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Assessing Thermodynamic-Dynamic Relationships for 
Water-Like Liquids 

Margaret E. Johnson and Teresa Head-Gordon*
1Department of Bioengineering, University of California, Berkeley

2UCSF/UCB Joint Graduate Group in Bioengineering
3Physical Biosciences Division, Lawrence Berkeley National Laboratory

Berkeley, California 94720 USA

Here  we  investigate  a  family  of  isotropic  water-like  glass-forming  liquids,  in  which  each

thermodynamic  state  point  corresponds  to  a  different  potential  energy  surface  which  is

prescribed  to  reproduce  the  gOO(r;  T,) of  the  reference  TIP4P-Ew  water  model  potential.

Although  each  isotropic  potential  is  simulated  separately,  together  the  family  of  isotropic

potentials displays anomalous dynamics with density and fragile diffusivity with temperature. By

removing  a  common  energy  landscape,  and  therefore  expected  thermodynamic  trends  with

temperature within a single potential, we can more rigorously evaluate whether various entropic

measures used in popular phenomenological thermodynamic theories can quantitatively predict

the diffusivity or viscosity. We find that the Adam-Gibbs relation between diffusion (or viscosity)

and the temperature scaled configurational entropy, Sc, is a poor predictor of fragility trends and

density anomalies when necessary anharmonic corrections are added. By contrast the Dzugutov

scaling relationship that uses the pair correlation approximation to  Sexcess~S2 provides excellent

agreement for diffusion anomalies and for fragile dynamics for weakly supercooled states for the

family of isotropic potentials, within a single isotropic potential, and for the TIP4P-Ew model,

but deviates strongly in all three cases at more deeply supercooled temperatures. By studying the

microscopic  dynamics  at  these  low temperatures,  we find an  increased  heterogeneity  in  the

mobility  of  particle  populations  reflected  in  a  highly  non-Gaussian  distribution  of  particle

displacements,  even at  very long time scales.  We conclude that  after the onset of dynamical

heterogeneity,  new  consideration  of  higher  structural  correlations  and/or  more  complex

connectivity paths between basins through barriers appear to be critical for the formulation of a

predictive theory for dynamics.

*Corresponding author
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INTRODUCTION

Although the  diffusion constant  and relaxation  times of a  fluid can be  measured via

equilibrium simulations,  much like thermodynamic and structural properties,  these dynamical

constants cannot be formulated in terms of a partition function. Therefore whether dynamical

properties should be predictable from thermodynamic or structural features of the liquid is an

interesting question, but not an obvious one. If a formal theory relating dynamics to a particular

structural  or  thermodynamic  property  existed,  there  would be  no the  need for  time-evolved

configurations  to  characterize  actual  barrier  transitions  between  accessible  configurations  in

predicting  diffusion  trends  with  density  or  temperature.  Here  we evaluate  whether  different

entropy definitions that  provide different  estimates of accessible  configurations at  each state

point are all that is needed to predict diffusivity, without ever needing to consider the transitions

between the available configurations. 

The phenomenological Adam-Gibbs relation1 provides an explicit connection between the

temperature dependence of the diffusion, Dt (or viscosity, ) and the configurational entropy, Sc,

through the relation



Dt = D0 exp
A

TSc

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟ (1)

where D0 and A are assumed to be temperature-independent constants. Numerical application of

Adam-Gibbs theory and its formulation in terms of basins on the potential  energy landscape

(PEL) has shown a strong correlation between a fragile dynamical temperature trend and the Sc

ansatz,  for  both  simulation  studies2-4 and  experimental  studies5,6.  However,  if  Sc can  be

empirically related to observed trends of heat capacity and temperature7



Sc ≈
ΔCp

T'
dT'

T0

T

∫ ≈
A'

T'2 dT'
T0

T

∫ = A'
1
T0

−
1
T

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟ (2)

then by substituting Eq. (2) into Eq. (1) we recover the Volger-Tamman-Fulcher (VFT) function, 



Dt T( ) = D0 exp
B

T − T0

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟  (3)

where  T0 is an estimate of the glass transition temperature, and  =T0/B is the fragility index5.

Since Eq. (3) is known to fit experimental or simulated transport properties very well over a large

temperature range, a linear correlation between lnDt and 1/TSc is expected from observed trends

of these two quantities with temperature. Therefore it is not strictly proven that the configuration

count  contained  in  Sc can  yield  predictive  diffusion  trends  with  temperature.  Thus  without
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independent confirmation of the expected slope of the linear relationship (the A parameter in Eq.

(1))  it  is  not  possible  to  assert  any actual  cause  and effect  relationship  between decreasing

configurational entropy and decreasing diffusivity.

An alternative empirical relationship between a liquid’s macroscopic thermodynamic and

dynamic quantities, originally proposed by Rosenfeld8, suggests a correlation between a scaled

(dimensionless) diffusion constant, D*, and a liquid’s excess entropy, Sexcess (relative to the ideal

gas), such that



D* = D0
* exp αSexcess( ) . (4)

where Sexcess is scaled by (NkB), and D0* and  are dimensionless constants. The

scaling factor for the diffusion constant used in this study was introduced by Dzugutov9, where



D* = DΓE
−1σ −2 , where 



E = 4σ 2g(σ )ρ πkBT /m  is the Enskog collision frequency,  is taken

as the location of the first peak in the g(r), g() is the value of the g(r) at this separation,  is the

density, kB is Boltzmann’s constant,  T is temperature and m is the mass. This scaling factor is

distinct from the choice made in the initial paper by Rosenfeld8 who scaled with the macroscopic

quantities  ,  T,  and m (see  ref  [10]  for  a  full  comparison of  different  scaling factors).  By

definition  Sexcess provides a different configuration count relative to  Sc, which is

further modified when Sexcess in Eq. (4) is replaced with the pair correlation approximation11,12



Sexcess ≈ S2 = −2πρ g r( ) ln g r( ) − g r( ) − 1[ ]{ }r2dr
0

∞

∫ (5)

in which accessible configurations are now completely determined by the corresponding changes

in  structural  correlations  as  a  function  of  temperature  and  density. Because  the

entropy scaling relation is based on data fitting8 of  Sexcess vs. scaled diffusivity, it provides no

guidance as to any physical meaning of the   parameter (although the possibility of a more

rigorous derivation has been suggested10). Despite the ambiguity in the molecular origin of the 

and D0* fit parameters, Dzugutov found these parameters to be nearly ‘universal’ for the liquids

he studied, yielding values ~1 and D0*~0.0499, although subsequent studies have observed

significant variation from these values13-15 It has been suggested that long range interactions in

the potential15, or the existence of strong orientational correlations16 may be the origin for why

certain  fluids  show  values  of  1.   Here  we  propose  additional  insight  into  a

possible dependence of the  parameter on the form of the interaction potential.
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Both the Adam-Gibbs relation2,3,17,18 and the excess entropy scaling relations13,14,16,18 have

been tested through simulation and shown to produce linear correlations over limited temperature

ranges. While the Adam-Gibbs relation is understood to fail at higher temperatures6,19 because the

assumption that particle motion is cooperative and non-Arrhenius is incorrect, the excess entropy

correlation for dense liquids deviates at very low temperatures with a corresponding breakdown

in  the  Einstein-Stokes  relation13.  Due  to  the  empirical  nature  of  the  excess  entropy  scaling

relation, it is difficult to predict whether the scaling functional form may change with extremes

of density or temperature, although some arguments have been made to justify observed changes

in behavior for dilute gases10.

Here we study a family of isotropic potential energy functions20 in which each member

exactly  reproduces  the  oxygen-oxygen  radial  distribution  function,  gOO(r), of  the  TIP4P-Ew

water model21 at a given temperature and density, thereby preserving the translational structural

order of the original full potential across the phase diagram22,23 (Figure 1). The family of isotropic

potentials  can  provide  a  more  stringent  test  of  thermodynamic  relationships  for  predicting

diffusion trends, by removing a common PEL so we may examine whether the values of Dt and a

given  entropy  quantity,  simulated  in  their  own  state  point  phase  space,  are  quantitatively

connected rather than just both having appropriate temperature dependence as implied by Eqs.

(2) and (3). Investigation of thermodynamic-dynamic relationships across the family of isotropic

potentials will answer whether enforcing translational structural order is a sufficient constraint on

allowed potential energy landscapes24 that may accurately predict diffusion trends using these

thermodynamic relationships. We also analyze the correlations within the potentials (i.e. within

their own phase diagram) to examine how the fitting parameters used in Eqs. (1) and (4) may be

estimated from the interaction potential, the PEL, and/or structural order. 

METHODS

Simulation Protocol

The isotropic potentials were derived20,25 for each new state point (examples shown in

Figure 1) to reproduce the density and temperature dependent gOO(r) of the TIP4P-Ew four-site

water  model.21 Simulations  were  run  in  NVT with  1728  particles  of  mass=18.01528g/mol.

Equations  of  motion  were  integrated  with  the  velocity-verlet  algorithm.  Temperature  was

controlled  via  Nose-Hoover  thermostats26 with  a  timescale  of  1.5ps.  Simulations  were
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equilibrated for 900ps and statistics collected for 600ps for T>250K, and equilibrated for 1.2ns

below 250K with 1ns of statistics. For each temperature 5 additional independent trajectories of

600ps each were run to collect diffusion statistics, with the thermostat timescale changed to 10ps.

A time step of 3fs was used for temperatures between 100K and 500K and 2fs for T>500K. 

For the simulations run below 100K for a single isotropic potential across its own phase

diagram, the timestep was increased to 4fs. We collected statistics for 100ns at 100K and 900ns

for 80K due to the extremely slow relaxation times. We were not able to converge the viscosity

calculations for these low temperatures, and hence did not evaluate a potential breakdown of the

Einstein-Stokes relation at cold temperatures. 

For  the  data  points  evaluated  across  the  family  of  isotropic  potentials,  the  densities

corresponded to  the  P=1atm isobar  of  the  TIP4P-Ew simulations  (dense  liquids).   For  data

collected  within  one  isotropic  potential,  the  same  constant  density  was  maintained  across

temperature.

For  the  TIP4P-Ew  simulations20,  1728  water  molecules  were  simulated  at  the

temperatures 373K, 348K,  310.5K, 298K, 285.5K, 273K, 260.5K, 248K, 235.5K, 225K, 215K,

200K and 190K. The densities for each temperature corresponded to the P=1atm isobar, where

values from ref. [21] were used. For the lower temperature points, simulations were first run in

NPT27 to calculate the density for the P=1 atm state points.  For evaluating dynamic properties,

NVT calculations  were  run  with  a  Nose-Hoover26 thermostat  lightly  coupled  to  the  system

(timescale of 10ps) to minimize perturbations from the heat bath.  For T>200K, a timestep of 1fs

was used and for 200K and 190K a timestep of 2fs was used. For T>200K, five independent

trajectories were additionally run at each temperature to collect diffusion statistics. For 200K and

190K statistics were collected from two independent trajectories of ~130ns each (200K) and

200ns each (190K).  

Free Energy Calculation

We  calculate  the  Helmholtz  free  energy,  A(,T),  via  thermodynamic  integration28,29,

starting at the state point of interest, and decreasing the density in increments of 0.03g/cm 3 to a

final point of  low=0.01g/cm3. We then hold the system at constant volume and increasing the

temperature in increments of 20-50K (depending on current temperature) to a final temperature

of Thigh=1000K, to reach the ideal gas state reference; any excess free energy at this state was
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calculated using the virial expansion.  This procedure (simulating across the phase diagram to the

ideal gas reference state) was carried out for each potential. Explicitly, we calculate 



Atot (ρ,T) = Aideal (ρ,T) + Aex (ρ,T) (6) 

where  



Aideal (ρ,T) = kBTN 3ln(λ ) + ln(ρ ) −1[ ]    (7)

and 



  h2 / 2πkbTm( ) .  Aex(,T) is calculated via:



Aex(ρ,T) = βAex (ρ low,T) + dρ '
N
ρ '2

βP(ρ ') − ρ '[ ]
ρ low

ρ

∫     (8)

and



Aex (ρ low,T) = β highT Aex (ρ low,Thigh ) + dβ
β highT

β

∫ V (β ) (9)

where =1/(kbT), P is the pressure, and V is the potential energy. Using the virial expansion, any 

excess free energy at our low density, high temperature reference state is calculated as:



highT Aex (ρ low,Thigh ) = Nρ lowB2(Thigh ) (10)

where 



B2(T) = −2π r2dr exp −βv(r)( ) −1[ ]
0

∞

∫ . This correction was very small as expected, 

<0.5% of the total excess free energy for all state points.  For the integration, both P() and V() 

were fit with cubic splines to avoid any errors arising due to deviations from polynomial fits. 

The total entropy is calculated from 



Stot T,ρ( ) =
1
T

U − A( ) , (11)

where U is the internal energy, and the excess entropy is calculated from

 



Sex =
1
T

V − Aex( ) , (12)

where <V> is the average potential energy. To evaluate the configurational entropy, we subtract

off the vibrational entropy, 



Svib (T,ρ )
 
from 



Stot T,ρ( ) . For the vibrational entropy calculation,

500-2000 decorrelated equilibrium configurations were quenched into their local minima, using

the  Broyden-Fletcher-Goldfarb-Shanno  quasi-second  order  Newton  method30.  We  then  can

evaluate the quenched energy V0 and eigenvalues,  



i = mωi
2 , of the Hessian matrix. Within the
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harmonic approximation to the basin shape, 



V ({q}) =
1
2

λ iqi
2

i= 3

3N∑ , where qi is the displacement

along mode i, Svib is exactly given by:



Svib
harm = kB 1− ln

hωi

2πkBT

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

 ⎡

 ⎣
 ⎢

 ⎤

 ⎦
 ⎥

i= 3

3 N

∑ . (13)

Deviations from the harmonic approximation to the energy



U T,ρ( ) = V0 + Uharm + ΔV , (14)

where 

Uharm=(3N-3)kbT (15)

and V is the correction to the potential energy due to anharmonicity, were typically found to be

between 10-25% for all state points. By assuming V=aT2, and using the relation 



dU
dT

= T
dS
dT

,

we  calculate  the  anharmonic  correction,  



Svib
anharm T,ρ( ) = 2aT  where  a=V/T2.  Similarly,  the

anharmonic correction to the basin free energy (needed for Eq. (17) below) is  



Avib
anharm = −ΔV .

We show in the  Appendix that  this  anharmonic addition to  the entropy,  



Sanh = 2 ΔV T  is

exactly what is given by thermodynamic perturbation theory with second order cubic corrections,

and  first  order  quartic  corrections  (the  standard  expansion).  For  each  state  point,  a  sharply

peaked distribution of Svib values is calculated. The variance in these values is used as an estimate

of the error in the ultimate  Sc value. By characterizing the changes in potential energy as we

displaced along the modes, we found noticeable coupling between modes, which are assumed to

be uncoupled in the harmonic approximation, and which gives rise to our deviations which we

describe in the Appendix.  

We also calculate Sc from statistics of the PEL basins31 as in previous studies2,17,32 using



Sc T( ) = Sc Φ( )P Φ ,T( )dΦ∫ (16)

where  Sc()=kln()  counts the number of basins with energy depth  ,  and  P(,T) is the

probability of observing an inherent structure (IS) basin of energy  at temperature T. 



P Φ,T( ) = Ω Φ( )exp −β Φ + Avib Φ,T( )( )[ ] /Q ρ,T( ) (17)

The partition function, Q(,T), is determined via the relation 



Atotal = −ln(Q). We again include

an anharmonic correction to the basin free energy consistent with the method above such that



Avib
anharm = −ΔV  (see Appendix).
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Dynamic Observables

We evaluate the diffusion constant, Dt, using the Einstein relation, 



Dt =
1
6

lim
t →∞

d
dt

r(t) − r(0) 2
(18)

where the value of Dt is averaged over 5 independent simulations.  We verify the mean square

displacement has converged to the linear diffusive regime by calculating the slope over multiple

time windows. We also calculate viscosity using the Green-Kubo relation29



  1
VkBT

dt σ xy (t)σ xy (0)
0

∞

∫ (19)

where 



 xy = miv i
xv i

y +
1
2

x ijFy (rij )
j≠ i

∑
i=1

N

∑ . (20)

Due to the difficulty in converging the shear  autocorrelation function,  additional  simulations

were run for 30ns, with the shear matrix elements xy, yz, xz calculated and saved at each time

step for maximum statistics. Figure 2 shows the convergence profile of such a simulation. The

van Hove self correlation function33 was calculated from:



Gs(r, t) =
1
N

δ r − ri(t) + ri(0)[ ]
i=1

N∑                                (21)

In Figures 9 and 10 we plot the probability (modulo a constant 4),  



r2Gs(r, t) , of finding the

particles displaced by a magnitude r after a time t. 

RESULTS

We have previously reported that the family of isotropic potentials shows evidence of a

structurally anomalous region in which structural order collapses under applied pressure20. Figure

3a  shows  that  the  family  of  isotropic  potentials  traces  out  similar  dynamical  trends  with

temperature and density to the TIP4P-Ew model shown in Figure 3b. Despite the diffusion data

being  collected  across  a  changing  set  of  interaction  potentials,  we  nevertheless  observe

surprisingly similar dynamical trends to those observed in the reference water model.

Adam-Gibbs  Relationship.  Figure  4a  displays  lnDt vs.  1/TSc across  the  family  of

isotropic  potentials  in  which  the  configurational  entropy  is  calculated  using  thermodynamic
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integration as well as from basin topography measures of the PEL2,17,32 using Eqs. (16) and (17).

The  vibrational  free  energy,  Avib(,T), is  calculated  with  anharmonic  corrections  since  the

anharmonicity of the basins were found to be both significant (10-25% of the harmonic energy)

and dependent on temperature. Figure 4a shows a pronounced non-linear relationship in the plot

of lnDt vs. 1/TSc. A calculation of the percentage of error between the calculated diffusion data

and the best fit line (over the full temperature range) gave an average error of 18% for the Adam-

Gibbs relationship, with deviations occuring for both high and low temperature. Furthermore,

although the translational diffusion values for the family of isotropic potentials vary only over

one decade in timescales (a result of coarse-graining that differs from the diffusion values of the

parent  potential  which  varies  over  3-4  decades  over  the  same temperature  range),  the  non-

linearity of the Adam-Gibbs relationship would be even more severe over a larger temperature

range. 

In Figure 4b we analyze the Adam-Gibbs equation between lnDt and  1/TSc within each

potential,  i.e. by simulating each of their own phase diagrams at constant density but over a

limited temperature range. Similar to other studies2,18, we see reasonable linear correlation within

one potential over our 4-5 data points, but emphasize that this is not a rigorous test of the Adam-

Gibbs theory because of the smaller temperature variation than that used in Figure 4a. We can

clearly  see  that  the  parameters  A and  D0 of  Eq.  (1)  change  noticeably  with  the  changing

interaction potential (reflected in the changing slope and intercept, respectively; see Table 1).

There is a general trend towards increasing barrier parameter  A with decreasing temperature,

consistent with noticeable changes of increasing potential energy barriers between the first two

major wells of the interaction potentials (see Figure 1), but we were unable to extract something

close to a average value of these parameters from our model one-component potential family.

This outcome highlights the limitations of the Adam-Gibbs relation and the landscape paradigm

in making quantitative predictions about dynamic behavior, given the lack of theoretical basis for

the temperature independent fitting parameter A in Eq. (1).

Excess entropy scaling. We next consider the Dzugutov scaling relationship between Dt*

and using either Sexcess or S2.  Figure 5a shows that the two different entropies yield different

D0* but have highly similar  parameters; while the two parameters are not the same

as that found for metals9, supercooled liquids15,34, and silica16, (and thus Eq. (4) is not universal

and therefore predictive), the correlation between diffusivity and Sexcess or S2 is excellent over the

temperature range of 348K down to 200K. We note that there is very little difference in the
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Dzugutov scaling correlation  whether  using scaled or  unscaled diffusion constants  (data  not

shown). A calculation of the percentage of error between the calculated diffusion data and the

best  fit  line  (over  the  full temperature  range)  gave  an  average  error  of  2.5% for  the  Sexcess

correlation, and 5% for the S2 correlation. Given the very good  agreement using S2, apparently

three-body and higher terms in the expansion of Sexcess are only weakly dependent on temperature

as has been seen before12.  However,  we note that  the largest  deviation for Dzugutov scaling

relationship becomes evident at 190K.

In Figure 5b we analyze the Dzugutov scaling relationship between diffusion and Sexcess

and S2 correlations within each isotropic potential, again by simulating each of their own phase

diagrams at constant density but over a limited temperature range.  In contrast to the Adam-

Gibbs result (Figure 4b), the parameter trends are very similar for each new potential, giving rise

to similar fitting parameters reported in Table 1, with average values of  ~1.6 and D0~0.16.

Although our fit parameters are distinct from the values of Dzugutov9 and the values reported for

other liquid types13,15 they are nevertheless very closely related to one another, and to the values

found across the family of isotropic potentials. Examination of the interaction potential (Figure

1) shows that the relative lengthscales of the two potential energy minima remains relatively

constant (reflected in the location of the first two peaks in the  gOO(r)), and we speculate that

perhaps the constancy of these relative lengthscales in a spherically symmetric liquid controls the

Dzugutov scaling fitting parameters used in Eq. (4). We note that the largest deviation in the

parameters becomes evident at 190K when there is an appearance of two new shallow minima at

lengthscales of ~5.75Å and ~8.0Å, and this supports our proposal that the number or ratio of

lengthscales within the system may largely determine the magnitude of the  parameter. 

Diffusion  trends  with  density.  Previous  work has  shown that  the  anomalous density

dependent diffusion trends correlate with both Sexcess and Sc
3,4,14,34. More specifically, it has been

shown that in regions where the diffusivity increases anomalously with increasing compression,

both Sexcess and S2 also increase anomalously with compression (although not necessarily the

reverse)4. We consider this comparison of the Adam-Gibbs and Dzugutov scaling relations vs.

diffusion across the family of isotropic potentials, in which we examine the diffusion anomaly at

T=235K, where both the TIP4P-EW reference model and the family of isotropic potentials have

the same diffusion maximum with respect to density. 

Figure 6 shows that for Sc, the density dependent trends show a poor correlation with the

diffusion constant. We also observe for the first time in our family of isotropic potentials that the
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trends in Sexcess and S2 are not equivalent, and Sexcess does not increase anomalously to encompass

the  region  of  the  diffusion  anomaly  (regardless  of  whether  we consider  unscaled  D or  the

Dzugutov scaling  D*),  while only  S2 is able to demonstrate good agreement with the density

dependent diffusion trends. While there is certainly nothing in the development of the excess

entropy relations that supports  Sexcess over  S2, or vice versa, we note that other studies  within a

single potential find that  Sexcess is more accurate than  S2 in determining the onset of diffusion

anomalies4 when scaled as per the Rosenfeld prescription8, and that the thermodynamic-dynamic

relation can be sensitive to the choice of scaling35. By contrast, our results are the same whether

using the Dzugutov scaling for diffusion, or no scaling at all! 

The success  of  S2 over  such a  large  temperature  and density  range  suggests  that  the

entropic  information  encoded by the  static  pair  structural  correlations  (in  which the  density

anomaly  is  shown  by  Yan  and  co-workers  to  originate  from  the  second  peak  in  the  pair

correlation function36), regardless of changes in the underlying interaction potential or scaling

prescriptions, is a central factor in determining dynamic trends without ever needing to consider

the transitions or pathways of transitions between the available configurations, at least down to

lightly supercooled states. Because our isotropic models have the same values of S2 at the same

state  points  as  the  TIP4P-Ew water  model  by  construction,  it  therefore  is  also  the  entropy

quantity that correlates with the diffusion anomaly of the full potential. 

Excess entropy scaling for TIP4P-Ew. Since our isotropic models have the same values

of S2 at the same state points as the TIP4P-Ew water model by construction, we can also ask how

well Eq. (5) using S2 predicts the fragility trends of the TIP4P-Ew water model. Figure 7 shows

Dt* vs. S2 for the complete TIP4P-Ew water model for values of Dt* that vary by four orders of

magnitude  over  the  temperature  range  of  373K to  190K.  While  the  Dzugutov  relationship9

between  S2 and  the  scaled  diffusion  constant  provides  quantitative  agreement  for  fragile

dynamics down to 215K, it deviates strongly for the two lowest temperatures of 200K and 190K.

The inset of Figure 7 shows that the result is the same whether we use the Dzugutv scaling, or no

scaling at all. Apparently the pair density correlations folded into the S2 entropic metric are no

longer sufficient to capture the diffusion trends, predicting that the dynamics should actually be

faster than the actual observed diffusion. 

The  failure  of  these  phenomenological  thermodynamic-dynamic  relationships  at  low

temperatures  has  been noted  in  other  studies  as  well13,19,  and  in  one  case  correlates  with  a

breakdown in the Einstein-Stokes relation13.  In order to elucidate any possible change in the
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mechanism  of  structural  relaxation  (similar  to  characterizing  a  possible  breakdown  in  the

Einstein-Stokes relation37) we calculate the van Hove self correlation function (Eq. 21), which

will approach a Gaussian distribution of particle displacements at long time-scales for a system

whose diffusion conforms to Fick’s law.  In Figure 7b we see that for the TIP4P-Ew model at

T=215K (at  which diffusivity  still  correlates  with  S2)  the  distributions appear  to  approach a

Gaussian distribution of particle displacements as time progresses. As we lower the temperature,

however, we see a notably non-Gaussian distribution of displacements, as has been previously

observed in a cold binary LJ system2. This change reflects a growing separation in populations of

particles  that  remain  trapped  near  their  original  location  (small  r),  versus  relatively  mobile

particles (advancing beyond their nearest neighbor shells). With different populations relaxing on

different time scales, the change to more heterogeneous dynamics has been closely linked to a

breakdown in the Einstein-Stokes relation38,39. 

Failure  of  excess  entropy  trends  for  translational  diffusion.  It  appears  that  the

Dzugutov  scaling  relation  using S2 gets  fragility  trends  right  down  to  lightly  supercooled

temperatures  for  TIP4P-Ew because  diffusion is  controlled  by density  correlations over  two

short-ranged  lengthscales.  However  the  pair  correlation  approximation  to  Sexcess used  in  the

relation fails for deeply supercooled states of the TIP4P-Ew model,  when the slow down in

diffusivity is accompanied by a change in the underlying mechanism for particle dynamics, such

that the displacements of particles are no longer evenly distributed around some mean value. It is

accepted that as the system approaches a glassy state, cooperative motion between particles is

necessary to allow for relaxation38, and the Einstein-Stokes breakdown indicates a decoupling

between single particle diffusion and this long-range structural relaxation. Since we determine

that  the  pair  structure  cannot  capture  macroscopic  diffusion  trends  when  the  underlying

microscopic dynamics is heterogeneous for the TIP4P-Ew model, it suggests that average pair

separation of particles can’t describe the long-range structural relaxation. This is evident in the

isotropic family since the same low temperature states cause almost imperceptible changes in the

pair  structure  and resulting isotropic  potentials  (Figure  8a),  and hence we see  no change in

dynamical mechanism as evidenced by the lack of dynamical heterogeneity, as shown in Figure

8b.  We  speculate  that  because  our  coarse-graining  procedure  neglects  explicit  many  body

correlations that exist  within the reference model, these many body effects are important for

long-range  structural  relaxation  that  contribute  to  the  observed  change  in  the  dynamics  for

TIP4P-Ew at low temperatures, and its expected breakdown of the Einstein-Stokes relation. 
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As we noted above,  the pair  structure changes very little  for TIP4P-Ew at these low

temperatures, and as a result, our coarse grained potential also changes very little. At this point

looking across  a  family  of  isotropic  potentials  is  no  different  than  looking  within  a  single

isotropic  potential,  which  is  now controlled  by  usual  thermodynamic  and  dynamical  trends

arising from temperature and density variations.   Therefore we examine the Dzugutov scaling

scaling relationships for one single isotropic potential that is derived from the 235.5K state point

of the TIP4P-Ew model. We see in Figure 9a that diffusion trends are well-predicted using either

S2 or Sexcess in Eq. (4), remaining very linear for several orders of magnitude in diffusion values,

before  failing at  temperatures  below ~100K.  In  Figure  9b  we see  that  while  the  van  Hove

correlation function distributions approaches a Gaussian distribution of particle displacements as

time progresses at 100K, the displacement distributions become distinctly non-Gaussian at 90K

and 80K. The many body correlations that  may be  important  for  decoupling of  short-range

diffusion and longer-ranged relaxation emerges at a much lower temperature for the isotropic

potentials than the full reference model, because that information is poorly encoded in the pair

correlation function and core-softened potentials. Rather, more sophisticated theoretical models

are  needed  that  can  account  for  these  many  body  correlations  and their  connections  to  the

changing  microscopic  dynamics  (emergence  of  heterogeneity),  if  thermodynamic-dynamic

relationships apply as the glass transition is approached. It is of course also possible that the

thermodynamic-dynamic breakdown reflects that the glassy state is purely a kinetic phenomena,

independent of any thermodynamic origin.

DISCUSSION AND CONCLUSION

In  summary,  the  various  entropy  measures  and/or  their  associated  thermodynamic

theories are not equivalent in their estimates of the accessible configurations at each state point,

and hence vary in their predictive quality for quantifying dynamical trends with density and

temperature. A significant weakness of these thermodynamic-dynamic relations is the ill-defined

fitting parameters, A and D0 for Adam-Gibbs, and  and D0* for Dzugutov scaling. Since these

parameters can only be extracted once one has collected both the entropic data and the diffusion

data of interest, these theories lack any genuine predictive power. We find that the Adam-Gibbs

relationship fails completely in regards to prediction of dynamical anomalies and fragility trends

across the family of isotropic potentials, because the barrier parameter A is sensitive to the form

of the interaction potential that varies with temperature and density. We conclude that only basin
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enumeration of the PEL (via Sc) does not fully address the complexity of diffusion trends without

complementary  analysis  of  barriers.  By  contrast,  the  Dzugutov  scaling  relation  accurately

predicts  both the  temperature-dependent  dynamics down to lightly  supercooled states,  which

may  be  because  the   parameter  is  nearly  constant  across  the  family  because  the  two

lengthscales are maintained across each core-softened potential with temperature changes. The

increase in the  parameter at the lowest temperatures may then be due to the emergence of new

longer lengthscales in the potentials (Figure 1). 

We previously showed that  our coarse-graining method of translocating the reference

water  model’s  pair  structure  into  a  family  of  isotropic  potentials  disrupted  thermodynamic

stability criteria involving the virial pressure20, and as a result our family of isotropic potentials

did not generate any water-like density anomaly. Despite the loss of these thermodynamic trends,

the diffusion trends in the isotropic family were remarkably similar to those of the reference

water model. It suggests that S2 as used in the Dzugutov scaling relation captures the dynamical

trends for both the isotropic and TIP4P-Ew model  because diffusion is controlled by density

fluctuations  captured  in  the  pair  distribution  function.  However,  the  Dzugutov  scaling

thermodynamic-dynamic  relation  fails  for  deeply  supercooled  temperatures  because  density

correlations vary minimally with lowering temperature, while the diffusivity decreases rapidly

and the mechanism for relaxation appears to change40. We believe that many body correlations

may be important for representing longer-ranged relaxation, which is poorly represented in the

pair correlation function and core-softened potentials. Thermodynamic stability trends are much

more  sensitive  to  these  longer  range  correlations  at  higher  temperatures,  but  they  are  not

operative for dynamics until a very different region of the phase diagram is reached. 

It  is intriguing that idealized mode coupling theory (MCT) also utilizes only the pair

correlation  function  in  its  prediction  of  the  intermediate  scattering  function,  successfully

predicting  the  diffusion  trends  for  many  liquids  down  to  lightly  supercooled  temperatures.

However,  MCT  is  not  able  to  predict  dynamics  at  low  temperatures,  where  dynamic

heterogeneity sets in and the mean-field like approximations used in MCT no longer applies 41.

Although we did not explicitly test the predictions of MCT, we expect it to fail at the temperature

where the Dzugutov scaling relation fails, that is, at the onset of heterogeneous dynamics. The

inability  of  both  the  Dzugutov  scaling  relation  and  MCT  to  apply  at  low  temperatures

emphasizes  that  the  radial  packing of  the  particles  (even  when considered  within  the  more

rigorous framework of MCT) is simply not detailed enough to describe the motion of particles at
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lower  temperatures,  where  cooperative  motion  and  heterogeneous  dynamics37,42  emphasizes

relaxation over multiple lengthscales. 

 It  is  also  interesting  how  the  Dzugutov  scaling  thermodynamic  relation  using  S2,

idealized  MCT dynamical  theory43,  and  MCT and its  connection  to  the  PEL44, invoke very

different  assumptions  about  the  relevance  of  available  configurations,  available  pathways

between basins, and basin properties. What appears more relevant is that theories that account for

the density fluctuations captured in the pair correlations and their trends with temperature can

predict the fragile diffusivity over a large temperature (and density) range, with no direct reliance

on the potential energy surface or pathways. But because phenomenological theories eventually

fail  at  the  coldest  temperatures,  we conclude  that  a  predictive  theory  for  dynamics  will  be

difficult  to  achieve  without  more  explicit  information  about  many-body  correlations  or

connectivity paths between basins through barriers45. 
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APPENDIX

Here we use thermodynamic perturbation theory to derive the anharmonic corrections to the

Helmholtz free energy of a reference quadratic potential specifically for a liquid, rather than a

crystal46,47.  We similarly include cubic terms to 2nd order,  and quartic terms to 1st order. The

Taylor expansion of a potential V in normal modes q about its minimum gives:



V ({q}) =
1
2

λ iqi
2 +

1
6

κ ijkqiq jqki= 3, j= 3,k= 3

3N∑ +
1

24
γ ijkli, j ,k,l

3N∑
i= 3

3N∑ qiq jqkql + ...           (A.1)

where the second, third,  and fourth derivatives of the potential  are given by  i,  ijk,  and  ijkl

respectively.   As  usual46,47,  we treat  the  quadratic  term as  the  reference  potential,  such  that



V0 =
1
2

λ iqi
2

i= 3

3N∑ ,  and  the  perturbation  is



V3 =
1
6

κ ijkqiq jqki, j ,k

3N∑ + V4 =
1

24
γ ijkli, j ,k,l

3N∑ qiq jqkql .  Hence  the  hamiltonian  is



V = V0 + λV3 + λ2V4
46. Upon evaluating the partition function for this potential and linearizing

the exponentials for the cubic V3 and quartic V4 terms, we have the following expression to

second order in the cubic term, and first order in the quartic term:



Z = dqN exp −βV0(qN )( ) 1− βλV3(qN ) + β 2λ2 /2(V3(qN ))2
[ ] 1− βλV4 (qN )[ ]∫               (A.2)

and we keep terms to order  2  in  (A.2)46,48.  The linear V3 term will  vanish due  to  the  even

symmetry of the harmonic V0 term, as will all terms that have odd powers of q. Hence we are left

with the following contributions to Z, the harmonic term:



Z0 = dqN exp(−βV0(qN )) =
2πkBT

λ i

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟

i= 3

3N

∏
1/ 2

∫                                 (A.3)

The second order cubic term:



Z1 = dqN exp(−βV0(qN ))
β 2

2 * 36
κ ijk

2 qi
2q j

2qk
2

ijk

3N∑ = Z0

β −1

72
κ ijk

2 1
λ iλ jλ k

 ⎛

 ⎝
 ⎜ ⎜

 ⎞

 ⎠
 ⎟ ⎟ijk

3N∑∫            (A.4)
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and the first order quartic term:



Z2 = dqN exp(−βV0(qN ))
β

24
γ ijqi

2q j
2

ij

3N∑ = Z0

β −1

24
γ ij

1
λ iλ j

 ⎛

 ⎝
 ⎜ ⎜

 ⎞

 ⎠
 ⎟ ⎟ij

3N∑∫                     (A.5)

where in the right hand sides, the integrals have been explicitly evaluated. Based on the right

hand sides of Z1 and Z2, we define Z1’=Z1/Z0, and Z2’=Z2/Z0.  The free energy is given by the

logarithm of the partition function, (we absorb the momentum term into Z0 for all terms). We

have46 



A = ln(Z0) + ln(1+ λ2(Z1 /Z0) − λ2(Z2 /Z0))                               (A.6)

simplified to46,48



A = −βA0 + λ2 (Z1 /Z0) − (Z2 /Z0)[ ] = −βA0 + Z '1 −Z2 '[ ] .                      (A.7)

If we now evaluate the average internal energy, using 



U =
∂βA
∂β

, with the above  dependence

of Z1’ and Z2’ we find that 



U = U0 − −
1
β

Z1'−Z2 '( )
 ⎡

 ⎣
 ⎢

 ⎤

 ⎦
 ⎥                                             (A.8)

which implies that the anharmonic correction to internal energy, and therefore the correction to

the potential energy V is:



V = β −1 Z1'−Z2 '[ ] .                                                      (A.9)

Comparison with the anharmonic correction to the free energy, the RHS of (A.7) shows that



A = A0 − ΔV .                                                      (A.10)

The correction to the free energy appears in other forms 47,48, but the explicit evaluation of these

equations gives the same result as that noted above. 

Finally, the evaluation of the entropy 



S =
(U − A)

T
 has an anharmonic correction to the reference

quadratic potential of 



Sanh = 2 ΔV /T .                                                      (A.11)
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Table 1. Fit parameters to the Adam-Gibbs equation (Eq. (1)) and the Dzugutov scaling relation
(Eq.(4)) for each isotropic potential across its own phase diagram. The Adam-Gibbs parameters
are  listed  in  units  of  kcal/mol  for  A,  and  10-4cm2/s  for  D0.  The  Dzugutov  scaling  unitless
parameters,  and D0* are from fits to the scaled diffusivity D* vs. S2 and Sexcess. 

Potential A D0   (S2) D0* (S2)   (Sexcess) D0* (Sexcess)
V190 3.06 1.872 -1.84 0.232 -1.84 0.579
V200 3.15 2.748 -1.68 0.141 -1.67 0.320
V225 2.64 3.536 -1.40 0.073 -1.41 0.150
V235 2.61 3.957 -1.42 0.079 -1.40 0.153
V248 2.37 3.763 -1.52 0.099 -1.44 0.175
V260 2.41 4.208 -1.65 0.132 -1.53 0.230
V285 2.27 4.380 -1.59 0.120 -1.46 0.201
V310 1.98 3.922 -1.70 0.148 -1.47 0.211
V373 1.95 4.307 -1.88 0.210 -1.49 0.223

Family 4.48 14.30 -1.70 0.151 -1.67 0.328
TIP4P-Ew - - -3.95 1.400
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FIGURE CAPTIONS

Figure 1. Isotropic potentials as a function of temperature for T=348K (solid), 285.5K (dashed),

235.5K (dot-dash), and 190K (dotted).

Figure 2. Plot of viscosity vs the time integrated over the shear auto-correlation function.  The

integral  shows  excellent  convergence  within  5ps  to  the  same  viscosity  value  for  all  three

correlation functions. XY shear (solid), XZ shear (dashed), YZ shear (dot-dash). As mentioned in

the  methods,  this  level  of  convergence  required  30ns  of  simulation,  with  the  shear  matrix

elements calculated and saved at every time step. 

Figure 3. Translational diffusion constants trends with temperature and density for (a) the family

of isotropic potentials and (b) for the TIP4P-Ew model.  Symbols are for the simulated values.

Insets show Dt as a function of density for the four isotherms T=310.5K, T=285.5K, 260.5K, and

235.5K20. Lines are two different fits to the VFT form (Eq. (5)) over two temperature ranges. In

(a),  the  VFT parameters  for  the  isotropic  family  over  temperature  data  down to  200K  are

D0=6.11E-4cm2/s, =0.61, and T0=145K (solid line), which gives a higher quality of fit compared

to the VFT fit down to 190K with  D0=7.46E-4cm2/s,  =0.49, and  T0=136K (dotted line).  The

activation energy for the family increases from ~1.5kcal/mol at T=350K to between 4-5kcal/mol

at the lowest temperatures. In (b), the VFT parameters for the TIP4P-Ew model over temperature

data down to 215K are  D0=6.89E-4cm2/s,  =0.35, and  T0=160K (solid line), compared to the

VFT parameters fit down to 190K with  D0=61.4E-4cm2/s,  =0.27, and  T0=151K (dotted line).

For TIP4P-Ew the activation energy increases from 3.5kcal/mol at T=350K, to ~15kcal/mol at

the lowest temperature. 

Figure 4. Test of the Adam-Gibbs relation across the family of isotropic potentials. (a) ln Dt vs

1/TSc (and inset ln vs.  1/TSc) with  Sc calculated from both thermodynamic integration (black

circles) and from basin distributions via Eq. (16) (red triangles). For both methods, anharmonic

corrections  were  included for  the  vibrational  properties  due  to  10-25% deviations  from the

harmonic approximation.  The two methods of calculating  Sc give nearly identical results. It is

evident that the expected linear correlation is not reproduced in our family of isotropic potentials.
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Lines are the best fit expected from Eq. (1). Error bars on Dt capture the 1-3% deviation among

simulated values, compared to deviations of up to 40% to the best linear fit. The mean percent

error between the diffusion and the best fit is 18%.  Error bars on  Sc reflect a distribution of

values of Svib, including the anharmonic corrections. (b) Evaluation of the Adam-Gibbs relation

within  each  isotropic  potential  over  small  temperature  variations. It  is  clear  that  each  new

potential has its own set of barrier parameter, A, and D0 which is not captured by the family of

isotropic potentials (Table 1).

Figure 5. Test of the Dzugutov scaling relation across the family of isotropic potentials. (a) lnDt*

vs.  Sexcess and S2 evaluated as a function of temperature. We recover excellent linear correlation

for both entropy metrics, except perhaps at the lowest temperature of 190K. Symbols are for the

simulated values and lines are the best fit expected from Eqs. (2) and (3). The average percent

error between  Dt* and the best line fit is 5% for the S2 data, and 2.5% for the  Sexcess data. (b)

Evaluation of the Dzugutov scaling relation for S2 and Sexcess within each isotropic potential over

small temperature variations. The fitting parameters,   and D0*, are very similar between each

potential, except at the lowest temperatures. 

Figure 6. Various entropy measurements vs. density for prediction of diffusion anomalies.  The

red circles are  the  scaled diffusion data  for the  family  of  isotropic potentials.  (the  unscaled

diffusion constant has the same trend). We also note that as seen in Figure 3b (inset), the TIP4P-

Ew has the same diffusion trends, with the maximum located at the same density. We find the s2

provides the best correlation of the diffusion maximum with density. In order to plot the curves

over the same y-axis range, the D* values were multiplied by a factor of 1000, and both s2 and

sexcess were increased by a constant factor of 6 from their actual values.

Figure 7. (a) Test of Dzugutov scaling relation in the TIP4P-Ew water model using S2. Symbols

are for the simulated values and lines are the fits expected from Eq. (4) using the approximation

based on Eq. (5). The linear correlation persists over the temperature range 373K down to 215K,

but deviates noticeably at the lowest temperatures (200K and 190K). Line shows the best fit

down to 215K.  Inset shows the correlation using the unscaled diffusion constant (units cm2/s).

(b) Plot of the van Hove self correlation function for TIP4P-Ew at 215K (left), 200K (middle),

and 190K (right). All three plots have 20 curves, where the first (blue) curve is the distribution of
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particle displacements at t=510ps, for (a) each curve is incremented by 500ps, (final red curve is

~11ns),  for (b) the increment is 2500ps (final red curve is ~50ns), and for (c) the increment is

3500ps (final red curve is ~70ns). 

Figure 8. (a)  Family of isotropic potentials  at  the lowest temperatures.  The potentials  show

shallow minima at longer lengthscales, but stagnate at the coldest temperatures. (b) Plot of the

van Hove self correlation function for the family of isotropic potentials at  200K (top), and 190K

(bottom). Both plots have 12 curves, where the first (blue) curve is the distribution of particle

displacements at t=39ps and each curve is incremented by 39ps. 

Figure  9. (a)  Test  of  Dzugutov  scaling  relation  within  one  isotropic  potential  (from  the

T=235.5K state  point)  using  both  S2 and Sexcess.  For  this  model,  we collected  data  over  the

temperature  range  of  T=348K  down  to  T=80K.  The  linear  correlation  persists  over  the

temperature range down to ~120K, but deviates noticeably at the lowest temperatures (100K and

80K). Line shows the best fit down to 120K, where the average percent error is 4.6% for S2 and

~6% for  Sexcess.  Inset shows the same correlation using the unscaled diffusion constant (units

cm2/s). Again we see very similar trends regardless of the scaling factor. (b) Plot of the van Hove

self correlation function for the single isotropic potential (at the T=235.5K state point) at 100K

(left), 90K (middle), and 80K (right).  All three plots have 20 curves, for (a) the first blue curve is

at 99ps, and each curve is incremented by 1200ps (final red curve is ~24ns) (b) first blue curve is

1ns, and each curve is incremented by 4ns (final red curve is 81ns), (c) first blue curve is 1ns,

and each curve is incremented by 7ns (final red curve is 141ns). 
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