[B Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Molecular Research Division

Submitted to the Journal of the American Chemical Society

RECEIVED BERKELEYRENCE BERKELEY LABORATORY

DEC 1 G 1981
LIBRARY AND DOCUMENTS SECTION

PREPARATION AND CRYSTAL STRUCTURE OF BIS [BIS(PENTAMETHYLCYCLOPENTADIENYL) YTTERBI UM (II I)] UNDECACARBONYLTRIFERRATE , $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{1]}\right]$; A COMPOUND WITH FOUR ISOCARBONYL (Fe-CO-Ib) INTERACTIONS
T. Don Riley and. Richard Andersen

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Preparation and Crystal Structure of
Bis [bis(pentamethylcyclopentadienyl)ytterbium(III)]Undeca-carbonyltriferrate, $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right] ;$
A Compound with Four Isocarbonyl ($\mathrm{Fe}-\mathrm{CO}-\mathrm{Yb}$)Interactions
T. Don Tilley and Richard Andersen*
Chemistry Department and Materialsand Molecular Research Division ofLawrence Berkeley Laboratory,University of California, Berkeley,California 94720

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number W-7405-ENG-48.

[^0]Abstract
The $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ clusters react with two molar equivalents of the divalent, f-block metallocene, ($\left.\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$, to give the complex, $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}_{3}\left(\mathrm{CO}_{7}\right)(\mu-\mathrm{CO})_{4}\right]$ as shown by X-ray crystallography. The cluster anion has four bridging co groups arranged so as to form two trans-metalloacetonylacetonatelike groups about the Fe_{3} atom. Mononuclear $\mathrm{Fe}(\mathrm{CO})_{5}$ reacts with the ytterbium-metallocene to give $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$.

It has been shown recently that the divalent lanthanide complex $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{H}_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ reduces $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, cleaving the metalmetal bond to give I.l The tetracarbonylcobaltate anion is

bonded to the trivalent Lewis acid fragment $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mathrm{thf})\right]^{+}$, by donation of a lone pair of electrons on one of the carbon monoxide groups. Infrared and X-ray data suggest that the carbon-oxygen bond of the bridging carbonyl ligand was significantly weakened, resulting in a charge disparity in the sense, $\mathrm{Co}(\delta-)-\mathrm{C}(\delta+)-\mathrm{O}(\delta-)-\mathrm{Yb}(\delta+)$. This should enhance the reactivity of the bridging carbon monoxide group toward nucleophilic and/or electrophilic reagents. Such carbon- and oxygen-bonded carbonyl ligands have been shown to exhibit unique physical properties and reactivity patterns. 2

In investigating the utility of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right){ }_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ in preparing complexes of transition metal carbonyl anions that contain M-CO-M' bonds, it was of interest to examine reactions of carbonyl clusters having bridging carbon monoxide groups. Carbonyl ligands that bridge two or more transition metals have a lower C-O bond order than terminal ones, and are better σ-donors toward hard Lewis acids. As a result, some Lewis acids induce terminal-to-bridge Co shifts. 2 Such interactions will result in further charge
disparity in the bridging carbon monoxide group and activate the $\mathrm{C}-\mathrm{O}$ bond to an even greater extent.

Reaction of two molar equivalents of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in toluene, or stoichiometric amounts of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in toluene, results in a dark red solution, from which violet prisms (m.p. 307-310 ${ }^{\circ} \mathrm{C}$) of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right]\right.$ may be crystallized. ${ }^{3}$ The infrared spectrum shows that the carbonyl ligands are significantly perturbed relative to the electronically equivalent $\left[E t{ }_{4} N\right]_{2}-$ $\left[\mathrm{Fe}_{3}(\mathrm{CO}) \mathrm{g}_{\mathrm{g}}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)\right]$, which has $\nu(\mathrm{CO})($ thf $)$ at 1938 s , $1910 \mathrm{~ms}, 1890 \mathrm{sh}$, and $1670 \mathrm{w} \mathrm{cm}^{-1} .4$ The ytterbium complex shows two low energy $C-O$ stretching frequencies at 1667 and $1604 \mathrm{~cm}^{-1}$, suggesting the presence of n^{2}, n^{1}-triply bridging carbonyl ligands.

In order to unequivocably establish the structure of this novel complex, a crystal structure analysis was performed. 5 of the three discrete molecules in the unit cell, two are well-ordered and related by an inversion center while the third is disordered about the center of inversion. An ORTEP view of the ordered molecule is shown in Figure I. The molecule has approximate $C_{2 v}$ symmetry about the $\mathrm{Fe}(1)-\mathrm{C}(1)$ vector. The $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups are inequivalent in the solid state as well as in solution since they give two equal-area resonances in the 1_{H} NMR spectrum at $26^{\circ} \mathrm{C} .3$ The two iron-iron distances $[\mathrm{Fe}(1)-\mathrm{Fe}(2)$ and $\mathrm{Fe}(1)-\mathrm{Fe}(3)]$ of 2.524(1) and 2.538(1) \AA, respectively, are essentially equal as are the four ytterbium-oxygen distances (average, 2.243(5) \&). The average ytterbium-carbon $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ bond length of $2.573(13) \&$ is similar to those found in ytterbium(III) metallocenes of the same coordination number $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{~S}_{2} \mathrm{CNEt}_{2}, 2.63(3)^{6 \mathrm{a}}\right.$ and
$\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}($ thf $) \mathrm{Co}(\mathrm{CO})_{4}, 2.596(1) \AA^{\mathrm{l}}$]. However, this average bond length is significantly longer than that found in the ytterbium(II) species of identical coordination number, $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mathrm{PY})_{2}, 2.742(7) \AA \mathrm{A} .6 \mathrm{~b}$ This difference is expected since the ionic radius of $\mathrm{Yb}(\mathrm{III})$ is ca. $0.16 \AA$ smaller than that of $\mathrm{Yb}(I I)$ when both ions have the same coordination number. 7 Thus, the paramagnetism of the complex is explained, since $\mathrm{Yb}(\mathrm{II})$ is an fl 3 ion whereas $\mathrm{Yb}(\mathrm{II})$ is an $\mathrm{fl4}$ ion and the complex can be viewed as a tight ion-pair of the form $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]_{2}^{+}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{7}-\right.$ $(\mu-\mathrm{CO})_{4} \overline{\mathrm{~J}}$.

The $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ angle is 161.8° and there is no direct interaction between $\mathrm{Fe}(2)$ and $\mathrm{Fe}(3)$. The two planes defined by the carbonyls bound to $\mathrm{Yb}(1)$ and $\mathrm{Yb}(2)$ are inclined with respect to each other, with a dihedral angle of 168.1° away from the unique carbonyl bonded to $\mathrm{Fe}(1)$. Thus, the overall shape of the cluster might be described as an inverted umbrella, the handle being the unique carbonyl bound to $\mathrm{Fe}(1)$. The leastsquares plane defined by the bridging carbonyl carbon atoms $C(2)$, $C(3), C(4)$ and $C(5)$ is $0.36 \AA$ below $F(1)$ and above $Y b(1)$ and $\mathrm{Yb}(2)$ by 0.56 and $0.48 \AA$, respectively. The terminal $\mathrm{Fe}(2)$ and Fe(3) atoms are slightly below this plane, by 0.06 and $0.02 \AA$, respectively.

The bonding iron-iron distances are similar to those found in the electronically equivalent (48 electron) tri-iron clusters $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)\right]^{=4} ; \quad\left[\mathrm{Fe}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{H})(\mu-\mathrm{CO})\right]^{-}, 8 \mathrm{a}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{CO})_{2} .^{8 \mathrm{~b}}$ The latter three clusters have their iron atoms at the corners of an isosceles triangle, the geometry usually found for tri-metallic cluster molecules. 9 The geometry
of the $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{7}(\mu-\mathrm{CO})_{4}\right]=$ cluster (Figure II shows the averaged bond angles and lengths within the cluster) has been greatly perturbed by the presence of the two $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{+}$units, which have forced four carbonyl groups into bridging positions. The $\mathrm{Fe}(1) \mathrm{CO}(4) \mathrm{CO}(5)$ and $\mathrm{Fe}(1) \mathrm{CO}(2) \mathrm{CO}(3)$ fragments may be viewed as metalloacetonylacetonate groups coordinated in a chelating fashion to the two ytterbium(III) centers. ${ }^{10 \text {. Thus, the } \mathrm{Fe}_{3}(\mathrm{CO})=11}$ cluster may be viewed, in an electronic sense, by the valence bond structure shown below. In order to act as a chelating ligand, the $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right]^{=}$distorts by breaking an $\mathrm{Fe}-\mathrm{Fe}$ bond. This process does not require much energy since the $\mathrm{Fe}-\mathrm{Fe}$ bond energy in $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ is estimated to be ca. 19 kcal mol ${ }^{-1}, 11$ most certainly less than that of four ytterbium-oxygen bonds.
(See illustration, next page)

A rich reaction chemistry is suggested by the 'opened' geometry of the $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right]=$ cluster. However, toluene solutions of the $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO}) 11\right]$ cluster did not react with H_{2} nor CO at 18 atm during a 24 h period.

In order to examine reactions of the complete set of binary iron carbonyls with the ytterbium(II) metallocene, we have studied
 The reaction gives $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mathrm{thf})\right]_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ after crystallization from tetrahydrofuran. ${ }^{12}$ The complex gives $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{SnPh}_{3}\right)_{2}$ upon reaction with $\mathrm{Ph}_{3} \mathrm{SnCl}$, as shown by infrared spectroscopy. ${ }^{13}$ Thus, the complex may be formulated as the tetracarbonylferrate, shown below, analogous to the well-known sodium salt, $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{14}$
5.

(thf) $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Yb}^{\mathrm{DO}}$

Acknowledgement.
This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under contract Number W-7406-ENG-48. We also thank the N.S.F. for a grant to the Chemistry Department used to purchase the X-ray diffractometer.

Supplementary Material.
A list of thermal and positional parameters (5 pages) is available. Ordering information is given on any current masthead page.

1. Tilley, T. D.; Andersen, R. A., J. Chem. Soc. Chem. Commun., 1981, 985-986.
2. Shriver, D. F., J. Organomet. Chem. 1975, 94, 259-271; Shriver, D. F. in 'Catalytic Activation of Carbon Monoxide', A. C. S. Symposium Series, 1981 152, and references therein.
3. Anal. Calcd. for $\mathrm{C}_{51} \mathrm{H}_{71} \mathrm{Fe}_{3} \mathrm{O}_{11} \mathrm{Yb}: \mathrm{C}, 44.6$; $\mathrm{H}, 5.21$. Found : C, 44.9; H, 4.63. IR(Nujol) $\mathrm{E}_{1} \nu\left(\mathcal{C O}_{\mathrm{O}}\right)=2048 \mathrm{w}, 1998 \mathrm{~s}$, $1973 \mathrm{~s}, 1667 \mathrm{w}, 1604 \mathrm{bs} \mathrm{s} \mathrm{cm}{ }^{-1}$. $\mathrm{I}_{\mathrm{H}} \mathrm{NMR}$ (PhMe-d8, $26^{\circ} \mathrm{C}$): $\delta 8.09\left(\nu_{l / 2}=130 \mathrm{~Hz}\right)$ and $6.11\left(\nu_{1 / 2}=130 \mathrm{~Hz}\right)$ due to the two inequivalent $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups. μ_{B} (solid state, $4-60 \mathrm{~K}): 3.91 \mathrm{~B} . \mathrm{M}$. per ytterbium. Mp. $307-310^{\circ} \mathrm{C}$.
4. Lo, F. Y.-K.; Longoni, G.; Chini, P.; Lower, L. D.; Dahl, L. F. J. Amer. Chem. Soc. 1980, 102, 7691-7701.
5. The structure was solved by Dr. F. J. Hollander, staff crystallographer at the U. C. Berkeley X-ray crystallographic facility (CHEXRAY). Crystal data: $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4} \mathrm{Yb}_{2} \mathrm{Fe}_{3}(\mathrm{CO}) 11$, $\mathrm{F}_{\mathrm{w}}=1362.7$; Space group, PI, triclinic; $\mathrm{a}=14.525(2)$, $\mathrm{b}=18.058(2), \mathrm{c}=18.324(2) \AA ; \alpha=72.151(11) j$ $\beta=84.050(11), \quad \underline{Y}_{3}=72.151(11)^{\circ} ; V=4321(1) \AA^{3}$ i ${ }^{\circ} \mathrm{cal}=1.571 \mathrm{gcm}{ }^{-3} ; \mathrm{z}=3 ; \mu\left(\mathrm{MO}-\mathrm{K}_{\alpha}\right)=40.05 \mathrm{~cm}^{-1} ;$ $\lambda=0.71073 \AA$. The structure was solved by Patterson
and Fourier methods and refined using 8622 data $\left[F^{2}>3 \sigma\left(F^{2}\right)\right]$ measured on a Nonius CAD 4 diffractometer. The R and R_{W} for all data were 5.76 and 8.33%, respectively.
6. (a) Tilley, T. D.; Andersen, R. A.; Zalkin, A.; Templeton, D. H., submitted. (b) Tilley, T. D.; Spencer, B.; Andersen, R. A.; Zalkin, A., submitted.
7. Shannon, R. D., Acta Cryst. 1976, 32A, 751-767.
8. (a) Dahl, L. F.; Blount, J. F., Inorg. Chem. 1965, 4, 1373-1375. (b) Cotton, F. A.; Troup, J. M., J. Amer. Chem. Soc. 1974, 96, 4155-4159.
9. Lauher, J. H., J. Amer. Chem. Soc. 1978, 100, 5305-5315.
10. Lukehart, C. M., Acc. Chem. Res. 1981, 14, 109-116.
11. Connor, J. A. in 'Transition Metal Clusters', Johnson, B. F. G., ed., Wiley, New York, 1980, p. 354.
12. Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{FeO}_{\Phi} \mathrm{Yb}_{2}: \mathrm{C}$, 52.1; $\mathrm{H}, 6.39$. Found: C, 51.6; H, 6.42. $\mathrm{I}_{\mathrm{H}} \mathrm{NMR}$ (thf-d $8,26^{\circ} \mathrm{C}$); a single resonance was observed at $\delta 9.52\left\{\nu_{1 / 2}=\right.$ 144 Hz). Hydrolysis of a sample dissolved in benzene gave a mixture of $\mathrm{Me}_{5} \mathrm{C}_{5} \mathrm{H}$ and tetrahydrofuran in area ratio
$2: 1$ by l_{H} NMR spectroscopy. $v(\mathrm{CO})($ Nujol): $2004 \mathrm{w}, 1980 \mathrm{w}$, $1961 \mathrm{w}, 1928 \mathrm{~s}, 1922 \mathrm{~s}, 1753 \mathrm{~m} \mathrm{sh}, 1741 \mathrm{~s}, 1711 \mathrm{~s}, 1648 \mathrm{~m} \mathrm{sh}$ and 1608 s br cm^{-1}.
13. Pomeroy, R. K.; Vancea, L.; Calhoun, H. P.; Graham, W. A. G., Inorg. Chem. 1977, 16, 1508.
14. (a) Collman, J. P., Acc. Chem. Res. 1975, 8, 342-347. (b) Chin, H. B.; Bau, R., J. Amer. Chem. Sōc. 1976, 98, 2434-2439. (c) Teller, R. G.; Finke, R. G.; Collman, J. P.; Chin, H. B.; Bau, R., Ibid 1977, 99, ll04-1111.

Figure Captions

Figure l. An ORTEP drawing of $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{7}(\mu-\mathrm{CO})_{4}\right]$.

Figure 2. A line-drawing showing some average bond lengths and distances. The average $\mathrm{Fe}(2,3)-\mathrm{C}($ terminal) and their associated $C-O$ bond lengths are $1.741+0.013$ and $1.176+0.014 \AA$, respectively. The $\mathrm{Fe}(1 \overline{)}-\mathrm{C}(1)$ and $C(1)-\bar{O}(1)$ bond lengths are $1.698(8)$ and $1.161(9) \AA$, respectively. The average $\mathrm{Me}_{5} \mathrm{C}_{5}$ (centroid)- $\mathrm{Yb}-\mathrm{Me}_{5} \mathrm{C}_{5}$ (centroid) angle is $141.6 \pm 0.004^{\circ}$ and the $\mathrm{Me}_{5} \mathrm{C}_{5}{ }^{-}$ (centroid)-Yb bond length ${ }^{-1}$ is $2.289+0.019 \AA$.

Figure 1

Fiṇure 2

Supplementary Materials for

Preparation and Crystal Structure of Bis [bis(pentamethylcyclopentadienyl)ytterbium (III)] Undecacarbonylferrate, [(C55 $\left.\left.{ }_{5}\right)_{2} \mathrm{Yb}\right]_{2}{ }^{-}$ $\mathrm{Fe}_{3}(\mathrm{CO})_{11}$]; A Compound with Four Isocarbonyl (Fe-CO-YB) Interactions
by T. Don Tilley and Richard A. Andersen

1. The $\mathrm{Yb}(1), \mathrm{Yb}(2)$ and $\mathrm{Fe}(1), \mathrm{Fe}(2), \mathrm{Fe}(3)$ are the metal atoms in the ordered molecule. The $\mathrm{Yb}(3)$ and $\mathrm{Fe}(4)$ are the ordered metal atoms in the disordered molecule on the inversion at $1 / 2,1 / 2,1 / 2$ and $\mathrm{Fe}(5)$ is the central (disordered) iron atom of that molecule. $O(1-1 l)$ and $C(1-1 l)$ are the $C O$ groups in the ordered molecule and $O(21-26)$ and $C(21-26)$ are the ordered CO groups in the disordered molecule and $O(24 P)$ and $C(24 P-26 P)$ are the disordered $C O$ groups of the latter molecule. O(25P, 26P) were not located. $C(101-120)$ and $C(201-220)$ are the carbon atoms of the $\mathrm{Me}_{5} \mathrm{C}_{5}$ groups in the ordered molecule, see Figure 1 of the manuscript for the numbering scheme. C(301-320) are the ordered $\mathrm{Me}_{5} \mathrm{C}_{5}$ ordered carbon atoms inn the disordered molecule. The numbering scheme is symmetrical to that of the molecule.
2. $\mathrm{HCPl}-\mathrm{HCP} 6$ are the centroids of the $\mathrm{Me}_{5} \mathrm{C}_{5}$ groups calculated from the position of the ring carbon atoms. Again, HCP1-HCP4 are the ordered rings of the ordered molecule and HCP5-HCP6 are the ordered rings on the disordered molecule. ClOl-Cllo are the atoms of Cpl on $\mathrm{Yb}(1)$. Clll-Cl 20 are the atoms of Cp2 on $\mathrm{Yb}(2)$, etc.
3. The following atoms were given occupancy factors of 0.50: Fe(5), $\mathrm{C}(23), \mathrm{O}(23), \mathrm{C}(24), \mathrm{O}(24), \mathrm{C}(25), \mathrm{O}(25), \mathrm{C}(26), \mathrm{O}(26)$, $C(24 P), O(24 P), C(25 P)$, and $C(26 P)$.

	POSITI	NAL AND T	al paramet	S AND T	MATED	ANDARD ${ }^{\text {d }}$	VIATIONS.		
ATOM	\underline{X}	\underline{V}	2	B(1,1)	B(2,2)	$\mathrm{B}(3,3)$	$\underline{B(1,2)}$	B(1,3)	B(2,3)
VB1	-0.25178(4)	-0.04093(3)	0.32917(3)	$0.08521(3)$	$0.00371(2)$	$0.00263(2)$	-0.0.0803(4)	$0.00898(4)$	-0.80258(3)
YB2	$0.18944(4)$	$0.19643(3)$	$0.87925(3)$	0.00488 (3)	$0.08294(2)$	$0.00258(2)$	-8.00269(4)	0.00049 (4)	-0.00158(3)
YB3	d.41087(5)	$0.54710(4)$	0.25849 (3)	$0.00617(4)$	$0.06342(2)$	$0.06277(2)$	-0.08306(4)	- $0.00144(4)$	- 0.00144 (3)
FE1	-0.0367(1)	$0.1041(1)$	$0.2381(1)$	0.08843 (1)	$0.00272(6$	8.80624816	-0.0017(1)	-8.00001(1)	-0.00146(9)
FE2	$0.0954(1)$	-8.0232(1)	$0.3838(1)$	$0.004711)$	0.08323(7	0.0028616	-8.0020(1)	-0.0010(1)	-8.00034(11)
FE3	-0.1645(1)	$0.2075(1)$	$0.141711)$	0.0.045(1)	0.0031618	0.0837417	-8.0809(1)	-0.0089(2)	-8.00039(12)
FE4	$0.3901(2)$	$0.6364(1)$	8.4992(1)	$0.8106(2)$	0.0031718	0.00848017	$0.0015(2)$	-0.0048(2)	-8.00277(11)
FE5	0.533813)	$0.5181(2)$	0.4868(2)	$8.8852(2)$	0.00235112	0.08288112	-0.0010(3)	-8.0808(3)	-0.00153(18)
01	-8.0523(9)	$0.1914(7)$	$0.3458(7)$	$7.7(3)$					
02	-0.0984(6)	-8.0417(5)	$0.3369(5)$	$3.812)$					
03	-8.2327(6)	$0.8789(5)$	$0.2525(5)$	$3.7(2)$					
04	0.0295 (6)	$0.2195(5)$	$0.1019(5)$	3.9(2)					
05	8.1649(6)	$0.1011(5)$	$0.1877(5)$	$3.7(2)$					
06	0.0794(11)	-0.1302(9)	$0.4604(8)$	$9.3(4)$					
07	$0.2857(11)$	-0.6247(8)	$0.3487(8)$	$9.1(4)$					
08	-0.3704(12)	$0.2611(9)$	$0.1744(9)$	10.6(5)					
09	-0.1757(18)	$0.1569(8)$	$0.8065(7)$	$8.0(3)$					
018	-0.1684(11)	$0.3771(9)$	$0.8783(9)$	9.9(4)					
011	0.1524(10)	-0.1448(8)	$0.2217(7)$	8.1(3)					
021	$0.3910(7)$	8.6.805 (6)	$0.3550(5)$	$4.8(2)$					
022	$0.5845(7)$	$0.4557(6)$	$0.3571(6)$	5.3(2)					
023	0.6923(28)	$0.5772(16)$	$0.4287(16)$	8.7(7)					
024	$0.5085(28)$	0.742.(23)	0.4602(22)	13.4(12)					
025	$0.7856(21)$	0.3122(17)	$0.3687(16)$	$9.1(8)$					
026	$0.2140(22)$	$0.7386(17)$	$0.4816(17)$	$9.7(8)$					
024P	d.3176(32)	$0.7778(26)$	0.3674(25)	15.5(14)					

	E.1548(8)	8.3033(8)	$4.5(3$
-0.0427(9)	-0.0826 (7	0.30671	3.31
-8.171.0(9)	0.11310	0.2240	3.41
-8.82791 9	$8.1891(7)$	0.	31
$827(9)$	$0.0748(7)$	$8.2244(7)$	3.4(3)
2	-	O.3995 (9)	$5.8(4)$
0.2100(13)	-8	$8.3254(18)$	6.6(4)
-0.2875115	12	$0.1616(12$	8.1(5)
-0.1723(13)	$0.1892(10)$	\pm	$6.1(4)$
-0.1685(13)	0.3885(11)	ஏ)	6.91
$0.1305(12)$	-	9	61
	-8.1572	0	4.8(3)
-8.1849(18)	-8.0856(8	$0.2189(8$	4.11
-8.28	($0.1971(8$	$($
-0.3319(12)	-0.1818(1)	0.2517(9)	5.71
- 0.26	66 (9	9	1
-0	11	0	. 81
-8	- $0.8578($	9)	2
-8	6.0258(11)	10)	$6.5(4)$
- 0	-0.09	8	. 81
-	-8.2457(12)	$8.3688(12)$	8.8
-8.3804(11)	41	3991(9	5.14
- $0.2885(12)$	0.6328(9	$8.4314(9)$. 31
-0.2528	-8.0483	8	.9(
-0.3198(11)	-0.0867 9	9	g(
0.3971(12)	- 8.0288 (9	. $4233(9)$.
- 0.4515 (18)	25	$8.3585(14)$	18.8
-8.2380(15)	0.182	0.4234(11)	7.91
-0.1643(17)	-8.0811(14)	$0.5192(13)$	9.3
-8.3116(16)	- $0.1719(13)$	0.5166(13)	8.91
-0.4965(16)	-0.0395(13)	8.4126(13)	8.91
0.1623(10)	0.0963 (8)	2.8174 (8)	4.31
8.2619	0.0694(8)	.8335\ 8	3.91

C203	0.3047(11)	$0.1272(\mathrm{~g})$	-8.0114(8)	$5.8(3)$
C204	$0.2314111)$	$0.1935(9)$	-0.0687(8)	4.8(3)
c285	$0.1458(18)$	$0.1758(8)$	-0.0432(8)	4.31 3)
C286.	0.8897(12)	8.8501(18)	$0.0488(9)$	$5.6(4)$
C287	$0.3138(13)$	-0.8146(11)	$8.8899(10)$	$6.7(4)$
c208	$0.4146(15)$	$0.1186(12)$	-8.0219(11)	$7.8(5)$
C289	$0.2488(14)$	$0.2616(11)$	- $0.1282(10)$	$6.9(5)$
C210	$0.0497(13)$	$0.2258(10)$	-8.0884(16)	6.41 4)
C211	$0.1559(14)$	$0.3214(11)$	9.1264(11)	$7.1(5)$
C212	$0.2174(13)$	$0.2612(18)$	0.1781(10)	6.21 4)
C213	$0.3842(13)$	$0.2437(11)$	$0.1412(10)$	$6.7(4)$
C214	$0.2877(14)$	$0.2966(11)$	$0.8672(11)$	$7.1(5)$
C215	$0.1945(14)$	9.3421(11)	$0.8634(10)$	$6.8(5)$
C216	$0.8511(33)$	$0.3587(27)$	0.1551(26)	21.1(17)
C217	$0.2811(21)$	¢.2229(17)	$0.2629(17)$	12.5 (9)
c218	$0.4817(38)$	g.1873(25)	$0.1738(23)$	19.3(14)
C219	$0.3839(28)$	$0.3838123)$	$0.0116(21)$	17.5(13)
C228	0.1536(28)	$0.4154(22)$	-8.0205(21)	17.8(13)
c301	$0.2985(15)$	0.4697(12)	$0.3311(11)$	$7.9(5)$
c382	0.3284(15)	$0.4375(12)$	0.2788(12)	$7.9(5)$
C383	$0.3838(15)$	$0.4845(12)$	$0.2893(12)$	$8.1(5)$
c304	0.2411(13)	$0.5634(11)$	$0.2146(18)$	$6.7(4)$
C385	$0.2351(14)$	$0.5468(12)$	$0.2957(11)$	7.6 (5)
C386	$0.2988(23)$	9.4348(18)	0.4257(18)	14.1(10)
C387	$0.3972(33)$	9.3492(27)	$0.2881(26)$	21.1(17)
c388	$0.3297(29)$	0.4454(23)	0.1485(22)	18.8(14)
c389	$0.1769(26)$	$0.6438(21)$	9.1617(28)	16.2(12)
c318	$0.1768(28)$	$0.6099(23)$	9.3373(21)	16.7(13)
c311	8.4542(16)	9.6711(13)	0.1615(12)	$8.7(6)$
C312	0.5225(14)	$0.6389(12)$	8.2891(11)	$7.4(5)$
C313	$0.5788(13)$	8.5583(11)	$8.2011(10)$	$6.5(4)$
C314	8.5350(13)	8.5521(10)	8.1447(10)	$6.1(4)$
c315	$0.4585(17)$	$0.6246(14)$	d.1221(13)	9.3(6)

6316	$0.3672(33)$	$0.7582(27)$	$0.1249(26)$	21.3(17)
C317	$0.5749(39)$	$0.6312(31)$	0.2757(31)	25.1(22)
C318	$0.6708(28)$	$0.4998(22)$	$8.2367(21)$	17.3(13)
C319	D.5652(21)	g.4821(17)	$0.1820(16)$	12.4(9)
C320	0.4059(26)	$0.6198(22)$	$0.0379(20)$	16.3(12)
C21	0.4186(12)	$0.5846(9)$	$8.4215(9)$	$5.4(4)$
C22	$0.5266(12)$	$0.4477(18)$	$0.4227(9)$	$5.8(4)$
C23	$0.6286(23)$	$0.5476(18)$	0.4504(18)	$5.4(7)$
C24	$0.4526(31)$	$0.7014(25)$	0.4798(24)	8.2(11)
C25	0.6768(21)	$0.3337(17)$	$0.4204(16)$	$4.6(7)$
C26	$0.2767(24)$	0.7884(19)	0.4439(18)	$5.6(8)$
C24P	d. 3558 (39)	$0.7147(32)$	0.4246(31)	11.4(15)
C25P	$0.5696(48)$.	$0.2814(38)$	8. $4356(36)$	$14.8(21)$
C26P	g. $7358(39$)	0.3803(32)	©.4516(30)	11.2(16)
HCP 1	-8.2468(8)	-9.1121(0)	0.2464 (8)	4.08808(8)
HCP 2	- $0.3277(8)$	-8.0173(8)	$0.4388(8)$	4.0880 (8)
HCP 3	$0.2212(8)$	$8.1323(8)$	- $0.0129(8)$	4.0800 (0)
HCP4	ø.2319(0)	0.2930(0)	0.1153(0)	$4.0000(0)$
HCP5	$0.2798(8)$	0.5004 (0)	$0.2659(8)$	$4.0000(0)$
HCP6	$0.5098(0)$	$0.6890(8)$	$8.1677(8)$	$4.0008(0)$

THE FORM OF THE ANISOTROPIC THERMAL PARAMETER IS:
$E X P[-(B(1,1) * H * H+B(2,2) * K * K+B(3,3) * L * L+B(1,2) * H * K+B(1,3) * H * L+B(2,3) * K *)]$.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: * Address correspondence to this author at Chemistry Department, University of California, Berkeley.

