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ABSTRACT OF THE THESIS

Game Theoretical Solutions

in Blackjack and Chess

via a Markov Decision Process Algorithmic Analysis

by

Livingston Arthur Albritten

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Frederic R. Paik Schoenberg, Chair

In this paper I will first describe the theoretical background of a certain kind of random

process, namely, Markov Processes, and subsequently, the potential for their application in

a game theoretic context. Consequently, these random processes can be used in a variety of

game theoretic contexts to construct solutions to games whose state space can be realized

as a discrete graph of nodes and the edges between them. Once the details of how Markov

Decision Process based strategies may be implemented to develop convergent solutions are

settled, this method will be tested by evaluating the performance of these solutions in Tic-

tac-toe, Blackjack and Chess.
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CHAPTER 1

Introduction

A principal component of the requirements of completion of the UCLA Graduate MAS

curriculum is the requirement that students perform statistical research on a data set which

demonstrates the application of statistics to the domain from which the data set is sourced.

In accordance with this requirement the work here aims to present the structure of the

data, algorithmic aims, statistical considerations, and experimental results of the application

of Markov Decision Processes to construct solutions to a variety of games: Tic-Tac-Toe,

Blackjack and Chess. In previous literature the Markov Decision Process framework has

been used to train elementary navigation systems, but the method here proposes a slight

adaptation of the original interpretation of the upper confidence bounds computed to inform

the MDP in order to develop mixed-strategy solutions to each game considered here rather

than deterministic solutions as yielded by the original online expert selection implementation.

The adaptation of the discrimination of win rate statistics considered in this work helps

motivate important code implementation considerations as well as the choice of the domain

of the parameter settings. In any case, the bulk limit of a number of winning rate statistics

should be collected/observed in order to form a memory which is used to generate the

Markov measure associated with the MDP. Notably, the experimental evolution of a given

game solution can be understood as a sequence of memory updates, corresponding to the

consolidation of novel game data as winning rate statistics in the memory, creating a new

pushforward Markov measure with each update.

The concept of a mixed-strategy equilibrium was introduced by John von Neumann

and Oskar Morgenstern in their 1944 book The Theory of Games and Economic Behavior,

with the analysis being restricted to zero-sum games, their work showed that a mixed-
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strategy equilibrium exists for any zero-sum game with a finite set of actions. Tic-tac-toe

and Blackjack are in fact zero sum games with finite set(s) of actions, however Chess is

differentiated as a zero sum game with an uncountable set of actions. The discussion and

experiments here hope to demonstrate the tractability of the development of automated

mixed-strategy solutions with the Markov Decision Process in the context of the three games,

tic-tac-toe, blackjack and chess.

In the evaluation of the performance of the strategies developed in this work’s experi-

ments, it is good to note that there are not any guarantees of optimality (at least over the

entire space of mixed-strategy solutions). The mixed-strategy solutions developed are local

optima, well characterized by the implementation enabled parameterization selected before

experimentation, but they are not necessarily global optima since the whole state space is

not explored in the convergence of a given solution. The results of the experiments show

that for each unique solution given by a unique parameter setting, the performance starts

out as average or sub-par and later when the MDP strategy is turned on (an intermedi-

ary/late phase of experimentation with a strictly positive, non-zero parameter value), the

performance creeps upward as new games are played and the strategy is gaining experience,

however at some point the performance plateaus as there are fewer and fewer novel expe-

riences for the algorithm to incorporate into the mixed-strategy solution. The size of this

upward move is influenced by the choice of parameter settings, and so there is a best choice

of parameter setting that yields the best local solution.

In the traditional consideration of Nash equilibria, a unilateral change is tested by an

researcher seeking to validate the optimality of the equilibrium as it is presented, but in

the context of this work any potential strategy changes are inspired by the arrival of new

information from novel game data which indicates that bulk limit of the winning rate of

a particular action may be higher than what the MDP memory statistics currently give

evidence for. In this case, the novel game data will yield an empirical win rate statistic

which is higher than the empirical win rate statistic recorded in the MDP memory and so

when the new data is added to the memory, the action will be selected more often than

before because the updated win rate was supplemented by the novel game data. The idea
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is that new data adds to underestimated winning rates and dampens overestimated winning

rates until the true bulk limit of each winning rate is discovered. Importantly, every winning

rate is a function of how frequently the action is chosen, so the parameter settings that are

responsible for determining this frequency are notably influential in the convergence of the

bulk limits of the winning rates. As a particular MDP solution is undergoing its evolution

from average/sub-par to locally optimal, it is because the mixed-strategy is being updated to

perform more rewarding moves, more often and because the games here are zero-sum games,

each novel win can hopefully provide important information on how rewarding a move can

be.

John Nash was able to build on Morgstern and von Neumann’s equilibrium result to find

that there exists an equilibrium to every game with a finite number of players and finite num-

ber of pure strategies by characterizing this solution as a Brouwer fixed point in the entire

space of mixed-strategies under a map that moves solutions closer to optimality functioning

on the utility gain of unilateral changes to the strategy, since known as a Nash equilibrium.

It is important to note that the map used in the actualization of the markov process to

construct solutions results in a Brouwer fixed point which is only a local optimum while the

traditional Nash equilibria are global optima under all candidate unilateral changes. In this

work, the locally optimal final solutions are found here by using an increasing sequence of

parameter settings to drive the observed win rates of each individual action to a bulk limit.

Different choices of the parameter settings will determine different bulk limits for the indi-

vidual actions, the sequence of allowable actions dictated by the graph underlying the game’s

allowable states (vertices) and actions (edges) determines how altering a mixed-strategy to

perform one action may also alter the bulk limit of the win rates of other actions that may be

performed subsequently within a single game. Still, the convergence conditions of the MDP

algorithm used in the experiments here that generates automated solutions is equivalent to

the existence of a Brouwer fixed point in the form of a mixed-strategy, represented by the

concentration of measure of the bulk limits of the winning rates of allowable actions.

Really, this describes how the strategy seeks to build a sub-graph from the graph underly-

ing a given game, with the incidence of an edge in the newly forming sub-graph corresponding
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to the bulk limit of the win rate of the game-action associated with that edge being larger

than a threshold determined by the bulk limits of all other edges sharing an out node with

the edge of interest. The domain choice of the parameter settings, which will be described

in detail more below, determine why it is that the convergence of the MDP mixed-strategy

solutions fails to explore the whole space of mixed solutions. There are multiple ways to map

the win rates of all allowable actions to a probability distribution over all allowable actions,

but a given choice of a parameter setting will only employ one of these maps. The map

that the MDP uses to construct probability distributions (Markov measures on the graph

underlying the game), or mixed-solutions, is a many-to-one mapping. The details of how

this computation is performed will be explained more in Chapter 2 and 3, but, if one set of

winning rates is any positive real multiple of another set of winning rates then those two sets

of winning rates will map to the same probability distribution. Or more specifically, if two

distinct sets of winning rates of the allowable actions are constant multiples of each other,

when partitioned into subsets of actions which share a common starting point, and this

multiple is determined by the common starting point (for any and every possible common

starting point, or stage of the game s ∈ V ) ∃ ds > 0 | w(01)
s,i = ds ∗ w(02)

s,i ∀ i ∈ AAs , s ∈ V

then these two sets of winning rates will map to the same Markov measure from which ac-

tions will be sampled to construct a mixed-strategy to a given game. Note that W (01) and

W (02) are distinct sets of winning rates (generated from two distinct sequences experiments)

on the same actions, all allowable actions i at every reachable stage s of the game.

W (01)
s = {w(01)

s,i1 , w
(01)
s,i2 , ...w

(01)
s,i|AAs|

}, W (02)
s = {w(02)

s,i1 , w
(02)
s,i2 , ...w

(02)
s,i|AAs|

} , ∀ i ∈ AAs , s ∈ V

AAs = {i1 , i2 , ...i|AAs|}

The MDP strategy is tractable because it actualizes a percolation process on the directed

graph underlying the game to build a sub-graph whose edges correspond to actions which

are included in the final mixed-strategy at the conclusion of the experiments. In a possibly

unfamiliar step, this percolation process has a variable edge inclusion probability which is

determined by the relative sizes of the winning rates of all allowable actions (all outgoing

edges from a given vertex, including the edge/action being considered as an addition to the
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percolated sub-graph) at a given stage (vertex) and the parameter settings as well as whether

or not it is reachable from vertices which have already been nabbed in a previous percolation

bubble (the determination of this variability is what makes the MDP map ’data dependent’).

As a ’variable edge inclusion probability percolation process’, the edge inclusion probability

is more of an edge specific indicator function on the characteristics of that given edge, like the

edges which it shares an outgoing vertex with, the reachability of the given edge from vertices

visited in old data, the parameter settings and also stochastically evolving characteristics like

the winning rates of the edges of interest, but in this format we can view each pushforward

MDP mixed-strategy/memory update as an empirical data dependent percolation process

recreating a new sub-graph with each memory update or parameter value update. A new

choice of parameter settings can yield a new percolated-sub graph, differentiated from the

old by a different variable edge inclusion probability but also a potentially different set

of winning rates and history of visited vertices if the experimenter wishes to change the

parameter settings and collect new data. However, this is not always necessary and a new

percolated sub-graph can be created with a new set of parameter settings by operating on any

aggregation of data previously collected by a number of different previous parameter settings

of MDP experiments (a hint toward the idea that after enough data has been collected,

particularly in the uniform sampling phase, this data-dependent variable edge inclusion

probability percolation process should have an expected behavior, somehow).

As long as this edge inclusion probability is low enough (given by large parameter settings

far away from 0) then the percolated sub-graph will be sufficiently small (compared to the

full graph) and this enables the practical tractability of our solution. The uniform sample

(all parameter setting = 0) that initializes the MDP memory serves as a memoryless BFS

(edge inclusion probability = 1 for all edges reachable from previously visited vertices) over

the graph underlying the game. This is an attempt to introduce the strategy memory to all

reachable stages of the game s ∈ V by performing (almost-all) of the allowable actions, or

traversing all edges in the graph associated with the given game ik ∈ AAs ⊂ E,∪s∈VAAs =

E. When the MDP is turned on and used to select actions/edges, the percolated sub-

graph can be characterized by one or more of its unique minimum spanning trees (when
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operational, the MDP parameter setting atMDP
→ ∞ will be sufficient to ensure that the

edge inclusion probability approaches a low value far from 1 but strictly greater than and

concurrently close to 0). The edges of the sub-graph are like a to-do list for testing if the

pushforward Markov measure has exhibited concentration of measure to a local equilibrium

and so the development of the percolated sub-graph serves as a canopy over characteristic

spanning trees which narrow the focus of the MDP to an important corner of the state space

of allowable probability distributions (mixed strategies).

However, if the approach is changed to try to cover the whole state space of probability

distributions over the graph then these future experiments will have a much longer run time

because there are no conditions by which to narrow the search, it must simply mix pure

strategies and all prior candidate mixed strategies together until it has an approximately

full sample of what is at best a discretization of the continuous state space of probability

distributions over all allowable actions.

If we wanted to explore the whole state space of mixed-strategies we would have to

choose a one-to-many mapping from winning rates to probability distributions or we could

simply enumerate the whole state space of probability distributions (mixed-strategies) as

described above, but this will require a lot more work with the code implementation and

data management and so it is easy to see that the brute force search of the entire state space

of mixed-strategies may not be sensible. The mapping from winning rates to mixed strategies

used by the MDP is an important piece of machinery because the instantiation of this map is

a convenient and quick way for the MDP to test candidate changes to the mixed strategies.

Since this map is a many-to-one function, it focuses the MDP’s attention on a small corner of

the entire space of mixed-strategies and so while the sequence of mixed-strategies produced

by alternating between collecting winning rates as the results of game experiments and

generating probability distributions as candidate solutions to future game experiments is not

at all equal to the continuous pushforward map under which Nash equilibria are Brouwer

fixed points, the MDP map hopes to accomplish a similar goal while also cutting down on

computation costs with a more data dependent approach to morphing candidate mixed-

strategies. After all, the experiments running the MDP strategies hope to produce a final
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probability distribution that is its own kind of Brower fixed point under the data dependent

MDP pushforward map described above, and also in more detail in Chapter 3.
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CHAPTER 2

Background

In order to satisfy the thesis requirement of the UCLA Statistics Graduate MAS program I

have conducted a research project which explores the application of probabilistic/statistical

measurement of Markov Decision Process’ to Blackjack and Chess. In particular, computer

generated Nash equilibria yield a very interesting class of decision/optimization problems to

be studied. Solutions to games whose state space can be realized as a graph G = {V,E}

(discrete mathematical structures defined by vertices or nodes and relations between them

or edges) are valuable representations of candidate solutions which may exist in the Pareto

frontiers of computer generated Nash equilibria of zero sum games.

The game theoretic formulation of both Blackjack and Chess with their respective ”state

spaces” given by the space of all allowable card combinations/board arrangements offers an

interesting platform on which powerful probabilistic/statistical analyses can be performed.

For example, consider that the rooks graph (the graph of all allowable rook moves on a

chess board) is isomorphic to the latin square graph. Inside each single rank and file of

the chess board, every square is reachable with the rook, so the cartesian product of the

K8 clique (or the complete graph on 8 vertices) with itself, is a concrete representation of

the rooks graph. Also, if any two vertices that share an edge in the resulting cartesian

product are forbidden to share a labeling chosen from a set of size/cardinality equal to 8,

then this graph representation can be matched to a set of appropriately labeled isomorphic

latin square graphs. The rooks graph is a subset of the total state space of the game of chess

and so the concrete algebraic representation of the rooks graph can help motivate a more

rigorous statistical analysis which partially explains this work’s affinity for the convenience

of being able to take disjoint unions over the set of same color pieces on a chess board or
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the sets of allowable actions with a hand value of 17: {hit}, {stay} in blackjack to produce

a candidate probability distribution representing a solution to the respective games, as well

as the theoretical abstraction it lends to the background discussion.

An unfortunate feature of the statement above is that the rooks graph is only a subset of

the total state space in chess (like the hand value 17 in blackjack), but still, this observation

lends itself to a natural partition of the state space. Importantly enough, the Markov

Decision Process formulation can also be interpreted as a form of what is known as the Multi

Armed Bandit problem in which a problem is partitioned into stages and the performance

of the algorithm is maximized by maximizing the utility of which arm is pulled at each

stage. Essentially, the MDP/MAB formulation takes advantage of the isomorphic mapping

from chess’ state space to markov chain’s underlying graph whose vertices derive their out

degree from the cardinality of the allowable moves associated with the board arrangement

matched to the given vertex. This framework is particularly convenient because every unique

allowable move is assigned to a corresponding unique directed edge in a graph whose vertices

correspond to the states of a given game and whose directed edges correspond to the allowable

actions pointing from the states where the actions are allowed and pointing to the states

that result from selecting the action/move.

Ultimately, the MDP/MAB formulation succeeds by observing that given an empirical

sample of a sequence of games, we can formulate a strategy by simply choosing the arm that

has the highest empirical reward given our sample. In the experiments here, these rewards

are winning rate statistics, more specifically these statistics are an element of [0, 1] of the

form
∑

nj
1k,winn

−1
j .

The simple closed form of this statistic lends itself to an interesting Martingale proba-

bilistic analysis that helps set the foundation for the convergence conditions of the Markov

Decision Process in previous literature and here. Once the bulk limit of the winning rate

statistics have converged, the expected performance of the MDP strategy is a Martingale.

The convergence of the Markov chain constructed for the MDP, combined with some thought

about making sure that this Markov chain can focus on the most rewarding actions are mo-

tivation for the theoretical background discussion that hopes to inform the experimental
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results. As,
∑

nj
1k,winn

−1
j < B = f(1, nj), a high probability bound can be placed on the

greedy maximal arm selection being ”optimal” in some sense. This high probability bound

allows us to calculate the divergence between our own empirical/greedy maximal arm selec-

tion and the optimal solution in the limit to infinity. Part of the cleverness of the solution is

that the instantiation of winning rate statistics as random variables in the high probability

inequality invoked makes the computation of divergence from optimality tractable in the

limit to infinity. It can be shown that the ratio of the distance between our algorithmic

solution and its optimal form and the number of games played by the algorithm approaches

zero. In other words, the more novel game data we allow our algorithm to collect, the more

it (via the provable convergence of a high probability inequality of interest) resembles it’s

own most optimal instantiation. Each implementation of the MDP strategy in the game

theoretic contexts of the experiments in tic-tac-toe, blackjack and chess corresponds to a

unique instance of an MDP solution, and under further consideration, there are different

evaluations of the high probability inequality that indicate the paramaterization of further

potential instantiative uniqueness. Because we have a way of thinking about how each in-

stance of a strategy (or selection policy) is unique, it is convenient to think of optimality as

being unique to each different instance of the MDP strategies developed in the experiments

(this locally optimal solution is best described as a pushforward invariant Markov measure).

2.1 Application of MDP Strategy in Game Theoretic Contexts

Note that the MDP/MAB formulation when applied to chess amounts to choosing first which

piece to move, and also, where to move this piece. And so, importantly, it incorporates a

similar graph isomorphism similar to the one inspired by the rook graph’s isomorphism to the

latin square graph. Whereas of course the total state space of chess enumerated is isomorphic

to the underlying graph of a unique markov chain, the rook’s graph subset of this state space

still provides an intersting perspective on the problem at hand. So long as a player has at

least one uncaptured rook, at each subsequent stage that player has the option to move

the uncaptured rook, and this is what makes the latin square graph isomorphism relevant
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to the MDP/MAB formulation. Interestingly enough, the latin square graph also arises

in experimental design, which may partially explain its relevance to the MDP algorithmic

design.

Typically, experimental design dictates which data is recorded, while algorithmic design

dictates the functional characteristics of operators of that data. In this example, the data

turn out to be the state space enumerated by the sequence of games played by the algorithm,

and the functional characteristics of operators of the data are best represented by the Markov

measure associated with a given MDP algorithm, and our ability to sample from this measure.

Importantly enough, these two objects have similarity, but their semantic definition prevents

them from truly being identical. Yes, the Markov measure is an artifact of algorithmic design,

and the enumeration of the state space is a vital representation of the relevant data for this

project (also known as unbiased, uniform experimental design), and yes a Markov measure

corresponding to a game theoretical mixed strategy is a representation of the enumeration

of a given game’s state space, but the full state space cannot be enumerated for the game of

Chess (this is not true for Tic-Tac-Toe and Blackjack which is why it is not a terrible idea

to start our algorithmic analysis here). This correspondence between algorithmic design and

experimental design and the parallel compatibility between the Markov measure and the

enumeration of the state space is good to keep in mind as it helps explain the importance

of the code that is responsible for querying the MDP algorithm: algorithmic operations on

previously collected data uniquely determine the aggregation of new data.

Two popular axioms from set theory establish the logical background of the development

of the Markov measure. The axiom of dependent choice informs our ability to sample from

the discrete distribution by comparing its values, and the axiom of choice informs the basis

of the existence of the discrete Markov measure attached to the union over edges of the

underlying graph of the game.

However, much of the action is well described by what is not happening. Or more directly,

the strength of the MDP algorithm lies in ability to construct a solution which places much of

the state space in its complement. The algorithm is guaranteed to make an acceptable move

at each stage of the game, making it a complete solution in some sense, but the final Markov
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measure’s algorithmic representation of the state space is actually small in comparison to

the state space in totality; once we enter the intermediary phase of experimentation, say

by increasing the parameter from 0 to 1, then the resulting probability distribution over

allowable actions is truly only supported by a subdivision of the whole space of allowable

actions.

In many cases, the non-decreasing parameter values associated with each successive phase

of experimentation should produce a sequence of mixed-strategy distributions whose entropy

is non-increasing. Let H(M̂
V

(N)
end

) be the entropy of the empirical measure assigned to every

reachable final stage of a given game after N games have been recorded in the memory. Then

for a sequence of entropies associated with a sequence of candidate mixed-strategies each the

result of successive, distinct phases of experimentation each with length nb, the entropies

should often be non-increasing (provided the initial uniform sampling phase is long enough).

Note that this is an empirical measure over all possible final states of the game, which can

be observed by keeping a histogram of the final state of each game recorded in the MDP

memory during experimentation.

AT = {at0 , at1 , at2 , at3 ...}

H(M̂
V

(Nt)
end

,at0
) ≥ H(M̂

V
(Nt+nb)

end
,at1

) ≥ H(M̂
V

(Nt+2nb)

end
,at2

) ≥ H(M̂
V

(Nt+3nb)

end
,at3

) ≥ ...

Ggame = {V,E}

Vend ⊂ V |AAv = ∅∀ v ∈ Vend

The reduction of entropy and resulting concentration of measure toward the actions with

high empirical winning rates is exciting; the strength of the MDP heuristic can be described

as its ability to transform what are initially ”average” solutions into approximately ”optimal”

solutions. What’s more, is that upon close inspection, we may investigate different loss

functions to quantify the strength of a given solution or even the strength of a process which

yields a sequence of solutions. No matter their analytic properties, these loss functions must

translate a given solution into a single scalar whose intensity is indicative of the solution’s

average behavior in some sense.
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Consider the simple classic loss function L(y, t) = c(y − t)2 or the vectorized version

L(y, t) = c(y− t)T (y− t) where y is a given solution and t is a target or aim. While we may

realize that there is no such thing as a truly final MDP solution, especially for games whose

state space cannot be enumerated in the span of any known lifetime, experimental perfor-

mance in the form of win/loss results from a sequence of games played by our MDP solution

can be used to compute an empirical average that is meant to approximate the expected value

of this loss function (in distribution) for the given solution. The computation/approximation

of this empirical average will be thought about more in the experimental plan section with

the discussion of E[L(y, t)]. As an aside, the empirical measure over all final states mentioned

in the consideration of entropy earlier is also sufficient data for approximating E[L(y, t)].

In practice, we may not even have a representation for t the target/aim or optimal

solution, but we do have a way of knowing when the MDP solution representation has stable

convergence to a final distribution, via the stable convergence of the bulk limit of action

winning rate statistics. So, in summary, while we may not be able to exactly instantiate the

classic loss function, we may be able to leverage the fact that we expect it to still be relevant

to the MDP formulation in some sense.

One may observe that a state space enumeration can be performed for the game of

blackjack, with the Markov chain’s underlying graph denoting the allowable moves/arm

choice associated with hitting or staying with a given card combination. The tractability of

the enumeration of the blackjack state space makes it a good diving board for our algorithmic

analysis, where the same analysis can be performed in deeper waters in the context of the

game of chess.

2.2 Experimental Plan

Keeping in this train of thought I will perform a rigorous statistical study of the MDP/MAB

algorithm first in Tic-Tac-Toe and Blackjack and then in Chess. This study will be composed

of writing Python code for the burn in phase/iterations of the state spaces of the respective

games. Given sufficient functional ability, this code will yield the empirical statistics needed
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for the MDP/MAB algorithm to demonstrate its convergence to the locally optimal solu-

tion(s). These empirical statistics, combined with the observed algorithmic performance of

MDP/MAB will allow us to confirm the validity of the theoretically proven efficiency of our

”close to optimal in high probability” solution for all of the games. I have chosen to begin

with Tic-Tac-Toe and Blackjack because these games can demonstrate the effectiveness of

the strategy in a one player setting. In Tac-Tac-Toe, the strategy’s effectiveness can be

shown to help the O-player overcome the disadvantage of always having to move second to

the X-player’s first move. How this effectiveness translates to the game of blackjack can

also be explored by allowing our strategy to play against the dealer in Blackjack, who has

a fixed strategy according to the rules of the game. In each of these cases, only one player

(in number and type) has access to the MDP memory (Player O in Tic-tac-toe and a single

player in Blackjack). For subsequent experiments in chess, both players may have access to

a single memory and train a sensible MDP strategy by recording the moves of both players

in the MDP memory.

In particular, different evaluations of the high probability inequality of interest correspond

to different convergence rates for the MDP/MAB algorithm. I would like to compare the

performance of a number of different evaluations of inequality to understand the observed

advantage of one algorithm over another. Given the theoretical foundations of the MDP

strategy formulation, as well as the Python implementation of MDP memory data structures

for Tic-Tac-Toe, Blackjack and Chess and the data sets accompanying each distinctly tuned

MDP strategy, the following analysis can focus on verifying the algorithmic performance of

the MDP strategy according to our expectations given the parameters.

In the experimentation I may not be able to exactly verify the accuracy of the conver-

gence of the algorithm to the optimal solution in the limit limn→∞ n−1DMDP,OPT (n) to show

that the performance exhibited by the MDP/MAB algorithm does match DMDP,OPT (n) as

formulated in the Probabilistic Design/Analysis of the algorithm. However, I can still seek

to gain a more qualitative understanding of the strength of the solution yielded by the MDP

algorithm by observing it’s most populated late stage strategies. When performing the game

experiments, the MDP algorithm needs a seed–a sequence of previously played games, the
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MDP’s seeded memory, and the results of it’s newly selected strategies combine to create a

newly formed memory which dictates the collection of new data which may be consolidated

into the memory in a future memory update.

Each time the MDP selects a move according to its seeded memory, which generates the

MDP distribution over edges of the game’s underlying graph, it updates the memory: a

collection of winning rates for every allowable action that has been used by the strategy in

a previous round of experimentation.

Wj,nj
=

∑nj

k=0 1j(k)=win

nj

→
∑nj+1

k=0 1j(k)=win

(nj + 1)
= Wj,nj+1

The variable 1j(k)=win is an indicator function conditioned on the outcome of the k-th time

action j is performed by the strategy being a win, which is crucial to the calculation of the

winning rate of a given action, after it has been performed a given number of times Wj,nj
.

Earlier it was noted that we can start the algorithm with a burn in phase which uniformly

samples the state space to generate a sequence of games. Later, we noted the importance of

the MDP’s ability to transform ”average” solutions into ”optimal” solutions, and this phe-

nomenon is put into practice immediately as the initial strategy of using a uniform sample to

select actions in games is almost exceptionally average, but still, with its affinity for the most

rewarding actions, the MDP is likely to turn the solution toward a locally optimal solution,

and away from disadvantageous solutions. The alternation between uniform sampling and

the MDP selection procedure can also extend beyond the first stage of experimentation if it

seems that the uniform sampling procedure can still supply novel game data to the MDP

memory.

When we start the algorithm with the uniform sampling procedure, the strategy is simply

looking at the board and choosing any allowable move with a probability relative to the

inverse of the cardinality of allowable moves associated to the given board state P̂(i) ∼
1

|AAs| ∀ i ∈ AAs |s ∈ V . For as long the MDP is being supplied with new uniform samples

(average solutions) it will be able to transform the game data into optimal solutions (so long

as they hold information content, i.e. we hope the uniformly sampled moves are winning

moves, and possibly even moves we have not considered before). When the experiments are
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focused on the game of chess, it may be useful to think more carefully about the transition

from the uniform sampling procedure to the MDP selection strategy. In the experimentation

with tic-tac-toe and blackjack, we can ”close out” the uniform sampling procedure, meaning

that at some point we do not have to update the memory with any moves chosen by the

uniform sampling procedure any longer. Once enough experiments have been run in tic-tac-

toe and blackjack, the memory ”covers” the whole state space, meaning that the memory

has an empirical score statistic for every possible board arrangement, or card combination.

Note that while support of the memory being a covering space of the whole state space of the

game is a very good goal (as it helps the memory be maximally, and uniformly informative

to the map which produces mixed-strategies in the form of Markov measures), especially for

finite action and state space games, the final MDP solution should still arrive at selection

policy that only employs a select few of the whole set of allowable actions.

However, in the experimentation associated with chess, the size of the total state space

of acceptable moves is too large for us to cover the whole space, which hints at the idea

that it may not ever be clearly advantageous to ”close out” the uniform sampling procedure

in the implementation of the MDP chess strategy. A 100% uniform sampling strategy is a

comfortable start, but how should the uniform sampling strategy and MDP selection strategy

be comingled to produce a happy medium in which the strategy can utilize the focus of the

MDP to yield more wins and also the exploration of new states provided by the uniform

sampling procedure?

Furthermore, the longer the algorithm runs, the more we expect it to resemble the optimal

instantiation of its parameters. Once the algorithm has gained enough experience, we can

sample from the Markov measure more and sample from the uniform distribution less. Note

that E[L(y, t)] ∼ V ar(y) + (E(y)− t)2. And here the relevance to the classical loss function

is observed, I will claim that resemblance to the optimal solution will yield a minority

contribution to the (E(y) − t)2 term. However, in some sense, our understanding of the

representation of t, the target solution, is dependent on the choice of parameterization, so it

will be important to think about the conditions of convergence under paramterization.

Since we observed that the uniform sample was somewhat crucial to the (partial) enu-
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meration of the state space necessary to kick start the MDP algorithm we set ourselves back

in preparation to take steps forward. The initial burn in phase, a supply of uniform samples,

is a reliable steady stream to V ar(y) = E[(y−E(y))2]. Being awakened to the MDP’s ability

to morph novel data from these average solutions into nearly optimal solutions, we can count

on observing an empirically decreasing (E(y)− t)2 term, and so the only thing left to do is

minimize V ar(y). We can accomplish this by making the uniform sample mixed-strategy a

smaller fraction of the chosen moves over time (the uniform distribution contributes a lot

to the loss as the equal use of every action available makes for a notably high variance over

the whole span of available empirical winning rates, however it is also the maximum entropy

distribution over actions). Currently the plan is to start with a 100% = 1
K
, K = 1 uniformly

sampled initial burn in phase with a transition to a 1
K
, K > 1 uniform sample paired with a

strategy which samples from a data dependent Markov measure with frequency K−1
K

, K > 1

. This plan can be updated to include a longer sequence of transitions where the uniform

sample is stepped down from 1/K0 to 1/Kα1
0 , 1/Kα2

0 , 1/Kα3
0 , ... until it is a negligible

proportion of the solution (where αi > αj ⇐⇒ i > j).

The (1/(Kq))∗U+(1−(1/(Kq)))∗MDP is an adequate description of every instance of the

strategies used in this project’s experiments. Where (1/(Kq))∗U is the 1/Kq fraction of the

strategy which is selected using a uniform sampling distribution and (1− (1/(Kq))) ∗MDP

is the (1− (1/(Kq))) fraction of the strategy which is selected using the Markov measure. In

particular, it is an effective way to paramaterize the loss function’s interaction between the

solution’s variability and its contradicting search for optimality via concentration of measure.

We can tune the rate of uniform sampling and MDP parameter settings to give the algorithm

the path of least resistance to the optimal MDP based solution and to manage the trade off

between deciding which term contributes to the cumulative loss, and when.

In particular, we are okay with the short term setbacks of a nearly maximal contribution

from V ar(ŷ) to the cumulative loss when we uniformly sample, observe the result and add to

the memory, with the understanding that future contributions to the cumulative loss from

(E(ŷ) − t)2 can always be made smaller with novel data, and also a particular range of

increasing parameter values. Experimentation is meant to capture as much novel data as
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possible about ŷ, potential empirical performance of the MDP. This also shares an important

connection to the consideration of entropy over final states and also an understanding of what

is meant by the ’most optimal’ instantiation the MDP for a given parameter.

The decreasing entropy over final states should also correlate with a decreasing V ar(ŷ).

The change from the initial uniform sample to the MDP Markov measure mixed strategy is

the first occurrence of decreasing V ar(ŷ) and the next occurrences are driven through their

correlation to the non-decreasing parameters and corresponding non-increasing sequence of

entropies of endgame measures.

The sequential reduction of entropy in the development of an MDP mixed-strategy is also

meant to coincide with a path of resemblance to a locally optimal solution. Of course, an

action’s selection frequency influences it’s winning rate, so there is no guarantee that the final

empirically highest winning rates are the true highest winning rates in a more general sense,

but we hope our initial uniform sample is big enough and unbiased enough to supply a good

deal of information about action winning rates. The idea behind our attempt to find a locally

optimal solution whose assigned measure on endgames yields a nearly minimal E[L(ŷ, t)], is

to populate the memory with information about these endgame strageties and use the MDP

parameterization to concentrate on lucrative endgame strategies which minimize (E(ŷ)− t)2.

The successively increasing parameters (integer powers of pushforward measures) should

induce a concentration of measure toward the actions with the highest winning rates, meaning

that these actions are a more consistent fixture of the strategy’s cumulative action set,

coinciding with the decreasing entropy and variance. If these actions are empirically valuable,

then the strategy will continue to improve it’s cumulative winning rate, or it has converged

to its most optimal instatiation and so its empirical performance is a valid approximation of

its expected performance. Later in Chapter 3 the concentration of measure induced by the

sequence of increasing parameters will be considered as a convergence to an invariant Markov

measure. Importantly, there is no guarantee Markov measure will produce a stationary

distribution, but the parameter dependent convergence conditions that drive the Markov

measure to exhibit Martingale behavior are in fact enough to consider the relevance of the

unique pushforward invariant Markov measure used for the MDP strategy.
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Note that each MDP strategy is naturally endowed with a probability measure on the

state space of a given game, and so this probability measure is what gives substantial mean-

ing to the strategy’s ”most populated” late stage strategies. In particular, the pushforward

invariant Markov measure associated with each MDP parameterizaton should have an asso-

ciated empirical stationary distribution on the leaves of the graph representing the late stage

state space of a given game. These leaves can also be referred to as endgames. (For the sake

of experimentation we can always construct an empirical stationary distribution by freezing

the parameter value for a sufficiently long block of experimentation and using the empirical

histogram over endgames)

In the case that the Markov measure satisfies enough regularity conditions to have a

stationary distribution on endgames, the ”most populated” late stage strategies are those

strategies yielded by the MDP in the board arrangements/card combinations where the

MDP has already been observed to prefer those arrangements over similar arrangements

(i.e. arrangements that share many of the same previous moves but diverge later in the

development of the game). In other words, the winning moves most often chosen by the

MDP algorithm should provide a sensible lens through which a qualitative understanding of

the tendencies of the strategies yielded by the rigorous MDP algorithmic analysis may be

gained. In the next chapter, the end of experimental analysis section and also the blackjack

strategy implementation in particular may help explain more how the most populated late

stage stategies and also the resulting histograms of final game actions and final game states

are relevant to the consideration of the approximation of E[L(y, t)].
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CHAPTER 3

Experimental Analysis

In this section I will review results of the experimental analysis process I have described in the

previous section. The experimental analysis will be composed of a sequence of evaluations

of the MDP strategy in a few games, Tic-tac-toe, Blackjack, and Chess. The experiments

rely on the implementation of the games and recording of the memory for the empirical

Markov measure samples given in response to queries to the relevant players for their move

selections. The background section has information on the theoretical underpinnings of the

Markov Decision Process strategy formulation as well as ideas about evaluating different

parameterizations of the MDP. This section provides more information about how the the-

oretical development of solutions are translated into experimental results.

A better understanding of how the MDP theory may be expressed to render automated

solutions may help give context to which parameters are relevant, and will be explored

in more detail in this section. For now, we can focus on the additive constant in the high

probability inequality of interest. Because we seek to minimize the probability that the move

we select is not far from the optimal move, at least in its reward (in the form of a winning

percentage) as a winning move, we can realize that the additive constant that accomplishes

this most effectively from the perspective of our high probability inequality, is the logarithm

of the number of times a move is chosen. This thought can be investigated further, we may

simply allow our desired error to be a polynomial function of the number of games played.

Importantly, for any given action, the additive constant is placed in the numerator of the

empirical winning rate, so our winning percentages take the form
(njWj,nj

+log(nj))

nj
. We should

hope to amass enough experiments to observe the sequence of logarithmic additive constants

become negligible (and consistently more so) (log(nj))

nj
→ 0, while the empirical winning rate
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Wj,nj
must stay between 0 and 1. At any rate, we are interested in studying the behavior of

the bulk limits of the empirical winning rates of each allowable action j in a given game:

lim
nj→∞

Wj,nj
∀ j ∈

⋃
s∈V

AAs

While there are other additive constant that can be considered with the MDP like square

root (nj)
1/2 and polynomial (nj)

k, we can be confident that the logarithmic additive constant

that falls out of the algebraic manipulation of our high probability inequality is the best im-

plementation of the additive constant parameterization of the MDP, it helps guarantee that

the MDP will most often choose the move that has the highest empirical reward. However,

more can be done with this understanding in the implementation stage, we can drop the

additive constant altogether. As a function of the number of times an action is chosen, the

logarithmic additive constant is the absolute slowest growing function we can choose, and

once we divide by the number of times the action is chosen to yield a winning percentage,

this becomes even more important. If we drop the additive constant altogether, it best

approximates the MDP implementation with the logarithmic additive constant. There are

many choices we could make to specify the additive constant in the implementation stage

of the project. But in truth, the constant is a function of one variable, the number of times

an action is chosen; the best additive constant is logarithmic, and the two slowest growing

closed form algebraic functions are the constant 0 function and the logarithm. Since the

constant 0 function is the best approximation to the logarithm in the limit to infinity, we

might as well drop the additive constant in our experimental implementation. We can choose

other additive constants, but they would be exact (or approximate) implementations of pa-

rameterizations of the MDP that are not as good as the logarithm (from the perspective of

the chosen high probability inequality concerned with the convergence in probability of the

maximum value winning rate(s) among actions associated with each stage of the game) and

so we proceed with our empirical winning rates.
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3.1 Experimental Evolution of Probability Distribution over Al-

lowable Moves

The exploration of the behavior of the winning rates and an understanding of how they

generate the probability distributions used by the automated MDP strategy to make se-

lections may also motivate a closer look at the measure theoretic implications of the MDP

selection procedure. In particular, the equation that references the memory update can be

investigated a bit further.

Wj,nj
=

∑nj

k=0 1j(k)=win

nj

→
∑nj+1

k=0 1j(k)=win

(nj + 1)
= Wj,nj+1

For any game with an accompanying sequence of experiments generated by the uniform

and/or MDP selection procedure, every allowable move that has been visited in a sequence

of previously observed experiments has a unique data set that generates its unique empirical

winning percentage Wj. Because these winning percentages take the form of a closed form

algebraic expression, we can think about the behavior of our algorithm through the lens of the

evolution of these unique empirical winning percentages. Since a non-trivial set of winning

percentages can generate an empirical probability distribution to sample allowable moves,

the update process described above shows how each memory update to the selected moves

creates a pushforward measure. Note that any given memory update always occurs after the

conclusion of one or more games, so each update augments more than one action’s empirical

winning percentage with the results of the most recent game(s) as novel data. In particular,

each memory update concurrently adds to the visit totals and win totals of more than one

allowable action. This is also why the uniform sample burn in stage of experimentation

helps drive the MDP selection policy to yield favorable convergence properties, a set of one

or more complete games and a ledger of all of the actions chosen to yield the results of those

games will always be candidate novel data to augment (necessarily) more than one allowable

action empirical winning percentage’s.

At any given stage of the game, the memory has winning percentages recorded for some
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subset of the allowable moves/actions currently available.

Rmem,s = {Wi ∀ i ∈ AAs | 1ni>0}

P̂s(i) ∼ Wi1ni>0 ∀ i ∈ AAs

Ggame = {V,E} , E =
⋃
s∈V

AAs

Where AAs is the set of allowable moves available and Rmem,s ⊂ AAs is the subset for

which the memory has winning percentages recorded (at stage s of the game). 1ni>0 is an

indicator function which ensures that a positive number of game data has been recorded in

the memory for a given move i, and the following ensures that the empirical distribution P̂

assigns measure 1 to the set of allowable moves at every reachable stage s.

∑
i∈Rmem,s

P̂s(i) =
∑

i∈Rmem,s

Mi,1 = 1 ∀ s ∈ V

With the introduction of the pushforward measure, it is important to note that the type of

measure we introduced actually belongs to a larger class of distributions. This set of interest

for this discussion is the set of non-negative integer powers of pushforward measures.

P̂
N

s = {P̂k
s ∀ k ≥ 0} P̂k

s ∼ (Wi1ni>0)
k ∀ i ∈ AAs , k ≥ 0

P̂
k
s(i) = Mi,k =

(Wi1ni>0)
k∑

j∈AAs
(Wj1nj>0)k

∀ i ∈ AAs , k ≥ 0

The specification of the pushforward measures on any given state/stage (board state or card

combination) s of a game is important because the MDP assigns measure to the allowable

actions at each stage rather than to the states themselves. When thinking about the MDP

strategy we should associate one measure, a probability distribution (or a set of probabilities)

to each stage, and we should associate a single probability to each allowable action/move.

This should help contribute to the understanding that the probability distribution generated

by the MDP strategy is a markov chain on the allowable actions of the game.

And so while we may want to think about the stationary distribution on the vertices of

the markov chain’s underlying graph, i.e. the stages of the game, we should remember to

save this thought for the conclusion of the experiment(s). Truthfully, this is a great way to
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observe how the increased parameter settings help drive a sequence of decreasing entropy

stationary distributions over the union over all final stages of a given game. While the

experiments are testing the performance of the MDP strategy, however, it is more important

to consider the collection of distributions formed by composing the operation of sampling

from the discrete distributions at each stage of the game to select each action (or move) in

sequence by comparing the empirical, data-dependent winning rate values associated to each

edge.

Figure 3.1: Graphical representation of markov chain with underlying graph associated to

opening stage of tic-tac-toe

When employing one of the members of the set of non negative integer powers of the

empirical distributions to construct a solution to a game in a sequence of experiments,

the choice of the power has an important effect on the evolution of the distribution over

edges that is associated to the markov chain’s underlying graph (note that choosing zero

as the power corresponds to a uniform sample). For values approaching infinity, the integer

power of the empirical distribution makes the selection procedure choose the maximum value

action (the largest empirical winning rate of the available allowable actions) with probability

approaching 1. It is certainly feasible for a strategy to select the most valuable available

action at every stage of the game (as is the goal in earlier MDP literature).
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However this strategy can yield a number of different results, depending on the initial

conditions. A good way to think about this with these experiments is that there are many

different almost everywhere non-decreasing sequences, and each of these would yield a differ-

ent final solution whose selection of the maximum value action available would be dependent

on an underlying distribution unique to the non-decreasing sequence (as long as the MDP

memory is translated into updated pushforward distributions with the arrival of new data).

The P̂∗ distribution mentioned below is meant to represent the limit of the distribution

arrived at by exponentiating the distribution with a power approaching infinity (the Kro-

necker delta distribution on the maximum value of the distribution δi,AA∗
s
where AA∗

s is the

maximum value action at stage s of a given game).

AT = {atj ; tj ∈ N |atm ≥ atn ⇐⇒ tm > tn}

lim
t→∞

P̂
at
s = P̂∗

s,AT
= δi,AA∗

s

The AT set above is a non-decreasing sequence, any of which are acceptable candidates to

be chosen as the set of parameters for a sequence of MDP experiments. Each single element

of the non-decreasing set in order is a parameter for a single phase of a block of planned

experiments. At a given phase, the corresponding parameter is the exponent applied to the

winning rates to generate the markov measure (or probability distribution) which represents

a mixed-strategy (P̂at
s ), and so importantly, when the experiment moves from one phase

to another, the increased parameter selected from the non-decreasing sequence is meant to

generate a new mixed-strategy which favors the most lucrative winning rate actions more

than that of the previous phase of experimentation.

While we may not ever carry out an experiment with all of the non-decreasing sequences

described above, our experiments will follow the path of a non-decreasing sequence that starts

at 0 and increases until it holds its position at a finite value. The convergence properties

of the non-decreasing sequence chosen influences the kind of convergence exhibited by the

probability distribution P̂s and also P̂∗
s = δi,AA∗

s
.

It is important that we are aiming to generate a probability distribution because this

means that the best way to characterize the kind of convergence exhibited by the probability
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distribution is convergence in distribution of the selection policy over allowable actions.

lim
n→∞

Fn(x) = F (x), lim
n→∞

E[g(P̂s,(n))] = E[g(P̂s)], g ∈ BC0

BC0 = {W ⊂ C0 |g ∈ W ⇐⇒ |g(x)| < G < ∞}

Where Fn is the CDF of the random variable in and F is the CDF of the random variable

with support x ∈ [0, 1] (the PDF of i is the final mixed-solution assigned Markov measure M ,

F (x) =
∫
f =

∑
i:Wi<xMi) and C0 is the class of all continuous functions. In the analysis of

the strategies here, the random variable in represents the strategy’s allowable action selection

after its n-th memory update and i is that of the final Markov measure (at a given stage of

a game i, in ∈ AAs). The logarithmic additive constant that we dropped above is relevant if

one is primarily concerned with convergence in probability, but since the construction of the

MDP memory stratifies the empirical winning percentages by allowable actions associated

to a vertex matching a board state or card combination, our analysis is concerned with the

convergence in distribution whose domain mapping covers a set of values rather than the

convergence in probability, shown below, that tests the value of one statistic (the maximum

value action).

lim
n→∞

P(|ŴAA∗
s ,n −WAA∗

s
| > ϵ) = 0 ∀ ϵ > 0

This is a crucial adaptation of the interpretation of the high probability inequality of interest.

By considering the convergence in distribution rather than the convergence in probability, we

are able to examine a wider variety of solutions. Now, the instantiative uniqueness of each

solution rests on the characterization of an integer power of a distribution of values corre-

sponding to a solution in the form of a probability distribution, rather than the sequences of

maximum values of the relevant sets of statistics that correspond to a singular deterministic

solution (represented by a finite number of singletons associated to the maximum value ac-

tions). Conveniently, the deterministic solutions represented by singletons are well described

by the empirical distributions with integer powers approaching infinity, meaning they can

also be evaluated as probability distributions with the tools of convergence in distribution

described above.
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As an aside, I think the view that deterministic solutions represented as singletons can

also be approximated by empirical distributions of winning rates with integer powers ap-

proaching infinity is an important one; the original analysis seeks to characterize the behavior

of individual winning rate statistics as the convergence in probability of random variables,

and so this is why the high probability inequality of interest includes an additive constant to

the winning rates to help account for the fact that less frequently chosen actions are less well

informative to the strategy, and so they may actually be more lucrative than the strategy

would have currently expected. However, the novelty of the adaptation of the analysis here

is important as well; recognition of the view that we can approximate the greedy selection

heuristic of always choosing the maximum value allowable action represented by singletons

with very high integer powers of winning rate distributions over allowable actions also sup-

ports the shift in the analysis to characterize the behavior of the automated mixed-strategy

at any given stage of a game, now treating the automated strategy’s choice of action as the

random variable of interest, and studying the convergence in distribution of this random

variable.

We may still explore how unilateral changes in the direction of the most lucrative actions

alters our expectation of a win while employing the strategy, but now we are considering

more gradual changes to probability distributions (or mixed-strategies), rather than simply

trying to collect enough information to decide which pure strategy is the best.

It is good to note the characteristics of the powers of the distributions to understand

the spectrum of behavior that may be observed when using these distributions to construct

strategies. An important feature of considering this class of distributions is that we can

describe how increasing the power changes the distribution.

P̂k
s(i) = Mi,k =

(Wi1ni>0)
k∑

j∈AAs
(Wj1nj>0)k

∀ i ∈ AAs

Mi1,lj

Mi2,lj

=
(Wi11ni1

>0)
lj

(Wi21ni2
>0)lj

>
(Wi11ni1

>0)
lk

(Wi21ni2
>0)lk

=
Mi1,lk

Mi2,lk

⇐⇒ lj > lk, Mi1,1 > Mi2,1

The equations above demonstrate that increasing the powers of the distribution is order

preserving. If (Wi11ni1
>0)

lj > (Wi21ni2
>0)

lk then when we sample from P̂
lk
s to select an action
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at stage s, we will select move i1 more frequently than we select i2. Additionally, when we

increase the exponent from lk to lj, we increase the ratio corresponding to the frequency of

choosing i1 over i2. The change in this ratio is described by the given relation of the ratio

of assigned measure for moves i1 and i2 when taken to powers lj > lk.

Mi1,lj

Mi2,lj

=
(Wi11ni1

>0)
lj

(Wi21ni2
>0)lj

=
(Wi11ni1>0

)lk

(Wi2)1ni2
>0)lk

·
(Wi11ni1

>0)
lj−lk

(Wi21ni2
>0)lj−lk

The indication that increasing the power is order preserving is important because we can

uniquely characterize the probability distributions by their level sets. We know that if two

actions at a given stage sn have equivalent winning percentages, then a sample from P̂ will

always choose these actions equally often, no matter what integer power of the distribution

(of values) we choose. When we increase the power of the distribution, we assign more mass

to the higher values. The exact functional characteristics of the change induced by raising

the power of the distribution depends on the distribution of values, but the inequalities listed

here show how the ordering of the magnitude of values is preserved by this operation (at

least for non-negative powers) and how the largest powers assigning more mass to the higher

values converges to a distribution that always selects the maximum value action available

(because the largest winning rate(s) become larger in measure in proportion to the rest of

the winning rates as the integer power of the distribution increases).

Now that we have a description of the kinds of distributions we will use in the experi-

ments and also their measure theoretic implications as pushforward measures, exploring the

relevance of invariant measures seems to be a good idea as well. I have previously mentioned

that the stationary distribution of a game’s underlying graph is an important lens for char-

acterizing the results of experiments which aim to perform random walks over these graphs,

particularly toward the end of the experiments. With the introduction of the relevance of

pushforward measures to the theoretical treatment here, the memory update’s effect on the

empirical distributions has an important interpretation. The memory update creates a new

pushforward measure, using the previous empirical distribution combined with new data,

and this pushforward measure appreciably changes the empirical distribution. However, the
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conclusion of the experiment (ideally) can be best understood as the stage at which the

new empirical pushforward measure is not different from the previous empirical distribution.

Someone who is measure theoretically inclined will tell you that this distribution is known

as an invariant measure, because it is invariant under the pushforward memory update.

Once the invariant pushforward measure is found, it is because the calculation (and gen-

eration) of the bulk limits of the winning rates of all allowable actions have converged to

a stable empirical average through the aggregation of data in the MDP memory by the

previous sequence of candidate mixed-strategies that generated the novel game data that

was incorporated into the final pushforward invariant mixed-strategy. With the change of

perspective by considering a wider set of mixed-strategies (probability distributions) versus

simply considering the handful of strategies that may be yielded by implementing a deter-

ministic hard cut off of the maximum winning rates we are able retain the focus afforded

by restricting the strategy’s attention to maximally rewarding actions, while also using that

same focus to point the strategy exploration in the direction of a probability distribution,

rather than a sequence of deterministic decisions. Under these heuristics, the algorithm is

focused on a select few of the maximally valuable allowable actions, so as long as these

empirical statistics are reliable/stable, our strategy seeks greedy improvement by consider-

ing empirical unilateral changes to mixed-strategies over these select few allowable actions.

When the parameter settings are at 0 in the initialization phase and also still relatively small

in the early to intermediary stages of the experiments, the hope is that these high entropy

associated parameter settings will generate a stable and diverse foundation of winning rates

to generate a candidate probability distribution which is a strong solution to its native game

when a low entropy aiming, higher winning rate focused parameter setting is applied to yield

a final invariant pushforward measure.

In short, we don’t want the algorithm to start focusing on the corner of the state space

under the canopy of the percolated sub-graph of the highest empirical winning rate edges of

the game until we are sure that the winning rate statistics that generate the percolated sub-

graph are actually reliable. The goal is that in the beginning we want to stay approximately

close to the uniform sample in order to make sure that we capture any kind of behavior that
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may be potentially demonstrated by any and all candidate mixed-strategies. As long as the

sample of game data recorded in the memory in this initial phase is appreciable in size in

comparison to the state space of the game, then the higher value allowable actions will have

yielded evidence for this with their winning rate statistics and so the focus of the MDP which

builds a strategy on top of a percolated sub-graph will be useful and well informed. After

all, once the MDP parameter settings are stepped up high enough, the strategy will restrict

its attention to a small percentage of the allowable actions, and so we want to be sure that

these are actually high value winning rate allowable actions. The decrease in entropy of the

mixed-strategy as a result of the higher parameter settings is an important mathematical

description of the focus sought out by this strategy formulation. However, an updated,

lower entropy, more aggressively win rate focused mixed-strategy should also result in better

empirical performance, especially when measured in overall winning percentage. If not, it is

possible, that we turned our parameter settings up too quickly and so our strategy began to

perform low value actions more frequently because it mistook them for high value actions by

cutting its initial phase of experimentation too short and not collecting enough information.

The initial phase of experimentation with the parameter settings at 0 or small values close

to 0 should be sufficiently long enough so that when the strategy parameter settings are

stepped up to amplify the selection frequency of the highest value actions the updated

memory/mixed-strategy has an increased expectation of a win, improving the cumulative

empirical winning percentage of the strategy.

Since all of the games considered in this project are zero sum games, and because we

seek to maximize the expectation of a win for the MDP strategy, the endgame scenarios

penultimate to the conclusion of a game are crucially important pieces of the game data. As

long as the strategy memory is robust enough to populate all of the endgame scenarios (the

leaves of the graph), penultimate to the union over all final stages of the game then there

is always a chance that the MDP strategy can move one of these penultimate stages more

frequently than before (if it is deemed necessary). However, if the initial phase of experi-

mentation is not robust enough to include all of these endgames, then there is no guarantee

that the algorithm will be open to the consideration of all of the potential penultimate state
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strategies that may improve its performance.

This is a good part of the motivation for the initial phase of experimentation being

sufficiently long in the context of its particular game implementation. Some sufficiently

large number of game experiments is enough to ensure that enough data is collected in the

initial phase of experimentation so that at the very least the MDP has memory for every

penultimate stage strategy whose selection frequency may be bumped up in the consideration

of a change of penultimate stage strategy and so the newfound affinity for lucrative actions

in the final phase of experimentation with the higher parameter settings is actually well

informed by winning rate statistics on any and all of the veritable candidate penultimate stage

mixed-strategies that may trickle down to the opening and intermediary stage strategies.

However, if for some reason the final phase of experimentation fails to yield a stable

convergence upward toward better performance, this is when it may be advantageous to

keep running the initial phase to collect a bigger memory that has more reliable information

on the canopy (sub-graph of most valuable actions and states in a given game) under which

the MDP may select strategies, or this may be in a context like Chess where there is an

uncountable space of allowable actions and so in theory, the first phase of experimentation

never ends, and runs behind the MDP strategy in parallel, always providing novel game

data that can hopefully provide new information on candidate unilateral penultimate stage

strategy changes (and the actions which are close neighbors in the intermediate and opening

stages).

When a penultimate stage action is updated to be performed more frequently because

novel game data shows it to have a high empirical winning rate, the opening and interme-

diate stages of from which that penultimate stage is reachable can be improved in future

experiments simply by selecting those opening and intermediate stage actions and then se-

lecting the newly updated penultimate stage action. Of course, this is never explicitly sought

out by the algorithm since it is a random process, but once a penultimate stage strategy is

updated as an action with a high empirical winning rate, future experiments whose random

walks pass through the opening and intermediate stages from which the penultimate action is

reachable are more likely than before to make their way to the recently updated penultimate
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action, with its increased winning rate.

In practice, once the final phase of experimentation (highest parameter value) is reached

the evolution of the algorithm is reminiscent of stochastic gradient descent, updating the

winning rates of the most lucrative actions in order of their estimated winning potential

and also adding these positive results to the winning rates of the actions penultimate to the

final result of a win or loss all the way back to the most lucrative opening and intermediate

stage actions from which the lucrative final stage game actions were reached by the strategy

employing a Markov random walk obeying the rules of the game (with the hope that increases

in the frequency of any particularly valuable action choice results in an increase in the

expectation of a win). The algorithm has converged once the empirical winning rates of all

opening, intermediate and final stage actions have arrived at a stable bulk limit after being

updated to incorporate all of the novel game data that may be collected.

Note that since the frequency of a given action choice can also influence the winning rate

of that action choice, we hope to increase the frequency of the most lucrative action choices,

but we must also hope that this increase in frequency also results in a material increase in the

expectation of a win. The action choice frequencies can be increased either by increasing the

power of the distribution used as the Markov measure candidate mixed-strategy or by a novel

material increase in the bulk limit of the winning rate of the given action. The final phase

of experimentation most likely favors the former with the high parameter value serving to

create a Markov measure assigning nearly all of its mass to a select few most valuable actions

(on the other hand, it is the hope that the winning rates arrive at stable bulk limits with the

initial and intermediary phases of experimentation). Although the winning rates do undergo

a different mode of evolution in the later phases of experimentation, these changes are

most often caused by the increased parameter settings producing sequentially lower entropy

candidate mixed-strategies whose concentration of measure (in selection frequency) toward

the most valuable actions resulting in a material increase in the winning rates of the opening

and intermediary stage winning rates from which the lucrative endgames are reachable. As

the evolution of the MDP mixed-strategy exhibits its concentration of measure toward the

actions which have yielded stable bulk limits of the most lucrative winning rates, this is when
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an experimenter may hope to give some thought to the confirmation of a material increase

in the expectation of a win for the strategy in the context of E[L(y, t)].

Interestingly, all sequences of actions corresponding to game data may be considered

novel when 1: the sequence has not been observed before and 2: the actions in the sequence

have not been performed by the particular mixed-strategy that selected the action(s). And

so by definition, the final pushforward invariant mixed-strategy is in one-to-one correspon-

dence with a set of statistics corresponding to a stable converged set of bulk limits of the

winning rates of allowable actions. This is an important characterization of the status of

convergence of the algorithm. A converged mixed-strategy cannot yield novel game data

and the bulk limit of winning rates cannot be reached until all novel game data has been

collected. Thus, there is an important relationship between the collection of novel game

data and the construction of the Markov measures that are used to select actions in novel

game data which yields the bulk limit of the winning rates of all allowable actions and the

corresponding final converged mixed-strategy yielded by the algorithm. Also, the arrival of

novel game data is strong evidence that the Markov measure mixed-solution will not yet

exhibit Martingale behavior, for example when trying to approximate E[L(ŷ, t)] > 0.

As a relation concerning increasing events in a random process the Fortuin Kasteleyn

Ginibre (fkg) inequality helps explain the relevance of the indicator function to the construc-

tion of the pushforward measures. A consequence of the fkg inequality is that if X and Y

are increasing events in the actualization of a random process, then P(X∩Y ) ≥ P(X)P(Y ).

For example, if we take X to be the event that Wj,nj
< Wj,2nj

and Y to be the event that the

cumulative winning percentage given by the empirical distribution on endgames increases by

at most 0.01 points over N ∼ (2nj)
5 games played with the MDP strategy, then an inter-

pretation of the fkg inequality supports the idea that over the the course of the N ∼ (2nj)
5

experiments, conditioning on the sub-sequence of nj memory updates that increase the win-

ning percentage of a given allowable action j, increases the expectation of the event of a

win.

If the Markov chain is friendly enough to yield a stationary distribution after a sufficient

sequence of experiments performing a random walk along the edges of the underlying graph,
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then a pushforward memory update from an MDP strategy which uses the probability dis-

tribution over edges to perform a random walk generating a new sequence of games to be

consolidated into the memory will yield an invariant measure. Actually, the pushforward

memory update may go through phases of experimentation that yield a stationary distri-

bution on endgames, and this is not dependent on the regularity of the underlying markov

chain. Anecdotally, this is primarily because the late stage parts of the underlying graph,

leaves or endgames, may be populated enough by the random walk generated by the MDP

strategy to yield a stationary distribution on endgames. However, once the final phase of

experimentation is reached, the spanning forest graph given by the endgames should help

coax the pushforward memory update into yielding a stable invariant measure. As the last

move of a game always determines the outcome as a win or loss, this helps explain why the

endgames are most relevant to the approximation of E[L(y, t)], and also the convergence

to an invariant measure. So, sometimes the markov chain’s stationary distribution over all

vertices is relevant to the invariant measure, but it is better to primarily think about the

pushforward memory updates effect on the leaves of the graph that are penultimate to the

final results and potential convergence to an invariant measure.

3.2 Tic-Tac-Toe MDP Strategy Implementation

The tic-tac-toe experiments were composed of an initial 100K game burn in followed by

another 1M games with O using the MDP strategy selection. This MDP strategy selection

selects the maximum winning rate move twice as often as it selects a move sampled from

the Markov measure of winning rates of available moves (2:1). In the first 100K games, the

uniform sampling only yields a 28% winning rate for O, while that rate is raised to 91.2%

for the final 1M games to yield a cumulative winning rate of 85.5% for the whole 1.1M

games. While the experiment was one sided, in the sense that X was not using the MDP

strategy and continues using the uniform sample strategy, the 93.1% winning rate in the 1M

games at the very least shows that the MDP strategy is capable of performing well, possibly

even converging to or approximating optimal solutions against an innocuous strategy like a
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uniform sample.

AT = {0, 1, 1010}

P̂M0,s ∼ P̂
at0
s , P̂M1,s ∼ (1/3)P̂at1

s + (2/3)P̂∗
s,A∞

T

Figure 3.2: Terminal output from Tic-tac-toe experiments

3.3 Blackjack MDP Strategy Implementation

There were two blackjack experiments. Both use the same sequence of non-negative integer

powers of Markov measures, with the second experiment testing the final instance of the

MDP solution longer than its counterpart in the first experiment. The first was composed

of an initial burn in of 100K games followed by another 200K games with the game’s single

player using the MDP selection strategy (80:1), followed by 100K games with the single

player using the MDP strategy (25:1) and a final 600K games with the singular player using

the MDP selection strategy (7:1). The second was composed of an initial burn in of 100K

games followed by another 200K games with the game’s single player using the MDP selection

strategy (80:1), followed by 1.2M games with the single player using the MDP strategy (25:1)

and a final 8.3M games with the singular player using the MDP selection strategy (7:1). The

ratio’s following the strategy indicate that the strategy selects a move sampled from the

Markov measure generated using winning rates of available moves 80 times more often as it

selects the maximum winning rate move in the first 200K following burn in (for example).

In experiment 1, in the first 100K games, the blackjack strategy yields a 35.9% winning

rate, while in the middle 200K, the winning rate improves to 47.2%, and in the final 700K

the winning rate settles to 46.9% to yield a cumulative winning rate of 45.9%. Below is
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a description of the sequence of non-negative integer powers used to generate the Markov

measures as well as closed form representations of the Markov measures that are sampled

by the instances of the MDP strategies tested in the experiments.

AT = {0, 13, 1010}

P̂M0,s ∼ P̂s
at0 , P̂M1,s ∼ (80/81)P̂at1

s + (1/81)P̂∗
s,A∞

T

P̂M2,s ∼ (25/26)P̂at1
s + (1/26)P̂∗

s,A∞
T
, P̂M3,s ∼ (7/8)P̂at1

s + (1/8)P̂∗
s,A∞

T

In experiment 2, in the first 100K games, the blackjack strategy yields a 35.4% winning

rate, while in the middle 200K, the winning rate improves to 47.1%, and in the final 9.5M

the winning rate holds at 47.1% to yield a cumulative winning rate of 45.9%.

The winning rates yielded by the two experiments do provide some good information

about the convergence of the MDP solution in the context of blackjack. The winning rate over

the final 700K and final 9.5M games of experiment 1 and 2 respectively are comparable, both

within 0.1% of 47.0%. The final winning rates of show that the quality of the convergence

is attractive enough to consider the relevance of the invariant measure. We may not be able

to guarantee that the final MDP solution is optimal, but at least we can confirm that the

convergence in the final 9M games is consistent enough to yield a solution whose convergence

to an invariant measure can be confirmed over a sufficiently lengthy sequence of games.

Figure 3.3 provides information on the relative frequency of winning actions chosen by

the MDP strategy in the blackjack experiments. The card combinations with hand values

of 20 or 21 are the most lucrative, as the actions that correspond to staying on these values

are responsible for > 40% of the algorithm’s wins. Additionally, 88% of the algorithm’s

wins are captured by 15% of the winning moves available to the strategy and > 98% of

the algorithm’s wins are captured by 70% of the winning moves available to the strategy.

The top heavy distribution of the algorithm’s selection of winning moves helps explain the

importance of raising the empirical distribution to an integer power, by increasing the odds

of selecting the higher winning rate moves, we are able to drive our algorithm to convergence

toward a distribution which favors the most lucrative actions.
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Figures 3.4 and 3.5 give summaries of the blackjack experiments that test the MDP

strategy in two different blackjack settings (the winning percentages reported above refer

to the first setting). In the first setting, the payout for a natural blackjack is 150% of the

player’s original bet, while in the second setting the payout for a natural blackjack is 200% of

the player’s original bet. A natural blackjack is any hand where the first two cards result in a

hand value of 21 with one card being an ace and the other having a value of 10. Importantly,

the increased payout in the second setting is enough to boost the cumulative value of the

MDP strategy’s total winnings above that of the dealer.

Figures 3.6 and 3.7 give some information on the statistics and strategic rules that the

MDP strategy and Thorpe’s Beat The Dealer card counting strategy follow. In Figure 3.6,

Thorpe’s card counting strategy keeps track of the ratio of others/tens in the deck to make

decisions dependent on the number of tens in the deck. The black squares indicate that the

strategy will split the pair, the white squares indicate that the strategy will not split the

pair and the squares with numbers give thresholds on the others/tens ratio for acceptable

when to split the pair. Since the MDP strategy does not consider the dealer’s face up card

or the composition of cards in the deck, it is best to consider the polarity of the histograms

in Figure 3.7 for different hands in the MDP strategy. When the polarity of the histogram

favors splitting the pair, we know that the 10th power of the distribution will split the pair

fairly often; these are the pairs that we should expect Thorpe’s strategy to implement hard

splits on for most of the dealer’s prospective face up cards (the {07, 07} pair, or the {08,

08} pair). Conversely, if the histogram favors hitting or staying on the pair, we know that

the 13th power of the distribution will favor selecting one of these actions rather than the

split, and we should expect Thorpe’s strategy to avoid advocating for a hard split on any of

the dealer’s prospective face up cards (the {04, 04} pair, the {05, 05} pair or the {JK, JK}

pair).

Notably, the comparison between the MDP strategy evaluated here and the others/tens

strategy considered by Thorpe should be given a disclaimer: it should be very hard to

quantify the true distance between the strategies, for there may not be a space that effectively

houses them both. In the games considered in Thorpe’s book, players are allowed to look
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at the dealer’s face up card, and the use of the others/tens ratio means that the deck is

not shuffled after every game. In the experiments here, however, neither are the case, the

player only considers his own hand when evaluating his strategy selection, and the deck

is shuffled after every game > 70 − 80% of the time, so the players in Thorpe’s book are

supplied with more information than the automated MDP players in my own blackjack

experiments. Of course, the goal is that everyone is able to maximize the utility of all of the

information available to them, and so we must consider that players in Thorpe’s book and

the automated MDP players are motivated by different interests, but I only meant to say

that despite their differences of manifest variability, there are situations, like the hand values

considered above, where the quantitative features of the MDP strategy can be interpreted as

qualitative direction, or attitude that may be approximately mirrored by players in Thorpe’s

book.

Figure 3.8 is an image of a jupyter environment cell implementing the functionality to

perform blackjack experiments in Python code. Fortunately, because the code handles the

player’s strategy queries first (according to the rules of blackjack) if a multi player version

of the experiment was implemented, each player could be assigned an order and queried

in succession before the dealer is queried for his strategy selection. For the sake of this

experiment, the games only involve the dealer and one player. But if players were to be

added in future experiments it could be done in a fashion described above. It should be

noted that if our one player experiment is capable of approximating an optimal solution (or

even simply converging to a comprehensible solution), then the multi player experiments

with each player employing the MDP strategy should yield a similar set of solutions for

every player in the multi player setting. After all, the dealer’s hand is the only other hand

considered when evaluating a player’s performance as a win or a loss.

The (card combination, action) pairs referenced in the terminal output give information

on the size of the memory after each phase of experimentation. When the MDP strategy is

queried at each stage of a game in blackjack, it takes the card combination and pairs it with

each allowable action associated to the hand value. The MDP memory’s recorded winning

percentages for each allowable action that can be attached to a given card combination to
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form a (card combination, allowable action) pair are the values used to generate the Markov

measure that the MDP samples to select actions.

Figure 3.3: Histograms of the top 10 most populated winning moves, the top 15% most

populated winning moves after 1M blackjack experiments, and the full distribution of winning

moves played by the MDP strategy (each move corresponds to a {card combination, allowable

action} pair)
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Figure 3.4: Terminal output from first 1.0M Blackjack experiments

Figure 3.5: Terminal output from 9.8M Blackjack experiments

Figure 3.6: Table representing strategy described in Thorpe’s Beat the Dealer
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Figure 3.7: Histograms of the empirical distribution over allowable actions in blackjack for

various pairs of cards. Note that each histogram entry corresponds to a (card combination,

allowable action) pair winning percentage Wcc,aa

3.4 Chess MDP Strategy Implementation

The implementation of the MDP Strategy in Chess again requires code functionality that

provides the ability to sample the allowable moves. Additionally, the chess implementation

was assembled with code functionality that allows for connections to a SQL database. There

were 400K games played in the first stage of experimentation, with both sides using the uni-

form sampling procedure to select moves. In these experiments, with castling and promotion

enabled, black wins > 49.9% of games and white wins < 50.1% of games.
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Figure 3.8: Python code implementing the uniform sample strategy for the player in the

initial burn in stage of the MDP memory consolidation
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CHAPTER 4

Potential Extensions And Conclusion

Potential extensions for work done after this point may incorporate connections to the

Bernoulli shift isomorphisms native to Ornstein theory. The associated algebraic analy-

sis of Bernoulli shift isomorphisms provide a new language for understanding the relations

between the processes that actualize each different Markov process as well as alternative

ways to interface with the full state space of the data beyond the algorithmic compression

via strategy formulation. Also analyses associated with the Diffusion Wavelet decomposi-

tion may help demonstrate the concentration of measure from the uniform distribution to

the unique MDP Markov measure.

Looking forward, advanced algebraic analyses of the composition of the graphically based

game theoretic solutions presented in this project will provide a better understanding of the

actualization of the random processes that correspond to a given solution. For example, the

uniformity over deck arrangements supports a more rigorous consideration of the strategies

implemented in the blackjack experiments as it confirms that each new card drawn from

the deck is essentially independent of the last (as long as the deck is shuffled frequently

enough between games). In the publication ”Trailing the Dovetail Shuffle to it’s Lair”

authors Bayer and Diaconis invoke Markov Chains on the symmetric group to perform

their analysis of the dovetail shuffle’s convergence to the uniform distribution over all deck

arrangements. Their analysis focuses on the evolution of the complexion of rising sequences

in the deck over the course of a series of riffle shuffles. The convergence to the uniform

measure can also be evaluated by observing the empirical distribution of the size of the

cycles in the permutations that correspond to the transformation of the deck before and after

the bridge shuffle used in the blackjack experiments in this project. At the very least this
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demonstrates that more advanced algebraic analyses of the data/games may provide either

faster algorithmic convergence, stronger algorithmic performance, or both and so potential

extensions and conclusions that incorporate explanations of and references to these analyses

that contextualize the observed algorithmic performance of the MDP are worthwhile.
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