)dS(x∗),

and μab(m, n) = ∂τ a(m)/∂ub(n), while in Eqs. (26)–(29) and the accompanying text, the gradient ∇ should be replaced by the
divergence ∇· when followed by second-rank tensors.
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Inhomogeneous suspensions

Experiments reveal the existence of particle migration in the presence of spatial gradients in φ or D, and various
“quasi-Stokesian” models have been put forth to describe this phenomenon [15,48].

The Stokesian alternative proposed by the present author [19] involves antisymmetric stress, hyperstress
(moment stress), and particle flux, together with particle fraction, deformation rate and fabric and their various
spatial gradients. However, despite the ostensible generality, this model may be deemed restrictive in several
respects. First, it employs the gradient ∇D of deformation rate rather than the double gradient of velocity ∇∇v,
which also includes objective gradients in vorticity W =Skw[∇v]. Secondly, the development of the model
proceeds from the conventional view that ∇φ is a driving force for particle migration. While a plausible analog
of the concentration gradients that drive diffusion in molecular and colloidal systems, it seems advisable to
proceed without prejudice from more general dissipation principles.

A more important weakness of the above model is its restriction to single-phase suspension mechanics,
with relative particle flux j as the only new kinematic variable. After a consideration of this restricted model,
we introduce a more comprehensive mixture-theory model involving two-phase mechanics.

Single-phase models

Building on the previous analysis [19], with terms of the same order in various gradients, we assume a
dissipation potential ψ that is given in terms of the joint isotropic scalar invariants of the generalized rate,

J = j ⊕ D ⊕ ∇∇v, (34)

and the parameters φ,A,∇φ,∇A, invariants which are simultaneously quadratic in J and linear in ∇φ,∇A.
Here, j =̂ [jk] denotes the volume-flux of particles relative to the volume-average velocity of the suspension,
and ⊕ is standard notation for the direct sum of vector spaces. This serves to define the conjugate force as
linear function of rate,

X = f ⊕ T′ ⊕ τ = ∂jψ ⊕ ∂Dψ ⊕ ∂∇∇vψ, (35)

where f =̂ [fi ] is the force conjugate to j, and τ =̂ [τ ijk] the (hyper)stress conjugate to ∇∇v. Although not
done at this point, we could include additional kinematic variables, such as an hypothetical (Cosserat) particle
rotation and its gradient (see below).

Focusing here on the particle flux j, but not listing all the relevant scalar invariants, one can anticipate the
following general form for the conjugate force (i.e., force per unit volume of suspension):

f =̂ [fi ] = Zj + K∇φ + ζ∇∇v + κ∇A

=̂ [Zik jk + K ikφ,k + ζ i jklv j;kl + κ i jkl A jk;l ], (36)

where Z and ζ are isotropic functions of φ and A, while K and κ are isotropic functions of φ,A and D, which
are also linear in D.

We note that certain terms in (36) have counterparts in various phenomenological molecular and colloidal
theories, where Z represents viscous drag and K is linear in a thermo-kinetic energy (or temperature). Borrowing
from such theories, various quasi-Stokesian suspension models6 assume K to be linear in term |D|, while the
term involving ∇∇v is replaced by ∇|D|, both of which involve the distinctly non-Stokesian form |D|. To the
best of the author’s knowledge, the term in ∇A, representing migration due to gradients in anisotropy, has
been identified only recently [19], and its physical importance has yet to be established.

An alternative to (36), emphasizing the dependence on rates, is

f =̂ [fi ] = Zj + νD + ζ∇∇v, with νD = K∇φ + κ∇A =̂ [νi jk Dkl ], (37)

where the third-rank tensor ν is an isotropic function of φ,A,∇φ,∇A, linear in the final two arguments.
Further, effort would be required to set down analytic forms for all the moduli listed in (36)–(37), which at
this juncture may not be fully justified. Instead, we focus on the general significance of the force f.

Within the confines of a single-phase model f must be regarded as the sole internal force driving particle
migration and, in the absence of inertial effects, the sum of this force plus any external body force bs must be
zero. Thus, (36) gives the expression for particle flux,

j = −Z−1[K∇φ + ζ∇∇v + κ∇A − bs], (38)

6 cf. the references in previous works [15,19,48].

Author's personal copy



Edelen’s dissipation potentials 2249

which is equivalent to the form presented elsewhere [19] (Eq. (20)). The term in ∇φ is of course the analog
of colloidal (Einstein-Stokes) gradient-diffusion models. As shown elsewhere [19], there is no guarantee that
the apparent diffusivity Z−1K will remain positive definite in transient deformations.

When combined with the particle balance (see below):

∂φ

∂t
+ v·∇φ = −∇·j, (39)

(38) provides an essential particle-transport equation. Upon replacing terms in ∇v and D by |D|, one obtains
mutatis mutandi a generalization of the aforementioned quasi-Stokesian models of particle migration. Since
such models usually emphasize the role of various particle stresses, we consider the brief outlines of a com-
prehensive treatment that introduces such stresses via their kinematic conjugates.

Mixture-theoretic models

Previous works [15,48] provide reviews and elaborations upon previous research on various quasi-Stokesian
models, models that are largely subsumed in the classical theory of mixtures, well summarized in at least one
monograph [42].

We recall that each constituent in a mixture is endowed with its own kinematics and conjugate forces, in
the present case specified by the respective velocity fields for particulate solid and continuous fluid phases,
say vs(x), vf(x), and their various gradients, together with conjugate forces consisting of internal forces of
interaction fs = −ff , plus external body forces and stresses conjugate to the gradients of velocity. For the
present purposes, we employ volume-average mixture velocity and fluxes:

v = φvs + (1 − φ)vf , with j := js = −jf = φ(vs − v) = φ(1 − φ)(vs − vf). (40)

Then, for a suspension of rigid particles in an incompressible fluid, such that ∇·vf = 0, balances on fluid and
particles give [42] (Eq. (2.55)):

∂φ

∂t
+ vf ·∇φ = 0, and

∂φ

∂t
+ vs ·∇φ = −φ∇·vs,

∴ ∇·v = 0, and φ∇·vs = (vf − vs)·∇φ = − j·∇φ
φ(1 − φ)

,

(41)

with particle-phase dilatation ∇·vs representing changes in particle number density.
The balance (39) still applies, requiring once more a constitutive equation for j and involving the augmented

set of frame-indifferent rates:
J = J0 ⊕ Ds ⊕ � ⊕ ∇∇vs ⊕ ∇�, (42)

where J0 denotes the set (34), and

Ds = Sym[∇vs], � = Skw[∇vs − ∇v]. (43)

The skew-symmetric tensor �, analogous to a Cosserat rotation, involves contributions from the relative
rotations of particle centers and from rotations of individual particles about their centroids, and the gradient
∇� defines wryness or “curvature”. We do not bother to reduce � to a conventional vector form.

Various conjugate forces are given once again as partial derivatives of ψ with respect to the rates in (42).
Thus, the isotropic part of the particle stress Ts:

ps = −tr Ts, where Ts = ∂Dsψ, (44)

defines a particle-pressure conjugate to tr ∇vs = tr Ds whose dissipated power is due solely to changes in
particle density. While the latter is obviously connected to particle migration by the last member of (41), it is
not clear to this author that the gradients in this pressure should viewed as a driving force for particle migration,
as proposed by others [15,48] and discussed further below.

For the Stokesian suspensions at hand, we can presumably employ the principle of minimum dissipation
and standard functional analysis to obtain the various field equations for quasi-static equilibrium, exactly as
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done for complex elastic continua. For rigid particles suspended in an incompressible fluid in volume V , with
external body force densities ba, a = f, s but no external body couples, this involves the variational problem

min
vf (x),vs(x)

∫

V

[ψ(J)− bs · vs − bf · vf ]dV, (45)

subject to the local incompressibility constraint ∇ ·vf(x) = 0 and prescribed values of vf , vs on ∂V or of
related volume averages.

We note that (45) has the same form as a general variational principle discussed below in Sect. 5. For the
problem defined by (45), it is convenient to employ the alternative decomposition

J = v� ⊕ Ds ⊕ Df ⊕ W� ⊕ ∇∇vs ⊕ ∇∇vf ⊕ ∇W�

where

v� = vs − vf = j/φ(1 − φ), and W� = Skw[v�] = � + Skw[∇j/(1 − φ)].
(46)

Without setting down all the details here, we note that for finite V with velocity-controlled boundaries, it is
easy to obtain from (45)–(46) the standard equations of quasi-static equilibrium for the partial Cauchy stresses
[42]:

∇·Ta + ba + f�a = 0, a = s, f, with f�s = −f
�
f = f� := ∂v�ψ = φ(1 − φ)f, (47)

where the fa represent interaction-force densities, and the isotropic part of Tf is a rheologically indeterminant
pressure. We do not record here various higher-order balances, which may be construed as representing angular
momentum or related moments.

According to mixture theory, the relations T = Ts + Tf & b = bs + bf for the overall stress and body
force lead to the global equation of equilibrium for T. While the partial stresses may be asymmetric, a more
detailed analysis should show the overall stress T to be symmetric.

Without regard to higher-order stresses and kinematics, the relation D = φDs+(1−φ)Df and the additional
condition on the nominal overall dissipation

T·D + f·j = Ts ·Ds + Tf ·Df + ff ·vf + fs ·vs (48)

would require further that
(φTf − {1 − φ}Ts)·(Df − Ds) = 0, (49)

whose implications for suspension models do not seem to have been explored.
The balances (47) are common to the quasi-Stokesian models proposed by others [15,48], cognizant of the

fact that their closure requires constitutive equations for f and Ts. However, contrary to the view expressed in
many of these works, it is not evident to the present author that the particle stress Ts should be viewed as a
privileged driving force for the flux j. Among other things, this implies a highly reduced form of constitutive
equations like (36) or (37), even without the additional terms in (42).

The preceding point is made clearer by the consideration of (36)–(38), where replacement according to
(47) of bs in (38) by ∇ ·Ts +bs yields an expression for j that involves several ostensibly independent terms. Of
course, the dependence on Ds in certain terms may be construed roughly as dependence on Ts. Furthermore,
certain effects may be highly correlated for restricted kinematics, in particular the simple shear currently
employed almost exclusively for suspension rheology.

4.2 Granular media

The particle balance for a dry granular medium is described by the second member of (41) with vs = v, where
v(x) represents the relevant material velocity in the associated continuum model. Hence, parallel to the above
development for inhomogeneous suspensions, we can identify the rates as

J = D ⊕ � ⊕ ∇� ⊕ ∇∇v, (50)

to first order in the relevant kinematic gradients. The first three variables are common to a well-known Cosserat
model [32,36], whose assumed quadratic forms in X serve to define both norm and yield condition, as common
to many plasticity models.
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The standard model for the quasi-static mechanics of dry granular media provides an example of the rate-
independent, pressure-sensitive (Coulomb) plasticity discussed in Sect. 3 above. In particular, the potential
ψ(J) is homogeneous degree-one in J and identical with the dissipation rate. Once ψ is specified in terms of
an assumed set of isotropic scalar invariants of J, the conjugate forces are given by an expression of the form

X = ∂Jψ(J) = |X| Ê(F̂), with Ê = ∂Jψ/|∂Jψ |, and F̂ = J/|J|∗, (51)

where |X| and |J|∗ are respective norms for force and rate, while Ê and F̂ are the associated directors.
In the case of non-cohesive grains |X| may be assumed proportional to confining pressure, which together

with the first relation in (51) represents the standard frictional yield condition (cf. Mohan et al. [36]). A
further accounting for the effects of density, anisotropy, and inhomogeneity would involve dependence of ψ
on φ,A,∇φ,∇A, all are which require evolution or “transport” equations for φ and A. Recent constitutive
models introduce a further internal variable representing particle-contact density or coordination number [46],
which conveniently can be included in the trace of an appropriately re-defined fabric tensor A.

Without pursuing more detailed constitutive equations, here, we note that the evolution of φ is governed
by the particle balance: (

∂

∂t
+ v·∇

)
ln φ = −∇·v = −tr D, (52)

with the right-hand side representing granular dilatancy. According to one theoretical interpretation [20], the
(Reynolds) dilatancy for systems of rigid grains should be regarded as a rate-independent non-holonomic
constraint, with tr D proportional to |D′|. Hence, the deviator D′ replaces D as the relevant kinematic variable.

Consistent with the above interpretation of granular dilatancy, there should exist non-dissipative reactions
to the dilatancy constraint, perhaps represented by Edelen’s formulae. Although these do not contribute to dis-
sipation, they are nevertheless relevant to the mechanics, and, to the extent that the constraints are evolutionary,
they generally require further constitutive equations [20].

The preceding considerations raise interesting questions as to the general significance of Edelen’s non-
dissipative forces and rates, as represented by u and v in (18). At least one article [39] addresses the question
via the near-equilibrium statistical mechanics of molecular systems, which does not preclude a more general
continuum-mechanical interpretation. Thus, as suggested by the example of granular dilatancy, non-dissipative
forces may reflect non-dissipative and possibly non-holonomic constraints of the type envisaged by the ther-
modynamical treatment of Green et al. [23]. On the other hand, such forces serve also to represent reversible
coupling of otherwise dissipative processes, as suggested by a recent analysis of thermoelectricity [22] (which
overlooks Green et al. [23]). Other examples are afforded by the reversible coupling of reactions and other
transport processes in biological systems.

5 Extremum and variational principles

The preceding results serve to clarify various extremum principles pursued extensively by Ziegler and co-
workers [49,52]. One version of the principle assumes extremal dissipation D subject to fixed force x or flux
y, which yields dual relations of the form

η(x) = ∇x D(x)
x·∇x D(x)

D(x), and ξ(y) = ∇y D∗(y)
y·∇y D∗(y)

D∗(y), (53.1,2)

in terms of the respective dissipation functions D(x) or D∗(y). These represent Ziegler’s orthogonality prin-
ciple,7 according to which rate or force are normal to surfaces of constant dissipation D.

The expressions for rate or force in (53.1,2) yield trivially the correct value dissipation and are invariant
under replacement of D (or D∗) in the equation for η/D (or ξ/D∗) by any differentiable scalar-valued function
of D (or D∗). Considering the first expression in (53.1,2), one sees that it takes on the form η = ∇xϕ for the
case of homogeneous dissipation but e.g., an ostensibly different form for a sum of homogeneous functions of
different degrees. The same can be said of the second expression in (53.1,2), which applies to certain forms of

7 Ziegler’s orthogonality, confounded in [22] with the orthogonality represented by υ and u in (79), requires that the latter be
zero.
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the Reiner-Rivlin fluid considered [53], for which our y represents the deformation rate tensor.8 The general
status of (53.1,2) is perhaps clarified by the following considerations.

Instead of the equation for η in (53.1,2), one may employ the more general relation

η(x) = g(x)
x·g(x)D(x) = g(x)

gr (x)
D(x)

r
= g(x)

gr (x)
∂ϕ

∂r
, with ∴ x·η = D(x), (54)

in which the (co)vector g(x), X → X
∗, with gr = e ·g �= 0, is otherwise arbitrary and not necessarily the

gradient of a scalar, and in which the fourth equality follows from (22). Substituting the decomposition

g = gr e∗ + (I − e∗ ⊗ e)g

into (54), one finds the correct form for the dissipative component ηr of η, independently of the form of g.
As propitious choice for g in (54), one may take

g = ∇xr = e∗, with gr = 1, (55)

such that the flux is orthogonal to surfaces of constant r , where r is our unspecified norm. If Ziegler’s Euclidean
norm is replaced by an arbitrary norm r , one obtains a generalization of his dual principles [51] of maximal (or
stationary) D at fixed r or minimum (or stationary) r at fixed D. Both cases involves stationarity of r(x)+λD(x),
with Lagrange multiplier λ treated as constant but ultimately chosen to give the correct expression for local
dissipation.

The extrema just discussed are to be compared with (12), of which e.g. the first can be reformulated as the
minimum of ϕ(x) ≥ 0 subject to fixed dissipation D and rate y.

This is tantamount to the stationarity of y·x − λϕ with y fixed, and it leads to (54), with

g = λ∇xϕ, where λ = D

x·∇xϕ
.

That is, as with the first extremum in (12), the rate is normal to surfaces of constant potential, which are
generally not coincident with surfaces of constant dissipation. Choosing λ equal to a constant serves simply
to rescale ϕ, and the choice λ = 1 gives complete equivalence to the first members of (12),

A related treatment, motivated ostensibly by the works of Ziegler, is given by Bataille et al. [4] who propose
a more general form of (2) with positive scalar u(x)multiplying the right-hand side of (2) and with alternative
functions 	 and U instead of ϕ and u. This is summarized by their Eq. (28), and it is readily seen that the
transformation of their notation

{X,	, uU} → {x, D, u} where u = D

x·∇x D

yields a result identical with (2) and the Eq. (53.1).
As the above considerations serve to emphasize, and as evident from (22)–(23), there generally exist non-

dissipative components of rates or forces that are derivable from the gradient of a scalar-valued function. That
these do not dissipate energy does not imply they are mechanically ignorable. This point is partly illustrated
by the Reiner-Rivlin fluid model considered above, with viscometric normal stresses that dissipate no power
but nevertheless must be balanced in order to maintain simple shearing.

Thus, we conclude that the orthogonality principle, championed by Ziegler [50] and adopted by others
(e.g., [6,25,43]), will generally fail to give a complete description of force or rate. In any event, it does not
offer great advantage over Edelen’s method which in principle provides all non-dissipative forces or rates.

Proper variational principles and consequences

Without a thorough investigation, the above considerations suggest that for strongly dissipative systems we
should adopt variational principles based on dissipation potentials rather than dissipation per se. For exam-

8 One may employ as norm |y| any positive function of the invariants denoted by d(2), d(3) by Ziegler [53] that is positively
homogeneous degree-one in y and that also satisfies the triangle inequality in X

∗, the most obvious being the standard
√

d(2).
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ple, the equations of equilibrium for the quasi-static motion of a viscoplastic material, subject to prescribed
velocities on the boundary ∂V of a region V and usually to an incompressibility constraint, are given by the
variational problem for the velocity field v(x),

min
v(x)

∫

V

[ψ(D)− b·v]dV, (56)

with b(x) denoting a prescribed body force density and D[v] given by (32). Note that one obtains a more
general problem of thermo-viscoplastic systems by letting ψ also depend on the temperature gradient, with
stress and heat flux being regarded as the relevant fluxes. This serves inter alia to extend certain variational
principles for non-Newtonian fluids [28,44] to more general classes of thermo-viscoplastic materials.

Such variational principles are not only relevant to the homogenization of heterogeneous media, but they
also may find applications to problems involving loss of convexity, leading to material instability [18] and
viscoplastic bifurcations (or thermo-viscoplastic phenomena such as adiabatic shear bands). Here, one may
draw on a well-developed mathematical literature on the analogous elastostatic problems [2]. Indeed, the class
of strongly dissipative or “hyperdissipative” materials may be regarded as the mirror image of the much more
thoroughly studied hyperelastic materials.

6 Conclusions

The Abstract and Introduction provide generally adequate summaries of the overall goals and the principal
results of the foregoing analysis.

A major objective of the present work is to highlight the importance of Edelen’s work for the development
of continuum models of viscoplasticity. The present analysis demonstrates that important various rigid-plastic
flow rules follow quite simply from convexity and duality of dissipation potentials without further physical
assumptions. The existence of such potentials also allows for a relatively easy formulation of properly invariant
constitutive equations for Stokesian fluid-particle suspensions and, by extension, particle suspensions in any
inelastic fluid. Moreover, the stationarity of dissipation potential yields variational methods that may be useful
for the solution of boundary-value problems and for the homogenization of heterogeneous systems.

It is worth pointing out other potentially useful extensions of the above models for particulate media. First
of all, as suggested by elementary phenomenological models, useful viscoplastic models of fluid-saturated
granular media or dense non-Stokesian suspensions may possibly be suggested by a judicious combination of
dissipation potentials for Stokesian suspensions and granular media. With viscous and plastic effects attributed,
respectively, to the interstitial fluid and to frictional contacts between particles, one can envisage a possible
“phase” transition from viscous to viscoplastic behavior at some critical value of solids fraction φ for a given
fluid-particle system.

We further note that general models of particle migration and segregation in poly-disperse granular systems
may be obtained by an appropriate definition of constituents in the relevant mixture theory.

In closing, it should be noted that several results and conclusions are based on the assumption of strongly
dissipative systems, i.e., on generalized Onsager symmetry. As discussed above, there remain interesting and
open questions as to the failure of such symmetry and the emergence of Edelen’s non-dissipative forces and
fluxes, questions that may perhaps be clarified by statistical micromechanics.
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Appendix: A source-flux construct for Edelen’s formulae

As another derivation and extension of Edelen’s formulae, we consider a source-flux construct explored in a
previous work on continuum balances, which yields a flux field whose divergence is equal to a given source
field [21]. This provides a constructive demonstration for Euclidean spaces of the existence proof of Segev
and De Botton [45], representing an “inverse divergence” [1], more properly dubbed “pseudoinverse”.
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Path-moments of densities and a Gauss-Maxwell formula

Adopting the notation of (1) together with another slight departure from conventional notation,9 we denote var-
ious derived tensor fields, the transpose, trace, gradient, divergence, and Curl of tensor field τ (x), respectively,
by

τ T =̂ [τ i1,i2,...,im−2,im ,im−1], tr τ = τ :I =̂ [τ i1,i2,...,im−1,.

im−1
], m ≥ 2, I =̂ [ δ j

i ],
grad τ =̂ [τ i1,i2,...,im ;im+1], div τ = grad τ :I = =̂ [τ i1,i2,...,im ;im ],
Curl τ = grad τ − (grad τ )T =̂ [τ i1,i2,...,im−1, .

im ;im+1
− τ i1,i2,...,im−1, .

im+1;im
].

(57)

For notational convenience, we have adopted tensor forms appropriate to a Riemannian metric, with covariant
derivative denoted by semicolon. This becomes somewhat superfluous for the present Euclidean framework,
but could be useful for extensions to general manifolds.

If div τ ≡ 0 we designate τ (x) as solenoidal and if Curl τ ≡ 0 as irrotational. Also, the field ω = Curl τ
is can be regarded as skew symmetric in the sense that it is the negative of the transpose defined above, so that

ω : (a ⊗ b) = −ω : (b ⊗ a) =̂ [ωi1,i2,...,im−1 . .

im ,im+1
aim bim+1]

defines an alternating bilinear form in a,b. Here, as below, we employ the conventional ⊗ for various tensor
products. For tensors of rank m > 2, the leading m−2 indices can usually be disregarded in what follows.

As an extension to X of a previous result [21] for R
3, we assume a suitably bounded tensor-valued density

�A(x)=̂[�i1,i2,...,im
A ], x ∈ X, defining a rank-m tensor-valued weight

A(V ) =
∫

V

�A(x)dV (x) (58)

where dV (x), x ∈ V, is an appropriate volume measure. We suppress notation for possible dependence on
parameters such as time [21] or on certain supplementary variables employed by Edelen and co-workers [4,9],
and, for the sake of brevity, we drop the subscript A on various quantities.

Then, given a continuous directed curve P(a, b) running from a to b in X, the line integral

τ (x ; P) =
∫

z∈P(0,y)

�(x − z)⊗ dz (59)

defines a path moment τ =̂[τ i1,i2,...,im+1] of rank m+1. We note that the integrand of (59) can also be expressed
as a tensor-valued Lagrangian form

L{z(τ ), z′(τ )}dτ, with z′ = dz/dτ,

where L is linear in its second argument and τ parametrizes P.
The relation (59) obviously defines a functional on10

P(0, y). Regarded as function of x with parameter
y ∈ X, the corresponding field τ (x, y) is readily shown to satisfy

div τ (x, y) = �(x)− �(x − y) (60)

independently of the curve P. Hence, the integral around any closed curve, such that y = 0 in (59), represents
a solenoidal field.

Now, (60) amounts to a parametric generalization of the classical Gauss-Maxwell form, with density field

�̃(x, y) = �(x)− �(x − y)

parametrized by y. For densities �(x) such that �(0) = 0, (60) yields

div τ (x, y)|y=x = �(x). (61)

As an alternative derivation [21], one may proceed from (60) and the assumption that �(x) represents a
field with finite support B, e.g., a finite material body. In that case, we may choose |y| sufficiently large that
x − y lies outside B for all x ∈ B so that we may disregard the term �(x − y) in (60). The same result applies
to an unbounded support B, provided �(x) → 0 for |x| → ∞ so as to ensure convergence of the integrals
(65). In either case, we follow [21] and designate �(x) as spatially restricted.

9 Apart from the Curl, most of the notation reduces to the conventional form in the case of vectors and second-rank tensors.
10 and not on P(x, y), as mis-written in [21].
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Spatially restricted densities

For such density fields, Fourier-space methods provide a convenient derivation of certain results. Thus, for real
tensor fields over a Euclidean space X, we may identify, as dual function space K homeomorphic with C

n , the
Fourier transform:

τ̂ (k) =
∫

X

e−ık·xτ (x)dV (x), (62)

where C is the field of complex numbers and k ∈ X
∗. In this representation, (59) and (60) become [21]

τ̂ (k ; P) = �̂(k)⊗
∫

z∈P(0,y)

e−ik·zdz,

with (63.1)

ı τ̂ · k = �̂(k)
∫

z∈P(0,y)

e−ik·zd(ık · z) = (1 − e−ik·y)�̂(k). (63.2)

The last relation can be written as
ı(1 − e−ik·y)−1τ̂ ·k = �̂(k), (64)

and the inverse Fourier transform of the binomial expansion of (1 − e−ik·y)−1 acting on the integral (59)
formally shifts the upper limit to |y| = ∞, leading to the following generalization of the classical Gauss-
Maxwell formula:

τ (x) =
∞∫

0

�(x − z)⊗ dz, with div τ (x) = �(x), (65)

where the integral involves an arbitrary path, subject integrability and independence of x.
As the present paper is mainly concerned with densities �(x) that are not spatially restricted, we explore

the significance and utility of the more general form (60) involving the supplementary parameter y. First, we
consider a nonparametric generalization of (60) for y belonging to a set Y independent of x.

Parametric averages

As an arbitrary density �(x)may fail to admit a regular Fourier transform, we assume for the present purposes
that �(x) exhibits (multivariate) polynomial behavior for |x| → ∞, with transform interpreted as generalized
function or distribution [31], or else that forces or fluxes are restricted in norm within some bounded region
containing the origin.

Straight-line paths

For Euclidean spaces, it is meaningful to replace the path P(0, y) in (59) by the straight-line path z = λy,
0 ≤ λ ≤ 1, to give, modulo a solenoidal field,

τ (x, y) =
1∫

0

�(x − λy)dλ⊗ y. (66)

Then, the Fourier space analog of Eq. (63.1) becomes:

τ̂ (k, y) = (1 − e−ik·y)
ık·y �̂(k)⊗ y, (67)

while Eqs. (63.2) and (64) remain unchanged.
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Note that in the limit |y| = ∞, we may neglect the term e−ik·y in (67), given appropriate restrictions on �̂,
yielding the transform pair:

τ (x,u) =
∞∫

0

�(x − su)ds ⊗ u ⇔ τ̂ (k,u) = − ı

k·u �̂(k)⊗ u = − ı

2
�̂ ⊗ ∇k log(k·u)2 (68)

where u is an arbitrary unit vector and the squared argument of the logarithm avoids an inessential negative
sign. The relation (68) may be regarded as a singular representation in terms of a “ray” with direction u.

A general form independent of u is given formally by the convex combination in terms of a measure dμ(u)
on the unit sphere S:

τ̂ (k) = − ı

2
�̂ ⊗ ∇k

∫

S
log(k·u)2dμ(u) where

∫

S
dμ(u) = 1. (69)

Since

log(k·u)2 = log k2 + log(ek · u)2, with k2 = |k|2, ek = k/|k|,
it follows that, modulo terms ∇ek representing a solenoidal field, (68) can be written as

τ̂ (k) = − ı

k2 � ⊗ k ⇔ τ (x) = ∇x

∫

X

G(x − x′)�(x′)dV (x′) (70)

where G(x) represents the free-space Green’s function for the Laplacian ∇2, with Ĝ(k) = 1/k2. Thus, the
representation given by standard potential theory emerges as an average over rays.

Arbitrary paths

As discussed in a previous work [21], certain integrals over the parameter y in (59) can be employed to derive
the standard material stress tensor in R

3, represented here by τ , from an internal force density �. This provides
a mathematical connection to peridynamics [30], and, referring the reader to that work [21] for details on
this particular application, we briefly note that one may introduce a more abstract integral average based on
normalized measure dμ(y) = w(y)dV (y) involving weight w(y):

〈τ 〉(x) =
∫

X

τ (x, y)w(y)dV (y), with
∫

X

w(y)dV (y) = 1 (71)

where τ (x, y) is given by (66). Hence, the average of the second member of (63.2) gives

ı ˆ〈τ 〉(k)·k = [1 − ŵ(k)]�̂(k), where ŵ(k) =
∫

X

e−ık·yw(y)dV (y). (72)

Binomial expansion of [1 − ŵ(k)]−1 followed by convolution of inverse Fourier transforms gives

div τ̃ (x) = �(x), where τ̃ (x) =
∞∑

p=0

wp∗〈τ 〉(x) (73)

where, respectively, ∗ denotes convolution and wp the special iterated kernel:

f ∗ g(x) =
∫

X

f (x − x′)g(x′)dV (x′), with wp(x) = w ∗ wp−1(x),

for p = 1, 2, . . . , and w0(x) = δ(x), (74)

with δ denoting the Dirac delta.
The convergence of the formal series expansion in (73) depends on the form of w(y). Without a detailed

exploration, it appears most expeditious to keep to Fourier space, where the convergence of the binomial
expansion for [1 − ŵ(k)]−1 is guaranteed by the condition |ŵ(k)| < 1, implying conditional convergence at
k = 0 where ŵ(0) = 1 according to the second members of (71)–(72).

Author's personal copy



Edelen’s dissipation potentials 2257

A generalization of Edelen’s formulae

The above results provide a slight extension of Edelen’s formula to tensor fields. Thus, for tensors � of rank
m ≥ 1, the relation (66) can be written:

dev τ (x, y) = τ (x, y)− 1

n
ϕ(x, y)⊗ I, with tr(dev τ ) = 0,

and ϕ(x, y) = tr τ (x, y) =
⎡
⎣

1∫

0

�(x − λy)dλ

⎤
⎦·y,

(75)

where ϕ is rank m−1. Distinguishing gradients with respect to x and y by subscripts, it is easy to derive the
following relations from (75):

gradyϕ(x, y) = �(x − y)+
⎡
⎣

1∫

0

λ Curl �(x − λy)dλ

⎤
⎦·y,

gradxϕ(x, y) = �(x)− �(x − y)−
⎡
⎣

1∫

0

Curl �(x − λy)dλ

⎤
⎦·y,

(76)

and hence

�(x) = gradxϕ(x, y)+ gradyϕ(x, y)+ υ(x, y),

where υ(x, y) =
⎡
⎣

1∫

0

(1 − λ)Curl �(x − λy)dλ

⎤
⎦·y, with υ ·y = 0

(77)

where use has been made of the skew symmetry of Curl � and the chain rule,

∂�

∂λ
(x − λy) = −[gradx �(x − λy)]·y,

which is a straightforward extension of a result given by Edelen [9].
Hence, an arbitrary rank-m tensor field � is given by (77) as the extended gradient with respect to x⊕y of a

rank-(m−1) tensor field ϕ, modulo an additive rank-m tensor field υ that is orthogonal to the parametric vector
y, i.e., such that y is contained in the null space of the linear map υ. This represents a tensor generalization
of the vector forms for m = 1 given by Edelen [9] (Eqs. (2.1)–(2.4)), which are obtained by the following
transformation from his notation:

{X,V, J, �,U} → {x, y, �,ϕ,υ}. (78)

A special case of paramount interest [9] is y = x, for which (77) reduces to

�(x) = grad ϕ(x)+ υ(x), with υ ·x = 0
where

ϕ(x) = ϕ(x, y)|y=x =
⎡
⎣

1∫

0

�(λx)dλ

⎤
⎦·x,

υ(x) = υ(x, y)|y=x =
⎡
⎣

1∫

0

λ Curl �(λx)dλ

⎤
⎦·x

(79)

which represent a generalization of Edelen’s [9] Eqs. (2.15)–(2.18) for m = 1, with ∴ � ∈ X
∗. Although not

explored further here, it is plausible that Edelen’s homotopy operation [11] (Eqs. (5–3.2)) can be employed to
obtain many of the results presented in this Appendix. Indeed, one Referee indicates that (76) follows from
the Stokes theorem.
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