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The exponential growth in global data creation and transmission necessitates increasingly

powerful data compression algorithms. Neural compression, which leverages neural networks

and deep learning techniques, presents a promising new frontier by learning compression

algorithms end-to-end from data. This approach has shown great potential across various data

types, outperforming traditional codecs that have been hand-designed over decades. Despite

its promise, neural compression still faces many open problems and roadblocks. This thesis

focuses on neural lossy compression, and tackles the problems of inference sub-optimality, high

computation complexity, and establishing fundamental bounds for performance evaluation.

Conceptually our contributions are two-fold, concerning both the practical performance and

theoretical performance limit of neural lossy compression:

• First, drawing on techniques from deep learning and probabilistic inference, we develop

methods for improving the practical performance of neural lossy compression, pushing

its boundaries in rate-distortion performance and computation efficiency. We identify

approximation gaps in the existing nonlinear transform coding [Ballé et al., 2021]

approach, and propose inference optimization algorithms that close these gaps using ideas

from variational optimization, the Gumbel-softmax trick, and bits-back coding. The

proposed Stochastic Gumbel Annealing (SGA), allows for plug-and-play optimization

of the discrete latent representation at inference time, and is shown to significantly

improve the rate-distortion performance of the base approach. The idea of improved

inference (or encoding) also lends itself to a novel asymmetric autoencoder architecture,

which shifts much of the decoding computation cost to a higher encoding cost up-front.

We design a lightweight and shallow decoder inspired by traditional transform coding

algorithms like JPEG, and pair it with a powerful encoding procedure (such as SGA),

demonstrating rate-distortion performance competitive with the Mean-Scale Hyperprior

architecture [Minnen et al., 2018] at a fraction of the decoding computation cost.

• Second, building on the interplay between lossy compression, statistical estimation,
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and entropic optimal transport, we present computational methods for estimating

the rate-distortion (R-D) function, a fundamental quantity in the theory of lossy

compression which delineates the performance ceiling of lossy compression. We develop

novel variational bounds which sandwich the R-D function and are amenable to deep

learning tools, as well as a neural-network-free, particle-based upper bound of the R-D

function using optimal transport (OT) ideas. These algorithms allow for the estimation

of the R-D function on a much larger class of problems than previously possible with the

classic Blahut-Arimoto [Blahut, 1972, Arimoto, 1972] algorithm, such as on continuous

real-world data sources. We empirically obtain tight sandwich bounds on the R-D

functions of real-world sources from particle physics, speech, and GAN-generated images.

We also obtain an R-D upper bound for high-resolution natural images, and shed light

on the optimality of recent lossy image compression algorithms. On the theoretical

side, we characterize the convergence and sample complexity of our particle-based

method, and offer new insight into the solution of the R-D problem in the continuous

setting based on connections to entropic optimal transport and maximum-likelihood

deconvolution.

While lossless compression and machine learning have long been understood as two sides

of the same coin — any probability model of discrete data yields a source code for lossless

compression and vice versa [Kraft, 1949, McMillan, 1956], and compression-related metrics

such as cross-entropy and bits-per-dimension routinely appear in machine learning [Bishop,

2006, Theis et al., 2016] — less known is the connection between lossy compression and

machine learning. This thesis explores and further develops the parallel between lossy

compression and machine learning, where a rate-distortion loss is equivalently viewed as a

variational inference/learning objective; this objective can be naturally motivated by the

statistical problem of maximum-likelihood deconvolution, and is further related to the cost of

entropic-OT projection. It is our goal and hope for these connections to inspire and guide the
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development of new learning-based compression algorithms, as well as facilitate the exchange

of ideas between the fields of compression, information theory, and machine learning.
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Chapter 1

Introduction

The storage and transmission of information is fundamental to nearly every aspect of today’s

digital world, from capturing and streaming high-definition videos to enabling the operations

of financial markets and autonomous vehicles. With the exponential growth in global data

creation and transmission [BusinessWire, 2021] and the emergence of new media applications

such as Virtual and Augmented Reality, efficient data compression has never been more

critical.

At its core, compression works by exploiting the structure and patterns inherent in the data,

so that more predictable patterns can be described with fewer bits. It is then no surprise that

statistical learning, which aims to understand structure in data, is built into such celebrated

compression algorithms as adaptive arithmetic coding [Rissanen and Langdon, 1979, Witten

et al., 1987] and Lempel-Ziv [Ziv and Lempel, 1977, 1978] (the basis of extremely popular

file formats such as zip and gzip). In the reverse direction, compression ideas have also

profoundly influenced machine learning, starting from Occam’s razor, to the principles of

Minimum Description Length [Grünwald, 2007] and Information Bottleneck [Tishby et al.,

2000, Tishby and Zaslavsky, 2015], and to the current Large Language Models whose roots
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trace back to Shannon’s landmark treatise on information theory [Shannon, 1948].

In recent years, the development of sophisticated statistical models (i.e., “deep generative

models”) such as VAEs [Kingma and Welling, 2014], GANs [Goodfellow et al., 2014], and

normalizing flows [Papamakarios et al., 2021] is having an increasing impact on data compres-

sion. Information theory tells us that any probability model for discrete data corresponds

to a lossless compression algorithm [Kraft, 1949, McMillan, 1956], and various approaches

have been developed for neural lossless compression based on (variational) autoencoders

[Mentzer et al., 2019, Townsend et al., 2019a], normalizing flows [Hoogeboom et al., 2019,

Tran et al., 2019, Ho et al., 2019a], autoregressive models [Hoogeboom et al., 2021a], and

diffusion models [Kingma et al., 2021]. Ideas for neural lossy compression can already found

in early work on hierarchical latent variable models [Gregor et al., 2016], and are subsequently

made competitive in rate-distortion performance by end-to-end training with an effective

entropy model and approximation to quantization [Ballé et al., 2016, Theis et al., 2017a].

Subsequent methods further incorporate GAN [Agustsson et al., 2019, Mentzer et al., 2020]

or diffusion [Theis et al., 2022, Ghouse et al., 2023, Hoogeboom et al., 2023, Yang and Mandt,

2023a, Yang et al., 2025] for enhanced realism or perceptual quality. Neural lossy codecs

have gradually surpassed traditional codecs in compression performance across diverse data

types, ranging from images [Ballé et al., 2017, Minnen and Singh, 2020, Yang et al., 2020a,

He et al., 2022], audio [Zeghidour et al., 2021, Défossez et al., 2022], video [Lu et al., 2019,

Agustsson et al., 2020, Yang et al., 2021, Mentzer et al., 2022], to point clouds [Guarda et al.,

2019, Quach et al., 2022] and 3D scenes [Tang et al., 2020, Bird et al., 2021].

Despite its potential, neural compression still faces many open problems. Chief among

them is its high computation complexity compared to traditional codecs, limiting its de-

ployment in real-world environments with strict latency or resource constraints such as

mobile devices or streaming services [Minnen, 2021, Mukherjee, 2022]. The solution requires

simultaneously improving the compression performance and minimizing the computation
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complexity, potentially entailing a trade-off between the two. Classical information theory

does not account for computational constraints, and currently there is no general theory

that can guide the practical development of low-complexity codecs. It is also unclear how

well today’s compression methods perform relative to the information-theoretic performance

limit of compression. For example, in the case of lossy compression, if we are in fact already

approaching the performance limit given by Shannon’s rate-distortion function [Shannon,

1959] or its refined versions [Kontoyiannis, 2000, Kostina, 2016], we should focus our attention

on optimizing other perhaps less-researched performance criteria such as realism [Blau and

Michaeli, 2018, Blau and Michaeli, 2019] or computation complexity [Johnston et al., 2019,

Yang and Mandt, 2023b], or the development of better criteria themselves. However, the

estimation of fundamental information-theoretic quantities such as entropy and the rate-

distortion function requires solving difficult mathematical optimization problems, for which

traditional algorithms such as the Blahut-Arimoto algorithm [Blahut, 1972, Arimoto, 1972]

are ill-equipped. The work in thesis makes advances on these problems.

Overview and Contributions

This thesis presents learning-based techniques for improving lossy compression, both in terms

of practical performance and theoretical understanding. The thesis is structured as follows.

We begin with a self-contained introduction to information theory and neural compression.

Chapter 2 reviews the fundamentals of data compression, i.e., source coding, covering core

topics such as entropy coding, rate-distortion theory, and transform coding. This part can

be skipped by readers with a background in information theory. Chapter 3 introduces basic

approaches to neural data compression, starting with lossless compression (e.g, neural entropy

models) and culminating in nonlinear transform coding. Here, we highlight the connection

between variational inference/learning and (neural) compression: in the lossless case, the
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“bridge” is given by bits-back coding; in the lossy case, the “bridge” is given by universal

quantization for a family of latent variable models (those that implement nonlinear transform

coding), and is given by relative entropy coding for more general latent variable models.

After the background Chapters 2 and Chapter 3, the main contributions of the thesis can be

organized conceptually in two main parts, consisting of two chapters each:

Part I (“practical techniques”, or “machine learning for data compression”) consists of Chapters

4 and 5, and develops techniques for improving the practical performance of neural lossy

compression, in terms of rate, distortion, and decoding complexity. Specifically, Chapter

4 takes the variational inference view of nonlinear transform coding, and identifies and

addresses three common approximation gaps which hinder lossy compression performance: an

amortization gap, a discretization gap, and a marginalization gap. The amortization gap and

discretization gap arise from the inability of the encoder network to predict the optimal discrete

latent representation from each given input data instance, which entails a discrete optimization

problem in high dimensions. We propose to close these two gaps with a novel algorithm

called Stochastic Gumbel Annealing (SGA) based on iterative inference and a variational

approximation to quantization, which can navigate the discrete optimization problem much

more effectively than alternative methods. The marginalization gap stems from using a

two-part code [Grünwald, 2007] to losslessly compress the discrete latent representation in a

hierarchical model, and is closed by doing bits-back coding instead. The proposed inference

optimization algorithms are shown to significantly improve the rate-distortion performance

of image compression with the Mean-Scale Hyperprior architecture [Minnen et al., 2018], by

15% ∼ 20% on standard benchmarks.

Chapter 5 extends the rate-distortion criteria of neural lossy compression to also optimize

for decoding computation complexity, a key requirement for practical applications such as

loading images on a mobile phone. Inspired by low-complexity traditional transform coding

algorithms such as JPEG, we replace the deep convolutional synthesis transform of nonlinear

4



transform coding with extremely shallow and lightweight transforms. Building on the idea

of inference optimization in Chapter 4, we theoretically show that a powerful encoding

procedure can compensate for a cheaper decoder in rate-distortion performance by reducing

an inference gap. We empirically show that the resulting asymmetric autoencoder architecture,

optionally combined with an iterative encoding procedure such as SGA, drastically expands

the rate-distortion-complexity frontier of image compression with nonlinear transform coding,

preserving the rate-distortion performance of the popular Mean-Scale Hyperprior [Minnen

et al., 2018] model with a five-fold reduction in decoding complexity.

Part II (“fundamental limits”, or “machine learning for information theory”) consists of

Chapters 6 and 7, and presents computational methods for estimating the fundamental

performance limit of lossy compression delineated by Shannon’s rate-distortion function

[Shannon, 1959], R(D). Specifically, Chapter 6 develops the first sandwich bounds on the

rate-distortion function that scale to continuous and high-dimensional sources, for which the

classic Blahut-Arimoto algorithm [Blahut, 1972, Arimoto, 1972] is infeasible. The overall

idea is to formulate the variational problem defining R(D) in terms of one that can be solved

with stochastic optimization over a class of functions parameterized by neural networks. The

proposed variational upper bound is directly related to β-VAEs [Higgins et al., 2017] with a

particular likelihood model, and precisely establishes such latent variables as estimators of

the source R(D) function. The proposed lower bound is inspired by a dual formulation of

R(D) from [Csiszár, 1974a], and represents the more challenging direction of the sandwich

bound that requires significantly more effort to estimate. Experimentally, we estimate R(D)

sandwich bounds that appear tight for various sources with low effective dimension (but

possibly high ambient dimension), as well as R(D) upper bounds on high-resolution natural

images, suggesting considerable room for improvement in the rate-distortion performance of

neural image compression methods.

Finally, Chapter 7 introduces optimal transport ideas and insights into the R(D) estimation
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problem, which complements the deep learning approach from the earlier Chapter 6. We focus

on the continuous case (i.e., the source and reproduction alphabets are Rd), and introduce

a neural-network free R(D) upper bound estimator based on simulating the gradient flow

[Ambrosio et al., 2008] of the rate functional [Harrison and Kontoyiannis, 2008]. Unlike

the classic Blahut–Arimoto algorithm [Blahut, 1972, Arimoto, 1972] which fixes the support

of the reproduction distribution in advance, our Wasserstein gradient descent algorithm

learns the support of the optimal reproduction distribution by moving particles. Empirically,

our particle-based approach requires minimal tuning compared to neural-network-based

approaches, and offers significantly faster convergence when the latter struggle. This allows

us to obtain tighter R(D) upper bounds than the VAE approach in the previous chapter

without designing data-specific encoder/decoder neural network architectures. Theoretically,

we characterize the convergence of Wasserstein gradient descent, and offer new insight into

the solution of the R-D problem based on connections to entropic optimal transport and

maximum-likelihood deconvolution. Specifically, we show that the R-D problem is equivalent

to that of minimizing an entropic optimal transport (EOT) cost between a variational

reproduction measure and the source measure, allowing us to turn statistical bounds for

EOT [Mena and Niles-Weed, 2019] into finite-sample bounds for R-D estimation. We also

demonstrate the connection between the R-D problem and maximum likelihood deconvolution,

showing that a Gaussian convolution of any distribution can serve as a source with a known

solution to the R-D problem. We thus introduce a new, rich class of sources with known

ground truth, including Gaussian mixtures, as a benchmark for algorithms.

The common background required for the thesis is non-linear transform coding (Section 3.2.1),

which mainly builds on Chapter 2 and the discretized density model (Section 3.1.1). Chapter 4

additionally builds on bits-back coding (Section 3.1.3), and Chapter 6 also references the basic

connection between latent variable modeling and bits-back coding (Section 3.1.3). Chapters

5, 6, and 7 make brief references to the idea of relative entropy coding (Section 3.2.2).
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A word on notation

Given that this thesis spans multiple topics (machine learning, data compression, information

theory, and even elements of optimal transport), each with its own notational convention that

often conflicts with the others, it is difficult to come up with a unified notation that would

not appear foreign or contrived to at least some readers. Therefore we let the context and

the topic of each chapter dictate the notation convention, and make every effort to ensure

notation consistency within each chapter (but not necessarily across different chapters).

There are mainly three flavors of notation in this thesis. The first notation is common in

machine learning and applied work, and is used in Chapters 3, 4 and 5. The convention is

to use bold letters to emphasize vectors (x, z, etc.) as opposed to scalars (xi, zj, etc.), use

the same lower case letter (x) often for both a random object (X) and its realization (x),

and use lower-case p (or q) to denote either a probability mass or density function (and by

extension the probability distribution/measure). The existing notation in neural compression

literature largely follows this notation, except some differences during the discussion of

nonlinear transform coding which borrows notation from signal compression [Gersho and

Gray, 2012]. In nonlinear transform coding, the letters y and z often denote the output of an

encoding (analysis) transform without a probabilistic interpretation, whereas in probabilistic

machine learning, the letter z (and sometimes y) conventionally refers to latent variables

(e.g., [Kingma and Welling, 2014], [Beal and Ghahramani, 2003a]).

The second flavor of notation is more common in information theory and largely follows the

convention in the textbook of [Polyanskiy and Wu, 2022]; it is used in Chapters 2, 6, and

7. Here the data source is a random object X taking value x in some abstract space X ; x

can be a scalar, vector, or belong in some more exotic set, but the theory is the same as

long as the source has a presumed probabilistic structure (most commonly stationary and

memoryless, or i.i.d.). The probability measure induced by any random object X (which is
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the pushforward of a base probability law P under X) is denoted PX , which also double-duties

as the probability mass function in the discrete case. The notation PY |X denotes a (Markov)

transition kernel, which be thought of as defining a conditional distribution PY |X=x for every

x ∈ X .

The third flavor of notation is from optimal transport and only limited to Chapter 7. There

the emphasis is on probability measures (µ, ν, etc.) and transition kernels (K), and less so

on random variables which define the measures at the beginning and are forgotten afterwards.

The notation will be explained as it appears in Chapter 7.

When special attention is deserved, we use a box like this:

A word on notation: ...
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Chapter 2

Background: Source Coding

Fundamentals

We start by introducing basic background in data compression. Most of the material is

classical and can be found in information theory textbooks like [Cover and Thomas, 2006]

or [Polyanskiy and Wu, 2022]. A significant portion of this material has been published in

[Yang et al., 2023a].

Depending on whether the compressed data can be recovered perfectly, compression can be

categorized as either lossless or lossy. Lossless compression generally involves building a prob-

ability model of the data, based on which we can assign shorter codewords to more frequently

observed outcomes. Lossless compression is often used for medical records, spreadsheets, and

file archives such as zip. By contrast, lossy compression produces imperfect reconstructions

and discards some information, e.g., via a quantization step. This entails a fundamental

tradeoff between the bit-rate and fidelity of the data reconstruction. Lossy compression is

widely used in the compression of digital media such as audio, images, and video.
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2.1 The Overall Problem of Communication

To give a broader perspective, data compression was originally studied as part of a general

theory of communication [Shannon, 1948], which includes both source coding (i.e., com-

pression) and channel coding. As Shannon succinctly put it, “the fundamental problem of

communication is that of reproducing at one point either exactly or approximately a message

selected at another point” [Shannon, 1948]. In the communication problem, an information

source aims to communicate a message (or, data) to a destination over a physical medium

known as a channel. Figure 2.1 illustrates the communication system proposed by Shannon

for solving this problem, and is still the basis of communication systems today.

Information Source Source Encoder Channel Encoder

Channel

Channel Decoder Source Decoder Destination

Figure 2.1: A conceptual diagram of the communication system conceptualized by Claude
Shannon.

The information source produces a message, which is a sequence of values in some predeter-

mined set X . The channel is a physical medium which maps a given input value to an output

value, and transmits information in the process. The source encoder takes a source message

and converts it into a sequence of values that can be carried over the channel. Channels for

digital transmission are typically binary, with input and output values in {0, 1}, whereas

an analogue channel generally converts a real-valued input to a real-valued output. A basic

challenge of communication is that channels are often imperfect or noisy, so that the output

of the channel may not be identical to the input. E.g., bits stored on a magnetic hard

disk might get flipped or corrupted over time, and a radial signal traveling in space can
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be subject to interference from other signals or atmospheric conditions. To ensure reliable

communication, the channel encoder therefore adds redundancy to the output of the source

encoder in some way, so that the channel decoder can correctly recover the channel input

with a high probability. Finally, the channel decoder’s output is fed to the source decoder,

which generates a reconstruction of the original source message intended for the destination.

The design of channel encoding and decoding schemes belongs to the study of channel coding,

a centerpiece of information and communication theory. In this thesis we will not be concerned

with channel coding, and focus instead on source coding. We will assume a perfectly noiseless

binary channel, and try to come up with the best source encoder and decoder. The general

goal of channel coding is to maximize the bit-rate of reliable communication across the noisy

channel, whereas the goal of source coding is to minimize the bit-rate at which information is

produced and to be transmitted in the first place.1 The separation of channel and source

coding can be theoretically shown to be asymptotically optimal [Shannon, 1948], and greatly

simplifies the design and engineering of communication systems. The binary channel is used

universally today for representing and transmitting all kinds of data, ranging from bank

account details across the ATM network to multi-media gaming content over the Internet.

We treat the (typically unknown) source as (i.i.d. copies of) a random object X, which

takes values in a predetermined set X also called the alphabet. A sequence of realizations of

the source (x1, x2, ..., xn) ∈ X n is called a message. More generally, the source can be any

discrete-time stochastic process (X1, X2, ..., ), rather than i.i.d. copies of the same X (i.e., a

stationary and memoryless process).

Shannon’s key innovation is the rigorous application of probability theory to a mathematical

study of information. However, translating real-world phenomena into mathematical models

comes with some difficulties. Since we rarely have knowledge of the true data generating
1The first use of the word “bit-rate” in this sentence refers to bits per channel use, while the second use

“bit-rate” refers to bits per source symbol produced by the source encoder or compressor.
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process, the assumptions we make about the source are a non-trivial design choice, and can

have a sizable impact on compression performance.2 Consider an example from [Sayood,

2017, Chapter 2]: given the following (rather contrived) sequence,

1, 2, 1, 2, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 3, 3, 1, 2

what is the best way to compress it? When considered one digit at a time, the sequence

seems to contain no obvious structure; assuming an i.i.d. scalar source with the alphabet

{1, 2, 3}, the entropy of the source (i.e., “average compression cost”) works out to be 1.5 bits

per symbol. But if we assume an i.i.d. vector source taking values in the alternative alphabet

{(1, 2), (3, 3)}, the entropy is reduced to 1 bit per symbol. 3 One can even argue that there

is nothing inherently random about this given and fixed string, and the “compressibility”

or “complexity” of such a string should not depend on a presumed probability model at all.

Following this logic further would lead us to algorithmic information theory [Grünwald et al.,

2008], which has intimate connections to the Minimum Description Length [Rissanen, 1978]

approach to learning and model selection.

We will not dwell on this subtlety much. In this thesis, we mostly follow the convention in

machine learning and assume an i.i.d. vector-valued source X has been given to us. We make

no assumptions about the statistical relations among the scalar coordinates of X, and our

assumption of i.i.d. vectors is usually benign especially if X is of high enough dimension. For

example, X may correspond to an MNIST image, which itself is a two-dimensional stochastic

process; but a sequence of images randomly drawn from the MNIST dataset X1, X2, ... are

reasonably considered independent.

The information-theoretic treatment of a non-i.i.d. source (commonly, a stationary and ergodic
2The equivalent problem in machine learning and statistics is that of model selection, which has a direct

impact on generalization performance.
3This question has been recently re-examined in the context of tokenization for large language models

[Rajaraman et al., 2024, Phan et al., 2024].
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process) is outside the scope of this introduction, and can be found in e.g., [Polyanskiy and

Wu, 2022, Chapters 6, 12].

2.2 Lossless Compression

Lossless compression aims to represent discrete data with as few bits as possible, while

being able to perfectly recover the data later. To be more precise, for each possible message

(x1, x2, ..., xn) produced by the source X, our goal is to assign to it a unique string of bits

(which we call bit-string) with the minimal length on average. Since the set of all possible

bit-strings {0, 1}∗ := {∅, 0, 1, 00, 01, ...} is countable, lossless compression is only possible

for a discrete source X. The structure of X is not important, and we can, without loss of

generality, identify X with the set of natural numbers. Still, a reduction in the number of

bits is never guaranteed, and lossless compression relies on the fact that certain outcomes of

the source are more probable than others, and can be assigned shorter bit-strings. Therefore,

we cannot expect to compress a “pure noise” source whose outcomes are all equiprobable.

Fortunately, real-world sources (such as the English language) often contain structures that

makes a small subset of outcomes much more likely than others (e.g., the string “Hello world!”

v.s. “bwzjnhxiHcBuq”).

To quantify the amount of uncertainty in a source, Shannon made the following definition:

for a discrete random variable X with probability mass function (PMF) PX , its (Shannon)

entropy is

H[X] := E
[
log2

1

PX(X)

]
(2.1)

=
∑

x∈X

PX(x) log2
1

PX(x)
. (2.2)
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For each outcome x ∈ X , the number log2 1
PX(x)

is known as self-information and quantifies

the amount of surprise of observing X = x; entropy is therefore the expected value of surprise.

For example, the entropy of a fair coin flip — a Bernoulli(0.5) random variable — is 1 bit,

and the entropy of a biased coin flip approaches 0 bits as the probability of one of the two

outcomes approaches 1. The definition of entropy turns out to delineate the fundamental

performance limit of lossless compression, and any algorithm that tries to approach this limit

is generally referred to as an entropy coding algorithm.

2.2.1 Optimal Symbol Code

We start by considering assigning a bit-string to one symbol of the message at a time, i.e., we

want to find a symbol code γ : X → {0, 1}∗. We call each assigned bit-string γ(x) for x ∈ X

a codeword ; we call the number of bits making up γ(x) the code length, variously denoted by

l(x) or |γ(x)|. For the assignment to be lossless, clearly γ needs to assign a unique codeword

to each x, so that the source decoder can recover x unambiguously from γ−1(·). To allow

the efficient decoding of a sequence of bit-strings, we impose the further condition that γ is

prefix-free 4, i.e., no codeword under γ is a prefix of another.

It turns out that any prefix code with code lengths l must satisfy the following Kraft inequality,

∑

x∈X

2−l(x) ≤ 1,

and conversely, a prefix code can always be constructed from code lengths that satisfy the

above inequality [Cover and Thomas, 2006, Theorem 5.2.1].5 As a consequence, the optimal

average code length among all prefix (or uniquely decodable) codes is given by the following
4Such code is also commonly referred to as a “prefix code”, or “instantaneous code”.
5The result also holds if we replace “prefix code” with “uniquely decodable code” (see [Cover and Thomas,

2006, Chapter 5.5]). Although the former is a subset of the latter, it turns out we do not lose any coding
efficiency by considering prefix codes only.
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optimization problem:

L∗(X) := min
γ

∑

x∈X

PX(x)l(x),

s.t.
∑

x∈X

2−l(x) ≤ 1,

l(x) ∈ N.

By studying this problem, we arrive at the following basic result concerning the optimal

average code length of prefix codes [Cover and Thomas, 2006, Theorem 5.4.1]:

H[X] ≤ L∗(X) ≤ H[X] + 1. (2.3)

I.e., no prefix code (or more generally, no uniquely decodable code) can achieve an average

code length below the source entropy, and there exists a prefix code whose average code

length is one bit within entropy. This is an example of coding theorem, which relates the

mathematical definition of entropy to the operational cost of optimal lossless compression.

2.2.2 Lossless Coding and Estimation

In practice, the distribution PX of the true source is almost always unknown. We therefore

approximate it with an estimate of it, Pθ, and proceed with entropy coding as if the data

came from the distribution Pθ. Using the code length assignment l(x) = ⌈log2 1
Pθ(x)
⌉, the

average code length of describing X with the wrong code then satisfies [Cover and Thomas,

2006, Theorem 5.4.3]

Ex∼PX
[l(x)] ≥ H[X] +DKL(PX ∥ Pθ), (2.4)

Ex∼PX
[l(x)] ≤ H[X] +DKL(PX ∥ Pθ) + 1, (2.5)
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where DKL denotes the relative entropy, or Kullback-Leibler (KL) divergence, defined in the

discrete case as

DKL(P ∥ Q) = Ex∼P [− log2Q(x) + log2 P (x)].

The KL divergence is always positive unless P = Q and serves as an asymmetric distance

measure between the two distributions.

Ignoring the (up to 1 bit) overhead of entropy coding above, the average coding cost of data

from PX under an imperfect model Pθ is therefore given by the cross entropy :

H[PX , Pθ] := Ex∼PX
[log2

1

Pθ(x)
],

which relates to relative-entropy via

H[PX , Pθ] = H[X] +DKL(PX ∥ Pθ).

This tells us that cross entropy is a variational upper bound on the ideal compression cost

H[X], and the looseness in the bound — the relative entropy DKL(PX ∥ Pθ) — captures the

average “excess” code length compared to the ideal H[X]. Fitting a model Pθ on data from

PX using maximum-likelihood estimation, i.e.,

argmax
Pθ

Ex∼PX
[log2 Pθ(x)] = argmin

Pθ

Ex∼PX
[− log2 Pθ(x)], (2.6)

is therefore precisely aligned with minimizing the coding cost of data from PX under an

imperfect model Pθ.

A caveat: discussions of entropy coding algorithms often center around the ideal case where

the true PX is known and given; in practice however, a probability model Pθ is often estimated
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Figure 2.2: Left: A Huffman tree over five symbols. Purple numbers in boxes denote
probabilities, while binary strings above the leaf nodes correspond to the codewords assigned
by the Huffman algorithm. Right: Arithmetic coding of a message of length two. Each
message corresponds to an interval whose length is proportional to the message’s probability.
As an example, any real number inside the interval corresponding to the message ‘ca’ begins
with 0.1010... when written in binary form so that we can use 1010 to uniquely encode it.
The message ‘aa’ would be encoded as 000.

first, and serves as a drop-in replacement for the unknown PX when assigning codewords. The

resulting average code length will therefore always suffer an overhead of at least DKL(PX ∥ Pθ).

2.2.3 Huffman Coding

As an example, we review one of the most widely used entropy coding algorithms due to

Huffman [1952], which achieves the optimal prefix code length in (2.3). In a nutshell, given a

probability mass function (PMF) PX over symbols, Huffman coding first builds a so-called

Huffman tree (Figure 2.2), and then assigns to every symbol a unique binary codeword

according to the tree.

The leaf nodes of the tree are associated with the symbols in the alphabet. A Huffman

tree can be recursively grown from the leaves to the root by successively merging the two

nodes with the lowest probabilities. By traversing the tree from the root to a leaf, the

sequence of branching directions (“0” for left, “1” for right, in our example) assigns a unique

binary codeword to each symbol, with the more frequent symbols receiving shorter codewords.
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Encoding and decoding are simple lookup operations with complexity linear in the tree depth.

Huffman coding assigns a codeword with length at most ⌈− log2 PX(x)⌉ for each symbol x,

and can be shown to be optimal among all prefix codes [Cover and Thomas, 2006]. However,

as log-probabilities are generally not integers, Huffman coding (as with all so-called symbol

codes) incurs an overhead of up to 1 bit per symbol, relative to the information content. For

example, a heavily biased coin with an entropy close to 0 will still require 1 bit to encode.

One way of reducing this overhead of symbol codes is by spreading the overhead over a group

of symbols.6 Given a message (x1, x2, ...), we consider transmitting it in length-n blocks with

a symbol code, effectively treating the source as i.i.d. length-n blocks with a new alphabet

X n. The bound on the optimal prefix code length (Eq. (2.3)), averaged over each symbol of

X , then becomes

1

n
H[X1, ..., Xn] ≤

1

n
L∗([X1, ..., Xn]) ≤

1

n
H[X1, ..., Xn] +

1

n
. (2.7)

Thus, the 1 bit overhead on the RHS of (2.3) is reduced to 1
n

and can be made arbitrarily

low by increasing n. Note that in the usual case where X1, X2, ... are i.i.d., the joint entropy

factorizes so that 1
n
H[X1, ..., Xn] = H[X]; otherwise, this block coding scheme can exploit

the redundancy between the Xis and do better than coding one symbol at a time, since

H[X1, ..., Xn] ≤
n∑

j=1

H[Xj],

for any n random objects (X1, ..., Xn).7

Despite the theoretically improved coding cost, directly applying a symbol code such as
6Indeed, Shannon [1948, Theorem 9] already used block coding and the law of large numbers to show

that an i.i.d. source can be losslessly compressed with an average code length arbitrarily close to the entropy.
However, it was not until decades later with the invention of arithmetic coding that an algorithm made this
idea a practical reality.

7In fact, by taking n→∞, the expression 1
nH[X1, ..., Xn] defines the entropy rate of the process, which is

the generalization of entropy to the case of a non i.i.d. source.
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Huffman code over long blocks is often computationally infeasible, as the size of the requisite

PMF table grows exponentially with the dimension of the block. It turns out that stream

codes [MacKay, 2003, Chapter 6] to be discussed below will allow us to implement the idea

behind block coding much more efficiently, while also offering a convenient mechanism for

adapting our model to the source (we discussed modeling in Section 2.2.2) during compression.

2.2.4 Arithmetic Coding

Arithmetic coding [Rissanen and Langdon, 1979], also known as range coding [Martín, 1979],

is an example of a stream code [MacKay, 2003, Chapter 6]. Stream codes differ from symbol

codes in that they assign codewords to entire messages and individual symbols do not have

unique codewords. Stream codes amortize the coding cost’s overhead across the whole

sequence of symbols and are therefore able to get closer to the entropy.

The basic idea of arithmetic coding is to associate each symbol with a subinterval of the

interval [0, 1] such that the subinterval’s length equals the symbol’s probability. This procedure

can be generalized towards encoding symbols in sequence. For two symbols, the second

symbol is no longer considered a subinterval of [0, 1] but a subinterval of the previous symbol’s

interval such that the second subinterval’s length equals the two symbols’ joint probability.

For example, if symbol “a” has probability 1/5 and is associated with [0, 0.2), the sequence

“aa” would be encoded as [0, 0.04). This procedure can be iterated for sequences of arbitrary

length, leading to a sequence of subintervals of decreasing size that contain each other. Any

real-valued number contained in the final subinterval allows us to uniquely reconstruct the

sequence of symbols and therefore encodes the entire sequence (Figure 2.2). In practice, one

picks a representative number which can be represented with the smallest number of bits

while uniquely identifying the interval. By construction, the size of the final sub-interval is

the product of all previous symbols’ conditional probabilities, hence the probability of the
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sequence. Intuitively, the interval’s length (i.e., the sequence’s joint probability) determines

the number of relevant digits of the number representing the interval, thus the code length

equals the log-probability of the sequence as required for entropy codes. If xn = (x1, x2, ..., xn)

is a message of length n, and γ(xn) the codeword assigned by arithmetic coding using a

probability model Pθ, then the assigned code length satisfies [Polyanskiy and Wu, 2022,

Chapter 13.1],

− log2 Pθ(x
n) ≤ |γ(xn)| < ⌈− log2 Pθ(x

n)⌉+ 1.

Thus if the true distribution of messages is PXn , then the average code length is at most

H[PXn , Pθ] + 2. The excess bits needed for encoding the message are amortized over all n

symbols, making arithmetic coding more efficient on long messages than symbol codes. Per

symbol, the overhead is only 2/n bits, compared to 1 bit per symbol for Huffman coding.

In arithmetic coding, the probability model Pθ(x
n) is only specified sequentially via the

marginal Pθ(x1) and conditional distributions {Pθ(xt|x<t) : t = 2, ..., n}, thereby avoiding the

exponential complexity of block coding (see discussion in the previous subsection). Moreover,

a simple modification allows arithmetic coding to adapt its probability model “on the fly”

on the data being compressed. I.e., during encoding, the distribution Pθ(xt|x<t) can be

sequentially updated based on the observed sequence x<t so far; for entropy coding to work,

the exact same sequence of updates is performed during decoding. Adaptive arithmetic

coding via sequential density estimation is thus an example of a universal source code [Cover

and Thomas, 2006, Chapter 13], in the sense that the method can be applied without prior

knowledge of the source distribution while still being asymptotically optimal for a large class

of sources (e.g., all finite-order Markov chains).

Notably, arithmetic coding implements a first-in-first-out data structure, that is, a queue.

Symbols which are encoded first are also decoded first. As we will see, this makes it a
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convenient choice for compression with autoregressive models (Section 3.1.2).

2.3 Lossy Compression

In the following we review lossy compression, that is, compression with imperfect data

reconstruction. When working with continuous data, such as an analogue signal, lossy

compression is necessary, as it is impossible to losslessly store real values with a finite number

of bits. In other cases, a lossy reconstruction is often also sufficient, and the flexibility to

discard “irrelevant” information allows us to achieve a far lower bit-rate than possible with

lossless compression. Lossy compression algorithms for digital media, such as audio, images,

and video, routinely obtain an order of magnitude or more bit-rate savings than their lossless

counterparts, without noticeable loss of quality to the end users.

For our purpose, we formalize a lossy compression algorithm (or a lossy codec) as a 3-tuple

consisting of an encoder, a decoder, and an entropy code, denoted by c = (e, d, γ). The

encoder e : X → W maps each data point x ∈ X to a representation w in a countable

set W (this can be the set of natural numbers, without loss of generality). The decoder

d :W → X̂ maps each representation w to a point in the reproduction space (or, reproduction

alphabet) X̂ , which needs not be the same as X . The encoder and decoder further agree to

transmit the discrete representation W = e(X) using an entropy code γ :W → {0, 1}∗ (see

Section 2.2); we write l(x) := |γ(e(x))| to denote the code length assigned to the encoding of

x. Conceptually, a lossy codec defines a Markov chain

X
e−→ W

d−→ X̂.

Suppose we measure the reconstruction error between a source and reproduction point by

a suitable distortion function ρ : X × X̂ → [0,∞). Historically, this is typically a squared
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error, i.e., ρ(x, y) ∝ ∥x − y∥2 in the continuous case, or Hamming distance in the discrete

case. Given the above, lossy compression is generally concerned with minimizing the average

distortion

D = E[ρ(X, X̂)], (2.8)

where X̂ := d(e(X)), and simultaneously, the (bit-)rate

R = E[l(X)], (2.9)

that is, the average number of bits needed to encode a data sample. We want to minimize

these two quantities with respect to the choice of the encoding and decoding procedures e

and d, as well as the entropy code γ. Generally, minimizing rate comes at the expense of

increased distortion, and vice versa, and a trade-off has to be made.

2.3.1 Rate-Distortion Theory

Rate-distortion (R-D) theory [Shannon, 1959, Cover and Thomas, 2006] formally studies

the fundamental trade-off between the average number of bits per sample (rate) used to

represent the source X and the distortion incurred by the lossy representation X̂. It asks

the following question about the limit of lossy compression: “for a given data source and a

distortion metric, what is the minimum number of bits (per sample) needed to represent

the source at a tolerable level of distortion, regardless of the computation complexity of the

compression procedure?” The answer turns out to be given by the information rate-distortion

function [Shannon, 1959], which, for an i.i.d. source, is defined as follows,

RI(D) = inf
QX̂|X : E[ρ(X,X̂)]≤D

I(X; X̂), (2.10)
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where we consider all random transforms QX̂|X whose expected distortion is within the

given threshold D ≥ 0, and minimize the mutual information between the source X and its

reproduction X̂. The mutual information I(X; X̂) is defined as the relative entropy (i.e., KL

divergence) between the PX ⊗QX̂|X and the product of its two marginal distributions. 8

Shannon’s lossy source coding theorems [Shannon, 1959] gave operational significance to

the above mathematical definition: for a given D ≥ 0, R(D) is the minimum achievable

bits/sample rate with which any lossy compression algorithm can represent the source with an

average distortion less than or equal to D. The (information) R-D function is a fundamental

quantity that depends only on the source and choice of distortion function, and generalizes

the Shannon entropy H (Eq. 2.2) from lossless compression to lossy compression. The R-D

function has a few general properties, e.g., it is always non-increasing and convex, but is

otherwise unknown analytically outside of a few cases. A well-known algorithm by Blahut

[Blahut, 1972] and [Arimoto, 1972] can be used to compute R(D) in the case of a known

discrete source in low dimension, and Part II of this thesis is devoted to estimating R(D) for

more general and high-dimensional sources such as images and speech.

In theory, the optimal rate RI(D) is achievable by vector quantization [Cover and Thomas,

2006], to be described in Section 2.3.2, but this approach to compression quickly becomes

intractable for high-dimensional data. Rather than trying to achieve the theoretically optimal

rate RI(D) with any codec at any computational cost, in practice the design of a lossy codec

is constrained by practical considerations, such as the computation budget of the target

hardware, or the decoding latency acceptable for the application. Denoting the set of all

the acceptable codecs under consideration by C, we can instead consider an operational
8We use the following general definition of relative entropy [Polyanskiy and Wu, 2022, Definition 2.1]:

for two measures α, β defined on a common measurable space, H(α|β) :=
∫
log(dαdβ )dα when α is absolutely

continuous w.r.t β, and infinite otherwise.
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rate-distortion function 9, formalized by

RO(D) = inf
c∈C:E[ρ(X,X̂)]≤D

E[l(X)]. (2.11)

Compared to Eq. 2.10, we replaced mutual information by the operational rate and optimize

over an actual lossy codec c. We can relax the constrained optimization problem to an

unconstrained one, by introducing the rate-distortion Lagrangian [Blahut, 1972, Chou et al.,

1989],

L(λ, c) = R(c) + λD(c) = E[l(X)] + λE[ρ(X, X̂)]. (2.12)

Figure 2.3: Visualizing the operational R-D optimization problem. We adjust our codec
c to minimize the R-axis intercept of a straight line (gray) with slope −λ and passing
through (D(c),R(c)); an optimum occurs when the line becomes tangent to the operational
R-D curve RO at the point (D(c∗),R(c∗)). Note that the operational R-D curve (orange)
is not necessarily convex, and always lies above the information R-D curve RI (red), i.e.,
RO(D) ≥ RI(D),∀D.

9In usual treatments of R-D theory (see e.g., [Cover and Thomas, 2006]), the operational R-D function
is defined as the asymptotic rate achievable by compressing multiple samples jointly using any lossy codec,
in the limit of infinitely many jointly compressed samples. This is different from our definition here, which
instead focuses on the operational R-D performance achievable within a constrained family of codecs C,
by compressing a single sample at a time (as is common in applications). Thus we generally only have
RO(D) ≥ RI(D), i.e., RI(D) is in general no longer achievable in our “one-shot” setup.
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For each fixed λ > 0, the minimum of this objective yields a codec c∗ whose operational

distortion-rate performance, (D(c∗),R(c∗)), lies on the convex hull of the operational R-D

curve.10 This is illustrated in Figure 2.3. The hyperparameter λ can be interpreted as a

Lagrange multiplier, and codecs with different operational rate-distortion trade-offs can be

found by minimizing the Lagrangian with various λ. Most current end-to-end learned lossy

compression methods to be discussed in Section 3.2 follow this approach, training one codec

for each λ. We note that it is not always possible to attain every point on the operational

R-D curve with this approach [Degrave and Korshunova], and alternative methods based on

constrained optimization have been proposed [Platt and Barr, 1988, van Rozendaal et al.,

2020].

A word on notation: the rest of the chapter deals with a vector-valued source (typically

X = RN , and uses bold letters x,X for emphasis.

2.3.2 Vector Quantization

Vector quantization (VQ), a classical technique from signal processing, is perhaps the most

basic and general form of a lossy codec. A vector quantization scheme, or a vector quantizer,

consists of a set of integer representations W = {1, 2, ..., k}, an encoder e assigning a given

data to an integer representation w ∈ W , and a decoder d that returns a reconstruction given

w, usually implemented by indexing into a codebook of k reconstruction vectors. Note that

there is no restriction on the encoding and decoding functions, other than the cardinality

of W. The goal is then to determine an optimal quantization scheme for a given data

distribution, under some objective. Commonly, the objective is to minimize a reconstruction

error (Eq. 2.8), as in the k-means algorithm, but can also more generally be an operational
10In practice, the optimization problem is often non-convex in the parameters of the codec, so we typically

reach a local minimum of the Lagrangian, corresponding to an R-D point lying above the operational R-D
curve.
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rate-distortion trade-off (Eq. 2.11). An optimal quantizer can be shown to always encode any

given data point to its “nearest-neighbor” in the codebook to minimize the reconstruction

error ρ (or, a combination of reconstruction error and code length, in the rate-constrained

version [Chou et al., 1989]), and set the jth entry in the codebook x̂(j) to minimize the

expected reconstruction error between x̂(j) and data points assigned to index j [Chou et al.,

1989].

For some data source, e.g., the uniform or the Laplace distribution, optimal quantization can

be characterized analytically [Ziv, 1985, Sullivan, 1996]. In most applications, Lloyd-Max-style

algorithms (more widely known as k-means in machine learning) [Lloyd, 1982][Chou et al.,

1989] are instead used to estimate a quantization scheme from data samples. This usually

involves minimizing an empirical rate-distortion cost (Eq. 2.12) over a dataset, which is still a

basic ingredient in today’s learned compression approaches [Ballé et al., 2021] (see Sec. 3.2).

Given unlimited data and compute, VQ can approximate any data distribution arbitrarily

well. Indeed, the theoretical limit of lossy compression, the rate-distortion function RI(D),

can be shown to be achievable by jointly quantizing multiple data samples together with

increasingly long blocks [Cover and Thomas, 2006]. However, VQ comes with the severe

downside of poor scalability and data efficiency [Gersho and Gray, 2012]. The computational

and storage demand of VQ increases quickly with the data dimensionality. In high dimensions,

an exceedingly large number of quantization points and high amounts of training data are

needed to approximate the data distribution well. As a result, VQ is typically found in

low-rate applications, such as low-rate speech coding [Sayood, 2012]. We note however,

k-means-style vector quantization has been successfully applied in a convolutional latent

space for image generation [Oord et al., 2017], and serves as an image tokenizer in many recent

transformer-based models for image [Esser et al., 2021, Yu et al., 2021] and text-to-image

generation [Ramesh et al., 2021, Yu et al., 2022].

26



2.3.3 Transform Coding

Instead of quantizing the data directly, it is often much easier to do so in a transformed

space, where the representation of the data is uncorrelated and scalar quantization can be

effectively applied. The core idea behind transform coding [Goyal, 2001] is therefore to divide

the task of lossy compression into decorrelation and quantization: first, the sender applies

an analysis transform f to data x, resulting in (ideally decorrelated) transform coefficients,

z = f(x); and second, coordinate-wise scalar quantization [[·]] is applied to obtain a discretized

representation ẑ = [[z]]. The symbols representing ẑ can then be converted to a bit-string

by entropy coding (discussed in Section 2.2) under an entropy model P (ẑ). The receiver

losslessly recovers ẑ, and computes a reconstruction x̂ = g(ẑ) using a synthesis transform g,

which is often the inverse of the analysis transform. In the terminology of Section 2.3, the

encoder e = [[·]] ◦ f is the composition of the analysis transform f followed by quantization,

and the decoder d is implemented by the synthesis transform g.

The analysis transforms is typically linear and invertible, and is implemented as multiplication

with an orthogonal matrix. A classic example is the Karhunen-Loève Transform (KLT),

which is the same as principle component analysis (PCA) in our setting. The KLT maps

data samples into the eigen-basis of the covariance matrix of the data distribution, and

produces uncorrelated transform coefficients z [Gersho and Gray, 2012, Section 8.6]. Another

example is the discrete cosine transform (DCT), which can be shown to approximate PCA

asymptotically [Ahmed et al., 1974], and is one of the most widely used transforms in signal

processing and compression (e.g., in JPEG). The choice of an orthogonal transform simplifies

the theoretical analysis and design of transform coding algorithms, and for Gaussian data,

the KLT followed by uniform scalar quantization can be shown to be optimal [Goyal et al.,

2000].

Unlike vector quantization, which effectively optimizes over all possible choices of encoder
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e : X → W and decoder d : W → X̂ , transform coding implicitly restricts the solution

space of allowable codecs, e.g., the set of quantization points must be in the range of g, and

therefore generally cannot achieve the unconstrained optimal performance of VQ. The lack of

theoretical optimality of transform coding is more than made up for by its vastly superior

scalability over VQ, as evidenced by its wide-spread use in the compression of digital media,

such as images and videos [Goyal, 2001].
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Chapter 3

Background: Neural Compression

Neural compression is the application of neural networks and deep learning to compression.

While statistical estimation has always been a core aspect of compression, deep learning

brings in new tools and possibilities to compression. Building on the basic concepts of source

coding in Chapter 2, we now introduce some of the main approaches to neural compression.

As a side note, deep learning has been applied to many problems that can be considered parts

of a data compression pipeline; for example, image compression artifact removal [Galteri

et al., 2017, Kawar et al., 2022], or various pre- and post-processing stages of video codecs

[Ma et al., 2019, Duong et al., 2023]. Here our focus is on neural methods that are directly

optimized end-to-end for a compression cost, e.g., bit-rate and/or reconstruction quality.

The common background required for the thesis is non-linear transform coding (Section 3.2.1),

which mainly builds on Chapter 2 and the discretized density model (Section 3.1.1). Chapter 4

additionally builds on bits-back coding (Section 3.1.3), and Chapter 6 also references the basic

connection between latent variable modeling and bits-back coding (Section 3.1.3). Chapters

5, 6, and 7 make brief references to the idea of relative entropy coding (Section 3.2.2).
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A word on notation: unlike in Chapter 2 which considers an abstract source X, this

chapter follows the machine learning convention and uses bold symbols x, z,X, ... to

emphasize that the denoted quantities are vectors (rather than scalars x, z,X).

We use Pθ to denote a probability model, which is generally a probability measure on the

data space X . In the discrete case, Pθ also double-duties as its probability mass function

(PMF). We use pθ to generally denote a probability density model, which can mean either

a probability mass function or probability density function depending on context.

Much of the material in this chapter has been published in the following research

monograph,

An Introduction to Neural Data Compression. Yibo Yang,

Stephan Mandt, and Lucas Theis. Foundations and Trends in Computer

Graphics and Vision, 2023,

which has a more comprehensive treatment of neural compression.

3.1 Neural Lossless Compression

Most of the neural loss compression methods follow a two-step recipe: 1. estimate a probability

model pθ of the data; 2. convert any given data x to a bit-string, using the model together with

an entropy coding algorithm such as arithmetic coding. The first step requires us to develop

an accurate probability model of discrete data, potentially of very high dimensionality (e.g.,

a 64× 64 RGB image has over ten thousand dimensions). The models we will discuss often

take a divide-and-conquer approach, reducing the problem of modeling high-dimensional data

into a collection of univariate density estimation problems. Once we obtained a probability

model pθ, we can then invoke a suitable entropy coding algorithm to assign a bit-string

to any new data x according to the model. This step is usually straightforward, although
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sometimes ingenuity is required, e.g., in the case of a latent variable model. Thus neural

lossless compression can largely be viewed as an extension of density estimation for discrete

data, with an emphasis towards practical compression algorithms. There is typically a

trade-off between the compression performance (bit-rate) and the computation complexity of

encoding/decoding.

3.1.1 Continuous Models for Discrete Data

Before proceeding further, we discuss how a model for discrete data can be defined and

parameterized by a continuous model, a common technique in generative modeling and

neural compression. Lossless compression generally operates on discrete data. After all, it is

infeasible to losslessly encode any real number by a finite number of bits. However, many

generative models in machine learning assume continuous data, and model it with a density

function. It turns out such continuous models are still useful for lossless compression.

Suppose we specify a density model pθ over RN , and x ∈ {0, . . . , 255}N is an RGB image

following the ground truth image distribution PX. We can derive a PMF over integers by

integrating the density over hypercubes, as follows,

Pθ(x) :=

∫

[−.5,.5)N
pθ(x+ u) du. (3.1)

Let u ∼ U([−0.5, 0.5)N) be an independent uniform noise over the unit hypercube, and

consider fitting the density model pθ on the noisy (or dequantized [Uria et al., 2013]) data,

x+ u. Then it is not difficult to show that [Theis et al., 2016]

−Ex∼PX,u∼U [log pθ(x+ u)] ≥ −Ex∼PX
[logPθ(x)]. (3.2)

The left-hand side is the negative log-likelihood which we would optimize if we our density
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model to the dequantized data. Thus, we can minimize an upper bound on the lossless

compression cost under the discretized model (RHS) by fitting a density via maximum

likelihood (LHS), provided the discrete data is dequantized appropriately with noise [Uria

et al., 2013].1

The form of Pθ as defined in Eq. 3.1, which we call a discretized density model, is also useful

in itself as a flexible model for discrete data. Examples include PixelCNN++ [Salimans et al.,

2017], the prior distribution in a discrete flow [Hoogeboom et al., 2019], as well as entropy

models for neural compression [Mentzer et al., 2019, Ballé et al., 2018a, Minnen et al., 2018].

The integral in Eq. (3.1) in general is intractable to compute, but it can often be broken

down into a series of univariate integrals. Therefore let us consider a univariate version of

the discretized density model,

Pθ(x) :=

∫

[−0.5,0.5)

pθ(x+ u)du, x ∈ N.

Let Fθ denote the CDF of pθ, then we can equivalently express the above in terms of a

difference of CDF evaluations:

Pθ(x) := Fθ(x+ 0.5)− Fθ(x− 0.5). (3.3)

For example, if pθ is the density of a logistic distribution, then Fθ is the logistic sigmoid

function common in deep learning and has an efficient numeric implementation.
1This approach of adding dequantization noise is commonly used for training continuous density models

on discrete data, and can be extended to optimize a tighter upper bound on the RHS via variational
dequantization [Ho et al., 2019b, Hoogeboom et al., 2021b].
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3.1.2 Compression with Autoregressive Models

Autoregressive models exploit the fact that we can write any probability distribution as a

product of conditional distributions using the chain rule of probabilities [Bishop, 2006], 2

p(x) =
∏

i p(xi | x<i). (3.4)

Here, xi is the i-th entry of the vector x and x<i corresponds to all previous entries in an

arbitrary order. The autoregressive factorization does not make any assumptions about the

data distribution yet still allows us to easily incorporate useful assumptions. For example,

a Markov assumption can be implemented by only considering the entries in x<i which are

close to i. A stationarity assumption is easily incorporated by using the same conditional

distribution p(xi |x<i) at every location. These two assumptions are often reasonable and

can drastically reduce the amount of parameters of a model.

Autoregressive modeling lends itself to lossless compression in combination with arithmetic

coding (Section 2.2.4) since both deal with data sequentially, one symbol at a time. Each

symbol is encoded using the conditional distribution given the data that has already been

encoded. This is in contrast to Markov random fields, for example, where conditional distribu-

tions are typically only tractable when conditioning on a larger neighborhood. Entropy coding

generally requires the number of symbols in each encoding step to be manageable. Autore-

gressive models provide an important step towards practical entropy coding by decomposing

a high-dimensional distribution into low-dimensional conditional distributions.

For data modalities such as audio or text, autoregressive models are an obvious choice due to

the signal’s sequential nature. Indeed, two of the top performing algorithms in the Large

Text Compression Benchmark [Mahoney] use recurrent neural networks to predict the next
2To lighten notation, we drop θ from the model distribution pθ(x), and similarly in the conditionals

pθ(xi | x<i).
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token of a sentence. While cmix [Knoll] uses a mixture of long short-term memory networks

(LSTMs) [Hochreiter and Schmidhuber, 1997] and nonparametric models, nncp [Bellard,

2019] relies solely on neural network models. However, autoregressive models have long also

found application in image compression. For example, JPEG [ITU-T, 1992] encodes the

difference between neighboring DC coefficients, zDC
ij − zDC

i(j−1), in a raster-scan order, which

can be thought of as implementing a first-order Markov model.

Mixtures of experts [Jacobs et al., 1991, Hosseini et al., 2010, Theis et al., 2012] are a class of

autoregressive models proven useful for compressing images,

p(xij | x<ij) =
∑

k

p(k | x<ij)︸ ︷︷ ︸
Gates

p(xij | x<ij, k)︸ ︷︷ ︸
Experts

. (3.5)

The basic idea behind neural network extensions of this approach is to nonlinearly transform

the inputs x<ij before feeding them into the gates and the experts. For instance, RNADE

[Uria et al., 2013] used a fully connected neural network with a single rectified linear layer to

transform the inputs x<ij . Other examples of deep autoregressive models include RIDE [Theis

and Bethge, 2015], PixelRNN [van den Oord et al., 2016], or PixelCNN++ [Salimans et al.,

2017]. More recent autoregressive modeling papers continue to explore different architectures

for transforming x<ij. For example, the Image Transformer [Parmar et al., 2018] uses an

architecture based on self-attention [Vaswani et al., 2017]. PixelSNAIL [Chen et al., 2018a]

uses a combination of convolutions and self-attention layers. Glow [Kingma and Dhariwal,

2018] uses invertible flows.

With the exception of nncp [Bellard, 2019] and cmix [Knoll], all autoregressive models

mentioned so far are static models. That is, the models’ parameters are trained once and

then remain fixed during the entire encoding and decoding process. In contrast, a dynamic or

adaptive model updates its parameters during the encoding process based on already encoded

data. The decoder is then able to apply the same model updates based on the data already
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received. A simple dynamic autoregressive model for images was proposed by Wu et al. [1998].

Here, the predictors are linear but the predictor’s parameters are chosen dynamically. This is

done by treating a larger neighborhood of preceding pixels as training data for the predictor.

Meyer and Tischer [2001] improved on this idea by weighting training points based on their

distance to the pixel whose value we are predicting.

Autoregressive models come with the restriction that decoding is an inherently sequential

procedure. Each symbol can only be decoded after all the symbols have been decoded on

which its prediction depends. To improve decoding speed, we can restrict the context x<i

to only a small neighborhood around xi, as for example in JPEG. Furthermore, the degree

of parallelism can be increased by grouping coordinates of the data into blocks and only

modeling the conditional dependencies between blocks, while treating data coordinates within

each block as conditionally independent [Stern et al., 2018, Minnen and Singh, 2020].

3.1.3 Latent Variable Models and Bits-back Coding

Latent variable models represent the data distribution using the sum rule of probability,

p(x) =

∫
p(x, z) dz =

∫
p(x | z)p(z) dz, (3.6)

where z is a vector of latent variables (also called “latents”), and the joint distribution p(x, z)

factorizes into a prior p(z) and a likelihood p(x | z). Latent variable models are ubiquitous in

machine learning and include hidden Markov models, mixture models [Bishop, 2006], and

more recently variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al.,

2014a]. By integrating or summing over all possible realizations of the latent vector, latent

variable models can capture complex dependencies in the data even when the prior and

likelihood take simple forms.
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Training a latent variable model by (approximate) maximum-likelihood (see Eq. (2.6)) comes

with a challenge: unlike in a fully-observed (e.g., autoregressive) model where the data

probability p(x) can be readily evaluated, doing so is no longer straightforward since it is

defined through an often intractable integral (Eq. 3.6). Variational inference deals with

exactly these complications, and we refer to [Zhang et al., 2018] for more details on these

methods. Here, we instead focus on the compression problem, which faces a similar challenge

and uses similar tools. Given a latent variable model consisting of a prior p(z) and likelihood

p(x|z), our goal is to compress a given data vector x with a code length close to its information

content under the model, − log2 p(x). To simplify the discussion below, we assume discrete z

unless specified otherwise.

Two-Part Code

We start by considering a simple although generally suboptimal two-part code [Grünwald,

2007]. Here, the data x is transmitted along with a latent vector z in two steps. First, the

sender decides on a (ideally informative) vector z, then encodes and transmits it under the

prior p(z). Next, x is compressed and transmitted under the likelihood model, p(x | z). The

receiver then decodes z, and finally x given z, using the same models. Both the prior and

likelihood models are often fully factorized, allowing for coding each dimension of z or x in

parallel, but can also be autoregressive models used in conjunction with arithmetic coding.

Assuming negligible entropy coding overhead, the combined code length is

l(x, z) = − log2 p(z)− log2 p(x | z) = − log2 p(x, z). (3.7)
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Moreover, the sender can (at least in principle) minimize this quantity over all choices of z,

resulting in the code length

lMTP(x) = min
z

(− log2 p(z)− log2 p(x | z)) . (3.8)

The minimal two-part code length, lMTP(x), is generally still suboptimal [Frey, 1998, Wallace,

1990, Honkela and Valpola, 2004].3 To see this, consider the following bound on the information

content − log2 p(x),

− log2 p(x) ≤ − log2 p(x) +DKL(q(z | x) ∥ p(z | x)) (3.9)

= Ez∼q(z|x)[− log2 p(z,x)]−H[q(z | x)], (3.10)

also known as the negative evidence lower bound (NELBO) of variational inference [Zhang

et al., 2018]. Here, q is any distribution over z which may depend on x. Crucially, the

minimal two-part code length (Eq. 3.8) is a special case of the NELBO where

q(z | x) = δzmin(z) (3.11)

is a degenerate distribution centered on zmin, which achieves the minimum in Eq. 3.8. In

this case the entropy term vanishes. More generally, the NELBO is minimized when q(z | x)

equals the Bayesian posterior distribution p(z | x), the target of approximate inference [Zhang

et al., 2018].

One may naturally wonder whether a coding cost equal to the NELBO can be realized for

any choice of q(z |x). Bits-back coding, to be discussed next, answers this question in the

affirmative. It further offers a compression interpretation of variational inference: for a
3However, it is possible to directly optimize a neural compression method for the two-part code. e.g.,

Mentzer et al. [2019] trained a latent variable model with an inference network to minimize the expected
coding cost of the two-part code, demonstrating much faster decoding speed than autoregressive models,
although at ∼ 20% worse bit-rate.
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given latent variable model, reducing the KL divergence between the distribution q and the

posterior distribution is equivalent to minimizing the code length of x under bits-back coding.

Bits-Back Coding

While the optimal two-part code chooses a best latent vector z using deterministic optimization,

bits-back coding [Frey and Hinton, 1997, Wallace, 1990, Hinton and Van Camp, 1993, Honkela

and Valpola, 2004] instead uses a stochastic latent code in the form of a sample z from a

distribution q. Surprisingly, this stochastic code can save bits compared to a deterministic

code by allowing auxiliary information to piggyback on the choice of the latent code. To

gain some intuition, consider again the optimization in Eq. 3.8 for picking the optimal

two-part code. Given data x, suppose there is some ambiguity about the optimal value

of z. For the sake of argument, suppose the minimization over z finds m equally optimal

candidates {z(1), z(2), ..., z(m)}. Instead of choosing one such z(i) arbitrarily, the encoder can

do so intentionally so as to communicate logm bits of additional information via the chosen

integer index, provided that the decoder can reverse-engineer the encoding procedure.

Before proceeding, we emphasize a connection between sampling and decoding random bits.

Given an entropy code derived from a discrete distribution, using it to decode a sequence

of uniformly random bits produces a random sample from this distribution. For example,

consider decoding a random bit-string according to a Huffman tree (Figure 2.2). As we

traverse from the root to any leaf node, every edge along the path corresponds to a decision

according to a coin flip. The probability of ending up with a particular symbol x with code

length |C(x)| is 2−|C(x)|, or approximately 2log2 p(x) = p(x).

In bits-back coding, the sender first generates a sample z ∼ q(z |x) by decoding a random

bit-string ξ. Next, the sender encodes x under p(x | z), then z under p(z), and then transmits

the resulting bits. The receiver begins by decoding z and x from the received bits just as

38



bitstream       operation            Δ bits

                 →  decode z with q(z|x)  - [-log2q(z|x)]

                 ←  encode x with p(x|z)  +[-log2p(x|z)]

                 ←  encode z with p(z)     +[-log2p(z)]

Sender

bitstream       operation            Δ bits

                 ←  encode z with q(z|x)    +[-log2q(z|x)]

                 →  decode x with p(x|z)    -[-log2p(x|z)]

                 →  decode z with p(z)       -[-log2p(z)]

Receiver

Figure 3.1: An illustration of the encoding (sender) and decoding (receiver) operations of
bits-back coding. Auxiliary bits (ξ) are colored in blue.

in the two-part code, but then proceeds to recover the exact bit-string the sender used to

generate z. This can be done by encoding z under the distribution q(z |x), which we assume

the receiver has access to. Thus, − log2 q(z|x) extra bits of information are recovered by the

decoder (in addition to x) “free of charge”, giving the scheme its name “bits-back” coding.

Finally, and crucially, we note that the initial bits used to generate z do not have to be truly

random. Indeed, to be useful, they should be supplied from a well-compressed bit stream

of auxiliary information that also needs to be transmitted. For example, if our application

requires us to transmit an image along with a thumbnail version of it (e.g., for fast preview),

the initial bits can come from the bit-string of the thumbnail image encoded with JPEG. We

will examine this issue in more detail shortly.

Figure 3.1 graphically summarizes the algorithm. Given a bit-string ξ of auxiliary bits and the

data x to transmit, the sender starts by decoding a portion of ξ into a stochastic latent code

z of the data, ultimately sending a total number of bits equal to |ξ| − log2 p(z)− log2 p(x|z) +

log2 q(z|x) to communicate both ξ and x. The net number of bits used for transmitting x
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alone is therefore

− log2 p(z)− log2 p(x|z)− (− log2 q(z|x)) (3.12)

which corresponds to a discount of − log2 q(z |x) bits compared to a two-part code. Since z

was drawn from q(z|x), the expected coding cost is exactly the NELBO [Zhang et al., 2018].

The choice of auxiliary information is an important one in bits-back coding. If the sender

only wishes to communicate a single data sample x and no additional auxiliary information,

the sender may set ξ to be an artificial sequence of random bits, which can still be recovered

by the receiver, but contains no useful information. In this case we do not get “bits back”, and

suffer an expected code length that is worse than the best two-part code. Even when there are

auxiliary bits to transmit, the sender needs to commit to sending at least − log q(z|x) many

of them for bits-back coding to achieve its nominal efficiency. This is known as the initial

bits problem [Frey, 1998, Townsend et al., 2019a]. One potential solution is to compress a

small portion of the data (e.g., a part of an image) with another codec, and use the resulting

compressed bit-string for auxiliary bits [Townsend et al., 2019b]. If multiple data samples

need to be compressed, an elegant solution is chaining [Townsend et al., 2019a] or “bits-back

with feedback” [Frey, 1998]. The idea is to use the running bitstream of previously encoded

data samples x(1), ...,x(i−1) as the source of auxiliary bits for encoding the sample x(i). The

initial bits problem becomes less severe with more data samples, and the code length per

sample asymptotically converges to the NELBO. Chaining poses a requirement on the entropy

coder that data is decoded in the exact opposite order in which it is encoded. Bits-back

coding is therefore naturally combined with the ANS algorithm [Duda, 2009], which can be

seen as a faster version of arithmetic coding but operates in stack (instead of queue) order,

popularized by the BB-ANS algorithm [Townsend et al., 2019a].
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3.2 Neural Lossy Compression

Most neural lossy compression approaches follow the idea of transform coding – i.e., trans-

forming the input data into a set of “latent” coefficients, which can then be quantized (or

go through some other lossy operation) and modeled more simply than the original data,

e.g., via scalar quantization and with a factorized entropy model. The main new idea is

to parameterize such a transform with neural networks, and optimize the compression cost

end-to-end on the target data. Non-neural approaches learned from data that directly operate

in the data space are also possible; see recent work on Variational Entropy Constrained

Vector Quantization (VECVQ) [Ballé et al., 2021] and the method of [Yang et al., 2023b]

which learn vector quantizers that are optimal in the rate-distortion sense.

Compared to lossless compression, which focuses on lowering the bit-rate, lossy compression

introduces additional criteria concerning the quality of the lossy reconstruction, such as

distortion (w.r.t. the original data) [Shannon, 1959], realism or perceptual quality (which

may be measured with or without reference to the original data) [Zhang et al., 2018, Blau

and Michaeli, 2018, Blau and Michaeli, 2019], or some custom-defined notion of utility such

as performance on downstream tasks [Singh et al., 2020, Dubois et al., 2021]. Compared

to traditional codecs, neural compression has the distinct advantage that it can be learned

end-to-end on such objectives of interest. The discussion of some of these criteria can

be quite involved and are active areas of research, and touch on subjects including signal

quality assessment [Eskicioglu and Fisher, 1995, ITU-T, 2016], psychophysics of the human

visual system [Zhou Wang et al., 2004, Wang et al., 2003], or even algorithmic information

theory [Theis, 2024]. Here we will focus on the distortion criterion [Shannon, 1959] that has

traditionally received the most attention, and refer to [Yang et al., 2023a] for discussions

involving the other criteria.
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3.2.1 Nonlinear Transform Coding

Nonlinear transform coding (NTC) [Ballé et al., 2021] is currently the predominant paradigm

of neural lossy compression. Compared to transform coding with linear transforms (discussed

in Section 2.3.3), non-linear transforms are more flexible and can better adapt to the data

distribution [Ballé et al., 2021], and are demonstrated to be optimal in some cases [Wagner

and Ballé, 2021]. We convey the main ideas of nonlinear transform coding below, and refer

readers to the survey [Ballé et al., 2021] for a more comprehensive discussion.

Nonlinear transform coding replaces the various components of traditional transform coding

(Section 2.3.3), such as the analysis transform f , synthesis transform g, and entropy model

P , with neural networks or other function approximators, and learn them end-to-end on the

data of interest. As in transform coding, we obtain a discrete representation ẑ by quantizing

the transform coefficients z, i.e., ẑ = [[z]], z = f(x). It is common to refer to ẑ as a tensor of

“latents”, due to connections to latent variable models (see Section 3.2.1), although there is

some ambiguity in this terminology and some papers also apply it to the continuous transform

coefficients z. As before, an entropy model P is used to losslessly transmit ẑ via bit-strings

(Section 2.2). The entropy models are often based on powerful models from neural lossless

compression (Section 3.1), and take the form of a discretized density model (discussed in

Section 3.1.1),

P (ẑ) :=

∫

[−0.5,0.5)n
p(ẑ+ v)dv, ∀ẑ ∈ Zn. (3.13)

Most commonly, the objective in nonlinear transform coding is to simultaneously minimize

the rate,

R := E[− log2 P ([[f(X)]])], (3.14)
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and the distortion,

D := E[ρ(X, g([[f(X)]])].

The expectations are taken w.r.t. the data distribution PX and are estimated with data

samples. Unlike in Section 2.3, here we no longer concern ourselves with an entropy code

γ. Instead, we directly optimize the information content in place of a code length in

Eq. 3.14, knowing that an entropy code can (in principle) always be derived from P such

that − log2 P (·) ≈ |γ(·)| (see Section 2.2). If we denote the true marginal distribution of Ẑ

by PẐ (which is induced by PX and the encoding procedure, via Ẑ = [[f(X)]]), then the rate

loss can be equivalently written as the cross entropy,

R = Eẑ∼PẐ
[− log2 P (ẑ)], (3.15)

which precisely captures the cost of entropy coding ẑ ∼ PẐ under our model P (ẑ), and serves

as an upper bound to the entropy H[Ẑ] (see Section 2.2.2).

End-to-end Optimization

As in Eq. 2.12, we would like to optimize the operational R-D performance in the form of a

rate-distortion Lagrangian,

E[− log2 P ([[f(X)]])] + λE[ρ(X, g([[f(X)]])], (3.16)

for a suitable choice of the trade-off factor λ. However, as is written, the objective is not

suitable for end-to-end training with SGD, due to the non-differentiability of the quantization

operator and the rate loss.

Motivated by the uniform noise approximation to quantization error [Schuchman, 1964],
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Ballé et al. [2017] introduced the now popular workaround known as additive uniform noise

approximation. With this approach, we replace rounding by adding an independent uniform

noise,

⌊z⌉ ≈ z+ u, u ∼ U ([−0.5, 0.5)n) .

Naively, one might simply substitute the above into the Lagrangian Eq. 3.16 and hope to

obtain a reasonable training objective. However, the resulting code length, − log2 P (f(x)+u),

does not yet make sense, as our entropy model P has only been defined over integers. It

turns out the form of P (Eq. 3.13) offers a convenient solution: we can simply extend P from

Zn to all of Rn, by convolving the underlying density p with the uniform noise u, i.e.,

p̃ := p ⋆ U ([−0.5, 0.5)n) . (3.17)

It’s easy to see that p̃ agrees with P on all integer points, and serves as a smoothed relaxation

of P which defines a surrogate gradient with respect to its input. Replacing P by p̃ in

Eq. 3.16, and taking expectation with respect to the uniform noise u, we obtain the surrogate

training objective,

Ex∼PX,u∼U [− log2 p̃(f(x) + u) + λρ(x, g(f(x) + u))], (3.18)

which is now differentiable with respect to all components of the model, and can be simply

estimated by Monte-Carlo sampling.

Connection to Variational Autoencoders

An influential idea is to view nonlinear transform coding as equivalently defining a VAE of

the data [Ballé et al., 2016, Theis et al., 2017a]. To derive this, it is instructive to consider the
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density model p as approximating the distribution of the continuous representation z = f(x)

as induced by x ∼ PX and the analysis transform f . Indeed, suppose z is distributed

according to p (if our modeling is perfect), then the distribution of ẑ = ⌊z⌉ has precisely

the form of the entropy model P defined by Eq. 3.13. Moreover, if we define the “noisy

quantization” by the random variable z̃ := z + u, then its induced density (given z ∼ p)

is precisely p̃ from Eq. 3.17. Based on these connections, the surrogate Lagrangian from

additive uniform noise (Eq. 3.18) defines a particular rate-distortion VAE, where z̃ is the

latent variable. Specifically, Eq. 3.18 can be shown [Ballé et al., 2016, Theis et al., 2017a] to

be equal to the NELBO objective of an R-D VAE, given by

Ex∼PX
Ez̃∼q(z̃|x)[− log2 p̃(z̃) + log2 q(z̃|x)− log2 p(x|z̃)] + const, (3.19)

where p̃(z̃) plays the role of a prior, q(z̃|x) is a fully factorized uniform posterior density

centered at z = f(x), and p(x|z̃) is a likelihood density aligned with the distortion function ρ

4. The equivalence can be seen by noting that the posterior entropy term is constant (in fact,

0), and sampling from the uniform posterior q is equivalent to adding noise to f(x), by the

reparameterization trick.

3.2.2 Channel Simulation and Relative Entropy Coding

We saw that the rate-distortion cost of nonlinear transform coding corresponds to the NELBO

objective of a particular latent variable model of the source. In particular, the latent variable

model is a variational autoencoder whose inference network computes the location of a

box-shaped variational posterior distribution, and the (discretized) prior distribution is used

for entropy coding. One may naturally wonder if such a connection between lossy compression

and latent variable modeling holds more generally, e.g., without the restriction of a box-shaped
4In the common case of a squared distortion, p(x|z̃) is a Gaussian with mean equal to the reconstruction

x̂ = g(z̃), and covariance inversely proportional to λ.
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variational posterior. In lossless compression, the answer is given affirmatively by bits-back

coding, which achieves (asymptotically) the compression cost given by the NELBO. However,

bits-back coding requires the exact same data (hence, variational posterior distribution) to

ultimately be available to the receiver, and is therefore only directly applicable to lossless

compression.

Reverse channel coding or channel simulation [Theis and Yosri, 2021], and closely related,

relative entropy coding (REC) [Flamich et al., 2020a], serve as a basic bridge between lossy

compression and latent variable modeling. A REC algorithm aims to solve the following

basic communication problem. Suppose the sender and receiver are each equipped with

a common “prior” distribution p and a pseudo-random number generator with a shared,

pre-established random seed; the sender (but not receiver) has access to a target distribution

q. A REC algorithm allows the sender to transmit a sample z ∼ q using close to DKL(q ∥ p)

bits on average. If q arises from a conditional distribution, e.g., qx = q(z | x) in the

inference distribution of a VAE (which can be viewed as a noisy channel), a reverse channel

coding algorithm allows the sender to transmit z ∼ qx with x ∼ p(x) using close to

Ex∼p(x)[DKL(q(z | x) ∥ p(z))] bits on average.

At a high level, a general-purpose REC method works as follows. The sender generates a

(possibly large) number of candidate z samples from the prior p,

zn ∼ p, n = 1, 2, 3, ...,

and appropriately chooses an indexK such that zK is a fair sample from the target distribution,

i.e., zK ∼ q. The chosen index K ∈ N is then converted to binary and transmitted to the

receiver. The receiver recovers zK by drawing the same sequence of z candidates from p

(made possible by using a pseudo-random number generator with the same seed as the sender)

and stopping at the Kth one.
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A major challenge of REC algorithms is that, without restricting the forms of p or q, the

computational complexity generally scales exponentially with the amount of information

being communicated [Agustsson and Theis, 2020, Goc and Flamich, 2024]. As an example,

the MRC algorithm [Cuff, 2008a, Havasi et al., 2018] draws M candidate samples and selects

K ∈ {1, 2, , ...,M} with a probability proportional to the importance weights, q(zn)/p(zn), n =

1, ...,M ; similarly to in importance sampling [Chatterjee and Diaconis, 2018], M needs to be

on the order of 2KL(q∥p) for zK to be (approximately) a fair sample from q, thus requiring

a number of drawn samples that scales exponentially with the relative entropy KL(q∥p)

(and a coding cost of logM ≈ KL(q∥p) bits). The exponential complexity prevents, e.g.,

naively communicating the entire latent tensor z in a Gaussian VAE for lossy compression,

as the relative entropy DKL(q(z|x) ∥ p(z)) easily exceeds thousands of bits, even for a small

image. This difficulty can be partly remedied by performing REC on sub-problems with lower

dimensions [Flamich et al., 2020a, 2022] for which computationally viable REC algorithms

exist [Flamich et al., 2024, Flamich, 2024], but at the expense of worse bit-rate efficiency due

to the accumulation of codelength overhead across the dimensions.

Universal Quantization

Here we review a reverse channel coding algorithm for the uniform noise channel, universal

quantization [Roberts, 1962, Zamir and Feder, 1992], and discuss its connection to nonlinear

transform coding. We will see that the differentiable rate cost optimized by nonlinear transform

coding during training can be exactly operationalized by applying universal quantization

to the latent coefficients [Agustsson and Theis, 2020], instead of deterministic quantization

at test time. Thus, we see that universal quantization operationalizes the coding cost of

the class of latent variable models associated with nonlinear transform coding (discussed

at the end of Section 3.2.1). For more general kinds of latent variables, such as Gaussian

VAEs, such a connection is given (in principle) by general-purpose relative entropy coding,
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whose computation complexity unfortunately remains intractable and is a subject of ongoing

research [Goc and Flamich, 2024].

Suppose the sender has access to a scalar r.v. Z ∼ PZ ,5 and would like to communicate a

noise-perturbed version of it,

Z̃ = Z + U,

where U ∼ U(−0.5, 0.5) is an independent r.v. with a uniform distribution on the interval

[−0.5, 0.5]. In other words, upon observing Z = z, the sender aims to transmit a sample from

the target distribution PZ̃|Z=z = U(z− 0.5, z + 0.5). Universal quantization accomplishes this

task as follows:

1. Perturb Z by another independent noise U ′ ∼ U(−0.5, 0.5), and compute the quantiza-

tion index K := ⌊Z + U ′⌉, where ⌊·⌉ denotes rounding to the nearest integer.

2. Entropy code and transmit K under the conditional distribution of K given U ′.

3. The receiver draws the same U ′ by using the same random number generator and

obtains a reconstruction Ẑ := K − U ′ = ⌊Z + U ′⌉ − U ′.

Zamir and Feder [1992] showed that Ẑ indeed has the same distribution as Z̃, and remarkably

the entropy coding cost of K achieves the ideal rate given by the mutual information between

Z and Z̃,

H[K|U ′] = I(Z; Z̃) = h(Z̃)−�����:0
h(Z̃|Z) = h(Z̃).

In the above, h(·) and h(·|·) denote differential entropy and conditional differential entropy

coding. In step 2, the (optimal) entropy coding distribution PK|U ′=u′ can be obtained by

5In the context of neural lossy compression, Z would correspond to a scalar coordinate of the encoding
transform output f(X).
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discretizing the density of PZ̃ on an integer grid offset by U ′ = u′ [Zamir and Feder, 1992],

PK|U ′=u′(k) = P(Z+u′ ∈ [k−0.5, k+0.5]) = PZ([k−u′−0.5, k−u′+0.5]) = fZ̃(k−u′), k ∈ N,

where fZ̃ denotes the density of PZ̃ given by the convolution PZ̃ = PZ ⋆ U(−0.5, 0.5). In

practice, the true density fZ̃ is unknown, so we replace it with a surrogate density model

fθ(z̃) and incur a higher coding cost, given by an expected relative entropy

Ez∼PZ
[DKL(fZ̃|Z=z(·) ∥ fθ(·))] ≥ I(Z; Z̃), (3.20)

where fZ̃|Z=z = 1[z−0.5,z+0.5] denotes the density function of the uniform noise channel PZ̃|Z=z.
6

The LHS is the common variational upper bound on mutual information [Polyanskiy and

Wu, 2022, Theorem 4.1],

Ez∼PZ
[DKL(fZ̃|Z=z(·) ∥ fθ(·))] = I(Z; Z̃) +DKL(fZ̃ ∥ fθ),

and the bound is tight when fZ̃ = fθ. A popular modeling choice for fθ is the noise-convolution

of an underlying density model pθ(z), as in Eq. 3.17 earlier, fθ = pθ ⋆ U(−0.5, 0.5). 7

Rewriting the LHS further, we see that it is precisely equal to the differentiable rate term

being optimized in nonlinear transform coding,

Ez∼PZ
[DKL(fZ̃|Z=z(·) ∥ fθ(·))] = h[fZ̃ , fθ]−�����:0

h(Z̃|Z)

= Ez∼PZ ,u∼U ,z̃=z+u[− log fθ(z̃)],

and this cost is operationalized by universal quantization with an entropy model derived from
6To match the earlier setup of Section 3.2.2, we have a family of relative entropy coding problems for each

Z = z, where the target distribution is given by PZ̃|Z=z, and fθ is the shared prior. The ideal coding cost is
now an expectation of relative entropy w.r.t. Z ∼ PZ .

7Suppose Z has density fZ ; then DKL(fZ̃ ∥ fθ) = DKL(fZ ⋆ U(−0.5, 0.5) ∥ pθ ⋆ U(−0.5, 0.5)) is a form of
spread divergence [Zhang et al., 2020] between fZ and pθ.
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pθ, i.e.,

Ez∼PZ
[DKL(fZ̃|Z=z(·) ∥ fθ(·))] = Ez∼PZ ,u′∼U [H[PK|U ′=u′ , Pθ,u′ ]]

where H[·, ·] denotes cross-entropy, and

Pθ,u′(k) := fθ(k − u′) =
∫ k−u′+0.5

k−u′−0.5

pθ(t)dt, k ∈ N

is the entropy model derived from pθ.
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Chapter 4

Inference Optimization

Most of the material in this chapter has been published in the following conference

paper,

Improving Inference for Neural Image Compression. Yibo Yang,

Robert Bamler, and Stephan Mandt. Conference on Neural Information

Processing Systems (NeurIPS), 2020.

Additional results and supplementary information can be found in Appendix A,

and the project repo can be found at https://github.com/mandt-lab/

improving-inference-for-neural-image-compression.

A word on notation: in this chapter we follow the probabilistic machine learning con-

vention, where y is a vector of latent variables with a variational posterior distribution

q(y|x) parameterized by mean µy and variance σ2
y. The mean parameters µy correspond

to the (pre-quantization) transform coefficients in nonlinear transform coding. Similarly,

z denotes a vector of hyper latent variables with a variational posterior distribution q(z|x)

parameterized by mean µz and variance σ2
z.
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We consider the problem of lossy image compression with deep latent variable models.

State-of-the-art methods [Ballé et al., 2018b, Minnen et al., 2018, Lee et al., 2019a] build

on hierarchical variational autoencoders (VAEs) and learn inference networks to predict a

compressible latent representation of each data point. Drawing on the variational inference

perspective on compression [Alemi et al., 2018], we identify three approximation gaps which

limit performance in the conventional approach: an amortization gap, a discretization gap,

and a marginalization gap. We propose remedies for each of these three limitations based

on ideas related to iterative inference, stochastic annealing for discrete optimization, and

bits-back coding, resulting in the first application of bits-back coding to lossy compression.

In our experiments, which include extensive baseline comparisons and ablation studies, we

achieve new state-of-the-art performance on lossy image compression using an established

VAE architecture, by changing only the inference method.

4.1 Introduction

Deep learning methods are reshaping the field of data compression, and recently started

to outperform state-of-the-art classical codecs on image compression [Minnen et al., 2018].

Besides useful on its own, image compression is a stepping stone towards better video

codecs [Han et al., 2019, Habibian et al., 2019, Yang et al., 2021], which can reduce a sizable

amount of global internet traffic.

State-of-the-art neural methods for lossy image compression [Ballé et al., 2018b, Minnen

et al., 2018, Lee et al., 2019a] learn a mapping between images and latent variables with a

variational autoencoder (VAE). An inference network maps a given image to a compressible

latent representation, which a generative network can then map back to a reconstructed

image. In fact, compression can be more broadly seen as a form of inference: to compress—

or “encode”—data, one has to perform inference over a well-specified decompression—or
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“decoding”—algorithm.

In classical compression codecs, the decoder has to follow a well-specified procedure to ensure

interoperability between different implementations of the same codec. By contrast, the

encoding process is typically not uniquely defined: different encoder implementations of

the same codec often compress the same input data to different bitstrings. For example,

pngcrush [Randers-Pehrson, 1997] typically produces smaller PNG files than ImageMagick.

Yet, both programs are standard-compliant PNG encoder implementations as both produce a

compressed file that decodes to the same image. In other words, both encoder implementations

perform correct inference over the standardized decoder specification, but use different

inference algorithms with different performance characteristics.

The insight that better inference leads to better compression performance even within the same

codec motivates us to reconsider how inference is typically done in neural data compression

with VAEs. In this paper, we show that the conventional amortized inference [Kingma and

Welling, 2014, Rezende et al., 2014a] in VAEs leaves substantial room for improvement when

used for data compression.

We propose an improved inference method for data compression tasks with three main

innovations:

1. Improved amortization: The amortized inference strategy in VAEs speeds up training,

but is restrictive at compression time. We draw a connection between a recently

proposed iterative procedure for compression [Campos et al., 2019] to the broader

literature of VI that closes the amortization gap, which provides the basis of the

following two novel inference methods.

2. Improved discretization: Compression requires discretizing the latent representation

from VAEs, because only discrete values can be entropy coded. As inference over discrete

variables is difficult, existing methods typically relax the discretization constraint in
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some way during inference and then discretize afterwards. We instead propose a novel

method based on a stochastic annealing scheme that performs inference directly over

discrete points.

3. Improved entropy coding: In lossless compression with latent-variable models, bits-back

coding [Wallace, 1990, Hinton and Van Camp, 1993] allows approximately coding

the latents with the marginal prior. It is so far believed that bits-back coding is

incompatible with lossy compression [Habibian et al., 2019] because it requires inference

on the decoder side, which does not have access to the exact (undistorted) input data.

We propose a remedy to this limitation, resulting in the first application of bits-back

coding to lossy compression.

We evaluate the above three innovations on an otherwise unchanged architecture of an

established model and compare against a wide range of baselines and ablations. Our proposals

significantly improve compression performance and results in a new state of the art in lossy

image compression.

The rest of the paper is structured as follows: Section 4.2 summarizes lossy compression with

VAEs, for which Section 4.3 proposes the above three improvements. Section 4.4 reports

experimental results. We conclude in Section 4.5. We review related work in each relevant

subsection.

4.2 Background: Lossy Neural Image Compression as

Variational Inference

In this section, we summarize an existing framework for lossy image compression with deep

latent variable models, which will be the basis of three proposed improvements in Section 4.3.

54



Figure 4.1: Graphical model and control flow charts. a) generative model with hyperlatents z,
latents y, and image x [Minnen et al., 2018]; b) conventional method for compression
(dashed blue, see Eq. 4.1) and decompression (solid black); c) common training objective due
to [Ballé et al., 2017] (see Eq. 4.3); d) proposed hybrid amortized (dashed blue) / iterative
(dotted red) inference (Section 4.3.1); e)-f) inference in the proposed lossy bitsback method
(Section 4.3.3); the encoder first executes e) and then keeps ŷ fixed while executing f); the
decoder reconstructs ŷ and then executes f) to get bits back.

Related Work. Ballé et al. [2017] and Theis et al. [2017b] were among the first to recognize

a connection between the rate-distortion objective of lossy compression and the loss function

of a certain kind of Variational Autoencoders (VAEs), and to apply it to end-to-end image

compression. [Ballé et al., 2018b] proposes a hierarchical model, upon which current state-

of-the-art methods [Minnen et al., 2018, Lee et al., 2019a] further improve by adding an

auto-regressive component. For simplicity, we adopt the VAE of [Minnen et al., 2018] without

the auto-regressive component, reviewed in this section below, which has also been a basis

for recent compression research [Johnston et al., 2019].

Generative Model. Figure 4.1a shows the generative process of an image x. The Gaussian

likelihood p(x|y) = N (x; g(y; θ), σ2
xI) has a fixed variance σ2

x and its mean is computed from

latent variables y by a deconvolutional neural network (DNN) g with weights θ. A second

DNN gh with weights θh outputs the parameters (location and scale) of the prior p(y|z)

conditioned on “hyperlatents” z.

Compression and Decompression. Figure 4.1b illustrates compression (“encoding”,

dashed blue) and decompression (“decoding”, solid black) as proposed in [Minnen et al.,
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2018]. The encoder passes a target image x through trained inference networks f and fh with

weights ϕ and ϕh, respectively. The resulting continuous latent representations, (µy, µz), are

rounded (denoted ⌊·⌉) to discrete (ŷ, ẑ),

ŷ = ⌊µy⌉; ẑ = ⌊µz⌉ where µy = f(x;ϕ); µz = fh(f(x;ϕ);ϕh). (4.1)

The encoder then entropy-codes ẑ and ŷ, using discretized versions P (ẑ) and P (ŷ|ẑ) of the

hyperprior p(z) and (conditional) prior p(y|z), respectively, as entropy models. This step is

simplified by a clever restriction on the shape of p, such that it agrees with the discretized

P on all integers (see [Ballé et al., 2017, 2018b, Minnen et al., 2018]). The decoder then

recovers ẑ and ŷ and obtains a lossy image reconstruction x̂ := argmaxx p(x|ŷ) = g(ŷ; θ).

Model Training. Let x be sampled from a training set of images. To train the above

VAE for lossy compression, Theis et al. [2017b], Minnen et al. [2018] consider minimizing a

rate-distortion objective:

Lλ(⌊µy⌉, ⌊µz⌉) = R(⌊µy⌉, ⌊µz⌉) + λD(⌊µy⌉,x)

= − log2 p
(
⌊µz⌉

)
︸ ︷︷ ︸
information content

of ẑ=⌊µz⌉

− log2 p
(
⌊µy⌉

∣∣ ⌊µz⌉
)

︸ ︷︷ ︸
information content of
ŷ=⌊µy⌉ given ẑ=⌊µz⌉

+λ
∣∣∣∣x− g

(
⌊µy⌉; θ

)∣∣∣∣2
2︸ ︷︷ ︸

distortion D

(4.2)

where (µy, µz) is computed from the inference networks as in Eq. 4.1, and the parameter λ > 0

controls the trade-off between bitrate R under entropy coding, and distortion (reconstruction

error) D. As the rounding operations prevent gradient-based optimization, Ballé et al. [2017]

propose to replace rounding during training by adding uniform noise from the interval [−1
2
, 1
2
]

to each coordinate of µy and µz (see Figure 4.1c). This is equivalent to sampling from

uniform distributions q(y|x) and q(z|x) with a fixed width of one centered around µy and µz,

respectively. One thus obtains the following relaxed rate-distortion objective, for a given
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data point x,

L̃λ(θ, θh, ϕ, ϕh) = Eq(y|x) q(z|x)
[
− log2 p(z)− log2 p(y|z) + λ||x− g(y; θ)||22

]
. (4.3)

Connection to Variational Inference. As pointed out in [Ballé et al., 2017], the relaxed

objective in Eq. 4.3 is the negative evidence lower bound (NELBO) of variational inference

(VI) if we identify λ = 1/(2σ2
x log 2). This draws a connection between lossy compression and

VI [Blei et al., 2017, Zhang et al., 2018]. We emphasize a distinction between variational

inference and variational expectation maximization (EM) [Beal and Ghahramani, 2003a]:

whereas variational EM trains a model (and employs VI as a subroutine), VI is used to

compress data using a trained model. A central result of this paper is that improving inference

in a fixed generative model at compression time already suffices to significantly improve

compression performance.

4.3 Novel Inference Techniques for Data Compression

This section presents our main contributions. We identify three approximation gaps in

VAE-based compression methods (see Section 4.2): an amortization gap, a discretization

gap, and a marginalization gap. Recently, the amortization gap was considered by [Campos

et al., 2019]; we expand on this idea in Section 4.3.1, bringing it under a wider framework of

algorithms in the VI literature. We then propose two specific methods that improve inference

at compression time: a novel inference method over discrete representations (Section 4.3.2)

that closes the discretization gap, and a novel lossy bits-back coding method (Section 4.3.3)

that closes the marginalization gap.
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4.3.1 Amortization Gap and Hybrid Amortized-Iterative Inference

Amortization Gap. Amortized variational inference [Kingma and Welling, 2013, Rezende

et al., 2014b] turns optimization over local (per-data) variational parameters into optimization

over the global weights of an inference network. In the VAE of Section 4.2, the inference

networks f and fh map an image x to local parameters µy and µz of the variational

distributions q(y|x) and q(z|x), respectively (Eq. 4.1). Amortized VI speeds up training by

avoiding an expensive inner inference loop of variational EM, but it leads to an amortization

gap [Cremer et al., 2018, Krishnan et al., 2018], which is the difference between the value of

the NELBO (Eq. 4.3) when µy and µz are obtained from the inference networks, compared to

its true minimum when µy and µz are directly minimized. Since the NELBO approximates

the rate-distortion objective (Section 4.2), the amortization gap translates into sub-optimal

performance when amortization is used at compression time. As discussed below, this gap

can be closed by refining the output of the inference networks by iterative inference.

Related Work. The idea of combining amortized inference with iterative optimization has

been studied and refined by various authors [Hjelm et al., 2016, Kim et al., 2018, Krishnan

et al., 2018, Marino et al., 2018]. While not formulated in the language of variational

autoencoders and variational inference, Campos et al. [2019] apply a simple version of this

idea to compression. Drawing on the connection to hybrid amortized-iterative inference,

we show that the method can be drastically improved by addressing the discretization gap

(Section 4.3.2) and the marginalization gap (Section 4.3.3).

Hybrid Amortized-Iterative Inference. We reinterpret the proposal in [Campos et al.,

2019] as a basic version of a hybrid amortized-iterative inference idea that changes inference

only at compression time but not during model training. Figure 4.1d illustrates the approach.

When compressing a target image x, one initializes µy and µz from the trained inference
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networks f and fh, see Eq. 4.1. One then treats µy and µz as local variational parameters, and

minimizes the NELBO (Eq. 4.3) over (µy, µz) with the reparameterization trick and stochastic

gradient descent. This approach thus separates inference at test time from inference during

model training. We show in the next two sections that this simple idea forms a powerful basis

for new inference approaches that drastically improve compression performance.

4.3.2 Discretization Gap and Stochastic Gumbel Annealing (SGA)

Discretization Gap. Compressing data to a bitstring is an inherently discrete optimization

problem. As discrete optimization in high dimensions is difficult, neural compression methods

instead optimize some relaxed objective function (such as the NELBO L̃λ in Eq. 4.3) over

continuous representations (such as µy and µz), which are then discretized afterwards for

entropy coding (see Eq. 4.1). This leads to a discretization gap: the difference between the

true rate-distortion objective Lλ at the discretized representation (ŷ, ẑ), and the relaxed

objective function L̃λ at the continuous approximation (µy, µz).

Related Work. Current neural compression methods use a differentiable approximation to

discretization during model training, such as Straight-Through Estimator (STE) [Bengio et al.,

2013, Oord et al., 2017, Yin et al., 2019], adding uniform noise [Ballé et al., 2017] (see Eq. 4.3),

stochastic binarization [Toderici et al., 2016], and soft-to-hard quantization [Agustsson et al.,

2017]. Discretization at compression time was addressed in [Yang et al., 2020b] without

assuming that the training procedure takes discretization into account, whereas our work

makes this additional assumption.

Stochastic Gumbel Annealing (SGA). We refine the hybrid amortized-iterative infer-

ence approach of Section 4.3.1 to close the discretization gap: for a given image x, we aim to

find its discrete (in our case, integer) representation (ŷ, ẑ) that optimizes the rate-distortion

59



objective Lλ in Eq. 4.2, this time re-interpreted as a function of (ŷ, ẑ) directly. Our pro-

posed annealing scheme approaches this discretization optimization problem with the help of

continuous proxy variables µy and µz, which we initialize from the inference networks as in

Eq. 4.1. We limit the following discussion to the latents µy and ŷ, treating the hyperlatents

µz and ẑ analogously. For each dimension i of µy, we map the continuous coordinate µy,i ∈ R

to an integer coordinate ŷi ∈ Z by rounding either up or down. Let ry,i be a one-hot vector

that indicates the rounding direction, with ry,i = (1, 0) for rounding down (denoted ⌊·⌋)

and ry,i = (0, 1) for rounding up (denoted ⌈·⌉). Thus, the result of rounding is the inner

product, ŷi = ry,i · (⌊µy,i⌋, ⌈µy,i⌉). Now we let ry,i be a Bernoulli variable with a “tempered”

distribution

qτ (ry,i|µy,i) ∝





exp
{
− ψ

(
µy,i − ⌊µy,i⌋

)
/τ
}

if ry,i = (1, 0)

exp
{
− ψ

(
⌈µy,i⌉ − µy,i

)
/τ
}

if ry,i = (0, 1)

(4.4)

with temperature parameter τ > 0, and ψ : [0, 1) → R is an increasing function satisfying

limα→1 ψ(α) = ∞ (this is chosen to ensure continuity of the resulting objective (4.5); we

used ψ = tanh−1). Thus, as µy,i approaches an integer, the probability of rounding to that

integer approaches one. Defining qτ (ry|µy) =
∏

i qτ (ry,i|µy,i), we thus minimize the stochastic

objective

L̃λ,τ (µy, µz) = Eqτ (ry|µy) qτ (rz|µz)

[
Lλ

(
ry ·

(
⌊µy⌋, ⌈µy⌉

)
, rz ·

(
⌊µz⌋, ⌈µz⌉

))]
(4.5)

where we reintroduce the hyperlatents z, and ry · (⌊µy⌋, ⌈µy⌉) denotes the discrete vector ŷ

obtained by rounding each coordinate µy,i of µy according to its rounding direction ry,i.

At any temperature τ , the objective in Eq. 4.5 smoothly interpolates the R-D objective

in Eq. 4.2 between all integer points. We minimize Eq. 4.5 over (µy, µz) with stochastic

gradient descent, propagating gradients through Bernoulli samples via the Gumbel-softmax

trick [Jang et al., 2016, Maddison et al., 2016] using, for simplicity, the same temperature τ
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as in qτ . We note that in principle, REINFORCE [Williams, 1992] can also work instead of

Gumbel-softmax. We anneal τ towards zero over the course of optimization, such that the

Gumbel approximation becomes exact and the stochastic rounding operation converges to

the deterministic one in Eq. 4.1. We thus name this method “Stochastic Gumbel Annealing”

(SGA).

Figure 4.2 illustrates the loss function (Eq. 4.5) landscape of SGA near its converged solution,

for a given Kodak image. Here, we visualize along the two coordinates of µy whose optimization

trajectories have the most variance among all coordinates, plotting the optimization trajectory

of µy (magenta line) and the stochastically rounded samples (red dots) from the inner product

ry ·
(
⌊µy⌋, ⌈µy⌉

)
. The final SGA sample converges to the deterministically rounded solution

(white dot, (4, 4)), which is significantly better than the initialization predicted by inference

network (blue diamond, near (2, 2)).
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Comparison to Alternatives. Alternatively, we could have started with Eq. 4.2, and

optimized it as a function of (µy, µz), using existing discretization methods to relax rounding;

the optimized (µy, µz) would subsequently be rounded to (ŷ, ẑ). However, our method

outperforms all these alternatives. Specifically, we tried (with shorthands [A1]-[A4] for

‘ablation’, referring to Table 4.1 of Section 4.4): [A1] MAP: completely ignoring rounding

during optimization; [A2] Straight-Through Estimator (STE) [Bengio et al., 2013]:

rounding only on the forward pass of automatic differentiation; [A3] Uniform Noise [Campos

et al., 2019]: optimizing Eq. 4.3 over (µy, µz) at compression time, following the Hybrid

Amortized-Iterative Inference approach of Section 4.3.1; and [A4] Deterministic Annealing:

turning the stochastic rounding operations of SGA into deterministic weighted averages, by

pushing the expectation operators w.r.t q in Eq. 4.5 to inside the arguments of Lλ, resulting

in the loss function Lλ

(
Eqτ (ry|µy)[ry ·

(
⌊µy⌋, ⌈µy⌉

)
],Eqτ (rz|µz)[rz ·

(
⌊µz⌋, ⌈µz⌉

)
]
)

resembling

[Agustsson et al., 2017].

We tested the above discretization methods on images from Kodak [Kodak, 1993], using a

pre-trained hyperprior model (Section 4.2). Figure 4.3 (left) shows learning curves for the

true rate-distortion objective Lλ, evaluated via rounding the intermediate (µy, µz) throughout

optimization. Figure 4.3 (right) shows the discretization gap Lλ−L̃λ, where L̃λ is the relaxed

objective of each method. Our proposed SGA method closes the discretization gap and

achieves the lowest true rate-distortion loss among all methods compared, using the same

initialization. Deterministic Annealing also closed the discretization gap, but converged to

a worse solution. MAP naively converged to a non-integer solution, and STE consistently

diverged even with a tiny learning rate, as also observed by Yin et al. [2019] (following their

results, we changed the gradient of the backward pass from identity to that of ReLU or clipped

ReLU; neither helped). Uniform Noise produced a consistently negative discretization gap,

as the noise-perturbed objective in Eq. 4.3 empirically overestimates the true rate-distortion

objective Lλ on a large neighborhood around the initial (µy, µz) computed by the inference

network; by contrast, SGA shrinks this gap by letting its variational distribution q increasingly
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concentrate on integer solutions.

4.3.3 Marginalization Gap and Lossy Bits-Back Coding

Marginalization Gap. To compress an image x with the hierarchical model of Section 4.2,

ideally we would only need to encode and transmit its latent representation ŷ but not the

hyper-latents ẑ, as only ŷ is needed for reconstruction. This would require entropy coding

with (a discretization of) the marginal prior p(y) =
∫
p(z) p(y|z) dz, which unfortunately

is computationally intractable. Therefore, the standard compression approach reviewed in

Section 4.2 instead encodes some hyperlatent ẑ using the discretized hyperprior P (ẑ) first, and

then encodes ŷ using the entropy model P (ŷ|ẑ). This leads to a marginalization gap, which

is the difference between the information content − log2 P (ẑ, ŷ) = − log2 P (ẑ)− log2 P (ŷ|ẑ)

of the transmitted tuple (ẑ, ŷ) and the information content of ŷ alone,

− log2 P (ẑ, ŷ)− (− log2 P (ŷ)) = − log2 P (ẑ|ŷ), (4.6)

i.e., the marginalization gap is the information content of the hyperlatent ẑ under the ideal

posterior P (ẑ|ŷ), in the (discrete) latent generative process ẑ→ ŷ.

Related Work. A similar marginalization gap has been addressed in lossless compression

by bits-back coding [Wallace, 1990, Hinton and Van Camp, 1993] and made more practical

by the BB-ANS algorithm [Townsend et al., 2019a]. Recent work has improved its efficiency

in hierarchical latent variable models [Townsend et al., 2019b, Kingma et al., 2019], and

extended it to flow models [Ho et al., 2019a]. To our knowledge, bits-back coding has not

yet been used in lossy compression. This is likely since bits-back coding requires Bayesian

posterior inference on the decoder side, which seems incompatible with lossy compression, as

the decoder does not have access to the undistorted data x.
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Lossy Bits-Back Coding. We extend the bits-back idea to lossy compression by noting

that the discretized latent representation ŷ is encoded losslessly (Figure 4.1b) and thus

amenable to bits-back coding. A complication arises as bits-back coding requires that the

encoder’s inference over z can be exactly reproduced by the decoder (see below). This

requirement is violated by the inference network in Eq. 4.1, where µz = fh(f(x;ϕ);ϕh)

depends on x, which is not available to the decoder in lossy compression. It turns out that

the naive fix of setting instead µz = fh(ŷ;ϕh) would hurt performance by more than what

bits-back saves (see ablations in Section 4.4). We propose instead a two-stage inference

algorithm that cuts the dependency on x after an initial joint inference over ŷ and z.

Bits-back coding bridges the marginalization gap in Eq. 4.6 by encoding a limited number of

bits of some additional side information (e.g., an image caption or a previously encoded image

of a slide show) into the choice of ẑ using an entropy model Q(ẑ|µz, σ
2
z) with parameters µz

and σ2
z. We obtain Q(ẑ|µz, σ

2
z) by discretizing a Gaussian variational distribution q(z|µz, σ

2
z) =

N (z;µz, diag(σ
2
z)), thus extending the last layer of the hyper-inference network fh (Eq. 4.1)

to output now a tuple (µz, σ
2
z) of means and diagonal variances. This replaces the form of

variational distribution q(z|x) of Eq 4.3 as the restriction to a box-shaped distribution with

fixed width is not necessary in bits-back coding. Additionally, we drop the restriction on the

shape of the hyperprior p(z) reviewed in Section 4.2, simply adopting the flexible density

model as proposed in [Ballé et al., 2018b] without convolving it with a uniform distribution,

as µz is no longer discretized to integers. We train the resulting VAE by minimizing the

NELBO. Since q(z|µz, σ
2
z) now has a variable width, the NELBO has an extra term compared

to Eq. 4.3 that subtracts the entropy of q(z|µz, σ
2
z), reflecting the expected number of bits we

‘get back’. Thus, the NELBO is again a relaxed rate-distortion objective, where now the net

rate is the compressed file size minus the amount of embedded side information.

Algorithm 1 describes lossy compression and decompression with the trained model. Subrou-

tine encode initializes the variational parameters µy, µz, and σ2
z conditioned on the target
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Algorithm 1: Proposed lossy bits-back coding method (Section 4.3.3 and Figure 4.1e-f).
Global Constants: Trained hierarchical VAE with model p(z,y,x) = p(z) p(y|z) p(x|y)
and inference networks f( · ;ϕ) and fh( · ;ϕh), see Figure 4.1e (f is only used in subroutine
encode).

Subroutine encode(image x, side information ξ) 7→ returns compressed bitstring s

1 Initialize µy ← f(x;ϕ) and (µz, σ
2
z)← fh(µy;ϕh). ▷

Figure 4.1e
(blue)

2 Optimize over ŷ using SGA (Section 4.3.2), and over µz and σ2
z using BBVI.

▷
Figure 4.1e
(red)

3 Reset (µz, σ
2
z)← reproducible_BBVI(ŷ). ▷ See below.

4 Decode side information ξ into ẑ using Q(ẑ|µz, σ
2
z) as entropy model.

5 Encode ẑ and ŷ into s using P (ẑ) and P (ŷ|ẑ) as entropy models, respectively.

Subroutine decode(compressed bitstring s) 7→ returns (lossy reconstruction x̂, side info ξ)
6 Decode s into ẑ and ŷ; then get reconstructed image x̂ = argmaxx p(x|ŷ).
7 Set (µz, σ

2
z)← reproducible_BBVI(ŷ). ▷ See below.

8 Encode ẑ into ξ using Q(ẑ|µz, σ
2
z) as entropy model.

Subroutine reproducible_BBVI(discrete latents ŷ) 7→ returns variational parameters
(µz, σ

2
z)

9 Initialize (µz, σ
2
z)← fh(ŷ;ϕh); seed random number generator reproducibly.

▷
Figure 4.1f
(blue)

10 Refine µz and σ2
z by running BBVI for fixed ŷ. ▷

Figure 4.1f
(red)

image x using the trained inference networks (line 1). It then jointly performs SGA over ŷ

by following Section 4.3.2, and Black-Box Variational Inference (BBVI) over µz and σ2
z by

minimizing the the NELBO (line 2). At the end of the routine, the encoder decodes the

provided side information ξ (an arbitrary bitstring) into ẑ using Q(ẑ|µz, σ
2
z) as entropy model

(line 4) and then encodes ẑ and ŷ as usual (line 5).

The important step happens on line 3: up until this step, the fitted variational parameters µz

and σ2
z depend on the target image x due to their initialization on line 1. This would prevent

the decoder, which does not have access to x, from reconstructing the side information ξ

by encoding ẑ with the entropy model Q(ẑ|µz, σ
2
z). Line 3 therefore re-fits the variational

parameters µz and σ2
z in a way that is exactly reproducible based on ŷ alone. This is done

in the subroutine reproducible_BBVI, which performs BBVI in the prior model p(z,y) =
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p(z)p(y|z), treating y = ŷ as observed and only z as latent. Although we reset µz and σ2
z on

line 3 immediately after optimizing over them on line 2, optimizing jointly over both ŷ and

(µz, σ
2
z) on line 2 allows the method to find a better ŷ.

The decoder decodes ẑ and ŷ as usual (line 6). Since the subroutine reproducible_BBVI

depends only on ŷ and uses a fixed random seed (line 9), calling it from the decoder on line 7

yields the exact same entropy model Q(ẑ|µz, σ
2
z) as used by the encoder, allowing the decoder

to recover ξ (line 8).

4.4 Experiments

We demonstrate the empirical effectiveness of our approach by applying two variants of

it —with and without bits-back coding—to an established (but not state-of-the-art) base

model [Minnen et al., 2018]. We improve its performance drastically, achieving an average

of over 15% BD rate savings on Kodak [1993] and 20% on Tecnick [Asuni and Giachetti,

2014], outperforming the previous state-of-the-art of both classical and neural lossy image

compression methods. We conclude with ablation studies.

Proposed Methods. Table 4.1 describes all compared methods, marked as [M1]-[M9] for

short. We tested two variants of our method ([M1] and [M2]): SGA builds on the exact same

model and training procedure as in [Minnen et al., 2018] (the Base Hyperprior model [M3])

and changes only how the trained model is used for compression by introducing hybrid

amortized-iterative inference [Campos et al., 2019] (Section 4.3.1) and Stochastic Gumbel

Annealing (Section 4.3.2). SGA+BB adds to it bits-back coding (Section 4.3.3), which

requires changing the inference model over hyperlatents z to admit a more flexible variational

distribution q(z|x), and no longer restricts the shape of p(z), as discussed in Section 4.3.3.

The two proposed variants address different use cases: SGA is a “standalone” variant of our
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Table 4.1: Compared methods ([M1]-[M9]) and ablations ([A1]-[A6]). We propose two variants:
[M1] compresses images, and [M2] compresses images + side information via bits-back coding.

Name Explanation and Reference (for baselines)

ou
rs [M1] SGA Proposed standalone variant: same trained model as [M3], SGA (Section 4.3.2) at compression time.

[M2] SGA + BB Proposed variant with bits-back coding: both proposed improvements of Sections 4.3.2, and 4.3.3.

ba
se

lin
es

[M3] Base Hyperprior Base method of our two proposals, reviewed in Section 4.2 of the present paper [Minnen et al., 2018].
[M4] Context + Hyperprior Like [M3] but with an extra context model defining the prior p(y|z) [Minnen et al., 2018].
[M5] Context-Adaptive Context-Adaptive Entropy Model proposed in [Lee et al., 2019a].
[M6] Hyperprior Scale-Only Like [M3] but the hyperlatents z model only the scale (not the mean) of p(y|z) [Ballé et al., 2018b].
[M7] CAE Pioneering “Compressive Autoencoder” model proposed in [Theis et al., 2017b].
[M8] BPG 4:4:4 State-of-the-art classical lossy image compression codec ‘Better Portable Graphics’ [Bellard, 2014].
[M9] JPEG 2000 Classical lossy image compression method [Adams, 2001].

ab
la

ti
on

s

[A1] MAP Like [M1] but with continuous optimization over µy and µz followed by rounding instead of SGA.
[A2] STE Like [M1] but with straight-through estimation (i.e., round only on backpropagation) instead of SGA.
[A3] Uniform Noise Like [M1] but with uniform noise injection instead of SGA (see Section 4.3.1) [Campos et al., 2019].
[A4] Deterministic Annealing Like [M1] but with deterministic version of Stochastic Gumbel Annealing
[A5] BB without SGA Like [M2] but without optimization over ŷ at compression time.
[A6] BB without iterative inference Like [M2] but without optimization over ŷ, µz, and σ2

z at compression time.

method that compresses individual images, while SGA+BB encodes images with additional

side information. In all results, we used Adam [Kingma and Ba, 2014] for optimization,

and annealed the temperature of SGA by an exponential decay schedule, and found good

convergence without per-model hyperparameter tuning. We provide details in Appendix

Section A.2.

Baselines. We compare to the Base Hyperprior model from [Minnen et al., 2018] without

our proposed improvements ([M3] in Table 4.1), two state-of-the-art neural methods ([M4]

and [M5]), two other neural methods ([M6] and [M7]), the state-of-the art classical codec

BPG [M8], and JPEG 2000 [M9]. We reproduced the Base Hyperprior results, and took the

other results from [Ballé et al.].

Results. Figure 4.4 compares the compression performance of our proposed method to

existing baselines on the Kodak [1993] dataset, using the standard Peak Signal-to-Noise

Ratio (PSNR) quality metric (higher is better), averaged over all images for each considered

quality setting λ ∈ [0.001, 0.08]. The bitrates in our own results ([M1-3], [A1-6]) are based

on rate estimates from entropy models, but do not differ significantly from actual file sizes

produced by our codec implementation (which has negligible (< 0.5%) overhead). The left
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panel of Figure 4.4 plots PSNR vs. bitrate, and the right panel shows the resulting BD rate

savings [Bjontegaard, 2001] computed relative to BPG as a function of PSNR for readability

(higher is better). The BD plot cuts out CAE [M7] and JPEG 2000 [M9] at the bottom, as they

performed much worse. Overall, both variants of the proposed method (blue and orange lines

in Figure 4.4) improve substantially over the Base Hyperprior model (brown), and outperform

the previous state-of-the-art. We report similar results on the Tecnick dataset [Asuni and

Giachetti, 2014] in Appendix A. Figure 4.6 shows a qualitative comparison of a compressed

image (in the order of BPG, SGA (proposed), and the Base Hyperprior), in which we see

that our method notably enhances the baseline image reconstruction at comparable bitrate,

while avoiding unpleasant visual artifacts of BPG.

Ablations. Figure 4.5 compares BD rate improvements of the two variants of our proposal

(blue and orange) to six alternative choices (ablations [A1]-[A6] in Table 4.1), measured

relative to the Base Hyperprior model [Minnen et al., 2018] (zero line; [M3] in Table 4.1), on

which our proposals build. [A1]-[A4] replace the discretization method of SGA [M1] with four

alternatives discussed at the end of Section 4.3.2. [A5] and [A6] are ablations of our proposed

bits-back variant SGA+BB [M2], which remove iterative optimization over ŷ, or over ŷ

and q(z), respectively, at compression time. Going from red [A3] to orange [A2] to blue [M1]

traces our proposed improvements over [Campos et al., 2019] by adding SGA (Section 4.3.2)
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(a) Original image
(from Kodak [1993]
dataset)

(b) BPG 4:4:4;
0.14 BPP (PSNR =
30.4)

(c) Proposed (SGA);
0.13 BPP (PSNR =
31.2)

(d) [Minnen et al., 2018];
0.12 BPP (PSNR =
29.8)

Figure 4.6: Qualitative comparison of lossy compression performance. Our method (c; [M1] in
Table 4.1) significantly boosts the visual quality of the Base Hyperprior method (d; [M3] in
Table 4.1) at similar bit rates. It sharpens details of the hair and face (see insets) obscured by
the baseline method (d), while avoiding the ringing artifacts around the jaw and ear pendant
produced by a classical codec (b).

and then bits-back (Section 4.3.3). It shows that iterative inference (Section 4.3.1) and SGA

contribute approximately equally to the performance gain, whereas the gain from bits-back

coding is smaller. Interestingly, lossy bits-back coding without iterative inference and SGA

actually hurts performance [A6]. As Section 4.3.3 mentioned, this is likely because bits-back

coding constrains the posterior over z to be conditioned only on ŷ and not on the original

image x.

4.5 Discussion

Starting from the variational inference view on data compression, we proposed three enhance-

ments to the standard inference procedure in VAEs: hybrid amortized-iterative inference,

Stochastic Gumbel Annealing, and lossy bits-back coding, which translated to dramatic

performance gains on lossy image compression. Improved inference provides a new promising
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direction to improved compression, orthogonal to modeling choices (e.g., with auto-regressive

priors [Minnen et al., 2018], which can harm decoding efficiency). Although lossy-bits-back

coding in the present VAE only gave relatively minor benefits, it may reach its full potential

in more hierarchical architectures as in [Kingma et al., 2019]. Similarly, carrying out itera-

tive inference also at training time may lead to even more performance improvement, with

techniques like iterative amortized inference [Marino et al., 2018].
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Chapter 5

Asymmetrically-Powered Neural

Compression for Decoding Efficiency

Most of the material in this chapter has been published in the following conference

paper,

Computationally-Efficient Neural Image Compression with

Shallow Decoders. Yibo Yang, Stephan Mandt. International Confer-

ence on Computer Vision (ICCV), 2023.

Additional results and supplementary information can be found in Appendix B, and

the project repo can be found at https://github.com/mandt-lab/shallow-ntc.

A word on notation: this chapter largely uses the same notation as in Section 3.2.1

(nonlinear transform coding).

Neural image compression methods have seen increasingly strong performance in recent

years. However, they suffer orders of magnitude higher computational complexity compared

to traditional codecs, which hinders their real-world deployment. This paper takes a step
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forward towards closing this gap in decoding complexity by using a shallow or even linear

decoding transform resembling that of JPEG. To compensate for the resulting drop in

compression performance, we exploit the often asymmetrical computation budget between

encoding and decoding, by adopting more powerful encoder networks and iterative encoding.

We theoretically formalize the intuition behind, and our experimental results establish a

new frontier in the trade-off between rate-distortion and decoding complexity for neural

image compression. Specifically, we achieve rate-distortion performance competitive with

the established mean-scale hyperprior architecture of Minnen et al. (2018) at less than 50K

decoding FLOPs/pixel, reducing the baseline’s overall decoding complexity by 80%, or over

90% for the synthesis transform alone.

5.1 Introduction

Deep-learning-based methods for data compression [Yang et al., 2023a] have achieved increas-

ingly strong performance on visual data compression, increasingly exceeding classical codecs in

rate-distortion performance [Ballé et al., 2017, Minnen et al., 2018, Yang et al., 2020b, Cheng

et al., 2020, Yang et al., 2021, Mentzer et al., 2022]. However, their enormous computational

complexity compared to classical codecs, especially required for decoding, is a roadblock

towards their wider adoption [Minnen, 2021, Mukherjee, 2022]. In this work, inspired by the

parallel between nonlinear transform coding and traditional transform coding [Duan et al.,

2022], we replace deep convolutional decoders with extremely lightweight and shallow (and

even linear) decoding transforms, and establish the R-D (rate-distortion) performance of

neural image compression when operating at the lower limit of decoding complexity.

More concretely, our contributions are as follows:

• We offer new insight into the image manifold parameterized by learned synthesis
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Figure 5.1: R-D performance on Kodak v.s. decoding computation complexity as measured in
KMACs (thousand multiply-accumulate operations) per pixel. The circle radius corresponds
to the parameter count of the synthesis transform in each method (see Table. 5.1)

transforms in nonlinear transform coding. Our results suggest that the learned manifold

is relatively flat and preserves linear combinations in the latent space, in contrast to its

highly nonlinear counterpart in generative modeling [Chen et al., 2020].

• Inspired by the parallel between neural image compression and traditional transform

coding, we study the effect of linear synthesis transform within a hyperprior architecture.

We show that, perhaps surprisingly, a JPEG-like synthesis can perform similarly to a

deep linear CNN, and we shed light on the role of nonlinearity in the perceptual quality

of neural image compression.

• We give a theoretical analysis of the R-D cost of neural lossy compression in an asymp-

totic setting, which quantifies the performance implications of varying the complexity

of encoding and decoding procedures.

• We equip our JPEG-like synthesis with powerful encoding methods, and augment it

with a single hidden layer. This simple approach yields a new state-of-the-art result in
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the trade-off between R-D performance and decoding complexity for nonlinear transform

coding, in the regime of sub-50K FLOPs per pixel believed to be dominated by classical

codecs.

5.2 Background and Notation

5.2.1 Neural Image Compression

Most existing neural lossy compression approaches are based on the paradigm of nonlinear

transform coding (NTC) [Ballé et al., 2021]. Traditional transform coding [Goyal et al., 2000]

involves designing a pair of analysis (encoding) transform f and synthesis (decoding) transform

g such that the encoded representation of the data achieves good R-D (rate-distortion)

performance. NTC essentially learns this process through data-driven optimization. Let the

input color image be x ∈ RH×W×3. The analysis transform computes a continuous latent

representation z := f(x), which is then quantized to ẑ = ⌊z⌉ and transmitted to the receiver

under an entropy model P (ẑ); the final reconstruction is then computed by the synthesis

transform as x̂ := g(ẑ). The hard quantization is typically replaced by uniform noise to

enable end-to-end training [Ballé et al., 2016]. We refer to [Yang et al., 2023a, Section 3.3.3]

as well as Section 3.2.1 of the current thesis for additional details.

Instead of orthogonal linear transforms in traditional transform coding, the analysis and

synthesis transforms in NTC are typically CNNs (convolutional neural networks) [Theis

et al., 2017a, Ballé et al., 2016] or variants with residual connections or attention mechanisms

[Cheng et al., 2020, He et al., 2022]. The (convolutional) latent coefficients z ∈ Rh,w,C form

a 3D tensor with C channels and a spatial extent (h,w) smaller than the input image. We

denote the downsampling factor by s, i.e., s = H/h = W/w; this is also the “upsampling”

factor of the synthesis transform.
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To improve the bitrate of NTC, a hyperprior [Ballé et al., 2018a, Minnen et al., 2018] is

commonly used to parameterize the entropy model P (ẑ) via another set of latent coefficients

h and an associated pair of transforms (fh, gh). The hyper analysis fh computes h = fh(ẑ)

at encoding time, and the hyper synthesis gh predicts the (conditional) entropy model P (ẑ|ĥ)

based on the quantized ĥ = ⌊h⌉. We adopt the Mean-scale Hyperprior from Minnen et al.

[2018] as our base architecture, which is widely used as a basis for other NTC methods

[Johnston et al., 2019, Cheng et al., 2020, Minnen and Singh, 2020, He et al., 2022]. In this

architecture, the various transforms are parameteried by CNNs, with GDN activation [Ballé

et al., 2016] being used in the analysis and synthesis transforms and ReLU activation in the

hyper transforms. Importantly, the synthesis transform (g) accounts for over 80% of the

overall decoding complexity (see Table 5.1), and is the focus of this work.

5.2.2 Iterative Inference

Given an image x to be encoded, instead of computing its discrete representation by rounding

the output of the analysis transform, i.e., ẑ = ⌊f(x)⌉, Yang et al. [2020a] cast the encoding

problem as that of variational inference, and propose to infer the discrete representation

that optimizes the per-data R-D cost. Their proposed method, SGA (Stochastic Gumbel

Annealing), essentially solves a discrete optimization problem by constructing a categorical

variational distribution q(z|x) and optimizing w.r.t. its parameters by gradient descent, while

annealing it to become deterministic so as to close the quantization gap [Yang et al., 2020a].

In this work, we will adopt their proposed standalone procedure and opt to run SGA at test

time, essentially treating it as a powerful black-box encoding procedure for a given NTC

architecture.
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5.3 Methodology

We begin with new empirical insight into the qualitative similarity between the synthesis

transforms in NTC and traditional transform coding [Duan et al., 2022] (Sec. 5.3.1). This

motivates us to adopt simpler synthesis transforms, such as JPEG-like block-wise linear

transforms, which are computationally much more efficient than deep neural networks

(Sec. 5.3.2). We then analyze the resulting effect on R-D performance and mitigate the

performance drop using powerful encoding methods from the neural compression toolbox

(Sec. 5.3.3).

5.3.1 The Case for a Shallow Decoder

Although the transforms in NTC are generally black-box deep CNNs, Duan et al. [2022]

showed that they in fact bear strong qualitative resemblance to the orthogonal transforms

in traditional transform coding. They showed that the learned synthesis transform in

various NTC architectures satisfy a certain separability property, i.e., a latent tensor can

be decomposed spatially or across channels, then decoded separately, and finally combined

in the pixel space to produce a reasonable reconstruction. Moreover, decoding “standard

basis” tensors in the latent space produces image patterns resembling the basis functions of

orthogonal transforms. 1

Here, we obtain new insights into the behavior of the learned synthesis transform in NTC.

We show that the manifold of image reconstructions is approximately flat, in the sense

that straight paths in the latent space are mapped to approximately straight paths (i.e.,

naive linear interpolations) in the pixel space. Additionally, the learned synthesis transform

exhibits an approximate “mixup” [Zhang et al., 2017] behavior despite the lack of such explicit
1We note that performing Principal Component Analysis on small image patches also results in similar

patterns; see Figure B.4 in the Appendix.
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Figure 5.2: Conceptual illustration of the image manifold parameterized by γ̂(t) (purple
curve), obtained by decoding a straight path γ(t) in the latent space. We show it does not
significantly deviate from a straight path (dashed line) connecting its two end points.

regularization during training.

Suppose we are given an arbitrary pair of images (x(0),x(1)), and we obtain their latent

coefficients (z(0), z(1)) using the analysis transform (we ignore the effect of quantization as in

[Duan et al., 2022]). Let γ : [0, 1]→ Z be the straight path in the latent space defined by the

two latent tensors, i.e., γ(t) := (1− t)z(0) + tz(1). Using the synthesis transform g, we can

then map the curve in the latent space to one in the space of reconstructed images, defined

by γ̂(t) := g(γ(t)). We denote the two end-points of the curve by x̂(0) := g(z(0)) = γ̂(0)

and x̂(1) := g(z(1)) = γ̂(1). Instead of traversing the image manifold parameterized by g,

we could also travel between the two end-points in a straight path, which we define by

x̂(t) := (1− t)x̂(0) + tx̂(1) and is given by a simple linear interpolation in the pixel space. The

setup is illustrated in Figure 5.2.

Fig. 5.3 visualizes an example of the resulting curve of images γ̂(t) (top row), compared to the

interpolating straight path x̂(t) (bottom row), as t goes from 0 to 1. The results appear very

similar, suggesting the latent coefficients largely carry local and mostly low-level information

about the image signal. As a rough measure of the deviation between the two trajectories,

Fig. 5.4a computes the MSE between γ̂(t) and x̂(t) at corresponding time steps, for pairs of

random image crops from COCO [Lin et al., 2014]. The results (solid lines) indicate that
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Figure 5.3: Visualizing the 1-D manifold of image reconstructions {γ̂(t)|t ∈ [0, 1]} (top row)
and the linear interpolation between its two end points, {(1−t)x̂(0)+tx̂(1)|t ∈ [0, 1]} (bottom
row).

the two curves do not align perfectly. However, since the parameterization of any curve is

not unique, we get a better sense of the behavior of the manifold curve γ̂(t) by considering

its length L(γ̂) in relation to the length of the interpolating straight path ∥x̂(0) − x̂(1)∥. We

compute the two lengths (the curve length can be computed using the Jacobian of g; see

Appendix Sec. B.4), and plot them for random image pairs in Fig. 5.4b. The resulting curve

lengths fall very closely to the straight path lengths regardless of the absolute length of the

curves, indicating that the curves globally follow nearly straight paths. Note that if g was

linear (affine), then γ̂(t) and x̂(t) would perfectly overlap.

Additionally, inspired by mixup regularization [Zhang et al., 2017], we examine how well

the synthesized curve γ̂(t) can reconstruct the linear interpolation of the two ground truth

images, defined by x(t) := (1− t)x(0) + tx(1). Fig. 5.4a plots the reconstruction error for the

same random image pairs in dashed lines, and shows that the synthesized curve γ̂(t) generally

offers consistent reconstruction quality along the entire trajectory. Note that if g was linear

(affine), then this reconstruction error would vary linearly across t.

The above observations form a stark contrast to the typical behavior of the decoder network

in generative modeling, where different images tend to be separated by regions of low density
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under the model, and the decoder function varies rapidly when crossing such boundaries

[Chen et al., 2018b], e.g., across a linear interpolation of images in pixel space.

We obtained these results with a Mean-scale Hyperprior model [Minnen et al., 2018] trained

with λ = 0.01, and we observe similar behavior at other bit-rates (with the curves γ̂ becoming

even “straighter” at higher bit-rates) and in various NTC architectures [Ballé et al., 2017,

Minnen et al., 2018, Minnen and Singh, 2020] (see Appendix Sec. B.4 for more examples).

Our empirical observations corroborate the earlier findings [Duan et al., 2022], and raise the

question: Given the many similarities, can we replace the deep convolutional synthesis in NTC

with a linear (affine) function? Our motivation is mainly computational: a linear synthesis

can offer drastic computation savings over deep neural networks. This is not necessarily the

case for an arbitrary linear (affine) function from the latent to image space, so we restrict

ourselves to efficient convolutional architectures. As we show empirically in Sec. 5.4.3, a single

JPEG-like transform with a large enough kernel size can emulate a more general cascade

of transposed convolutions, while being much more computationally efficient. Compared to

fixed and orthogonal transforms in traditional transform coding, learning a linear synthesis
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from data allows us to still benefit from end-to-end optimization. Further, in Sec. 5.4.2, we

show that strategically incorporating a small amount of nonlinearity can significantly improve

the R-D performance without much increase in computation complexity.

5.3.2 Shallow Decoder Design

JPEG-like synthesis At its core, JPEG works by dividing an input image into 8 × 8

blocks and applying block-wise linear transform coding. This can be implemented efficiently

in hardware and is a key factor in JPEG’s enduring popularity. By analogy to JPEG, we

interpret the h×w×C latent tensor in NTC as the coefficients of a linear synthesis transform.

In the most basic form, the output reconstructions are computed in s× s blocks, similarly to

JPEG. Specifically, the (i, j)th block reconstruction is computed as a linear combination of

(learned) “basis images” Kc ∈ Rs×s×Cout , c = 1, ..., C, weighted by the vector of (quantized)

coefficients zi,j ∈ RC associated with the (i, j)th spatial location:

B̂i,j =
C∑

c=1

zi,j,cKc. (5.1)

Note that we recover the per-channel discrete cosine transform of JPEG by setting s = 8, C =

64, Cout = 1, and {Kc, c = 1, ..., 64} to be the bases of the 8 × 8 discrete cosine transform.

Eq 5.1 can be implemented efficiently via a transposed convolution on z, using K as the

kernel weights and s as the stride. In terms of MACs, the computation complexity of the

JPEG-like synthesis then equals2

M(JPEG-like) = C × h× w × s2 × Cout, (5.2)

where Cout = 3 for a color image. Note that for a given latent tensor and “upsampling” rate
2When the latent coefficients are sparse (which often occurs at low bit-rates), this computation complexity

can be further reduced by using sparse matrix/tensor operations. We leave this to future work.
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s, Eq. 5.2 gives the minimum achievable MACs by any non-degenerate synthesis transform

based on (transposed) convolutions. As we see in Sec. 5.4.2, although the minimal JPEG-

like synthesis drastically reduces the decoding complexity, it can introduce severe blocking

artifacts since the blocks are reconstructed independently. We therefore allow overlapping

basis functions with spatial extent k× k, where k ≥ s and k− s is the number of overlapping

pixels; we compute each k × k blocks as in Eq. 5.1, then form the reconstructed image by

taking the sum of the (overlapping) blocks. This corresponds to simply increasing the kernel

size from (s, s) to (k, k) in the corresponding transposed convolution, and increases the s2

factor in Eq. 5.2 to k2.

Two-layer nonlinear synthesis Despite its computational efficiency, the JPEG-like

synthesis can be overly restrictive. Indeed, nonlinear transform coding benefits from the

ability of the synthesis transform to adapt to the shape of the data manifold [Ballé et al.,

2021]. We therefore introduce a small degree of nonlinearity in the JPEG-like transform.

Many possibilities exist, and we found that introducing a single hidden layer with nonlinearity

to work well. Concretely, we use two layers of transposed convolutions (conv_1, conv_2),

with strides (s1, s2), kernel sizes (k1, k2), and output channels (N,Cout) respectively. At

lower bit-rates, we found it more parameter- and compute-efficient to also allow a residual

connection from z to the hidden activation using another transposed convolution conv_res

(see a diagram and more details in Appendix Sec. B.1). Thus, given a latent tensor z ∈ Rh,w,C

the output is g(z) = conv_2(ξ(conv_1(z)) + conv_res(z)), where ξ is a nonlinear activation.

The MAC count in this architecture is then approximately

M(2-layer) = C × h× w × k21 × 2N (5.3)

+N × hs1 × ws1 × k22 × Cout.

To keep this decoding complexity low, we use large convolution kernels (k1 = 13) with
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aggressive upsampling (s1 = 8) in the first layer, in the spirit of a JPEG-like synthesis,

followed by a lightweight output layer with a smaller upsampling factor (s2 = 2) and kernel

size (k2 = 5). We use the simplified (inverse) GDN activation [Johnston et al., 2019] for ξ as

it gave the best R-D performance with minor computational overhead. We discuss these and

other architectural choices in Sec. 5.4.4.

5.3.3 Formalizing the Role of the Encoder in Lossy Compression

Performance

Here, we analyze the rate-distortion performance of neural lossy compression in an idealized,

asymptotic setting. Our novel decomposition of the R-D objective pinpoints the performance

loss caused by restricting to a simpler (e.g., linear) decoding transform, and suggests reducing

the inference gap as a simple and theoretically principled remedy.

Consider a general neural lossy compressor operating as follows. Let Z be a latent space,

p(z) a prior distribution over Z known to both the sender and receiver, and g : Z → X̂ the

synthesis transform belonging to a family of functions G. Given a data point x, the sender

computes an inference distribution q(z|x); this can be the output of an encoder network,

or a more sophisticated procedure such as iterative optimization with SGA [Yang et al.,

2020a]. We assume relative entropy coding [Cuff, 2008b, Theis and Yosri, 2021] is applied

with minimal overhead, so that the sender can send a sample of z ∼ q(z|x) with an average

bit-rate not much higher than KL(q(z|x)∥p(z)) [Flamich et al., 2020b]. Given a neural

compression method, which can be identified with the tuple (q(z|x), g, p(z)), its R-D cost

on data distributed according to PX thus has the form of a negative ELBO [Flamich et al.,
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2020b]

L(q(z|x), g, p(z)) := (5.4)

λEx∼PX,z∼q(z|x)[ρ(x, g(z))] + Ex∼PX
[KL(q(z|x)∥p(z))],

where λ ≥ 0 controls the R-D tradeoff, and ρ : X × X̂ → [0,∞) is the distortion function

(commonly the MSE). Note that the encoding distribution q(z|x) appears in both the rate and

distortion terms above. We show that the compression cost admits the following alternative

decomposition, where the effects of p(z), g, and q(z|x) can be isolated:

L(q(z|x), g, p(z)) := (5.5)

= F(G)︸ ︷︷ ︸
irreducible

+
(
Ex∼PX

[− log Γg,p(z)(x)]−F(G)
)

︸ ︷︷ ︸
modeling gap

+ Ex∼PX
[KL(q(z|x)∥p(z|x)]︸ ︷︷ ︸

inference gap

. (5.6)

The full derivation and definitions of various quantities are given in Sec. B.2, and mirror a

similar decomposition in lossless compression [Zhang et al., 2022]; here we give a high-level

explanation of the three terms. The first term represents the fundamentally irreducible cost

of compression; this depends only on the intrinsic compressibility of the data PX [Yang and

Mandt, 2022] and the transform family G. The second term represents the excess cost of

compression given our particular choice of decoding architecture, i.e., the prior p(z) and

transform g, compared to the optimum achievable (the first term); we thus call it the modeling

gap. Note that for each choice of (g, p(z)), the optimal inference distribution has an explicit

formula, which allows us to write the R-D cost under optimal inference in the form of a

negative log partition function (the − log Γ term). Finally, we consider the effect of suboptimal

inference and isolate it in the third term, representing the overhead caused by a sub-optimal

encoding/inference method q(z|x) for a given model (g, p(z)); we call it the inference gap.
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Although the above result is derived in an asymptotic setting, it still gives us insight about

the performance of neural lossy compression at varying decoder complexity. When we use

a simpler synthesis transform architecture, we place restrictions on our transform family G,

thus causing the first (irreducible) part of compression cost to increase. The modeling gap

may or may not increase as a result,3 but we can always lower the overall compression cost

by reducing the inference gap, without affecting the decoding computational complexity.

In this work, we explore two orthogonal approaches for reducing the inference gap, which

can be further decomposed into an (1) approximation gap and (2) amortization gap [Cremer

et al., 2018]. Correspondingly, for a given decoding architecture, we propose to reduce (1) by

using a more powerful analysis transform, e.g., from a recent SOTA method such as ELIC

[He et al., 2022], and reduce (2) by performing iterative encoding using SGA [Yang et al.,

2020a] at compression time.

5.4 Experiments

5.4.1 Data and Training

We train all of our models on random 256 × 256 image crops from the COCO 2017 [Lin

et al., 2014] dataset. We follow the standard training procedures as in [Ballé et al., 2017,

Minnen et al., 2018] and optimize for MSE as the distortion metric. We verified that our

base Mean-Scale Hyperprior model matches the reported performance in the original paper

[Minnen et al., 2018].
3The modeling gap can be reduced by adopting a more expressive prior p(z), although doing so can lead

to higher decoding complexity.
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Method Computational complexity (KMAC) Syn. param
count (Mil.)

BD rate
savings (%) ↑f fh enc. tot. g gh dec. tot.

[He et al., 2022] ELIC 255.42 6.73 262.15 255.42 126.57 381.99 7.34 26.98
[Minnen and Singh, 2020] CHARM 93.79 5.90 99.70 93.79 256.51 350.30 4.18 20.02

[Wang et al., 2023] EVC 263.25 1.86 265.11 257.94 34.82 292.76 3.38 22.56
[Minnen et al., 2018] Hyperprior 93.79 6.73 100.52 93.79 15.18 108.97 3.43 3.30

[Ballé et al., 2017] Factorized Prior 81.63 0.00 81.63 81.63 0.00 81.63 3.39 -32.93
2-layer syn. + SGA (proposed) 255.42 6.73 ∼ 105 5.34 15.18 20.52 1.30 4.67

2-layer syn. (proposed) 255.42 6.73 262.15 5.34 15.18 20.52 1.30 -5.19
JPEG-like syn. (proposed) 255.42 6.73 262.15 1.22 15.18 16.39 0.31 -20.95

Table 5.1: Computational complexity of various neural compression methods, v.s. average BD
rate savings relative to BPG [Bellard, 2014] on Kodak. Complexity is measured in KMACs
(thousand multiply–accumulate operations) per pixel, and does not include entropy coding.
f, fh, g, gh stand for analysis, hyper analysis, synthesis, and hyper synthesis transforms. We
also report the parameter count of synthesis transforms (g) in the second-to-last column,
and a rough estimate of the overall encoding complexity of SGA-based encoding (∼ 105

KMACs/pixel).

5.4.2 Comparison with Existing Methods

We compare our proposed methods with standard neural compression methods [Ballé et al.,

2017, Minnen et al., 2018, Minnen and Singh, 2020] and state-of-the-art methods [He et al.,

2022, Wang et al., 2023] targeting computational efficiency. We obtain the baseline results

from the CompressAI library [Bégaint et al., 2020], or trace the results from papers when

they are not available. For our shallow synthesis transforms, we use k = 18 in the JPEG-like

synthesis, and N = 12, k1 = 13, k2 = 5 in the 2-layer synthesis; we ablate on these choices in

Sections 5.4.3 and 5.4.4.

Table 5.1 summarizes the computational complexity of various methods, ordered by decreasing

overall decoding complexity. We use the keras-flops package 4 to measure the FLOPs on

512× 768 images, and report the results in KMACs (thousand multiply-accumulates) per

pixel. Note that the Factorized Prior architecture [Ballé et al., 2017] lacks the hyperprior,

while CHARM [Minnen and Singh, 2020] and ELIC [He et al., 2022] use autoregressive

computation in the hyperior. Our proposed models borrow the same hyperprior from Mean-

Scale Hyperprior [Minnen et al., 2018].
4https://pypi.org/project/keras-flops/
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Figure 5.5: Comparison of the R-D performance of the proposed methods with existing neural
image compression methods. All the models were optimized for MSE distortion.

While most existing methods use analysis and synthesis transforms with symmetric com-

putational complexity, our proposed methods adopt the relatively more expensive analysis

transform from ELIC [He et al., 2022] (column “f ”), and drastically reduces the complexity of

the synthesis transform (column “g”) — over 50 times smaller than in ELIC, and 17 smaller

than in Mean-Scale Hyperprior.5 As a result, the hyper synthesis transform (the same as in

Mean-Scale Hyperprior) accounts for a great majority of our overall decoding complexity.

In Fig. 5.5a, we plot the R-D performance of various methods on the Kodak [1993] benchmark,

with quality measured in PSNR. We also compute the BD [Bjontegaard, 2001] rate savings

(%) relative to BPG [Bellard, 2014], and summarize the average BD rate savings v.s. the

total decoding complexity in Table 5.1 and Fig. 5.1. As can be seen, our model with ELIC

analysis transform and JPEG-like synthesis transform (green) comfortably outperforms the

Factorized Prior architecture [Ballé et al., 2017]; the latter employs a more expensive CNN

synthesis transform but a less powerful entropy model. However, our JPEG-like synthesis

still significantly lags behind BPG and the Mean-Scale Hyperprior. By adopting the two-
5In our preliminary measurements, this translates to 6 ∼ 12 times reduction in running time of the

synthesis transform compared to the Mean-Scale Hyperprior, depending the hardware used.
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Figure 5.6: Visualizing the different kinds of distortion artifacts at comparable low bit-rates
between various methods. Left to right: Mean-Scale Hyperprior [Minnen et al., 2018], two-
layer synthesis (proposed), JPEG-like synthesis (proposed), and BPG [Bellard, 2014]. See
Sec. 5.4.2 for relevant discussion.

layer synthesis (orange), the overall decoding complexity increases marginally (since the

majority of complexity comes from the hyper decoder), while the R-D performance improves

significantly, to within ≤ 6% bit-rate of BPG. Finally, performing iterative encoding with SGA

(blue) gives a further boost in R-D performance, outperforming the Mean-Scale Hyperprior

(and BPG) without incurring any additional decoding complexity.

Additionally, we examine the R-D performance using the more perceptually relevant MS-

SSIM metric [Wang et al., 2003]. Following standard practice, we display it in dB as

−10 log10(1−MS-SSIM). The results are shown in Fig. 5.5b. We observe largely the same

phenomenon as before under PSNR, except that the existing methods based on CNN decoders

achieve relatively much stronger performance compared to traditional codecs such as BPG

and JPEG 2000. Our proposed method with a two-layer synthesis and iterative encoding

(blue) still outperforms BPG, but no longer outperforms the Mean-Scale Hyperprior (pink).

Indeed, as we see in Fig. 5.6, the reconstructions of the proposed shallow synthesis transforms

can exhibit artifacts similar to classical codecs (e.g., BPG) at low bit-rates, such as blocking

or ringing, but to a lesser degree with the nonlinear two-layer synthesis (second panel) than

the JPEG-like synthesis (third panel).

In Sec. B.4 of the Appendix, we report additional R-D results evaluated on Tecnick [Asuni

and Giachetti, 2014] and the CLIC validation set [CLIC, 2018], as well as under the perceptual
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Figure 5.7: Comparing the distortion artifacts at low bit-rate for different kernel sizes
(k = 16, 18, 32, from left to right) in our JPEG-like synthesis, as well as a linear CNN
synthesis (rightmost panel). The JPEG-like blocking artifacts are reduced as k increases; see
Sec. 5.4.3.

distortion LPIPS [Zhang et al., 2018]. Overall, we find that our proposed two-layer synthesis

with SGA encoding matches the Hyperprior performance when evaluated on PSNR, but

under-performs by 8% ∼ 12% (in BD-rate) when evaluated on either MS-SSIM or LPIPS.

5.4.3 JPEG-Like Synthesis

In this section, we study the JPEG-like synthesis in isolation. We start with the Mean-Scale

Hyperprior architecture, and replace its CNN synthesis with a single transposed convolution

with varying kernel sizes. Additionally, instead of replacing the CNN synthesis entirely, we

also consider a linear version of it (“linear CNN synthesis”) where we remove all the nonlinear

activation functions. This results in a composition of four transposed convolution layers,

which in general cannot be expressed by a single transposed convolution; however, note that

this is still a linear (afffine) map from the latent space to image space.

Fig. 5.7 illustrates the distortion artifacts of the JPEG-like synthesis and linear CNN synthesis

at comparable bit-rates, and reveals the following: (i). Using the smallest non-degenerate

kernel size (k = s = 16) results in severe blocking artifacts, e.g., as seen in the 16 × 16

cloud patches in the sky, similarly to JPEG. (ii). Increasing k by a small amount (16 →
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Figure 5.8: Effect of increasing kernel size (k) on the performance of JPEG-like synthesis.
See Sec. 5.4.3 for details.

18) already helps smooth out the blocking, but further increase gives diminishing returns.

(iii). At k = 32, the reconstruction of JPEG-like synthesis no longer shows obvious blocking

artifacts, but shows ringing artifacts near object boundaries instead; the reconstruction by

the linear CNN synthesis gives visually very similar results.

Indeed, Fig. 5.8 confirms that increasing k quantitatively improves the R-D performance of

the JPEG-like synthesis, with k = 26 approaching the R-D performance of the linear CNN

synthesis (within 1% aggregate bit-rate) while requiring 94% less FLOPs. We conclude that

for image compression, a single transposed convolution with large enough kernel size can

largely emulate a deep but linear CNN in PSNR performance, and the additional nonlinearity

is necessary for the superior perceptual quality of nonlinear transform coding.

5.4.4 Ablation Studies

The analysis transform. We ablate on the choice of analysis transform for our proposed

two-layer synthesis architecture. Replacing the analysis transform of ELIC [He et al., 2022]
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Figure 5.9: Ablation on various architectural choices of the proposed two-layer synthesis
transform. BD-rate savings are evaluated on Kodak (the higher the better). See Sec. 5.4.4
for a discussion.

with that of Mean-Scale Hyperprior results in over 6% worse bitrate (with BPG as the anchor).

This gap can be reduced to ∼ 5% by increasing the number of base channels in the CNN

analysis, although with diminishing returns and becomes suboptimal compared to switching

to the ELIC analysis transform. See Appendix Sec. B.4 for details.

Two-layer synthesis architecture Due to resource constraints, we were not able to

conduct an exhaustive architecture search, and instead set the hyperparameters manually.

Fig. 5.9 presents ablation results on the main architectural elements of the proposed two-layer

synthesis. We found that the residual connection slightly improves the R-D performance at

low bit-rates, compared to a simple two-layer architecture with comparable FLOPs (using
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2N = 24 hidden channels). We also found the use of (inverse) GDN activation [Ballé et al.,

2016] and increased kernel size in the output layer (k2) to be beneficial, which only cost

a minor (less than 5%) increase in FLOPs . The number of channels (N) and kernel size

(k1) in the hidden layer are more critical in the trade-off between decoding FLOPs and R-D

performance, and we leave a more detailed architecture search to future work.

5.5 Related Work

Computationally efficient neural compression To reduce the high decoding complexity

in neural compression, Johnston et al. [2019] proposed to prune out filters in convolutional

decoders with group-Lasso regularization [Gordon et al., 2018]. Rippel and Bourdev [2017]

developed one of the earliest lossy neural image codecs with comparable running time

to classical codecs, based on a multi-scale autoencoder architecture inspired by wavelet

transforms such as JPEG 2000. Recent works propose computationally efficient neural

compression architectures based on residual blocks [Cheng et al., 2020, He et al., 2022], more

lightweight entropy model [He et al., 2021, 2022], network distillation [Wang et al., 2023],

and accelerating learned entropy coding [Liu et al., 2022]. We note there is also related effort

on improving the compression performance of traditional codecs with learned components

while maintaining high computational efficiency [Duong et al., 2023, Isik et al., 2023].

Test-time / encoding optimization in compression The idea of improving compression

performance with a powerful, content-adaptive encoding procedure is well-established in

data compression. Indeed, vector quantization [Gersho and Gray, 2012] can be seen as

implementing the most basic and general form of an optimization-based encoding procedure,

and can be shown to be asymptotically optimal in rate-distortion performance [Cover, 1999].

The encoders in commonly used traditional codecs such as H.264 [Sullivan et al., 2004] and
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HEVC [Sze et al., 2014] are also equipped with an exhaustive search procedure to select

the optimal block partitioning and coding modes for each image frame. More recently, the

idea of iterative and optimization-based encoding is becoming increasingly prominent in

nonlinear transform coding [Campos et al., 2019, Yang et al., 2020a, van Rozendaal et al.,

2021], as well as computer vision in the form of implicit neural representations [Park et al.,

2019, Mildenhall et al., 2021]. It is therefore interesting to see whether ideas from vector

quantization and implicit neural representations may prove fruitful for further reducing the

decoding complexity in NTC.

Manifold/metric learning A distantly related line of work is in metric learning with

deep generative models, where the idea is to learn a latent representation of the data such

that distance in the latent space preserves the similarity in the data space. Chen et al. [Chen

et al., 2018b] proposes the use of the Riemannian distance metric induced by a decoding

transform of a latent variable to measure similarity in the data space. Further, they proposed

to learn flat manifolds with VAEs [Chen et al., 2020], whose decoder essentially captures

the geodesic distance between data points in terms of the Euclidean distance between their

representations in the latent space. Their method is based on regularizing the Jacobian

J of the decoder such that JTJ ∝ I, resulting in a length-preserving decoder and a latent

space with low curvature, similar to what we observe with learned synthesis transforms in

Section 5.3.1.

5.6 Discussion

In this work, we took a step towards closing the enormous gap between the decoding

complexity of neural and traditional image compression methods. The main idea is to

exploit the often asymmetrical computation budget of encoding and decoding: by pairing

92



a lightweight decoder with a powerful encoder, we can obtain high R-D performance while

enjoying low decoding complexity. We formalize this intuition theoretically, and show that the

encoding procedure affects the R-D cost of lossy compression via an inference gap, and more

powerful encoders improve R-D performance by reducing this gap. In our implementation,

we adopt shallow decoding transforms inspired by classical codecs such as JPEG and JPEG

2000, while employing more sophisticated encoding methods including iterative inference.

Empirically, we show that by pairing a powerful encoder with a shallow decoding transform,

the resulting method achieves R-D performance competitive with BPG and the base Mean-

Scale Hyperprior architecture [Minnen et al., 2018], while reducing the complexity of the

synthesis transform by over an order of magnitude. We suspect that the synthesis complexity

can be further reduced by going beyond the transposed convolutions used in this work, e.g.,

via sub-pixel convolution [Shi et al., 2016] or (transposed) depthwise convolution, as well

as by exploiting the sparsity [Mallat, 2008] of the transform coefficients especially at low

bit-rates.

The success of nonlinear transform coding [Ballé et al., 2021] over traditional transform coding

can be mostly attributed to (1) data-adaptive transforms and (2) expressive deep entropy

models. We focused on improving the R-D-Compute efficiency of the synthesis transform,

given that it accounts for the vast majority of decoding complexity in existing approaches,

and left the hyperprior [Minnen et al., 2018] unchanged. As a result, entropy decoding (via

the hyper-synthesis transform) now takes up a majority (50 % - 80%) of the overall decoding

computation in our method. Interestingly, we note that related work on flat manifolds found

it necessary to use an expressive prior to learn a distance-preserving decoding transform

[Chen et al., 2020], and recent work in video compression [Mentzer et al., 2022] also features a

simplified transform in the data space and a more expressive and computationally expensive

entropy model. Given recent advances in computationally efficient entropy models [He et al.,

2022, 2021, Liu et al., 2022], we are optimistic that the entropy decoder in our approach can

be significantly improved in rate-distortion-complexity, and leave this important direction to
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future work.

A limitation of our shallow synthesis is its worse performance on perceptual distortion

compared to deeper architectures. Our study focused on the MSE distortion as in traditional

transform coding; in this setting, it is known that an orthogonal linear transform gives

optimal R-D performance for Gaussian-distributed data [Gersho and Gray, 2012]. However,

the distribution of natural images is far from Gaussian, and compression methods are

increasingly evaluated on perceptual metrics such as MS-SSIM [Wang et al., 2003] — both

factors motivating the use of nonlinear transforms. We believe insights from signal processing

and deep generative modeling may inspire more efficient nonlinear transforms with high

perceptual quality, or an efficient pipeline based on a cheap MSE-optimized reconstruction

followed by generative artifact removal/denoising for good perceptual quality.
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Chapter 6

Neural Network-Based Sandwich Bounds

on the Rate-Distortion Function

Most of the material in this chapter has been published in the following conference

paper,

Towards Empirical Sandwich Bounds on the Rate-Distortion

Function. Yibo Yang, and Stephan Mandt. International Conference

on Learning Representations (ICLR), 2022.

Additional results and supplementary information can be found in Appendix C, and

the project repo can be found at https://github.com/mandt-lab/RD-sandwich.

A word on notation: this chapter follows the same information-theoretic notation as in

Chapter 2.3, except that we denote the reproduction (random variable, point, alphabet)

by (Y, y,Y), instead of (X̂, x̂, X̂ ) to reduce visual clutter.

Rate-distortion (R-D) function, a key quantity in information theory, characterizes the

fundamental limit of how much a data source can be compressed subject to a fidelity
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criterion, by any compression algorithm. As researchers push for ever-improving compression

performance, establishing the R-D function of a given data source is not only of scientific

interest, but also reveals the possible room for improvement in compression algorithms.

Previous work on this problem relied on distributional assumptions on the data source

[Gibson, 2017] or only applied to discrete data. By contrast, this paper makes the first

attempt at an algorithm for sandwiching the R-D function of a general (not necessarily

discrete) source requiring only i.i.d. data samples. We estimate R-D sandwich bounds for a

variety of artificial and real-world data sources, in settings far beyond the feasibility of any

known method, and shed light on the optimality of neural data compression [Ballé et al.,

2021, Yang et al., 2023a]. Our R-D upper bound on natural images indicates theoretical

room for improving state-of-the-art image compression methods by at least one dB in PSNR

at various bitrates.

6.1 Introduction

From storing astronomical images captured by the Hubble telescope, to delivering familiar faces

and voices over video calls, data compression, i.e., communication of the “same” information

but with less bits, is commonplace and indispensable to our digital life, and even arguably

lies at the heart of intelligence [Mahoney, 2009]. While for lossless compression, there exist

practical algorithms that can compress any discrete data arbitrarily close to the information

theory limit [Ziv and Lempel, 1977, Witten et al., 1987], no such universal algorithm has been

found for lossy data compression [Berger and Gibson, 1998], and significant research efforts

have dedicated to lossy compression algorithms for various data. Recently, deep learning

has shown promise for learning lossy compressors from raw data examples, with continually

improving compression performance often matching or exceeding traditionally engineered

methods [Minnen et al., 2018, Agustsson et al., 2020, Yang et al., 2021].
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However, there are fundamental limits to the performance of any lossy compression algorithm,

due to the inevitable trade-off between rate, the average number of bits needed to represent

the data, and the distortion incurred by lossy representations. This trade-off is formally

described by the rate-distortion (R-D) function, for a given source (i.e., the data distribution

of interest; referred to as such in information theory) and distortion metric. The R-D function

characterizes the best theoretically achievable rate-distortion performance by any compression

algorithm, which can be seen as a lossy-compression counterpart and generalization of Shannon

entropy in lossless compression.

Despite its fundamental importance, the R-D function is generally unknown analytically, and

establishing it for general data sources, especially real world data, is a difficult problem [Gibson,

2017]. The default method for computing R-D functions, the Blahut-Arimoto algorithm

[Blahut, 1972, Arimoto, 1972], only works for discrete data with a known probability mass

function and has a complexity exponential in the data dimensionality. Applying it to an

unknown data source requires discretization (if it is continuous) and estimating the source

probabilities by a histogram, both of which introduce errors and are computationally infeasible

beyond a couple of dimensions. Previous work characterizing the R-D function of images

and videos [Hayes et al., 1970, Gibson, 2017] all assumed a statistical model of the source,

making the results dependent on the modeling assumptions.

In this work, we make progress on this long-standing problem in information theory using

tools from machine learning, and introduce new algorithms for upper and lower bounding the

R-D function of a general (i.e., discrete, continuous, or neither), unknown memoryless source.

More specifically,

1. Similarly to how a VAE with a discrete likelihood model minimizes an upper bound on

the data entropy, we establish that any β-VAE with a likelihood model induced by a

distortion metric minimizes an upper bound on the data rate-distortion function. We
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thus open the deep generative modeling toolbox to the estimation of an upper bound

on the R-D function.

2. We derive a lower bound estimator of the R-D function that can be made asymptotically

exact and optimized by stochastic gradient ascent. Facing the difficulty of the problem

involving global optimization, we restrict to a squared error distortion for a practical

implementation.

3. We perform extensive experiments and obtain non-trivial sandwich bounds on various

data sources, including GAN-generated artificial sources and real-world data from

speech and physics. Our results shed light on the effectiveness of neural compression

approaches [Ballé et al., 2021, Minnen et al., 2018, Minnen and Singh, 2020], and

identify the intrinsic (rather than nominal) dimension of data as a key factor affecting

the tightness of our lower bound.

4. Our estimated R-D upper bounds on high-resolution natural images (evaluated on the

standard Kodak and Tecnick datasets) indicate theoretical room for improvement of

state-of-the-art image compression methods by at least one dB in PSNR, at various

bitrates.

We begin by reviewing the prerequisite rate-distortion theory in Section 6.2, then describe

our upper and lower bound algorithms in Section 6.3 and Section 6.4, respectively. We

discuss related work in Section 6.5, report experimental results in Section 6.6, and conclude

in Section 6.7.

6.2 Background

Rate-distortion (R-D) theory deals with the fundamental trade-off between the average

number of bits per sample (rate) used to represent a data source X and the distortion
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incurred by the lossy representation Y . It asks the following question about the limit of lossy

compression: for a given data source and a distortion metric (a.k.a., a fidelity criterion), what

is the minimum number of bits (per sample) needed to represent the source at a tolerable

level of distortion, regardless of the computation complexity of the compression procedure?

The answer is given by the rate-distortion function R(D). To introduce it, let the source

and its reproduction take values in the sets X and Y, conventionally called the source and

reproduction alphabets, respectively. We define the data source formally by a random variable

X ∈ X following a (usually unknown) distribution PX , and assume a distortion metric

ρ : X × Y → [0,∞) has been given, such as the squared error ρ(x, y) = ∥x − y∥2. The

rate-distortion function is then defined by the following constrained optimization problem,

R(D) = inf
QY |X : E[ρ(X,Y )]≤D

I(X;Y ), (6.1)

where we consider all random transforms QY |X whose expected distortion is within the

given threshold D ≥ 0, and minimize the mutual information between the source X and its

reproduced representation Y . 1 Shannon’s lossy source coding theorems [Shannon, 1948,

1959] gave operational significance to the above mathematical definition of R(D), as the

minimum achievable rate with which any lossy compression algorithm can code i.i.d. data

samples at a distortion level within D.

The R-D function thus gives the tightest lower bound on the rate-distortion performance of

any lossy compression algorithm, and can inform the design and analysis of such algorithms.

If the operational distortion-rate performance of an algorithm lies high above the source

R(D)-curve (D,R(D)), then further performance improvement may be expected; otherwise,

its performance is already close to theoretically optimal, and we may focus our attention on

other aspects of the algorithm. As the R-D function does not have an analytical form in
1Both the expected distortion and mutual information terms are defined w.r.t. the joint distribution

PXQY |X . We formally describe the general setting of the paper, including the technical definitions, in
Appendix C.1.
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general, we propose to estimate it from data samples, making the standard assumption that

various expectations w.r.t. the true data distribution PX exist and can be approximated by

sample averages. When the source alphabet is finite, this assumption automatically holds,

and R(D) also provides a lower bound on the Shannon entropy of discrete data.

6.3 Upper Bound Algorithm

R-D theory [Cover and Thomas, 2006] tells us that every (distortion, rate) pair lying above

the R(D)-curve is in theory realizable by a (possibly expensive) compression algorithm. An

upper bound on R(D) thus reveals what kind of compression performance is theoretically

achievable. Towards this goal, we borrow the variational principle of the Blahut-Arimoto

(BA) algorithm, but extend it to a general (e.g., non-discrete) source requiring only its

samples. Our resulting algorithm optimizes a β-VAE whose likelihood model is specified by

the distortion metric, a common case being a Gaussian likelihood with a fixed variance. For

the first time, we establish this class of models as computing a model-agnostic upper bound

on the source R-D function, as defined by a data compression task.

Variational Formulation. Following the BA algorithm [Blahut, 1972, Arimoto, 1972], we

consider a Lagrangian relaxation of the constrained problem defining R(D), which has the

variational objective

L(QY |X , QY , λ) := Ex∼PX
[KL(QY |X=x∥QY )] + λEPXQY |X [ρ(X, Y )], (6.2)

where QY is a new, arbitrary probability measure on Y . The first (rate) term is a variational

upper bound on the mutual information I(X;Y ), and the second (distortion) term enforces

the distortion tolerance constraint in Eq. 6.1. For each fixed λ > 0, the BA algorithm globally

minimizes L w.r.t. the variational distributions QY |X and QY by coordinate descent; at
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convergence, the (distortion, rate) pair yields a point on the R(D) curve [Csiszár, 1974b].

Unfortunately, the BA algorithm only applies when X and Y are finite (hence discrete), and

the source distribution known. Otherwise, a preprocessing step is required to discretize a

continuous source and/or estimate source probabilities by a histogram, which introduces a

non-negligible bias. This bias, along with its exponential complexity in the data dimension,

also makes BA infeasible beyond a couple of (usually 2 or 3) dimensions.

Proposed Method. To avoid these difficulties, we propose to apply (stochastic) gradient

descent on L w.r.t. flexibly parameterized variational distributions QY |X and QY . In this

work we parameterize the distributions by neural networks, and predict the parameters of

each QY |X=x by an encoder network ϕ(x) as in amortized inference [Kingma and Welling,

2014]. Given data samples, the estimates of rate and distortion terms of L yield a point that

in expectation lies on an R-D upper bound RU (D), and we tighten this bound by optimizing

L; repeating this procedure for various λ traces out RU(D).

The objective L closely resembles the negative ELBO (NELBO) objective of a β-VAE [Higgins

et al., 2017] if we view the reproduction space Y as the “latent space”. The connection is

immediate when X is continuous and a squared error ρ specifies the density of a Gaussian

likelihood p(x|y) ∝ exp(−∥x − y|2). However, unlike in data compression, where Y is

determined by the application (and often equal to X for a full-reference distortion), the latent

space in a (β-)VAE typically has a lower dimension than X , and a decoder network is used

to parameterize a likelihood model in the data space. To capture this setup, we introduce

a new, arbitrary latent space Z on which we define variational distributions QZ|X , QZ , and

a (possibly stochastic) decoder function ω : Z → Y. This results in an extended objective,

resembling a β-VAE with a likelihood density p(x|z) ∝ exp{−ρ(x, ω(z)},

J(QZ|X , QZ , ω, λ) := Ex∼PX
[KL(QZ|X=x∥QZ)] + λEPXQZ|X [ρ(X,ω(Z))]. (6.3)
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This objective is closely related to the original data compression task and provides an upper

bound on the source R(D), as follows. Treating Z as the reproduction alphabet, we can

define a new distortion ρω(x, z) := ρ(x, ω(z)), and a ω-induced R-D function, Rω(D) :=

infQZ|X :E[ρω(X,Z)]≤D I(X;Z), for each choice of ω. Our Theorem C.3.1 then guarantees that

Rω(D) ≥ R(D), for any ω, and consequently the (distortion, rate) of J always lies above

R(D). Moreover, Rω(D) = R(D) for a bijective ω, which offers some theoretical support

for the use of invertible pixel-shuffle operations instead of upsampled convolutions in the

decoder of image compression autoencoders [Theis et al., 2017a, Cheng et al., 2020]. We can

now minimize the NELBO-like objective J w.r.t. the parameters of (QZ|X , QZ , ω) similar to

training a β-VAE, knowing that we are optimizing an upper bound on the rate-distortion

function of the source. This can be seen as the lossy counterpart to the lossless setting,

where it is well-established that minimizing the NELBO minimizes an upper bound on the

Shannon entropy of the source [Frey and Hinton, 1997, MacKay, 2003], the limit of lossless

data compression.

The extended objective offers the freedom to define variational distributions on any suitable

latent space Z, rather than Y , which we found to simplify the modeling task and yield tighter

bounds. E.g., even if Y is high-dimensional and discrete, we can still work with densities on a

continuous and lower-dimensional Z and draw upon tools such as normalizing flows [Kobyzev

et al., 2021]. We can also treat Z as the concatenation of sub-vectors [Z1, Z2, ..., ZL], and

parameterize QZ in terms of simpler component distributions QZ =
∏L

l=1QZl|Z<l
(similarly

for QZ|X) as in a hierarchical VAE.

6.4 Lower Bound Algorithm

Without knowing the tightness of an R-D upper bound, we could be wasting time and

resources trying to improve the R-D performance of a compression algorithm, when it is
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in fact already close to the theoretical limit. This would be avoided if we could find a

matching lower bound on R(D). Unfortunately, the problem turns out to be much more

difficult computationally. Indeed, every compression algorithm, or every pair of variational

distributions (QY , QY |X) yields a point above R(D). Conversely, establishing a lower bound

requires disproving the existence of any compression algorithm that can conceivably operate

below the R(D) curve. In this section, we derive an algorithm that can in theory produce

arbitrarily tight R-D lower bounds. However, as an indication of its difficulty, the problem

requires globally maximizing a family of partition functions. By restricting to a continuous

reproduction alphabet and a squared error distortion, we make some progress on this problem

and obtain useful lower bounds especially on data with low intrinsic dimension (see Sec. 6.6).

rate

distortion

Figure 6.1: The geometry of the
R-D lower bound problem. For a
given slope −λ, we seek to maximize
the rate-axis intercept, E[− log g(X)],
over all g ≥ 0 functions admissible ac-
cording to Eq. 6.6.

Dual characterization of R(D). While upper

bounds on R(D) arise naturally out of its definition as

a minimization problem, a variational lower bound re-

quires expressing R(D) through a maximization prob-

lem. For this, we introduce a “dual” function as the

optimum of the Lagrangian Eq. 6.2 (QY is eliminated

by replacing the rate upper bound with the exact

mutual information I(X;Y )):

F (λ) := inf
QY |X

I(X;Y ) + λE[ρ(X, Y )]. (6.4)

As illustrated by Fig. 6.1, F (λ) is the maximum R-axis intercept of a straight line with

slope −λ, among all such lines that lie below or tangent to R(D); the R-D curve can then

be found by taking the upper envelope of lines with slope −λ and R-intercept F (λ), i.e.,

R(D) = maxλ≥0 F (λ)− λD. This key result is captured mathematically by Lemma C.1.1,

and the following theorem:
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Theorem 6.4.1. [Csiszár, 1974c] (As follows, all the expectations are with respect to the

data source r.v. X ∼ PX .) Under basic conditions (e.g., satisfied by a bounded ρ; see Appendix

C.2.1), it holds that

F (λ) = max
g(x)
{E[− log g(X)]}, (6.5)

where the maximization is over all non-negative functions g : X → [0,∞) satisfying the

constraint

E
[
exp(−λρ(X, y))

g(X)

]
=

∫
exp(−λρ(x, y))

g(x)
dPX(x) ≤ 1,∀y ∈ Y . (6.6)

In other words, every admissible g yields a lower bound of R(D), via an underestimator

of the intercept E[− log g(X)] ≤ F (λ). We give the origin of this result in related work in

Section 6.5.

Proposed Unconstrained Formulation. The constraint in Eq. 6.6 is concerning—it is a

family of possibly infinitely many constraints, one for each y. To make the problem easier to

work with, we propose to eliminate the constraints by the following transformation. Let g be

defined in terms of another function u(x) ≥ 0 and a scalar c depending on u, such that

g(x) := cu(x), where c := sup
y∈Y

Ψu(y), and Ψu(y) := E
[
exp−λρ(X, y)

u(X)

]
. (6.7)

This reparameterization of g is without loss of generality, and can be shown to always

satisfy the constraint in Eq. 6.6. While this form of g bears a superficial resemblance to an

energy-based model [LeCun et al., 2006], with 1
c

resembling a normalizing constant, there

is an important difference: c = supy Ψu(y) is in fact the supremum of a family of “partition

functions” Ψu(y) indexed by y; we thus refer to c as the sup-partition function. Although all
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these quantities have λ-dependence, we omit this from our notation since λ is a fixed input

parameter (as in the upper bound algorithm).

Consequently, F is now the result of unconstrained maximization over all u functions, and

we obtain a lower bound on it by restricting u to a subset of functions with parameters θ

(e.g., neural networks),

F (λ) = max
u≥0
{E[− log u(X)]− log sup

y∈Y
Ψu(y)} ≥ max

θ
{E[− log uθ(X)]− log sup

y∈Y
Ψθ(y)}

Define the θ-parameterized objective ℓ(θ) := E[− log uθ(X)]−log c(θ), with c(θ) = supy∈Y Ψθ(y).

Given samples of X, we can in principle maximize ℓ(θ) by (stochastic) gradient ascent. How-

ever, computing the sup-partition function c(θ) poses serious computation challenges: even

evaluating Ψθ(y) for a single y value involves a potentially high-dimensional integral w.r.t.

PX ; this is only exacerbated by the need to globally optimize w.r.t. y, an NP-hard problem

even in one-dimension.

Proposed Method. To tackle this problem, we propose an over-estimator of the sup-

partition function inspired by IWAE [Burda et al., 2015]. Fix θ for now; we denote the

integrand in Eq. 6.7 by ψ(x, y) := exp−λρ(x,y)
u(x)

(so c = supy∈Y E[ψ(X, y)]), and omit the

dependence on θ to simplify notation. Given k ≥ 1 i.i.d. random variables X1, ..., Xk∼PX ,

define the estimator Ck := supy
1
k

∑
i ψ(Xi, y). We prove in Theorem C.3.2 that E[C1] ≥

E[C2] ≥ ... ≥ c, i.e., Ck is in expectation an over-estimator of the sup-partition function c.

Similarly to the Importance-Weighted ELBO [Burda et al., 2015], the bias of this estimator

decreases monotonically as k →∞, and asymptotically vanishes under regularity assumptions.

In light of this, we replace c by E[Ck] and obtain a k-sample under-estimator of the objective

ℓ(θ) (which in turn underestimates F (λ)):

ℓk(θ) := E[− log uθ(X)]− logE[Ck]; moreover, ℓ1(θ) ≤ ℓ2(θ) ≤ ... ≤ ℓ(θ).
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In order to apply stochastic gradient ascent, we overcome two more technical hurdles. First,

each draw of Ck requires solving a global maximization problem. We note that by restricting

to a squared-error ρ and Y = X , Ck can be computed by finding the mode of a Gaussian

mixture density; for this we use the method of Carreira-Perpinan [2000], essentially by

hill-climbing from each of the k centroids. Second, to turn − logE[Ck] into an expectation, we

follow Poole et al. [2019] and underestimate it by linearizing − log around a scalar parameter

α > 0, resulting in the following lower bound objective:

ℓ̃k(θ) := E[− log uθ(X)]− E[Ck]/α− logα + 1. (6.8)

ℓ̃k(θ) can finally be estimated by sample averages, and yields a lower bound on the optimal

intercept F (λ), via ℓ̃k(θ) ≤ ℓk(θ) ≤ ℓ(θ) ≤ F (λ). A trained model uθ∗ then yields an R-D

lower bound, RL(D) = −λD + ℓ̃k(θ
∗). We give a more detailed derivation and pseudocode in

Appendix C.4.

6.5 Related Work

Machine Learning and Compression: The past few years have seen significant progress

in applying machine learning to lossy data compression. Theis et al. [2017a], Ballé et al. [2017]

first showed that a particular type of β-VAE can be trained to perform data compression

using the same objective as Eq. 6.3. The variational distributions in such a model have

shape restrictions to simulate quantization and entropy coding [Ballé et al., 2017]. Our

upper bound is directly inspired by this line of work, and suggests that such a model can

in principle compute the source R-D function when equipped with sufficiently expressive

variational distributions and a “rich enough” decoder (see Sec. 6.3). We note however not

all compressive autoencoders admit a probabilistic formulation [Theis et al., 2017a]; recent

work has found training with hard quantization to improve compression performance [Minnen

106



and Singh, 2020], and methods have been developed [Agustsson and Theis, 2020, Yang

et al., 2020a] to reduce the gap between approximate quantization at training time and hard

quantization at test time. Departing from compressive autoencoders, Yang et al. [2020b]

and Flamich et al. [2020b] use Gaussian β-VAEs for data compression and exploit the

flexibility of variable-width Gaussian posteriors. Flamich et al. [2020b]’s relative entropy

coding method, and the related reverse channel coding or channel simulation algorithms

[Theis and Yosri, 2021] (reviewed in Section 3.2.2 of the current thesis), can transmit a sample

of QZ|X with a rate close to that optimized by our upper bound model in Eq. 6.3, more

precisely, I(X;Z) + log(I(X;Z) + 1) +O(1). i.e., in this one-shot setting (which is standard

for neural image compression), R(D) is no longer achievable; rather, the achievable R-D

performance is characterized by R(D) + log(R(D) + 1) +O(1). Therefore, our R-D bounds

can be shifted upwards by this logarithmic factor to give an estimate of the achievable R-D

performance in this setting.

Information theory has also broadly influenced unsupervised learning and representation

learning. The Information Bottleneck method [Tishby et al., 2000] was directly motivated by,

and extends R-D theory and the BA algorithm. Alemi et al. [2018] analyzed the relation

between generative modeling and representation learning with a similar R-D Lagrangian to

Eq. 6.2, but used an abstract, model-dependent distortion ρ(y, x) := − log p(x|y) with an

arbitrary Y and without considering a data compression task. Recently, Huang et al. [2020]

proposed to evaluate decoder-based generative models by computing a restricted version of

Rω(D) (with QY fixed); our result in Sec. 6.3 (Rω(D) ≥ R(D)) gives a principled way to

interpret and compare these model-dependent R-D curves.

Information Theory: While the BA algorithm [Blahut, 1972, Arimoto, 1972] computes

the R(D) of a discrete source with a known distribution, no tool currently exists for the

general and unknown case. Riegler et al. [2018] share our goal of computing R(D) of a
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general source, but still require the source to be known analytically and supported on a

known reference measure. Harrison and Kontoyiannis [2008] consider the same setup as ours

of estimating R(D) of an unknown source from samples, but focus on purely theoretical

aspects, assuming prefect optimization. They prove statistical consistency of such estimators

for a general class of alphabets and distortion metrics, assuring that our stochastic bounds

on R(D) optimized from data samples, when given unlimited computation and samples, can

converge to the true R(D). Perhaps closest in spirit to our work is by Gibson [2017], who

estimates lower bounds on R(D) of speech and video using Gaussian autoregressive models

of the source. However, the correctness of the resulting bounds depends on the modeling

assumptions.

A variational lower bound on R(D) was already proposed by Shannon [1959], and later

extended [Berger, 1971] to the present version similar to Theorems 6.4.1 and C.2.1. In the

finite-alphabet case, the maximization characterization of R(D) follows from taking the

Lagrange dual of its standard definition in Eq. 6.1; the dual problem can then be solved by

convex optimization [Chiang and Boyd, 2004], but faces the same computational difficulties

as the BA algorithm. Csiszár [1974c] proved the general result in Theorem 6.4.1, applicable

to abstract alphabets (in particular, with source X taking values in an arbitrary probability

space), by analyzing the fixed-point conditions of the BA algorithm.

6.6 Experiments

We estimate the R-D functions of a variety of artificial and real-world data sources, in settings

where the BA algorithm is infeasible and no prior known method has been applied. On

Gaussian sources, our upper bound algorithm is shown to converge to the exact R-D

function, while our lower bounds become increasingly loose in higher dimensions, an issue

we investigate subsequently. We obtain tighter sandwich bounds on particle physics and
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speech data than on similar dimensional Gaussians, and compare with the performance of

neural compression. We further investigate looseness in the lower bound, experimentally

establishing the intrinsic dimension of the data as a much more critical contributing factor

than the nominal/ambient dimension. Indeed, we obtain tight sandwich bounds on high-

dimension GAN-generated images with a low intrinsic dimension, and compare with

popular neural image compression methods. Finally, we estimate bounds on the R-D function

of natural images. The intrinsic dimension is likely too high for our lower bound to be

useful, while our upper bounds on the Kodak and Tecnick datasets imply at least one dB

(in PSNR) of theoretical room for improving state-of-the-art image compression methods, at

various bitrates. We also validate our bounds against the BA algorithm over the various data

sources, using a 2D marginal of the source to make BA feasible. We provide experimental

details and additional results in Appendix C.5 and C.6.

6.6.1 Gaussian Sources

We start by applying our algorithms to the factorized Gaussian distribution, one of the few

sources with an analytical R-D function. We randomly generate the Gaussian sources in

increasing dimensions.

For the upper bound algorithm, we let QY and QY |X be factorized Gaussians with learned

parameters, predicting the parameters of QY |X by a 1-layer MLP encoder. As shown in

Fig. 6.2a-top, on a n = 1000 dimensional Gaussian (the results are similar across all the n we

tested), our upper bound (yellow curve) accurately recovers the analytical R(D). We also

optimized the variational distributions in a latent space Z with varying dimensions, using an

MLP decoder to map from Z to Y (see Sec. 6.3). The resulting bounds are similarly tight

when the latent dimension matches or exceeds the data dimension n (green, brown), but

become loose otherwise (red and purple curves), demonstrating the importance of a rich
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Figure 6.2: 6.2a top: R-D upper bound estimates on a randomly generated n =1000-
dimensional Gaussian source; bottom: R-D lower bound estimates on standard Gaussians
with increasing dimensions (the result of the BA algorithm for n = 2 is also shown for
reference). 6.2b top: estimated R-D bounds and the R-D performance of Ballé et al. [2021]
on the particle physics dataset; bottom: the same experiment but on a 2D marginal distribution
of the data, to compare with the BA algorithm. 6.2c: the same set of experiments as in
6.2b, repeated on the speech dataset. 6.2d top: histogram of the 2D marginal distribution
of the physics data; bottom: example spectrogram computed on a speech clip.

enough latent space for a tight R-D bound, as suggested by our Theorem C.3.1.

For the lower bound algorithm, we parameterize log u by a 2-layer MLP, and study the effect

of source dimension n and the number of samples k used in our estimator Ck (and objective

ℓ̃k). To simplify comparison of results across different source dimensions, here we consider

standard Gaussian sources, whose R-D curve does not vary with n if we scale the rate by

1
n

(i.e., rate per sample per dimension); the results on randomly generated Gaussians are

similar. First, we fix k = 1024; Fig. 6.2a-bottom shows that the resulting bounds quickly

become loose with increasing source dimension. This is due to the bias of our estimator Ck

for the sup-partition function, which causes under-estimation in the objective ℓ̃k. While Ck is

defined similarly to an M-estimator [Van der Vaart, 2000], analyzing its convergence behavior

is not straightforward, as it depends on the function u being learned. In this experiment, we

observe the bias of Ck is amplified by an increase in n or λ, such that an increasingly large k

is required for effective training. In another experiment, we estimate that the k needed to
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close the gap in the lower bound increases exponentially in n; see results in Fig. C.1, and

a detailed discussion on this, in Appendix C.5.2. Fortunately, as we see in Sec. 6.6.3, the

bias in our lower bound appears to depend on the intrinsic rather than (often much higher)

nominal dimension of data, giving us a more favorable trade-off between computation and a

tighter lower bound as controlled by k.

6.6.2 Data from Particle Physics and Speech

The quickly deteriorating lower bound on higher (even 16) dimensional Gaussians may seem

disheartening. However, the Gaussian is also the hardest continuous source to compress under

squared error [Gibson, 2017], and real-world data often exhibits considerably more structure

than Gaussian noise. In this subsection, we experiment on data from particle physics [Howard

et al., 2021] and speech [Jackson et al., 2018], and indeed obtain improved sandwich bounds

compared to Gaussians.

First, we consider the Z-boson decay dataset from Howard et al. [2021], containing n=16-

dimensional vectors of four-momenta information from independent particle decay events. We

ran the neural compression method from [Ballé et al., 2021], as well as our bounding algorithms

with similar configurations to before, except we fix k = 2048 for the lower bound, and use

a normalizing flow for QZ in the upper bound model for better expressiveness. Fig. 6.2b

top shows the resulting estimated R-D bounds (sandwiched region colored in red) and the

operational R-D curve for Ballé et al. [2021] (blue). The resulting sandwich bounds appear

significantly tighter here than on the Gaussian source with equal dimension (n = 16, bottom

curve in Fig. 6.2a bottom), and the neural compression method operates with a relatively

small average overhead of 0.5 nat/sample relative to our upper bound. To also compare to the

ground-truth R(D) as estimated by the BA algorithm, we created a 2-dimensional marginal

data distribution (plotted in Fig. 6.2d top), so that the BA algorithm can be feasibly run
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with a fine discretization grid. As shown in Fig. 6.2b, the BA estimate of R(D) (green)

almost overlaps with our upper bound on the 2D marginal, and is tightly sandwiched from

below by our lower bound.

We then repeat the same experiments on speech data from the Free Spoken Digit Dataset

[Jackson et al., 2018]. We constructed our dataset by pre-processing the audio recordings into

spectrograms (see, e.g., Fig. 6.2d bottom), then treating the resulting n = 33-dimensional

frequency feature vectors as independent across time. As shown in Fig. 6.2c, the gap in

our R-D bounds appears wider than on the physics dataset (top), but the results on the

corresponding 2D marginal appear similar (bottom).

6.6.3 The Effect of Intrinsic v.s. Nominal Dimension of Data

It is known that learning a manifold has a complexity that depends on the intrinsic dimension

of the manifold, but not on its ambient dimension [Narayanan and Mitter, 2010]. Our

experiments suggest a similar phenomenon for our lower bound, and show that we can still

obtain tight sandwich bounds on data with a sufficiently low intrinsic dimension despite the

high ambient dimension.

First, we explore the effect of increasing the ambient dimension, while keeping the intrinsic

dimension of the data fixed. We borrow the 2D banana-source from Ballé et al. [2021]

(visualized in Fig. 6.3), and randomly embed it in Rn. As shown in Fig. 6.4 and Fig. 6.5, our

sandwich bounds on the 2D source appear tight, and closely agree with BA (similar to the

results in Fig. 6.2); moreover, the tightness appears unaffected by the increase in ambient

dimension n to 4, 16, and 100 (we verified this for n up to 1000). Unlike in the Gaussian

experiment, where increasing n required seemingly exponentially larger k for a good lower

bound, here a constant k = 1024 worked well for all n.
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Figure 6.3: Density plot of
the 2D banana-shaped distri-
bution from Ballé et al. [2021].
The distribution is obtained
by a nonlinear transform of a
2D Gaussian.
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Figure 6.5: R-D sandwich
bounds on higher-dimension
embeddings of the banana-
shaped source. The tightness
of our bounds appear unaf-
fected by the increasing n.

Next, we experiment on high-dimension GAN-generated images with varying intrinsic dimen-

sion, and obtain R-D sandwich bounds that help assess neural image compression methods.

Following Pope et al. [2021], we generate 128 × 128 images of basenji from a pre-trained

GAN, and control the intrinsic dimension by zeroing out all except d dimensions of the noise

input to the GAN. As shown in Fig. 6.6-Left, the images appear highly realistic, showing

dogs with subtly different body features and in various poses. We implemented a 6-layer

ResNet-VAE [Kingma et al., 2016] for our upper bound model, and a simple convolutional

network for our lower bound model. Fig. 6.6-Middle plots our resulting R-D bounds and the

sandwiched region (red), along with the operational R-D curves (blue, green) of neural im-

age compression methods [Minnen et al., 2018, Minnen and Singh, 2020] trained on the GAN

images, for d = 2 and d = 4. We see that despite the high dimensionality (n = 128× 128× 3),

the images require few nats to compress; e.g., for d = 4, we estimate R(D) to be between

∼ 4 and 8 nats per sample at D = 0.001 (30 dB in PSNR). Notably, the R-D curve of

Minnen and Singh [2020] stays roughly within a factor of 2 above our estimated true R(D)

region. The neural compression methods show improved performance as d decreases from 4

to 2, following the same trend as our R-D bounds. This demonstrates the effectiveness of
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Figure 6.6: Left: 128×128 GAN-generated images, with intrinsic dimension d = 4. Middle:
Bounds on R(D) of GAN images, for d = 2 (top) and d = 4 (bottom). Right: Quality-rate
curves of ours and state-of-the-art image compression methods on Kodak [1993], corresponding
to R-D upper bounds.

learned compression methods at adapting to low-dimensional structure in data, in contrast

to traditional methods such as JPEG, whose R-D curve on this data does not appear to vary

with d and lies orders of magnitude higher.

6.6.4 Natural Images

To establish upper bounds on the R-D function of natural images, we define variational

distributions (QZ , QZ|X) on a Euclidean latent space for simplicity, and parameterize them

as well as a learned decoder ω via hierarchical VAEs. We consider two VAE architectures: 1.

we borrow the convolutional autoencoder architecture of a state-of-the-art image compression

model [Minnen and Singh, 2020], but use factorized Gaussians for the variational distributions

(we still keep the deep factorized hyperprior, but no longer convolve it with a uniform prior); 2.

we also reuse our ResNet-VAE architecture with 6 stochastic layers from the GAN experiments

(Sec. 6.6.3). We trained the models with mean-squared error (MSE) distortion and various λ

on the COCO 2017 [Lin et al., 2014] images, and evaluated them on the Kodak [1993] and

Tecnick [Asuni and Giachetti, 2014] datasets. Following image compression conventions, we
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report the rate in bits-per-pixel, and the quality (i.e., negative distortion) in PSNR averaged

over the images for each (λ, model) pair.2 The resulting quality-rate (Q-R) curves can be

interpreted as giving upper bounds on the R-D functions of the image-generating distributions.

We plot them in Fig. 6.6, along with the Q-R performance (in actual bitrate) of various

traditional and learned image compression methods [Ballé et al., 2017, Minnen et al., 2018,

Minnen and Singh, 2020], for the Kodak dataset (see similar results on Tecnick in Appendix

Fig. C.5). Our β-VAE version of [Minnen and Singh, 2020] (orange) lies on average 0.7

dB higher than the Q-R curves of the original compression model (red) and VTM (green).

With a deeper latent hierarchy, our ResNet-(β-)VAE gives a higher Q-R curve (blue) that is

on average 1.1 dB above the state-of-the-art Q-R curves (gap shaded in cyan). We leave

it to future work to investigate which choice of autoencoder architecture and variational

distributions are most effective, as well as how the theoretical R-D performance of such a

β-VAE can be realized by a practical compression algorithm (see discussions in Sec. 6.5).

6.7 Discussions

In this work, we proposed machine learning techniques to computationally bound the rate-

distortion function of a data source, a key quantity that characterizes the fundamental

performance limit of all lossy compression algorithms, but is largely unknown. Departing

from prior work in the information theory community [Gibson, 2017, Riegler et al., 2018],

our approach applies broadly to general data sources and requires only i.i.d. samples, making

it more suitable for real-world application.

Our upper bound method is a gradient descent version of the classic Blahut-Arimoto algorithm,

and closely relates to (and extends) variational autoencoders from neural lossy compression
2Technically, to estimate an R-D upper bound with MSE as ρ, one should compute the distortion by

averaging MSE (instead of PSNR) on images; however, the results of many image compression baselines are
only available in average PSNR.
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research. Our lower bound method optimizes a dual characterization of the R-D function,

which has been known for some time but seen little application outside of theoretical work.

Due to difficulties involving global optimization, our lower bound currently requires a squared

error distortion for tractability in the continuous case, and is only tight on data sources with

a low intrinsic dimension. We hope that a better understanding of the lower bound problem

will lead to improved algorithms in the future.

To properly interpret bounds on the R-D function, we emphasize that the significance of

the R-D function is two-fold: 1. for a given distortion tolerance D, no coding procedure can

operate with a rate less than R(D), and that 2. this rate is asymptotically achievable by a

potentially expensive block code. Thus, while a lower bound makes a universal statement

about what performance is “too good to be true”, the story is more subtle for the upper

bound. The achievability proof relies on a random coding procedure that jointly compresses

multiple data samples in arbitrarily long blocks [Shannon, 1959]. When compressing at a

finite block length b, R(D) is generally no longer achievable due to a O( 1√
b
) rate overhead

[Kontoyiannis, 2000, Kostina and Verdú, 2012]. Extending our work to the settings of finite

block lengths or non-memoryless sources may be additional future directions.
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Chapter 7

Statistical and Optimal-Transport

Perspectives on the Estimation of the

Rate-Distortion Function

Most of the material in this chapter has been published in the following conference

paper,

Estimating the Rate-Distortion Function by Wasserstein

Gradient Descent. Yibo Yang, Stephan Eckstein, Marcel Nutz,

Stephan Mandt. Conference on Neural Information Processing Sys-

tems (NeurIPS), 2023.

Additional results and supplementary information can be found in Appendix D, and

the project repo can be found at https://github.com/yiboyang/wgd.

A word on notation: this chapter follows the same information-theoretic notation as in

Chapter 6, and introduces new notation from optimal transport.
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In the theory of lossy compression, the rate-distortion (R-D) function R(D) describes how

much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion).

Obtaining R(D) for a given data source establishes the fundamental performance limit for all

compression algorithms. We propose a new method to estimate R(D) from the perspective

of optimal transport. Unlike the classic Blahut–Arimoto algorithm which fixes the support of

the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns

the support of the optimal reproduction distribution by moving particles. We prove its local

convergence and analyze the sample complexity of our R-D estimator based on a connection

to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than

state-of-the-art neural network methods on low-rate sources while requiring considerably

less tuning and computation effort. We also highlight a connection to maximum-likelihood

deconvolution and introduce a new class of sources that can be used as test cases with known

solutions to the R-D problem.

7.1 Introduction

The rate-distortion (R-D) function R(D) occupies a central place in the theory of lossy

compression. For a given data source and a fidelity (or distortion) criterion, R(D) characterizes

the minimum possible communication cost needed to reproduce a source sample within an

error threshold of D, by any compression algorithm [Shannon, 1959]. A basic scientific and

practical question is therefore establishing R(D) for any given data source of interest, which

helps assess the (sub)optimality of the compression algorithms and guide their development.

The classic algorithm by Blahut [1972] and Arimoto [1972] assumes a known discrete source

and computes its R(D) by an exhaustive optimization procedure. This often has limited

applicability in practice, and a line of research has sought to instead estimate R(D) from

data samples [Harrison and Kontoyiannis, 2008, Gibson, 2017], with recent methods [Yang
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and Mandt, 2022, Lei et al., 2023a] inspired by deep generative models.

In this work, we propose a new approach to R-D estimation from the perspective of optimal

transport. Our starting point is the formulation of the R-D problem as the minimization

of a certain rate functional [Harrison and Kontoyiannis, 2008] over the space of probability

measures on the reproduction alphabet. Optimization over such an infinite-dimensional space

has long been studied under gradient flows [Ambrosio et al., 2008], and we consider a concrete

algorithmic implementation based on moving particles in space. This formulation of the

R-D problem also suggests connections to entropic optimal transport and non-parametric

statistics, each offering us new insight into the solution of the R-D problem under a quadratic

distortion. More specifically, our contributions are three-fold:

First, we introduce a neural-network-free R(D) upper bound estimator for continuous alpha-

bets. We implement the estimator by Wasserstein gradient descent (WGD) over the space of

reproduction distributions. Experimentally, we found the method to converge much more

quickly than state-of-the-art neural methods with hand-tuned architectures, while offering

comparable or tighter bounds.

Second, we theoretically characterize convergence of our WGD algorithm and the sample

complexity of our estimator. The latter draws on a connection between the R-D problem and

that of minimizing an entropic optimal transport (EOT) cost relative to the source measure,

allowing us to turn statistical bounds for EOT [Mena and Niles-Weed, 2019] into finite-sample

bounds for R-D estimation.

Finally, we introduce a new, rich class of sources with known ground truth, including Gaussian

mixtures, as a benchmark for algorithms. While the literature relies on the Gaussian or

Bernoulli for this purpose, we use the connection with maximum likelihood deconvolution to

show that a Gaussian convolution of any distribution can serve as a source with a known

solution to the R-D problem.
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7.2 Lossy Compression, Entropic Optimal Transport, and

MLE

This section introduces the R-D problem and its rich connections to entropic optimal transport

and statistics, along with new insights into its solution. Sec. 7.2.1 sets the stage for our

method (Sec. 7.4) by a known formulation of the standard R-D problem as an optimization

problem over a space of probability measures. Sec. 7.2.2 discusses the equivalence between

the R-D problem and a projection of the source distribution under entropic optimal transport;

this is a key to our sample complexity results in Sec. 7.4.3. Lastly, Sec 2.3 gives a statistical

interpretation of R-D as maximum-likelihood deconvolution and uses it to analytically derive

a segment of the R-D curve for a new class of sources under quadratic distortion; this allows

us to assess the optimality of algorithms in experiment Sec. 7.5.1.

7.2.1 Setup

For a memoryless data source X with distribution PX , its rate-distortion (R-D) function

describes the minimum possible number of bits per sample needed to reproduce the source

within a prescribed distortion threshold D. Let the source and reproduction take values in two

sets X and Y , known as the source and reproduction alphabets, and let ρ : (X ,Y)→ [0,∞)

be a given distortion function. The R-D function is defined by the following optimization

problem [Polyanskiy and Wu, 2022],

R(D) = inf
QY |X :EPXQY |X [ρ(X,Y )]≤D

I(X;Y ), (7.1)

where QY |X is any Markov kernel from X to Y conceptually associated with a (possibly)

stochastic compression algorithm, and I(X;Y ) is the mutual information of the joint distri-

bution PXQY |X .
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For ease of presentation, we now switch to a more abstract notation without reference to

random variables. We provide the precise definitions in Appendix D. Let X and Y be standard

Borel spaces; let µ ∈ P(X ) be a fixed probability measure on X , which should be thought of

as the source distribution PX . For a measure π on the product space X × Y , the notation π1

(or π2) denotes the first (or second) marginal of π. For any ν ∈ P(Y), we denote by Π(µ, ν)

the set of couplings between µ and ν (i.e., π1 = µ and π2 = ν). Similarly, Π(µ, ·) denotes

the set of measures π with π1 = µ. Throughout the paper, K denotes a transition kernel

(conditional distribution) from X to Y , and µ⊗K denotes the product measure formed by µ

and K. Then R(D) is equivalent to

R(D) = inf
K:

∫
ρd(µ⊗K)≤D

H(µ⊗K|µ⊗ (µ⊗K)2) = inf
π∈Π(µ,·):

∫
ρdπ≤D

H(π|π1 ⊗ π2), (7.2)

where H denotes relative entropy, i.e., for two measures α, β defined on a common measurable

space, H(α|β) :=
∫
log(dα

dβ
)dα when α is absolutely continuous w.r.t β, and infinite otherwise.

To make the problem more tractable, we follow the approach of the classic Blahut–Arimoto

algorithm [Blahut, 1972, Arimoto, 1972] (to be discussed in Sec. 7.3.1) and work with an

equivalent unconstrained Lagrangian problem as follows. Instead of parameterizing the R-D

function via a distortion threshold D, we parameterize it via a Lagrange multiplier λ ≥ 0.

For each fixed λ (usually selected from a predefined grid), we aim to solve the following

optimization problem,

Fλ(µ) := inf
ν∈P(Y)

inf
π∈Π(µ,·)

λ

∫
ρdπ +H(π|µ⊗ ν). (7.3)

Geometrically, Fλ(µ) ∈ R is the y-axis intercept of a tangent line to the R(D) with slope −λ,

and R(D) is determined by the convex envelope of all such tangent lines [Gray, 2011]. To

simplify notation, we often drop the dependence on λ (e.g., we write F (µ) = Fλ(µ)) whenever

it is harmless.
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To set the stage for our later developments, we write the unconstrained R-D problem as

Fλ(µ) = inf
ν∈P(Y)

LBA(µ, ν), (7.4)

LBA(µ, ν) := inf
π∈Π(µ,·)

λ

∫
ρdπ +H(π|µ⊗ ν) = inf

K
λ

∫
ρd(µ⊗K) +H(µ⊗K|µ⊗ ν),

(7.5)

where we refer to the optimization objective LBA as the rate function [Harrison and Kon-

toyiannis, 2008]. We abuse the notation to write LBA(ν) := LBA(µ, ν) when it is viewed as

a function of ν only, and refer to it as the rate functional. The rate function characterizes

a generalized Asymptotic Equipartition Property, where LBA(µ, ν) is the asymptotically

optimal cost of lossy compression of data X ∼ µ using a random codebook constructed from

samples of ν [Dembo and Kontoyiannis, 2002]. Notably, the optimization in (7.5) can be

solved analytically [Csiszár, 1974a, Lemma 1.3], and LBA simplifies to

LBA(µ, ν) =

∫

X
− log

(∫

Y
e−λρ(x,y)ν(dy)

)
µ(dx). (7.6)

In practice, the source µ is only accessible via independent samples, on the basis of which we

propose to estimate its R(D), or equivalently F (µ). Let µm denote an m-sample empirical

measure of µ, i.e., µm =
∑m

i=1 δxi
with x1,...,n being independent samples from µ, which

should be thought of as the “training data”. Following Harrison and Kontoyiannis [2008],

we consider two kinds of (plug-in) estimators for F (µ): (1) the non-parametric estimator

F (µm), and (2) the parametric estimator FH(µm) := infν∈H LBA(µ
m, ν), where H is a family

of probability measures on Y. Harrison and Kontoyiannis [2008] showed that under rather

broad conditions, both kinds of estimators are strongly consistent, i.e., F (µm) converges to

F (µ) (and respectively, FH(µm) to FH(µ)) with probability one as m→∞. Our algorithm

will implement the parametric estimator FH(µm) with H chosen to be the set of probability

measures with finite support, and we will develop finite-sample convergence results for both

122



kinds of estimators in the continuous setting (Proposition. 7.4.3).

7.2.2 Connection to Entropic Optimal Transport

The R-D problem turns out to have a close connection to entropic optimal transport (EOT)

[Peyré and Cuturi, 2019], which we will exploit in Sec. 7.4.3 to obtain sample complexity

results under our approach. For ϵ > 0, the entropy-regularized optimal transport problem is

given by

LEOT (µ, ν) := inf
π∈Π(µ,ν)

∫
ρdπ + ϵH(π|µ⊗ ν). (7.7)

We now consider the problem of projecting µ onto P(Y) under the cost LEOT :

inf
ν∈P(Y)

LEOT (µ, ν). (7.8)

In the OT literature this is known as the (regularized) Kantorovich estimator [Bassetti et al.,

2006] for µ, and can also be viewed as a Wasserstein barycenter problem [Agueh and Carlier,

2011].

With the identification ϵ = λ−1, problem (7.8) is in fact equivalent to the R-D problem (7.4):

compared to LBA (7.5), the extra constraint on the second marginal of π in LEOT (7.7) is

redundant at the optimal ν. More precisely, Lemma D.1.1 shows that (we omit the notational

dependence on µ when it is fixed):

inf
ν∈P(Y)

LEOT (ν) = inf
ν∈P(Y)

λ−1LBA(ν) and argmin
ν∈P(Y)

LEOT (ν) = argmin
ν∈P(Y)

LBA(ν). (7.9)

Existence of a minimizer holds under mild conditions, for instance if X = Y = Rd and ρ(x, y)

is a coercive lower semicontinuous function of y − x [Csiszár, 1974a, p. 66].
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7.2.3 Connection to Maximum-Likelihood Deconvolution

The connection between R-D and maximum-likelihood estimation has been observed in the

information theory, machine learning and compression literature [Harrison and Kontoyiannis,

2008, Alemi et al., 2018, Ballé et al., 2017, Theis et al., 2017b, Yang et al., 2020a, Yang and

Mandt, 2022]. Here, we bring attention to a basic equivalence between the R-D problem

and maximum-likelihood deconvolution, where the connection is particularly natural under

a quadratic distortion function. Also see [Rigollet and Weed, 2018] for a related discussion

that inspired ours and extension to a non-quadratic distortion. We provide further insight

from the view of variational learning and inference in Section D.4.

Maximum-likelihood deconvolution is a classical problem of non-parametric statistics and

mixture models [Carroll and Hall, 1988, Lindsay and Roeder, 1993]. The deconvolution

problem is concerned with estimating an unknown distribution α from noise-corrupted

observations X1, X2, ..., where for each i ∈ N, we have Xi = Yi + Ni, Yi
i.i.d.∼ α, and Ni are

i.i.d. independent noise variables with a known distribution. For concreteness, suppose all

variables are Rd valued and the noise distribution is N (0, σ2Id) with Lebesgue density ϕσ2 .

Denote the distribution of the observations Xi by µ. Then µ has a Lebesgue density given

by the convolution α ∗ ϕσ2(x) :=
∫
ϕσ2(x− y)α(dy). Here, we consider the population-level

(instead of the usual sample-based) maximum-likelihood estimator (MLE) for α:

ν∗ = argmax
ν∈P(Rd)

∫
log (ν ∗ ϕσ2(x))µ(dx), (7.10)

and observe that ν∗ = α. Plugging in the density ϕσ2(x) ∝ e−
1

2σ2 ∥x∥2 , we see that the MLE

problem (7.10) is equivalent to the R-D problem (7.4) with ρ(x, y) = 1
2
∥x− y∥2, λ = 1

σ2 , and

LBA given by (7.6) in the form of a marginal log-likelihood. Thus the R-D problem has

the interpretation of estimating a distribution from its noisy observations given through µ,

assuming a Gaussian noise with variance 1
λ
.
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R(D)

λ = σ−2

decreasing λ→

Figure 7.1: The R(D) of a Gaussian mixture source, and the estimated optimal reproduc-
tion distributions ν∗ (in bar plots) at varying R-D trade-offs. For any λ ∈ [σ−2,∞), the
corresponding R(D) (yellow segment) is known analytically as is the optimal reproduction
distribution ν∗ (whose density is plotted in gray). For λ ∈ (0, σ−2], ν∗ becomes singular and
concentrated on two points, collapsing to the source mean as λ→ 0.

This connection suggests analytical solutions to the R-D problem for a variety of sources

that arise from convolving an underlying distribution with Gaussian noise. Consider an R-D

problem (7.4) with X = Y = Rd, ρ(x, y) = 1
2
∥x− y∥2, and let the source µ be the convolution

between an arbitrary measure α ∈ P(Y) and Gaussian noise with known variance σ2. E.g.,

using a discrete measure for α results in a Gaussian mixture source with equal covariance

among its components. When λ = 1
σ2 , we recover exactly the population-MLE problem

(7.10) discussed earlier, which has the solution ν∗ = α. While this allows us to obtain one

point of R(D), we can in fact extend this idea to any λ ≥ 1
σ2 and obtain the analytical form

for the corresponding segment of the R-D curve. Specifically, for any λ ≥ 1
σ2 , applying the

summation rule for independent Gaussians reveals the source distribution µ as

µ = α ∗N (0, σ2) = α ∗N (0, σ2− 1

λ
) ∗N (0,

1

λ
) = αλ ∗N (0,

1

λ
), αλ := α ∗N (0, σ2− 1

λ
),
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i.e., as the convolution between another underlying distribution αλ and independent noise

with variance 1
λ
. A solution to the R-D problem (7.3) is then analogously given by ν∗ = αλ,

with the corresponding optimal coupling given by ν∗ ⊗ K̃, K̃(y, dx) = N (y, 1
λ
). 1 Evaluating

the distortion and mutual information of the coupling then yields the R(D) point associated

with λ. Fig. 7.1 illustrates the R(D) of a toy Gaussian mixture source, along with the

ν∗ estimated by our proposed WGD algorithm (Sec. 7.4); note that ν∗ transitions from

continuous (a Gaussian mixture with smaller component variances) to singular (a mixture of

two Diracs) at λ = σ−2. See caption for more details.

7.3 Related Work

7.3.1 Blahut–Arimoto

The Blahut–Arimoto (BA) algorithm [Blahut, 1972, Arimoto, 1972] is the default method for

computing R(D) for a known and discrete case. For a fixed λ, BA carries out the optimization

problem (7.3) via coordinate ascent. Starting from an initial measure ν(0) ∈ P(Y), the BA

algorithm at step t computes an updated pair (ν(t+1), K(t+1)) as follows

dK(t+1)(x, ·)
dν(t)

(y) =
e−λρ(x,y)

∫
e−λρ(x,y′)ν(t)(dy′)

, ∀x ∈ X , (7.11)

ν(t+1) = (µ⊗K(t+1))2. (7.12)

When the alphabets are finite, the above computation can be carried out in matrix and

vector operations, and the resulting sequence {(ν(t), K(t))}∞t=1 can be shown to converge to

an optimum of (7.3); cf. [Csiszár, 1974b, Csiszár, 1984]. When the alphabets are not finite,

e.g., X = Y = Rd, the BA algorithm no longer applies, as it is unclear how to digitally
1Here K̃ maps from the reproduction to the source alphabet, opposite to the kernel K elsewhere in the

text.
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represent the measure ν and kernel K and to tractably perform the integrals required by the

algorithm. The common workaround is to perform a discretization step and then apply BA

on the resulting discrete problem.

One standard discretization method is to tile up the alphabets with small bins [Gray and

Neuhoff, 1998]. This quickly becomes infeasible as the number of dimensions increases. We

therefore consider discretizing the data space X to be the support of training data distribution

µm, i.e., the discretized alphabet is the set of training samples; this can be justified by the

consistency of the parametric R-D estimator FH(µm) [Harrison and Kontoyiannis, 2008]. It

is less clear how to discretize the reproduction space Y , especially in high dimensions. Since

we work with X = Y, we will disretize Y similarly and use an n-element random subset of

the training samples, as also considered by Lei et al. [2023a]. As we will show, this rather

arbitrary placement of the support of ν results in poor performance, and can be significantly

improved from our perspective of evolving particles.

7.3.2 Neural Network-Based Methods for Estimating R(D)

RD-VAE ([Yang and Mandt, 2022]): To overcome the limitations of the BA algorithm,

Yang and Mandt [2022] proposed to parameterize the transition kernel K and reproduction

distribution ν of the BA algorithm by neural density estimators [Papamakarios et al., 2021],

and optimize the same objective (7.3) by (stochastic) gradient descent. They estimate (7.3)

by Monte Carlo using joint samples (Xi, Yi) ∼ µ⊗K; in particular, the relative entropy can

be written as H(µ⊗K|µ⊗ ν) =
∫ ∫

log
(

dK(x,·)
dν

(y)
)
K(x, dy)µ(dx), where the integrand is

computed exactly via a density ratio. In practice, an alternative parameteriation is often

used where the neural density estimators are defined on a lower dimensional latent space than

the reproduction alphabet, and the resulting approach is closely related to VAEs [Kingma

and Welling, 2013]. Yang and Mandt [2022] additionally propose a neural estimator for a
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lower bound on R(D), based on a dual representation due to Csiszár [1974a]. NERD [Lei

et al., 2023a]: Instead of working with the transition kernel K as in the RD-VAE, Lei et al.

[2023a] considered optimizing the form of the rate functional in (7.6), via gradient descent

on the parameters of ν parameterized by a neural network. Let νZ be a base distribution

over Z = RK , such as the standard Gaussian, and ω : Z → Y be a decoder network. The

variational measure ν is then modeled as the image measure of νZ under ω. To evaluate and

optimize the objective (7.6), the intractable inner integral w.r.t. ν is replaced with a plug-in

estimator, so that for a given x ∈ X ,

− log

(∫

Y
e−λρ(x,y)ν(dy)

)
≈ − log

(
1

n

n∑

j=1

e−λρ(x,Yj)

)
, Yj ∼ ν, j = 1, 2, ..., n. (7.13)

After training, we estimate an R-D upper bound using n samples from ν (to be discussed in

Sec. 7.4.4).

7.3.3 Other Related Work

Within information theory: Recent work by Wu et al. [2022] and Lei et al. [2023b] also

note the connection between the R-D function and entropic optimal transport. Wu et al.

[2022] compute the R-D function in the finite and known alphabet setting by solving a version

of the EOT problem (7.8), whereas Lei et al. [2023b] numerically verify the equivalence (7.9)

on a discrete problem and discuss the connection to scalar quantization. We also experimented

with estimating R(D) by solving the EOT problem (7.8), but found it computationally much

more efficient to work with the rate functional (7.6), and we see the primary benefit of the

EOT connection as bringing in tools from statistical OT [Genevay et al., 2019, Mena and

Niles-Weed, 2019, Rigollet and Stromme, 2022] for R-D estimation. Outside of information

theory: Rigollet and Weed [2018] note a connection between the EOT projection problem

(7.8) and maximum-likelihood deconvolution (7.10); our work complements their perspective
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by re-interpreting both problems through the equivalent R-D problem. Unbeknownst to us

at the time, Yan et al. [2023] proposed similar algorithms to ours in the context of Gaussian

mixture estimation, which we recognize as R-D estimation under quadratic distortion (see

Sec. 7.2.3). Their work is based on gradient flow in the Fisher-Rao-Wasserstein (FRW)

geometry [Chizat et al., 2018], which our hybrid algorithm can be seen as implementing. Yan

et al. [2023] prove that, in an idealized setting with infinite particles, FRW gradient descent

does not get stuck at local minima; by contrast, our convergence and sample-complexity

results (Prop. 7.4.2, 7.4.3) hold for any finite number of particles. We additionally consider

larger-scale problems and the stochastic optimization setting.

7.4 Proposed Method

For our algorithm, we require X = Y = Rd and ρ be continuously differentiable. We now

introduce the gradient descent algorithm in Wasserstein space to solve the problems (7.4) and

(7.8). We defer all proofs to Appendix D. To minimize a functional L : P(Y)→ R over the

space of probability measures, our algorithm essentially simulates the gradient flow [Ambrosio

et al., 2008] of L and follows the trajectory of steepest descent in the Wasserstein geometry.

In practice, we represent a measure ν(t) ∈ P(Y) by a collection of particles and at each time

step update ν(t) in a direction of steepest descent of L as given by its (negative) Wasserstein

gradient. Denote by Pn(Rd) the set of probability measures on Rd that are supported on at

most n points. Our algorithm implements the parametric R-D estimator with the choice

H = Pn(Rd) (see discussions at the end of Sec. 7.2.1).

129



7.4.1 Wasserstein Gradient Descent (WGD)

Abstractly, Wasserstein gradient descent updates the variational measure ν to its pushforward

ν̃ under the map (id− γΨ), for a function Ψ : Rd → Rd called the Wasserstein gradient of L

at ν (see below) and a step size γ. To implement this scheme, we represent ν as a convex

combination of Dirac measures, ν =
∑n

i=1wiδxi
with locations {xi}ni=1 ⊂ Rd and weights

{wi}ni=1. The algorithm moves each particle xi in the direction of −Ψ(xi), more precisely,

ν̃ =
∑n

i=1wiδxi−γΨ(xi).

Algorithm 1 Wasserstein gradient descent

Inputs: Loss function L ∈ {LBA,LEOT}; data distribution µ ∈ P(Rd); the number of
particles n ∈ N; total number of iterations N ∈ N; step sizes γ1, . . . , γN ; batch size m ∈ N.
for t = 1, . . . , N do

Pick an initial measure ν(0) ∈ Pn(Rd), e.g., setting the particles to n random samples
from µ.
if support of µ contains more than m points then
µm ← 1

m

∑m
i=1 δxi

for x1, . . . , xm independent samples from µ
Ψ(t) ← Wasserstein gradient of L(µm, ·) at ν(t−1) {see Definition 7.4.1}

else
Ψ(t) ← Wasserstein gradient of L(µ, ·) at ν(t−1) {see Definition 7.4.1}

end if
ν(t) ←

(
id− γtΨ(t)

)
#
ν(t−1) {“#” denotes pushforward}

end for
Return: ν(N)

Since the optimization objectives (7.4) and (7.8) appear as integrals w.r.t. the data distribution

µ, we can also apply stochastic optimization and perform stochastic gradient descent on

mini-batches with size m. This allows us to handle a very large or infinite amount of data

samples, or when the source is continuous. We formalize the procedure in Algorithm 1.

The following gives a constructive definition of a Wasserstein gradient which forms the

computational basis of our algorithm. In the literature, the Wasserstein gradient is instead

usually defined as a Fréchet differential (cf. [Ambrosio et al., 2008, Definition 10.1.1]), but we

emphasize that in smooth settings, the given definition recovers the one from the literature

(cf. [Chizat, 2022, Lemma A.2]).
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Definition 7.4.1. For a functional L : P(Y)→ R and ν ∈ P(Y), we say that VL(ν) : Rd → R

is a first variation of L at ν if

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

=

∫
VL(ν) d(ν̃ − ν) for all ν̃ ∈ P(Y).

We call its (Euclidean) gradient ∇VL(ν) : Rd → Rd, if it exists, the Wasserstein gradient of L

at ν.

For L = LEOT , the first variation is given by the Kantorovich potential, which is the solution

of the convex dual of LEOT and commonly computed by Sinkhorn’s algorithm [Peyré and

Cuturi, 2019, Nutz, 2021]. Specifically, let (φν , ψν) be potentials for LEOT (µ, ν). Then

VL(ν) = ψν is the first variation w.r.t. ν (cf. [Carlier et al., 2022, equation (20)]), and

hence ∇ψν is the Wasserstein gradient. This gradient exists whenever ρ is differentiable

and the marginals are sufficiently light-tailed; we give details in Sec. D.3.1 of Appendix D.

For L = LBA, the first variation can be computed explicitly. As derived in Sec. D.3.1 of

Appendix D, the first variation at ν is

ψν(y) =

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)µ(dx)

and then the Wasserstein gradient is ∇LBA(ν) = ∇ψν . We observe that ψν(y) is computation-

ally cheap; it corresponds to running a single iteration of Sinkhorn’s algorithm. By contract,

finding the potential for LEOT requires running Sinkhorn’s algorithm to convergence.

Like the usual Euclidean gradient, the Wasserstein gradient can be shown to possess a

linearization property, whereby the loss functional is reduced by taking a small enough step

along its Wasserstein gradient. Following [Carlier et al., 2022], we state it as follows: for any
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ν̃ ∈ P(Y) and π ∈ Π(ν, ν̃),

L(ν̃)− L(ν) =
∫

(y − x)⊤∇VL(ν)(x) π(dx, dy) + o

(∫
∥y − x∥2 π(dx, dy)

)
,

∣∣∣∣
∫
∥∇VL(ν)∥2 dν −

∫
∥∇VL(ν̃)∥2 dν̃

∣∣∣∣ ≤ CW2(ν, ν̃).

(7.14)

The first line of (7.14) is proved for LEOT in [Carlier et al., 2022, Proposition 4.2] in the case

that the marginals are compactly supported and ρ is twice continuously differentiable. In

this setting, the second line of (7.14) follows using a2− b2 = (a+ b)(a− b) and a combination

of boundedness and Lipschitz continuity of ∇VL, see [Carlier et al., 2022, Proposition 2.2

and Corollary 2.4].

The linearization property given by (7.14) enables us to show that Wasserstein gradient

descent for LEOT and LBA converges to a stationary point under mild conditions:

Proposition 7.4.2 (Convergence of Wasserstein gradient descent). Let γ1 ≥ γ2 ≥ · · · ≥ 0

satisfy
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k < ∞. Let L : P(Rd) → R be Wasserstein differentiable

in the sense that (7.14) holds. Denoting by ν(t) the steps in Algorithm 1, and suppose that

L(ν(0)) is finite and
∫
∥∇VL(ν(t))∥2 dν(t) is bounded. Then

lim
t→∞

∫
∥∇VL(ν(t))∥2 dν(t) = 0.

7.4.2 Hybrid Algorithm

A main limitation of the BA algorithm is that the support of ν(t) is restricted to that of

the (possibly bad) initialization ν(0). On the other hand, Wasserstein gradient descent

(Algorithm 1) only evolves the particle locations of ν(t), but not the weights, which are fixed

to be uniform by default. We therefore consider a hybrid algorithm where we alternate

between WGD and the BA update steps, allowing us to optimize the particle weights as
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well. Experimentally, this translates to faster convergence than the base WGD algorithm

(Sec. 7.5.1). Note however, unlike WGD, the hybrid algorithm does not directly lend itself

to the stochastic optimization setting, as BA updates on mini-batches no longer guarantee

monotonic improvement in the objective and can lead to divergence. We treat the convergence

of the hybrid algorithm in Sec. D.3.4 of Appendix D.

7.4.3 Sample Complexity

Let X = Y = Rd and ρ(x, y) = ∥x − y∥2. Leveraging work on the statistical complexity

of EOT [Mena and Niles-Weed, 2019], we obtain finite-sample bounds for the theoretical

estimators implemented by WGD in terms of the number of particles and source samples.

The bounds hold for both the R-D problem (7.4) and EOT projection problem (7.8) as they

share the same optimizers (see Sec. 7.2.2), and strengthen existing asymptotic results for

empirical R-D estimators [Harrison and Kontoyiannis, 2008]. We note that a recent result by

Rigollet and Stromme [2022] might be useful for deriving alternative bounds under distortion

functions other than the quadratic.

Proposition 7.4.3. Let µ be σ2-subgaussian. Then every optimizer ν∗ of (7.4) and (7.8) is

also σ2-subgaussian. Consider L := LEOT . For a constant Cd only depending on d, we have

∣∣∣∣ min
ν∈P(Rd)

L(µ, ν)− min
νn∈Pn(Rd)

L(µ, νn)
∣∣∣∣ ≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

)
1√
n
,

E
[∣∣∣∣ min

ν∈P(Rd)
L(µ, ν)− min

ν∈P(Rd)
L(µm, ν)

∣∣∣∣
]
≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

)
1√
m
,

E
[∣∣∣∣ min

ν∈P(Rd)
L(µ, ν)− min

νn∈Pn(Rd)
L(µm, νn)

∣∣∣∣
]
≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

) (
1√
m

+
1√
n

)
,

for all n,m ∈ N, where Pn(Rd) is the set of probability measures over Rd supported on at most

n points, µm is the empirical measure of µ with m independent samples and the expectation

E[·] is over these samples. The same inequalities hold for L := λ−1LBA, with the identification
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ϵ = λ−1.

7.4.4 Estimation of Rate and Distortion

Here, we describe our estimator for an upper bound (D,R) of R(D) after solving the

unconstrained problem (7.3). We provide more details in Sec. D.2 of the Supplementary

Material.

For any given pair of ν and K, we always have that D :=
∫
ρd(µ⊗K) andR := H(µ⊗K|µ⊗ν)

lie on an upper bound of R(D) [Berger, 1971]. The two quantities can be estimated by standard

Monte Carlo provided we can sample from µ ⊗ K and evaluate the density dµ⊗K
dµ⊗ν

(x, y) =

dK(x,·)
dν

(y).

When only ν is given, e.g., obtained from optimizing (7.6) with WGD or NERD, we estimate

an R-D upper bound as follows. As in the BA algorithm, we construct a kernel Kν similarly

to (7.11), i.e., dKν(x,·)
dν

(y) = e−λρ(x,y)∫
e−λρ(x,ỹ)ν(dỹ)

; then we estimate (D,R) using the pair (ν,Kν) as

described earlier.

As NERD uses a continuous ν, we follow [Lei et al., 2023a] and approximate it with its

n-sample empirical measure to estimate (D,R). A limitation of NERD, BA, and our method

is that they tend to converge to a rate estimate of at most log(n), where n is the support size

of ν. This is because as the algorithms approach an n-point minimizer ν∗n of the R-D problem,

the rate estimate R approaches the mutual information of µ⊗Kν∗n , which is upper-bounded

by log(n) [Eckstein and Nutz, 2022]. In practice, this means if a target point of R(D) has

rate r, then we need n ≥ er to estimate it accurately.
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7.4.5 Computational Considerations

Common to all the aforementioned methods is the evaluation of a pairwise distortion matrix

between m points in X and n points in Y, which usually has a cost of O(mnd) for a d-

dimensional source. While RD-VAE uses n = 1 (in the reparameterization trick), the other

methods (BA, WGD, NERD) typically use a much larger n and thus has the distortion

computation as their main computation bottleneck. Compared to BA and WGD, the neural

methods (RD-VAE, NERD) incur additional computation from neural network operations,

which can be significant for large networks.

For NERD and WGD (and BA), the rate estimate upper bound of log(n) nats/sample (see

Sec. 7.4.4) can present computational challenges. To target a high-rate setting, a large number

of ν particles (high n) is required, and care needs to be taken to avoid running out of memory

during the distortion matrix computation (one possibility is to use a small batch size m with

stochastic optimization).

7.5 Experiments

We compare the empirical performance of our proposed method (WGD) and its hybrid variant

with Blahut–Arimoto (BA) [Blahut, 1972, Arimoto, 1972], RD-VAE [Yang and Mandt, 2022],

and NERD [Lei et al., 2022] on the tasks of maximum-likelihood deconvolution and estimation

of R-D upper bounds. While we experimented with WGD for both LBA and LEOT , we found

the former to be 10 to 100 times faster computationally while giving similar or better results;

we therefore focus on WGD for LBA in discussions below. For the neural-network baselines,

we use the same (or as similar as possible) network architectures as in the original work

[Yang and Mandt, 2022, Lei et al., 2023a]. We use the Adam optimizer for all gradient-based

methods, except we use simple gradient descent with a decaying step size in Sec. 7.5.1 to
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better compare the convergence speed of WGD and its hybrid variant. Further experiment

details and results are given in Sec. D.5 of Appendix D.

7.5.1 Deconvolution

To better understand the behavior of the various algorithms, we apply them to a deconvolution

problem with known ground truth (see Sec. 7.2.3). We adopt the Gaussian noise as before,

letting α be the uniform measure on the unit circle in R2 and the source µ = α ∗ N (0, σ2)

with σ2 = 0.1.

We use n = 20 particles for BA, NERD, WGD and its hybrid variant. We use a two-layer

network for NERD and RD-VAE with some hand-tuning (we replace the softplus activation

in the original RD-VAE network by ReLU as it led to difficulty in optimization). Fig. 7.2

plots the resulting loss curves and shows that the proposed algorithms converge the fastest

to the ground truth value OPT := L(α). In Fig. 7.3, we visualize the final ν(t) at the end

of training, compared to the ground truth ν∗ = α supported on the circle (colored in cyan).

Note that we initialize ν(0) for BA, WGD, and its hybrid variant to the same n random

data samples. While BA is stuck with the randomly initialized particles and assigns large

weights to those closer to the circle, WGD learns to move the particles to uniformly cover the

circle. The hybrid algorithm, being able to reweight particles to reduce their transportation

cost, learns a different solution where a cluster of particles covers the top-left portion of the

circle with small weights while the remaining particles evenly covers the rest. Unlike our

particle-based methods, the neural methods generally struggle to place the support of their ν

exactly on the circle.

We additionally compare how the performance of BA, NERD, and the proposed algorithms

scale to higher dimensions and a higher λ (corresponding to lower entropic regularization

in LEOT ). Fig. 7.4 plots the gap between the converged and the optimal losses for the
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Figure 7.2: Losses over iterations. Shading cor-
responds to one standard deviation over random
initializations.

Figure 7.3: Visualizing µ samples (top
left), as well as the ν returned by various
algorithms compared to the ground truth
ν∗ (cyan).
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Figure 7.4: Optimality gap v.s. the number of particles n used, on deconvolution problems
with different dimension d and distortion multiplier λ. The first three panels fix λ = σ−2

and increase d, and the right-most panel corresponds to the 2-D problem with a higher
λ (denoising with a narrower Gaussian kernel). Overall the WGD methods attain higher
accuracy for a given budget of n.

algorithms, and demonstrates the proposed algorithms to be more particle-efficient and scale

more favorably than the alternatives which also use n particles in the reproduction space.

We additionally visualize how the converged particles for our methods vary across the R-D

trade-off in Fig. D.1 of the Appendix.

7.5.2 Higher-Dimensional Data

We perform R(D) estimation on higher-dimensional data, including the physics and speech

datasets from [Yang and Mandt, 2022] and MNIST [LeCun et al., 1998]. As the memory cost
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Figure 7.5: Left, Middle: R-D bound estimates on the physics, speech datasets [Yang
and Mandt, 2022] and MNIST training set. Right: Example speed comparisons of WGD
and neural upper bound methods on MNIST, with WGD converging at least an order of
magnitude faster. On each of the dataset we also include an R-D lower bound estimated
using the method of [Yang and Mandt, 2022].

to operating on the full datasets becomes prohibitive, we focus on NERD, RD-VAE, and

WGD using mini-batch stochastic gradient descent. BA and hybrid WGD do not directly

apply in the stochastic setting, as BA updates on random mini-batches can lead to divergence

(as discussed in Sec. 7.4.2).

Fig. 7.5 plots the estimated R-D bounds on the datasets, and compares the convergence

speed of WGD and neural methods in both iteration count and compute time. Overall, we

find WGD to require minimal tuning and obtains the tightest R-D upper bounds within the

log(n) rate limit (see Sec. 7.4.4), and consistently obtains tighter bounds than NERD given

the same computation budget.
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7.6 Discussions

In this work, we leverage tools from optimal transport to develop a new approach for estimating

the rate-distortion function in the continuous setting. Compared to state-of-the-art neural

approaches [Yang and Mandt, 2022, Lei et al., 2022], our Wasserstein gradient descent

algorithm offers complementary strengths: 1) It requires a single main hyperparameter n

(the number of particles) and no network architecture tuning; and 2) empirically we found it

to converge significantly faster and rarely end up in bad local optima; increasing n almost

always yielded an improvement (unless the bound is already close to being tight). From a

modeling perspective, a particle representation may be inherently more efficient when the

optimal reproduction distribution is singular or has many disconnected modes (shown, e.g.,

in Figs. 7.1 and 7.3). However, like NERD [Lei et al., 2022], our method has a fundamental

limitation – it requires an n that is exponential in the rate of the targeted R(D) point to

estimate it accurately (see Sec. 7.4.4). Thus, a neural method like RD-VAE [Yang and Mandt,

2022] may still be preferable on high-rate sources, while our particle-based method stands as

a state-of-the-art solution on lower-rate sources with substantially less tuning or computation

requirements.

Besides R-D estimation, our algorithm also applies to the mathematically equivalent problems

of maximum likelihood deconvolution and projection under an entropic optimal transport

(EOT) cost, and may find other connections and applications. Indeed, the R-D problem is

further related to the statistical problems of selecting reference priors [Lafferty and Wasserman,

2013] or minimally informative likelihoods [Yuan and Clarke, 1999]. The EOT projection

view of our algorithm is also related to optimization-based approaches to sampling [Wibisono,

2018], variational inference [Liu and Wang, 2016], and distribution compression [Shetty et al.,

2021]. Our particle-based algorithm generalizes optimal quantization (corresponding to ϵ = 0

in LEOT , i.e., projecting the source under the Wasserstein distance [Graf and Luschgy, 2007,

Gray, 2013]) to incorporate a rate constraint (ϵ > 0), and it would be interesting to explore
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the use of the resulting rate-distortion optimal quantizer for practical data compression and

communication.
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Chapter 8

Conclusion and Future Topics

The connection between density estimation and lossy compression under the rate-distortion

criterion goes back to [Harrison and Kontoyiannis, 2008] (and perhaps earlier), where both

problems are equivalent to maximizing the expected marginal log-likelihood of an appro-

priately defined latent-variable model. This connection conceptually enables the transfer

of ideas between lossy compression and likelihood-based models, as in the case of lossless

compression [Kraft, 1949, McMillan, 1956]. However, Shannon-style block coding (which

achieves the theoretically optimal R-D performance) is computationally infeasible and rarely

used, and additional effort is often required to translate the ideas and advances in variational

inference/learning to better lossy compression performance in practice. The proposal in Chap-

ter 4 can be seen as one such effort, where the variational inference (“encoding”) distribution

in SGA is designed to work with the quantized latent space of nonlinear transform coding.

Relative entropy coding and channel simulation [Theis and Yosri, 2021, Flamich et al., 2020a],

avoid quantization by performing stochastic encoding, and can be seen as another effort to

fundamentally reduce the problem of lossy source coding to that of probabilistic machine

learning 1. Another advantage of stochastic encoding is the potential for better realism [Blau
1Also see [Yang et al., 2020b] with a shared goal but uses a different quantization scheme than in nonlinear

transform coding.
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and Michaeli, 2018, Blau and Michaeli, 2019], an important metric that is not discussed in

this thesis but is receiving increasing attention [Mentzer et al., 2020, Yan et al., 2021, Qiu

et al., 2024].

In addition to furthering the connection between lossy compression and machine learning, a

few other potential research topics deserve mentioning:

• Iterative inference, e.g., using SGA [Yang et al., 2020a], significantly improves com-

pression performance, but at a much higher encoding computation cost compared to

amortized inference. Can we learn a procedure to speed up iterative inference, poten-

tially based on ideas from meta-learning [Marino et al., 2018] or implicit differentiation

[Chang et al., 2022] in an end-to-end manner?

• Implicit neural representations (INRs) [Sitzmann et al., 2020] have emerged as a

new paradigm for signal representation and lossy compression, and many INR-based

compression approaches [Dupont et al., 2021, 2022, Mehta et al., 2021] share conceptual

similarities to the typical nonlinear transform coding [Ballé et al., 2021] approach

combined with iterative encoding. Can we gain a deeper understanding of the INR-

based approach lossy to compression from the perspective of nonlinear transform coding

and rate-distortion theory? We offer some preliminary thoughts in [Pham et al., 2023],

suggesting that the distinction between the INR-based approach (“model compression”)

and the NTC approach (“data compression”) may not be so clear.

• Diffusion models have shown impressive performance in generative modeling tasks.

Given their natural connection to progressive compression [Ho et al., 2020, Shu and

Ermon, 2022, Theis et al., 2022], they may lead to promising new compression schemes,

one of which we explore in [Yang et al., 2025]. Similarly, diffusion models can be

applied in the manner of Chapter 6 to yield new and improved upper bounds on the

R-D function, potentially resulting in an entire R-D curve with a single pre-trained
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model. Furthermore, there exist an interesting connection between the intrinsic data

dimensionality and the learned diffusion model (in the low noise limit) [Batzolis et al.,

2022], and a similar connection between the intrinsic data dimensionality and the

R-D function (in the low distortion limit) [Kégl, 2002, Kawabata and Dembo, 1994],

suggesting a unified perspective may be possible.
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Appendix A

For Chapter 4, “Inference Optimization”

A.1 Stochastic Annealing

Here we provide conceptual illustrations of our stochastic annealing idea on a simple example.

Consider the following scalar optimization problem over integers,

minimize
z∈Z

f(z) = z2

Following our stochastic annealing method in Section. 4.3.2, we let x ∈ R be a continuous

proxy variable, and r ∈ {(1, 0), (0, 1)} be the one-hot vector of stochastic rounding direction.

We let r follow a Bernoulli distribution with temperature τ > 0,

qτ (r|x) =





exp
{
− ψ

(
x− ⌊x⌋

)
/τ
}
/C(x, τ) if r = (1, 0)

exp
{
− ψ

(
⌈x⌉ − x

)
/τ
}
/C(x, τ) if r = (0, 1)
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where

C(x, τ) = exp{−ψ(x− ⌊x⌋)/τ}+ exp{−ψ(⌈x⌉ − x)/τ}

is the normalizing constant.

The stochastic optimization problem for SGA is then

minimize
x∈R

ℓτ (x) := Eqτ (r|x)[f(r · (⌊x⌋, ⌈x⌉)]

=
exp{−ψ(x− ⌊x⌋)/τ}

C(x, τ)
f(⌊x⌋) + exp{−ψ(⌈x⌉ − x)/τ}

C(x, τ)
f(⌈x⌉)

Below we plot the rounding probability qτ (r = (0, 1)|x) and the SGA objective ℓτ as a

function of x, at various temperatures.
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Figure A.1: Illustration of the probability
qτ (r = (0, 1)|x) of rounding up, on the inter-
val (0, 1), at various temperatures.
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Figure A.2: Graphs of stochastic annealing
objective ℓτ at various temperatures. ℓτ in-
terpolates the discrete optimization problem
between integers, and approaches round(x)2

as τ → 0.

A.2 Model Architecture and Training

As mentioned in the main text, the Base Hyperprior model uses the same architecture as

in Table 1 of Minnen et al. [2018] except without the “Context Prediction” and “Entropy

Parameters” components (this model was referred to as “Mean & Scale Hyperprior” in this
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work). The model is mostly already implemented in bmshj2018.py1 from Ballé et al., Ballé

et al. [2018b], and we modified their implementation to double the number of output channels

of the HyperSynthesisTransform to predict both the mean and (log) scale of the conditional

prior p(y|z) over the latents y.

As mentioned in Section 4.3.3 and 4.4, lossy bits-back modifies the above Base Hyperprior as

follows:

1. The number of output channels of the hyper inference network is doubled to compute

both the mean and diagonal (log) variance of Gaussian q(z|x);

2. The hyperprior p(z) is no longer restricted to the form of a flexible density model

convolved with the uniform distribution on [−0.5, 0.5]; instead it simply uses the flexible

density, as described in the Appendix of Ballé et al. [2018b].

We trained our models (both the Base Hyperprior and the bits-back variant) on CLIC-

2018 2 images using minibatches of eight 256 × 256 randomly-cropped image patches, for

λ ∈ {0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}. Following Ballé et al. [2018b], we found that

increasing the number of latent channels helps avoid the “bottleneck” effect and improve rate-

distortion performance at higher rates, and increased the number of latent channels from 192

to 256 for models trained with λ = 0.04 and 0.08. All models were trained for 2 million steps,

except the ones with λ = 0.001 which were trained for 1 million steps, and λ = 0.08 which

were trained for 3 million steps. Our code and pre-trained models can be found at https:

//github.com/mandt-lab/improving-inference-for-neural-image-compression.
1https://github.com/tensorflow/compression/blob/master/examples/bmshj2018.py
2https://www.compression.cc/2018/challenge/
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A.3 Hyper-Parameters of Various Methods Considered

Given a pre-trained model (see above) and image(s) x to be compressed, our experiments in

Section 4.4 explored hybrid amortized-iterative inference to improve compression performance.

Below we provide hyper-parameters of each method considered:

Stochastic Gumbel Annealing. In all experiments using SGA (including the SGA+BB

experiments, which optimized over ŷ using SGA), we used the Adam optimizer with an

initial learning rate of 0.005, and an exponentially decaying temperature schedule τ(t) =

min(exp{−ct}, 0.5), where t is the iteration number, and c > 0 controls the speed of the decay.

We found that lower c generally increases the number of iterations needed for convergence,

but can also yield slightly better solutions; in all of our experiments we set c = 0.001, and

obtained good convergence with 2000 iterations.

Temperature Annealing Schedule for SGA. We initially used a naive temperature

schedule, τ(t) = τ0 exp{−ct} for SGA, where τ0 is the initial temperature (typically set to

0.5 to simulate soft quantization), and found that aggressive annealing with a large decay

factor c can lead to suboptimal solutions, as seen with c = 0.002 or c = 0.001 in the left

subplot of Figure A.3. We found that we can overcome the suboptimality from fast annealing

by an initial stage of optimization at a fixed temperature before annealing: in the initial

stage, we fix the temperature to some relatively high value τ0 (to simulate soft discretization),

and run the optimization for t0 steps such that the R-D objective roughly converges. We

demonstrate this in the right subplot of Figure A.3, where we modify the naive schedule to

τ(t) = min{τ0, τ0 exp{−c(t − t0)}}, so that SGA roughly converges after t0 = 700 steps at

temperature τ0 = 0.5 before annealing. As can be seen, the results of SGA are robust to

different choices of decay factor c, with c = 0.002 and c = 0.001 giving comparably good

results to c = 0.0005 but with faster convergence.
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Figure A.3: Comparing different annealing schedules for SGA (Section 4.3.2).

Lossy bits-back. In the SGA+BB experiments, line 2 of the encode subroutine of Algo-

rithm 1 performs joint optimization w.r.t. µy, µz, and σ2
z with Black-box Variational Inference

(BBVI), using the reparameterization trick to differentiate through Gumbel-softmax samples

for µy, and Gaussian samples for (µz, σ
2
z). We used Adam with an initial learning rate of

0.005, and ran 2000 stochastic gradient descent iterations; the optimization w.r.t. µy (SGA)

used the same temperature annealing schedule as above. The reproducible_BBVI subroutine

of Algorithm 1 used Adam with an initial learning rate of 0.003 and 2000 stochastic gradient

descent iterations; we used the same random seed for the encoder and decoder for simplicity,

although a hash of ŷ can also be used instead.

Alternative Discretization Methods In Figure 4.3 and ablation studies of Section

4.4, all alternative discretization methods were optimized with Adam for 2000 iterations

to compare with SGA. The initial learning rate was 0.005 for MAP, Uniform Noise, and

Deterministic Annealing, and 0.0001 for STE. All methods were tuned on a best-effort basis

to ensure convergence, except that STE consistently encountered convergence issues even

with a tiny learning rate (see [Yin et al., 2019]). The rate-distortion results for MAP and

STE were calculated with early stopping (i.e., using the intermediate (ŷ, ẑ) with the lowest

true rate-distortion objective during optimization), just to give them a fair chance. Lastly,

the comparisons in Figure 4.3 used the Base Hyperprior model trained with λ = 0.0025.
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A.4 Additional Results

On Kodak, we achieve the following BD rate savings: 17% for SGA+BB and 15% for SGA

relative to Base Hyperprior ; 17% for SGA+BB and 15% for SGA relative to BPG. On

Tecnick, we achieve the following BD rate savings: 20% for SGA+BB and 19% for SGA

relative to Base Hyperprior ; 22% for SGA+BB and 21% for SGA relative to BPG.

Our experiments were conducted on a Titan RTX GPU with 24GB RAM; we observed about

a 100× slowdown from our proposed iterative inference methods (compared to standard

encoder network prediction), similar to what has been reported in [Campos et al., 2019].

Note that our proposed standalone variant [M1] with SGA changes only compression and

does not affect decompression speed (which is more relevant, e.g., for images on a website

with many visitors).

Below we provide an additional qualitative comparison on the Kodak [1993] dataset, and

report detailed rate-distortion performance on the Tecnick [Asuni and Giachetti, 2014] dataset.
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(a) Original image
(kodim19 from Kodak
[1993])

(b) BPG 4:4:4;
0.143 BPP (PSNR =
29.3)

(c) Proposed (SGA);
0.142 BPP (PSNR =
29.8)

(d) [Minnen et al., 2018];
0.130 BPP (PSNR =
28.5)

Figure A.4: Qualitative comparison of lossy compression performance on an image from
the Kodak [1993] dataset. Figures in the bottom row focus on the same cropped region of
images in the top row. Our method (c; [M1] in Table 4.1) significantly boosts the visual
quality of the Base Hyperprior method (d; [M3] in Table 4.1) at similar bit rates. Unlike the
learning-based methods (subfigures c,d), the classical codec BPG (subfigure b) introduces
blocking and geometric artifacts near the rooftop, and ringing artifacts around the contour of
the lighthouse.
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Figure A.5: Rate-distortion performance comparisons on the Tecnick [Asuni and Giachetti,
2014] dataset against existing baselines. Image quality measured in Peak Signal-to-Noise
Ratio (PSNR) in RGB; higher values are better.
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Appendix B

For Chapter 5, “Asymmetrically-Powered

Neural Compression for Decoding

Efficiency”

B.1 More Details on the Two-Layer Synthesis with Resid-

ual Connection

Fig. B.1 illustrates the proposed two-layer architecture with a residual connection, where

a = conv_1(z) denotes the output of the first transposed conv layer. We implement the

residual connection (the lower computation path in the figure) with another transposed

convolution layer conv_res, using the same configuration (stride, kernel size, etc.) as conv_1.

In our main experiments we use k1 = 13, s1 = 8, k2 = 5, s2 = 2 and N = 12.

The residual connection r is inspired by its success in recent NTC architectures [Cheng

et al., 2020, He et al., 2022], and can also be interpreted as a data-dependent and spatially-
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Figure B.1: Diagram of the proposed two-layer synthesis transform.

varying bias term that modulates the nonlinear activation ξ(a). At lower bit-rates, we found

employing the residual connection to be more parameter- and compute-efficient than a simple

composition of two transposed convolution layers without the residual connection.

In further experiments, we re-trained models with “mixed quantization” [Minnen and Singh,

2020] instead of additive uniform noise as in the main paper, and found that with comparable

decoding complexity, a simple two-layer architecture with N = 24 hidden channels (and

no residual connection) in fact slightly outperforms the one with residual connection and

N = 12, while keeping all other hyperparameters the same.

B.2 Theoretical Result

In the following, we derive the decomposition of the R-D cost of neural lossy compression. To

lighten notation, we use non-bold letters (x, z instead of x, z), and adopt the general setting

where the latent space Z is a Polish space (which includes, among many other examples,

the Euclidean space R|Z| commonly used for continuous latent variables, or the set of lattice

points Z|Z| in nonlinear transform coding), and PZ is a prior probability measure. We present

results in terms of measures for generality, but for readers unfamiliar with measure theory it
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is harmless to focus on the common case where PZ admits a density p(z) (denoted p(z) in

the main paper), s.t., PZ(dz) = p(z)dz; in the discrete case, p(z) is a PMF, and the integral

(w.r.t. the counting measure on Z) reduces to a sum. Similarly, QZ|X is family of probability

measures, such that for each value of x it defines a conditional distribution QZ|X=x, which

may admit a density q(z|x).

A (learned) lossy compression codec consists of a prior distribution PZ , a stochastic encoding

transform QZ|X , and a deterministic decoding transform g : Z → X̂ . Suppose relative

entropy coding [Cuff, 2008b, Theis and Yosri, 2021, Flamich et al., 2020b] operates with

minimal overhead, i.e., a sample from QZ|X=x can be transmitted under PZ with a bit-rate

close to KL(QZ|X=x∥PZ) (which may require us to perform block coding), then given a data

realization x, the rate-distortion compression cost is, on average,

L(QZ|X , g, PZ , x) := λEz∼QZ|X=x
[ρ(x, g(z))] +KL(QZ|X=x∥PZ), (B.1)

where ρ : X × X̂ → [0,∞) is the distortion function, and λ ≥ 0 is a fixed hyperparameter

trading off between rate and distortion, and both ρ and λ are specified by the lossy compression

problem in advance.

By Lemma 8.5 of [Gray, 2011], this compression cost admits a similar decomposition to the

negative ELBO,

L(QZ|X , g, PZ , x) = − log Γg,PZ
(x) +KL(QZ|X=x∥PZ|X=x), (B.2)

where PZ|X denotes the Markov kernel (transitional distribution) defined by

PZ|X=x(dz) :=
e−λρ(x,g(z))PZ(dz)

Γg,PZ
(x)

, (B.3)
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and the normalizing constant is

Γg,PZ
(x) :=

∫

Z
e−λρ(x,g(z))PZ(dz). (B.4)

As in variational Bayesian inference, the normalizing constant has the interpretation of a

marginal log-likelihood specified by the prior PZ and model g. We note that the definition

of PZ|X depends on g and PZ , but leave this out to lighten notation. Eq. B.2 together

with the non-negativity of KL divergence imply that PZ|X is the optimal channel (“inference

distribution”) for reverse channel coding, under which the compression cost equals:

min
QZ|X=x

λEz∼QZ|X=x
[ρ(x, g(z))] +KL(QZ|X=x∥PZ) = − log Γg,PZ

(x) (B.5)

Let PX be the data distribution. Taking the expected value of Eq. B.1 w.r.t. x ∼ PX gives

the population-level compression cost, which can then be rewritten as follows

L(QZ|X , g, PZ) := λEPXQZ|X [ρ(X, g(Z))] + Ex∼PX
[KL(QZ|X=x∥PZ)] (B.6)

= Ex∼PX
[− log Γg,PZ

(x)] + Ex∼PX
[KL(QZ|X=x∥PZ|X=x)] (B.7)

= inf
P ′
Z ,ω

Ex∼PX
[− log Γω,P ′

Z
(x)] +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

P ′
Z ,ω

Ex∼PX
[− log Γω,P ′

Z
(x)]

)

(B.8)

+ Ex∼PX
[KL(QZ|X=x∥PZ|X=x)] (B.9)

= inf
ω∈G

Fω(λ) +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

ω∈G
Fω(λ)

)

︸ ︷︷ ︸
modeling gap

+Ex∼PX
[KL(QZ|X=x∥PZ|X=x)]︸ ︷︷ ︸

inference gap

,

(B.10)

where for any choice of decoder function ω ∈ G, we define

Fω(λ) := inf
QZ|X

I(X;Z) + λE[ρ(X,ω(Z))] (B.11)
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as the R-axis intercept of the line tangent to the ω-dependent rate-distortion function [Yang

and Mandt, 2022] 1 with slope −λ. The last equation follows from Eq. B.5 and the following

calculation

inf
P ′
Z ,ω

Ex∼PX
[− log Γω,P ′

Z
(x)] (B.12)

= inf
P ′
Z ,ω

inf
QZ|X

λEPXQZ|X [ρ(X,ω(Z))] + Ex∼PX
[KL(QZ|X=x∥P ′

Z)] (B.13)

= inf
ω

inf
QZ|X

inf
P ′
Z

λEPXQZ|X [ρ(X,ω(Z))] + Ex∼PX
[KL(QZ|X=x∥P ′

Z)] (B.14)

= inf
ω

inf
QZ|X

λEPXQZ|X [ρ(X,ω(Z))] + inf
P ′
Z

Ex∼PX
[KL(QZ|X=x∥P ′

Z)] (B.15)

= inf
ω

inf
QZ|X

λEPXQZ|X [ρ(X,ω(Z))] + I(PXQZ|X) (B.16)

= inf
ω
Fω(λ) (B.17)

To summarize, we have broken down the R-D cost for a data source PX into three terms,

L(QZ|X , ω, PZ) = inf
ω∈G

Fω(λ) +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

ω∈G
Fω(λ)

)

︸ ︷︷ ︸
modeling gap

+Ex∼PX
[KL(QZ|X=x∥PZ|X=x)]︸ ︷︷ ︸

inference gap

.

(B.18)

• The first term (which we dentoed by the shorthand “F(G)” in the main text) represents

the fundamentally irreducible cost of compression determined by the source PX and

the family G of decoding transforms used. This is the information-theoretically optimal

cost of compression within the transform family G. If we let F (λ) := infQX̂|X
I(X; X̂) +

λE[ρ(X, X̂)] be the optimal Lagrangian associated with the R-D function of PX , then

it can be shown that [Yang and Mandt, 2022] F (λ) ≤ Fg(λ). When the latent space Z

and the transform family G are sufficiently large, it holds that F (λ) = infg Fg(λ), i.e.,

the first term of the R-D cost is determined solely by the rate-distortion function of the
1The g-dependent distortion function [Yang and Mandt, 2022] is defined as Rg(D) :=

infQZ|X :E[ρ(X,g(Z))]≤D I(X;Z).
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source distribution PX (and distortion function ρ), which is the lossy analogue of the

Shannon entropy.

• The second term represents the excess cost of doing compression with a particular

transform g and prior PZ compared to the best possible transform and prior, while

always operating with the optimal channel (Eq. B.2) in each case. Note that this

term only depends on the modeling choices of g and PZ , and does not depend on

the encoding/inference distribution QZ|X ; therefore we call it the modeling gap. It is

due largely to imperfect model training/optimization, and/or a mismatch between the

training data and the target data PX (which may not be the same).

• The third term represents the overhead of compression caused by a (potentially) sub-

optimal encoding/inference distribution QZ|X , given a particular model g and PZ . This

overhead can be eliminated by using the optimal channel PZ|X given in Eq. B.2 (which

depends on g and PZ). Therefore we call this term the inference gap.

Remarks The decomposition of the lossy compression cost has a natural parallel to that of

lossless compression under a latent variable model.

Consider a latent variable model (pθ(z), pθ(x|z)) with parameter vector θ, which defines

a model of the marginal data density pθ(x) :=
∫
Z pθ(x|z)pθ(z)dz. The cost of lossless

compression under ideal bits-back coding [Frey, 1998, Townsend et al., 2019a] is equal to the

negative ELBO, and admits a similar decomposition [Zhang et al., 2022]:

Ex∼PX
[Ez∼q(z|x)[− log pθ(x|z)] +KL(q(z|x)∥pθ(z))] (B.19)

=Ex∼PX
[− log pθ(x)] + Ex∼PX

[KL(q(z|x)∥pθ(z|x))] (B.20)

= H[PX ]︸ ︷︷ ︸
data entropy

+KL(PX∥pθ(x))︸ ︷︷ ︸
modeling gap

+Ex∼PX
[KL(q(z|x)∥pθ(z|x))]︸ ︷︷ ︸

inference gap

(B.21)
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Again, we have decomposed the compression cost into a first term that represents the

intrinsic compressibility of the data, a second term that depends entirely on the choice of the

model, and a third overhead term from using a sub-optimal inference distribution q(z|x) and

which can be eliminated using the optimal inference distribution pθ(z|x) ∝ pθ(x|z)pθ(z) (the

Bayesian posterior) given each choice of our model.

B.3 Implementation and Reproducibility Details

Our models are implemented in tensorflow using the tensorflow-compression2 library.

We implemented the Mean-Scale Hyperprior model based on the open source code 3 and

architecture details from Johnston et al. [2019]. We borrowed the ELIC [He et al., 2022]

transforms from the VCT repo 4.

Our experiments were run on Titan RTX GPUs. All the models were trained with the

Adam optimizer following standard procedure (e.g., in [Minnen et al., 2018]) for a maximum

of 2 million steps. We use an initial learning rate of 1e − 4, then decay it to 1e − 5

towards the end of training. For each model architecture, we trained separate models for

λ ∈ {0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}. For SGA [Yang et al., 2020a], we use similar

hyperparameters as in [Yang et al., 2020a], using Adam optimizer, learning rate 5e− 3, and

a temperature schedule of τ(t) = 0.5 exp{−0.0005(max(0, t− 200))} for 3000 gradient steps.
2https://github.com/tensorflow/compression
3https://github.com/tensorflow/compression/blob/master/models/bmshj2018.py
4https://github.com/google-research/google-research/blob/master/vct/src/elic.py
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B.4 Additional Results

Results on the reconstruction manifold.

We train three popular NTC architectures [Ballé et al., 2018a, Minnen et al., 2018, Minnen

and Singh, 2020] for MSE distortion with λ = 0.08 and observe similar results when traversing

the manifold of reconstructed images. We use random pairs of image crops from COCO [Lin

et al., 2014] to define the start and end points of latent traversal (see Sec. 5.3.1); we use

the same random seed across the three different architectures. All the images are scaled to

[−0.5, 0.5].

MSEs between trajectories In Fig. B.2 shows the distance between the resulting trajec-

tory of decoded curve γ̂(t) and two kinds of straight paths, interpolating between reconstruc-

tions x̂(t) := (1− t)x̂(0) + tx̂(1) or ground truth images x(t) := (1− t)x(0) + tx(1). See detailed

discussions in Sec. 5.3.1.
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(a) Factorized Prior [Ballé
et al., 2018a].
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(b) Mean-Scale Hyperprior
[Minnen et al., 2018].
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(c) Channel-wise Autoregres-
sive [Minnen and Singh, 2020].

Figure B.2: The distance from the trajectory of decoded curve γ̂(t) to the straight path
between end-point reconstructions x̂(t) := (1− t)x̂(0)+ tx̂(1), and to the straight path between
ground truth images x̂(t) := (1− t)x(0) + tx(1).

Quantifying the curvature of decoded curves of reconstructions. Additionally,

we quantify how much the curves of reconstructed images deviate from straight paths by

computing the curve lengths. Recall given two tensors of latent coefficients (z(0), z(1)) (obtained
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by passing two images (x(0),x(1)) through the analysis transform), we let γ : [0, 1] → Z

be the straight line in the latent space defined by their convex combination, i.e., γ(t) :=

(1 − t)z(0) + tz(1). The curve of reconstructions is then defined by γ̂(t) := g(γ(t)), with

end-points x̂(0) := g(z(0)) and x̂(1) := g(z(1)).

Following Chen et al. [2018b], the curve length of γ̂ is given by

L(γ̂) :=

∫ 1

0

∥∂g(γ(t))
∂t

∥dt =
∫ 1

0

∥∂g(γ(t))
∂γ(t)

∂γ(t)

∂t
∥dt =

∫ 1

0

∥Jtv∥dt =
∫ 1

0

√
vTJt

TJtv dt

(B.22)

where Jt ∈ R|X |×|Z| is the Jacobian of the synthesis transform evaluated at z(t) = γ(t), and

v = ∂γ(t)
∂t

= z(1)− z(0) is the (constant) curve velocity. As in [Chen et al., 2018b], we compute

this integral approximately with a Riemann sum.

The shortest path (in Euclidean geometry) between the two end-points of γ̂ is given simply

by the linear interpolation (1− t)x̂(0) + tx̂(1), with a distance of ∥x̂(1) − x̂(0)∥. Therefore, we

define the curve-to-shortest-path length ratio

η :=
L(γ̂)

∥x̂(1) − x̂(0)∥ (B.23)

as a measure of how much the curve γ̂ deviates from a straight path, with η = 1 indicating a

completely straight line.

We compute the curve-to-shortest-path-length ratio η on 50 randomly chosen image pairs

in three NTC architectures [Ballé et al., 2018a, Minnen et al., 2018, Minnen and Singh,

2020]. We use random 16× 16 image crops (the results are similar for larger images) from

COCO [Lin et al., 2014]. We compute the curve length integral in Eq. B.22 via a Riemann

sum, 1
T

∑
ti
∥Jti(z

(1) − z(0))∥, with T = 100. Fig. B.3 plots the resulting η values against the
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(a) Factorized Prior [Ballé
et al., 2018a].
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(b) Mean-Scale Hyperprior
[Minnen et al., 2018].
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sive [Minnen and Singh, 2020].

Figure B.3: The curve-length ratio η v.s. the straight-path-length for randomly chosen image
pairs, in three different nonlinear transform coding architectures [Ballé et al., 2018a, Minnen
et al., 2018, Minnen and Singh, 2020]. In all cases, the curve lengths are close to the lengths
of straight paths.

straight-path lengths. In all cases, the curve lengths are close to the straight-path lengths

(η concentrated near 1), and this property appears to hold globally across randomly chosen

image pairs.

Visualizing the filters of synthesis transforms

In Figure B.4, we visualize the learned filters of the base Mean-Scale Hyperprior architecture

(panel a), and the proposed architectures with two-layer synthesis (panel b) and JPEG-like

synthesis (panel c) (both paired with ELIC’s analysis transform). We also visualize the top

20 PCA components learned on 10000 random 16 × 16 color image patches from COCO

(panel d).

For the neural compression methods, we visualize the synthesis filters corresponding to the

20 latent channels with the highest bit-rates on average (as determined on a small batch of

validation images); following [Duan et al., 2022], we produce the visualization for channel i

as follows: let e be a ‘basis’ tensor of shape [1, 1, C] (unit width/height) consisting of zeros

except the ith channel, which equals 1; let 0 be a tensor of zeros with the same shape as e;

then the impulse response associated with channel i is computed as g(δe)− g(0), where δ is
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(a) Top 20 filters of the Mean-Scale Hyperprior model, λ = 0.00125, giving bpp=0.10, psnr=27.3 on
Kodak.

(b) Top 20 filters of the two-layer synthesis model, λ = 0.00125, giving bpp=0.12, psnr=27.3 on
Kodak.

(c) Top 20 filters of the JPEG-like synthesis model, λ = 0.00125, giving bpp=0.12, psnr=27.0 on
Kodak.

(d) Principal components with the 20 largest eigenvalues, extracted from random 16x16 natural
image patches.

Figure B.4: Visualization of learned filters in various neural compression methods with
varying synthesis transform complexity. The “filters” obtained from PCA are included for
reference and show certain qualitative similarities. The filters are ordered by decreasing
average bit-rate (a,b,c) or eigenvalue (d). See text description for more details.

a scaling factor which affects the color intensity when visualized. This results in a 16× 16

colored image patch. We manually set a different δ for each architecture to result in a roughly

comparable range of displayed colors, with δ ∈ [8, 20]. We also apply a scaling factor when

visualizing the principal components from PCA.

Ablation results.

The analysis transform. Here, we examine how different choices of the analysis transform

affect the performance of our method based on the two-layer synthesis transform and ELIC’s

analysis transform.

We adopt the simpler CNN analysis transform from Mean-Scale Hyperprior [Minnen et al.,

2018], which consists of 4 layers of convolutions with F = 192 filters each, except for the last

layer which outputs C = 320 channels for the latent tensor. Fig. B.5 shows the resulting

performance with varying F , in both BD-rate savings as well as computational complexity.
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Figure B.5: Ablation results on the choice of analysis transform in the proposed two-layer
synthesis architecture. Using the CNN analysis from Mean-Scale Hyperprior [Minnen et al.,
2018] gave relatively worse R-D performance than the analysis transform from ELIC [He
et al., 2022].

We see that the CNN analysis gave worse performance than ELIC analysis, and the gap can

be closed to some extent by increasing F , but with diminishing returns and increasingly high

encoding complexity.

Additional investigations. We present results giving additional insight into our method

and how it compares to alternatives, evaluated on Kodak. The additional results are

highlighted with blue legend titles in Figure B.6. First, we consider also applying SGA to

the Hyperprior baseline; as shown by the solid blue line in Figure B.6, this also results in a

sizable boost in R-D, even larger than what we observe for our more shallow decoders. We

hypothesize that this may be caused by a relatively larger inference gap in the Hyperprior

architecture than ours with shallow decoders.

Next, we show that simply scaling down existing neural compression models tends to result in

worse performance than our approach. We consider two existing architectures: the mean-scale

Hyperprior [Minnen et al., 2018] and ELIC [He et al., 2022], and slim down their synthesis

transforms to match (to our best ability) the FLOPs of our two-layer shallow synthesis. For
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Figure B.6: Miscellaneous additional results, with blue legend labels to be distinguished from
results in the main paper. We (1) apply SGA also to the Hyperprior baseline; (2) simply scale
down existing NTC architectures to roughly match the FLOPs of our two-layer synthesis; (3)
explore a JPEG-like hyper synthesis transform to improve its computational efficiency.

Hyperprior, we adopt a pruned synthesis transform given by CENIC [Johnston et al., 2019]

(specifically, we use their architecture # 178, which uses about 7.3 KMACs/pixel, or about

1.4 times of our two-layer synthesis; we keep the hyper synthesis intact). For ELIC, we simply

reduce the number of conv channels in the synthesis to be 32, so that it uses about 16.5

KMACs/pixel (we also keep its hyper synthesis intact). We train the resulting architectures

from scratch; as shown by the purple (“Johnston 2019 CENIC”) and brown curves (“ELIC

XS”), this results in progressively worse R-D performance in the higher-rate regime compared

to our two-layer synthesis (red curve).

Finally, we conduct a preliminary exploration of a JPEG-like architecture for the hyper

synthesis transform. We implement this with a single transposed-conv layer with stride 4
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and (6, 6) kernels. We applied it on top of our linear JPEG-like synthesis, and observe a 10%

worse BD-rate (green curve → pink curve in Figure B.6) but nearly a 10-fold reduction in

the hyper synthesis FLOPs (15.18 → 1.8 KMACs/pixel).
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Additional R-D results

Below we include aggregate R-D results on the 100 test images from Tecnick [Asuni and

Giachetti, 2014] and 41 images from the professional validation set of CLIC 2018 5. We

additionally evaluate on the perceptual distortion LPIPS [Zhang et al., 2018]. Overall, we

observe that our proposed two-layer synthesis with iterative encoding matches the Hyperprior

performance when evaluated on PSNR, but under-performs by 8% ∼ 12% (in BD-rate) when

evaluated on perceptual metrics such as MS-SSIM or LPIPS. This is consistent with results

on Kodak in Sec. 5.4.2.
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Figure B.7: Aggregate LPIPS v.s. BPP performance on Kodak.

5http://clic.compression.cc/2018/challenge/
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Figure B.8: Aggregate PSNR v.s. BPP performance on Tecnick.
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Figure B.9: Aggregate MS-SSIM v.s. BPP performance on Tecnick.
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Figure B.10: Aggregate LPIPS v.s. BPP performance on Tecnick.
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Figure B.11: Aggregate PSNR v.s. BPP performance on CLIC professional validation set.
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Figure B.12: Aggregate MS-SSIM v.s. BPP performance on CLIC professional validation set.
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Figure B.13: Aggregate LPIPS v.s. BPP performance on CLIC professional validation set.
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Appendix C

For Chapter 6, “Neural Network-Based

Sandwich Bounds on the Rate-Distortion

Function”

C.1 Technical Definitions and Prerequisites

In this work we consider the source to be represented by a random variable X : Ω→ X , i.e.,

a measurable function on an underlying probability space (Ω,F ,P), and PX is the image

measure of P under X. We suppose the source and reproduction spaces are standard Borel

spaces, (X ,AX ) and (Y ,AY), equipped with sigma-algebras AX and AY , respectively. Below

we use the definitions of standard quantities from Polyanskiy and Wu [2022].

Conditional distribution The notation QY |X denotes an arbitrary conditional distribution

(also known as a Markov kernel), i.e., it satisfies
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1. For any x ∈ X , QY |X=x(·) is a probability measure on Y ;

2. For any measurable set B ∈ AY , x→ QY |X=x(B) is a measurable function on X .

Induced joint and marginal measures Given a source distribution PX , each test channel

distribution QY |X defines a joint distribution PXQY |X on the product space X ×Y (equipped

with the usual product sigma algebra, AX ×AY) as follows:

PXQY |X(E) :=

∫

X
PX(dx)

∫

Y
1{(x, y) ∈ E}QY |X=x(dy),

for all measurable sets E ∈ AX ×AY . The induced y-marginal distribution PY is then defined

by

PY (B) =

∫

X
QY |X=x(B)PX(dx),

for all measurable sets ∀B ∈ AY .

KL Divergence We use the general definition of Kullback-Leibler (KL) divergence between

two probability measures P,Q defined on a common measurable space:

KL(P∥Q) :=





∫
log dP

dQ
dP, if P ≪ Q

∞, otherwise.

P ≪ Q denotes that P is absolutely continuous w.r.t. Q (i.e., for all measurable sets E,

Q(E) = 0 =⇒ P (E) = 0). dP
dQ

denotes the Radon-Nikodym derivative of P w.r.t. Q; for

discrete distributions, we can simply take it to be the ratio of probability mass functions;

and for continuous distributions, we can simply take it to be the ratio of probability density

functions.
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Mutual Information Given PX and QY |X , the mutual information I(X;Y ) is defined as

I(X;Y ) := KL(PXQY |X∥PX ⊗ PY ) = Ex∼PX
[KL(QY |X=x∥PY )],

where PY is the Y -marginal of the joint PXQY |X , PX⊗PY denotes the usual product measure,

and KL(·∥·) is the KL divergence.

For the mutual information upper bound, it’s easy to show that

IU(QY |X , QY ) := Ex∼PX
[KL(QY |X=x∥QY )] = I(X;Y ) +KL(PY ∥QY ), (C.1)

so the bound is tight when PY = QY .

Obtaining R(D) through the Lagrangian. For each λ ≥ 0, we define the Lagrangian

by incorporating the distortion constraint in the definition of R(D) through a linear penalty:

L(QY |X , λ) := I(X;Y ) + λEPXQY |X [ρ(X, Y )], (C.2)

and define its infimum w.r.t. QY |X by the function

F (λ) := inf
QY |X

I(X;Y ) + λE[ρ(X, Y )]. (C.3)

Geometrically, F (λ) is the maximum of the R-axis intercepts of straight lines of slope −λ,

such that they have no point above the R(D) curve [Csiszár, 1974c].

Define Dmin := inf{D′ : R(D′) <∞}. Since R(D) is convex, for each D > Dmin, there exists

a λ ≥ 0 such that the line of slope −λ through (D,R(D)) is tangent to the R(D) curve, i.e.,

R(D′) + λD′ ≥ R(D) + λ(D) = F (λ), ∀D′.
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When this occurs, we say that λ is associated to D.

Consequently, the R(D) curve is then the envelope of lines with slope −λ and R-axis intercept

F (λ). Formally, this can be stated as:

Lemma C.1.1. (Csiszár [1974c, Lemma 1.2]; Gray [2011, Lemma 9.7]) For every distortion

tolerance D > Dmin, where Dmin := inf{D′ : R(D′) <∞}, it holds that

R(D) = max
λ≥0

F (λ)− λD (C.4)

We can draw the following conclusions:

1. For each D > Dmin, the maximum above is attained iff λ is associated to D.

2. For a fixed λ, if Q∗
Y |X achieves the minimum of L(·, λ), then λ is associated to the point

(ρ(Q∗
Y |X), I(Q

∗
Y |X), ); i.e., there exists a line with slope −λ that is tangent to the R(D)

curve at (ρ(Q∗
Y |X), I(Q

∗
Y |X)), where we defined the shorthand ρ(QY |X) := E[ρ(X, Y )]

and I(QY |X) := I(X;Y ) as induced by PXQY |X .

C.2 Full Version of Theorem 6.4.1

We restate the theorem of Csiszár [1974c, Theorem 2.3] here for completeness.

Theorem C.2.1. (Csiszár [1974c, Theorem 2.3]; also see Kostina [2016, Theorem 1]) Suppose

that the following basic assumptions are satisfied.

1. R(D) is finite for some D, i.e., Dmin := inf{D : R(D) <∞} <∞;

2. The distortion metric ρ is such that there exists a finite set E ⊂ Y such that

E[min
y∈E

ρ(X, y)] <∞
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Then, for each D > Dmin, it holds that

R(D) = max
g(x),λ
{E[− log g(X)]− λD} (C.5)

where the maximization is over g(x) ≥ 0 and λ ≥ 0 satisfying the constraint

E
[
exp(−λρ(X, y))

g(X)

]
=

∫
exp(−λρ(x, y))

g(x)
dPX(x) ≤ 1,∀y ∈ Y (C.6)

Note: the basic assumption 2 is trivially satisfied when the distortion ρ is bounded from

above; the maximization over g(x) ≥ 0 can be restricted to only 1 ≥ g(x) ≥ 0. Unless stated

otherwise, we use log base e in this work, so the R(D) above is in terms of nats (per sample).

Theorem C.2.1 can be seen as a consequence of Theorem 6.4.1 in conjunction with Lemma

C.1.1. We implemented an early version of our lower bound algorithm based on Theorem

C.2.1, generating each R-D lower bound by fixing a target D value and optimizing over

both λ and g as in Equation C.5. However, the algorithm often diverged due to drastically

changing λ. We therefore based our current algorithm on Theorem 6.4.1, producing R-D

lower bounds by fixing λ and only optimizing over g (or u, in our formulation).

C.3 Theoretical Results

Theorem C.3.1. (A decoder-induced R-D function bounds the source R-D function from

above.) Let X ∼ PX be a memoryless source subject to lossy compression under distortion ρ.

Let Z be any measurable space (“latent space” in a VAE), and ω : Z → Y any measurable

function (“decoder” in a VAE). This induces a new lossy compression problem with Z being

the reproduction alphabet, under a new distortion function ρω : X ×Z → [0,∞), ρω(x, z) =
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ρ(x, ω(z)). Define the corresponding ω-dependent rate-distortion function

Rω(D) := inf
QZ|X :E[ρω(X,Z)]≤D

I(X;Z) = inf
QZ|X :E[ρ(X,ω(Z))]≤D

I(X;Z).

Then for any D ≥ 0, Rω(D) ≥ R(D). Moreover, the inequality is tight if ω is bijective (so

that there is “no information loss”).

Proof. FixD. Take any admissible conditional distributionQZ|X that satisfies E[ρ(X,ω(Z))] ≤

D in the definition of Rω(D). Define a new kernel QY |X between X and Y by QY |X=x :=

QZ|X=x ◦ ω−1,∀x ∈ X , i.e., QY |X=x is the image measure of QZ|X=x induced by ω. Applying

data processing inequality to the Markov chain X
QZ|X−−−→ Z

ω−→ Y , we have I(X;Z) ≥ I(X;Y ).

Moreover, since QY |X is admissible in the definition of R(D), i.e.,

EPXQY |X [ρ(X, Y )] = EPXQZ|X [ρ(X,ω(Z))] ≤ D

we therefore have

I(X;Z) ≥ I(X;Y ) ≥ R(D) = inf
QY |X :E[ρ(X,Y )]≤D

I(X;Y ).

Finally, since I(X;Z) ≥ R(D) holds for any admissible QZ|X , taking infimum over such QZ|X

gives Rω(D) ≥ R(D).

To prove Rω(D) = R(D) if ω is bijective, it suffices to show that R(D) ≥ Rω(D). We use

the same argument as before. Take any admissible QY |X in the definition of R(D). We can

then construct a QZ|X by the process X
QY |X−−−→ Y

ω−1

−−→ Z. Then by DPI we have I(X;Y ) ≥

I(X;Z). Morever, QZ|X is admissible: EPXQZ|X [ρ(X,ω(Z))] = EPXQY |X [ρ(X,ω(ω
−1(Y ))] =

EPXQY |X [ρ(X, Y )] ≤ D. So I(X;Y ) ≥ I(X;Z) ≥ Rω(D). Taking infimum over such QY |X

concludes the proof.
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Remark. Although ω−1(ω(◦)) = Identity(◦) for any injective ω, our construction of QZ|X in the

last argument requires the inverse of ω to exist, so that additionally ω(ω−1(Y )) = Y . Several

learned image compression methods have advocated for the use of sub-pixel convolution, i.e,

convolution followed by (invertible) reshaping of the results, over upsampled convolution in

the decoder, in order to produce better reconstructions [Theis et al., 2017a, Cheng et al.,

2020]. This can be seen as making the decoder more bijective, therefore reducing the gap of

Rω(D) over R(D), in light of our above theorem.

Corollary C.3.1.1. (A suitable β-VAE defines an upper bound on the source R-D function).

Let X ∼ PX be a data source, ρ : X × Y → [0,∞) a distortion function, and Z be any latent

space. Consider any β-VAE consisting of a prior distribution QZ on Z, and an encoder which

specifies a conditional distribution QZ|X=x for each x. Suppose further that the likelihood

(observation) model is chosen to have density p(x|z) ∝ exp{−ρ(x, ω(z)} for some decoder

function ω : Z → Y (a common example being an isotropic Gaussian p(x|z) with mean ω(z)

and fixed variance, specified by a squared error distortion).

Then the two terms of the negative ELBO — specifically, the “KL term”

R := Ex∼PX
[KL(QZ|X=x∥QZ)],

and the “log-likelihood term” up to a constant,

D := EPXQZ|X [ρ(X,ω(Z))] = EPXQZ|X [− log p(X|Z)] + const,

define a point (D,R) that lies above the source R(D)-curve; i.e., R ≥ R(D).
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Proof.

R ≥ IPXQZ|X (X;Z) ≥ inf
Q′

Z|X :EPXQ′
Z|X

[ρω(X,Z)]≤D
IPXQ′

Z|X
(X;Z) =: Rω(D) ≥ R(D)

The first inequality is the variational upper bound on mutual information (Eq. C.1), the

second inequality follows from the definition of the ω-induced R-D function (and the fact

that EPXQZ|X [ρω(X,Z)] =: D), and the last inequality is Theorem C.3.1.

Remark. As also remarked by Theis et al. [2017a], not all distortion functions lead to

the β-VAE interpretation above. For this to work, the function exp{−ρ(x, ω(z)} must be

normalizable in x (w.r.t. a suitable base measure on X ) for every z, and the normalizing

constant may not depend on z.

Theorem C.3.2. (Basic properties of the proposed estimator Ck of the sup-partition function.)

Let X1, X2, ... ∼ PX be a sequence of i.i.d. random variables. Let ψ : X × Y → R+ be a

measurable function. For each k, define the random variable Ck := supy
1
k

∑
i ψ(Xi, y). Then

1. Ck is an overestimator of the sup-partition function c, i.e.,

E[Ck] = EX1,...,Xk
[supy

1
k

∑
i ψ(Xi, y)] ≥ supy E[ψ(X, y)] =: c;

2. The bias of Ck decreases with increasing k, i.e.,

E[C1] ≥ E[C2] ≥ ... ≥ E[Ck] ≥ E[Ck+1] ≥ ... supy E[ψ(X, y)] = c;

3. If ψ(x, y) is bounded and continuous in y, and if Y is compact, then Ck is strongly consis-

tent, i.e., Ck converges to c almost surely (as well as in probability, i.e., limk→∞ P(|Ck−

c| > ϵ) = 0, ∀ϵ > 0), and limk→∞ E[Ck] = c.

Proof. We prove each in turn:
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1. E[Ck] = E[supy
1
k

∑
i ψ(Xi, y)] ≥ supy E[ 1k

∑
i ψ(Xi, y)] = supy E[ψ(X, y)] = c

2. First, note that E[C1] ≥ E[Ck] since

E[C1] = E[sup
y
ψ(X1, y)] = E[

1

k

∑

i

sup
y
ψ(Xi, y)] ≥ E[sup

y

1

k

∑

i

ψ(Xi, y)] = E[Ck]

We therefore have

E[Ck+1] = E[sup
y

1

k + 1

k+1∑

i=1

ψ(Xi, y)]

= E[sup
y
{ 1

k + 1

k∑

i=1

ψ(Xi, y) +
1

k + 1
ψ(Xk+1, y)}]

≤ E[sup
y
{ 1

k + 1

k∑

i=1

ψ(Xi, y)}+ sup
y
{ 1

k + 1
ψ(Xk+1, y)}]

=
k

k + 1
E[Ck] +

1

k + 1
E[C1]

≤ E[Ck]

3. Define the shorthand Mk(y) :=
1
k

∑k
i=1 ψ(Xi, y),Ψ(y) = E[ψ(X, y)]. Denote the sup

norm on the set of continuous bounded functions on Y by ∥f(·)∥∞ := supy∈Y |f(y)|.

Then it holds that

| sup
y
Mk(y)− sup

y
Ψ(y)| = | sup

y
|Mk(y)| − sup

y
|Ψ(y)||

= |∥Mk(·)∥∞ − ∥Ψ(·)∥∞|

≤ ∥Mk(·)−Ψ(·)∥∞

= sup
y
|Mk(y)−Ψ(y)|,

where we made use of the fact that ψ ≥ 0 in the first equality, and the reverse triangle

inequality in the second-to-last step. By the uniform strong law of large numbers
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[Ferguson, 2017],

lim
k→∞

sup
y
|Mk(y)−Ψ(y)| = 0

almost surely. Therefore, by the inequality we just showed, we also have

lim
k→∞
| sup

y
Mk(y)− sup

y
Ψ(y)| ≤ lim

k→∞
sup
y
|Mk(y)−Ψ(y)| = 0

almost surely, i.e.,

lim
k→∞

Ck = lim
k→∞

sup
y
Mk(y) = sup

y
E[ψ(X, y)] := c

almost surely. Then it trivially follows that Ck also converges to c in probability, and

that limk→∞ E[Ck] = c by the bounded convergence theorem.

C.4 Detailed Lower Bound Method

Approximations for stochastic gradient ascent. Recall the lower bound objective

obtained by replacing the sup-partition function c by the mean of the k-sample underestimator

Ck:

ℓk(θ) := E[− log uθ(X)]− logE[Ck]

Unfortunately, we still cannot apply stochastic gradient ascent to ℓk, as two more difficulties

remain, which we solve by further approximations. First, Ck is still hard to compute, as it is

defined through a global maximization problem. We note that by restricting to a symmetric
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ρ and Y = X , the maximization objective of Ck has the form of a reweighted kernel density

estimate,

1

k

k∑

i=1

ψ(xi, y) =
1

k

k∑

i=1

1

u(xi)
exp(−λρ(xi, y)),

where each data point is reweighted by 1
u(x)

. For a squared error distortion, this becomes a

Gaussian mixture density, 1
k

∑
i ψ(xi, y) ∝

∑
i πi exp(−λ∥xi − y∥2), with centroids defined by

the samples x1, ..., xk, and mixture weights πi = (ku(xi))
−1. The global mode of a Gaussian

mixture can generally be found by hill-climbing from each of the k centroids, except in

rare artificial examples [Carreira-Perpinan, 2000, 2020]; we therefore use this procedure to

compute Ck, but note that other methods exist [Lee et al., 2019b, Carreira-Perpinan, 2007].

The second difficulty is that even if we could estimate E[Ck] (with samples of Ck computed by

global optimization), the objective ℓk requires an estimate of its logarithm; a naive application

of Jensen’s inequality − logE[Ck] ≥ E[− logCk] results in an over -estimator (as does the

IWAE estimator), whereas we require a lower bound. Following Poole et al. [2019], we use

the following basic lower bound of − log(x) by its linearization around some point α, i.e.,

− log(x) ≥ −x/α− log(α) + 1,∀x, α > 0

with equality achieved by α = x. This results in the final lower bound objective we optimize:

ℓ̃k(θ) := E[− log uθ(X)]− E[Ck]/α− logα + 1. (C.7)

Since the linear underestimator of − logE[Ck] is tightest near α = E[Ck], in our algorithm

we set α adaptively to an estimate of E[Ck] (separately from the E[Ck] term we estimate in

the objective function).
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Algorithm 2: Example implementation of the proposed algorithm for estimating
rate-distortion lower bound RL(D).
Requires: λ > 0, model uθ (e.g., a neural network) parameterized by θ, batch sizes
k,m, and gradient ascent step size ϵ.

while ℓ̃k not converged do
// Draw 2m samples of Ck; use the last m samples to set α, and

the first m samples to estimate E[Ck] in ℓ̃k.
for j := 1 to 2m do

Draw k data samples, {xj1, ..., xjk}
yj, Cj

k := compute_Ck(θ, λ, {x1, ..., xk})
end
α := 1

m

∑2m
j=m+1C

j
k

// Compute objective ℓ̃k(θ) and update θ by gradient ascent.
with GradientTape() as tape:

E := 1
m

∑m
j=1 γk(y

j, θ, {xj1, ..., xjk}) // Estimate of E[Ck]

ℓ̃k := − 1
m

∑m
j=1

1
k

∑k
i=1 log uθ(x

j
i )− 1

α
E − logα + 1

gradient := tape.gradient(ℓ̃k, θ)
θ := θ + ϵ gradient

end
Subroutine γk(y, θ, λ, {x1, ..., xk}) :

// Evaluate the global maximization objective at y.
Return 1

k

∑k
i=1 exp{−λρ(xi, y)}/uθ(xi)

Subroutine compute_Ck(θ, λ, {x1, ..., xk}) :
// Compute the global optimum of γk(y), assuming squared distortion

ρ(x, y) ∝ ∥x− y∥2.
opt_loss := −∞
for i := 1 to k do

// Run gradient ascent from the ith mixture component.
y := xi
while y not converged do

with GradientTape() as tape:
loss := γk(y, θ, λ, {x1, ..., xk})
gradient := tape.gradient(loss, y)
y := y + ϵ gradient

end
if loss > opt_loss then

opt_loss := loss
y∗ := y

end
end
Ck = opt_loss
return (y∗, Ck)
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The algorithm. We give a pseudo-code implementation of the algorithm in Algorithm 2.

The code largely follows Python semantics, and assumes an auto-differentiation package is

available, such as GradientTape as provided in Tensorflow. We use γk to denote the function

in the supremem definition of Ck , i.e., γk(y) := 1
k

∑k
i=1 exp{−λρ(xi, y)}/uθ(xi).

For a given λ > 0 and model uθ : x→ R+, the lower bound algorithm works by (stochastic)

gradient ascent on the objective ℓ̃k(θ) (Eq. 6.8) w.r.t. the model parameters θ. To compute

the gradient, we need an estimate of E[Ck] (ultimately logE[Ck]) as part of the objective,

which requires us to draw m samples of Ck. In the pseudo-code, a separate set of m samples

of Ck are also drawn to set the linear expansion point α. In our actual implementation, we

set α to an exponential moving average of E[Ck] estimated from previous iterations (e.g.,

replacing line 7 of the pseudo-code by α := 0.2α+ 0.8E), so only m samples of Ck need to be

drawn for each iteration of the algorithm. We did not find this approximation to significantly

affect the training or results.

Recall Ck(θ) is defined by the result of maximizing w.r.t. y. When computing the gradient with

respect to θ, we differentiate through the maximization operation by evaluating Ck = γk(y
∗)

on the forward pass, using the argmax y∗ found by the subroutine compute_Ck. This is

justified by appealing to a standard envelope theorem [Milgrom and Segal, 2002].

By Lemma C.1.1, each u∗θ trained with a given value of λ yields a linear under-estimator of

R(D) ,

Rλ
L(D) = −λD + ℓ̃k(θ

∗).

We obtain the final RL(D) lower bound by taking the upper envelope of all such lines, i.e.,
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RL(D) := max
λ∈Λ

Rλ
L(D),

where Λ is the set of λ values we trained with.

Tips and tricks:

To avoid numerical issues, we always parameterize log u, and all the operations involving Ck

and α are performed in the log domain; e.g., we optimize log γk instead of γk (which does not

affect the result since log is monotonically increasing), and use logsumexp when taking the

average of multiple Ck samples in the log domain.

During training, we only run an approximate version of the global optimization subroutine

compute_Ck for efficiency, as follows. Instead of hill-climbing from each of the k mixture

component centroids, we only do so from the t highest-valued centroids under the objective

γk, for a small number of t (say 10). This approximation is not used when reporting the final

results.

C.5 Additional Experimental Details and Results

C.5.1 Computational Aspects

Our methods are implemented using the Tensorflow library. Our experiments with learned

image compression methods additionally used the tensorflow-compression1 library. Our

experiments on images were run on Titan RTX GPUs, while the rest of the experiments

were run on Intel(R) Xeon(R) CPUs. We used the Adam optimizer for gradient based
1https://github.com/tensorflow/compression
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optimization in all our experiments, typically setting the learning rate between 1e− 4 and

5e− 4. Training the β-VAEs for the upper bounds required from a few thousand gradient

steps on the lower-dimension problems (under an hour), to a few million gradient steps on

the image compression problem (a couple of days; similar to reported in Minnen and Singh

[2020]). With our approximate mode finding procedure (starting hill climbing only from a

small number of centroids, see Sec. C.4), the lower bound models required less than 10000

gradient steps to converge in all our experiments.

C.5.2 Gaussians

Data Here the data source is an n-dimensional Gaussian distribution with a diagonal

covariance matrix, whose parameters are generated randomly. We sample each dimension of

the mean uniformly randomly from [−0.5, 0.5] and variance from [0, 2]. The ground-truth

R-D function of the source is computed analytically by the reverse water-filling algorithm

[Cover and Thomas, 2006].

Upper Bound Experiments For the Z = Y (no decoder) experiment, we chose QY and

QY |X to be factorized Gaussians; we let the mean and variance vectors of QY be trainable

parameters, and predict the mean and variance of QY |X=x by one fully connected layer with

2n output units, using softplus activation for the n variance components.

For our experiments involving a decoder, we parameterize the variational distributions QZ

and QZ|X similarly to before, and use an MLP decoder with one hidden layer (with the

number of units equal the data dimension n, and leaky ReLU activation) to map from the

Z to Y space. We observe the best performance with a linear (or identity) decoder and a

simple linear encoder; using deeper networks with nonlinear activation required more training

iterations for SGD to converge, and often to a poorer upper bound. In fact, for a factorized
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Figure C.1: R-axis intercept estimates at (negative) slope λ = n
2

from our lower bound
algorithm, trained with increasing n and k. The R-axis intercept of an optimally tight linear
lower bound, Fn(

n
2
), increases linearly as a function of n; however, we see that the best

achievable R-axis intercept achieved with a particular setting of k, ℓ̃k, plateaus out at logk as
n increases.

Gaussian source, it can be shown analytically that the optional Q∗
Y |X=x is a Gaussian whose

mean depends linearly on x, and an identity (no) decoder is optimal.

Lower Bound Experiments In our lower bound experiments, we parameterize log u by

an MLP with 2 hidden layers with 20n hidden units each and SeLU activation, where n is

the dimension of the Gaussian source. We fixed k = 1024 for the results with varying n in

Figure 6.2a-bottom. We vary both k and n in the additional experiment below.

To investigate the necessary k needed to achieve a tight lower bound, and its relation to λ or

the Gaussian source dimension n, we ran a series of experiments with k ranging from 64 to

1024 on increasingly high dimensional standard Gaussian sources, each time setting λ = n
2
.

For an n-dimensional standard Gaussian, the true R-intercept, Fn(λ), has an analytical form;

in particular, Fn(
n
2
) = n

2
. In Figure C.1, we plot the final objective estimate, ℓ̃k, using the

converged MLP model, one for each k and n. As we can see, the maximum achievable ℓ̃k

plateaus to the value log k as we increase n, and for sufficiently high dimension (e.g., n = 20
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here), doubling k only brings out a constant (log 2) improvement in the objective. This

phenomenon relates to the over-estimation bias of Ck when k is too low compared to λ or

the “spread” of the data, and can be understood as follows.

For a given sample size k, there is a “catestrophic” regime produced by increasingly large

λ (corresponding to an exceedingly narrow Gaussian kernel), or increasingly high (in-

trinsic) dimension of the data, so that the k data samples appear very far apart. Nu-

merically, this is exhibited by very quick termination of the k hill-climbing runs when

computing Ck (subroutine compute_Ck in Algorithm. 2), since the mixture components

are well separated, and the mixture centroids are nearly stationary points of the mixture

density. The value of the mixture density at each centroid xi can be approximated as

γk(xi) =
1
k

1
u(xi)

+ 1
k

∑
j ̸=i exp{−λρ(xj, xi)}/uθ(xj) ≈ 1

ku(xi)
, since exp{−λρ(xj, xi)} ≈ 0 for

all j ̸= i. The maximization problem defining Ck then essentially reduces to checking which

mixture component is the highest, and returning the corresponding centroid (or a point very

close to it), so that Ck ≈ supi=1,...,k
1

ku(xi)
. This implies

E[Ck] ≈ E[ sup
i=1,...,k

1

ku(Xi)
] ≤ E[sup

x

1

ku(x)
] = sup

x

1

ku(x)
,

therefore

ℓk := E[− log u(X)]− logE[Ck] (C.8)

≤ E[− log u(X)] + log k + inf
x
log u(x) (C.9)

= log k + E[− log u(X) + inf
x′

log u(x′)] ≤ log k. (C.10)

Thus, when these approximations hold, the maximum achievable lower bound objective ℓ̃k

cannot exceed log k. On sources such as high-dimension (e.g., n = 10000) Gaussians, or

256× 256 patches of natural images, λ needs to be on the order of 106 or higher to target

even the low-distortion region of the R-D curve, and the above analysis well describes the
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behavior of the lower bound algorithm for any value of k we feasibly experimented with.

C.5.3 Particle Physics

Data We borrowed the Z → e+e− dataset from Howard et al. [2021], containing 331699

data observations. Each n = 16-dimensional data vector corresponds to an independent

Z-boson decay event, and is the concatenation of the four-momenta of an electron (e−) and

positron (e+) both in the theoretical prior space and observed space. The 2D marginal

distribution (where we additionally compare with the BA algorithm) is formed by taking the

two data coordinates with the least absolute value of correlation. A histogram is given in

Figure C.2a.

Unlike in the Gaussian experiments, where we generate new random samples from the source

on the fly for training and evaluation, here the true underlying source is only approximated

by a finite number of samples in the given dataset. Since our R-D upper/lower bounds have

the form of expectations of learned functions w.r.t. the true underlying source (explained

in more detail in Section. C.6), we create a separate held-out test set of 10000 samples for

our final estimates of R-D bounds using the trained models. We also use a small subset of

the training data as a validation set for model selection, typically using the most expressive

model we can afford without overfitting. We use the same train/test split and the same

model architectures on the 2D marginal data as on the n = 16 data.

Upper Bound Experiments For our R-D upper bound model, we use a VAE with a MLP

decoder, a normalizing flow “prior” QZ , and an MLP encoder computing a factorized Gaussian

QZ|X . We set the latent space to have the same dimensionality n as the data. The encoder

and decoder MLPs have three layers with [500, 500, l] units in each, where l = n for the

deocder MLP and l = 2n for the encoder MLP (as it computes both a mean and a variance
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vector for QZ|X); we use softplus activation in each hidden layer. QZ is parameterized as a

base Gaussian distribution transformed by three stacks of MAF [Papamakarios et al., 2017].

For the Nonlinear Transform Coding (NTC) [Ballé et al., 2021] model, we use a VAE with a

similar 500-500-n MLP architecture for the encoder and decoder (thus the latent space has

the same dimensionality n as the data), but modify the variational distributions to simulate

quantization and end-to-end compression. As in [Ballé et al., 2018a, Ballé et al., 2021], we let

QZ|X be a factorized uniform distribution with unit width, and QZ be a factorized neural

density model convolved with a uniform noise.

For the BA algorithm on the 2D marginal, we obtain discretized alphabets and source

probabilities as follows. First, we determine the smallest box set S in R2 containing all the

data samples (simply the Cartesian product of sample ranges along the x and y axes); next,

we finely tile up S using small rectangle bins, and compute a histogram of data samples over

them. We then let the source and reproduction alphabets to be the bin centers, and set

the source distribution to be the frequency of samples in each bin. Finally, for computation

efficiency, we remove the bin centers from the source alphabet associated with 0 samples; this

does not affect the results.

We ran a maximum of 2000 steps of the BA algorithm on the test set, terminating early if

the objective has not improved by more than 0.0001% in consecutive steps.

Lower Bound Experiments We parameterize our lower bound model log u by an MLP

with 3 hidden layers with 200 hidden units each and SeLU activation. We fixed k = 2048.
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Figure C.2: Normalized histograms of the 2D marginals of the particle physics (C.2a) and
speech (C.2b) datasets. The quantization bins and the associated empirical PMFs are also
used define the discretized 2D source distributions on which the BA algorithm is run.

C.5.4 Speech

Data We use the Free Spoken Digit Dataset [Jackson et al., 2018] consisting of recordings

of spoken digits from ‘zero’ to ‘nine’ at a sampling rate of 8kHz. We use a subset of the

recordings with a randomly chosen speaker id (‘theo’), and keep the original train-test split

2 consisting of 450 and 50 audio files for the train and test sets, respectively. From each

audio file, we extracted Short-time Fourier Transform (STFT) coefficients using Tensorflow’s

tf.signal.stft routine with a 63-sample FFT window (frame_length=63) in 1-sample

steps (frame_step=1), took the magnitude and converted to log domain, a common pre-

processing step for computing spectrograms and Mel-frequency cepstral coefficients. The

resulting n = 33-dimensional Fourier feature vectors are then shuffled across time steps and

treated as i.i.d. samples in our experiments, with over 1 million samples in the training set and

120000 samples in the test set. We follow the same procedure as in the physics experiment,

creating a 2D marginal from the two coordinates with the least absolute correlation; a

histogram is given in Figure C.2b.
2https://github.com/Jakobovski/free-spoken-digit-dataset/#usage
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Experiments We use the same model architectures and experimental procedures/hypermarameters

as in the physics experiment.

C.5.5 Banana-shaped Source

Data The 2D banana-shaped source [Ballé et al., 2021] is a RealNVP transform of a 2D

Gaussian. 3 See Figure 6.3 for a plot of its density function.

We embed the banana source in a higher dimension n by multiplying with a randomly sampled

n× 2 matrix. This is done by simply passing samples of the 2D banana source through a

linear MLP layer with n output units and no activation, with its weight matrix randomly

drawn from a Gaussian by the Glorot initialization procedure.

Upper Bound Experiments We reproduced the NTC experiment using the same com-

pressive autoencoder as in Ballé et al. [2021], with a 2-dimensional latent space and two-layer

MLPs for both the encoder and decoder, with 100 hidden units and softplus activation in

each hidden layer. For our upper bound model, we use the same MLP architecture as in

Ballé et al. [2021], but parameterize QZ by a MAF [Papamakarios et al., 2017] and QZ|X by

a factorized Gaussian (doubling the number of output of the encoder), similar to on previous

experiments.

For the higher-dimension embeddings of the banana-shaped source, we use the same β-VAE

as on the 2D source, but set the number of hidden units in each hidden layer to 100n, where

n is the dimension of the source. We cap the number of hidden units per layer at 2000 for

n > 20, and do not find this to adversely affect the results.
3Source code taken from the authors’ GitHub repo https://github.com/tensorflow/compression/

blob/66228f0faf9f500ffba9a99d5f3ad97689595ef8/models/toy_sources/toy_sources.ipynb.
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Lower Bound Experiments We use an MLP with three hidden layers and SeLU activa-

tions for the log u model; as in the upper bound models, here we set the number of hidden

units in each layer to be 100n, and cap it at 1000. In all the experiments we set k = 1024.

As illustrated by Figure 6.5, the tightness of our sandwich bounds do not appear to be affected

by the dimension n of the data (we verified this up to n = 1000), unlike on the Gaussian

experiment where for a fixed k the lower bound became increasingly loose with higher n.

C.5.6 GAN-Generated Images

Data We adopt the same setup as in the GAN experiment by Pope et al. [2021]. We use a

BigGAN [Brock et al., 2019] pretrained on ImageNet at 128×128 resolution (so that n = 128×

128 × 3 = 49152), downloaded from https://tfhub.dev/deepmind/biggan-deep-128/1.

To generate an image of an ImageNet category, we provide the corresponding one-hot class

vector as well as a noise vector to the GAN. Following Poole et al. [2019], we control the

intrinsic dimension d of the generated images by setting all except the first d dimensions

of the 128-dimension noise vector to zero, and use a truncation level of 0.8 for the sample

diversity factor. Since the GAN generates values in [−1, 1], we rescale them linearly to [0, 1]

to correspond to images, so that the alphabets X = Y = [0, 1]n. As in [Pope et al., 2021], we

experimented with images from the ImageNet class basenji. In Figure C.3 and C.4, we plot

additional random samples, for d = 2 and d = 4.

Upper Bound Experiments We implemented a version of ResNet-VAE following the

appendix of Kingma et al. [2016], using the 3 × 3 convolutions of Cheng et al. [2020] in

the encoder and decoder of our model. Our model consists of 6 layers of latent variables,

and implements bidirectional inference using factorized Gaussian variational distributions

at each stochastic layer. During an inference pass, an input image goes through 6 stages of
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Figure C.3: Random samples of basenji from a BigGAN, d = 2.

Figure C.4: Random samples of basenji from a BigGAN, d = 4.

convolution followed by downsampling (each time reducing the height and width by 2), and

results in a stochastic tensor at each stage. In encoding order, the stochastic tensors have

decreasing spatial extent and an increasing number of channels equal to 4, 8, 16, 32, 64, and

128. The latent tensor Z0 at the topmost generative hierarchy is flattened and modeled by a

MAF prior QZ0 (aided by the fact that all the images have a fixed shape).

Lower Bound Experiments We parameterize the log u model by a simple feedforward

convolutional neural network. It contains three convolutional layers with 4, 8, and 16 filters,

each time downsampling by 2, followed by a fully connected layer with 1024 hidden units.

Again we use SeLU activation in the hidden units, and set k = 2048 in all the experiments.

C.5.7 Natural Images

Data For signals such as images or video, which can have arbitrarily high spatial dimension,

it is not immediately clear how to define i.i.d. samples. But since our focus is on image

compression, we follow the common practice of training convolutional autoencoders on random

256×256-pixel crops of high resolution images as in learned image compression research [Ballé
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Figure C.5: Quality-rate curves on the Tecnick dataset.

et al., 2017], noting that current methods cannot effectively exploit spatial redundancies larger

than this scale [Minnen and Singh, 2020]. We can then use the trained models to estimate

R-D upper bounds on the image-generating distributions underlying standard benchmark

datasets such as Kodak Kodak [1993] and Tecnick Asuni and Giachetti [2014].

As a representative dataset of natural images, we used images from the COCO 2017 [Lin

et al., 2014] training set that are larger than 512×512, and downsampled each by a random

factor in [0.6, 1] to remove potential compression artifacts from JPEG. We trained image

compression models from [Minnen et al., 2018, Minnen and Singh, 2020] on our dataset and

were able to closely reproduce their performance.

Upper Bound Experiments Instead of working with variational distributions over the set

of pixel values Y = X = {0, 1, ..., 255}n, which would require specialized tools for representing

and optimizing high-dimensional discrete distributions [Salimans et al., 2017, Hoogeboom

et al., 2019, Maddison et al., 2016, Jang et al., 2016], here we parameterize the variational

distributions in Euclidean latent spaces for simplicity (see Sec. 6.3).
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We applied our upper bound algorithm based on two VAE architectures:

1. The learned image compression model from Minnen and Singh [2020] 4. This corresponds

to a hierarchical VAE with two layers of latent variables, with the lower level latents

modeled by a channel-wise autoregressive prior conditioned on the top-level latents.

We adapt it for our purpose, by using factorized Gaussians for the variational posterior

distributions QZ|X (instead of factorized uniform distributions used to simulate rounding

in the original model), and no longer convolving the variational prior QZ with a uniform

distribution as in the original model.

2. The ResNet-VAE from our experiment on GAN images. Following learned image

compression models, we maintain the convolutional structure of the topmost latent

tensor (rather than flattening it in the GAN experiments) in order to make the model

applicable to images of variable sizes. Instead of a MAF, we model the topmost latent

tensor by a deep factorized (hyper-)prior QZ0 as proposed by Ballé et al. [2018a].

For the β-VAE based on Minnen and Singh [2020], dim(Z) ≈ 0.28 dim(X ); and for our

β-ResNet-VAE, dim(Z) ≈ 0.66 dim(X ). We did not observe improved results by simply

increasing the number of latent channels/dimensions in the former model. We follow the

same model training practice as reported by Minnen and Singh [2020], training both models

to around 5 million gradient steps.

In our problem setup, we consider the reproduction alphabet to be the discrete set of pixel

values X = {0, 1, ..., 255}n, so the decoder network ω needs to discretize the output of the

final convolutional layer (in Tensorflow, this can be implemented by a saturate_cast to

uint8). However, since the discretization operation has no useful gradient, we skip it during

training, and only apply it for evaluation.
4https://github.com/tensorflow/compression/blob/f9edc949fa58381ffafa5aa8cb37dc8c3ce50e7f/

models/ms2020.py
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The operational quality-rate curves of various compression methods are taken from the

tensorflow-compression5 and compressAI6 libraries. The results of Minnen and Singh

[2020] represent the current state-of-the-art of neural image compression, to the best of our

knowledge.

Lower Bound Experiments When running our lower bound algorithm on 256 × 256

crops of natural images, we observed similar behavior as on high-dimension Gaussians, with

the loss ℓ̃k quickly plateauing to a value around log k. This issue persisted when we tried

different u model architectures. See a discussion on this phenomenon in Section C.5.2.

C.6 Measures of Variability

As alluded to in Sec. 6.3, the proposed R-D bounds are estimated as empirical averages from

samples, which only equal the true quantities in expectation. Before we characterize the

variability of the bound estimates, we first define the exact form of the estimators used.

Upper Bound Estimator For the proposed upper bound, consider the variational problem

solved by the Lagrangian Eq. 6.3, and define the random variables from the rate and distortion

terms of the Lagrangian:

R(Z,X) := log q(Z|X)− log q(Z),

5https://github.com/tensorflow/compression/tree/8692f3c1938b18f123dbd6e302503a23ce75330c/
results/image_compression

6https://github.com/InterDigitalInc/CompressAI/tree/baca8e9ff070c9f712bf4206b8f2da942a0e3dfe/
results
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and

D(Z,X) := ρ(X,ω(Z)).

Above, X and Z follow the joint distribution PXQZ|X , ω is the decoder function, and

q(z|x) and q(z) are the Lebesgue density functions of absolutely continuous QZ|X=x and QZ

variational distributions (we only worked with absolutely continuous variational distributions

for simplicity). Then it is clear that the expectations of the two random variables equal the

rate and distortion terms, i.e.,

E[R(Z,X)] = Ex∼PX
[KL(QZ|X=x∥QZ)],

and

E[D(Z,X)] = EPXQZ|X [ρ(X,ω(Z))].

Recall for any given decoder and variational distributions, the above rate and distortion

terms define a point (E[D],E[R]) that lies on an upper bound RU(D) of the source R(D)

curve. Given m i.i.d. pairs of (Z1, X1), (Z2, X2), ..., (Zm, Xm) ∼ PXQZ|X , we estimate such

a point by (µD, µR), using the usual sample mean estimators µR := 1
m

∑m
j=1R(Zj, Xj) and

µD := 1
m

∑m
j=1D(Zj, Xj).

Lower Bound Estimator For the proposed lower bound, given i.i.d. X1, ..., Xk ∼ PX ,

define the random variable

ξ := −1

k

k∑

i

log u(Xi)−
Ck

α
− logα + 1,
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where the various quantities are defined as in Sec. 6.4. Then it is clear that its expectation

equals the lower bound objective Eq. 6.8, i.e., E[ξ] = ℓ̃k := E[− log u(X)]−E[Ck]/α− logα+1.

Given m i.i.d. samples of ξ, we form the usual sample mean estimator µξ :=
1
m

∑
j ξj, and

form an R-D lower bound estimate by

R̂L(D) := −λD + µξ.

In computing µξ, we fix the constant α to a sample mean estimate of E[Ck] computed

separately (as in line 7 of Algorithm 2). As explained in Sec. C.4, we repeat this procedure

with different λ, and our overall R-D lower bound is obtained by taking the point-wise

maximum of such linear under-estimators over λ.

Results Below we give measures of variability of for the sandwich bound estimates obtained

on GAN generated images (Section 6.6.3). We report detailed statistics in the following

tables, and plot them in Figure C.6. Our results on other experiments have comparable

variability.

For the upper bound, given each trained β-VAE, we compute m samples of (R,D), essentially

passing m samples of X through the autoencoder and collect the rate and distortion values;

then we report the sample mean (µ), sample standard deviation (s), and 95% large-sample

confidence interval for the population mean (the true expected value) forR and D, respectively,

in Tables C.1 and C.2.

For the lower bound, given each trained log u model, we compute m samples of ξ, then report

the sample mean (µξ), sample standard deviation (sξ), and 90% large-sample confidence lower

bound for the population mean (the true expected value E[ξ] = ℓ̃k) in Tables C.3 and C.4.

218



λ µR sR E[R] CI µD sD E[D] CI

300 0.278 0.8 (0.15, 0.41) 0.006 0.00287 (0.00553, 0.00647)
500 1.25 1.27 (1.04, 1.46) 0.00351 0.00207 (0.00317, 0.00385)

1e+03 2.69 1.21 (2.49, 2.89) 0.00157 0.00103 (0.0014, 0.00174)
4e+03 4.77 1.25 (4.56, 4.97) 0.000352 0.000285 (0.000305, 0.000399)
8e+03 5.65 1.31 (5.44, 5.87) 0.000196 0.000152 (0.000171, 0.000221)

1.6e+04 6.43 1.32 (6.21, 6.64) 0.000126 9.68e-05 (0.00011, 0.000142)

Table C.1: Statistics for the estimated R-D upper bound on GAN-generated images with
d = 2, computed with m = 100 samples of (R,D). “CI” denotes 95% large-sample confidence
interval.

λ µR sR E[R] CI µD sD E[D] CI

300 0.265 0.689 (0.15, 0.38) 0.00978 0.00376 (0.00916, 0.0104)
500 1.44 1.24 (1.23, 1.64) 0.00693 0.00284 (0.00646, 0.00739)

1e+03 4.08 1.73 (3.80, 4.36) 0.00332 0.00152 (0.00307, 0.00357)
2e+03 6.59 1.88 (6.28, 6.90) 0.00151 0.000752 (0.00139, 0.00164)
4e+03 8.66 1.89 (8.35, 8.97) 0.000774 0.000389 (0.00071, 0.000838)
8e+03 10.4 1.89 (10.06, 10.68) 0.000476 0.000229 (0.000438, 0.000514)

1.6e+04 12 1.83 (11.69, 12.29) 0.000323 0.000147 (0.000299, 0.000347)

Table C.2: Statistics for the estimated R-D upper bound on GAN-generated images with
d = 4, computed with m = 100 samples of (R,D). “CI” denotes 95% large-sample confidence
interval.
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λ µξ sξ E[ξ] LCB

99.63 0.74 0.01 0.74
199.90 1.46 0.01 1.45
299.15 2.04 0.02 2.03
499.69 2.78 0.02 2.78
999.01 3.84 0.03 3.83
1999.70 4.58 0.05 4.57
2024.00 4.60 0.06 4.58
2999.30 4.97 0.05 4.95
3036.80 4.96 0.08 4.93
4000.00 5.18 0.05 5.17

Table C.3: Statistics for the estimated R-D
lower bound on d = 2 GAN-generated images,
computed with m = 30 samples of ξ. “LCB”
denotes 90% large-sample lower confidence
bound.

λ µξ sξ E[ξ] LCB

99.63 1.09 0.01 1.09
199.90 2.18 0.02 2.17
299.15 3.08 0.02 3.07
499.69 4.44 0.04 4.43
999.01 5.97 0.06 5.95
1999.70 6.69 0.08 6.67
2024.00 6.69 0.07 6.66
2999.30 6.87 0.08 6.84
3036.80 6.85 0.09 6.83
4000.00 6.93 0.08 6.91

Table C.4: Statistics for the estimated R-D
lower bound on d = 4 GAN-generated images,
computed with m = 30 samples of ξ. “LCB”
denotes 90% large-sample lower confidence
bound.
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Figure C.6: Zoomed-in version of Figure
6.6-Middle-Bottom (GAN-generated images
with intrinsic dimension d = 4), showing the
sample mean estimates of R-D upper bound
points (µD, µR) bracketed by 95% confidence
intervals (red), as well as lower bound esti-
mates based on the sample mean µξ (maroon,
dashed) and its 90% confidence lower bound
(pink line, beneath maroon).
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Appendix D

For Chapter 7, “Statistical and

Optimal-Transport Perspectives on the

Estimation of the Rate-Distortion

Function”

We review probability theory background and explain our notation from the main text in

Section D.1, give the formulas we used for numerically estimating an R(D) upper bound

in Section D.2, provide additional discussions and proofs regarding Wasserstein gradient

descent in Section D.3, elaborate on the connections between the R-D estimation problem

and variational inference/learning in Section D.4, provide additional experimental results

and details in Section D.5, and list an example implementation of WGD in Section D.6.
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D.1 Notions from probability theory

In this section we collect notions of probability theory used in the main text. See, e.g., [Çinlar,

2011] or [Folland, 1999] for more background.

Marginal and conditional distributions. The source and reproduction spaces X ,Y are

equipped with sigma-algebras AX and AY , respectively. Let X ×Y denote the product space

equipped with the product sigma algebra AX ⊗AY . For any probability measure π on X ×Y ,

its first marginal is

π1(A) := π(A× Y), A ∈ AX ,

which is a probability measure on X . When π is the distribution of a random vector (X, Y ),

then π1 is the distribution of X. The second marginal of π is defined analogously as

π2(B) := π(X ×B), B ∈ AY .

A Markov kernel or conditional distribution K(x, dy) is a map X ×AY → [0, 1] such that

1. K(x, ·) is a probability measure on Y for each x ∈ X ;

2. the function x 7→ K(x,B) is measurable for each set B ∈ AY .

When speaking of the conditional distribution of a random variable Y given another random

variable X, we occasionally also use the notation QY |X from information theory [Polyanskiy

and Wu, 2022]. Then, QY |X=x(B) = K(x,B) is the conditional probability of the event

{Y ∈ B} given X = x.

Suppose that a probability measure µ on X is given, in addition to a kernel K(x, dy).
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Together they define a unique measure µ⊗K on the product space X × Y . For a rectangle

set A×B ∈ AX ⊗AY ,

µ⊗K(A×B) =

∫

A

µ(dx)K(x,B), A ∈ AX , B ∈ AY .

The measure π := µ⊗K has first marginal π1 = µ.

The classic product measure is a special case of this construction. Namely, when a measure

ν on Y is given, using the constant kernel K(x, dy) := ν(dy) (which does not depend on x)

gives rise to the product measure µ⊗ ν,

µ⊗ ν(A×B) = µ(A)ν(B), A ∈ AX , B ∈ AY .

Under mild conditions (for instance when X ,Y are Polish spaces equipped with their Borel

sigma algebras, as in the main text), any probability measure π on X × Y is of the above

form. Namely, the disintegration theorem asserts that π can be written as π = π1 ⊗K for

some kernel K. When π is the joint distribution of a random vector (X, Y ), this says that

there is a measurable version of the conditional distribution QY |X .

Optimal transport. Given a measure µ on X and a measurable function T : X → Y , the

pushforward (or image measure) of µ under T is a measure on Y , given by

T#µ(B) = µ(T−1(B)), B ∈ AY .

If T is seen as a random variable and µ as the baseline probability measure, then T#µ is

simply the distribution of T .

Suppose that µ and ν are probability measures on X = Y = Rd with finite second moment.
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As introduced in the main text, Π(µ, ν) denotes the set of couplings, i.e., measures π on

X × Y with π1 = µ and π2 = ν. The 2-Wasserstein distance W2(µ, ν) between µ and ν is

defined as

W2(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
∥y − x∥2π(dx, dy)

)1/2

.

This indeed defines a metric on the space of probability measures with finite second moment.

We finish this section by giving a proof of the basic equivalence between optimization of

LEOT and LBA, which goes back to [Csiszár, 1974a, Lemma 1.3 and subsequent discussion].

Recall that Π(µ, ·) denotes the set of measures on the product space X × Y with π1 = µ.

Lemma D.1.1. Set ϵ = λ−1. It holds that

inf
ν∈P(Y)

LEOT (ν) = inf
ν∈P(Y)

λ−1LBA(ν) and argmin
ν∈P(Y)

LEOT (ν) = argmin
ν∈P(Y)

LBA(ν).

Proof. Both statements will follow from a simple property of relative entropy [Polyanskiy

and Wu, 2022, Theorem 4.1, “golden formula”]: For π ∈ Π(µ, ·) with H(π2 | ν) < ∞, the

properties of the logarithm reveal

H(π | µ⊗ ν) = H(π | µ⊗ π2) +H(π2 | ν), (D.1)

and hence H(π | µ⊗ ν) ≥ H(π | µ⊗ π2). This implies

inf
ν∈P(Y)

LEOT (ν) = inf
π∈Π(µ,·)

∫
ρdπ + ϵH(π | µ⊗ π2)

= inf
π∈Π(µ,·)

inf
ν∈P(Y)

∫
ρdπ + ϵH(π | µ⊗ ν)

=
1

λ
inf

ν∈P(Y)
LBA(ν).

Further, any optimizer ν∗ of LBA with corresponding optimal “coupling” π∗ ∈ Π(µ, ·) must
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satisfy H(π∗
2 | ν∗) = 0 (otherwise, taking ν∗ = π∗

2 has better objective) and thus π∗
2 = ν∗ and

π∗ ∈ Π(µ, ν∗), therefore ν∗ is also an optimizer of LEOT by the above equality. Conversely,

any optimizer ν∗ of LEOT with coupling π∗ ∈ Π(µ, ν∗) ⊂ Π(µ, ·) clearly yields a feasible

solution for LBA as well, and hence is also an optimizer of LBA by the above equality.

D.2 Numerical estimation of rate and distortion from a

reproduction distribution

Given a reproduction distribution ν and a kernel X × AY → [0, 1], the tuple (D,R) ∈ R2

defined by

D :=

∫
ρd(µ⊗K)

and

R := H(µ⊗K|µ⊗ ν)

lies above the R(D) curve. This again follows from the variational inequality (D.1) R ≥

H(π|µ× (µ×K)2) = I(µ×K), so that R ≥ R(D) =: infπ∈Π(π,·):π(ρ)≤D I(π).

Given only a reproduction distribution ν, we will construct a kernel K from ν and use (µ,K)

to compute (D,R), letting

dK(x, ·)
dν

(y) =
e−λρ(x,y)

∫
e−λρ(x,ỹ)ν(dỹ)

as in the first step of the BA algorithm. This choice of K is in fact optimal as it achieves the

minimum in the definition of LBA (7.5) for the given ν. Plugging K into the formulas for D
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and R gives

D =

∫
ρ(x, y)eφ(x)−λρ(x,y)µ⊗ ν(dx, dy) (D.2)

and

R =

∫ ∫
log

(
K(x, dy)

ν(dy)

)
K(x, dy)µ(dx) (D.3)

=

∫
[φ(x)− λρ(x, y)]eφ(x)−λρ(x,y)µ⊗ ν(dx, dy),

where we introduced the shorthand

φ(x) := − log

∫

Y
e−λρ(x,y)ν(dy). (D.4)

Note that we have the following relation (which explains (7.6))

LBA(ν) = R+ λD =

∫
φ(x)µ(dx).

Let ν be an n-point measure, ν =
∑n

i=1wiδyi , e.g., the output of WGD or in the inner step

of NERD. Then φ(x) can be evaluated exactly as a finite sum over the ν particles, and the

expressions above for D and R (which are integrals w.r.t. the product distribution µ⊗ ν)

can be estimated as sample averages. That is, given m independent samples {xi}mi=1 from µ,

we compute unbiased estimates

D̂ =
m∑

i=1

n∑

j=1

1

m
wjρ(xi, yj)e

φ(xi)−λρ(xi,yj),

R̂ =
m∑

i=1

n∑

j=1

1

m
wj[φ(xi)− λρ(xi, yj)]eφ(xi)−λρ(xi,yj),

where φ(x) = − log
∑n

j=1 e
φ(xi)−λρ(xi,yj). Similarly, a sample mean estimate for LBA is given
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by

L̂BA(ν) =
1

m

m∑

i=1

φ(xi) = −
1

m

m∑

i=1

log

(
n∑

j=1

eφ(xi)−λρ(xi,yj)

)
. (D.5)

In practice, we found it simpler and numerically more stable to instead compute R̂ as

R̂ = L̂BA(ν)− λD̂.

Whenever possible, we avoid exponentiation and instead use logsumexp to prevent numerical

issues.

D.3 Wasserstein gradient descent

D.3.1 On Wasserstein gradients of the EOT and rate functionals

First, we elaborate on the Wasserstein gradient of the EOT functional LEOT (ν). That the dual

potential from Sinkhorn’s algorithm is differentiable follows from the fact that optimal dual

potentials satisfy the Schrödinger equations (cf. [Nutz, 2021, Corollary 2.5]). Differentiability

was shown in [Genevay et al., 2019, Theorem 2] in the compact setting, and in [Mena and

Niles-Weed, 2019, Proposition 1] in unbounded settings. While Mena and Niles-Weed [2019]

only states the result for quadratic cost, the approach of Proposition 1 therein applies more

generally.

Below, we compute the Wasserstein gradient of the rate functional LBA(ν). Recall from (7.6),

LBA(ν) =

∫
− log

∫
exp(−λρ(x, y))ν(dy)µ(dx).
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Under sufficient integrability on µ and ν to exchange the order of limit and integral, we can

calculate the first variation as

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

= −
∫

lim
ε→0

1

ε
log

[∫
exp(−λρ(x, y))(ν + ε(ν̃ − ν))(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

= −
∫

lim
ε→0

1

ε
log

[
1 +

∫
exp(−λρ(x, y))ε(ν̃ − ν)(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

=

∫∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)µ(dx) (ν̃ − ν)(dy),

where the last equality uses limε→0
1
ε
log(1 + εx) = x and Fubini’s theorem. Thus the first

variation ψν of LBA at ν is

ψν(y) =

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)µ(dx). (D.6)

To find the desired Wasserstein gradient of LBA, it remains to take the Euclidean gradient of

ψν , i.e., ∇LBA(ν) = ∇ψν . Doing so gives us the desired Wasserstein gradient:

∇VLBA
(ν)[y] = ∇yψ

ν(y)

=
∂

∂y

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)µ(dx)

=

∫ exp(−λρ(x, y))λ ∂
∂y
ρ(x, y)∫

exp(−λρ(x, ỹ))ν(dỹ) µ(dx), (D.7)

again assuming suitable regularity conditions on ρ and µ to exchange the order of integral

and differentiation.

D.3.2 Proof of Proposition 7.4.2 (convergence of Wasserstein gradi-

ent descent)

We first provide an auxiliary result.
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Lemma D.3.1. Let γ1 ≥ γ2 ≥ · · · ≥ 0 and at ≥ 0, t ∈ N, C > 0 satisfy
∑∞

t=1 γt = ∞,
∑∞

t=1 γ
2
t <∞,

∑∞
t=1 atγt <∞ and |at − at+1| ≤ Cγt for all t ∈ N. Then limt→∞ at = 0.

Proof. The conclusion remains unchanged when rescaling at by the constant C, and thus

without loss of generality C = 1.

Clearly γt → 0 as
∑∞

t=1 γ
2
t < ∞. Moreover, there exists a subsequence of (at)t∈N which

converges to zero (otherwise there exists δ > 0 such that at ≥ δ > 0 for all but finitely many t,

contradicting
∑∞

t=1 γtat <∞).

Arguing by contradiction, suppose that the conclusion fails, i.e., that there exists a subsequence

of (at)t∈N which is uniformly bounded away from zero, say at ≥ δ > 0 along that subsequence.

Using this subsequence and the convergent subsequence mentioned above, we can construct a

subsequence ai1 , ai2 , ai3 , . . . where ain ≈ 0 for n odd and ain ≥ δ for n even. We will show

that

i2n∑

t=i2n−1

atγt ≳ δ2/2 for all n ∈ N,

contradicting the finiteness of
∑

t γtat. (The notation ≈ (≳) indicates (in)equality up to

additive terms converging to zero for n→∞.)

To ease notation, fix n and set m = i2n−1 and M = i2n. We show that
∑M

t=m atγt ≳ δ2/2. To

this end, using |at − at+1| ≤ γt we find

at ≥ aM −
M−1∑

j=k

γj ≥ δ −
M−1∑

j=k

γj.

Since am ≈ 0, there exists a largest n0 ∈ N, n0 ≥ m, such that
∑M−1

j=n0
γj ≳ δ (and thus
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∑M−1
j=n0

γj ≲ δ − γn0 ≈ δ as well). We conclude

M∑

t=m

γtat ≥
M∑

t=n0

γtat ≥
M∑

t=n0

γt

(
δ −

M−1∑

j=k

γj

)
≳ δ2 −

M∑

t=n0

M∑

j=n0

γtγj1{j≥k}

= δ2 − 1

2

(
M∑

t=n0

γt

)2

− 1

2

M∑

t=n0

γ2t ≈ δ2/2,

where we used that
∑M

t=n0
γ2t ≈ 0. This completes the proof.

Proof of Proposition 7.4.2. Using the linear approximation property in (7.14), we calculate

L(ν(n))− L(ν(0)) =
n−1∑

t=0

L(ν(t+1))− L(ν(t))

=
n−1∑

t=0

−γt
∫
∥∇VL(ν(t))∥2 dν(t) + γ2t o

(∫
∥∇VL(ν(t))∥2 dν(t)

)
.

As L(ν(0)) is finite and L(ν(n)) is bounded from below, it follows that

∞∑

t=0

γt

∫
∥∇VL(ν(t))∥2 dν(t) <∞.

The claim now follow by applying Lemma D.3.1 with at =
∫
∥∇ψν(t)∥2 dν(t); note that the

assumption in the lemma, |at− at+1| ≤ Cγt, is satisfied due to the second inequality in (7.14)
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and a short calculation below

∣∣∣∣
∫
∥∇ψν(t)∥2 −

∫
∥∇ψν(t+1)∥2

∣∣∣∣ ≤ CW2(ν
(t), ν(t+1))

≤ C

(∫ ∫
∥x− y∥2δx−γt∇VL(ν(t))[x](dy)ν

(t)(dx)

) 1
2

≤ Cγt

(∫
∥∇VL(ν(t))∥2ν(t)(dx)

) 1
2

≤ Cγt sup
t′

(∫
∥∇VL(ν(t

′))∥2ν(t′)(dx)
) 1

2

≤ C ′γt,

where we use supt

∫
∥∇VL(ν(t))∥2ν(t)(dx) <∞ in the last step.

D.3.3 Proof of Proposition 7.4.3 (sample complexity)

Recall that X = Y = Rd and ρ(x, y) = ∥x− y∥2 in this proposition. For the proof, we will

need the following lemma which is of independent interest. We write ν ≤c µ if ν is dominated

by µ in convex order, i.e.,
∫
f dν ≤

∫
f dµ for all convex functions f : Rd → R.

Lemma D.3.2. Let µ have finite second moment. Given ν ∈ P(Rd), there exists ν̃ ∈ P(Rd)

with ν̃ ≤c µ and

LEOT (µ, ν̃) ≤ LEOT (µ, ν).

This inequality is strict if ν ̸≤cµ. In particular, any optimizer ν∗ of (7.8) satisfies ν∗ ≤c µ.

Proof. Because this proof uses disintegration over Y , it is convenient to reverse the order of

the spaces in the notation and write a generic point as (x, y) ∈ Y × X . Consider π ∈ Π(ν, µ)
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and its disintegration π = ν(dx)⊗K(x, dy) over x ∈ Y . Define T : Rd → Rd by

T (x) :=

∫
y K(x, dy).

Define also π̃ := (T, id)#π and ν̃ := π̃1. From the definition of T , we see that π̃ is a martingale,

thus ν̃ ≤c µ. Moreover, ν̃ ⊗ µ = (T, id)#ν ⊗ µ. The data-processing inequality now shows

that

H(π̃|ν̃ ⊗ µ) ≤ H(π|ν ⊗ µ).

On the other hand,
∫
∥
∫
ỹ K(x, dỹ)−y∥2K(x, dy) ≤

∫
∥x−y∥2K(x, dy) since the barycenter

minimizes the squared distance, and this inequality is strict whenever x ̸=
∫
ỹK(x, dỹ). Thus

∫
∥x− y∥2 π̃(dx, dy) ≤

∫
∥x− y∥2 π(dx, dy),

and the inequality is strict unless T (x) = x for ν-a.e. x, which in turn is equivalent to π being

a martingale. The claims follow.

Proof of Proposition 7.4.3. Subgaussianity of the optimizer follows directly from Lemma

D.3.2.

Recalling that infν LEOT (ν) and infν λ
−1LBA(ν) have the same values and minimizers (given

by (7.9) in Sec. 7.2.2), it suffices to show the claim for L = LEOT . Let ν∗ be an optimizer of

(7.8) (i.e., an optimal reproduction distribution) and νn its empirical measure from n samples,

then clearly

∣∣∣∣ min
νn∈Pn(Rd)

LEOT (µ, νn)− min
ν∈P(Rd)

LEOT (µ, ν)

∣∣∣∣ = min
νn∈Pn(Rd)

LEOT (µ, νn)− min
ν∈P(Rd)

LEOT (µ, ν)

≤ E [|LEOT (µ, ν
n)− LEOT (µ, ν

∗)|]
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where the expectation is taken over samples for νn. The first inequality of Proposition 7.4.3

now follows from the sample complexity result for entropic optimal transport in [Mena and

Niles-Weed, 2019, Theorem 2].

Denote by ν∗m the optimizer for the problem (7.8) with µ replaced by µm. Similarly to the

above, we obtain

E
[∣∣∣∣ min

ν∈P(Rd)
LEOT (µ, ν)− min

ν∈P(Rd)
LEOT (µ

m, ν)

∣∣∣∣
]

≤ E
[

max
ν∈{ν∗,ν∗m}

|LEOT (µ, ν)− LEOT (µ
m, ν)|

]
,

where the expectation is taken over samples from µm. In this situation, we cannot directly

apply [Mena and Niles-Weed, 2019, Theorem 2]. However, the bound given by [Mena and

Niles-Weed, 2019, Proposition 2] still applies, and the only dependence on ν ∈ {ν∗, ν∗m} is

through their subgaussianity constants. By Lemma D.3.2, these constants are bounded by

the corresponding constants of µ and µm. Thus, the arguments in the proof of [Mena and

Niles-Weed, 2019, Theorem 2] can be applied, yielding the second inequality of Proposition

7.4.3.

The final inequality of Proposition 7.4.3 follows from the first two inequalities (the first one

being applied with µm) and the triangle inequality, where we again use the arguments in

the proof of [Mena and Niles-Weed, 2019, Theorem 2] to bound the expectation over the

subgaussianity constants of µm.

D.3.4 Convergence of the proposed hybrid algorithm

In our present work, our hybrid algorithm targets the non-stochastic setting and is motivated

by the fact that the BA update is in some sense orthogonal to the Wasserstein gradient

update, and can only monotonically improve the objective. While empirically we observe the
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additional BA steps to not hurt – but rather accelerate – the convergence of WGD (see 7.5.1),

additional effort is required to theoretically guarantee convergence of the hybrid algorithm.

There are two key properties we use for the convergence of the base WGD algorithm: 1) a

certain monotonicity of the update steps (up to higher order terms, gradient descent improves

the objective) and 2) stability of gradients across iterations. If we include the BA step,

we find that 1) still holds, but 2) may a-priori be lost. Indeed, 1) holds since BA updates

monotonically improve the objective. Using just 1), we can still obtain a Pareto convergence

of the gradients for the hybrid algorithm,
∑∞

t=0 γt
∫
∥∇VL(ν(t))∥2 dν(t) <∞ (here ν(t) are the

outputs from the respective BA steps and γt is the step size of the gradient steps). Without

property 2), we cannot conclude
∫
∥∇VL(ν(t))∥2 dν(t) → 0 for t→∞. We emphasize that in

practice, it still appears that 2) holds even after including the BA step. Motivated by this

analysis, an adjusted hybrid algorithm where, e.g., the BA update is rejected if it causes a

drastic change in the Wasserstein gradient, could guarantee that 2) holds with little practical

changes. From a different perspective, we also believe the hybrid algorithm may be tractable

to study in relation to gradient flows in the Wasserstein-Fisher-Rao geometry (cf. [Yan et al.,

2023]), in which the BA step corresponds to a gradient update in the Fisher-Rao geometry

with a unit step size.

In the stochastic setting, the BA (and therefore our hybrid) algorithm does not directly apply,

as performing BA updates on mini-batches no longer guarantees monotonic improvement

of the overall objective. Extending the BA and hybrid algorithm to this setting would be

interesting future work.
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Table D.1: Guide to notation and their interpretations in various problem domains. “LVM”
stands for latent variable modeling, “NPMLE” stands for non-parametric maximum-likelihood
estimation. The R-D problem (7.3) is equivalent to a projection problem under an entropic
optimal transport cost (discussed in Sec. 7.2.2) and statistical problems involving maximum-
likelihood estimation (see discussion in Sec. 7.2.3 and below).

Context µ = PX ρ(x, y) K = QY |X ν = QY

OT source distribution transport cost “transport plan” target distribution
R-D data distribution distortion criterion compression algorithm codebook distribution

LVM/NPMLE data distribution “− log p(x|y)” variational posterior prior distribution
deconvolution noisy measurements “noise kernel” — noiseless model

D.4 R-D estimation and variational inference/learning

In this section, we elaborate on the connection between the R-D problem (7.3) and variational

inference and learning in latent variable models, of which maximum likelihood deconvolution

(discussed in Sec. 7.2.3) can be seen as a special case. Also see Section 3 of [Yang et al.,

2023a] for a related discussion in the context of lossy data compression.

To make the connections clearer to a general machine learning audience, we adopt notation

more common in statistics and information theory. Table D.1 summarizes the notation and

the correspondence to the measure-theoretic notation used in the main text.

In statistics, a common goal is to model an (unknown) data generating distribution PX by

some density model p̂(x). In particular, here we will choose p̂(x) to be a latent variable

model, where Y takes on the role of a latent space, and QY = ν is the distribution of a latent

variable Y (which may encapsulate the model parameters). As we shall see, the optimization

objective defining the rate functional (7.5) corresponds to an aggregate Evidence LOwer

Bound (ELBO) [Blei et al., 2017]. Thus, computing the rate functional corresponds to

variational inference [Blei et al., 2017] in a given model (see Sec. D.4.2), and the parametric
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R-D estimation problem, i.e.,

inf
ν∈H
LBA(ν),

is equivalent to estimating a latent variable model using the variational EM algorithm

[Beal and Ghahramani, 2003b] (see Sec. D.4.3). The variational EM algorithm can be seen

as a restricted version of the BA algorithm (see Sec. D.4.3), whereas the EM algorithm

[Dempster et al., 1977] shares its E-step with the BA algorithm but can differ in its M-step

(see Sec. D.4.4).

D.4.1 Setup

For concreteness, fix a reference measure ζ on Y, and suppose QY has density q(y) w.r.t.

ζ. Often the latent space Y is a Euclidean space, and q(y) is the usual probability density

function w.r.t. the Lebesgue measure ζ; or when the latent space is discrete/countable, ζ is

the counting measure and q(y) is a probability mass function. We will consider the typical

parametric estimation problem and choose a particular parametric form for QY indexed by a

parameter vector θ. This defines a parametric family H = {Qθ
Y : θ ∈ Θ} for some parameter

space Θ. Finally, suppose the distortion function ρ induces a conditional likelihood density

via p(x|y) ∝ e−λρ(x,y), with a normalization constant that is constant in y.

These choices then result in a latent variable model specified by the joint density q(y)p(x|y),

and we model the data distribution with the marginal density: 1

p̂(x) =

∫

Y
p(x|y)dQY (y) =

∫

Y
p(x|y)q(y)ζ(dy). (D.8)

As an example, a Gaussian mixture model with isotropic component variances can be specified
1To be more precise, we always fix a reference measure η on X , so that densities such as p̂(x) and p(x|y)

are with respect to η. In the applications we considered in this work, η is the Lebesgue measure on X = Rd.
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as follows. Let QY be a mixing distribution on X = Y = Rd parameterized by component

weights w1,...,k and locations µ1,...,k, such that QY =
∑K

k=1wkδµk
. Let p(x|y) = N (y, σ2) be

a conditional Gaussian density with mean y and variance σ2. Now formula (D.8) gives the

usual Gaussian mixture density on Rd.

Maximum-likelihood estimation then ideally maximizes the population log (marginal) likeli-

hood,

Ex∼PX
[log p̂(x)] =

∫
log p̂(x)PX(dx) =

∫
log

(∫

Y
p(x|y)dQY (y)

)
PX(dx). (D.9)

The maximum-likelihood deconvolution setup can be seen as a special case where the form

of the marginal density (D.8) derives from knowledge of the true data generation process,

with PX = α ∗ N (0, 1
λ
) for some unknown α and known noise N (0, 1

λ
) (i.e., the model is

well-specified). We note in passing that the idea of estimating an unknown data distribution

by adding artificial noise to it also underlies work on spread divergence [Zhang et al., 2020]

and denoising score matching [Vincent, 2011].

To deal with the often intractable marginal likelihood in the inner integral, we turn to

variational inference and learning [Jordan et al., 1999, Wainwright et al., 2008].

D.4.2 Connection to variational inference

Given a latent variable model and any data observation x, a central task in Bayesian statistics

is to infer the Bayesian posterior [Jordan, 1999], which we formally view as a conditional

distribution Q∗
Y |X=x. It is given by

dQ∗
Y |X=x(y)

dQY (y)
=
p(x|y)
p̂(x)

,
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or, in terms of the density q(y) of QY , given by the following conditional density via the

familiar Bayes’ rule,

q∗(y|x) = p(x|y)q(y)
p̂(x)

=
p(x|y)q(y)∫

Y p(x|y)q(y)ζ(dy)
.

Unfortunately, the true Bayesian posterior is typically intractable, as the (marginal) data

likelihood in the denominator involves an often high-dimensional integral. Variational

inference [Jordan et al., 1999, Wainwright et al., 2008] therefore aims to approximate the true

posterior by a variational distribution QY |X=x ∈ P(Y) by minimizing their relative divergence

H(QY |X=x|Q∗
Y |X=x). The problem is equivalent to maximizing the following lower bound on

the marginal log-likelihood, known as the Evidence Lower BOund (ELBO) [Blei et al., 2017]:

argmin
QY |X=x

H(QY |X=x|Q∗
Y |X=x) = argmax

QY |X=x

ELBO(QY , x,QY |X=x),

ELBO(QY , x,QY |X=x) = Ey∼QY |X=x
[log p(x|y)]−H(QY |X=x|QY )

= log p̂(x)−H(QY |X=x|Q∗
Y |X=x). (D.10)

Recall the rate functional (7.5) arises through an optimization problem over a transition

kernel K,

LBA(ν) = inf
K
λ

∫
ρd(µ⊗K) +H(µ⊗K|µ⊗ ν).

Translating the above into the present notation (µ→ PX , K → QY |X , ν → QY ; see Table D.1),

we obtain

LBA(QY ) = inf
QY |X

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] + Ex∼PX

[H(QY |X=x|QY )] + const

= inf
QY |X

Ex∼PX
[−ELBO(QY , x,QY |X=x)] + const. (D.11)

238



which allows us to interpret the rate functional as the result of performing variational inference

through ELBO optimization. At optimality, QY |X = Q∗
Y |X , the ELBO (D.10) is tight and

recovers log p̂(x), and the rate functional takes on the form of a (negated) population marginal

log likelihood (D.9), as given earlier by (7.6) in Sec. 7.2.1.

D.4.3 Connection to variational EM

The discussion so far concerns probabilistic inference, where a latent variable model (QY , p(x|y))

has been given and we saw that computing the rate functional amounts to variational inference.

Suppose now we wish to learn a model from data. The R-D problem (7.4) then corresponds

to model estimation using the variational EM algorithm [Beal and Ghahramani, 2003b].

To estimate a latent variable model by (approximate) maximum-likelihood, the variational

EM algorithm maximizes the population ELBO

Ex∼PX
[ELBO(QY , x,QY |X=x)] = Ex∼PX ,y∼QY |X=x

[log p(x|y)]− Ex∼PX
[H(QY |X=x|QY )],

(D.12)

w.r.t. QY and QY |X . This precisely corresponds to the R-D problem infQY ∈H LBA(QY ), using

the form of LBA(QY ) from (D.11).

In popular implementations of variational EM such as the VAE [Kingma and Welling, 2013],

QY and QY |X are restricted to parametric families. When they are allowed to range over all

of P(Y) and all conditional distributions, variational EM then becomes equivalent to the BA

algorithm.
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D.4.4 The Blahut–Arimoto and (exact) EM algorithms

Here we focus on the distinction between the BA algorithm and the (exact) EM algorithm

[Dempster et al., 1977], rather than the variational EM algorithm. Both BA and (exact)

EM perform coordinate descent on the same objective function (namely the negative of the

population ELBO from (D.12)), but they define the coordinates slightly differently — the

BA algorithm uses (QY |X , QY ) with QY ∈ P(Y), whereas the EM algorithm uses (QY |X , θ)

with θ indexing a parametric family H = {Qθ
Y : θ ∈ Θ}. Thus the coordinate update w.r.t.

QY |X (the “E-step”) is the same in both algorithms, but the subseuquent “M-step” potentially

differs depending on the role of θ.

Given the optimization objective, which is simply the negative of (D.12),

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] +H(PXQY |X |PX ⊗QY ), (D.13)

both BA and EM optimize the transition kernel QY |X the same way in the E-step, as

dQ∗
Y |X=x

dQY

(y) =
p(x|y)
p̂(x)

. (D.14)

For the M-step, the BA algorithm only minimizes the relative entropy term of the objective

(D.13),

min
QY ∈P(Y)

H(PXQ
∗
Y |X ;PX ⊗QY ),

(with the optimal QY given by the second marginal of PXQ
∗
Y |X) whereas the EM algorithm

minimizes the full objective w.r.t. the parameters θ of QY ,

min
θ∈Θ

E(x,y)∼PXQ∗
Y |X

[− log p(x|y)] +H(PXQ
∗
Y |X ;PX ⊗QY ). (D.15)
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The difference comes from the fact that when we parameterize QY by θ in the parameter

estimation problem, Q∗
Y |X — and consequently both terms in the objective of (D.15) — will

have functional dependence on θ through the E-step optimality condition (D.14).

In the Gaussian mixture example, QY =
∑K

k=1wkδµk
, and its parameters θ consist of the

components weights (w1, ..., wK) ∈ ∆d−1 and location vectors {µ1, ..., µK} ⊂ Rd. The E-step

computes Q∗
Y |X=x =

∑
k wk

p(x|µk)
p(x)

δµk
. For the M-step, if we regard the locations as known

so that θ = (w1, ..., wK) only consists of the weights, then the two algorithms perform the

same update; however if θ also includes the locations, then the M-step of the EM algorithm

will not only update the weights as in the BA algorithm, but also the locations, due to the

distortion term E(x,y)∼PXQ∗
Y |X

[− log p(x|y)] = −
∫ ∑

k wk
p(x|µk)
p(x)

log p(x|µk)PX(dx).

D.5 Further experimental results

Our deconvolution experiments were run on Intel(R) Xeon(R) CPUs, and the rest of the

experiments were run on Titan RTX GPUs.

In most experiments, we use the Adam [Kingma and Ba, 2015] optimizer for updating the ν

particle locations in WGD and for updating the variational parameters in other methods. For

our hybrid WGD algorithm, which adjusts the particle weights in addition to their locations,

we found that applying momentum to the particle locations can in fact slow down convergence,

and therefore use plain gradient descent with a decaying step size.

To trace an R-D upper bound for a given source, we solve the unconstrained R-D problem

7.3 for a heuristically-chosen grid of λ values similarly to those in [Yang and Mandt, 2022],

e.g., on a log-linear grid {1e4, 3e3, 1e3, 3e2, 1e2, ...}. Alternatively, a constrained optimization

method like the Modified Differential Multiplier Method (MDMM) [Platt and Barr, 1988] can

be adopted to directly target R(D) for various values of Ds. The latter approach will also
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help us identify when we run into the log(n) rate limit of particle-based methods (Sec. 7.4.4):

suppose we perform constrained optimization with a distortion threshold of D; if the chosen

n is not large enough, i.e., log(n) < R(D), then no ν supported on (at most) n points is

feasible for the given constraint (otherwise we have a contradiction). When this happens, the

Lagrange multiplier associated with the infeasiable constraint (λ in our case) will be observed

to increase indefinitely rather than stabalize to a finite value under a method like MDMM

[Platt and Barr, 1988].

D.5.1 Deconvolution

Architectures for the neural baselines For the RD-VAE, we used a similar architecture

as the one used on the banana-shaped source in [Yang and Mandt, 2022], consisting of

two-layer MLPs for the encoder and decoder networks, and Masked Autoregressive Flow

[Papamakarios et al., 2017] for the variational prior. For NERD, we follow similar architecture

settings as [Lei et al., 2023a], using a two-layer MLP for the decoder network. Following

Yang and Mandt [2022], we initially used softplus activation for the MLP, but found it made

the optimization difficult; therefore we switched to ReLU activation which gave much better

results. We conjecture that the softplus activation led to overly smooth mappings, which had

difficulty matching the optimal ν∗ = α measure which is concentrated on the unit circle and

does not have a Lebesgue density.

Experiment setup As discussed in Sec. 7.4.2, BA and our hybrid algorithms do not apply

to the stochastic setting; to be able to include them in our comparison, the input to all the

algorithms is an empirical measure µm (training distribution) with m = 100000 samples,

given the same fixed seed. We found the number of training samples is sufficiently large

that the losses do not differ significantly on the training distribution v.s. random/held-out

samples.
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Recall from Sec. 7.2.3, given data observations following µ = α ∗ N (0, σ2), if we perform

deconvolution with an assumed noise variance 1
λ

for some 1
λ
≤ σ2, then the optimal solution to

the problem is given by ν∗ = αλ = α∗N (0, 1
λ
). We compute the optimal loss OPT = LBA(ν

∗)

by a Monte-Carlo estimate, using formula (D.5) with m = 104 samples from µ and n = 106

samples from ν∗. The resulting L̂BA is positively biased (it overestimates the OPT in

expectation) due to the bias of the plug-in estimator for φ(x) (D.4), so we use a large n to

reduce this bias. 2 Note the same issue occurs in the NERD algorithm (7.13).
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Figure D.1: Visualizing the converged n = 20 particles of WGD (top row) and hybrid
WGD (bottom row) estimated on m = 10000 source samples in the deconvolution problem
(Sec. 7.5.1), for decreasing distortion penalty λ. The case λ = 10.0 = σ−2 corresponds to
“complete noise removal” of the source and recovers the ground truth α (unit circle).

Optimized reproduction distributions To visualize the (continuous) ν learned by RD-

VAE and NERD, we fit a kernel density estimator on 10000 ν samples drawn from each,

using seaborn.kdeplot.

In Figure D.1, we provide additional visualization for the particles estimated from the training

samples by WGD and its hybrid variant, for a decreasing distortion penalty λ (equivalently,
2Another, more sophisticated solution would be annealed importance sampling [Grosse et al., 2015] or a

related method developed for estimating marginal likelihoods and partition functions.
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increasing entropic regularization strength ϵ).

D.5.2 Higher-dimensional datasets

For NERD, we set n to the default 40000 in the code provided by [Lei et al., 2023a], on all

three datasets.

For WGD, we used n = 4000 on physics, 200000 on speech, and 40000 on MNIST (see also

smaller n for comparison in Fig. 7.5).

On speech, both NERD and WGD encountered the issue of a log(n) upper bound on the rate

estimate as described in Sec. 7.4.4. Therefore, we increased n to 200000 for WGD and obtain

a tighter R-D upper bound than NERD, particularly in the low-distortion regime. Such a

large n incurred out-of-memory error for NERD.

We borrow the R-D upper and lower bound results of [Yang and Mandt, 2022] from their

paper on physics and speech. We obtain sandwich bounds on MNIST using a similar neural

network architecture and other hyperparameter choices as in the GAN-generated image

experiments of [Yang and Mandt, 2022] (using a ResNet-VAE for the upper bound and a

CNN for the lower bound), except we set a larger k = 10000 in the lower bound experiment;

we suspect the resulting lower bound is still far from being tight.

D.6 Example implementation of WGD

We provide a self-contained minimal implementation of Wasserstein gradient descent on LBA,

using the Jax library [Bradbury et al., 2018]. To compute the Wasserstein gradient, we

evaluate the first variation of the rate functional in compute_psi_sum according to (D.6),

yielding
∑n

i=1 ψ
ν(xi), then simply take its gradient w.r.t. the particle locations x1,...n using
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Jax’s autodiff tool on line 51.

The implementation of WGD on LEOT is similar, except the first variation is computed using

Sinkhorn’s algorithm. Both versions can be easily just-in-time (JIT) compiled and enjoy

GPU acceleration.

1 # Wasserstein GD on the rate functional L_{BA}.
2 import jax.numpy as jnp
3 import jax
4 from jax.scipy.special import logsumexp
5

6 # Define the distortion function \rho.
7 squared_diff = lambda x, y: jnp.sum((x - y) ** 2)
8 pairwise_distortion_fn = jax.vmap(jax.vmap(squared_diff, (None, 0)), (0, None))
9

10

11 def wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda):
12 """
13 Compute the Wasserstein gradient of the rate functional, which we will use
14 to move the \nu particles.
15 :param mu_x: locations of \mu atoms.
16 :param mu_w: weights of \mu atoms.
17 :param nu_x: locations of \nu atoms.
18 :param nu_w: weights of \nu atoms.
19 :param rd_lambda: R-D tradeoff hyperparameter.
20 :return:
21 """
22

23 def compute_psi_sum(nu_x):
24 """
25 Here we compute a surrogate loss based on the first variation \psi, which
26 allows jax autodiff to compute the desired Wasserstein gradient.
27 :param nu_x:
28 :return: psi_sum = \sum_i \psi(nu_x[i])
29 """
30 C = pairwise_distortion_fn(mu_x, nu_x)
31 scaled_C = rd_lambda * C # [m, n]
32 log_nu_w = jnp.log(nu_w) # [1, n]
33

34 # Solve BA inner problem with a fixed nu.
35 phi = - logsumexp(-scaled_C + log_nu_w, axis=1, keepdims=True) # [m, 1]
36 loss = jnp.sum(mu_w * phi) # Evaluate the rate functional. Eq (6) in paper.
37

38 # Let's also report rate and distortion estimates (discussed in Sec. 4.4 of the paper).
39 # Find \pi^* via \phi
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40 pi = jnp.exp(phi - scaled_C) * jnp.outer(mu_w, nu_w) # [m, n]
41 distortion = jnp.sum(pi * C)
42 rate = loss - rd_lambda * distortion
43

44 # Now evaluate \psi on the atoms of \nu.
45 phi = jax.lax.stop_gradient(phi)
46 psi = - jnp.sum(jnp.exp(jax.lax.stop_gradient(phi) - scaled_C) * mu_w, axis=0)
47 psi_sum = jnp.sum(psi) # For computing gradient w.r.t. each nu_x atom.
48 return psi_sum, (loss, rate, distortion)
49

50 # Evaluate the Wasserstein gradient, i.e., \nabla \psi, on nu_x.
51 psi_prime, loss = jax.grad(compute_psi_sum, has_aux=True)(nu_x)
52 return psi_prime, loss
53

54

55 def wgd(X, n, rd_lambda, num_steps, lr, rng):
56 """
57 A basic demo of Wasserstein gradient descent on a discrete distribution.
58 :param X: a 2D array [N, d] of data points defining the source \mu.
59 :param n: the number of particles to use for \nu.
60 :param rd_lambda: R-D tradeoff hyperparameter.
61 :param num_steps: total number of gradient updates.
62 :param lr: step size.
63 :param rng: jax random key.
64 :return: (nu_x, nu_w), the locations and weights of the final \nu.
65 """
66 # Set up the source measure \mu.
67 m = jnp.size(X, 0)
68 mu_x = X
69 mu_w = 1 / m * jnp.ones((m, 1))
70 # Initialize \nu atoms using random training samples.
71 rand_idx = jax.random.permutation(rng, m)[:n]
72 nu_x = X[rand_idx] # Locations of \nu atoms.
73 nu_w = 1 / n * jnp.ones((1, n)) # Uniform weights.
74 for step in range(num_steps):
75 psi_prime, (loss, rate, distortion) = wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda)
76 nu_x -= lr * psi_prime
77 print(f'step={step}, loss={loss:.4g}, rate={rate:.4g}, distortion={distortion:.4g}')
78

79 return nu_x, nu_w
80

81

82 if __name__ == '__main__':
83 # Run a toy example on 2D Gaussian samples.
84 rng = jax.random.PRNGKey(0)
85 X = jax.random.normal(rng, [10, 2])
86 nu_x, nu_w = wgd(X, n=4, rd_lambda=2., num_steps=100, lr=0.1, rng=rng)
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