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Abstract

Privacy-Preserving Computation for Nuclear Safeguards

by

Mitchell Gardiner Negus

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Professor Rachel N. Slaybaugh, Chair

Nuclear safeguards are a key component in international efforts to prevent the proliferation of
nuclear weapons. The International Atomic Energy Agency (IAEA) and its nuclear inspectors
are tasked with administering these safeguards measures, ensuring to the best of their ability that
weaponizable nuclear material is not created or diverted without the knowledge of the international
community. However, no safeguards system is invincible, and so it is necessary for the IAEA to be
constantly advancing and expanding its capabilities. At the same time, despite the vast majority of
the international community agreeing that the proliferation of nuclear weapons should be avoided
via their commitments permitting the IAEA to administer safeguards within their jurisdictions, it
is expected that some States will be hesitant to allow the agency to significantly expand the scope
of implemented safeguards. This leaves large quantities of potentially insightful data unavailable
to safeguards administrators evaluating compliance with international regulations.

This dissertation proposes a solution to reconcile these competing interests in the form of privacy-
preserving computation. Using privacy-preserving algorithms, IAEA inspectors and IAEA Mem-
ber States may realize a new paradigm where nuclear facility data can be analyzed for safeguards
purposes without that data ever being revealed to anyone other than the facility operators. These
algorithms open the possibility that entirely new data streams may become accessible to IAEA
inspectors, especially those that lend themselves to modern data analytics techniques.

This work represents the culmination of recent efforts to showcase for the first time how nuclear
safeguards could be implemented in a privacy-preserving context. It includes a proof-of-concept
demonstration of how the privacy-preserving technique of garbled circuits could be used for a safe-
guards analysis of real nuclear data, highlighting the present feasibility of such algorithms. It also
introduces CypherCircuit, a new software framework for building and evaluating garbled circuits
that is intended to facilitate the adoption of privacy-preserving technologies by skeptical or non-
expert audiences. The CypherCircuit Python package is designed to cultivate an understanding of
garbled circuits through an intuitive, transparent, and accessible design, encouraging the application
of privacy-preserving techniques to novel challenges—in this case nuclear safeguards.
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Preface

The twenty-first century has seen data—especially “big data”—thrust into the mainstream as a
highly-prized commodity. Computational memory, storage, and processing power have converged
to the point where this data can be harnessed for tremendous gain. Computer algorithms, most
notably those falling under the umbrella of machine learning,1 analyze scores of data points at
a scale far surpassing human capability in order to gain insights, draw conclusions, and predict
the future. The results can be awe-inducing (and occasionally flat-out wrong), however the tools
continue to improve and demand for them has skyrocketed.

For the most part, this is where a great deal of research focus lies: improving the tools. More
accurate tools cut risks. Less biased tools reduce inequalities. Better understood tools yield insights
into otherwise imperceptible patterns. Beyond these algorithmic enhancements, however, the vast
majority of these tools are best improved simply by being fed more data. In fact, access to data
is arguably even more important than having the best tools to analyze that data, as technological
improvements continue shrinking the gap between tools on the cutting edge and those that are
widely available. From that perspective, it will be those with the data to drive their analytical tools
who will be able to make the best inferences and predictions. Across almost every facet of life,
from social media to self-driving cars, banking to healthcare, non-profits to national governments,
simply having access to volumes of data will be a key factor in maintaining technological relevance.

The assumption that data will be shared is not a given, however. Data are often generated by an
entity—be it an individual, enterprise, or nation—other than the one performing the analysis, and
those entities only share data when the perceived benefits gained outweigh the potential costs of
sacrificing privacy. In many circumstances those consequences may seem incidental, but there are
also many cases where security and privacy considerations put a damper on data sharing.

At the individual level, social media and mobile app users generate interactions that are widely
tracked by the hosts for marketing.2 Many users give away access to this information at the prospect
of minor convenience, but recently passed legislation suggests that users may be directing renewed
attention to locking down their data for personal security.3 In industry, sensors at manufacturing
facilities collect data on highly-specialized fabrication processes, and for a price, cloud service
providers may offer to analyze this data and identify potential efficiency enhancements. Forward-
thinking businesses would likely be hesitant to share information that could potentially expose their
trade secrets, but with adept legal teams, contracts may be established to protect the generator’s
assets (data and trade secrets), thereby offering financial security.
1Machine learning is not strictly necessary, as traditional statistical analyses may also draw valuable conclusions.
2It is becoming common knowledge that most mobile apps are collecting troves of data about their users, but two
concrete examples are given by Van Kleek et al. in Better the Devil You Know: Exposing the Data Sharing Practices
of Smartphone Apps (2017) and Razaghpanah et al. in Apps, Trackers, Privacy, and Regulators (2018).

3Specifically the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).
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A similar dynamic exists for sovereign nations, institutions that have often recognized value in
keeping information private, whether that be information related to national intelligence, military,
or scientific purposes. Although most of these nations support international cooperation and abide
by international agreements, they are also motivated to act in their own best interests, providing
security to their citizens and businesses. They may strongly favor international regulations like
those preventing the spread of nuclear weapons, but they may also be simultaneously reluctant
to share more with the international community beyond what is required under international law.
This reluctance is presumably (and justifiably) stronger for sovereign states than it is for businesses:
exposed data may disadvantage national industries, with more limited options for seeking restitution
in an international legal environment than in a stricter national system; or, even more critically, data
exposure may have national security repercussions.

In each of the examples offered here, it is easy to see how sharing data may seem at odds with
protecting the privacy of that data. It is thus unsurprising that harnessing the power of big data and
preserving data privacy frequently compete in the public consciousness as a false dichotomy. Will
those entities that value privacy fail to maximally exploit their data keep pace in a modern world?
Or, will those same entities be hobbled by exploitation if they embrace the potential of modern data
analytics but leave their information exposed? In fact, it may not be either.

The marvel of privacy-preserving computation is that it offers the ability for both futures—one
where data can be shared freely for maximum benefit, but the privacy of that data can be guaranteed.
Flavors of this idea have already emerged as the global community has wrestled with the COVID-
19 pandemic, with mobile phone applications being developed to perform secure contact tracing to
varying degrees of success.4 The same idea could presumably be extended to almost any mobile
application seeking to leverage user data (for location, shopping, web browsing, etc.). The oppor-
tunities seem uncountable, yet some of the most impactful arenas for these privacy-preserving data
analytics are far beyond the scope of individual consumer privacy. These are technology spaces
where privacy-preserving computation could be used to extend business collaboration, or even pro-
mote international cooperation. One such space, discussed thoroughly in the remainder of this
dissertation, is the application of privacy-preserving data analytics to encourage the international
community to accept even stronger safeguards against the proliferation of nuclear weapons. Perhaps
these technologies even eventually play a role in drawing down existing nuclear weapon stockpiles.

This dissertation introduces privacy-preserving data analytics to the field of nuclear safeguards,
but the greater takeaway is how privacy-preserving computation can be applied to a broad assort-
ment of technical challenges. It is my belief that privacy-preserving computation offers a solution
that can bridge the gap between a modern society driven by data and a community that respects
privacy. Bearing that in mind, as you read this dissertation I encourage you to consider where
privacy-preserving computation might be creatively applied in your own daily encounters.

– MITCH NEGUS

4See, for example, Reichert et al in Privacy-Preserving Contact Tracing of COVID-19 Patients (2020).
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Chapter 1

Introduction

Modern developments in the field of cryptography enable advanced calculations while simulta-
neously protecting privacy. These state-of-the-art classes of privacy-preserving algorithms allow
data to be collected and analyzed in ways that control the amount and character of information that
is shared between parties. In fact, when implemented properly, these techniques may be used to
produce actionable insights based on data that is kept secure, never being revealed to the analyst.

There are an unfathomable number of circumstances where these types of privacy-preserving
data analytics could be used. These range from applications in consumer electronics to enterprise
management and beyond. Looking internationally, in an international community seeing increasing
tension between sovereign states, the concept of privacy-preserving data analytics presents an op-
portunity to maintain, and maybe even strengthen, international cooperation and trust. Nowhere is
this international cooperation more important to the preservation of global stability than in uphold-
ing commitments to global nuclear policy. These are policies aimed at preventing the proliferation
of nuclear weapons and nuclear weapons material, prohibiting the testing of nuclear weapons, and
working towards nuclear weapons disarmament.

International nuclear safeguards serve as a prime example of where privacy-preserving compu-
tation may have surprising implications. Nuclear safeguards, as defined by the International Atomic
Energy Agency (IAEA), are measures designed “to deter the spread of nuclear weapons by the early
detection of the misuse of nuclear material or technology”. Defined specifically in agreements con-
cluded between member States and the IAEA, safeguards require States to prove that their nuclear
material is being used for declared, lawful activities. These practices can include thoroughly ac-
counting for relevant nuclear material, facilitating regular inspections, and submitting to remote
monitoring.

Modern safeguards implementations often share common tools and techniques. Radiation de-
tectors are used by both field inspectors and permanently installed remote monitoring systems.
Tamper-evident seals are used to guarantee consistent nuclear material balances over time, but also
to verify that equipment has not been unscrupulously modified between inspections. In all cases,
safeguards are designed to provide the strongest possible assurances that nuclear material is not be-
ing diverted. In pursuit of this goal, considerable attention has been paid to creating more advanced
safeguards implementations. Examples include higher resolution detectors, more comprehensive
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video surveillance systems, or more secure seals. As “big data” analytical tools and methodolo-
gies have seen dramatic improvements over the past decade—and captured public attention—the
demand for sophisticated safeguards driven by data analytics has also surged. New initiatives have
focused on how to use the vast amount of information potentially available at nuclear facilities to
bolster safeguards efforts. And, while many of these efforts have looked at how to use historically
valuable and relatively common data modalities, many others have looked at “non-traditional” safe-
guards data (soil and water chemistry, infrasound, and micro-seismic monitoring are a few exam-
ples). These new, innovative techniques in data analytics present an opportunity for administering
safeguards with unprecedented levels of confidence.

Unfortunately for nuclear regulators, however, nations and businesses have often adopted stances
averse to sharing their sensitive data. In the case of nuclear safeguards, nations (and their nuclear
facilities) are often naturally opposed to sharing any more than the minimum amount of informa-
tion required by relevant safeguards agreements and international laws. These positions protect
competitive advantages and national security, but are also likely to inhibit efforts to use this data to
its fullest extent in advanced applications of safeguards. Importantly, this aversion to sharing data
should not necessarily be misconstrued as a condemnation of nuclear safeguards, and presumably
all involved parties agree with the its goals. A world safe from nuclear proliferation is an asset, both
for nations concerned with global stability and businesses that rely on favorable nuclear policies to
continue operating. This is especially true as developed nations looking to minimize carbon emis-
sions consider the merits of adding more nuclear power to their energy portfolios. Unfortunately,
it just is not perceived to be worth the risk for a State or facility to share information, even if the
information is only potentially sensitive.

Privacy-preserving data analytics is an obvious solution to this dilemma. By facilitating an
international regulator to reach conclusions about a State or facility’s compliance with safeguards
while simultaneously guaranteeing the security of that information, all parties can be satisfied.
Institutions retain exclusive ownership and guaranteed privacy of their data, and the inspectorate
can employ state-of-the-art data analysis to draw robust conclusions of the institution’s activity.
Taking this one step further, having the ability to enact safeguards in this way is an additional tool
at the disposal of international nuclear negotiators, should they try to enact or extend safeguards in
reluctant nations.

Despite this potential, privacy-preserving data analytics is computationally intensive and has
not yet been demonstrated on large datasets of time series. Neither has it been applied to the nu-
clear field, though similar privacy-preserving concepts have been suggested for facilitating nuclear
arms-control verification and disarmament. This dissertation demonstrates the former, and makes
an attempt to motivate further efforts towards realizing the latter. First, it proposes the use of gar-
bled circuits, a privacy-preserving protocol achieving secure multiparty computation (MPC), to
analyze nuclear safeguards relevant time series data. Second, it demonstrates applications of MPC
acting on real time series of nuclear radiation spectra to identify notable material transfer events.
Third, it introduces a software tool—the CypherCircuit Python package—to facilitate comprehen-
sion and encourage adoption of garbled circuit MPC techniques, especially oriented towards po-
tentially skeptical audiences. In more detail this dissertation is broken down into the following
chapters:
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• Chapter 2: Nuclear Safeguards – An introduction to nuclear safeguards and the interna-
tional policy space surrounding their implementation frames the motivation for international
cooperation on nuclear nonproliferation and articulates challenges facing the nuclear safe-
guards community. This chapter covers why and how the IAEA administers nuclear safe-
guards, framing the context within which the privacy-preserving algorithms and tools must
operate.

• Chapter 3: Privacy-Preserving Computation – Privacy-preserving computation is reviewed,
with a specific focus on garbled circuits, the protocol used in subsequent demonstrations.
These garbled circuits are detailed in depth, building the foundations for understanding the
garbled circuit constructions presented in subsequent chapters. A quick overview of exist-
ing state-of-the-art MPC codes is also offered to summarize existing options for performing
privacy-preserving computation.

• Chapter 4: Safeguards Anomaly Detection – The MUSE dataset is introduced, along with a
survey of algorithms that excel at identifying anomalies in time series data. From among these
algorithms, two are chosen for demonstration trials where privacy-preserving garbled circuits
were developed to pick out nuclear material transfers from nearly two months of radiation
spectra. The trial reviews describe how the public Obliv-C engine was used for performing
MPC. The results of these trials are shown to confirm that the anomaly detection algorithms
successfully identify anomalous events in a datasets representative of nuclear safeguards, but
without revealing information about the input data.

• Chapter 5: CypherCircuit – The garbled circuit package CypherCircuit—developed specif-
ically for this work—is presented as a software package designed to facilitate the adoption of
garbled circuits through understanding. Design criteria of the software, the framework’s ba-
sic structure, and available optimizations are all discussed. It is shown how the CypherCircuit
framework might act as a vehicle for training users by demonstrating garbled circuit protocols
effectively, especially when the audience consists of non-expert users. Timing statistics are
provided for comparing CypherCircuit to other state-of-the-art cryptographic research codes.

• Chapter 6: Conclusion and Discussion – Finally, the project is reviewed in its entirety.
Thought is given to where this work could see additional growth, particularly emphasizing
nuclear safeguards and nuclear non-proliferation applications.

Taken all together, it is shown that privacy-preserving computation can be used effectively for
securely performing data analytics on nuclear safeguards data. It is demonstrated that garbled cir-
cuits, programmed with an appropriate anomaly detection algorithm, are able to present a regulator
with successfully identified nuclear material transfer events from locally collected radiation spec-
tra. Critically, the regulator never receives this spectral information directly. This result, when
presented alongside a tool that encourages fundamental understanding of privacy-preserving com-
putation, provides strong motivation for considering MPC as a viable option for future safeguards
systems. For the nuclear safeguards community where anything but minimal risk is intolerable,
anything less will fail to convince the involved parties that privacy-preserving data analytics should
be adopted.
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Chapter 2

Nuclear Safeguards

In his December 1953 address to the General Assembly of the United Nations, the United States
President Dwight Eisenhower proposed an “international atomic energy agency” charged with fa-
cilitating the peaceful use of atomic energy [1]. In his remarks, Eisenhower recognized that nuclear
research and development could yield benefits for civil society and not just serve military purposes.

In the context of the time, the concept of peaceful nuclear technology was still relatively novel.
Dominating the world’s perspective of nuclear technology was the rapidly escalating Cold War arms
race between the United States and the USSR. The United States had dropped two atomic bombs on
Hiroshima and Nagasaki in 1945, after which the Soviet Union immediately began efforts to build
its own nuclear explosives.1 By 1949 the USSR had scaled up its own research (and espionage [3])
program, demonstrating its nuclear capabilities in the RSD-1 nuclear test [4]. Great Britain followed
suit, conducting a successful nuclear test of its own in 1952 [5]. Concurrently with these notable
milestones, the United States (and forthwith the Soviet Union) began to amass substantial nuclear
weapons stockpiles. Eisenhower’s address acknowledged as much, confirming that the United States
stockpile exceeded “by many times the total equivalent of the total of all bombs and all shells that
came from every plane and every gun in every theatre of war in all the years of the Second World
War” [1]. Estimates place American nuclear weapon stockpiles at more than 1,100 warheads in
1953, with the USSR having scaled up its fledgling arsenal to more than 100 warheads by that
time [6].

Electricity from nuclear energy was also still largely relegated to the realm of science fiction.
Nuclear power reactors had not yet been used to produce commercial electricity, and it was not until
1954 when the Obninsk Nuclear Power Plant came online in the USSR that a reactor was used to
provide civilians with electricity [7]. Although the United States had first used the EBR-I reactor to
produce electricity in 1951 [8], it was not until the passage of the Atomic Energy Act of 1954 that
the government permitted significant declassification of nuclear reactor technology for commercial
use [9]. In fact, civilian nuclear power in the United States was not realized until the opening of the
Shippingport Atomic Power Station in May 1958.2

1Premier Joseph Stalin established the Special Committee on the Atomic Bomb on August 20, 1945, exactly two weeks
after the United States dropped the first nuclear bomb on Hiroshima [2].

2The plant began operation in December 1957, but was not officially dedicated until May 1958 [10]. The dedication
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The International Atomic Energy Agency (IAEA) was ultimately established in 1957 and, as
Eisenhower had proposed, was chartered to “accelerate and enlarge the contribution of atomic en-
ergy to peace, health and prosperity throughout the world” [12]. The founding parties recognized
that a mission to facilitate the peaceful use of nuclear material and technology necessitated that the
agency make efforts to prevent the misuse of its services. The agency’s secondary objective thus
became ensuring “that assistance provided by it or at its request or under its supervision or con-
trol is not used in such a way as to further any military purpose” [12]. To do this, the agency was
authorized to administer safeguards in two types of scenarios: first, in any case where its services
were being used, and second, at the request of a State. Such a request might arise either from a sin-
gle State looking to safeguard its own nuclear material and operations, or it might be the result of
parties engaging in a related treaty or agreement that requires parties to request IAEA safeguards.

Here it is important to distinguish nuclear safeguards from other types of security. The IAEA
states the the objective of nuclear safeguards is “the timely detection of diversion of significant quan-
tities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or
of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by
the risk of early detection” [13]. Specifically, safeguards are intended to prevent nuclear material
from being channeled towards weaponization, by either state or non-state actors. On the contrary,
nuclear security is often framed in terms of protection of the health and safety of the public against
explicit and immediate potential threats. The United States Nuclear Regulatory Commission (NRC)
identifies threats like theft and sabotage as those that would be combatted by nuclear security pro-
grams [14]. A successful terrorist attack on a nuclear power plant could present grave consequences
to the general public, but would not necessarily result in any significant diversions of weaponizable
nuclear material. Security programs should therefore be designed to protect facilities against ter-
rorist sabotage. Conversely, a nation that transfers nuclear material from its legitimate and peaceful
nuclear operations to a covert, illicit weapons program may not present an (immediate) threat to the
health and safety of the public; it would, however, be violating international protocol. Safeguards
exist to dissuade and detect a rogue State’s endeavors.

This chapter offers a broad background on nuclear safeguards, establishing the foundations of
the international nuclear regulatory system. The proposed application of privacy-preserving tech-
nology presented in the following chapters is intended to enhance this safeguards regime, and so
must reflect the goals of the safeguards system while operating within its scope.

2.1 The International Safeguards Arena
As an international organization bound by its statute and the will of the global community, the IAEA
does not possess the authority to unilaterally impose safeguards on its member States. Instead, the
IAEA is tasked with administering safeguards in the two scenarios mentioned previously: when-
ever it is providing assistance towards advancing peaceful uses of nuclear technology, and when
it is requested to provide safeguards by its members [12]. While these restrictions superficially
appear to limit the IAEA’s purview, international nonproliferation treaties have leveraged the latter

featured Eisenhower waving a ceremonial “neutron wand” over a neutron counter to supposedly activate the plant [11].
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option to broadly expand the ability of the IAEA to safeguard nuclear material. Such treaties exist
both globally and regionally, and they require that States party to the treaty conclude safeguards
agreements with the IAEA [15: Article III]. In effect, to remain compliant with the obligations
set forth in those nonproliferation treaties, States party to the treaty must request and accept IAEA
safeguards.

2.1.1 Treaties and International Policy
Among all international nuclear treaties, the Treaty on the Non-Proliferation of Nuclear Weapons
(NPT) is the most significant driver of nuclear safeguards. The treaty, which entered into force on
March 5, 1970, was the culmination of nearly a decade of international cooperation [15]. Nonpro-
liferation efforts had been steadily gaining momentum, with widespread affirmation of the principle
showcased in a 1961 resolution passed unanimously by the United Nations (U.N.) General Assem-
bly [16, 17].3

Though it consists of eleven articles, the treaty is often characterized as a three-pillar sys-
tem: nonproliferation, promotion of peaceful nuclear uses, and disarmament [17]. States party
to the treaty are identified as either nuclear weapons States (NWSs) or non-nuclear weapons States
(NNWSs), with a NWS defined in Article IX as any States which had “manufactured and exploded
a nuclear weapon or other nuclear explosive device prior to 1 January, 1967” [15]. As of 2021,
the treaty had 191 States party to the treaty, with only the United States, the Russian Federation,
the United Kingdom, France, and China being recognized as NWSs. Notable non-parties include
India, Pakistan, Israel, and South Sudan, all countries who are either believed to possess nuclear
weapons capabilities, or in the case of South Sudan, not widely regarded as a proliferation risk.
Additionally, the Democratic People’s Republic of Korea (DPRK) declared itself withdrawn from
the treaty in 2003. However, there is disagreement among the remaining States as to whether the
North Korean government met the treaty’s conditions to have withdrawn successfully. Figure 2.1
provides a comprehensive global summary of every State’s current NPT status.

Concerning safeguards, Articles I, II, and III of the NPT are the most relevant. The first two
articles are complementary, applying respectively to the NWSs and NNWSs. Article I requires that
NWSs not provide assistance in any way to facilitate the acquisition of a nuclear explosive device by
a NNWS [15]. Likewise, Article II expresses the equivalent mandate for NNWSs, stipulating that
they refrain from pursuing the acquisition of nuclear weapons. Then, building on Article II, Article
III requires that each NNWS accept IAEA safeguards on all of its source or special fissionable
material [15]. These safeguards must be delineated in an agreement concluded promptly between
a NNWS and the IAEA. As mentioned previously, Article III substantially bolsters the IAEA’s
authority as described in its statute, compelling NNWS treaty signatories to permit the agency to
administer safeguards on all of its nuclear material. With so many States party to the NPT, the
IAEA is able to safeguard essentially all of the world’s nuclear material not under the control of a
NWS (or a non-party).
3Ireland sponsored the 1961 resolution, along with three previous resolutions in 1958, 1959, and 1960. Only the 1961
resolution passed unanimously [16].
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Figure 2.1: Global participation in the NPT [18].

Despite its prominence, the NPT is not the only international agreement regarding nuclear safe-
guards. Safeguards are also considered and required by other international treaties and agreements
reinforcing nuclear nonproliferation commitments outside of the NPT. Relevant treaties include
the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Treaty of
Tlatelolco) [19] and the South Pacific Nuclear Free Zone Treaty (Treaty of Rarotonga) [20], the
African Nuclear Weapon Free Zone Treaty (Treaty of Pelindaba) [21], as well as similar agree-
ments in Central and Southeast Asia [22, 23]. All of these treaties obligate the participating parties
to conclude safeguards agreements with the IAEA.

International treaties do not all rely on the IAEA to enact safeguards, however. As an example,
Brazil and Argentina jointly agreed to a bilateral agreement in 1991 to make safeguards consistent
between the two adjacent countries [24]. That agreement creates an independent organization to
manage the systems controlling nuclear material between the two nations, the Brazilian-Argentine
Agency for Accounting and Control of Nuclear Materials (ABACC). While the agreement exists
separate from any safeguards agreements that the two States conclude with the IAEA, it does en-
courage the IAEA and the ABACC to work together, sharing resources and avoiding duplicate
safeguards efforts.
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2.1.2 State Agreements
As stipulated by the NPT, NNWSs are required to abide by agreements that they conclude with
the IAEA permitting the regulator to administer safeguards on all nuclear material belonging to
the State. These agreements are contemporarily known as comprehensive safeguards agreements
(CSAs)4 and provide definitions and direction for the States to cooperate with the IAEA. Unlike the
NNWSs, NWSs are not required to conclude CSAs with the IAEA; however, all five NWSs party
to the NPT have elected to follow voluntary offer agreements (VOAs) that provide an analogous
framework.

Though each CSA is case-specific and unique to a State, they generally follow a similar struc-
ture, outlined by the IAEA in INFCIRC/153 [13]. For example, each State must establish a State or
Regional Authority with responsibility for safeguards (SRA) to bear responsibility for nuclear mate-
rial accountability, along with a State system of accounting and for and control of nuclear material
(SSAC) through which material accounting is performed and the IAEA applies safeguards [26, 27].
Additional protocols may also be concluded between States and the IAEA to expand the scope of
safeguards beyond what is traditionally covered by comprehensive safeguards agreements.

2.1.3 Domestic Safeguards
International regulations are not the only form of nuclear safeguards that are in place worldwide.
In fact, even in NWS where civilian nuclear operations are only subject to IAEA safeguards vol-
untarily, similar systems may exist between a national regulator and independent nuclear facilities.
The United States serves as one example of a NWS that enforces its own national safeguards initia-
tives independent of the IAEA. The NRC imposes its own domestic safeguards program of nuclear
material control and accounting (MC&A) to prevent the misuse of special nuclear material (SNM),
along with other security measures. Like international safeguards, these MC&A practices work to
ensure that nuclear facilities are operating as expected and that nuclear material is not stolen, lost,
or otherwise diverted [28]. Similarly, the United Kingdom’s Office for Nuclear Regulation acts in
a comparable role, facilitating IAEA safeguards established via its VOA.

Although the remainder of this work will focus specifically on international safeguards, it is
worth noting here that many of the dynamics occuring in the realm of international regulation are
reflected in national relationships as well—now occuring between a nuclear facility and the national
regulator as opposed to between a State (and its nuclear facilities) and the IAEA.

2.2 Safeguards Considerations
While the IAEA statute gives the agency broad latitude to prevent the diversion of nuclear material
for any form of misuse,5 the chief concern of the IAEA and its members is the nonproliferation
of nuclear weapons [13]. From that perspective, any successful safeguards implementation must
4CSAs were formerly known as “full scope agreements” [25].
5Illicit high or low yield nuclear explosives, dirty bombs and similar radiological devices, or any other minacious
machinations of a malfeasant.
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take into careful consideration the steps required by any actor—state or non-state—to construct a
nuclear explosive device. Nuclear explosives use some methods and materials that are distinct from
conventional explosives, and good safeguards account for and identify their signatures.

These unique distinctions of nuclear explosives are, in fact, a boon for safeguards administrators.
While many of the finer details of nuclear weapon design are kept classified by NWSs, the specific
nuclear material types and the approximate quantities necessary for developing a weapon are in
the public domain. Just as importantly, although the specific design of a nuclear weapon may
affect the SNM requirements to some degree, it does not appreciably affect the implementation
of nuclear safeguards. Together, these two facts allow the IAEA, an international organization
without intimate weapons design information, to make informed assessments about proliferation
risks and to develop technologies and procedures to reassure its members against the proliferation of
weaponizable nuclear material. At the same time, actually procuring sufficient SNM to manufacture
a nuclear explosive is recognized to be one of the most challenging physical acquisitions for a
weapons program, and so serves as an ideal point in the weapons development process for the
IAEA to monitor against.

2.2.1 Nuclear Weapons Material
The fissile nuclei at the core of a nuclear explosive bestow the uniquely destructive capabilities of
the device. When a critical mass of these fissile isotopes is assembled, a chain reaction of nuclear
fission ensues that results in the release of vast quantities of energy. To provide insight about the
sheer power of a fission weapon, it can be compared against a traditional chemical explosive. The
National Institute of Standards and Technology (NIST) defines the energy equivalent release of 1 kg
of TNT as 4.612 kJ, or just slightly more than 10 eV per TNT molecule [29]. A single fissioning
nucleus releases approximately 200 MeV in energy [30], a factor of 20 million more powerful than
the molecule of TNT.

Nuclear fission occurs only for heavy isotopes where the Coulomb repulsion between positively
charged protons in the nucleus is competitive with the strong nuclear force binding all of the nucle-
ons together. The most tightly bound nuclei—those with the greatest binding energy per nucleon—
have approximately 60 nucleons, as shown by the peak in Figure 2.2. While isotopes with more
nucleons than this may find it energetically favorable to split into fragments to be more tightly
bound, enough energy must first be imparted to the original nucleus to allow it to overcome the
strong Coulomb potential just outside of the range of the strong force.6

In practice, only a handful of actinide isotopes have a required activation energy (also frequently
called the critical energy for fission) low enough to experience fission at all. Among those isotopes,
it is standard practice to differentiate between ones that are fissionable and those that are fissile [26,
30]. Nuclei are considered fissionable if they will undergo fission after a modest critical energy
threshold is met. Since the neutron capture process on a heavy nucleus will release binding energy,
a fissionable nucleus typically requires that the captured neutron bring at least 1 additional MeV
into the reaction to trigger fission. Fissile nuclei, on the other hand, are a subset of fissionable
6For a more complete discussion of the physics of nuclear fission, see Krane, Chapter 13 [32].
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Figure 2.2: The binding energy of an atomic nucleus per nucleon, shown for all isotopes in the U.S.
National Nuclear Data Center (NNDC) database [31].

nuclei where just the binding energy released in the capture process alone is enough to surmount
the critical energy threshold and spur a fission reaction. Table 2.1 shows the critical energy for
fission that is required by several fissionable isotopes, along with the energy released in a neutron
capture event. The table demonstrates how fissile nuclei tend to be actinides with an odd number
of neutrons.

2.2.2 Nuclear Weapons Physics
It is fissile nuclei that constitute the most essential component of nuclear weapons systems. For
a fission chain reaction to be sustained, the product neutron(s) from each fission reaction must go
on to trigger at least one additional fission event; in other words, the system must be critical. In a
nuclear weapon, however, enormous amounts of energy need to be rapidly released. The majority
of fission reactions driving the explosion must be complete before the explosive force disassembles
the weapon’s core, rendering it subcritical. This “explosion time” varies, but for common weapon
designs the time between when a weapon core reaches criticality and when expansion returns the
apparatus to a subcritical configuration tends to be on the order of a microsecond or less [34, 35].

To cause such a swift release of energy, the chain reaction must become supercritical, with the
number of fission events increasing exponentially over time. Whether enough fission events occur
for the system to reach supercriticality depends on a variety of factors: the number of neutrons
produced during a fission reaction, the probability of any one of those neutrons subsequently in-
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Table 2.1: A comparison of the binding energy released during a neutron capture event on a specific
target nuclide [31, 33] and the critical energy required for fission [32], for a selection of fissionable
isotopes. Fissile isotopes (in bold) are those with a value of released binding energy greater than
the critical energy.

Target Nuclide Protons Neutrons Neutron Capture Energy
[MeV]

Critical Energy
[MeV]

232U 92 140 5.8 6.9
233U 92 141 6.8 6.5
235U 92 143 6.5 6.2
238U 92 146 4.8 6.6

236Np 93 143 6.6 5.9
237Np 93 144 5.5 6.2
238Np 93 145 6.2 6.0
239Np 93 146 5.1 6.3
238Pu 94 144 5.6 6.2
239Pu 94 145 6.5 6.0
240Pu 94 146 5.2 6.3
241Pu 94 147 6.3 6.0

teracting with a fissionable nucleus, and finally, the probability of any such interaction resulting in
fission. Given the last factor, it is at least intuitive that fissile nuclei are better suited for nuclear
explosives than fissionable nuclei—the energy barrier preventing fission is lower.

Upon closer analysis, it turns out that fissile nuclei are the only realistic option for driving
weapons-capable supercritical systems. While a nuclear weapon can include (and utilize) both
fissile and fissionable nuclear material, it requires sufficient quantities of fissile material for the
reaction to achieve supercriticality. Mixtures with enough fissile material to sustain criticality are
not found naturally, and so material must be enriched to contain greater proportions of fissile nuclei
to fissionable nuclei. A plot showing how the critical masses for spheres7 of fissionable mixtures
shrink as a function of enrichment in the fissile isotopes uranium-233 and uranium-235 is shown
in Figure 2.3.

Since only fissile nuclides satisfy the requirements of a nuclear explosive to produce enough
fission reactions before the weapon’s explosive power disassembles the critical mass, IAEA safe-
guards are devised with fissile material as the primary focus. Safeguards objectives are defined
in consideration of relevant fissile material quantities, and apply both to fissile material and other
7A sphere is the material geometry with the minimum surface area to volume ratio, and so neutrons are less likely to
escape a spherical system without inducing another fission reaction than any other configuration. Therefore, spheres
represent the minimum critical mass that can be achieved for any given mixture of fissile isotopes.
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Figure 2.3: The critical mass of a bare metal sphere of a uranium mixture decreases as the mix-
ture is enriched to have a greater fraction of either uranium-233 or uranium-235, both fissile iso-
topes [36: Adapted from Figure 3.1]. When minimal enrichment occurs, the size of the critical
mass tends towards infinity, and so natural uranium (except in exceedingly large quantities) is not a
proliferation risk.

source material from which fissile material may be derived.

2.3 Safeguards in Practice
From basic knowledge of nuclear physics and material properties, the IAEA sets appropriate safe-
guards goals to ensure that nuclear material is not being diverted. These IAEA inspection goals,
specific to each facility under safeguards, include both a quantity component and a timeliness com-
ponent.

The quantity component of the IAEA’s inspection goal follows from the discussion in the pre-
vious section—that a critical mass of fissile nuclear material is required to detonate a nuclear ex-
plosive. Just as illustrated in Figure 2.3 for uranium, the critical mass of a mixture of fissionable
isotopes is determined by the enrichment level of any fissile isotopes. Since this quantity of nuclear
material required varies by isotopic mixture, the IAEA defines one significant quantity (SQ) of a
material type as the approximate amount of material beyond which it is impossible to exclude the
possibility of manufacturing a nuclear explosive [26].8

8The IAEA notes that SQs account for “unavoidable losses due to conversion and manufacturing processes” and are
greater than what would be required to assemble a critical mass [26].
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Table 2.2: Significant quantities of direct and indirect nuclear material [26].

Material SQ
Direct use nuclear material
Pu (238Pu < 80%) 8 kg Pu
233U 8 kg 233U
HEU (235U ≥ 20%) 25 kg 235U

Indirect use nuclear material
U (235U < 20%) 75 kg 235U
Th 20 t Th

For SQ definitions, the IAEA classifies materials into two broad categories: direct use or indi-
rect use nuclear material. Direct use nuclear material is fissile isotopes and mixtures containing
substantial fractions of fissile isotopes: highly enriched uranium (HEU), uranium-233, plutonium
mixtures low in plutonium-238, or any similar mixture that could be readily used for weapons pro-
duction. Indirect use nuclear material, on the other hand, is any other nuclear material that can be
used to produce direct use nuclear material. Natural, low-enriched, and depleted uranium—along
with thorium—are all considered to be indirect use nuclear material. A comprehensive list of SQ
definitions are provided in Table 2.2 [26].

The second aspect of the IAEA’s inspection goal is a timeliness component. Material diversions
must be identified in a reasonable time, lest the detection time be too late for any meaningful actions
to be taken. Additionally, by defining precise timeliness goals, the IAEA forms a quantitative basis
for establishing inspection frequencies. Like the quantity component of the IAEA inspection goal,
timeliness detection goals also depend on the material category. Higher risk materials are subject
to tighter detection time goals than lower risk materials. For example, in the case where no other
detection goals are agreed upon between a State and the IAEA, the standard detection goals are
the following: one month for unirradiated direct use nuclear material (material requiring minimal
processing before weaponizable); three months for irradiated direct use nuclear material (material
requiring some processing before weaponizable); and one year for indirect use nuclear material
(material requiring significant processing before weaponizable) [26].

Separate from these two inspection goals, it was recognized that the IAEA’s responsibility to
guard against nuclear material misuse and weaponization went beyond simply guaranteeing non-
diversion of previously declared material, but also extended to monitoring against the possibility
of weaponization of undeclared material. This understanding emerged from IAEA experiences in
the early 1990s, when safeguards systems focusing on declared material were determined ill-suited
for identifying undeclared nuclear activities, such as those existing in Iraq or the DPRK. To this
end, the IAEA developed the Model Additional Protocol (INFCIRC/540) to extend the traditional
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requirements of CSAs to cover undeclared nuclear endeavors [37].
These additional protocols task the IAEA with ensuring that safeguards are comprehensive and

complete—that not only is nuclear material not being diverted, but that there is no nuclear mate-
rial existing within a State that is not either subject to safeguards or exempt. Accomplishing this
larger objective is nontrivial, requiring safeguards that rely more heavily on sophisticated methods
of surveillance and monitoring analytics, design information for nuclear facilities to preclude the
existence of undeclared nuclear activities at a site otherwise submitting to safeguards, as well as
increased access for inspections [27]. They must also take into consideration potential acquisition
strategies that a State might use for procuring nuclear weapons materials [26].

These goal sets—both the quantity and timeliness goals for detecting the diversion of previously
declared nuclear material, as well as the IAEA’s goal to confirm the non-existence of undeclared
nuclear activity—are grouped by the IAEA into a set of three generic safeguards objectives. These
objectives cover the complete set of scenarios in which a State may be engaging in nuclear material
misuse. They are, briefly, to focus on detecting declared nuclear material diversions, then detecting
undeclared nuclear activity at declared facilities, and finally detecting undeclared nuclear activity
anywhere in a State [27]. These three generic objectives chart the course for international regulation.

2.3.1 Safeguards Modalities
While the generic safeguards objectives give the IAEA purpose, they are translated into techni-
cal objectives for implementation. These technical objectives can vary for any given State and are
determined by its nuclear activities and capabilities, devised to exist within the framework estab-
lished by the State’s CSA. Appropriate and adequate safeguards are then deployed to satisfy these
technical objectives. To actually coordinate a consistent and robust safeguards regime, the IAEA
synthesizes a wide variety of information types to draw high-confidence conclusions that nuclear
material is not being misused. Types of information that are brought together include information
about facility design, regular and verifiable reporting of nuclear material inventories and activities,
and the results of routine inspections.

First, for every nuclear facility under safeguards, design information must be provided to the
IAEA and kept current. This information includes a description of the facility, the facility’s layout,
and how nuclear material flows through the facility [26]. The design information is used by the
IAEA in developing a safeguards approach, applying safeguards appropriately to the specific facil-
ity, and ascertaining a State’s compliance with any additional protocols [13]. For facilities that exist
prior to the conclusion of a CSA, design information must be promptly submitted to the IAEA after
the agreement is formally concluded [27]. For new facilities, or for alterations in existing facilities,
the IAEA must be notified so that it may add or adjust safeguards as necessary. To prevent States
from submitting false design information, and to discourage facilities from being either repurposed
or modified to facilitate illicit nuclear operations, the IAEA retains the authority to inspect and ver-
ify all designs throughout the entire lifetime of the facility, including during both construction and
decommissioning [13, 27, 37].

Material accounting represents a second major focus area of safeguards. To facilitate accounting,
the IAEA designates material balance areas (MBAs)—physical areas where the quantity of nuclear
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material can be accurately determined. Under the guidelines set forth in each State’s CSA, design
information provided by facilities may be used to delineate the boundaries of each MBA [13: Para-
graph 46(b)]. Within an MBA, the IAEA may establish key measurement points (KMPs) to stream-
line and secure the safeguards process, improving efficiency while limiting discrepancies [13: Para-
graph 108]. For example, in an MBA defined by a single building, KMPs may be located at entries
and exits so that inputs and outputs to the MBA are properly identified. Alternatively a KMP could
also be located in a common storage location for nuclear material where quantities of material
should remain constant or predictable. With these types of systems in place, nuclear material does
not need to be continuously tracked within an MBA because it can be considered to be safeguarded
at all times.9

Beyond establishing MBAs, material entering or exiting an MBA must be recorded and reported
to the IAEA along with an accounting of any other changes to the balance of nuclear material
in the area. These additional adjustments include changes in form, such as material enrichment,
transmutation, or burnup [38]. Once tallied, material balance records must be submitted regularly
on material balance reports (MBRs) to the IAEA so that it may maintain an up-to-date inventory of
the nuclear material under safeguards. Besides the known inventory listings and inventory changes,
these MBRs include information on rounding adjustments to measured quantities and material that
may be otherwise unaccounted [13: Paragraph 67].

Inspections constitute a third essential component of the IAEA’s safeguards regime. By con-
ducting regular inspections, the IAEA can independently confirm that a facility is operating as
expected and complying with all other applicable safeguards. While inspections traditionally focus
on facilities and areas defined by the State’s CSA, States that have concluded an additional protocol
with the IAEA must allow the IAEA to also inspect other locations of interest [37: Article 5]. In all
cases, State agreements require that the State facilitate quick and easy access for IAEA to conduct
inspections as necessary. This includes providing inspectors with adequate access to the facilities
being inspected in a timely manner, as well as providing inspectors with necessary documentation
and visas to legally enter the State [13: Paragraph 86, 37: Article 12].

IAEA inspections may be either announced or unannounced, but follow directly from guide-
lines set forth in a State’s CSA. While unannounced inspections are a far stronger deterrent against
misbehavior, it is recognized that unannounced inspections are likely to be significantly more dis-
ruptive to facility operations. As such, the IAEA provides facilities with relative frequencies for
unannounced inspections along with a “general programme” of inspections to reduce the difficulties
of accommodating unannounced inspections [27]. Still, under a State’s applicable CSA, a facility
may still be required to participate in short notice random inspections (SNRIs) if the IAEA elects
to perform such an inspection [39]. In the SNRI process, a facility makes frequent, regular decla-
rations to the IAEA regarding measured quantities of interest and its own records. These “mailbox
declarations” are securely and immediately transmitted to the IAEA, while the facility is required to
keep the material subjects of the declaration available for a predetermined “residence time”. If the
IAEA initiates a random inspection, the residence period guarantees that they may arrive in time to
9While not a foolproof system, ideally the KMPs are set up so that a party removing material from an MBA without
passing through a KMP (e.g. exiting a building through a window) would arouse sufficient suspicion to be deterred.
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successfully verify the integrity of the declaration against the facility’s physical inventory.

2.3.2 Safeguards Tools
The IAEA uses a wide variety of specialized tools to successfully implement safeguards that satisfy
its technical objectives. These include a myriad of radiation detectors, unattended remote monitor-
ing systems, containment and surveillance devices, and strong data security mechanisms. While
some of these tools are industry standards, others are highly tailored adaptations designed to meet
the unique needs of a nuclear safeguards administrator.

Destructive and Non-destructive Analysis

For nuclear inspectors and regulators, possessing the ability to characterize nuclear material that
enters, exits, or is stored in an MBA is of primary importance. Accurately assessing the quantities
of nuclear material present in a facility or location is essential to successfully complete nuclear
material accountancy technical objectives. In this regard, high-resolution gamma-ray detectors are
arguably the most useful tools available to inspectors. Material isotopics can be determined using
gamma-ray spectroscopy, and material quantities can be extrapolated from the gamma-ray intensity
emitted by a given sample.

Most radioactive isotopes, including fissile isotopes that are of interest to safeguards practi-
tioners, can be identified specifically by their unique gamma-ray emissions. For example, fissile
uranium-235 alpha decays with a half life of more than 700 million years, but each decay has a
57% chance of emitting a 185.7 keV gamma ray when the product thorium-231 isotope de-excites.
Detecting a strong 185.7 keV signal in a measured spectrum, like that shown in Figure 2.4, indi-
cates the presence of a significant quantity of uranium-235. Likewise, mixtures of plutonium also
produce distinct gamma-ray spectra depending on the isotopic quantities and so can be identified
and characterized using gamma-ray spectroscopy.

In order to measure spectra with enough resolution to draw conclusions, the IAEA relies primar-
ily on gamma-ray detectors that use high-purity germanium detector (HPGe) scintillators. HPGe
detectors are the industry standard for generating high-resolution gamma-ray spectra. Although
the high-purity germanium crystal composing the scintillator must be kept cryogenically cooled,
electrically-cooled portable detectors are used by inspectors to monitor facilities. One such hand-
held gamma-ray spectrometer is shown in Figure 2.5a.

In addition to material characterization using gamma-ray spectroscopy, neutron detectors may
also be used by inspectors to measure nuclear material of interest. These detectors are highly valu-
able when seeking to identify the presence of SNM, as that material has the potential to emit neu-
trons either spontaneously or via an induced reaction. First, passive neutron detectors may be able
to detect the presence of neutron emitting isotopes in the vicinity of the detector system, such as
those that undergo spontaneous fission. Spontaneous fission is a decay mode accessible to fission-
able nuclei with large mass numbers, and the process is often a strong source of neutrons. Mixtures
of plutonium, for example, are prone to spontaneously fission making them well-suited for detection
via neutron monitoring. Another alternative to these passive neutron detectors are active methods
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Figure 2.4: Measured gamma-ray spectra for two samples of enriched uranium-235 (at 1% and
97% by weight), as reported by Choi and Kim [40: Figure 1]. The discernible peak at 185.7 keV
is produced by uranium-235 decaying into thorium-231. (Although the XKα region highlighted by
Choi and Kim is related to the behavior of the atom after emission of the 185.7 keV gamma ray, it
is of little use to nuclear inspectors and can be ignored here.)

of neutron detection, where neutron interrogation is used to induce fission reactions. In these sys-
tems, a source of neutrons–for example, an americium-lithium (AmLi) neutron source—induces
fission in the nuclei of SNM, with the resulting neutrons being measured by the detector system.
Figure 2.5b shows a well-style neutron interrogation detector.10 In either case, once material iso-
topics are either known (e.g. from gamma-ray spectroscopy) or surmised, neutron counters can also
provide an effective tool for gauging the quantity of material present in that location.

Both gamma-ray spectroscopy and neutron counting are considered non-destructive analysis
(NDA) techniques and are useful for characterizing material without affecting the sample. In gen-
eral, NDA techniques may be preferable for both the safeguarded facilities and the IAEA. From
the perspective of a nuclear facility, NDA techniques may be less intrusive, requiring no loss of
material or extraction of samples [43]. For regulators, NDA techniques tend to be more cost ef-
fective than alternative destructive analysis (DA) methods, which require expensive laboratories
and equipment [42, 43]. Benefiting both parties, NDA measurements are often repeatable, and can
10The well-style is named since a small sample of material may be placed inside the “well” of the detector. Other styles

are better suited for larger objects, such as the “collar” style used for inspecting reactor fuel assemblies.
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(a) (b)

Figure 2.5: IAEA radiation detection equipment: (2.5a) a handheld gamma-ray spectrometer con-
nected to a laptop computer displaying the measured spectrum from a sample [41]; and (2.5b) a
well-style neutron interrogation detector [42: Figure 9].

be reproduced in the event of a dispute [43]. Despite those advantages, DA techniques still serve
a distinct role in performing high-precision analyses. Measurements using mass spectrometry or
chemical titration may provide highly accurate information about the composition of a material
sample, allowing an regulators to discover bias defects in material quantities over long time pe-
riods [42]. Even though they can be highly accurate, DA assessments prevent further use of the
material and are more expensive, and so are generally relied on in a more limited way than NDA,
often for the calibration and verification of instrumentation and procedures [42].

As technological advancements have improved the quality of NDA insights, the IAEA has begun
placing greater emphasis on unattended monitoring systems (UMSs) in its safeguards portfolio.
These systems include a selection of NDA tools that are designed to operate remotely and without
full-time supervision [42]. These devices may record data to a secure local filesystem for future
download by a credentialed inspector, or they may transmit data securely to an external location—
for example databases at the IAEA headquarters.

The UMSs used by the IAEA exist in a variety of types. One device, the on-line enrichment
monitor (OLEM), is installed in enrichment facility piping to determine the throughput of enriched
material (uranium-235) [44, 45]. The device collects temperature and pressure readings, which per-
mit calculation of the gas density of the flowing uranium hexafluoride. Simultaneous spectroscopic
readings from a mounted sodium iodide detector then enable the determination of the uranium-235
enrichment of the pipe’s contents. These measurements may then be used to assess compliance
with enrichment limitations.

Another tool used for unattended remote monitoring is the unattended fuel flow monitor (UFFM).
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The UFFM is designed to facilitate monitoring of fuel assemblies—either fresh or irradiated—as
they move through a facility. For irradiated fuel especially, substantial amounts of shielding are
required to protect against the highly radioactive fuel assemblies. This shielding makes the inspec-
tion process more challenging, as the irradiated fuel assemblies may not be visually counted [46].
Furthermore, reactor refueling periods may last months, and it becomes impractical for an inspec-
tor to remain at the facility for the duration of the refueling cycle [46]. Instead, the UFFM can be
installed unobtrusively in a key location, such as the door-valve to a reactor pressure vessel, where
it can both detect the (directional) motion of fuel assemblies (and other objects) past the detector
and characterize their irradiation levels [42, 46].

In a third UMS variation, technologies like the plutonium inventory monitoring system (PIMS)
also enable comprehensive remote monitoring implementations to satisfy safeguards requirements.
The PIMS is a sensor system that continuously records data regarding the quantity of plutonium in a
plutonium powder process area [42]. The system employs 142 neutron counters strategically placed
throughout an area to measure plutonium quantities. Where the system surveys material presence
continually, regulators may receive immediate notice if material is unexpectedly removed. Unlike
the OLEM and UFFM systems, which measure the motion of nuclear material past the unattended
detector, tools like the PIMS track stationary material inventory that is not expected to change
regularly (or unpredictably).

Containment and Surveillance

So far, only safeguards systems that explicitly enable nuclear material accountancy have been cov-
ered. However, the IAEA also relies on containment and surveillance technologies to complement
their suite of material accountancy technologies, providing stronger guarantees against material
diversion and misuse. Some of these technologies are relatively unique to the safeguards environ-
ment.

For example, tamper indicating seals are used to guarantee that sealed containers of nuclear
material have not been opened. The most common of these are metallic cap seals [42], shown
in Figure 2.6a. These single-use seals are uniquely numbered, and are only to be removed by
safeguards inspectors. After removal, the seals are returned to IAEA headquarters for inspection
of the caps soldering and general wear to guarantee their authenticity. More recently, the IAEA has
begun to make use of more sophisticated sealing devices, with two notable technologies being the
fiber optic general purpose seal (FBOS) and the electronic optical sealing system (EOSS), both of
which are loop-style seals offering assurances against tampering. In the case of the FBOS, a digital
imprint of the sealed fiber optic wire pattern is saved when the seal is first closed [42]. Then, any
future attempts to break the fiber optic wire or detach and reattach the seal will almost certainly
reconfigure the fiber optic pattern. Upon future reinspection, any fiber optic wire configuration
other than the original suggests that a party tampered with the seal. Figure 2.6b gives an example
of the images regulators use to compare these patterns. Other sealing technologies, like the EOSS
employ more active monitoring methods. The EOSS transmits light signals through a fiber optic
loop (similar to the FBOS) but at short sub-second intervals. If the seal is opened, the light pulses no
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(a) (b)

Figure 2.6: IAEA sealing equipment: (2.6a) a metallic cap seal used to secure safeguards equip-
ment and material [47]; (2.6b) comparison images of wire imprints used in a fiber optic sealing
system [48]—discrepancies indicate tampering.

longer complete their trajectory through the cable, and the exact time and duration of the unsealing
event can be recorded [42].

Other containment and surveillance technologies are relatively traditional but with unique char-
acteristics. For example, surveillance camera devices like the next generation of surveillance system
(NGSS) accomplish objectives similar to standard security cameras, but with customizations ap-
propriate for use in a safeguards environment [42]. These cameras are placed in strategic locations
either singly or in coordinated arrays and take periodic snapshots of facility activity. Unlike conven-
tional security cameras, however, these cameras generally have lower frame rates (capturing images
at intervals of one second or longer). They are also housed in a tamper indicating enclosure, the
blue camera casing shown in Figure 2.7. Like some of the unattended detector systems, data may
be stored locally or transmitted to a remote server [42]. Either way, the system is designed to pri-
oritize integrity, enabling the IAEA to trust that the monitors are relaying accurate and trustworthy
safeguards information.

Data Authenticity

Especially as UMS systems become more prevalent, the amount of digital data acquired by and
accessible to the IAEA is growing rapidly. At the same time, all data collected by the IAEA must
be protected and secured to guarantee that those conclusions are accurate. If the data becomes
compromised, the IAEA will be unable to guarantee the integrity of its conclusions and that could
weaken the trust that it builds with member States. To preserve the integrity of the data—and to
protect the potentially sensitive information that may be collected—the IAEA must also stay up-to-
date on modern data security practices.

One way that the IAEA ensures the veracity of its data is procedural: the IAEA limits what is



CHAPTER 2. NUCLEAR SAFEGUARDS 21

(a) (b)

Figure 2.7: IAEA surveillance equipment: (2.7a) a next generation of surveillance system (NGSS)
camera [49]; and (2.7b) an upgraded NGSS server [50]. Both systems are housed inside tamper
indicating blue enclosures.

shared between the agency and the facility or State. In general, IAEA monitoring equipment is
owned and operated by the agency, and the data is not otherwise shared [42]. There are exceptions
to this rule, and certain devices are classified as joint use equipment (JUE). For example, the PIMS
devices mentioned in Section 2.3.2 are owned by the facility and data is shared with regulators under
the provisions of a joint use agreement (JUA) [42, 51]. However, most equipment and operating
data are maintained and collected independently by the IAEA without the expectation that this
information will be shared back to the State or facility. Naturally, this makes it less likely that a
State or facility may exploit weaknesses in a system. Unfortunately, this policy may also limit the
IAEA from leveraging all of the operational data that may be at its disposal. Valid, useful data that
has been collected by the facility on equipment it owns may not be able to be trusted or used in
supporting or denying safeguards conclusions. The policy also has the potential to place additional
burdens on a facility that must support these independently operated systems, including costs of
installation, maintenance, and inspection [51].

To enhance the integrity of facility-generated data and reduce the need for redundant systems,
tools have been developed to enable increased cooperation. One such device, the enhanced data
authentication system (EDAS), uses a branching system to split an input into two components. The
first output branch is immediately duplicated and encrypted, with this cryptographically secure copy
able to be transferred to a secure, trusted location. The second output branch produces a plaintext
version of the detector signal, which may be routed back to the facility for operational use [52].
Ideally, the EDAS is installed as near to the data source (i.e. the detector) as possible, to reduce the
potential avenues for data to be altered before reaching the device. In this way, a regulator may be
able to infer significantly greater credibility to a dataset than if they were consulting the same data
stored by a facility.

Besides rules limiting shared information between an inspector and the facility, the IAEA also
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uses standard, secure encryption procedures to transfer electronic data and communications. Data
that is collected at a facility by an UMS will be timestamped, encrypted, and transferred to a se-
cure location—either a trustworthy local filesystem or a remote location [42]. Since the IAEA
is obligated to protect the confidentiality of State information [37: Article 14(b), 15], the IAEA
uses modern encryption schemes, public-private key authentication, two-factor authentication, and
strictly permissioned systems.

In addition to securing data that it collects, communications between the State or facility and
the IAEA may be initiated using a secure, online mailbox system. The system enables a facility to
securely transmit and receive messages and data, guaranteeing that after submission the commu-
nications and records may not be altered. These properties make the mailbox system suitable for
facilitating regulator actions like SNRIs [39]. When a State is given short notice of an inspection,
they may also be required to furnish the IAEA with certain types of information that can be verified
upon arrival of an inspector. Ideally, the difficulty of providing such a “mailbox declaration” that
conceals misconduct—while simultaneously being consistent with the findings of inspectors and
historical records—would be a severe deterrent against impropriety.

2.4 Challenges of Safeguards Cooperation
The IAEA’s safeguards practices enable them to regulate the international civilian nuclear com-
munity thoroughly, setting a course for meeting their objective of preventing the misuse of nuclear
material. Still, potential adversaries are constantly adapting and advancing, and so the IAEA must
also be perpetually looking to strengthen its safeguards practices. For the most part, these improve-
ments in safeguards systems on the part of the IAEA are not controversial, as they simply improve
existing technologies that are covered by safeguards agreements already in place. More challeng-
ing is incorporating new modes and types of data, increased levels of monitoring, or emerging
technologies into these safeguards systems.

2.4.1 Competing Interests
Building cooperation among international parties is no easy feat. While global organizations like
the IAEA are conferred authority under international law (such as the NPT), States are often re-
luctant to yield sovereignty or accept restrictions from external parties. Fortunately, the value of
nuclear safeguards is recognized with near universality; there is strong international commitment
to the NPT and commitment to its principles even among non-signatories. Despite that common
agreement, differences still exist regarding the exact interpretations of the IAEA’s responsibilities
and authority. Since the mission of the IAEA is to prevent the diversion of nuclear material, it is
their responsibility to implement safeguards to the best of their ability, expanding their scope and
advancing their technology as necessary to ensure their goals are achievable. At the same time,
States have to protect their own best interests, including the protection of sensitive information,
whether that pertains to matters of national security or proprietary business developments.
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These competing interests present a challenge for safeguards negotiators. The IAEA seeks to
verify nuclear compliance using the best data, algorithms, and technology at its disposal. It must
execute this mission using trusted sources—often equipment that is operated independently of the
facility operators to produce authentic (uncompromised) data. States may push back, limiting what
they share with investigators because they are concerned that acquiescing to increased surveillance
burdens them with more risk (even if they are operating with good intentions). This risk could
arise from the potential exposure of sensitive security or proprietary information in the event that the
IAEA’s communication or data storage resources are compromised, even when that data is securely
encrypted; such events might be caused by insider threats or cyberattacks. It might also be due to
States’ reluctance to trust the strength of those encryption methods, especially ones that they feel
are more vulnerable to exploitation [25]. Alternatively, some States may be wary that international
superpowers could attempt to leverage their power in the IAEA to exert influence on the agency’s
actions. States may also be resistant to accepting new surveillance that might add to the operational
costs of a facility, either through the installation of physical hardware or by diverting labor resources
to accomodate IAEA inspectors as they verify the authenticity of safeguards equipment [51].

It is in this niche that emerging technologies—such as privacy-preserving algorithms—may
prove highly beneficial. Privacy-preserving computation, which is discussed in depth in Chap-
ter 3, would provide the IAEA and State nuclear facilities with the ability to engage in a single joint
calculation that would guarantee the privacy of the information supplied to the calculation. The
cryptographic fundamentals underneath these privacy-preserving techniques assure that any inputs
are never actually shared, and so they could therefore not be exposed in the event that IAEA com-
munications or storage systems are compromised. Due to the underlying algorithms, some types
of privacy-preserving computation may also even be accepted by States that are reluctant to trust
other varieties of encryption. At the same time, the IAEA may be able to limit the amount of in-
formation that is shared back to a facility regarding its analysis techniques, preserving a degree of
independence in its analysis for cases where systems like the EDAS increase the trustworthiness of
input data streams from facility-owned measuring equipment.

Ultimately, privacy-preserving technology would bridge the gap between the wishes of regula-
tors and facilities. It would enable the IAEA to derive insights from datasets that may have been
previously inaccessible under conventional agreements and expectations, while assuring a facility
that they’re yielding minimal privacy through their participation.

2.4.2 Defining a Safeguards Threat Model
To move forward in presenting a solution that both protects the privacy of a State while simulta-
neously improving the safeguards conclusions drawn by the IAEA, it is instructive to consider the
roles and assets of each party. With that perspective, a threat model can be developed to determine
the characteristics required by a desired technology or technological system. Threat models of this
nature are especially important when considering potential privacy-preserving algorithms, as they
rely on cryptographic protocols that behave only under a specific set of assumptions. Outlining a
threat model can help ensure that the assumptions are satisfied.
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A safeguards system can be considered with just the two parties—the IAEA and a State or facility.
Where the chief objective of the IAEA is to be able to detect the diversion of one SQ of nuclear
material in some period of time, it follows that the goal of an “attacker” (or any party attempting
to elude or undermine safeguards) is therefore to successfully divert at least one SQ of nuclear
material in a short period of time without detection. Since safeguards administrators must assume
that the State facility (or another agent of the State) may adopt this anatagonistic role and be actively
attempting to divert nuclear material, the threat model dictates that any real solution be a system
that is secure against malicious adversaries.11 These are parties who may be attempting to cheat
the safeguards protocol.

All safeguards systems must operate within this model, and two examples from the physical
world illustrate the concept well. First, although the safeguards inspector may not know what is
taking place at a facility at all times, random inspections (and especially SNRI) are designed to
expose a party who may be attempting to evade their safeguards reporting requirements. Without
knowledge of the inspection dates and times, it becomes much harder for a State to divert material
without their action ever coming to the attention of the regulator. A second example is the IAEA
policy that stipulates maintaining independence between regulator and facility equipment. In this
case, the State or facility has access to measure any quantity available to it from the operation
of the facility. The IAEA may have access to a subset of this information by installing its own
independent monitors, which have their own intrinsic capabilities and limitations, as it is allowed
under a CSA. As discussed in Section 2.3.2, by installing these systems independently and with
various security mechanisms, the IAEA may trust that its readings and measurements are not being
manipulated. It may also be more confident that the facility has not exploited knowledge of the
IAEA’s measurements (or analytical techniques) to undermine the agency’s analysis.

In the event that the IAEA does use facility equipment, if the IAEA were able to verify the
data collected by a facility instrument as accurate, they might be able to trust that data as a valid
indicator of State compliance in their non-proliferation obligations. Emergent technologies such as
the EDAS allow the IAEA to have greater confidence that readings from facility owned equipment
have not been manipulated. By providing an encrypted data stream directly to the IAEA from a
detector source, a malicious State would be unable to corrupt that output data. Such developments
suggest a promising future for increased levels of data sharing data between the IAEA and States.

Considering this future, safeguards systems are constantly evolving. Section 2.4.1 emphasized
how, to stay ahead of potential adversaries, the IAEA must always be seeking to build upon its ability
to draw strong conclusions about a State’s compliance with their non-proliferation requirements. To
bolster confidence in its conclusions, the IAEA can either work to improve its current technological
capabilities or extend its monitoring capacity. The former is already a focus for scientists and
engineers developing IAEA technology and is not the subject of this dissertation. The latter is in
some ways more challenging, requiring that States be convinced to share more information than they
currently do under the status quo. For the IAEA, expanding monitoring capacity would also come
at the expense of installing more independent measurement capabilities and UMSs, or performing
more inspections.
11For a more detailed discussion of malicious adversaries in cryptographic protocols, see Section 3.4.
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However, a situation could be conceived where the IAEA augments its current capabilities with
non-traditional, highly sophisticated, remotely collected data streams—or even with high quality
operating data collected by equipment owned by a facility as described before. These scenar-
ios would presumably incur only a minimum additional cost to the facility. If such systems are
realized—by either new types of data or leveraging facility systems—then the lone remaining chal-
lenge becomes convincing States and facilities to share the insights from their own measurements.
While these entities will most likely be reluctant to share any more than the minimum amount of
information required by their safeguards agreements to minimize risk, they may be more likely to
cooperate if a digital system could be designed to grant the IAEA insight while simultaneously
assuring the security of any inspected data. Such security guarantees would ensure that nothing be-
yond the mutually agreed upon insights would be exposed to anyone—neither third parties outside
the interaction nor the IAEA.

This dissertation explores the creation of digital systems fitting this description using privacy-
preserving computation. It is important to emphasize here that these digital, cryptography-based
systems are generally independent of the physical systems used by safeguards administrators to per-
form monitoring of nuclear facilities. Those physical systems are often hardware devices, like many
of the tools described in Section 2.3.2. This distinction is important, as even with computationally
secure digital algorithms, the potential still exists that the underlying monitoring technologies could
be exploited. In fact, in any real implementation of a privacy-preserving technique applied to the
measurements of a physical safeguards system, a viable solution would need to be secure against
malicious adversaries in the physical sense and the digital sense.

Physically, a real system relies on the fact that inputs faithfully represent reality; the inputs reflect
data collected by an unencumbered12 measurement device and are not spoofed, artificially generated
values. Chapter 6 considers some potential solutions to these vulnerabilities—including how tools
like the EDAS and commitment schemes may combine to be useful for verifying data integrity—but
this dissertation does not present a final solution. While preventing such exploitation is a critical
(and perpetual) area of research, protecting against those types of physical attacks is outside the
focus of this work.

Digitally, a real system must guarantee that parties are executing the protocol as designed, and
that they are not attempting to cheat by subverting the procedure. While this dissertation will ini-
tially assume cooperating, semi-honest parties in its demonstrations, it should be noted that any
future real implementations ought to use algorithms with enhanced security protecting against hos-
tile opponents. Fortunately, just as random inspections can introduce an unknown element into
existing physical safeguards systems to deter adversarial behavior, similar techniques can help se-
cure a semi-honest digital safeguards system against malicious adversaries. Section 3.4 provides
some discussion of cryptographic protocols that would achieve this stronger security goal, and how
they may be built from the simpler semi-honest constructions.

With that in mind, it is possible to devise digital safeguards systems that meet the goals of al-
lowing a regulator to gain valuable insights into facility operation while simultaneously protecting
the privacy of a facility’s data. Ideally, in such systems it should be mathematically provable that
12Obstacles like strategically placed shielding could prevent a detector from collecting proper measurements.
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the regulator learns only insights relevant to safeguards and nothing else; the privacy and data se-
curity of the State or facility in question will be entirely preserved. While a complete guarantee of
security is certainly a strong claim, privacy-preserving computation offers a computational system
with exactly this capability.
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Chapter 3

Privacy-Preserving Computation

Privacy-preserving computation describes a class of algorithms that are performed between multi-
ple parties while preserving the privacy of at least one of the participant’s inputs to the calculation.
In general, these algorithms all build on cryptographic foundations; however, they span a wide
range of functionality. Fully homomorphic encryption (FHE) enables one party to perform oper-
ations on another party’s encrypted data; zero-knowledge proofs (ZKPs) allow one party to prove
that it knows some fact while another learns nothing other than the proof; secure multiparty compu-
tation (MPC) permits multiple parties to jointly compute some function of their combined inputs,
while no party learns anything about any other party’s input to the calculation.

There are a number of existing practical applications where flavors of privacy-preserving compu-
tation have already been incorporated successfully. These include online auctions, biometrics, cryp-
tocurrencies, anonymous surveys, and contact tracing. In all of these instances, privacy-preserving
computation has enabled two parties to share data and gain insights while being assured that their
own information—whether that be bids, biometric identifiers, or average salaries by gender—would
remain secure.

When considering the application of privacy-preserving computation to the challenges of nuclear
safeguards, multiparty computation (MPC) specifically is a natural fit. Considering a computational
program evaluated jointly by a safeguards regulator and a nuclear facility, MPC could allow the two
parties to execute the protocol while neither must expose their private inputs. An example might be
the joint evaluation of a calculation yielding some quantity of interest to the regulator that requires
data from the nuclear facility beyond what the facility would be willing to share openly through
a comprehensive safeguards agreement (CSA). Using MPC, the regulator could gain safeguards-
relevant insights while the facility’s data would be entirely protected. Taking this example further,
since the International Atomic Energy Agency (IAEA) is often required to maintain a degree of
independence from the facility operators, MPC also protects any evaluation criteria that they supply
to a joint calculation based on a facility’s measurements.

In such a scenario involving only two parties, calculations of this variety can make use of the
subset of MPC protocols designed for the two-party case. Among these two-party computation
(2PC) algorithms, garbled circuits emerged early on as a foundational technique in executing se-
cure computations and have remained one of the most popular classes of algorithms for those tasks.
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Because of this, garbled circuits were chosen as the primary instrument for building the privacy-
preserving analysis and demonstration tools that will be presented in the following chapters. These
are tools that will showcase how MPC can be applied to nuclear safeguards and facilitate the adop-
tion of MPC by safeguards administrators. To lay the groundwork for those discussions, the case
of two-party computation and garbled circuits in particular will be the central focus going forward.

3.1 Secure MPC and Garbled Circuits
The first MPC algorithms were discussed in the academic literature in the mid-1970s, and relied
primarily on how to share secrets between multiple parties [53, 54]. Over time, these algorithms
evolved [55], and in the 1980s Andrew Yao introduced the modern concept of MPC [56] followed
by techniques to solve arbitrary problems using MPC techniques [57]. To frame the question he
was trying to solve, Yao popularized the Millionaire’s Problem, posed as the following:

Two millionaires wish to know who is richer; however, they do not want to find out
inadvertently any additional information about each other’s wealth. How can they carry
out such a conversation? [56]

In Yao’s original oral presentations on the subject,1 he introduced the general concept of using
Boolean circuits as mechanisms for performing MPC [56, 57]. Yao’s work was cited in work by
Goldreich, Micali, and Wigderson, who are credited2 with the first written description of circuit-
based MPC [55]. In 1990, Beaver, Micali, and Rogaway proposed the name “garbled circuit” to
refer to their construction built on a symmetric primitive—a modification of the Goldreich-Micali-
Wigderson (GMW) technique [60]. Circuits that employ symmetric primitives in this way are con-
temporarily distinguished as “Yao’s garbled circuits”.

Secure MPC is defined as a procedure in which two or more parties jointly evaluate a function
of their combined inputs, and where no party learns anything about the inputs of any other party
besides what can be gleaned from the shared output of the function. Mathematically, this is for-
malized by defining a desired functionality f : ({0, 1}∗)m → ({0, 1}∗)m, where {0, 1}∗ denotes a
string of 0s and 1s of arbitrary length, and m is the number of parties participating in the compu-
tation [61]. If xi ∈ {0, 1}∗ is the binary input of party i ∈ {1, ...,m}, then f (x1, ..., xm) denotes
the output of the functionality f with m distinct components and fi denotes the output component
accessible only to party i. In the two-party case, m = 2 and the functionality f is reduced to
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗.

In general, MPC protocols are expected to satisfy at least two fundamental assumptions: that
they enforce correctness and privacy [62–64]. First and foremost, the calculation must guarantee
that the answer be correct. If the algorithm does not yield the correct answer to the algorithm being
evaluated, it is essentially useless. To guarantee correctness, the algorithm must output the answer
1Most publications cite Yao’s articles in 1982 and 1986 as the origin of garbled circuits; Goldreich clarifies that the
pertinent information was provided in the accompanying oral presentations [58: p. 194].

2Though the record is frequently offered in fragments, a relatively clear and complete history of garbled circuits is
documented by Bellare, Hoang, and Rogaway [59].
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that corresponds to the given inputs with a probability of exactly one. Second, a calculation must
also preserve privacy, a premise that seems obvious enough. In a privacy-preserving calculation,
nothing must be revealed about the inputs provided by either party other than any information that
is directly conveyed by the result of the evaluated function. If privacy is not preserved then the
algorithm is obviously not an instance of privacy-preserving computation. Formally, this means
that the probability of producing the correct answer using anything less than a complete set of inputs
is the same as the probability of producing any other potential answer from that (incomplete) set
of inputs. More simply, any party that does not know all of the inputs to the privacy preserving
protocol (which is, ideally, every party to the computation) ought to be no more likely to be able to
deduce the correct answer from that information than if they were to randomly guess.

In addition to these two requirements, an MPC protocol may be expected to provide more rigor-
ous security guarantees depending on the implementation scenario. Various security threat models
exist, ranging from cases where parties are generally considered at least partially trustworthy, to
cases where all parties to the computation must be treated as potential adversaries. In the former
case, a notion of passive security is sufficient. Parties engaging with MPC in this way are deemed
“honest, but curious” or semi-honest, and while they may be trusted to follow the protocol as it is
defined, they may also attempt to use every piece of information that they receive during the course
of the calculation to learn as much information as possible [63]. Despite being the least strict secu-
rity models, passively secure protocols tend to be the easiest protocols to implement—both in terms
of complexity and their computational burden. As such, passively secure protocols often form the
foundation for building protocols with strong security assurances.

For cases where parties cannot be trusted at all, other more rigorous security models may serve as
the basis for a privacy-preserving algorithm. In actively secure models, privacy is maintained even
in the case that a party attempts to cheat or break the protocol [63]. This party may attempt to take
some action that forces the circuit to produce the wrong answer (violating the correctness criteria),
or alternatively, take some action that gives a public answer revealing one of the other parties inputs
(violating the privacy criteria). Although such a malicious adversary may not be caught by an
actively secure protocol, an honest party can be assured that their inputs to the calculation will
be protected regardless. To deter malicious adversaries altogether, parties may turn to a covertly
secure model where the protocol exposes a cheating party with some probability [63, 65]. While the
ensuing descriptions of MPC will focus on passively secure systems, more discussion of protocols
secure against malicious adversaries is offered in Section 3.4.

3.2 Yao’s Garbled Circuits
Yao’s garbled circuit protocol is one of the most popular techniques for implementing 2PC [63].
Like other circuit-based MPC techniques, the method is founded upon the fact that any computable
function (i.e. any function that can be evaluated by a computer) can be formulated as a Boolean logic
circuit. The circuit consists of individual wires—each holding a value of zero or one—connected
by Boolean logic gates: NOT, AND, OR, NAND, NOR, XOR, or XNOR.

A sample logic circuit, a comparator, is shown in Figure 3.1. The comparator is a Boolean circuit
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Figure 3.1: A comparator circuit evaluating whether the value on wire wx is greater than, less than,
or equal to the value on wire wy. Gates are numbered in shapes corresponding to the IEEE/ANSI
91/91a-1991 standard and wires are numbered separately in circles. Only one of the three output
wires will ever be true, indicating the result of the comparison.

representation of the function

f(vx, vy) =


100, vx < vy

010, vx > vy

001, vx = vy

. (3.1)

Here, the Boolean values on wires wx and wy are respectively vx and vy, where vx, vy ∈ {0, 1} and
f (vx, vy) ∈ {0, 1}3.

For cases where the function to be computed is publicly known to both parties participating in
the protocol, the two parties may jointly construct a circuit that correctly evaluates the function.
The structure of this circuit is public knowledge. Then, the parties perform the interactive protocol
to learn the result of the calculation while their inputs remain private. This garbled circuit protocol
is described in the following section.

3.2.1 The Garbled Circuit Protocol
To illustrate the garbled circuit protocol, this section will consider a scenario with two parties: A
and B. The notation used here is loosely derived from the standard notational variations that have
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evolved through previous descriptions of the protocol [63, 66–71]. The two parties follow the pro-
tocol through four stages. First, both A and B jointly create and agree upon a circuit that evaluates
a function of their choice. Second, A generates a “garbled” version of this circuit, essentially en-
crypting the circuit in such a way that the right set of decryption keys could decrypt the circuit to
yield any potential result of the function. Third, the A and B securely exchange the circuit and the
necessary inputs; B ultimately receives the decryption keys that solve the circuit correctly for the
inputs of both A and B. Fourth and finally, B uses those decryption keys to learn the result of the
secure computation. Each of these stages is described in detail below.

Constructing the Circuit

To begin, bothA andB agree to jointly compute some function f that can be solved using a circuit C
with m wires and n gates. Let W be the set of all wires {w1, w2, ...wm}, where wi is a wire with
index i ∈ {1, ...m}. Every wire in the circuit carries a value vi ∈ {0, 1}. Similarly, let G be the set
of all gates {g1, g2, ...gn}, where gj is a gate with index j ∈ {1, ...n}.

While many (and likely most) of the circuit wires will both originate and terminate at a gate, the
circuit will have some number of wires that define the circuit “edges”. Wires that do not originate
from a gate will generally be considered input wires of the circuit, cumulatively referred to as the
set WI . Conversely, wires that do not terminate at a gate will generally be considered output wires
of the circuit, and will be referred to as the set WO. Both WI ,WO ⊂ W , since any useful circuit
must have “internal” wires that are neither inputs nor outputs. When the value of every wire in WI

is defined, the values cascade through the circuit, the deterministic Boolean logic gates forcing the
values on every wire in W to acquire a defined value. In this case, the result of the calculation is
given by the values on the wires in WO.

Circuit C represents a jointly evaluated function, and so A and B must each have inputs to the
circuit that represent their inputs to function f . Let the input wires that represent the inputs of A be
WA, such that WA ⊆ WI . Likewise, let the input wires that represent the inputs of B be WB, such
that WB ⊆ WI . In general, for two parties, WI = WA ∪WB.

Since every wire in C can carry one of two potential values, each gate gj in circuit C can be
represented by a truth table matching input wire values to the value on the gate’s output wire.
Boolean logic gates most often accept two input wires (they have a fan-in of two) and always produce
one output wire. The relationship between input wire values and output wire values is defined by
the operation gj : {0, 1}2 7→ {0, 1}. This produces a table of 22 rows, one for each permutation of
the input wire values. A set of three example truth tables are depicted in Figure 3.2.

Garbling the Circuit

The garbling process starts with Party A, the garbled circuit generator, assigning two random labels
to every wire in circuit C—label ℓvii denotes the label on wire wi for wire value vi ∈ {0, 1}. Each
label is a randomly selected κ-bit binary string ℓvii ∈R {0, 1}κ. Here, ∈R denotes a uniform random
sampling (following the notation of Kolesnikov and Schneider [66]), and κ defines the security-
parameter of the circuit. It can be seen in Figure 3.3a that since each row in a truth table possesses



CHAPTER 3. PRIVACY-PRESERVING COMPUTATION 32

(a) AND

wx wy wz

0 0 0
0 1 0
1 0 0
1 1 1

(b) OR

wx wy wz

0 0 0
0 1 1
1 0 1
1 1 1

(c) XOR

wx wy wz

0 0 0
0 1 1
1 0 1
1 1 0

Figure 3.2: Truth tables defining the behavior of an AND gate, an OR gate, and an XOR gate.

(a) Labeled

wx wy wz

ℓ0x ℓ0y ℓ0z

ℓ0x ℓ1y ℓ0z

ℓ1x ℓ0y ℓ0z

ℓ1x ℓ1y ℓ1z

(b) Encrypted

Ciphertexts

Eℓ0x,ℓ
0
y
(ℓ0z)

Eℓ0x,ℓ
1
y
(ℓ0z)

Eℓ1x,ℓ
0
y
(ℓ0z)

Eℓ1x,ℓ
1
y
(ℓ1z)

(c) Garbled

Ciphertexts

Eℓ1x,ℓ
1
y
(ℓ1z)

Eℓ0x,ℓ
0
y
(ℓ0z)

Eℓ1x,ℓ
0
y
(ℓ0z)

Eℓ0x,ℓ
1
y
(ℓ0z)

Figure 3.3: Labeled, encrypted, and garbled truth tables for an AND gate.

a unique combination of input wire values, it will also contain a unique set of input wire labels.
Since these labels were selected randomly, revealing a label without any additional information
confers no information about the associated wire value.

Once wire labels have been used to mask each potential wire value in the circuit, PartyA proceeds
through each gate, encrypting each row in each truth table. Generally, the encryption process uses
some symmetric encryption function Ek1,k2 (ℓ) to encrypt plaintext label ℓ with keys k1 and k2.
Consider a row in a truth table with input wires wx and wy along with output wire wz carrying
value vz = gj (vx, vy). The encrypted output wire label is given as a ciphertext token evx,vy , defined
as

evx,vy = Eℓvxx ,ℓ
vy
y
(ℓvzz ) . (3.2)

A fully encrypted table is illustrated in Figure 3.3b. While each output wire label is obscured
through encryption, the token’s position still betrays information about its associated wire value.
This association can be removed by shuffling the ciphertexts, removing all apparent correlation
between the tokens and the values they represent. A table of permuted ciphertext tokens is depicted
in Figure 3.3c. Given exactly one label from each input wire to a gate, an onlooker could only
successfully decrypt one ciphertext. That decrypted output wire label would match the truth table
row containing those input wire labels. No other ciphertexts could be decrypted, and without more
knowledge, the shuffling process prevents that onlooker from learning anything about the label that
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was decrypted. This process is repeated for each gate in the circuit, and the full collection of garbled
truth tables and tokens constitutes the “garbled circuit” [60]. Note that B has played no role the
garbling process.

As mentioned in the introduction to the protocol, the complete garbled circuit may be thought
of as an encrypted version of the function represented by the circuit. Given the decryption keys for
some circuit input values—specifically the labels on the input wires for those values—the circuit can
be decrypted to yield the result of the calculation. The process of securely exchanging those wire
labels (the decryption keys) and decrypting the circuit is what allows the garbled circuit protocol to
maintain privacy.

Exchanging the Circuit and Inputs

Party A, the garbled circuit generator, may now share the garbled circuit and necessary input wire
labels with B, the garbled circuit evaluator. First, A shares the garbled circuit. For each gate in
C, A passes B the corresponding garbled table of encrypted tokens. Sharing the garbled tables
in this way reveals no information about either party’s private inputs; the garbled tables merely
contain encodings for the complete set of possible circuit configurations. However, to complete the
MPC protocol by decrypting the circuit, B must possess all of the input wire labels corresponding
to the input values for both parties. These input wire labels must be transferred in a manner that
guarantees the privacy of both parties.

For A, passing the labels for its private input values to B is a straightforward procedure. These
wire labels—namely {ℓvii | wi ∈ WA}, where A’s choice of input value is vi on wire wi—may be
transferred directly to B. Since all of the wire labels were randomly chosen and assigned by A
alone (unseen by B), any input wire labels that B receives could represent either Boolean value
that could be carried on the wire. On the other hand, B must use a clever workaround to receive
the labels corresponding to its own input wire values from A; a direct transfer does not preserve
privacy. If B were to ask A for the labels corresponding to its choice of input wire values, then A
learns this bit choice. Conversely, if A were to transfer both potential labels to B, then B could
use those two labels together with the single label corresponding to A’s input to decrypt tokens for
multiple truth table rows.

Instead, A and B initiate an oblivious transfer (OT) protocol to transmit B’s labels privately.
Using OT, one party (the sender) provides multiple messages as its inputs to the OT protocol, while
the second party (the receiver) provides its choice of message to receive as its input. The algorithm
returns only the chosen message to the receiver, and it returns nothing3 to the sender [72].

Generally, OT is possible with many input data choices. 1-out-of-n OT, denoted
(
n
1

)
OT, corre-

sponds to OT performed with n choices entered into the protocol by the data provider.4 However,
since garbled circuit wires have Boolean values, the simpler 1-out-of-2 OT suffices for exchanging
3Equivalently, some OT constructions return the null string (which is arguably nothing) back to the sender providing
the messages.

4The binomial coefficient notation distinguishes this “chosen 1-out-of-n OT” construction from the alternative pre-
sented by Even, Goldreich, and Lempel where the receiver randomly receives one of the n inputs, each with equal
probability [72].
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wire labels between A and B. Using
(
2
1

)
OT for an input wire wi ∈ WB carrying one of B’s inputs,

A provides both potential wire labels (ℓ0i , ℓ1i ) to the OT algorithm, and B provides the value vi, its
choice of which label to receive. The two parties proceed to engage an interactive protocol that
results in an oblivious transfer of data; B receives the one wire label corresponding to its input
value on wire wi, and A learns nothing about which label B received.

The exact mechanism behind the OT construction is not generally important in the operation
of garbled circuits, and OT is often treated as a black box algorithm. Various methods exist to
accomplish OT [72–76], though a popular and reasonably intuitive method for performing

(
2
1

)
OT

was suggested by Even, Goldreich, and Lempel [72]. In that version of
(
2
1

)
OT, public-private key

cryptography is used to mask the input choice of the circuit evaluator. Party A chooses two random
label “masks”, one for each of its inputs to the OT protocol, and also generates a public-private key
pair. Both masks and the the public key are shared with B. Party B then generates a mask of its
own, which it encrypts using the public key. At this point, B makes its selection of which label
to learn; it uses the mask provided by A matching that selection to encrypt the already-encrypted
token it just created using the public key. Sending this twice-encrypted token back to A, A uses
all of the information in its possession to attempt to decrypt the token. First, A applies each of
the masks it generated to produce two potential versions of the evaluator’s mask encrypted under
the public key. Then, it uses the private key to decrypt both of these versions, giving it the mask
generated by B, as well as a bogus mask. Since the mask B generated was random, A should not
be able to distinguish the true mask from the bogus mask. At this point, A can use the two masks
to encrypt the two input labels. Party A sends these masked labels to B, who can then use its own
mask to decrypt the label of its choice. Since B does not know the private key, it has no way to
learn the bogus mask, and so it is unable to decrypt anything more than the label it chose.

Finally, after completing the OT protocol, B is in possession of two labels for each circuit input
wire: one corresponding to A’s unknown input value, and one corresponding to its own known
input value.

Evaluating the Circuit

Equipped with labels representing the true inputs of both parties for the set of input wires WI ,
partyB can now decrypt exactly one output wire label for each gate in C. To perform this decryption,
the evaluator must know the symmetric decryption function Dk1,k2 corresponding to the symmetric
encryption function Ek1,k2 used by the circuit generator. This decryption function must satisfy the
relation

Dk1,k2 (Ek1,k2 (ℓ)) = ℓ . (3.3)

Party B will begin by using D and the set of input wire labels to decrypt output wires for all gates
connected to the circuit’s input wires. Then, the decrypted labels on the output wires from those
gates are harnessed to decrypt subsequent gates in the circuit. This process continues until all gates
in the circuit have been decrypted.

The literature contains suggestions for multiple methods of identifying a successful decryption.
Most simply, a guess-and-check technique can be applied to the encrypted tokens in any order. If
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some indicator is appended to each label prior to encryption—for example a string of σ consecutive
zeros—then a successful decryption can be identified with high probability5 as the only decryption
result with that suffix. If the evaluator randomly decrypts labels until encountering the designated
output label, they will perform an average of 2.5 decryptions per gate, the expected value of sam-
pling one, two, three, or four decryption attempts with equal probability. To improve efficiency, it
is common to use the point-and-permute method, described with more detail in Section 3.2.2.

Finally, once the circuit evaluator B learns the true labels associated with all of the circuit output
wires WO, the two parties may come together to learn the calculation result. If A exposes the
mapping between output wire labels and values and B reveals the decoded output wire labels, the
two may both learn the result of the calculation [63]. In this simple version of the garbled circuit
protocol, these final exposures do not forfeit any privacy, since by definition MPC allows both
parties to know the result of the joint calculation, but nothing more.

3.2.2 Optimizations for Yao’s Garbled Circuits
In their most basic form, garbled circuit protocols are computationally expensive. Examining the
circuit constructions described earlier, it can be deduced that a garbled circuit essentially creates a
structure that is able to represent every possible configuration of a system—with only one of these
possibilities being jointly solved by the computation’s participants. With that in mind, significant
effort has been directed towards optimizing garbled circuit protocols to reduce their computational
burden. These modifications tend to save time or storage requirements, either by reducing the
number of gates that must be encrypted, reducing the number of encryption operations required by
a given type of gate, or reducing the quantity of information that must be communicated between
parties.

Point-and-Permute

One commonly used optimization eliminates the need for the guess-and-check decryption procedure
described in Section 3.2.1. This procedure, called point-and-permute,6 assigns a pointer to each
wire label such that when input wire labels to a gate are known, they directly indicate which output
label should be decrypted [60].

For Boolean circuits, this pointer need only be one bit and is commonly referred to as the per-
mutation bit [66, 70, 77].7 If p0i , p1i ∈ {0, 1} represent the permutation bits for wire wi, then the full
keys used to encrypt the output wire label (and permutation bit) are kvi

i = ⟨ℓvii ∥ pvii ⟩. Here, the op-
erator ∥ denotes string concatenation (such that if a label ℓ is a κ-bit binary string and a permutation
5If D returns decryptions that are uniformly distributed, then the likelihood that any incorrect decryption also ends in
σ zeros is 2−σ .

6Evans, Kolesnikov, and Rosulek note that this name became popular around 2010, well after the technique’s introduc-
tion [63].

7It is also occasionally named the select bit [78], signal bit [70], or color bit [79, 80].
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bit p is a single bit, then the associated key k is a (κ + 1)-bit string).8 To avoid disclosure of any
information about a label’s associated value, the permutation bits must be chosen independently
of the labels. This independence can be achieved by randomly selecting one permutation bit, say
p0i ∈R {0, 1}. Then, since both permutation bits must be different, p1i = ¬p0i , where ¬ denotes a
logical negation.

Given this construction, each row in a gate’s truth table will have a unique set of both labels
and permutation bits. Because each pair of permutation bits was selected randomly, ordering the
garbled table of ciphertext tokens by the ordered tuple of input wire permutation bits in each row
constitutes a random permutation of the table. Once the circuit evaluator possesses the keys nec-
essary to decrypt a gate’s truth table, they use the two labels to decrypt the token at the index
defined by the permutation bits. As an example, consider the case of a circuit evaluator possessing
keys kva

a = ⟨ℓvaa ∥ pvaa ⟩ and kvb
b = ⟨ℓvbb ∥ pvbb ⟩ to a standard Boolean gate with fan-in two—a gate

with input wires wa and wb. The evaluator also has access to a garbled table of tokens for that gate,
where token eva,vb has been placed in the sorted table according to its ordered pair of permutation
bits (pvaa , pvbb ). The evaluator’s keys point them directly to this entry in the garbled table, and so
no more than one decryption is required for any gate. That is less than half the average number of
decryptions required for the guess-and-check method described in Section 3.2.1

Row Reduction

The number of encryptions required per gate during the garbling process can also be reduced using
a technique named row reduction, a concept introduced in by Naor, Pinkas, and Sumner [81]. In
traditional garbling schemes, all wire labels are selected from a uniform random distribution of
κ-bit strings {0, 1}κ, and are thus independent of the encryption function E. Instead, to adminis-
ter the garbled row reduction optimization, one output wire label for each gate gi may be chosen
such that the result of one encryption is a known constant. For example, let the ciphertext token
corresponding to the truth table row with input wire values va and vb be chosen for reduction. An
encryption function E would be chosen such that the ciphertext would be a string of zeros with
some arbitrary length:

eva,vb = Eℓvaa ,ℓ
vb
b

(
ℓgj(va,vb)c

)
= {0}∗ . (3.4)

While identifying encryption inputs satisfying this relationship may be challenging for some en-
cryption functions, it is straightforward for any E based on the one-time pad.9

8Alternatively, Ball, Malkin, and Rosulek suggest that rather than affixing the permutation bit to the κ-bit label, the
label might be truncated, with the permutation bit(s) replacing the truncated digits [79]. This variation preserves the
length of the key as κ, which is often advantageous when executing garbled circuits in practice that use cryptographic
primitives requiring κ-bit inputs (e.g. 128-bit AES or the SHA-256 hash function). The authors note that this minor
degradation process is used in all implementations of which they were aware.

9The one-time pad encryption scheme simply uses a κ-bit key k to encrypt a message m of the same length by applying
the exclusive or (XOR) operation to each bit: e = m⊕ k.
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wa wb wc

ℓ0a ℓ0b ℓ0a ⊕ ℓ0b
ℓ0a ℓ0b ⊕∆ ℓ0a ⊕ ℓ0b ⊕∆

ℓ0a ⊕∆ ℓ0b ℓ0a ⊕ ℓ0b ⊕∆
ℓ0a ⊕∆ ℓ0b ⊕∆ ℓ0a ⊕ ℓ0b

Table 3.1: The labels dictated by the FreeXOR technique for an XOR gate.

FreeXOR

One of the most consequential garbled circuit optimizations is the FreeXOR technique presented by
Kolesnikov and Schneider [66]. The premise of this optimization strategy is recognizing that for
common gates with even output parity10—XOR and XNOR gates, each with two values of zero and
one in the output column of their respective truth tables—the relationship between truth table labels
and values is naturally obscured [63]. Intuitively, this is the concept exploited by the information-
theoretic one-time pad, where any given output wire has the potential to be associated with either
label on a given input wire.

Using the FreeXOR technique, XOR and XNOR gates can be securely encoded and evaluated with
simple computational instructions, entirely avoiding the significantly more expensive burden im-
posed by encryption. To implement the technique, a global key offset ∆ is first assigned to a circuit
by the circuit generator. The global offset is a randomly selected string in the length of the security-
parameter: ∆ ∈R {0, 1}κ. Next, labels are randomly selected for all values of zero on input wires
to the circuit, similar to the standard garbled circuit protocol:{

ℓ0i ∈R {0, 1}κ | wi ∈ WI

}
. (3.5)

Labels paired with the values of one on the circuit’s input wire are not selected at random, however,
and are instead derived from the zero-value wire labels using the global key offset:{

ℓ1i = ℓ0i ⊕∆ | wi ∈ WI

}
. (3.6)

After determining labels for all of the circuit’s input wires, the circuit generator proceeds through
the circuit gate-by-gate. For gate gj in G, if gj is either an XOR or XNOR gate, the labels on the output
wire are calculated directly from the input wire values. If gate gj has input wires wa and wb along
with output wire wc, then for any set of values va, vb, and vc, the corresponding output wire label
is given by ℓvcc = ℓvaa ⊕ ℓvbb . The full arrangement of values is shown in Table 3.1. Just as the
circuit generator directly calculates all of the output wire labels using the input wire labels, so too
may the circuit evaluator calculate the output wire label corresponding to whichever input wire
10“Common” gates is a key qualifier; a gate that follows or reverses just one of the input wires could not be used with

the FreeXOR technique despite having the “even” quality described by Evans, Kolesnikov and Rosulek, but these
gates are highly uncommon and generally unnecessary in MPC.
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labels they are given. Since the XOR process is not computationally intensive compared to other
expensive cryptographic primitives, the computation required to prepare or evaluate any of these
gates is essentially free when compared to non XOR/XNOR gates.

For gates that are not “free”, the circuit generator follows a different procedure. Since the input
wire labels for these gates cannot be used to produce the output wire labels securely through the
same XOR operation, the output wire labels must be freshly generated. This follows the same
procedure used by the circuit’s input wires, where the gate’s output wire label for value zero is
randomly selected while the label for value one is derived using the global key offset (reproducing
Equations 3.5 and 3.6, where wi is now the output wire of gate gj).

From there, the garbling process remains fairly similar to the standard garbled circuit protocol,
though care must be taken to ensure the protocol’s security. Since the circuit’s labels are no longer
independent—all related to one another via the global key offset—it is imperative that the global
key cannot be reconstructed by the circuit evaluator.

First, this means that the encryption process must use input labels as symmetric encryption keys
in such a way that no correlation exists between the keys and the resulting ciphertext. Encryption
of this sort may be accomplished by using a random oracle (RO) to produce a random, reproducible
string for any given set of concatenated input wire labels. The resulting ciphertext can be used as a
one-time pad to encrypt the output label. Critically, since the same pair of wires could conceivably
be used as inputs to different gates, the RO should also accept the index j of the gate being garbled
along with the concatenated input labels [82]. Otherwise, the RO would return the same value
for two different gates constructed using the same set of input wires, rendering the one-time pad
insecure. Explicitly, the equation

eva,vb = H (ℓvaa ∥ ℓvbb ∥ j)⊕ ℓgj(va,vb)c (3.7)

defines the ciphertext token for the row with input wire values va and vb [66]. FunctionH : {0, 1}∗ 7→
{0, 1}κ represents the RO, usually implemented in practice by a hash function (e.g. SHA-1 or SHA-
256) [66, 82].

Second, since the circuit evaluator must be prevented from learning the global key offset, the final
exposure step of the traditional garbled circuit protocol must be modified. If this were not the case,
the circuit evaluator could reconstruct the global key as soon as the circuit generator revealed the
mapping between output wire labels; they would know both labels on at least one wire, and those
labels would differ only by the offset. Instead, the circuit generator can conceal the output wire
label-value relationship using a method analogous to the one used for encrypting garbled tables.
For each output wire wi ∈ WO, the generator creates the ciphertext token

evi = H (ℓvii ∥ ‘out’ ∥ i)⊕ vi . (3.8)

This procedure masks each output value using its label, such that a circuit evaluator may reveal the
output wire value. Without ever learning the other output wire label or enough to deduce the global
key offset, the FreeXOR method is secure.

Finally, the decryption process for a circuit that has been encoded using the FreeXOR technique
is straightforward. Once the circuit evaluator possesses labels on each input wire, either through
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direct exchange or via OT, the evaluator proceeds gate by gate as in the traditional protocol. For
gates that are “free”, the evaluator simply computes the XOR of the gates’ input wires. For every
other gate (and the output wires), the evaluator can evaluate H for the input wire labels it possesses
and the public gate index, exploiting the property that the one-time pad is a self-inverse encryption
scheme. The evaluator repeats this process until the have decrypted all gates and have learned the
circuit outputs.

The FreeXOR technique also benefits from the highly valuable property that it is compatible with
other optimization techniques; it can be used with both the point-and-permute and row reduction
optimizations. First, point-and-permute can be made to work with FreeXOR by noting that the two
permutation bits on any wire are opposites, p1i = ¬p0i , and that this may be equivalently expressed by
taking the XOR of either bit and one: p1i = p0i ⊕1. Expressing the relationship between permutation
bits in this way allows Equation 3.6 to be extended such that this constant is appended to the global
key offset: {

k1
i = k0

i ⊕ ⟨∆ ∥ 1⟩ | wi ∈ WI

}
(3.9)

where kvi
i = ⟨ℓvii ∥ pvii ⟩. This key value kvi

i is used in place of label ℓvii in the remainder of the Fre-
eXOR instructions. To combine FreeXOR with the row reduction technique, the output labels from
non-free gates must be chosen such that both Equations 3.4 and 3.8 are both satisfied. Specifically,
this is

ℓgj(va,vb)c = H (ℓvaa ∥ ℓvbb ∥ j) , (3.10)

since the XOR of any bit and itself is zero.

3.3 Other Circuit Constructions
Yao’s garbled circuit became an attractive MPC protocol due to the efficiency of evaluation and
communication. As described earlier, garbled circuits only require OT operations to exchange in-
puts for one of the parties, and otherwise can be constructed and evaluated using fast symmetric
encryption. Other circuit-based MPC protocols exist, however, each with their own merits that best
fit different situations. Some alternative protocols are presented here for completeness, but they will
not be used for any of the work presented in later chapters. It is still important to consider these
variations when discussing MPC applications in nuclear safeguards in general though, as there are
likely analysis contexts where they would find substantial utility.

3.3.1 GMW Circuits
A popular alternative to Yao’s garbled circuit protocol is the Goldreich-Micali-Wigderson (GMW)
protocol. Like garbled circuits, the GMW protocol is formulated using digital logic circuits [55,
63]. However, the two methods differ in their methods for sharing and evaluating gate values.

Where the garbled circuit protocol assigns κ-bit labels to each wire to use as symmetric encryp-
tion keys, the GMW protocol uses a secret sharing scheme to compute single bit shares to obfuscate
the wire values. Specifically, in the case of two parties A and B, each party generates a random bit
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S
(
sBa , s

B
b

)
= vc

S(0, 0) =
(
sAa ⊕ 0

)
∧
(
sAb ⊕ 0

)
S(0, 1) =

(
sAa ⊕ 0

)
∧
(
sAb ⊕ 1

)
S(1, 0) =

(
sAa ⊕ 1

)
∧
(
sAb ⊕ 0

)
S(1, 1) =

(
sAa ⊕ 1

)
∧
(
sAb ⊕ 1

)
Table 3.2: The four potential configurations that produce vc from the perspective of A. Shares sAa
and sAb are considered fixed since they are known to A.

mask ri ∈R {0, 1} for each input wire wi where they know their own choice of value (the sets WA

and WB, respectively). From these bit masks, a party may compute two shares for the value on the
ith wire: sAi = ri and sBi = ri ⊕ vi such that vi = ri ⊕ (ri ⊕ vi) = sAi ⊕ sBi . The parties exchange
shares while keeping one share for itself; A gives each share sBi to B and B gives each share sAi to
A. No secure information is revealed in this procedure, since all shares are derived from random
number ri and so are themselves randomly distributed.

The circuit is then evaluated gate by gate. For each gate in the circuit, the value on the gate’s
output wire may be calculated by anyone knowing all of the shares to the gate’s input wire values. As
an example, consider an AND gate where the output value is vc = va∧vb =

(
sAa ⊕ sBa

)
∧
(
sAb ⊕ sBb

)
.

Knowing all four share values sAa , sBa , sAb , and sBb enables direct calculation of vc, which could
then be split into shares sAc and sBc . When the gate’s output wire is dependent on the private inputs
of both parties, neither party can ever know all of the shares. Otherwise, they would be able to
reconstruct the private values of the other party and there would be no security.

Instead, the parties need to find a way to exchange the shares sAc and sBc without revealing their
private information. OT provides the solution. The exchange process begins with one party com-
puting the complete set of potential values for vc using their own known shares and the possible
shares of the other party. Let A be the first party. From this A’s perspective, there are no more than
four configurations that could produce vc. This is due to the fact that there are up to two shares
being held by B, which are unknown to A, along with the fact that each share could be either a zero
or a one. For A, the potential value vc can now be expressed as a function dependent on B’s shares:
vc = S

(
sBa , s

B
b

)
. Table 3.2 illustrates these configurations from the perspective of A, where sAa and

sAb are known and thus essentially fixed. Like with the input wires, each potential value of vc may
then be converted into shares by A—namely sAc = rc and sBc = rc ⊕ S

(
sBa , s

B
b

)
for each permu-

tation of sBa and sBb . Then, A and B engage in 1-out-of-4 OT, where A provides the four possible
values of sBc as choices and B provides the true values of sBa and sBb as its choice. B ultimately
learns share sBc for wire wc and A learns nothing about B’s choice.

While this process could work for any arbitrary gate, two classes of gates can be solved in a
more efficient manner. The associativity of the XOR operation enables the XOR gate to be evaluated
directly, without requiring OT. Now, where

vc =
(
sAa ⊕ sBa

)
⊕
(
sAb ⊕ sBb

)
=

(
sAa ⊕ sAb

)
⊕
(
sBa ⊕ sBb

)
, (3.11)
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A and B can compute the first and second terms, respectively, as their shares of vc; no OT is
necessary. Likewise, NOT gates can also be simplified. Inverting the secret-shared value can be
accomplished trivially by inverting one of the two shares. For example, a NOT gate with input wire
value vi composed of shares sAi , sBi (one each held by parties A and B) has output value vi ⊕ 1.11

This value would be properly represented by shares sAi ⊕ 1 and sBi , where sAi ⊕ 1 can be computed
exclusively by A. Again, no OT is required. All other logic gates may be implemented either using
these techniques or by recognizing that the AND, XOR, and NOT gates represent a set of universal
logic gates [83: §10.1.6A]. These three methods of gate evaluation are sufficient for solving any
GMW Boolean circuit.

Although this scheme affords a reduction in complexity, the tradeoff is that the GMW proto-
col requires a 1-out-of-4 OT per gate, as opposed to the 1-out-of-2 OT per evaluator input wire
required in Yao’s garbled circuit protocol. On the other hand, observing that expensive OT opera-
tions may be largely precomputed during an offline phase before commencement of the interactive
protocol may make GMW a more attractive option than Yao’s garbled circuit protocol in certain
circumstances [84].

3.3.2 Arithmetic Circuits
Arithmetic circuits present another alternative to the traditional garbled circuit protocol. Traditional
garbled circuits, as well as GMW circuits, are constructed based on the notion that every wire
in the circuit may possess one of two possible values—a zero or a one. While this concept is
intuitive and mimics the natural world where digital circuits have wires with Boolean values, circuits
represented by virtual circuits are not subject to this limitation. Instead, the wires in arithmetic
circuits may be multivalued, a property that allows single gates in the circuit to perform more
elaborate mathematical operations than Boolean gates.

A simplified notion of arithmetic circuits can be intuited by extrapolating from Boolean circuits.
In a Boolean circuit, each wire can take one value in base two; wire wi was previously defined
to carry value vi ∈ {0, 1}, which could be equivalently written vi ∈ Z2. Here Z2 represents the
congruence class of integers modulo 2. When considering Boolean circuits in this way, an XOR
gate can be interpreted as performing addition (modulo 2) while an AND gate can be interpreted as
performing multiplication (modulo 2).12

For arithmetic circuits, this concept can be generalized to integer rings modulo m. Where wires
in the Boolean circuit were restricted to carrying values in Zm, wires in an arithmetic circuit may
carry any value in Zm [79]. Where labels in a Boolean circuit with security parameter κ are ℓ0i , ℓ1i ∈
{Z2}κ (now adopting the algebraic ring notation for the set of base two integers), labels in an
arithmetic circuit are assigned as ℓ0i , ℓ1i ∈ {Zm}κm . To maintain the same level of security (same
label length) as a Boolean garbled gate with security parameter κ, an arithmetic circuit must have
κm = ⌈κ/ log2(m)⌉ [79].
11Inversion can be considered a special case of the XOR operation when one of the inputs has a fixed value of one.
12Figures 3.2a and 3.2c are illustrative.
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Additionally, this generalization suggests that some of the optimizations developed for Boolean
circuits might also be extended to arithmetic circuits. This turns out to be the case, and where
Boolean circuits can take advantage of the FreeXOR technique to reduce the number of cipher-
texts that must be exchanged between parties, so too can arithmetic circuits take advantage of the
equivalent operation in Zm to perform addition (modulo m) for “free”. Given a wire wi with label
ℓ0i ∈R Zm

κm along with a global key offset ∆m ∈R Zm
κm (both the label and offset are vectors of

Zm-elements), the complete set of labels on wire wi can be given as{
ℓvii = ℓ0i + vi∆m | vi ∈ Zm

}
. (3.12)

Then, given a gate evaluating the sum vc of any two input wire values va, vb ∈ Zm, a party knowing
two input wire labels ℓvaa and ℓvab —but who does not know va and vb—may still be able to calculate
the corresponding output label:

ℓvcc = ℓ0c + vc∆m =
(
ℓ0a + ℓ0b

)
+ (va + vb)∆m = ℓvaa + ℓvbb . (3.13)

Using the same form, arithmetic circuits may also perform “free” multiplication by a publicly known
constant, as well as implement the point-and-permute optimization technique [79].

Arithmetic circuits offer a significant efficiency enhancement in circuits that rely primarily on
mathematical calculations, such as addition or multiplication, because addition operations can be
performed with minimal computational cost [79, 85]. This behavior is especially promising when
considering that performing calculations in traditional formats requires inputs that are several bits
in length (e.g. 32-bit or 64-bit integers, floating point numbers, and strings). Constructing the
Boolean circuit equivalents of these circuit components frequently requires complex gate structures
and therefore many encryption iterations during the garbled circuit protocol. Arithmetic circuits
enable many of these operations essentially for “free”. Despite this advantage, arithmetic circuits
require substantially more encryption iterations to evaluate Boolean constructs (e.g. comparisons
or equality tests) than the equivalent Boolean circuits. In this way, MPC protocol designers must
consider the types of calculations to be performed when selecting a circuit style to use. To leverage
the advantages of each circuit type, recent work has focused on developing hybrid style circuits that
use arithmetic circuit evaluation to perform mathematical calculations while using the traditional
Boolean circuits for executing operations like comparisons more efficiently [86].

3.4 Malicious Adversaries
Up until this point, discussion has focused on passively secure protocols. As described in Sec-
tion 3.1, these protocols are secure when the involved parties can be trusted to execute the protocol
faithfully. These semi-honest parties may inspect every piece of information that they are given in
an attempt to learn as much as possible about the calculation, but they will not subvert the protocol
to either produce the wrong answer or violate another party’s privacy.

This adversarial model may be appropriate in some situations, for example when parties may not
have motivation to cheat or when modifying the protocol is unlikely or cost-prohibitive. A MPC
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protocol that is used to share sensitive personal information with a generally trustworthy third-party
agency may fall into this classification. Consider the case of a research study, similar to that per-
formed by a team at Boston University in 2016 [87]. A research institution wants to use the data
held by many private companies to draw broad conclusions about the state of society. Each in-
dividual institution has an interest to protect their data, whether to retain proprietary advantages,
uphold ethical or legal commitments to its clients, or preserve its reputation. The individual compa-
nies see no reason for the research institution to act maliciously and learn more than the aggregate
information needed for the study. Likewise, the research institution has no reason to believe that
the companies—who have been guaranteed privacy—should attempt to manipulate the final result.
The parties may then consider all other parties to be semi-honest, and a passively secure model is
adequate. In other cases, an MPC protocol that is sufficiently difficult to modify may be justifiably
passively secure. Examples here include protocols implemented by a closed-source application, or
a protocol implemented by parties who do not expect the other parties to possess the time, resources,
or expertise to introduce vulnerabilities.

For nuclear safeguards scenarios, the passively secure model may be sufficient in a limited set
of circumstances, but otherwise a stronger model should be considered. Although the safeguards
inspectorate may be in a position similar to a trusted agency, it is far less likely that a facility under
safeguards would be completely trusted by the regulator. If this were the case, safeguards would be
unnecessary in the first place.

Instead, there are MPC protocols designed to provide stronger assurances of security against
more challenging adversarial models. For the strongest assurances against unscrupulous behavior,
parties may engage in actively secure protocols. These include techniques like the cut-and-choose
technique and a batched variant, along with a technique based on ZKPs called the GMW-compiler.

The cut-and-choose technique is one of the earliest and most popular strategies for guaranteeing
security against malicious adversaries. Starting from the traditional garbled circuit protocol, the
cut-and-choose method requires the circuit generator to construct several garbled circuits and garble
each independently. These circuits are all passed to the circuit evaluator, and a random subset of
circuits is selected to be checked. The circuit generator reveals the potential labels on all of the
circuit wires (as well as the global key offset, if used), so that the evaluator can see that each of
the circuits was indeed garbled correctly. In the event that the evaluator finds that a circuit was
generated incorrectly, they become aware that the generator attempted to cheat and can abort the
protocol before continuing.

To ensure that the probability that an improperly garbled circuit goes undetected is negligible,
all of the remaining circuits left unchecked may be evaluated on the two parties’ real inputs. These
evaluated circuits should all produce the same answer, and any inconsistencies indicate malicious
behavior. In spite of this, the evaluating party should not abort the protocol at this point, even if
inconsistencies are detected, as terminating the protocol could reveal information about their own
inputs.13 Instead, the evaluator should determine the output given by the majority of the evaluated
circuits and consider that to be the true output. The probability of generating a subset of improperly
13The generator could devise a malicious implementation of a circuit that only produces inconsistent outputs for certain

evaluator inputs. Then, the evaluator would disclose information about its input simply by aborting the protocol.
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garbled circuits—none of which are checked but all of which represent a majority of the remaining
evaluated circuits—is vanishingly small. When evaluating the circuit, care must be taken to en-
sure that the circuits are evaluated using consistent inputs by both parties lest either party attempt
to circumvent the defenses provided by the cut-and-choose technique. Since the cut-and-choose
process introduces substantial computational overhead to a MPC calculations, other variations of
cut-and-choose techniques have been introduced to enhance efficiency. For repetitive garbled circuit
calculations, a batched version of the cut-and-choose method has been proposed, allowing parties
to evaluate several batches of garbled circuits (rather than evaluating all circuits with the same in-
puts). Security guarantees remain strong in this case, but only one round of circuit checks must be
performed for all of the evaluated batches.

An alternative to the cut-and-choose technique for providing active security is to rely on a com-
piler construction first introduced by Goldreich, Micali, and Wigderson in 1987. By using a ZKP
to prove honest execution of each step in a MPC protocol, the GMW compiler enables any semi-
honest protocol to be converted into an protocol secure against malicious adversaries. Through
commitments to their initial input values and expected randomness, each party proves to the other
at every step that the protocol so far has proceeded according to the protocol’s rules.

In many cases, these actively secure protocols may be even stronger than what is strictly nec-
essary, and so slightly weaker covertly secure protocols may be sufficient. While actively secure
protocols detect cheating in all but a negligible fraction of attempts—effectively preventing a cheat-
ing party from ever being successful—covertly secure protocols instead reveal malicious activity
with some significant probability. In many cases, just the possibility of exposure would serve as a
deterrent against poor behavior [65].

On the whole, these covert protocols have a great deal in common with actively secure protocols.
For instance, the covert technique outlined by Aumann and Lindell [65] is quite similar to the cut-
and-choose method. This technique still sees the circuit generator providing a selection of garbled
circuits to the evaluator, but now, rather than selecting subsets for checking and evaluating so that
the chance of undetected malicious activity is negligible, the evaluator would simply challenge the
generator to reveal the randomness used to generate all circuits except those selected for evaluation.
Aumann and Lindell define the likelihood that malicious activity is detected as the deterrence factor
ϵ [65]. If a generator creates N garbled circuits with only one circuit garbled maliciously, then there
is a ϵ = 1− 1

N
chance that the dishonest circuit will be exposed. Again, similar to the case of actively

secure models, care must be taken to protect the protocol from subtle weaknesses, for example by
using maliciously or covertly secure OT protocols, ensuring consistent inputs, and executing the
protocols in an order that disallows exploitation in future steps [63].

A covertly secure protocol would likely be ideal for a safeguards approach. While less computa-
tionally intensive (and therefore, less expensive) than an actively secure protocol, a covertly secure
protocol that exposed impropriety on the part of a safeguarded facility could trigger more extensive
investigations and consequences from the IAEA. These penalties could follow the model of those
that would be meted out for any other safeguards violation. Furthermore, the probability threshold
for detecting malicious activity used by a covertly secure protocol could be tailored to match the
IAEA’s technical objectives, as discussed in Section 2.3.1. At the same time, unless computational
resources are abundant, actively secure protocols may be prohibitively expensive for systems that
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are designed to augment an existing safeguards setup.

3.5 MPC Frameworks
As the theory of MPC has matured, a wide variety of MPC specific frameworks have emerged.
In general, each framework tends to have a specific purpose, typically to showcase a recent ef-
ficiency improvement or unify existing methods. Some notable frameworks and MPC tools in-
clude Fairplay/Fairply-MP, TinyGarble and its successor JustGarble, ABY, Viff, Frigate, SPDZ/MP-
SPDZ, Sharemind, and Obliv-C, although many others exist; a selection of these frameworks are
described and referenced below.

Among the first documented public MPC codes was the Fairplay computation tool [82]. The
Fairplay engine provides users with the ability to perform MPC using Yao’s garbled circuit proto-
col, providing an application framework to facilitate the interaction. Realizing that Boolean circuit
assembly was a significant burden for most MPC users, Fairplay introduced a secure function defi-
nition language (SFDL) in which secure applications could be written. To preserve familiarity, the
Fairplay SFDL resembled existing software languages. Then, the Fairplay engine would compile
a program described in the SFDL into a circuit representation in the Fairplay secure hardware def-
inition language (SHDL)—a compiled circuit representation similar to those produced by VHDL
or Verilog hardware description languages. Unfortunately, the memory structure of the Fairplay
framework was ultimately found to render the software incapable of successfully evaluating even
moderately sized functions [88]. Development on the Fairplay engine continued, however, even-
tually expanding into FairplayMP. While the original Fairplay system was limited exclusively to
two parties, the FairplayMP system could perform computations between several parties [89]. Fair-
playMP used the Beaver-Micali-Rogaway (BMR) protocol to extend Yao’s garbled circuit protocol
to implement passively secure calculations among an arbitrary number of parties [60].

Beyond Fairplay, other early MPC software projects sought to implement substantially more
powerful protocols or protocols that demonstrated active security against malicious adversaries.
One such project was Virtual Ideal Functionality Framework (VIFF), which constructed a frame-
work based on Shamir secret sharing [54] and protecting against malicious adversaries [90]. VIFF
leveraged asynchronous communication to minimize communication bottlenecks during interactive
protocols, parallelize computation, and minimize protocol complexity (with fewer waiting periods).
Rather than the traditional Boolean circuits used by Fairplay, VIFF was constructed using multi-
valued circuits, specifically circuits defined for finite fields Fm [90, 91]. Due to its construction,
however, VIFF required at least three participating parties in every calculation. The project was
ultimately abandoned in favor of the SPDZ family of MPC software—SPDZ, SPDZ-2, SCALE-
MAMBA, and MP-SPDZ [92–95].

SPDZ and VIFF share several key features: both protocols perform computations on finite field
circuits, and both protocols have distinct “online” and “offline” execution stages [90, 92]. Still,
SPDZ evolved to include stronger security guarantees against more malicious parties (security
against a dishonest majority of parties, as opposed to just some threshold number of corrupted
parties) [92, 96]. Later iterations of SPDZ continued to improve upon the original SPDZ proto-
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col, broadening functionality, improving key generation procedures, and providing stronger, more
efficient covert and active security models [93]. Two notable implementations of the SPDZ proto-
col, both still actively maintained, are SCALE-MAMBA and MP-SPDZ. While SCALE-MAMBA
is a security-centric implementation and only provides malicious security, MP-SPDZ (short for
“Multi-Protocol” SPDZ) is designed for comparing various MPC protocols—both garbled circuits
and secret sharing [94, 95].

Other notable MPC software tools include: JustGarble [97], a garbling tool taking advantage of
a fixed-key blockcipher; ABY [86], an MPC framework that blends arithmetic, Boolean (secret-
shared), and Yao’s garbled circuits; TinyGarble [98], a software system to garble circuits in a com-
pact and optimized fashion; and Obliv-C [99], a language extended from C intended to facilitate
the use of garbled circuits by general programmers.

Despite the sheer number of MPC techniques and software frameworks that have been published
and distributed, there is no clear ideal framework [69]. This is unsurprising given the distinct
capabilities of each tool; however it is a software landscape that may prove challenging for those
without experience in the field who attempt to select an MPC framework. Making things even more
difficult, is the fact that many of the published codes cited in the literature have been replaced or
ceased to be maintained, and even active MPC software often fails to be documented in a manner
that encourages third-party usage.

Along these lines, while several attempts have been made to benchmark and compare the codes
in terms of performance, far less attention has been devoted to understanding how communities of
non-expert users might interact with the software. In one such attempt to characterize the usability
of a broad collection of recently developed MPC tools, even a team of computer scientists struggled
in several cases to reproduce even simple calculations [100]. That study determined that most of
the MPC codes available exist in different lifecycle phases and with highly varied levels of usability.

It is with this background that this work has chosen the Obliv-C software framework for per-
forming a demonstration of how MPC could be applied to nuclear safeguards. Obliv-C represents
one of the most accessible software frameworks available, an open source tool that is designed for
developers with only a modicum of experience involving privacy-preserving computation and who
are familiar with C and C-like programming languages. The next chapter describes how anomaly
detection algorithms similar to those that might be employed by safeguards administrators could be
constructed as MPC calculations driven by a privacy-preserving engine like Obliv-C. Then, since
even Obliv-C tends to be rather opaque in its runtime execution, Chapter 5 describes the Cypher-
Circuit software package, a computational tool that was developed during this work to showcase
MPC calculations taking place at a low level. Ideally, the CypherCircuit package serves as a sim-
ple, intuitive, and useful prototyping tool to convince skeptical parties of the utility and security of
MPC technologies.
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Chapter 4

Safeguards Anomaly Detection

Where Chapters 2 and 3 proposed privacy-preserving computation as a potential opportunity for
bolstering nuclear safeguards, this chapter illustrates how these types of calculations might be
implemented. It describes two simulations that were designed and performed to find anomalous
events—potential material diversions—in data that are highly relevant for drawing safeguards con-
clusions. Like in a real safeguards scenario, each of the demonstrations discussed in this chapter
replicates the interaction between a nuclear facility and a regulator. Since the calculations are
privacy-preserving, the data supplied by the facility are kept secure and never explicitly revealed to
the inspecting party. The goal here is to demonstrate as a proof-of-concept that privacy-preserving
computations can be performed on radiation spectra, pushing the current boundaries of nuclear
safeguards capabilities.

To date, data analytic solutions to safeguards challenges are only conducted with data collected
at a facility that is then transmitted to the International Atomic Energy Agency (IAEA) under the
assumption that the IAEA will maintain the confidentiality of that data [42]. Privacy-preserving
techniques are not included in any traditional safeguards systems, and this work represents the first
attempt to prove their viability. Even beyond the field of nuclear safeguards, the computational
intensity of multiparty computation (MPC) calculations has resulted in few attempts being made to
apply MPC to data analytics solutions that operate on time series datasets, especially those outside
niche problem areas. While this study only directly demonstrates the applications of MPC to nuclear
safeguards datasets, the concept of conducting privacy-preserving anomaly detection offers a novel
approach to monitoring and surveillance practices.

Before covering the anomaly detection algorithms and privacy-preserving calculations of those
two simulations in detail, the first section of this chapter will introduce the safeguards relevant
dataset that was used for the analyses. This dataset consists of gamma-ray spectra collected over
the course of two months at Oak Ridge National Laboratory (ORNL). Along with a description
of the experimental setup and an overview of the data format, this introduction will also explain
how the two trials were structured in order to make use of the information contained in the dataset.
Once this basic understanding of the dataset driving the simulations has been established, the next
section will review the basics of time series anomaly detection. This discussion will build the
necessary foundations for the algorithmic design and deployment explanations to follow. Finally,
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the last two sections of this chapter will cover the privacy-preserving simulations that were actually
performed. These sections will include a complete description of both the chosen anomaly detection
algorithms, as well as details about the garbled circuits prepared using Obliv-C, a software library
for performing MPC.

4.1 Modeling a Nuclear Safeguards Datastream
As discussed in Chapter 2, no type of data is more important to monitoring nuclear material than
radiation measurements, especially gamma-ray spectra. Bearing that in mind, along with an under-
standing that stronger demonstrations of viability would be more likely to encourage future adop-
tion of MPC anomaly detection in safeguards systems, this work placed paramount importance on
gaining access to a high-quality set of radiation spectra.

Still, high-quality time series of radiation spectra are difficult to acquire for a myriad of reasons.
First and foremost, the experiments collecting such datasets face a litany of physical and technical
challenges associated with their operation: acquiring the necessary radioactive sources, calibrating
detectors, complying with necessary rules and regulations surrounding the handling of nuclear ma-
terial, and compiling the data in an organized and consistent format. These datasets also tend to be
quite large, and so assembling them requires substantial effort on the part of highly specialized re-
searchers. While any given radiation spectrum is unlikely to be particularly large in isolation, a time
series of radiation spectra can grow in size rapidly. With hundreds of channels, and every channel
providing an integer value of counts, a single radiation spectrum can potentially reach the order of
tens of kilobytes. Together, a collection of spectra can then easily produce a multi-gigabyte time
series for even moderate frequency measurements (e.g. 1 Hz) taken over the course of several days.
Although storing datasets of this size is not particularly challenging, hosting public repositories
of information on this scale was not particularly common until recently. Then, in addition to any
standard data cleaning steps, datasets that could potentially include sensitive or proprietary infor-
mation may require prescreening to ensure that sensitive information is not shared. Alternatively,
sensitive datasets may be placed under access limitations by controlling agencies or businesses,
another barrier preventing widespread dissemination of radiation data sources. Finally, even if a
research team were technically able to negotiate all of these potential challenges, it is quite possible
the effort would not be deemed worthwhile when operating within budgetary constraints and with
potentially small target audiences.

Considering the limited availability of comprehensive radiation spectra time series datasets, it
is notable that this project was able to access a significant quantity of radiation data, including
measurements of material transfers of special nuclear material (SNM). Since SNM constitutes the
primary explosive nuclear material in a nuclear weapon, it is likely that such movements would
resemble activities of particular interest to a safeguards administrator. The data referenced here
was provided by the Modeling Urban Scenarios and Experiments (MUSE) project based out of
ORNL, and shared via the Multi-Informatics for Nuclear Operations Scenarios (MINOS) program.
The MUSE dataset represented a substantial and continuous collection of radiation spectra, and so
serves as a near ideal dataset for performing spectral time series anomaly detection. Although the
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Figure 4.1: The HFIR and REDC facility area at ORNL [102]. The MUSE detectors were located
at intervals along the connecting roadways (the MUSE04 detector has its location labeled).

dataset had been rigorously studied by the collection team and essentially all potential anomalies
had been identified, the material transfers of SNM produced distinguishable, relatively infrequent
signatures that served as a proxy for truly anomalous events. In fact, since these material transfers
were recorded on ground truth logs maintained by the data collection team, they proved to be ideal
benchmarks for verifying the effectiveness of the privacy-preserving anomaly detection algorithm.

Using the dataset as a model of reality, it became possible to mimic the types of analyses that
might prove useful to nuclear regulators using MPC. Details of the two trials illustrating this appli-
cation of privacy-preserving computation are described later in Sections 4.4 and 4.5.

4.1.1 The MUSE Experiment
The MUSE project’s experimental setup was designed to capture radiation signatures arising from
the routine daily operations around two facilities at ORNL: the High Flux Isotope Reactor (HFIR)
research reactor and the Radiochemical Engineering Development Center (REDC) target process-
ing facility. With unclassified operations involving actinides and routine material transfers (as well
as the accompanying activity logs accessible to the data collectors), this area is well-suited for per-
forming facility monitoring of this nature [101]. An aerial photograph of the area, with the HFIR
and REDC facilities highlighted, is shown in Figure 4.1.

The experimental arrangement specifically consisted of six MUSE nodes placed along stretches
of road surrounding the two facilities. Each of the six nodes contained a set of NaI(Tl) gamma ray
detectors and video cameras, and some of the nodes also possessed lidar units. With continuous,
autonomous operation, these detectors are similar to many of the unattended monitoring systems
(UMSs) that are deployed by the IAEA (see Section 2.3.2). Even after a preprocessing stage, where
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Figure 4.2: A truncated gamma-ray spectrum from the MUSE dataset, with each measured channel
representing counts in 3 keV increments. The spectrum is dominated by the 311.9 keV peak gener-
ated by the beta decay of protactinium-233 into uranium-233 (and near-immediate de-excitation).

the MUSE team converted the raw dataset sampled at a rate of 10 Hz into an energy-calibrated
dataset at 1 Hz, the detectors were able to capture detailed accounts of the area’s activity. This
included both movements of radioactive material between the two facilities and otherwise unrelated
background events. These background events were caused by weather phenomena and routine non-
nuclear activities associated with lab personnel, in addition to the standard unavoidable levels of
environmental background radiation.

4.1.2 The MUSE Dataset
The primary dataset provided for analysis consisted of gamma-ray spectra collected by each of the
six detectors between February and March 2019. In addition to those measurements, the accompa-
nying ground truth logs of local activity were provided for comparison, enabling the validation of
the chosen anomaly detection algorithms.

For the primary dataset, each of the six 2 in. × 4 in. × 16 in. NaI(Tl) detectors measured spec-
tra in 1000 energy channels, with every channel counting gamma rays measured in a 3 keV energy
window. Since high-energy gamma rays were considered unimportant for the anomaly detection
methods presented in the remainder of this work, only the lowest 500 channels were used in all of
the subsequent analyses. For illustrative purposes, Figure 4.2 shows a sample gamma-ray spectrum
from the MUSE dataset when material of interest is passing the detector. While the limited resolu-
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tion of the NaI(Tl) detectors hinders high-fidelity spectral analysis, it is still possible to distinguish
certain high energy peaks that suggest the presence of SNM.

As mentioned in Section 4.1.1, although each of these raw measurements was collected at 10 Hz,
the recorded dataset aggregated gamma-ray counts into one second time frames. For each detector
node, these 1 Hz measurements were packaged in a series of HDF5-formatted data files, including
the 1000 channel spectra, a measurement timestamp, and the corresponding detector dead-time
corrected live-time for the interval. In total, the complete dataset comprises several thousand HDF5
files, each containing approximately four-hours of data collection.

Accompanying this primary dataset of detector measurements was a set of ground truth logs that
described the most notable material transfer events taking place in the vicinity of the nodes. These
logs include information on the event dates, the items being transferred and their material composi-
tions, the shipping containers, and the origination and destination points of the transfers. Although
the limited resolution of the NaI(Tl) detectors likely obscured some of the potential spectral features
that would have arisen from the circumstances described in the logs, the available information was
still sufficient for confirming the dates, approximate contents, and travel paths of SNM through the
detector setup.

4.2 A Computational Experiment
With access to the MUSE dataset, two privacy-preserving anomaly detection algorithms were de-
veloped to operate on that dataset, and the two trials testing the efficacy of those algorithms are
presented in Sections 4.4 and 4.5. While those two sections provide a comprehensive description
of each algorithm, both methods were selected due to their compatibility with the garbled circuit
constructions provided by the Obliv-C framework. Specifically, these were anomaly detection al-
gorithms that could be represented relatively efficiently in circuit-format—those that minimized
circuit size, reduced reliance on conditional statements (especially when used recursively), and
avoided frequent computationally intensive recalculations as more data became available.

In general, the two trials demonstrating the privacy-preserving implementations of these anomaly
detection techniques were organizationally similar. An overview of the shared trial procedure is
presented as a template in Algorithm 1. Specific details for each step are specified below and the
template will be filled in for each case. Two parties were simulated by the developers for each trial:
one party representing a nuclear facility under safeguards and another representing a safeguards
administrator. Within this model, a garbled circuit was prepared using Obliv-C to implement an
MPC version of an anomaly detection algorithm. Obliv-C and the garbled circuit preparation pro-
cess are described in detail in Section 4.2. This algorithm was then applied to the measured data
from one of the six MUSE detectors, which served as the private input of the party adopting the
role of a nuclear facility (the circuit generator, in the garbled circuit protocol). The inspecting party
(the circuit evaluator) provided algorithmic parameters as its inputs. In both cases, the simulated
nuclear facility was the only participant to ever have access to the entirety of the MUSE dataset.

For the first trial, just the MUSE data from the month of February was analyzed by the garbled
circuit anomaly detector. Playing the role of a safeguards administrator, the procedure sought to
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Algorithm 1 A sketch of the procedure followed by each of the two trials presented in Sections 4.4
and 4.5.

1. Both parties compute their input data in a pre-processing phase as necessary.
2. Inputs are securely passed into the Obliv-C implementation of the garbled circuit.
3. Inputs are encoded in the garbled circuit of the anomaly detection algorithm (labeled MPC

in the diagram).
4. The circuit is evaluated and any detected anomalies are revealed to the participants.
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locate the date and time of a single material transfer event containing a mixture of neptunium and
protactinium that was known to have occurred at some point during the month. The results showed
that the algorithms had some success in identifying anomalous behavior correctly while preserving
the privacy of the input spectra, with the complete details provided in Section 4.4.

Building on the results of the first trial, the second trial advanced to use a more sophisticated
algorithm, described thoroughly in Section 4.5. This trial relied on data from the complete two
month interval spanned in the dataset, using the data from the month of February as a training
dataset for a program analyzing the March data for anomalies. It was known that there were several
potential material transfer events taking place during the month of March; however, unlike in the
first trial where it was known that only one event transpired, the party playing the role of a regulator
was not privy to any a priori information about the dates, times, frequency, or nature of the events
during that time period. Instead, this second trial actually leveraged information learned during the
first trial to improve its accuracy.

Recognizing that nuclear inspectors in the field would be limited in the amount of information at
their disposal when developing MPC-based safeguards systems, this study correspondingly placed
limits on the amount of information that was available to the system developers. This meant that
beyond just siloing the data inputs of both participants, the study actually attempted to imitate the
real-world conditions faced by safeguards administrators by restricting the access to the ground
truth data logs. It was only after the first trial’s analysis was complete that the developers were able
to access the ground truth logs for the month of February to validate that algorithm’s findings. The
second trial proceeded in like manner, with developers having no access to the March ground truth
logs until after the March data had been (securely) assessed and potential anomalies identified.

Building Garbled Circuits with Obliv-C
Both of the test trials relied on Obliv-C as the privacy-preserving engine driving the MPC imple-
mentation of each anomaly detection algorithm. The Obliv-C framework is a strict extension of the
C programming language, and allows programs to be constructed using a C-like syntax that is then
compiled into an equivalent garbled circuit [99].

The development procedure of garbled circuits using Obliv-C is designed to be straightforward
for general users. Using elements provided by the Obliv-C library, a developer constructs a protocol
description for the chosen algorithm. The Obliv-C compiler then translates the protocol descrip-
tion into a version of Yao’s garbled circuit protocol. Every protocol description accepts private
input from two parties, and can be written to return private, jointly computed outputs that must be
intentionally revealed by the compiled program to maintain security.

Along with traditional C keywords and logic structures, the Obliv-C library provides a variety of
its own obliv qualified data types and logic structures. The obliv qualified data types store private
inputs and any quantities derived from them, as well as guide the compiler in constructing secure op-
erations using those data elements. Beyond those obliv qualified types, the language also provides
the ability to write functions and conditional statements that operate on these datatypes in a secure
way. Such structures allow secure implementations of standard C-programs to be constructed in a
style familiar to software developers, although they may require some additional effort during the
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development process. For example, the obliv if logic structure allows conditional statements to
be evaluated based on privately evaluated expressions, and the if/else pattern is a common feature
of nearly every modern programming language. However, in general, executing code for either leg
of a conditional (true or false) reveals information about the evaluated value of the condition. To
avoid revealing this information and maintain the privacy of those conditional values, the obliv
if block is designed to build and simulate both legs of the conditional statement. It is left to the
decryption process to ensure that only assignments made on the “correct” conditional leg persist
through the calculation and impact the final output, while the evaluator never learns which path
through the conditional the algorithm ultimately follows. This dual-execution of conditional state-
ments is highly unusual, restricting a programmer’s ability to assign variables that are not obliv
qualified during a conditional block or use recursive functions that terminate based on a condition.

After compilation, the Obliv-C garbled circuit is produced as a binary executable that may be run
by both parties engaged in a computation. The executable is designed to operate over a Transmiss-
sion Control Protocol (TCP) network connecting the two parties engaged in the calculation over the
internet. In this work, where both parties engaged in all of the privacy-preserving calculations were
simulated, the protocol was only run locally; however, configuring the executable to run between
remote parties would be preferable in almost any safeguards context and this work could easily be
repeated with that setup.

4.3 Foundations of Time Series Anomaly Detection
In order to operate without human intervention, sophisticated remote monitoring systems require
anomaly detection algorithms to make determinations based only on data collected by the system.
Reliance on automated procedures becomes doubly important for monitoring systems that employ
privacy-preserving protocols since those protocols require secure programs to evaluate joint com-
putations. In the general outline of the privacy-preserving trials designed here, depicted in Algo-
rithm 1, the anomaly detection technique is the primary component of the third step, evaluating
abnormality.

To effectively formulate an anomaly detection process as an algorithm, the notion of a time
series anomaly must be precisely defined. Considering a time series anomaly to be a point (or set
of points) constituting an outlier among the time series dataset, the intuitive definition proposed by
Hawkins is generally appropriate. That definition posits that an outlier is “an observation which
deviates so much from other observations as to arouse suspicions that it was generated by a different
mechanism” [103].

It is worthwhile to note here that not all outliers in a nuclear safeguards time series would neces-
sarily represent anomalous events of interest to safeguards administrators, who would be primarily
concerned with diversions of direct or indirect use nuclear material. A distinction is commonly
drawn between two types of outliers that meet Hawkins’s definition: the first type are outliers con-
stituting anomalous events of interest in a time series; the second are outliers representing unwanted
data that in some sense contaminates the dataset. In many contexts, the former is considered to be
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a true anomaly while the latter is deemed to be noise [104].1 Distinguishing outliers in this way
must be done on a case-by-case basis, depending on the nature of the problem. This is especially
true for nuclear safeguards datasets, where radiation spectra are measurements of highly statistical
processes, and so noise-based outliers are unavoidable.

To characterize the wide variety of anomaly detection scenarios, Blázquez-García et al. [106] ex-
tend the conventional definition of an outlier and create a taxonomy for recognizing and classifying
outliers and outlier identification techniques. The taxonomy features three axes based on the under-
lying time series type (univariate or multivariate), the analysis method (univariate or multivariate),
and the type of outlier being identified (point, subsequence, or time series outliers).

Considering the first axis, time series are designated as one of two types: univariate or mul-
tivariate. Univariate time series represent the more traditional concepts of a time series dataset,
consisting of an ordered set of real-valued observations over some time interval. Mathematically,
the time series can be defined as

X = {xt | t ∈ T } , (4.1)

a set of observations xt collected at time t ∈ T . Formally, each time t may be considered a time in-
dex mapping to a real time, such that the complete set of time indices in the time series are given by
non-negative integers, T ⊆ Z+.2 Each observation xt denotes the realization of some random vari-
ableXt. Common examples of univariate time series would include temperature readings at a given
location for each hour over the course of one year, or an electrocardiogram heartbeat measurement
of voltages every millisecond for five minutes. In the context of nuclear safeguards, measurements
recorded by neutron counters (such as those mentioned in Section 2.3.2) would be univariate time
series, as these detectors record one neutron count measurement xt at each time t.

The definition of multivariate time series extends the univariate definition for measurements
collected in N dimensions. For multivariate time series, the ordered set of real-valued observations
is

X = {xt | t ∈ T } , (4.2)

wherext = (x1t, . . . , xNt) is aN -dimensional vector of observations collected at time t, where now
each measured value xkt is a realization of random variable Xkt ∈ Xt = (X1t, . . . , XNt). Hourly
weather readings combining temperature, pressure, precipitation, and/or humidity or a single pa-
tient’s electrocardiogram consisting of at least two periodically measured voltage signals would be
instances of multivariate time series. Multivariate time series are of particular importance in the
realm of nuclear safeguards, as gamma-ray spectrometry can be considered a multivariate measure-
ment technique with dimensionality N equal to the number of measured energy channels.

While input data may be either univariate or multivariate, the second axis of the taxonomy con-
siders the analysis methods. These methods may also be either univariate or multivariate in nature.
Univariate analysis methods make use of only one variable in identifying anomalies, while mul-
tivariate methods consider some or all of the variables in question. It should be noted that these
1For more rigorous mathematical classification of these designations—formally strong and weak outliers—see Knorr
and Ng [105].

2Although seemingly contrived, this notation allows continuous time series intervals to be expressed cleanly in set
notation, even when sampled irregularly.
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methods are not necessarily restricted to the corresponding input data types; since univariate anal-
ysis techniques consider only a single variable, they may be applied to either univariate input data
or a single isolated variable in a multivariate time series [106].3

Separate from classifying data types and analysis techniques, the third axis of the taxonomy
distinguishes types of outliers that may be detected. It classifies outliers as being one of three
types: a point outlier, a subsequence outlier, or a time series outlier. The point outlier category
is the simplest, where a single anomalous point at some time t is identified as the outlier—either
the point xt (in the univariate case) or xt (in the multivariate case). A common interpretation of a
point outlier is any single point in the time series that deviates significantly from its expected value,
with a significant deviation being determined using some threshold τ . In the most general case,
such a relationship can be formulated using some metric function f such that a measurement xt is
classified as anomalous if it satisfies the equation

f (xt, xt) > τ . (4.3)

For point outliers, two distinct models exist for determining xt: estimation models and prediction
models [106]. Estimation models consider complete time series in their entirety after they have been
collected, using all of the time series data points to generate an estimate xt for the true expected
value of random variable Xt. Often, this expected value is taken to be xt = E [Xt], the mean value
of many independent realizations of Xt. Such estimation models are generally useful for making
a determination of whether any given point in a historical record might be an outlier. Prediction
models, on the other hand, do not have access to the complete set of time series data. Instead,
they only have access to the data collected up to the current point in time. The data available
to the algorithm is used to establish a prediction of the expected value at the next timestep, and
then the measured value xt is compared against the prediction of the expected value xt and the
threshold τ to classify the point as an outlier or not. For nuclear safeguards applications where
on-line monitoring components are a key feature, prediction models are particularly attractive. By
looking at data collected prior to the present, prediction models generate hypotheses about future
data that can be used for analyzing data-streams in real-time. Because of this, both trials described
later in this chapter rely exclusively on prediction models, though estimation models would work
equally well in cases where a complete time series is available.

Using a simple prediction model to perform point outlier detection on a univariate time series
is straightforward. Like in the case of estimation models, the estimated expected value xt is most
often found using a traditional approach—for example, as the mean of all previously acquired data
or some subset of it. Other models use metrics other than the mean, instead considering the “ex-
pected value” to be more accurately represented by a median or another more sophisticated statis-
tic [107, 108]. When the mean is used as an estimate of the expected value, the data from which
it is calculated effectively constitute a set of training data for the predictive model. In cases where
the complete set of prior data may not serve as a good predictor of future behavior, this training
dataset may be limited to only a window of recently collected data points, generating a rolling aver-
age. Other times, to avoid needing to recompute the mean with each new datapoint, the predictive
3Multivariate analysis techniques may not be applied to univariate time series, however, since additional dimensions
cannot be fabricated for those datasets.
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model may be “trained” with a fixed subset of the data deemed to be representative. In either case,
to generate an accurate prediction using the mean as a metric, the training data for the model ought
to be free of anomalies.4 In the field of nuclear detection and nonproliferation, such anomaly-free
collections of radiation spectra are designated as benign source populations (BSPs) [109].

With the expected value defined, determining whether a measurement represents a significant
deviation from the expected value may be as simple as finding the absolute difference of the mea-
sured point from the expectation. For univariate time series, this is

|xt − xt| > τ , (4.4)

where τ is commonly set to be some number of standard deviations away from xt.
For multivariate point outliers, Equation 4.4 may be generalized to k dimensions, although a

metric other than the absolute value is required for comparing the multivariate data points to a
scalar threshold τ . The Euclidean distance,√

(xt − xt)
⊺ (xt − xt) > τ , (4.5)

is one such multidimensional metric, although it is oblivious to variations in the dimensional dis-
tributions. Other metrics are able to account for these differences, like the Mahalanobis distance:√

(xt − xt)
⊺ S−1 (xt − xt) > τ . (4.6)

Here S defines the covariance matrix of the set of observations, namely the time series X (or the
subset thereof used to determine xt). Of course, in the case that Xt is drawn from a specific known
distribution, the threshold τ may be set in relation to that distribution.

There are advantages to identifying other types of outliers besides point outliers, however, and
privacy-preserving algorithms could make use of them instead. Rather than being an outlier of just
a single point, an anomaly may consist of several points that are considered anomalous when taken
together. Analyzing several points together may enable anomalies to be distinguished in intervals
of activity where no single point is out of the ordinary but activity patterns are abnormal.

One popular class of anomaly detection techniques that finds anomalous trends rather than points
searches for subsequence outliers. As subsets of full time series, subsequences may be defined
to reflect the original time series definitions presented in Equations 4.1 and 4.2. Specifically, a
length s ≤ |T | univariate subsequence starting at time t would be defined as the continuous set of
points

X̃ = {xt, xt+1, . . . xt+s−1} , (4.7)

while an otherwise equivalent multivariate subsequence would be described as the collection of
multivariate data points

X̃ = {xt,xt+1, . . . ,xt+s−1} . (4.8)
4If, instead, the prediction model metric were to be based on supervised machine-learning, including known anomalies
in the training data would be essential. Even other metrics, like the median, are more tolerant of outliers being included
in the training data.
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In both cases, the subsequence starting time t must be chosen so that the subsequence does not
exceed the bounds of the time series; it must obey the constraint

t ≤ |T | − s+ 1 . (4.9)

Alternatively, instead of analyzing a subsequence of the time series, an algorithm could evaluate
whether one of the variables in a multivariate time series behaved anomalously over the duration
of the time series. While the subsequence methods isolate time periods as anomalous or not, this
“time series outlier” method categorizes individual variables as being anomalous. In practice, this
methodology is far less commonly studied than subsequence anomaly detection [106].

The choice of which anomaly detection algorithm to use is often tightly coupled to the goals and
requirements of the detection algorithm as well as the types of input data to be analyzed. This is
especially true when considering nuclear safeguards scenarios, where a regulator may only have ac-
cess to certain modalities of data. For instance, when applying anomaly detection algorithms to the
output of neutron counters that are designed to monitor for movements of SNM, the input data are
univariate and therefore a univariate method must be chosen. On the other hand, when inspecting
gamma-ray spectra, the input data are multivariate and so multivariate techniques may offer greater
power for distinguishing anomalies. Multivariate methods are usually needed when anomalies are
generated by a certain phenomenon, such as a specific radioactive isotope of interest, that may be
identified by recognizing the relationship of dependent variables (e.g. energy channels). There are,
however, situations where univariate techniques might be advantageous for even multivariate nu-
clear safeguards datasets. Since they are generally simpler, univariate analyses may be preferable
when working on systems with limited computational resources, or, critically for this work, when
those calculations are performed via computationally expensive privacy-preserving algorithms.

Among the wide variety of anomaly detection algorithms, including those reviewed in Sec-
tion 4.3, there are many candidates that could be successfully applied to a time series of radiation
spectra while still being practically implemented via MPC. Due to the simplicity of point outlier
detection, the garbled circuits that have been created to locate and identify anomalies in the MUSE
dataset rely primarily on techniques that search for point outliers. With that in mind, it is possible
to update the algorithmic sketch presented earlier with details specific to point outlier detection
methods; the revised diagram is presented in Algorithm 2. Equation 4.3 represents the objective of
the MPC calculation when xt and τ represent private inputs provided by the circuit generator and
circuit evaluator respectively.

The remainder of this chapter offers a case-study in applying two types of anomaly detection
algorithms to time series of gamma-ray spectra and quantities derived from them, implemented in
a privacy-preserving manner.

4.4 Trial 1: Gross Count Anomaly Detection
The first privacy-preserving anomaly detection trial was designed to discriminate anomalous events
in the MUSE dataset’s collection of February spectra using the gross total of gamma rays detected
at each point in time. Having determined that point outliers represented the best category of outlier
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Algorithm 2 An updated outline of the procedure used in each of the two trials, reflecting the fact
that both trials attempt to detect point outliers.

to use for identifying anomalies, it remained to choose either a univariate or multivariate method
to perform the anomaly detection procedure. Noting that radioactivity measurements fluctuate ran-
domly and each spectrum covers several hundred channels, it was logical to select a multivariate
method for detecting point outliers in multivariate data.

For multivariate spectral inputs collected over the set of times T , each point xt would be a
spectrum measured at time t ∈ T . Each spectrum would contain a number of measured counts in
each of theN spectral channels, expressed asxt = (x1t, . . . , xNt). However, by recognizing that the
gross number of counts measured by a detector is a common value of interest to nuclear safeguards
analysts, the anomaly detection algorithm can be simplified further. The next section describes
the gross counting algorithm’s procedure, followed by an explanation of specific implementation
details in Section 4.4.2, and results in Section 4.4.3. Because the results of the first implementation
of the algorithm suggested an adjustment that would likely improve the gross counting algorithm’s
accuracy, Section 4.4.4 describes changes to the algorithm and implementation specifics, along
with an updated set of results.
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4.4.1 The Gross Counting Algorithm
Determining anomalousness using the gross counting method requires that each measured data
point (spectrum) xt be evaluated using an equation of the form of Equation 4.3. That equation
leaves the evaluation function f and threshold τ to be determined, and so this section explains the
choices used to implement the gross counting algorithm. It is this algorithm that is then expressed
as an Obliv-C protocol description and compiled into a garbled circuit, as was described in Sec-
tion 4.2. Algorithm 3 illustrates how each element of the algorithm fits into the complete MPC
implementation.

Algorithm 3 A diagram describing the privacy-preserving implementation of the gross counts
anomaly detection algorithm used in the first trial.

By aggregating the counts in each channel, the multivariate spectral time series produced by
each detector is effectively transformed into a univariate time series. In this case, each time series
point is given by xt, a simple sum over the detector’s N channels:

xt =
N∑
k=1

xkt . (4.10)

Having represented the multivariate time series by a univariate one, the common interpretation of
a univariate point outlier discussed in Section 4.3 can be applied; xt is classified as anomalous if it
exceeds some threshold τ .



CHAPTER 4. SAFEGUARDS ANOMALY DETECTION 61

To perform this classification, τ must be determined. Radioactive decay behaves as a random
process, and so there are no physically fixed values of τ that would absolutely indicate an anomalous
event. Instead, the statistical predictability of the decay events suggests that τ should be selected
using statistical arguments. Ideally, this would be a value of τ large enough to reliably detect
anomalies while yielding only an acceptably low rate of false positive events. This false positive
rate may be chosen based on the requirements of the application and, once selected, can be used to
derive back an appropriate threshold value.

The value of τ corresponding to a given rate of false positive events may be deduced from the
probability distribution of detected gamma-ray counts. In this case, the gross count of measured
gamma rays meet the criteria for being accurately described by a Poisson distribution: the count is
always a non-negative integer, measured radioactive decay events are typically independent of each
other, and the average decay rates are effectively constant for short5 time intervals. Since xt may be
treated as if it were sampled from discrete random variable Xt,6 the probability that xt counts are
measured at time t is determined by the Poisson distribution probability mass function:

f(xt) = Pr (Xt = xt) =
µxte−µ

xt!
, xt ∈ Z+ . (4.11)

The parameter µ denotes the expected number of counts to occur during the observation period.
Given such a distribution function, the probability that xt will be no more than c in any par-

ticular observation period can be expressed using the cumulative distribution function (CDF). For
a discrete random variable, the CDF of the Poisson distribution function is a summation over the
probability mass function:

F (c) = e−µ

⌊c⌋∑
i=0

µi

i!
. (4.12)

F (c) represents the probability that the number of gamma rays counted in any observation is c or
fewer. Setting the anomaly detection threshold τ equal to c, the natural occurrence of xt > τ gamma
rays in a complete spectrum would represent a false positive event. As such, the probability that
any event is a false positive measuring more than τ gamma rays is given by the survival function
evaluated at c = τ :

PFA (τ) = 1− F (τ) . (4.13)

Since PFA (τ) is defined by the application requirements, the quantile function of the CDF inverts
Equation 4.13 and can be used to determine τ from the desired false alarm probability.

From here, only the Poisson parameterµ remains to be defined for τ to be calculated directly from
the false alarm probability. Given that µ represents the expected value of the Poisson variable Xt,
5This is assuming that isotopes with characteristic lifetimes on the order of a minute or less have largely decayed before
being transported in front of the MUSE detector, rendering the activities of the remaining isotopes to be relatively
constant over time periods on the order of seconds.

6Note that the Poisson nature of the measured counts generally holds over any range of energies. Recall that xt is
technically the sum of measurements xjt for each of the k detector channels, but these may each be treated as if they
were sampled from k Poisson-distributed discrete random variables Xjt.
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it can be conveniently approximated using the experimentally calculated expected value xt. To be
a valid expected value in the Poisson distribution, xt must be generated from an anomaly-free BSP.

For the first trial in this work, the BSP was initially defined to be a continuous window of data
excerpted from the complete time series of MUSE radiation spectra during an interval when it was
known that no anomalies (transfer events) had occurred. As a continuous collection of points, the
BSP is a subsequence containing s consecutive measurements over an interval starting at some
time tB. Denoting the set of times comprising the BSP as B, that set is explicitly given by

B = {tB, tB + 1, . . . , tB + s− 1} . (4.14)

Recalling that this trial’s algorithm followed a prediction model, the BSP could only include data
collected prior to the current time t. The starting point of the BSP was therefore subject to a con-
straint analogous to Equation 4.9:

tB ≤ t− s+ 1 . (4.15)
More succinctly, this constraint simply stipulates that there must be ample prior data to make an
estimate at time t. Given this definition for a continuous BSP, the expected value of a measurement
can be set equivalent to the expected value computed over the BSP and calculated using the standard
formula:

xt =
1

s

tB+s−1∑
i=tB

xi . (4.16)

With xt serving as the estimate of µ in the Poisson distribution and a false alarm probability be-
ing established by the circuit evaluator, the percent point function for the Poisson distribution (the
inverse of the CDF in Equation 4.12) can be used to directly calculate threshold τ .

4.4.2 Identifying MUSE Anomalies Using Gross Gamma Ray Counts
The gross counting algorithm was applied—in the form of a garbled circuit—to the MUSE dataset
for just the month of February. Recall that Obliv-C was used as the privacy-preserving engine, with
the algorithm being translated into a version of Yao’s garbled circuit protocol by the framework’s
backend, as described in Section 4.2. For the party acting as the nuclear facility, the private input
consisted of just the MUSE data. The nuclear regulator had its own private input: the gross count
threshold τ for distinguishing anomalies from background and other non-anomalous events.

Although the MUSE experiment collected data from six NaI(Tl) detectors, the data from detector
4 was selected to be the nuclear facility’s inputs to the garbled circuit. This detector was the only
one placed directly on the material transfer pathway between REDC and HFIR, and so represented
the best option for monitoring activity taking place there.

On the other side of the calculation, the party playing the role of the nuclear regulator was
responsible for calculating and supplying the anomalous threshold τ as its own private input. First,
considering the requirements of a safeguards program, as well as the fact that nearly a complete
month of spectral data were available in this trial, the desired false positive rate was chosen to be
no more than a single anomalous event per decade. For spectra recorded at 1 Hz, this rate translates
to a probability of no more than 3.168 × 10-9 that any spectra is a false positive.
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In addition to the false positive rate, calculating τ using Equations 4.12 and 4.13 entails the
regulator knowing the expected number of counts per spectrum µ. For the purposes of this trial,
estimating this expected value as µ = xt did, in fact, require some knowledge of the MUSE dataset.
Because of this, it was assumed to be public knowledge among both parties that approximately
the first four hours of recorded spectra7 during the month of February were free of anomalies.
These spectra were designated as the BSP, and were shared freely between the two parties. While
provisioning the data to both parties did diminish the privacy of the nuclear facility’s inputs to some
degree, the resulting calculation resembled a real world scenario where the regulator would be able
to observe an operating nuclear system for some relatively short period of time before transitioning
to a privacy-preserving remote monitoring model. Beyond this four hour window, no other spectral
data was ever directly shared with the safeguards administrator.

Having public access to the BSP data allowed the inspecting party to calculate a threshold of
its choice. The Poisson parameter µ, representing the average number of gross gamma-ray counts
recorded per spectrum, could be estimated using the mean value of counts measured in the BSP,

µ = xt =
1

s

∑
i∈B

xi ≈ 1226 (4.17)

(recall s = |B|). Together with the acceptable false positive rate of one anomalous event per decade,
this expected value of the per spectrum gross count measurement resulted in a threshold of τ =
1435. Although the value of µ could be calculated by the nuclear facility as well as the regulator
(due to the public nature of the BSP spectra), the facility would not be able to learn the target
threshold value without knowledge of the regulator’s choice of false positive rate.

4.4.3 Preliminary Results
When applied to the February MUSE data, the garbled circuit anomaly detection algorithm was
able to privately identify numerous spectra that met the criteria for being anomalous. In all cases,
the party assuming the role of safeguards administrator was only ever notified of the time at which
an anomaly occurred and never learned either the original spectral data or the aggregated gross
count total.

Unfortunately, using the gross counting anomaly detection algorithm set to detect no more than
even one false positive anomalous event per decade was found to be too sensitive to be practically
useful. Out of the 2.3 million spectra in the dataset, the model identified 142,816 events that it
considered anomalous. These events were distributed on all but three days of the month, while it
was known that only one transfer event of short duration—on the order of minutes or less—existed
in the February data. The false positive rate was much higher in practice than the target rate, which
left no ability to make any reasonable conclusion about the true location of the anomaly in the
dataset. Even using a notably stricter false alarm rate of only one false alarm detected per century
had a marginal effect; when run with that adjustment the algorithm still identified 129,637 events as
7The first file (of the 148 provided in the dataset for the month of February) was selected to be the anomaly-free
background, and that file contained 14,399 spectra collected at 1 Hz.
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anomalies, only about a 9% reduction in identified events. This behavior strongly suggested that the
Poisson distribution alone was likely a poor model for the background radiation. Although a fixed
set of background radiation sources would follow a Poisson distribution, there are other influencing
factors that may cause the background radiation to deviate from being reasonably “fixed”.

Some potential causes of this deviation are external factors and events that might trigger large
scale fluctuations in the background radiation. Weather events or other environmental changes over
the month may alter the background baseline subtly, but significantly enough that the original set of
training data would no longer be representative of the background measurements later in the month.
For example, it is well known in the literature that precipitation triggers a “washout” of short lived
radon progeny [110, 111]. When deposited on the ground, this larger-than-average quantity of ra-
dioactive material has the ability to shift the baseline background measurement. More specific to
the HFIR/REDC complex, the MUSE team has reason to believe small quantities of argon-41 may
be systematically released from the HFIR/REDC stack [101]. The relatively high energy (1294 keV)
gamma ray produced by the decay of argon-41 could change the background radiation signal mea-
surably, and appears only when HFIR is active—a schedule generally independent of any of the
notable transfer events.

Support for the hypothesis that the projected background was not representative of actual back-
ground over time can be found in the daily distribution of events over the course of the month. This
distribution is plotted in Figure 4.3. It is apparent that the majority of the anomalies occur dur-
ing the second half of the month (and with increasing frequency), suggesting that the background
measured during the first four hours of the month was no longer a realistic characterization of the
background occurring later.

4.4.4 Algorithmic Adjustments and Secondary Results
To mitigate the high false detection rate arising from an inaccurate long-term background hypoth-
esis, the algorithm ought to be able to update the background measurement over the course of the
data collection period. One solution is implementing a moving average that incorporates new data
into the BSP. Updating the BSP in this way effectively retrains the algorithm based on newly ac-
quired information. Several different types of moving averages are potential candidates, including
a simple moving average, a cumulative moving average, or a weighted moving average.

Both the simple moving averages and weighted moving averages use a finite rolling window
of data points to recompute the average background measurement at each time step [112]. This
rolling window only uses the most recent data points in determining the average background, and
so either type of method is able to adapt to changes in the background baseline over time—the model
effectively “forgets” information about the background that occurred before the window. In many
cases, this behavior is reasonable; however, in the safeguards regime, regulators would presumably
be averse to having the algorithm totally forget prior information. Such a system may offer more
avenues to be exploited, as new information would be tested against only some recent set of data that
has been successfully incorporated into the BSP. Valid data from before the BSP window would no
longer have any bearing on the current background calculation. Still, these two averaging methods
are likely preferable to a cumulative moving average that is calculated simply as the mean of all prior
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Figure 4.3: Daily events measured over the month of February using a gross counts anomaly de-
tection algorithm and nominal false positive rate of one anomaly per decade. It is evident that the
majority of the events identified as anomalous occur in the second half of the month.

data points with no weighting. Such an averaging scheme would consider the dataset’s entire history
equally when predicting the expected background. In this case, no preference would be given to
more recently collected measurements, and a long period of non-anomalous behavior would cause
the background to asymptotically approach a constant value. Low frequency shifts in the measured
background would eventually cease to have a meaningful impact on the projected background.

Another alternative, and the one chosen here for adjusting the gross counting algorithm, is an ex-
ponentially weighted moving average (EWMA). Like the simple moving average and the weighted
moving average, the EWMA provides the strongest consideration towards recently collected data.
However, unlike those two window-based averages, the EWMA never completely “forgets” infor-
mation that falls outside the fixed rolling window. Instead, each time the average background is
to be updated, the new gross counting measurement to be incorporated into the BSP is averaged
against all of the previously computed background contributions [112]. The exact calculation is
given by

xt+1 = pxt + (1− p)xt, 0 ≤ p < 1 , (4.18)

where xt and xt are respectively the gross and expected number of gamma rays measured at time t,
and xt+1 is the projection for the expected number of background counts at the subsequent time t+1.
The parameter p, termed the persistence, represents a weighting factor determining how long older
spectra in the BSP contribute meaningfully to the average. Of course, since the BSP must be free of
anomalies, the EWMA update procedure is only performed when measurement xt is not classified
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as an anomalous event. This persistence p became an additional private input provided by the party
playing the role of nuclear regulator. Algorithm 4 updates the procedure diagram for the privacy-
preserving gross-counting algorithm to include the EWMA expansion.

Algorithm 4 The garbled circuit protocol can be enhanced by incorporating an EWMA into the
background estimates. Where the expected measurements (background) were previously calculated
publicly in advance of the privacy-preserving evalautions, the EWMA required an on-line, secure
update of the average using data collected after the initial public window.

Applying the EWMA to the gross counting anomaly detection garbled circuit yielded far more
promising results. Table 4.1 highlights the improvement of the anomaly detection algorithm using
a BSP determined with EWMA over the algorithm that used a fixed four hour window of data.
Out of the more than 2.3 million spectra included in the MUSE February data, now only 55 were
flagged as potentially anomalous when using a false alarm rate of one event per decade. Of these 55
anomalous events, 52 were spectra occurring within approximately one minute of 09:19 local time
on February 27, 2019. When the stricter false alarm rate of one event per century was used, 46 spec-
tra were flagged as anomalous, all of which occurred in the temporal vicinity of the transfer event.
Consulting the ground truth logs, this time period coincided with the February material transfer:
movement of approximately 650 grams of neptunium irradiation targets, contained in a drum with
tungsten shielding, and pushed by hand between REDC and HFIR on February 27. Although the
Poisson model may not be perfect, when paired with a BSP calculated using an EWMA, the dis-
tribution was adequate for achieving the goal of discriminating anomalous events from evolving
background.
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Table 4.1: The results of the anomaly detection algorithm for each tested configuration of BSP and
false alarm rate.

BSP Method False Alarm Rate
[yr−1] Anomalies Detected False Positive Events

Fixed 4 hour sample 0.1 142, 816 142, 770 (99.97%)
Fixed 4 hour sample 0.01 129, 637 129, 591 (99.96%)

EWMA 0.1 52 3 (5.45%)
EWMA 0.01 46 0 (0.0%)

4.5 Trial 2: Region of Interest Anomaly Detection
A potential weakness of the gross counting method lies in the fact that all of the information con-
tained in the spectral shape is ignored by the anomaly detection algorithm. Since anomalies of
interest to safeguards administrators are likely to include SNM, algorithms that fail to make use of
the entire spectrum leave regulators without a critical analytical tool. Still, given the computational
burden of privacy-preserving calculations, many highly sophisticated spectral anomaly detection
algorithms may be too complicated to be performed efficiently using MPC. Instead, methods de-
rived from finding outliers in regions of interest (ROIs) are popular in radiation detection contexts
and may provide a reasonable compromise between simplicity and sensitivity. Those methods still
exploit the multivariate nature of spectral time series, but simultaneously reduce the parameter
space to a size that is more manageable when implemented as a garbled circuit. This section dis-
cusses an ROI-based technique that was converted to a garbled circuit and applied to the MUSE
dataset, creating a more robust anomaly detection algorithm while retaining the privacy-preserving
elements of the interaction.

ROI methods, also referred to as energy windowing methods [113, 114], derive from early work
captured in patent applications for technologies distinguishing naturally occurring radioactive ma-
terial from artificially produced sources [115]. The same principles are used here to differentiate
radioactive anomalies from the “natural” background. Since there is a fixed probability that any
given isotope emits a gamma ray of a specific energy when it de-excites following radioactive de-
cay, the spectral shape measured for any particular arrangement of long-lived8 radioactive isotopes
should remain generally constant (apart from natural statistical fluctuations). For similar spectral
shapes, the ratio between any two channels should remain approximately the same—and so should
the ratio between the total number of gamma rays measured in any two spectral ranges. In the
event that an anomaly occurs, the observed spectral ratios will likely differ from their projected
proportionality, and an alarm may be triggered.

Binning the data over a region in this way provides two advantages. First and foremost, the
8Long-lived isotopes would be any with lifetimes many times longer than the period between observations.
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aggregation process may substantially reduce the number of regions that must be compared, and
these regions may be chosen to focus on regions that are particularly useful in distinguishing certain
anomalies from background (e.g. unplanned movements of SNM). This eliminates the combinatori-
cally large quantity of spectral channels that would otherwise need to be compared when analyzing
complete spectra for anomalies, significantly shrinking the resource load of further calculations.
Moreover, the binning process also acts to smooth the data, mitigating the effect of statistical fluc-
tuations that may arise in any particular spectral channel. These qualities make ROI-based anomaly
detection techniques attractive candidates for use as garbled circuits when information is known
about the characteristics of anomalies, and so the second trial performed in this study leveraged the
concept of spectral comparison ratios (SCRs) developed over the past two decades [116–119].

4.5.1 The SCR Algorithm
As suggested by the name, an SCR method compares ratios of spectral counts in a set of regions.
The algorithm analyzes these ratios to find cases where the counts in some combination of the
regions deviate significantly from an expected value. This section explains how these ratios are
computed and the metric used to evaluate them for anomalous behavior. Like in the previous trial
for the gross counting technique, the algorithm computing the ratio and evaluating the metric is
programmed using Obliv-C, with the resulting protocol description being compiled as a garbled
circuit. The algorithmic process (and larger MPC protocol) is again represented as a diagram in
Algorithm 5. The circuit generator continues to provide the spectral data (the MUSE radiation time
series), while the circuit evaluator continues to provide the algorithmic parameters. In this trial,
those algorithmic parameters now include the choice of regions.

The algorithm primarily relies on ratios of spectral counts determined directly from a measured
spectrum of gamma-ray counts xt. Consider that spectrum partitioned into n regions collected at
time t,

rt =

r1...
rn


t

. (4.19)

The boundaries for these regions are chosen in advance by the circuit evaluator.9 Each value rit
denotes the number of counts in region i at time t, defined by

rit =
∑
k∈Ki

xkt , (4.20)

where Ki denotes the set of channels comprising region i and xkt counts the number of gamma
rays measured in channel k.
9The choice of region boundaries is not important in understanding the anomaly detection algorithm’s execution pro-
cedure, and so is not covered here. Boundary selection is discussed in depth in Section 4.5.2 when presenting imple-
mentation specifics used for this anomaly detection trial.
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Algorithm 5 The procedural diagram for the SCR-based anomaly detection trial. The inputs on the
part of the circuit evaluator now include the channels in each region K.
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The specific SCR method used in this work is derived from mathematical foundations proposed
by Trost and Iwatschenko [115] who define a parameter αi,j for comparing spectral counts across
two regions, denoted i and j:

αi,j = ri −
ri
rj
rj . (4.21)

Scalars ri and rj represent the expected values for counts in regions i and j, E [ri] andE [rj], respec-
tively. This quantity represents a residual between the present observation of gamma-ray counts in a
region and the expected number of counts in that region, the latter estimated by using the measured
counts in another region together with the historical relationship between the two [117].

For a partitioned spectrum with n regions, there exist n− 1 linearly independent such residuals
between the regions. At time t, one possible vector of these n− 1 residuals is

αt =

 α1,1
...

α1,n−1


t

. (4.22)

Given the vector of gamma ray counts in each region rt, the residual vector for time t is calculated
as

αt = Tt · rt. (4.23)
where T is a transformation matrix defined to generate a set of SCR-based residuals from ROI
counts:

Tt =

1 −r1/r2 · · · 0
... ... . . . ...
1 0 . . . −r1/rn


t

. (4.24)

By constructing this transformation matrix, the algorithm may efficiently convert between spectra
partitioned into ROIs and SCR-based residual vectors.

With the notion of SCRs defined, it remains for the SCR anomaly detection algorithm to be im-
plemented as a continuously updating prediction model. To do that, each new measured gamma
ray spectrum must be partitioned into regions, converted into a vector of SCR-based residuals, and
then evaluated for anomalous behavior. Similar to the threshold values described in Sections 4.3
and 4.4, a spectrum could be identified as anomalous if, under some metric, it exceeded a thresh-
old τ . Expressing the metric as some arbitrary distance function, an anomalous spectrum with SCR
vector αt would satisfy the relationship

dist (αt) > τ . (4.25)

Implementing Equation 4.25 requires a defined multivariate distance metric and the associated
inputs. To avoid high-count regions from dominating, a metric accounting for correlations is prefer-
able. In this case, a distance function related to the Mahalanobis distance introduced in in Equa-
tion 4.6 serves as a reasonable metric [116, 118]:

dist (αt) =
(
αt

⊺ · St
−1 ·αt

) 1
2 . (4.26)
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In this equation, St defines the covariance matrix of SCR residuals in the BSP. This covariance ma-
trix is derived from the covariance matrix of partitioned BSP counts Σt, and that may be calculated
directly from the spectral counts measured in each region. Using the standard (unbiased) formula
for building a covariance matrix from a dataset, this is

Σt =
1

n− 1
(rt − rt) · (rt − rt)

⊺ . (4.27)

In this equation, rt is a vector representing the n values of ri, the expected number of counts in each
region. Once this covariance matrix has been calculated directly from the data, the SCR covariance
matrix St can be found using the transformation matrix Tt defined in Equation 4.24:

St = Tt ·Σt · Tt
⊺ . (4.28)

The exact, ordered procedure for determining dist (αt) is shown in Algorithm 5.
In order for this residual comparison to be implemented as a continuously updating prediction

model, the relationship between the model and the BSP must also be defined. This is critical since
estimates of rit are necessary to build and update matrix Tt, and the continually revised BSP is the
source underlying the covariance matrix Σt. Recognizing that the initial gross counting method
suffered from an inability to adapt to low frequency changes in the MUSE data, this second anal-
ysis used EWMAs from the outset to update information gleaned from the BSP. This procedure,
analogous to the one described in Section 4.4.4 and Equation 4.18, was previously shown to work
well with the SCR anomaly detection technique [118], and so was a natural choice. As in Sec-
tion 4.4.4, the EWMA allows the anomaly detection method to incorporate new data into the BSP
while simultaneously preserving long-term history of the dataset’s background and ensuring that
recently acquired data are appropriately weighted in the evaluation.

By definition, only non-anomalous data may ever be included in the BSP. As such, it is only for
spectra where αt is determined to be non-anomalous by Equation 4.25 that the BSP averages are
adjusted. First, for the expected value of counts in each region i, the EWMA average is calculated
as

rt+1 = prt + (1− p) rt . (4.29)
Similarly, the covariance matrix is estimated using the relationship

Σt+1 = pΣt + (1− p) (rt − rt) (rt − rt)
⊺ . (4.30)

The equations describing these two iteratively updated inputs share parameter p, the same persis-
tence parameter that was defined in Section 4.4.4. When calculating the new EWMA, the persis-
tence (0 ≤ p < 1) is used to weight the previous background average against the present measure-
ment’s contribution as it is incorporated into the average. Ultimately, the persistence determines
how substantially previously collected measurements influence the current evaluation over time.10

If, on the other hand, dist (αt) > τ and the spectrum collected at time t is classified as anomalous,
the BSP is left unchanged and the previous averages are carried forward: rt+1 = rt and Σt+1 = Σt.
10Note that the persistence is the fractional complement of the weighting factor used by Pfund et al. [118]; that weighting

factor is equivalent to 1− p.
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Now, since both the expected value and ROI covariance matrix are recursively defined, an initial
value must be determined using a predefined initial BSP for time t = t0. That BSP is used to
compute the initial vector of expected values for region counts rt0 using the traditional vector mean
of the values in each partitioned spectrum, and likewise, to perform the standard calculation of the
covariance matrix:

Σt0 = R ·R⊺, R =


...

rt − rt
...

 , t ∈ B. (4.31)

Updating the expected values and covariance matrix using this technique is also included in the
diagram of Algorithm 5, depicting how the update process fits into the evaluation MPC protocol.

4.5.2 Identifying MUSE Anomalies Using Spectral Comparison Ratios
Following the same general procedure as in the first trial, this ROI anomaly detection algorithm
was applied to the MUSE dataset using a garbled circuit to preserve input privacy. Again, Obliv-C
was used to compile garbled circuits of the algorithm outlined in Section 4.5.1 from a protocol
description written in C. Using the garbled circuit executable, two parties were simulated engaging
in a joint privacy-preserving computation in the roles of a nuclear facility operator and a safeguards
administrator.

Although the private inputs for the nuclear facility still consisted of data collected by MUSE
detector 4, this second trial analyzed data for just the month of March. The nuclear regulator’s
input increased, however, now being composed of three items: the anomaly detection threshold τ ,
desired persistence p, and the boundaries of each region used to partition the spectra. These three
inputs had to be determined in advance by the party in the role of the safeguards administrator, and
so all of the MUSE data from the month of February was made public to facilitate the process. In
a real scenario, this would represent the case where the regulator is given access to a facility and
some initial period of operation, perhaps including some set of calibration or testing events. The
facility would not learn the parameters chosen by the regulator to ultimately derive its conclusions,
it would know only the data that the regulator had available in making its choices. Likewise, the
regulator would not gain access to facility data collected after this initial window.

First, the party simulating the safeguards administrator had to select an appropriate set of regions
for the algorithm to use when partitioning each measured spectrum. As this selection process was
not included as part of the garbled circuit, it was not described in Section 4.5.1; however, thoughtful
selection is critical for maximizing the likelihood of detecting anomalies of interest. While the re-
gion selection process is specifically not designed to identify particular isotopes in the dataset [118],
regions may be selected to enhance the detection of anomalies that share common characteristics
with potential target isotopes.

The selection procedure used here followed the outline set forth by Anderson et al. [117], de-
termining the optimal region boundaries to provide the maximum discrimination ability between
anomalous and non-anomalous spectra. To hone the algorithm’s ability to distinguish events in this
way, the technique relies on a designated “threat” spectrum intended to be representative of likely
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anomalies. In this study, isotopes of interest for composing a threat spectrum might include neptu-
nium, protactinium, or plutonium, three SNM material sources like those being transferred in the
manufactured anomalous events within the MUSE dataset. Many of the material and experiment
characteristics pertinent to the MUSE dataset (e.g. relative abundances, transportation shielding,
standoff distance, etc.) were not known, and so generating a reference threat spectrum for a rele-
vant transfer was impractical. Instead, since the data from the month of February was considered
public, this second anomaly detection trial made use of data and results from the previous trial.
In place of an experimentally measured or artificially simulated threat spectrum, the most anoma-
lous spectrum from the first trial (corresponding to the known neptunium and protactinium transfer
event) was used to select optimal regions.

As a note, while this spectrum was included in the now-public February data, had that data not
been public, the same information could have been extracted using additional steps in the privacy-
preserving algorithm. For instance, a flag could be included in a preliminary privacy-preserving
scan to track and mark the most anomalous events encountered during the program over the course
of one month. That event’s data could then be used in a subsequent privacy-preserving computation
to optimize region boundaries. Once determined, these privately generated region boundaries could
be fed back into the on-line anomaly detection algorithm. This course of action was not taken here,
as the optimization process was found to already be quite computationally intensive and the loss of
privacy for the February data did not sacrifice the integrity of any of the March data.

With a threat spectrum defined, the region optimization procedure searches to find the set of
regions that distinguishes the threat spectrum from background events with the minimum number
of detectable counts. This minimum number may be taken as inversely proportional to a figure
of merit (FOM) that quantifies how any configuration of regions impacts the algorithm’s capacity
to identify the threat. By maximizing the FOM for the chosen regions, the selection procedure
is exploiting the fact that gamma rays measured in certain areas of the spectrum contribute more
strongly towards a determination of abnormality than others. Given a threat spectrum xthreat, the
FOM is determined to be

FOM = αthreat
⊺ · St

−1 ·αthreat . (4.32)

Here, St is the SCR covariance matrix of the BSP as calculated in Equation 4.28 and αthreat is the
SCR vector of the threat spectrum. Vector αthreat is generated by first partitioning xthreat into test
regions rthreat, before applying the transformation matrixTt defined for the BSP at time t. This FOM
should be maximized for the complete set of combinations of input bins and bins may overlap.11

For considering multiple potential threat spectra, the notion may be generalized [116, 118].
Applying Equation 4.32 to various regions in order to optimize the FOM also requires an initial

BSP so that the covariance matrix St may be determined. Just like in the first trial, this BSP was
selected to be the first 14,399 spectra from the February data. Using this BSP, along with the most
anomalous February spectrum, three (overlapping) regions were selected as ideal. It is worth noting
that to reduce the computational burden of both the optimization process and the privacy-preserving
computation, the 500-channel spectrum was down-binned into 25 bins of 20 channels each, a level
11It is also evident, though not necessarily immediately obvious, that these bins must be linearly independent. If not,

covariance matrix ΣB (and therefore, by extension, SB) will be a singular matrix and non-invertible.
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Figure 4.4: A spectrum from the MUSE dataset representing a transfer of neptunium and protac-
tinium between REDC and HFIR. This was used as the reference threat spectrum for optimizing the
ROIs; the three regions determined to optimally discriminate anomalies from non-events are over-
laid on the spectrum as solid horizontal lines (with arbitrary positions on the vertical axis). The
regions span the regions of 0 keV–1500 keV, 240 keV–300 keV, and 300 keV–360 keV. The average
initial background measurement is overlaid in orange at the bottom.

of granularity that retained the most notable spectral features. The chosen “threat spectrum” and
the selected regions are shown in Figure 4.4, and it is evident that the regions follow some of the fea-
tures in the dataset. More regions could potentially improve the algorithm’s ability to discriminate
between spectra; however, this study capped the algorithm to only three regions to prevent exces-
sively long execution times. When considering the implementation of the SCR-based anomaly
detection algorithm as a garbled circuit, computational limits restrict the number of regions that
can be feasibly analyzed. Furthermore, the optimization process becomes computationally infea-
sible with large spectra and many potential groupings of regions, although optimization tools and
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algorithms can improve the efficiency of this process.12 For the down-binned spectrum and three
possible regions it was possible to exhaustively search all 5,666,050 potential region configurations
to find the set that maximized the FOM.

Once the regions had been identified, it remained for the inspecting party to determine the other
two inputs: threshold τ and persistence p. The threshold value was set by hypothesizing that anoma-
lies of interest (transfer events) would closely resemble the spectrum of the known transfer event.
Events matching that description would be those with similarly high values calculated with the
SCR distance metric dist (αt). The objective became distinguishing these transfer events from
other unusual—but not alarming—features in the collection of spectra. To achieve this, τ was set
comfortably larger than the maximum distance value from the February data that could not be ver-
ified on the ground truth logs as a transfer event, yet not so large as to reduce the sensitivity of the
algorithm.

Following these criteria, the threshold was set at τ = 100. The distances calculated for the true
anomalous event13 were well above this threshold, with most of those values being greater than one
thousand (and in some cases, larger than one million). At the same time, for τ = 100, the largest
non-anomalous distance in the February dataset for detector 4 had a computed distance of only
dist (αt) ≈ 55—still significantly less than the threshold.

Finally, the algorithm was applied to the MUSE data from the month of March. Since the Febru-
ary data were deemed public, they were used to initiate the anomaly detection protocol. The pro-
tocol was run through the month of February in order to establish a history through the EWMAs
before proceeding forward to analyze the private March data for anomalies.

4.5.3 Results
Using Obliv-C, the garbled circuit implementation of the SCR anomaly detection algorithm was
successfully implemented. It was able to compute and identify anomalous events from the March
MUSE data provided by the simulated nuclear facility, using the private parameters supplied by the
simulated regulator.

The privacy-preserving anomaly detection technique based on SCRs was highly effective, find-
ing a total of seven anomalies during the month of March. The first three of these anomalies oc-
curred slightly after 10:56 on March 6, and the next four anomalies occurred at 10:36 on March 13.
These two events corresponded to the only material transfers of SNM recorded in the ground truth
logs. In this case, the two events consisted of irradiated neptunium and plutonium targets mov-
ing past MUSE detector 4 en route to HFIR from the REDC facility. These two anomalous event
windows were both identified with high confidence, having maximum distance metric values sub-
stantially greater than the τ = 100 threshold; for each event, at least one spectrum was calculated
to have a distance metric above one thousand.
12Powell’s Method has been suggested as an effective optimization method for ROI selection [117].
13Specifically, spectra collected within about a one-minute interval surrounding the February 27 transfer event.
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4.6 Summarizing Remarks
Both of these trials showed how garbled circuits could be used to apply an anomaly detection al-
gorithm on the MUSE dataset without revealing information about the input spectra. The first
presented a relatively simple approach using the gross number of gamma rays measured in each
spectrum to find anomalous material transfer events, while the second offered a significantly more
powerful technique using ROIs to analyze a similar set of spectra. In each of the trials, the algorithm
successfully identified spectra corresponding to the material transfer events serving as anomalies in
the data. When the models were refined, the algorithms did not just identify the anomalous events,
but were also able to minimize the number of false positives that were incorrectly identified.

Neither of the two trials featured anomaly detection systems representing the most robust spec-
tral analysis that could be performed on the data, though enhancements could be made within the
garbled circuit framework without much difficulty. For example, it is possible to filter out nuisance
spectra from the input dataset when performing anomaly detection using the SCR method [116,
118]. These nuisances could include artificially produced radioactive products that contaminate a
set of test spectra and make identification of anomalies based on other isotope signatures difficult.
If radioactive isotopes like argon-41—emitted intermittently from the HFIR stack [101]—and its
progeny were believed to obscure the signal from the motion of SNM, those isotopes could be char-
acterized as nuisance candidates and filtered out by the anomaly detection algorithm. Although this
study did not incorporate any nuisance filtering in its finalized algorithm, this functionality could
be added by adjusting αt in Equation 4.26.

Ultimately, with near universal identification of anomalies and low false alarm rates, both trials
proved successful in applying MPC to perform privacy-preserving calculations on nuclear safe-
guards data. Without revealing any information about the underlying gamma-ray spectra data to
the regulator, and without revealing the chosen regions of interest, threshold value, or any histori-
cal dependence of background data to the nuclear facility, the algorithms were able to confidently
identify material transfers from other potential data irregularities as notable anomalies. The success
of these exercises demonstrates how MPC might be applied to nuclear safeguards challenges more
generally, and suggests avenues for further exploration, study, and advancement.
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Chapter 5

CypherCircuit

Having demonstrated that nuclear safeguards challenges can be practically overcome through the
use of multiparty computation (MPC) techniques, it is appropriate to consider how privacy-preserving
computation might be actually adopted by the International Atomic Energy Agency (IAEA) and the
international safeguards community. Like many stakeholders in nuclear operations worldwide, the
IAEA chooses to upgrade its technological systems conservatively, ensuring that risks are not intro-
duced. For safeguards, rigorously evaluated technologies are trusted to inform accurate safeguards
assessments, even at the expense of efficiency or convenience. At the same time, nuclear facilities
and the States that operate them are likewise risk averse. Maintaining the privacy of proprietary
data and reducing liability is perceived to be worth more than the potential benefits of implementing
a state-of-the-art system. Adoption of new technologies may also be stymied by high volumes of
administrative overhead required under what are often comparatively intensive regulatory environ-
ments, where new technologies must be proven safe and effective. Then, taking this perspective, it
becomes critical that both the IAEA and the States participating in safeguards possess high confi-
dence in the security of any proposed MPC solution.

5.1 A New Garbled Circuit Framework
Numerous computational frameworks already exist to perform MPC, as discussed in Section 3.5.
Each is designed with a specific purpose in mind, and the ideal framework to choose is almost
always dependent on the task at hand. Many are cryptographic research tools, designed to either
demonstrate a new technique or compare the performance of a selection of MPC protocols. More
recently, some of the frameworks have been developed with the intention that they be usable by
general practitioners—non-experts without extensive, formal cryptographic training. Obliv-C, the
software framework used to perform the analysis demonstrations in Chapter 4, is one such tool [99].
Despite this emerging trend emphasizing usability, none of the codes are intended to elucidate the
underlying details of the MPC processes taking place. All of the implementations, even those
described comprehensively in the academic literature, are rather opaque in their operation. This is
especially true for users without cryptography experience.

For many applications, this arrangement is sufficient. There are many users who would likely be
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satisfied with the knowledge that a MPC tool uses techniques that have been published and proven
in the academic literature and verified by cryptographic experts. However, in other situations there
may be users who do not completely understand the underlying MPC concepts—or even just users
who do not understand exactly how the cryptographic protocol is translated into a software library—
and who would therefore be reluctant to trust a computational solution based on algorithms that are
difficult to grasp or that are not clearly demonstrated by a tool executing with complete transparency.

International regulators and States participating in safeguards agreements might both fall into
this second classification of users. From the perspective of the IAEA, the agency must be assured
that any use of MPC techniques does not expose vulnerabilities in either new or existing safeguards
infrastructure. At the same time, limited resources may prevent the agency from devoting substan-
tial effort toward developing the in-house expertise for understanding MPC protocols, verifying
the software tools that execute those protocols, and convincing States to embrace these algorithms.
Considering the opposing perspective of a State participating in safeguards, the State may be wary
that nominally privacy-preserving protocols might actually be vulnerable to manipulation that could
leak their private information. In order for either of these entities (or any skeptical party) to build
trust in MPC protocols, it is essential that the algorithms be presented in a manner that is as clear and
straightforward as possible, providing evidence along the way of the algorithm’s security. Demon-
strations like those in Chapter 4 only demonstrate that privacy-preserving computation could be
used in a nuclear safeguards context, but alone may do little to reassure a skeptical party that they
should consider adoption of MPC. The CypherCircuit software library was created to satisfy this
latter objective.

5.2 The CypherCircuit Package
The CypherCircuit Python package provides users with an intuitive tool for understanding garbled
circuits. Its purpose is to make the underlying garbled circuit protocol clear and transparent to
users, allowing them to engage more intimately with the protocol they are executing. The intention
of developing a software tool in this way is to facilitate trust in the algorithms by the participants.
Parties who construct, encrypt, and evaluate garbled circuits should be able to investigate each step
of the process to understand exactly how their inputs are being manipulated—and therefore, how
their privacy is being preserved and that their results are trustworthy. Still, functionality cannot be
ignored. While the CypherCircuit package is not designed to match the speed of modern research
and production codes, it should be able to handle moderately sized calculations.

5.2.1 Design Principles
To successfully develop a software framework that met our objectives, the CypherCircuit project
has attempted to adhere to a set of three guiding principles, unified by a general commitment to
intuitive design. These three principles are accessibility, perspicuity, and extensibility.
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Accessibility Considering that the CypherCircuit package is targeted at technical users without
extensive cryptography experience, accessibility is a critical characteristic of the framework. It
can be expected that users are familiar with a general understanding of garbled circuits, since the
operations are readily presented at varying technical levels in the academic literature, as well as in
less formal contexts (e.g. freely published online notes, textbooks, and even technical blogs). With
this consideration, it becomes important that the CypherCircuit package be constructed in a way
that logically follows from those explanations. Using CypherCircuit, a user should be able to grasp
the premise of garbled circuits, then translate those ideas directly into software that executes two-
party computation (2PC). CypherCircuit is designed to facilitate this process of circuit prototyping;
it offers intuitive circuit constructions and operations that cleanly map to common descriptions
of garbled circuit protocols. Moreover, the package attempts to use intuitive data structures that
blend a low-level understanding of garbled circuit cryptography and circuit design with high-level
mathematical operations, attempting to seamlessly integrate both sides of the MPC to facilitate an
understanding of how simple privacy-preserving exercises may be extended to more sophisticated
calculations.

Now, although being intuitive from a conceptual standpoint is important, it is not the only as-
pect that should be taken into account when focusing on accessibility. The larger context of us-
ability must also be considered, and users should find the development environment manageable
and straightforward. Towards this end, the CypherCircuit project emphasizes attention to detail.
First, CypherCircuit adheres strictly to applicable software development standards (e.g. Python PEP
guidance) to ensure that the programming interface is largely consistent with the greater Python sci-
entific computing domain. For those already familiar with the Python standards, following these
common patterns streamlines the development process and simplifies knowledge acquisition and
code exploration. For users who are less familiar with the Python standards, the package follows
structures that are common across the Python scientific computing ecosystem improving the odds
that community resources may apply in interpreting code features. Second, the package is exten-
sively documented to avoid ambiguity about the software’s functionality. Thorough documentation
ideally gives users a clear starting point for understanding the software—either when reading source
code or when attempting to build live circuits. Third, the package is designed to anticipate devel-
oper needs and alleviate confusion. As mentioned, the package strives to offer a hybrid development
approach that can construct circuits at either high or low levels. Great care was taken in the devel-
opment process to prepare interfaces that allow a user to seamlessly work in either context, with
the software’s back end ensuring consistency between both approaches. When taken all together,
these components are critical for enabling users to use the package confidently: able to easily work
with the package while being reassured that they are not leaving themselves exposed to security
vulnerabilities through accidental misuse.

Perspicuity The CypherCircuit package also emphasizes that clarity and transparency be af-
forded to users at runtime. In the safeguards scenario, the intended users of the package (the IAEA
and a State under safeguards) ought to be assumed skeptical or wary, and so offering clear and
unencumbered access to inspect the software’s execution is highly worthwhile. CypherCircuit en-
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deavors to offer this transparency by facilitating user interaction and exploration of the garbled
circuits throughout the entire multi-step garbled circuit process. In this way, CypherCircuit lever-
ages Python’s permissive access structures to enable users to inspect circuits at various stages of the
garbled circuit protocol—whether during construction, encryption, exchange, or evaluation. While
this aspect is likely of minimal importance to large scale operations, low-level access to the pack-
age’s machinations permits a skeptical party to match CypherCircuit’s execution to the expected
garbled circuit protocols in smaller test cases. This degree of accessibility is extremely valuable
given the maturity of interactive Python tools—the Python interpreter, IPython, Jupyter notebooks,
and JupyterLab, to name a few. Further description of the measures taken by CypherCircuit to
enhance transparency are described in Section 5.2.2.

The CypherCircuit package’s commitment to transparent code and execution procedures is not
limited to implementations and applications of the package. To ensure the package’s consistent
integrity, the CypherCircuit project is also comprehensively tested, tracked via version control, and
maintained using continuous integration. These practices enable users to have high confidence in
the code’s ability to perform computations securely, as well as offer a detailed window into the
software’s execution and evolution.

Extensibility The third, final design principle behind CypherCircuit is extensibility. To be use-
ful for general audiences, as well as support an intuitive package design, CypherCircuit must be
easily extended to handle a broad range of (potentially unforeseen) user demands. As such, most
elements of the CypherCircuit package are intended to serve as foundations—but not the limits—of
the tool’s capabilities. Examples of this philosophy are readily found in the package’s components.
First, the package offers a basic set of generic garbled circuit tools, which can then be optimized
or consolidated using logical extensions and adaptations of the existing objects. For example, the
package relies on Wire and Gate objects for building simple, conventional circuits, but these el-
ementary structures can be concealed by using the higher-level and more intuitive language-like
CCType system (covered in Section 5.2.2) or optimized using “smart” features like the Hi, Lo, and
FreeXorWire objects (described in detail in Section 5.2.3). Whenever possible, CypherCircuit
seeks to define interfaces that enable the package’s built-in objects to be easily extended to tackle
new challenges.

5.2.2 Package Structure
In pursuit of an intuitive design, the most basic elements of the CypherCircuit package have been
developed to be used as if one were building a real, physical digital circuit. A similar approach
has been used in other MPC libraries; for instance, some common features are shared with the li-
brary presented by Huang et al. [68]. CypherCircuit provides a toolset capable of executing the
four stages of the two-party protocol outlined in Section 3.2.1: constructing, garbling, exchanging,
and evaluating the circuit. To begin, the two parties build and agree to use a circuit structure that
evaluates the function to be jointly computed. They then proceed to engage in an interactive pro-
cess guided by a Python context manager that handles the second, third, and fourth stages of the
protocol, as well as the associated inter-party communication. The package handles all operations,
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storage, encryption, and communication—the user simply triggers those actions using the built-in
functionality of the circuit. As Python objects, almost all elements can be interrogated by a user to
expose the underlying data (of course, without compromising the security of the algorithm).

Constructing the Circuit

To construct garbled circuits with CypherCircuit, a user begins by instantiating a CircuitBoard
object. This CircuitBoard serves as the underlying command structure for each circuit, storing
circuit level attributes like the security parameter, as well as providing methods for manipulating,
garbling, and sharing the circuit. The user then adds wires and gates to this CircuitBoard object,
implementing the desired functionality. Like a physical circuit, these wires and gates form a directed
acyclic graph (DAG) with wires as edges and gates as nodes. Wire objects are relatively compact
data structures, each able store one of two potential values representing the Boolean logic value
carried by the wire, as well as the associated labels. Gate objects operate on their input wires,
propagating the wire values through the circuit. A comprehensive set of built-in gate types are
provided by the package (NOT, AND, OR, NAND, NOR, XOR, and XNOR), all implementing a common
gate interface. Each gate is instantiated by passing the gate’s input wires as arguments, and, if not
otherwise specified, automatically produces a corresponding output wire. Figure 5.1 displays the
process that a user would take to programmatically build a comparator circuit using CypherCircuit.

All gates enforce a logic operation defined by a truth table, an object that is common to all gates
of a given type. While most common gates are predefined, truth table objects may be constructed
dynamically by defining gates that perform arbitrary operations. This functionality is one example
of the extensibility principle being applied in practice. Gates and wires exist with knowledge of
adjacent circuit components, such that when wire values are defined on all of a gate’s input wires,
the gate sets the value of its output wire accordingly. In fact, these types of gate updates are triggered
automatically whenever wire values are changed, enabling full circuits to be immediately responsive
to adjustments on input wire values and propagating those changes through to the circuit output
wires. Users may leverage this property to ensure that a circuit is computing a function correctly
before proceeding through the more computationally expensive encryption stages of the protocol.

Although storing each and every wire and gate object is not the most memory-efficient construc-
tion, providing a user with the flexibility to implement functions by building up from the circuit
level enables CypherCircuit to deliver on its guiding principles. First, by retaining the obvious
connection to a circuit structure, non-expert users familiar with the concept of garbled circuits can
quickly begin exploring the protocol’s operation (accessibility). Second, users may easily investi-
gate and inspect the state of wires and gates during each step of the garbling process (perspicuity).
Third and finally, allowing users to build arbitrary circuits guarantees that any computable function
can be implemented by the package, and users may optimize those circuits freely (extensibility).

In traditional garbled circuit calculations, both parties know the function to be computed and
therefore may possess knowledge of the circuit structure. As such, CypherCircuit allows parties to
share common circuits in two manners. The first option is for a user to define a circuit as an element
of a standalone Python module. This circuit, ideally derived from the built-in CircuitBoard class,
may be subsequently imported into the execution environment of each party. A second option per-
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# Load CypherCircuit components
from cyphercircuit import CircuitBoard
from cyphercircuit.wires import Wire
from cyphercircuit.gates import And, Or

# Create the comparator circuit
comparator = CircuitBoard()

# Add comparator input wires
wire1, wire2 = Wire(comparator), Wire(comparator)

# Feed the wires into the circuit’s gates
gate1 = Not(wire1)
wire3 = gate1.output_wire
gate2 = Not(wire2)
wire4 = gate2.output_wire
gate3 = And(wire2, wire3)
wire5 = gate3.output_wire
gate4 = And(wire1, wire4)
wire6 = gate4.output_wire
gate5 = Nor(wire5, wire6)
wire7 = gate5.output_wire

Figure 5.1: The steps taken to generate a comparator circuit like the one diagrammed in Figure 3.1
using the CypherCircuit package.

mits a circuit to be generated entirely by one party (the circuit generator) and then transmitted via an
online network connection to the other (the circuit evaluator) using the protocol context managers.
For transmission, the circuit is first converted into a serializable JavaScript Object Notation (JSON)
representation of the DAG composed of circuit elements—wires and gates—intuitively named a cir-
cuit diagram. This diagram is communicated to the evaluator, who is then able to reconstruct an
identical circuit using functionality provided by the package.

Garbling the Circuit

With a circuit constructed, a user possesses the ability to control and explore each step of the gar-
bling process. Users may exert control of the circuits and garbling protocols manually by using
predefined methods built in to each CircuitBoard object, although many users may prefer to
leave these execution details to one of the package’s protocol context managers. The CypherCir-
cuit package provides two of these context managers, a Generator and an Evaluator, to guide
parties through the interactive garbling protocol. The following description outlines the individual
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>>> circuit = CircuitBoard()
>>> X, Y = Wire(), Wire()
>>> and_gate = And(X,Y)
>>> and_gate.label()
>>> and_gate.labeltable
W0001 W0002 | W0003

———————————————————————————
aeef0d... 10e1a1... | 2a9d8f...
aeef0d... 0844fa... | 2a9d8f...
b64a56... 10e1a1... | 2a9d8f...
b64a56... 0844fa... | 3238d4...

Figure 5.2: A labeled truth table belonging to a CypherCircuit AND gate. Wire labels are (abbrevi-
ated) hexadecimal strings representing 128-bit binary integers.

steps that must be taken by a manual circuit garbler, although these (and all subsequent) steps are
conveniently bundled together for users taking advantage of the context managers.

Following the garbled circuit procedure described in Section 3.2.1, each Wire object in the circuit
may be assigned two random labels corresponding to its two potential values. The labels that are
generated in this process follow the global offset method described in Section 3.2.2, where labels
are randomly selected for one wire label and then that label is used as a one-time-pad to encrypt the
randomly generated global key offset. This practice allows CypherCircuit to leverage the benefits
of the FreeXOR technique, an option described in Section 5.2.3. In CypherCircuit, all randomness
is generated using cryptographically secure random number generators from the Python built-in
secrets module. The labels for any given wire may be accessed by using attribute lookup on the
corresponding Wire object, or a labeled truth table for a gate may be produced by the corresponding
gate object. An example of a truth table labeled in this way is shown in Figure 5.2 as it would be
accessed via the Python interpreter; note the similarity with the labeled truth table table depicted
in Figure 3.3a.

Once labels have been assigned to all wires in a circuit, the truth tables for each gate may be
encrypted. Each CypherCircuit gate has the ability to trigger an encryption process for the gate’s
(labeled) truth table following the garbled circuit protocol outlined in Section 3.2.1. For each row in
the table, the algorithm symmetrically encrypts the gate’s output wire labels with the corresponding
input wire labels. Once each row is encrypted, the resulting ciphertext token is stored in a separate
table accompanying the gate. These encrypted tables of ciphertexts resemble the table described in
Figure 3.3b, with Figure 5.3 depicting one such table.

In general, CypherCircuit implements the non-free encryption scheme presented by Kolesnikov
and Schneider [66]. As referenced in Equation 3.7, given gate gj with input wires wa, wb and output
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>>> circuit = CircuitBoard()
>>> X, Y = Wire(), Wire()
>>> and_gate = And(X,Y)
>>> and_gate.encrypt()

>>> and_gate.tokentable
ciphertexts
———————————

640785...

77cafd...
0e7726...
30bba6...

Figure 5.3: A encrypted truth table belonging to a CypherCircuit AND gate. Like the labels presented
in Figure 5.2, tokens are (abbreviated) hexadecimal strings representing 128-bit binary integers.

wire wc, the encryption function is defined for output wire label ℓvcc as

Eℓvaa ,ℓ
vb
b
(ℓvcc ) = H (ℓvaa ||ℓvbb ||j)⊕ ℓvcc , (3.7)

where the || operator denotes string concatenation. In the same way, output wires are encrypted as
in Equation 3.8. CypherCircuit approximates the behavior of random oracle H using the SHA-256
hash function. This is a practical design decision, not a requirement, and the library is constructed
to allow other hash functions to be used as drop-in replacements.

Finally, any gate that has been encrypted may be shuffled randomly. Since CypherCircuit relies
on the point-and-permute method to reduce computation, shuffling is performed by permuting the
circuit according to the permutation bits assigned to each wire label (as described in Section 3.2.2).
Using this techiniqe, each table of ciphertexts is ordered according to the randomly generated per-
mutation bits that match the input wire labels used as encryption keys. Permutation bits are ran-
domly generated, and so the resulting table represents a random permutation of the ciphertexts.

Within the CypherCircuit framework, the three actions of labeling wires, encrypting labels, and
shuffling the ciphertexts are collectively referred to as “garbling”. For curious users wishing to
maintain control over the garbling process, each action may be performed individually for each
wire (in the case of labeling) or gate (in the case of encryption and permutation). Recognizing
that many users may want to perform these actions for an entire circuit, however, methods of the
CircuitBoard class enable these actions to be performed simultaneously for all wires and gates
across the circuit. Leaving both methods available to users is designed to improve both the frame-
work’s accessibility and transparency. The code is easier to use without needing to manually per-
form each encryption and permutation, yet users may take advantage of the ability to exercise fine
grain control to analyze or customize each circuit operation.
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Exchanging the Garbled Circuit and Private Inputs

After a circuit has been garbled by the generating party, the garbled circuit protocol dictates that
it must be exchanged with the evaluating party. This coordinated exchange of information is an
essential aspect of CypherCircuit. Transmission of both the circuit garbling and encoding, along
with all inter-party communication, is performed over an online network using the Transmisssion
Control Protocol (TCP). All of this online execution is controlled entirely by the CypherCircuit
context managers, each one establishing a connection with the other party’s context manager and
then transmitting the relevant data over the connection.

At this point in the protocol, since both parties possess the circuit structure, CypherCircuit en-
ables the generating party to form a compact JSON representation of the garbled tables of cipher-
texts and then transmit this serialized garbling to the evaluator. Along with these garbled tables of
ciphertexts, the generator must also provide the evaluator with the circuit’s input wire labels that
correspond to the encoding of its own input. The package also facilitates the creation of a JSON
representation of this encoding, which may be similarly transferred to the evaluator.

The exchange of circuit garbling and encoding information is followed by execution of oblivious
transfer (OT) to furnish the circuit evaluator with input wire labels for values known only to them.
CypherCircuit performs this OT protocol once for each input wire where a label was not sent by
the circuit generator. The package follows the protocol of Even, Goldreich, and Lempel for gen-
eral

(
2
1

)
OT, using the RSA cryptosystem for instantiating the public-private key operations. After

completing OT, the evaluator has possession of every input wire label to the circuit. Like all other
interactive procedures, the OT protocol is strictly executed by parties via their context managers.

Decoding the Garbled Circuit

With all of the input wire labels collected, the evaluating party may proceed to decode the circuit.
Again, CypherCircuit follows the protocol laid forth by Kolesnikov and Schneider [66]. Using the
collection of circuit input wire labels, the evaluator proceeds to decrypt truth tables for each gate in
the circuit for which they possess the requisite input wire labels. For gate gj , and input wire labels
ℓa and ℓb (values potentially unknown), the evaluator can determine the value H (ℓa ∥ ℓb ∥ j). Since
the exclusive or (XOR) operation is its own inverse, the gate’s output wire label ℓc may be calculated
as

ℓc = e⊕H (ℓa ∥ ℓb ∥ j) , (5.1)

where e represents the ciphertext of ℓc encrypted symmetrically under ℓa and ℓb. Once all of the
gates have been decrypted in this manner, the values on the circuit output wires wi ∈ WO can be
calculated from the equation

vi = evi ⊕H (ℓi ∥ ‘out’ ∥ i) . (5.2)

It can be seen that Equations 5.1 and 5.2 are the inversions of Equations 3.7 and 3.8 respectively.
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Trimming the Tedium

The CypherCircuit package was developed to provide an accessible tool for users without exten-
sive cryptographic expertise. While this guiding philosophy has led to an emphasis on clarity and
intuitiveness over sheer performance, it is recognized that building even remotely complicated cir-
cuits by hand is extremely tedious and error prone. Many functions (and even many operations)
are non-obvious to implement as Boolean logic circuits. Because of this, the CypherCircuit pack-
age offers features to streamline the experience of a user building circuits so that they may execute
more complicated functions. Keeping with the principle of accessibity, these features build upon
the existing structure that has been previously defined—the basic CircuitBoard object along with
circuit elements like Wire and gate-type objects.

At the most basic level, CypherCircuit provides a set of circuit components that perform fre-
quently used operations. These components include basic comparators, adders, subtractors, multi-
pliers, dividers, and similar atomic operations. In many cases, variations are provided to handle op-
erations over single and multiple bits. These components can be added to an existing CircuitBoard
object, connecting wires in the same way as the fundamental logic gates. In reality, these compo-
nents are simply a collection of wires and gates that come preassembled for easy incorporation into
a circuit. Only slightly more complex but following a similar pattern, CypherCircuit also provides
several prefabricated circuits that compute entire functions. Like the built-in components, these
“integrated circuits” are built entirely of wire and gate elements; however, unlike the components,
each circuit consists of a complete CypherCircuit CircuitBoard and can be garbled, encoded, and
decoded without requiring any other structural components.

Both of these prefabricated circuit structures still generally require that a user be proficient in
understanding the designs of Boolean logic circuits. These types of constructions maintain easy
access to the underlying circuit structures, but where CypherCircuit is aimed at users who are
merely familiar with conceptual garbled circuits, it should not be required that a user be an expert
in digital logic circuits any more than an expert in cryptography. In fact, this notion is prevalent in
many published MPC protocols, which tend to expose interfaces that simplify circuit construction
for end-users. As described in Section 3.5, these interfaces often entail compilation of a customized
high-level programming language into a low-level Boolean circuit or by adapting existing languages
to perform secure computations. What differentiates CypherCircuit is that it attempts to provide
a high-level language for users to construct circuit-based functions, while preserving access to the
individual circuit elements.

This objective is accomplished by leveraging Python’s ability to overload operators. Cypher-
Circuit defines a set of type-like objects (e.g. CCInt, CCBool, etc.) that represent a collection of
wires defining the given type. Through operator overloading, CypherCircuit enables a user to ma-
nipulate instances of these types using traditional programming syntax, with operations on the type
instances automatically constructing circuits. For integers, this results in common operations such
as addition (+), multiplication (*), and comparisons (>,<, ==) being directly translated by each type
object into the corresponding adder, multiplier, or comparator components. These components are
then directly added to the CircuitBoard by the type object.

Beyond operators, CypherCircuit also includes limited functionality for performing conditional
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operations. The CCInt type provides a method that accepts three arguments: a condition (a CCBool)
and two potential values (both CCInt). The function builds the circuitry to set the value of the
returned CCInt object’s wires to match one of the two potential input values depending on the
value of the condition. This structure is similar to the one introduced in Obliv-C via the obliv
if structure first mentioned in Section 4.2, though limitations of the Python language prohibit the
CypherCircuit version from being integrated as seamlessly into the the development process.1 Still,
just like in Obliv-C, this setup forces CypherCircuit to evaluate both conditional blocks (zero and
one) to avoid revealing private information related to the value of the condition. To only evaluate
one block or the other according to the condition would potentially expose information about the
chosen private inputs other than the function’s output. Such knowledge would compromise the
protocol’s security.

From the bottom up, all of the structures that are designed to increase the usability of Cypher-
Circuit are also implemented in a way that preserves user access to the framework’s foundational
machinery. Even when more sophisticated component or language constructions are included, users
are always left with the ability to investigate and modify the circuit structure undergirding their cal-
culation. Together, this practice ensures that CypherCircuit remains accessible, extensible, and
transparent.

5.2.3 Optimizations
The traditional implementation of garbled circuits incurs high computational costs—often several
expensive encryption operations per circuit gate. Because of this, optimizations are a key element
in the practical implementation of garbled circuits in nearly every context. CypherCircuit also re-
lies on optimizations to minimize the computational costs of building, exchanging, and garbling
sophisticated circuits. Although computational performance is not nearly as high of a priority for
CypherCircuit, it must still be considered in the package’s design. For one thing, even a tool that oth-
erwise satisfied the three guiding principles but which could not efficiently handle moderately sized
calculations would see limited utility. Furthermore, where optimizations are ubiquitous across the
garbled circuit (and greater MPC) landscape, it makes sense to include some of the most prevalent
techniques in a package intended to facilitate examination of garbled circuit protocols.

Point-and-Permute

The first optimization included in CypherCircuit is the point-and-permute method. The theory be-
hind the technique is discussed in Section 3.2.2, and CypherCircuit follows the point-and-permute
procedure as it is outlined by Kolesnikov and Schneider [66]. As described in Section 5.2.2, the
technique governs how tables of ciphertexts are shuffled, embedding information in each ciphertext
that can be used to “point” to the ciphertext in the next gate’s table that should be decrypted. Ul-
1The diverse catalog of external packages and modules available to Python may offer a more satisfactory substitute
for programming oblivious conditionals in CypherCircuit, though an obvious candidate was not identified as of this
writing.
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timately no more than one ciphertext need be decrypted for each gate. CypherCircuit appends the
permutation to the plaintext output label prior to encryption, resulting in a κ+ 1 bit ciphertext.2

FreeXOR

To offer further improvements in efficiency, CypherCircuit also implements the FreeXOR technique
described by Kolesnikov and Schneider [66]. As discussed in Section 3.2.2, gates that perform
the XOR operation do not require garbling. When a global key offset represents the difference
(modulo 2) between both labels on a wire, reliance on a random oracle is no longer necessary to
eliminate correlation between encrypted rows in those XOR truth tables. Instead, the input wire
labels can be simply used as one-time-pads to encrypt the corresponding output wire label (the
property illustrated by Table 3.1).

When the FreeXOR technique is implemented, a table of ciphertexts is no longer required for
the given XOR gate; rather, the output wire label can be determined directly from the input wires.
CypherCircuit takes advantage of this property by using a special FreeXorWire class, derived
from the standard Wire object, which stores a direct link to the previous input wires. Output wire
labels on this FreeXorWire are generated on-demand by calculating the result from the two input
wires. No ciphertext table is ever stored for an XOR gate. For users who are interested in performing
computations without the FreeXOR optimization, this behavior can be deactivated.

“Smart” Wires

There are also many instances where circuits can reduce complexity by reducing redundancy or
avoiding unnecessary calculations. One primary avenue for efficiency improvements is by intelli-
gently handling wires that carry publicly known values. Sometimes these wires may be used for con-
venience in constructing circuit components (e.g. an adder component can be extended with a sin-
gle fixed wire, which, when inverted, converts the component into a subtractor). Other times these
wires represent public constants (e.g. a 2PC computation that evaluates the comparison 2x

?
= y

for the two parties’ respective inputs x and y uses the constant 2). CypherCircuit provides a set
of fixed wires—the Hi and Lo singleton wires—to represent wires that will always have a value of
either zero or one. These wires are named to mimic their logical equivalents in a physical circuit;
LO is equivalent to ground, and the single common terminal for each HI and LO wire on a physical
circuitboard is a concept paralleled by their implementation in CypherCircuit as singletons.

The use of singleton fixed wires has a few significant efficiency implications. Most obviously,
using singleton Hi and Lo wires reduces the memory footprint of a garbled circuit when user appli-
cations call for multiple fixed wire inputs of the same type. These wires do not need to be duplicated
for structural or security reasons, and so consolidating them saves space in system memory, along
2Having the ciphertext be κ+ 1 bits preserves security at the level set by the security parameter before the point-and-
permute method was introduced. This is a non-traditional implementation according to Ball, Malkin, and Rosulek [79],
and it also incurs a performance penalty; however, it was perceived that reducing the effective security parameter
without user input would be poor security practice, even if largely inconsequential.
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with the time needed to generate and label them separately. Rather than casting the burden of effi-
ciency management onto the users, CypherCircuit simply recognizes the occurrence of fixed wires
and returns the singleton case.

There are other less obvious efficiency gains that can be achieved through this type of intelligent
circuit construction as well. Returning to the case of fixed wires, there are situations where a fixed
wire input can propagate through a circuit, resulting in numerous unnecessary calculations if not
otherwise addressed. Take, for example, the case where a fixed Lo wire feeds into an AND gate.
Where the value of Lo is always zero, the output wire of the AND gate will also always be zero. In
this case, CypherCircuit will analyze the truth table of potential outputs from a gate, identify that
the only potential output wire value is zero, and automatically reassign that gate’s output wire to
be the singleton Lo wire. Recalling the extensibility design principle, CypherCircuit relies on the
gate’s truth table to make these identifications so that these assessments can be generalized to any
conceivable type of gate.

It is not only fixed wires that benefit from this style of assessment, however. NOT gates in Cypher-
Circuit are similarly able to recognize when they are given a wire that is already the inverse of
another, and they return the existing inverse rather than create a new redundant wire. XOR gates do
the same, recognizing that an XOR operation between fixed wires, a duplicate wire input, or a pair
of wire inverses all produce predictable outcomes. For fixed wires, any XOR gate that receives a Lo
wire input will always output the other input wire unaltered, and any XOR gate that receives a Hi
input wire will always output the inverse of the other input wire. When a single wire is selected as
both inputs, the output of the XOR gate will always be a Lo wire; when a pair of inverse wires are
selected as inputs, the output of the XOR gate will always be fixed as Hi.

Although these cases superficially appear to be edge cases, experience developing CypherCircuit
suggests that they are not entirely uncommon. When building circuits using more sophisticated
components (such as adders, subtractors, multipliers, and dividers) relationships between inter-
component wires become complicated. While managing construction in this way adds complexity
to the CypherCircuit software, it does so to make the package more intuitive—avoiding unnecessary
duplication—while also enhancing performance.

5.3 Comparisons to Existing MPC Frameworks
The CypherCircuit package was not designed to match the speed of contemporary MPC frame-
works, instead focusing on providing an intuitive look into the garbled circuit protocol. Even so, it
is useful to document how the CypherCircuit package compares to other modern and state-of-the-
art codes when discussing its development.

To provide a comparison, the CypherCircuit package, Obliv-C library [99], and MP-SPDZ [95]
framework were all used to execute a series of benchmark tests. The benchmark used here was based
on the Euclidean distance function, with programs created in all three frameworks to calculate the
distance between a pair of N -dimensional vectors. All programs coordinated their MPC protocols
between two parties connected locally via a TCP network, and were run in Docker containers to
ensure a consistent execution environment and future reproducibility. The average calculation time
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Table 5.1: The average runtime (and standard deviation σ) over ten tests of MPC programs written
in CypherCircuit, Obliv-C, and MP-SPDZ to calculate the Euclidean distance between two N -
dimensional vectors.

CypherCircuit Obliv-C MP-SPDZ MP-SPDZ
Binary (Yao) MASCOT

N -dimensions Time (s) σ (s) Time (s) σ (s) Time (s) σ (s) Time (s) σ (s)
1 16.52 1.07 0.65 0.08 − − 1.29 0.05
2 28.79 1.62 0.63 0.01 − − 1.27 0.02
3 44.96 1.78 0.69 0.09 − − 1.27 0.02
4 59.23 4.00 0.66 0.05 − − 1.27 0.01
5 72.13 4.51 0.64 0.02 − − 1.27 0.01
10 144.52 6.68 0.61 0.04 − − 1.29 0.02
50 749.46 28.11 0.64 0.02 − − 1.30 0.01
100 1502.21 38.48 0.67 0.01 1.20 0.10 1.32 0.02

for each trial, determined using ten repetitions of the trial using a randomized vector, is displayed in
Table 5.1. All calculations were run on a commercially available, off-the-shelf personal computer
with a 2.3 GHz 8-Core Intel Core i9 processor and 16 GB memory. The Docker containers used for
the trials of both frameworks were built on an image of Ubuntu 20.04, set using all of the default
parameters. All containers were permitted access to at least 4 GB of memory.

It should also be noted here that this benchmark was intended solely to compare the performance
of CypherCircuit to other modern MPC solutions in a basic example, and does not attempt to lever-
age any specific enhancements, optimizations, or design features that may improve the performance
of either existing framework. As such, the times recorded do not necessarily represent the optimal
runtimes that could be achieved using either of those two frameworks.

For consistency, benchmarks for all three frameworks were originally designed to use binary
garbled circuits (Yao’s protocol). Binary circuits are the only protocol that is supported by Cypher-
Circuit and Obliv-C, and it is a protocol that is included in the MP-SPDZ package. Unfortunately, it
was found that MP-SPDZ was unable to compile binary circuits that accepted public inputs known
to all parties provided at runtime, even though this was a nominally provided functionality. MP-
SPDZ, as a state-of-the-art tool, is still under active development and may gain this capability in
the future; however, a publicly provided input value was required to set the vector length in each set
of benchmark trials. Instead, since MP-SPDZ allows compilation with a variety of different proto-
cols, the benchmark was compiled and evaluated using the MASCOT protocol [85]. Although these
MASCOT results should not be directly compared to either those from CypherCircuit or Obliv-C
(because the MASCOT protocol uses arithmetic circuits and malicious security while the other
two codes only use binary circuits and semi-honest security), the execution timing for MP-SPDZ’s
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MASCOT protocol gives a rough comparison of how the framework might compare to the other
two. For the sake of providing a more useful comparison, a single vector length of 100 elements
was also hardcoded into the MP-SPDZ binary circuit benchmark script and evaluated. This singular
result is shown in the first pair of MP-SPDZ columns in Table 5.1.

Otherwise, the most obvious difference between the three frameworks is the magnitude of exe-
cution time, though it is unsurprising that CypherCircuit is significantly slower than either of the
other two frameworks. First and foremost, CypherCircuit is built using Python and in a structure
designed for human intuition and user exploration. Therefore each circuit object (wires, gates, ta-
bles, etc.) are all Python objects requiring memory. While attempts have been made to consolidate
the memory footprint of these objects as much as possible, providing a consistent and accessible in-
terface limited flexibility in restructuring the code for enhanced performance. Second, optimization
techniques such as oblivious transfer extension remain to be included into CypherCircuit. Third,
whereas programs written in Obliv-C and MP-SPDZ are compiled, CypherCircuit circuits written
in Python are interpreted at runtime and are unable to leverage the enhanced execution times of
compiled code.3

Another notable difference in the software frameworks is apparent when considering the scaling
of the codes. The runtimes of the distance calculations performed using CypherCircuit, and to a
less visible extent MP-SPDZ, predictably scale larger with increasing vector length. The scaling for
CypherCircuit is linear, as more squared differences between pairs of vector elements are summed,
the framework creates the same number of equal sized subcircuit components. Obliv-C, however,
does not appear to scale upward (in fact, the difference between the runs is largely insignificant).
This is an artifact of how the executables designed to perform the Euclidean distance calculation
in Obliv-C handle memory. Imitating the numerous examples offered by the library, the Obliv-C
executables were written to allocate a fixed block of memory in advance, which is never exceeded
by any of the vector sizes used in this problem. With longer vector pairs (e.g. 1000 elements), the
Obliv-C and MP-SPDZ libraries see far more dramatic increases in computation time.

These results make clear that while CypherCircuit is designed to serve as an educational demon-
stration tool, sophisticated safeguards calculations like those performed in Chapter4 will certainly
require a more efficient production grade software solution.

5.4 Feedback and Future Direction
The CypherCircuit package is intended to be an intuitive tool for non-expert audiences to gain an
understanding of the garbled circuit protocol. With the goal of user accessibility in mind, a team of
users at Oak Ridge National Laboratory (ORNL) who were familiar with MPC protocols—though
not cryptographic experts by training—was enlisted to review the package. On the whole, the
review team confirmed that the package was both intuitive and accessible, validating efforts towards
meeting those elements of the design principles outlined in Section 5.2. The review provided a
3CypherCircuit does make use of Cython for certain calculation components to improve the size and speed of certain
aspects of the garbled circuit protocol.
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glimpse of how users are likely to approach using the package and offered insight to where future
development efforts should be concentrated.

Among the suggestions provided by the review team, the majority focused on improving the user
experience when handling large calculations. It was shown in Section 5.3 that moderately compli-
cated CypherCircuit programs may take several minutes or more to complete, and updating users
throughout this time is important. Specific measures for enhancing the code could include adding
progress indicators for actions such as building, garbling, or transferring circuit components; im-
plementing more robust error handling and a checkpoint system for resilience against interrupted
network connections; and designing a system to partition large circuits into smaller, more manage-
able subcircuits that could be evaluated separately (and potentially facilitate parallelization).

Another suggestion provided by the review team was to provide easy access to a comprehensive
overview of each circuit, such as a single circuit summary detailing the number of wires and gates
in a circuit, as well as information regarding any particular optimizations (e.g. FreeXOR) that have
been selected. While all of this information is already accessible to a user via the Python API, an
overview summary system could be implemented to facilitate direct, easy access.

Finally, while it is obvious from the results presented in Section 5.3 that CypherCircuit is indeed
far slower than Obliv-C, it should be noted that several optimizations could still potentially be
implemented to improve the package’s efficiency. Techniques like the half-gates method [120] or
row reduction [81] could be added to reduce the number of encryption operations needed for any
given circuit. Similarly, adding some form of OT extension [121, 122] to the transfer process for
input wire labels would dramatically reduce the computational cost of the expensive and repetitive
public/private key encryption required by the CypherCircuit package’s current OT implementation.

In general, however, the ORNL review was overwhelmingly positive, and suggests that Cypher-
Circuit is a suitable tool for users seeking to build an understanding of garbled circuit protocols.
From this reception, it is encouraging to consider that the tool may indeed be useful for demonstrat-
ing the application of MPC in novel applications—especially those where the participants may be
skeptical of the validity of such an algorithm, like in the case of international nuclear safeguards.
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Chapter 6

Conclusion and Discussion

It is in the interests of the international community to prevent the proliferation of nuclear weapons,
a stance that is affirmed by the near unanimous support for the Treaty on the Non-Proliferation
of Nuclear Weapons (NPT) among the nations of the world. Such a goal is a ceaseless endeavor,
and one that requires cooperation between as many nation states as possible. In increasingly tense
and polarized global environments, international partnerships are likely to prove more and more
difficult to build and maintain, especially when negotiated between rival parties. Globally pursued
compliance and enforcement of nuclear nonproliferation standards is almost certainly always going
to pose a challenge, but becomes even more difficult as claims of sovereignty outweigh the perceived
benefits of international collaboration towards common goals. Whether bred from nationalistic or
defensive postures, these fiercely defended notions of sovereignty have the potential to drive States
to question or attempt to skirt commitments to abide by international guidelines. In this setting, trust
between members of the international community is likely to become a thinly stretched commodity.

Environments like these are where privacy-preserving algorithms present tremendous opportu-
nities. By enabling two or more factions—nuclear facilities and their regulators; States and global
agencies—to engage in monitoring that is both valuable in its conclusions and intrinsically secure
in its implementation, the level of trust required between parties can be reduced. The international
community can trust that safeguards are being administered robustly, a State or nuclear facility can
trust that its data is being protected, and neither needs to place that trust in the other as they operate
using a trusted algorithm that is provably secure.

The implementation of such technological advances has been proposed and demonstrated in this
dissertation, such that the potential benefits of leveraging multiparty computation (MPC) for nu-
clear safeguards might be considered in future diplomatic negotiations and policy making. Nuclear
safeguards currently require that the International Atomic Energy Agency (IAEA) gain access to
any and all data that they wish to analyze, but this work provides the first demonstration of how
MPC could be applied to safeguards datasets, preserving the privacy of a nuclear facility’s data
while simultaneously bolstering IAEA analyses.
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6.1 Summary
After reviewing the two distinct fields of nuclear safeguards and privacy-preserving computation,
Chapter 4 offered two demonstrations of how MPC might be used in a safeguards context. Using a
large dataset of authentic radiation spectra, collected as a time series over two months by the Mod-
eling Urban Scenarios and Experiments (MUSE) project, these demonstrations introduce MPC as
a potential solution to challenges encountered in the safeguards community, and serve as a proof-
of-concept for future work incorporating privacy-preserving computational techniques into nuclear
safeguards protocols. On a wider scale, this work is believed to represent the first known implemen-
tation of MPC intended for time series anomaly detection that is designed to be performed on-line,
at or near real-time.

In both of the demonstration trials described in Chapter 4, garbled circuits were prepared to ex-
ecute anomaly detection protocols that preserve the privacy of a nuclear facility as it interacts with
a regulator. Both algorithms featured techniques based on a prediction model to identify single
outlier data points among the input radiation spectra. As expected, fast and uncomplicated algo-
rithms like the gross counting method used in the first trial show promise in identifying potential
outliers quickly; the true material transfer being sought was flagged by the algorithm, although
not without the presence of false positive signals in the analysis. More sophisticated algorithms,
like the region of interest (ROI) calculation derived from spectral comparison ratios (SCRs) used
in the second trial, show a far stronger ability to discriminate potential material diversions from
background. When analyzing the MUSE data, even a simplistic three region calculation based on
a single known prior transfer event was able to identify and flag two subsequent material transfer
events without any false positive readings. Even with this success, it is certain that the ability of
similar algorithms to successfully find signals depends strongly on the dataset properties and infor-
mation available to the two parties. Lower quality data streams may obscure easy observation and
comparison, making it more difficult to draw meaningful conclusions from anomaly detection algo-
rithms. Likewise, stricter MPC security requirements may slow algorithms to the point where only
the simplest anomaly detection techniques are practical choices for implementation. Regardless of
those possible hurdles, however, this work was able to show that anomaly detection analyses of this
nature could be performed in a privacy-preserving manner. The fact that MPC could be viable in a
safeguards environment is plainly evident.

It is important to emphasize here that despite their promise, MPC solutions to safeguards prob-
lems must be investigated thoroughly on a case-by-case basis before adoption into a safeguards
program. As it was noted in Chapter 4, these techniques are not without limitation. For one, all
of the demonstrations provided here were performed under the semi-honest security assumption—
namely that all parties were obeying the protocols and executing the garbled circuit as expected.
This assumption would not be appropriate in a safeguards context where systems must be designed
to be resilient in the face of adversarial manipulation. However, malicious security is an active area
of MPC research and MPC techniques that incorporate malicious security are readily available. The
use of the semi-honest, passive security model in this work does not preclude the use of malicious,
active security models in production level applications, and the proof-of-concept remains valid.

Beyond the active security of the MPC algorithm, a skeptical safeguards administrator would
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certainly point to the algorithm’s inability to prevent a malicious participant from feeding fabricated
data into the algorithm as a severe weakness. This spoofed data would be kept private, and therefore
be far more difficult to recognize as falsified. There are a few potential solutions to this dilemma.

One potential solution is for the regulator to know enough about what the facility input should
look like to avoid egregious misrepresentations from being fed into the algorithm. Then, using that
knowledge along with an intelligent choice of its own private input parameters, the regulator could
make it difficult for a facility to spoof input data. Although some privacy might be compromised
here (offering the regulator even limited knowledge of the input would still require some sacrific of
privacy on the part of a facility), the prior set of known information could act as a sort of template for
expected behavior while preserving the privacy of the finer nuances of the facility data. Ideally, in
such a compromise, any up-front forfeitures of privacy could be reduced to the point of negligibility
when compared to the scope of the privacy-preserving monitoring.

Alternatively, a facility could be forced to commit to its input data stream in such a way that if a
regulator later had questions about a certain time period, the facility could be compelled to provide
the historical data. For example, an otherwise highly reliable MPC solution might be paired with
more traditional sets of procedures that are defined by current safeguards protocols and mandated
under existing safeguards agreements. Then, in the event that a question arose from the traditional
safeguards information set, a regulator could request access to the input data to the MPC algorithm.
They could validate that the data matched their expectations and and could confirm that it matched
the facility’s previous commitment.

Recent work—including efforts on an accompanying component to this project—has investi-
gated the applicability of distributed ledger technology (DLT) to this commitment challenge. In
such a distributed system, cryptographic hashes of input values are stored in a set of shared mem-
ory locations (perhaps one ledger per IAEA Member State). By leveraging the data immutability
properties of DLT, a party that provides input cannot later deny having supplied that data without
having had to convince some significant fraction of parties to abet its forgery.

Assuming a strong commitment scheme along these lines, fabricated data would be revealed
either when provided to inquiring inspectors or when a passable set of fabricated data failed to
match the commitment for data that was provided to the original MPC algorithm. Such an option
might reduce the privacy of the algorithm, but perhaps only within a reasonable set of circumstances
that would be tolerable to the concerned parties. A transparent process for conducting audits in
this fashion would ideally prevent a regulator from abusing their authority to expose more private
information than absolutely necessary.1

The driving motivation behind implementing these extra protocols correctly is so important that
it bears repeating—any MPC implementation of safeguards processes must be verified as secure
on a case-by-case basis. Any method that introduces an insecure algorithm adds increased risk of
being manipulated into providing conclusions offering a false sense of security even in the presence
of other alarming data. In that case, a weak auxiliary MPC system is worse than no system at all.
1A parallel may be drawn here to search warrants issued in the United States. Search and seizure is generally protected
against under the Fourth Amendment of the U.S. Constitution, but court ordered warrants can supercede this protection.
Most would likely agree, however, that the Fourth Amendment still serves as a valuable check against institutional
overreach for protecting individual privacy.
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Moving on, it was also recognized in this work that the tools available to general audiences
for testing, understanding, and prototyping MPC protocols were scarce. The majority of MPC
software tools are designed to showcase performance improvements of new techniques or facilitate
comparisons between the many various MPC implementations. More recently, several codes have
attempted to make MPC calculations accessible to general audiences and practictioners without
MPC expertise; however, even these frameworks do not emphasize transparency of the underlying
calculation. In applications like nuclear safeguards, where prior experience with MPC is severeley
limited and parties may be inherently skeptical of the security of a MPC tool, it is essential to
use tools that can offer clear and convincing demonstrations of MPC execution. It was for this
reason that this project also included the development of the CypherCircuit software framework,
introduced in Chapter 5.

CypherCircuit was designed to offer a clear, intuitive, transparent tool for gaining experience
with MPC—specifically with garbled circuits. It emphasizes the user experience, preserving the
ability for users to interact directly with the circuits they create to perform their calculations. With
the package, practictioners may have a hand in circuit design and protocol execution while also
easily exploring a well-documented and rigorously tested code base. Most importantly, despite its
performance penalty when compared to state-of-the-art MPC frameworks, the CypherCircuit pack-
age is designed to facilitate an understanding of MPC among its users. This aspect is an absolutely
critical aspect when attempting to push adoption of MPC technologies in high-risk fields such as
nuclear safeguards.

Together, the two demonstration trials presented in Chapter 4 and the CypherCircuit package
introduced in Chapter 5 are intended to showcase that MPC is not simply a notional, abstract element
of safeguards science fiction, but an emerging technology that should be considered when building
the safeguards regimes of the near future.

6.2 Future Work
Where this dissertation served as the introduction of MPC to the field of nuclear safeguards, there
are countless avenues for additional exploration regarding where, when, and how to incorporate
privacy-preserving computational techniques into the international nuclear inspection landscape.
Of particular interest would be a determination of which anomaly detection algorithms (and which
flavors of MPC) would be best suited to particular safeguards problems. This study presented just
two anomaly detection algorithms, both coded as garbled circuits, without conducting an exhaustive
search for either radiation detection techniques or MPC implementations that might prove superior
in real—rather than simulated—safeguards applications. Some effort has already been devoted to
exploring enhanced applications extending this work, for instance using state-of-the-art anomaly
detection techniques like grammar compression to reduce the quantities of data that must be pro-
cessed by a garbled circuit. The grammar compression algorithms are designed to efficiently seek
out anomalies in large datasets, a technique that could conveniently offset the efficiency losses in-
troduced by privacy-preserving algorithms. Such integration presents its own challenges, however,
which are not covered here but are to be addressed in future publications.
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MPC has other potential applications within the scope of nuclear nonproliferation, albeit distinct
from nuclear safeguards. For example, MPC could have benefits for those interested in augmenting
the capabilities of arms control verifiers. Philippe et al. [123] have already proposed using physi-
cal zero-knowledge proofs (ZKPs) to perform arms control verification without exposing classified
State information to a treaty verifier. Returning to the digital, cryptographic roots of that technology,
it is not farfetched to believe that other digital arms control verificiation technology could leverage
MPC to achieve similar objectives: keeping input data secure while offering valuable insights into
the contents of a weapons vessel to corrobarate compliance with arms control and reduction agreee-
ments.

Even outside the nuclear non-proliferation landscape, but within the nuclear industry, MPC could
offer new avenues of collaboration. Civilian nuclear reactor operators are often highly protective
of their data, especially those motivated out of concern for protecting proprietary information and
preserving their competitive edge by keeping tightly held trade secrets. At the same time, the nuclear
industry at large would benefit if these reactor operators were to be willing and able to share more
operational details amongst themselves. MPC offers one way that these operators might be able to
come together to learn from the cumulative experience of the industry without compromising their
own respective collections of operational data.

Ultimately, MPC represents an opportunity for safeguards administrators. The technology has
matured sufficiently in the past two decades to be a practical consideration when designing safe-
guards systems, and the privacy guaranteed by the algorithms is likely to be an increasingly at-
tractive option for States concerned about their own privacy and the security of their data. This is
especially true in a digitally connected world that feels increasingly vulnerable.

MPC is unlikely to be a technology that will upend the current safeguards landscape, nor should
it be. Existing technologies should instead be augmented by including MPC in the suite of tools
available to safeguards regulators. No safeguards technology or practice will ever be totally insur-
mountable to every adversary, but when taken together, a comprehensive safeguards regime will
prevent, deter, and detect malicious activity in all but a vanishingly small number of cases. In this
spirit, using MPC techniques to bolster existing safeguards offers the potential to significantly in-
crease the coverage of nuclear safeguards and reassure the global community that it remains safe
from the risk of nuclear proliferation.
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Appendix A

A Comprehensive Overview of the
CypherCircuit Package

The CypherCircuit package is designed to be accessible to all users, even those without extensive
cryptographic expertise. The following sections provide a comprehensive introduction to the pack-
age’s structure, highlighting all of its fundamental capabilities.

This introduction is adapted from the documentation provided in the CypherCircuit package dis-
tribution. In that original format, the code introduction is presented as a series of Jupyter notebook
tutorials. A similar structure is preserved here, including code excerpts and associated outputs, to
explicitly demonstrate the package’s functionality.

A.1 Logic Circuits in CypherCircuit
This section introduces the very basics of the CypherCircuit API. It walks through how to set up
a circuit, add wires and gates, and evaluate circuits. Once those basics have been covered, later
sections will discuss how to generate truth tables and how circuits can be shared, labeled, encrypted,
and decrypted.

Garbled circuits are developed using the same basic concepts as traditional logic circuits made
from gates and wires. When combined in the correct order, these gates can evaluate functions
based on the circuit inputs. While these functions are generally calculated discretely for binary
inputs, highly sophisticated circuits can approximate continuous functions digitally.

As an example, consider a relatively simple comparator logic circuit. The comparator can take
two inputs and, as the name suggests, compares the two values. A comparator circuit diagram was
shown in Figure 3.1, and is reproduced below.

On the far left, the comparator accepts two input wires, wx and wy, each with value vx and vy
respectively. On the far right, the comparator yields three output wires. Each input wire can take a
value of either 0 or 1, and every wire in the circuit is labeled with its wire value based on the two
inputs. It can be seen that only one of these output wires will ever have a value of 1, depending on
the result of the comparison. By wire:

• Top: Iff vx < vy (vx = 0, vy = 1), then v̄x ∧ vy = 1
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Figure 3.1

wx wy wz

0 0 0
0 1 0
1 0 0
1 1 1

Figure 3.2a

• Middle: Iff vx = vy (vx = 0, vy = 0 or vx = 1, vy = 1), then (v̄x ∧ vy) ∨ (vx ∧ v̄y) = 1
• Bottom: Iff vx > vy (vx = 1, vy = 0), then vx ∧ v̄y = 1

For every gate in the circuit, the corresponding possible inputs and outputs can be tabulated in
a truth table. An example of the truth table for an AND gate with inputs wx and wy was shown in
Figure 3.2a.

While a single comparator can only evaluate a comparison between two bits, n comparators can
evaluate a comparison over n bits. Using eight comparators chained together a user may compare
any two integers from 0 to 256.

The most basic elements of the CypherCircuit package allow the construction of logic circuits
of any size or shape, using a “build-your-own-circuit” design philosophy. The major components
are outlined here, before any discussion of labeling, encrypting, or garbling the circuit.

A user begins the process by importing several types of objects from the CypherCircuit package:

In [1]: from cyphercircuit import CircuitBoard
from cyphercircuit.wires import Wire
from cyphercircuit.gates import Not, And, Or, Nor

NOTICE: This computer software was prepared by National Technology & Engineering
Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-
NA0003525 with the Department of Energy/National Nuclear Security Administration
(DOE/NNSA). All rights in the computer software are reserved by DOE/NNSA on
behalf of the United States Government and the Contractor as provided in the
Contract. You are authorized to use this computer software for Governmental
purposes but it is not to be released or distributed to the public.
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NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice
including this sentence must appear on any copies of this computer software.

A.1.1 Building Circuits: the CircuitBoard Object
Similar to reality, each CypherCircuit circuit is built upon a simulated “circuit board”. Using this
special CircuitBoard object, circuit components can be identified, tracked, operated on, and du-
plicated at once. Though the benefits of this construction may not be immediately obvious, the
CypherCircuit CircuitBoard might be considered analogous to a canvas-like object used by a
graphing package.

Programmatically, creation of a circuit board is relatively simple, with no required arguments:

In [2]: circuit = CircuitBoard()

There are several optional arguments, but the package picks sensible defaults for anything not spec-
ified directly by the user.

Each circuit is created with a unique identifier. This identifier can be accessed using the circuit’s
id attribute. For circuits, the identifier will always begin with a C followed by four or more digits.

In [3]: circuit.id

Out [3]: ’C0001’

A.1.2 Adding Wires: the Wire Object
Once a circuit has been created, a user may move to the next step—adding components to the circuit.
The CypherCircuit package is designed so that circuits may be built left-to-right.

Starting with one of the simplest possible circuits—just a single AND gate—a user requires the
two input wires, wx and wy. A wire is created using a Wire object, and since each wire must be
“fixed” to a circuit, a wire can be passed a CircuitBoard object upon initialization. If a circuit is
not specified, CypherCircuit uses a default circuit. This default circuit is generally the last circuit
that was created, but this behavior can be overridden if necessary.

In this example, each wire is a part of the circuit created earlier.

In [4]: w_x = Wire(circuit)
w_y = Wire() # Defaults to ‘circuit‘, the last circuit created

Just like the circuit, each wire has a unique ID also accessed by the wire’s id attribute. For wires,
the ID starts with a W followed by four or more digits.
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In [5]: w_x.id, w_y.id

Out [5]: ’W0001’, ’W0002’

Since all wires are created using the original circuit, they all contain a reference to the underlying
circuit object.

In [6]: underlying_circuit = w_x.circuit
underlying_circuit.id

Out [6]: ’C0001’

If another circuit is created, that new circuit will have a new ID, and the wire numbering will restart.

In [7]: another_circuit = CircuitBoard()
another_wire = Wire(another_circuit)
another_circuit.id, another_wire.id

Out [7]: ’C0002’, ’W0001’

In a logic circuit, each of these wires carries a binary value of either 0 or 1 (or equivalently
Booleans False or True). These values can be set in a couple different ways. If the wire’s value is
known at the time the wire is created, a user can simply pass the wire’s value as an argument upon
initialization. By doing this, CypherCircuit instruct the Wire object to set the value attribute to
the given signal. Wire values must always be given as integers (in Python, Booleans are a subclass
of integer, so True or False are acceptable values).1

In [8]: wire_with_value = Wire(another_circuit, value=1)
wire_with_value.value

Out [8]: True

This value attribute can also be set directly.

In [9]: wire_with_value.value = 0
wire_with_value.value

1Regardless of assignment type, all wire values are stored as Booleans. Even if the wire is assigned a value as a normal
integer, it will be stored (and returned) as a True or False value.
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Out [9]: False

A.1.3 Connecting Gates: the Gate Object
After the input wires are in place, logic gates can be introduced to the circuit. Each gate takes one
or more wires as inputs and outputs a wire value that depends on both inputs and the gate type.

Logic gates are created in the circuit with one of many types of Gate objects. Every Gate object
takes at least one (and usually at least two) Wire objects as arguments. For the case of an AND
gate, this is:

In [10]: and_gate = And(w_x, w_y)

Once again, following the same pattern as the circuit and the wire, each gate is given a unique ID.
For gates, the first character is a G, and is followed by the customary 4 digits.

In [11]: and_gate.id

Out[11]: ’G0001’

In this example, the AND gate’s circuit was never specified. Since the AND gate is created from
two input wires, it inherits its underlying circuit from those two wires.2

In [12]: and_gate.circuit == w_x.circuit

Out[12]: True

In addition to AND gates, the CypherCircuit package also supports NOT, OR, NAND, NOR, XOR,
and XNOR gates. As expected, the specific class names for those gates are Not, Or, Nand, Nor,
Xor, and Xnor respectively. For all except the NOT gate, the class constructor takes at least two
input wires as arguments. (It is meaningless to have a not gate for multiple inputs and only a single
output; in that case only one wire is needed.)

# Example gate constructors
>>> and_gate = And(w_x, w_y)
>>> or_gate = Or(w_x, w_y)
>>> not_gate = Not(w_x)

2The two input wires to a gate must be part of the same circuit; violating this rule will trigger an error.
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The only wire left in the simple AND gate circuit is the output wire of the gate. This wire has
actually already been created for the user. Upon initialization, every Gate object automatically
creates an output wire. This new Wire object may be accessed with the output_wire attribute of
the gate, and it can be shown that the output wire has the next incremental ID.

In [13]: w_z = and_gate.output_wire
w_z.id

Out[13]: ’W0003’

Now that the circuit includes an AND gate an the associated output wire, a user may decide to
learn what the AND gate would give as an answer for a set of input values. Setting the value of
input wires wx and wy to 0 and 1 respectively enables this calculation:

In [14]: w_x.value, w_y.value = 0, 1

In fact, the output of every gate is automatically evaluated every time one of the gate’s input wires
is assigned. Using the truth table above, it is expected that the output will be zero (a False value).

Since wz was defined as the output wire for the AND gate, a user can check the gate’s output via
the wz wire’s value attribute:

In [15]: w_z.value

Out[15]: False

If the wx and wy values are updated again, the circuit automatically updates the value of wz.

In [16]: w_x.value, w_y.value = 1, 1
w_z.value

Out[16]: True

There are several other useful attributes that can be accessed for each gate. Along with the output
wire, each gate also has a list of pointers to the input wires to the gate in the input_wires attribute:

In [17]: [wire.id for wire in and_gate.input_wires]

Out[17]: [’W0001’, ’W0002’]

The gate type of a given gate object can be accessed using the gtype attribute.
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In [18]: and_gate.gtype

Out[18]: ’AND’

Additionally, the “fan-in” of the gate (the number of wires that the gate takes as inputs) can be easily
accessed with the fan_in attribute of the gate, rather than by computing the length of the list of
wires.

In [19]: and_gate.fan_in

Out[19]: 2

A.1.4 Combining Elements to Build Arbitrary Circuits
With these basics established, more complete logic circuits can be constructed. Recall the com-
parator circuit shown previously in Section A.1. Below is the same comparator circuit, now with
wires and gates labeled numerically: The circuit has two input wires, wx and wy.

In [20]: comparator = CircuitBoard()
w_x, w_y = Wire(comparator), Wire(comparator)

Both wires pass through a NOT gate.

In [21]: wire1, wire2 = w_x, w_y
gate1 = Not(wire1)
gate2 = Note(wire2)
wire3 = gate1.output_wire
wire4 = gate2.output_wire

The output of each NOT gate (wires 3 and 4) serves as the input to an AND gate, along with the
other original wire’s direct input.

In [22]: gate3 = And(wire2, wire3)
gate4 = And(wire1, wire4)

The output of these AND gates serve as the top and bottom outputs (wires 5 and 6).

In [23]: wire5 = gate3.output_wire
wire6 = gate4.output_wire
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The middle output is then formed by passing both wires 5 and 6 through a NOR gate.

In [24]: gate5 = Nor(wire5, wire6)
wire7 = gate5.output_wire

With the entire comparator is constructed, it is possible to test some value pairs. First, define a
function to test the comparator given an input value for wx, and input value for wy, and an expected
output. The function will throw an error if the test fails.

In [25]: def test_comparator(x_value, y_value, expected_output):
w_x.value, w_y.value = x_value, y_value
output_values = (wire5.value, wire6.value, wire7.value)
assert output_values == expected_output

If vx < vy, then only wire 5 should have a value of True.

In [26]: test_comparator(x_value=0, y_value=1,
expected_output=(True, False, False))

If vx > vy, then only wire 6 should have a value of True.

In [27]: test_comparator(x_value=1, y_value=0,
expected_output=(False, True, False))

And, finally, if vx = vy, then only wire 7 should have a value of True.

In [28]: expected_output = (False, False, True)
# Both X and Y are 0
test_comparator(x_value=0, y_value=0,

expected_output=expected_output)
# Both X and Y are 1
test_comparator(x_value=1, y_value=1,

expected_output=expected_output)

The comparator gives exactly the expected output.

A.1.5 Circuit Diagrams for Succinct Circuit Representations
For a garbled circuit, the structure of the circuit must eventually be shared with another party. To
facilitate this, a CircuitBoard object has a sketch method to generate a compact, serializable
representation of the circuit.

In [29]: diagram = comparator.sketch()
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In fact, since this “diagram” takes the form of a Python dictionary, it can be converted easily into a
JavaScript Object Notation (JSON) file for convenient transmission between interacting parties.

In [30]: diagram

Out[30]: {’class’: ’diagram’,
’circuit_id’: ’C0003’,
’wire_count’: 7,
’fixed_wires’: {’HI’: None, ’LO’: None},
’inverted_wires’: {’W0003’: ’W0001’, ’W0004’: ’W0002’},
’freexor_wires’: {},
’input_wires’: [’W0001’, ’W0002’],
’output_wires’: [’W0007’],
’gates’: {’G0001’: {’gtype’: ’NOT’,

’input_wires’: [’W0001’],
’output_wire’: ’W0003’},

’G0002’: {’gtype’: ’NOT’, ’input_wires’: [’W0002’],
’output_wire’: ’W0004’},

’G0003’: {’gtype’: ’AND’,
’input_wires’: [’W0002’, ’W0003’],
’output_wire’: ’W0005’},

’G0004’: {’gtype’: ’AND’,
’input_wires’: [’W0001’, ’W0004’],
’output_wire’: ’W0006’},

’G0005’: {’gtype’: ’NOR’,
’input_wires’: [’W0005’, ’W0006’],
’output_wire’: ’W0007’}},

’security_parameter’: 128}

The circuit diagram dictionary has five components that will have important values for every
single circuit: the classification (e.g. that this is a dictionary of a diagram), the ID of the circuit,
the number of wires in the circuit, the IDs and types of all of the gates in the circuit, and the
k-bit security parameter of the circuit (to be discussed later). Additionally, there are a few other
components of the diagram that are only used under specific circumstances: wires with fixed values,
wires that represent the inverses of other wires, wires that benefit from the FreeXOR optimization
technique, and specially designated input and output wires. Notice that the circuit diagram shares
only information that meets two criteria: information that is both public and static.

• Public: This information is able to be shared with all parties. For instance, the structure
of the circuit—equivalent to the definition of the function to be evaluated—is known by all
participants.

• Static: This information stays constant over any number of garblings and evaluations of a
garbled circuit. For example, the circuit structure never changes for any given function.
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For multi-party computation, this diagram only needs to be shared once before any other com-
putation takes place. This saves communication costs later, when encrypted tokens and input labels
must be shared each time the circuit is garbled.

Also, since this package allows a circuit to be recreated from a diagram alone, no other metadata
associated with the circuit needs to be included. Regenerating a circuit from the diagram is as easy
as passing it as an argument upon initialization of a CircuitBoard object.

In [33]: new_circuit = CircuitBoard(diagram)
new_circuit.id

Out[33]: ’C0003’

A.2 Generating Truth Tables in CypherCircuit
Once a circuit has been constructed, the garbled circuit protocol relies on manipulation of the truth
table associated with each circuit gate. This section explains how to generate truth tables from gates
in the garbled circuit using CypherCircuit.

Section A.1 discussed how truth tables are used to determine the outputs of a specific type of
gate for all possible inputs. The gate used in that section was the AND gate, though each gate type
produces a different truth table depending on the logical operation and the number of inputs that
the gate accepts. For a gate with n Boolean input wires, a truth table will have 2n rows.

The CypherCircuit package has several different types of tables, and as such has custom table
objects for handling operations for each type. First and foremost is the TruthTable object. Every
gate in the circuit has a TruthTable object which stores the truth table corresponding to that gate.
Besides the TruthTable, the garbled circuit API also uses LabelTable and TokenTable objects.
These tables provide more sophisticated labeling and encryption functionality, and receive detailed
treatment in Section A.3.

Like the previous section, this section begins by ensuring that the necessary circuit components
are imported.

In [1]: from cyphercircuit import CircuitBoard
from cyphercircuit.wires import Wire
from cyphercircuit.gates import And, Or

NOTICE: This computer software was prepared by National Technology & Engineering
Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-
NA0003525 with the Department of Energy/National Nuclear Security Administration
(DOE/NNSA). All rights in the computer software are reserved by DOE/NNSA on
behalf of the United States Government and the Contractor as provided in the
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Contract. You are authorized to use this computer software for Governmental
purposes but it is not to be released or distributed to the public.

NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice
including this sentence must appear on any copies of this computer software.

A.2.1 Generating Truth Tables: the TruthTable Object
For every gate created in a circuit, a TruthTable object is automatically generated and assigned to
that gate. Each gate is presumed to be an intrinsic feature of the circuit, and so truth tables should
be more or less static objects that can be generated once upon a gate’s initialization. By having
gate-specific truth tables, future operations including labeling and encryption of those tables can
be facilitated on a gate-by-gate basis.

Before demonstrating access to a truth table, a circuit must first be constructed to include at least
one gate.

In [2]: circuit = CircuitBoard()
w_x, w_y = Wire(circuit), Wire(circuit)
and_gate = And(w_x, w_y)

Accessing the truth table for this gate is straightforward. Every gate has a reference to its corre-
sponding truth table in the gate’s truthtable attribute.

In [3]: tt = and_gate.truthtable
tt

Out [3]: W0001 W0002 | W0003
——————————————————————

0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

For easy access, TruthTable objects are designed to be accessed by column (or equivalently, by
input wire). As an example, imagine a user who wishes to select only the first column in the AND
gate’s truth table. This can be accomplished using either the column’s name or index. To access
the column by name, use the wire’s ID (W0001) as the truthtable’s index.

In [4]: and_gate.truthtable[’W0001’]
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Out [4]: array([False, False, True, True])

To access the column by numerical index, use the column index (0) as the truth table’s index.

In [5]: and_gate.truthtable[0]

Out [5]: array([False, False, True, True])

Another additional method exists for accessing the output column of the truth table. Rather than
using either the ID (W0003) or index (2), the string output can be used instead.

In [6]: and_gate.truthtable[’output’]

Out [6]: array([False, False, False, True])

Similarly, the last column could also be accessed numerically using the reverse index (-1). All
columns are output as Numpy arrays, since the TruthTable object is based on the Numpy array
object.

A.3 Garbling Circuits in CypherCircuit
Garbled circuits are a secure method of computing a function by multiple parties: the function’s ar-
guments are jointly supplied by the involved parties, but no party exposes their inputs. The complete
garbling process has three steps: labeling, encrypting, and then shuffling the circuit, all of which
were described mathematically in Section 3.2.1. This section explains the labeling, encryption, and
shuffling of garbled circuits using CypherCircuit.

To demonstrate the process in CypherCircuit, the AND gate with input wires wx and wy is used
again as an example. First, a garbled circuit for this gate requires that two labels be assigned to each
wire in the circuit. These labels are then used to encrypt the circuit.

This process of circuit obfuscation uses the Wire and Gate objects already discussed in Sec-
tion A.1, as well as the two types of tables that were only mentioned in Section A.2 (the LabelTable
and the TokenTable). Again, like in the previous sections, it is necessary to ensure that the required
circuit elements are imported.

In [1]: from cyphercircuit import CircuitBoard
from cyphercircuit.wires import Wire
from cyphercircuit.gates import And, Or

NOTICE: This computer software was prepared by National Technology & Engineering
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Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-
NA0003525 with the Department of Energy/National Nuclear Security Administration
(DOE/NNSA). All rights in the computer software are reserved by DOE/NNSA on
behalf of the United States Government and the Contractor as provided in the
Contract. You are authorized to use this computer software for Governmental
purposes but it is not to be released or distributed to the public.

NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice
including this sentence must appear on any copies of this computer software.

A.3.1 Labeling the Circuit
Once loaded, the single AND gate can be recreated with input wires wx and wy, as well as output
wire wz.

In [2]: circuit = CircuitBoard()
w_x, w_y = Wire(circuit), Wire(circuit)
and_gate = And(w_x, w_y)
w_z = and_gate.output_wire

Every wire in a circuit has a labels attribute. The attribute is initialized to None for new wires,
but can be set using the wire’s set_labels method. That method generates a dictionary of two
random bit strings, one assigned to a wire value of False and the other assigned to a wire value
of True. These bit strings are represented as 128-bit strings of bytes (shown below in hexadecimal
notation).

In [3]: w_x.set_labels(), w_y.set_labels(), w_z.set_labels()
w_x.labels
w_x.labels[True].hex()

Out [3]: ’7150fcc674ce729761fbc08f5e12404d’

The length of the label is required to be either 128, 192, or 256 bits in the current version of Cypher-
Circuit. For generality, the security parameter will be referenced as k, but the default 128-bit secu-
rity parameter will be used from now on.

In [4]: circuit_128 = CircuitBoard(k=128)
w_x_128 = Wire(circuit_128)
w_x_128.set_labels()
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Once labels have been set for all wires connecting to the gate, the values of those wires in the
gate’s truth table can be exchanged for the corresponding label. For a given gate, this is performed
using the label method of the gate. That method generates a new type of table, a LabelTable,
which behaves nearly identically to a TruthTable. The gate’s labeled table can be accessed via the
labeltable attribute. As a note, when displayed in tables, the k-bit byte strings are abbreviated to
their hexadecimal equivalents (i.e. the binary representation of the integer 107, “1101011”, converts
to the hexadecimal “6b”).

In [5]: and_gate.label()
lt_and = and_gate.labeltable
lt_and

Out [5]: W0001 W0002 | W0003
————————————————————————————
62847a... fed262... | c1e734...
62847a... ed06e4... | c1e734...
7150fc... fed262... | c1e734...
7150fc... ed06e4... | d233b2...

For gates with many wires and inputs, manually updating labels on all wires and gates is a tedious
process. Instead, each CircuitBoard object has the ability to update labels across the board with
a single command. For example, create a new wire, ww and connect it, along with output wire wz,
to an OR gate.

In [6]: w_w = Wire(circuit)
or_gate = Or(w_w, w_z)

The CircuitBoard method label may be used to enact a circuit-wide label update.

In [7]: circuit.label()
lt_or = or_gate.labeltable

To check that the AND gate has a new, relabeled table, and that the OR gate has a new labeled table
of its own, check the table again.

In [8]: lt_and
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Out [8]: W0001 W0002 | W0003
———————————————————————————
b7122... 337e52... | 657707...
b7122... 20aad4... | 657707...
8a5a4... 337e52... | 657707...
8a5a4... 20aad4... | 76a381...

In [9]: lt_or

Out [9]: W0003 W0004 | W0005
————————————————————————————
657707... e6d1ef... | 4cd2d4...
657707... f50569... | 5f0652...
76a381... e6d1ef... | 5f0652...
76a381... f50569... | 5f0652...

A.3.2 Encrypting the Circuit
The procedure for encrypting the circuit follows the same pattern. For encryption, the input wire
labels for each row in the labeled table are used to encrypt the output label. This encryption is
performed by hashing together the labels for each input wire, along with the gate’s ID, and then
using the resulting hash digest as a one-time-pad to encrypt the output wire label.

Eℓvxwx ,ℓ
vy
wy

= h
(
ℓvxwx

, ℓvywy
, ⟨gate_id⟩

)
⊕ ℓvZwz

. (A.1)

The hash function h is currently implemented using SHA-256.
Just like the LabelTable, each gate can also generate an associated TokenTable. Analagous

to the label method of a gate, a TokenTable is generated with the gate’s encrypt method. The
encryption process for the AND gate is as follows:

In [10]: and_gate.encrypt()
tt_and = and_gate.tokentable
tt_and

Out[10]: ciphertexts
———————————

742ae2...
006947...
ccfe34...
0562fc...
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Each TokenTable is very similar to a LabelTable, except that it is one-dimensional—just storing
the encrypted set of tokens. Unlike the TruthTable and the LabelTable, the one-dimensional
nature of a TokenTable means that it is indexed by row instead of by column.

In [11]: # Print the token in the ‘TokenTable‘ at index 1
token = tt_and[1]
token

Out[11]: (b’\x00iG\x90\x00a\xe8V|\x90e\x19\xfc\xd02\x08’, 0)

This token includes two components: the encrypted label (in bytes) and a permutation bit. Permu-
tation bits are discussed in the next section, so they will not be discussed in further detail here.

The encryption of the labels can be verified by trying to decrypt a row of the table. The third
entry in the encrypted table should decrypt to match the third row output of the LabelTable when
the keys are the inuts in the third row.

In [12]: from cyphercircuit.encryption import decrypt_entry

In [13]: # Get the label assigned to the third row of the truth table
assigned_label = lt_and[’output’][2]
# Get the labels assigned to the input wires
x_label, y_label = w_x.labels[True], w_y.labels[False]
# Decrypt the third row of the encrypted truth table
# (using the labels and the gate ID)
token = and_gate.tokentable[2]
decrypted_label = decrypt_entry(

token,
[x_label, y_label],
and_gate.id.encode(’utf-8’),
and_gate.circuit.security_parameter

)[0]
assert decrypted_label == assigned_label

This decrypted value does indeed match the third label in the AND gate’s output column.
Once again, just like in the labeling procedure, tokenization can be executed at the circuit level

to avoid encrypting each gate individually. The circuit-level encryption method is simply called
encrypt.

In [14]: circuit.encrypt()

It can be shown that the AND gate has a refreshed table of tokens, and a new token table was created
for the OR gate.
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In [15]: tt_and

Out[15]: ciphertexts
———————————

cc215e...
c32b2c...
bfc485...
270eb5...

In [16]: tt_or = or_gate.tokentable
tt_or

Out[16]: ciphertexts
———————————

387469...
22a3c0...
9db37b...
74fe6c...

A.3.3 Shuffling the Circuit
The last stage in the procedure is shuffling each table so that the tokens cannot be associated with
the truth table values.

Unlike labeling or encryption, shuffling does not produce its own special type of table. Instead,
tokens are shuffled in place within the TokenTable. Still, the shuffling process follows the same
methodology as the labeling and encryption steps. The tokens in the TokenTable are shuffled with
the gate’s shuffle method.

In [17]: and_gate.shuffle()
garbled_and = and_gate.tokentable
garbled_and

Out[17]: ciphertexts
———————————

270eb5...
bfc485...
c32b2c...
cc215e...

These tokens are the same as in the original TokenTable, just shuffled into a random order.
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To enhance the efficiency of the garbled circuit protocol, the CypherCircuit package uses the
point-and-permute strategy. This strategy allows the circuit evaluator to be pointed to the shuffled
token that they should be decrypting, rather than trying to decrypt each token in turn.

To execute this process securely, a random permutation bit p (either a 0 or 1) is paired with each
wire label ℓ matching a value of 0. (As in Chapter 3, notation ∈R indicates that pwx is selected
randomly from the set of {0, 1}.)

k0
wx

= (ℓ0wx
, p0wx

), pwx ∈R {0, 1} (A.2)

The opposite of this random bit is then paired with each wire label matching a value of 1.

k1
wx

= (ℓ1wx
, pvwx

⊕ 1) (A.3)

Next, the encrypted table of tokens is permuted according to the permutation bits of the input
wire labels. The encrypted token generated from the input wire labels with permutation bits pwx = 0
and pwy = 0 is placed first in the table. Second is the token generated from labels with bits pwx = 0
and pwy = 1, third pwx = 1 and pwy = 0, and fourth pwx = 1 and pwy = 1.

Since the bits are randomly assigned by the party generating the circuit, the other party learns
nothing from the permutation bits about whether a label corresponds to 0 or 1. Also, the random
assignment of permutation bits means that a table permuted according to them is also randomly
shuffled. If the circuit evaluator holds any two input wire labels and matching permutation bits,
they can then determine exactly which of the shuffled tokens they should decrypt, and the tokens to
use to perform the decryption.

In CypherCircuit, each wire label and matching token are stored together in the wire’s keys
attribute.

In [18]: w_x.keys, w_y.keys

Out[18]: ([<cyphercircuit.wires._Key at 0x7f8ce731e570>,
<cyphercircuit.wires._Key at 0x7f8ce731ed90>],

[<cyphercircuit.wires._Key at 0x7f8ce731ed50>,
<cyphercircuit.wires._Key at 0x7f8ce731ecb0>])

Finally, an entire circuit can be shuffled at once, just like it can be labeled or encrypted. Following
the same pattern, the circuit’s shuffle method will systematically garble every gate in the circuit.

In [19]: circuit.shuffle()

After running the shuffle method, a user can confirm that the tables of tokens belonging to the
AND and OR gates have indeed been randomly shuffled.

In [20]: garbled_and
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Out[20]: ciphertexts
———————————

c32b2c...
cc215e...
270eb5...
bfc485...

In [21]: garbled_or = or_gate.tokentable
garbled_or

Out[21]: ciphertexts
———————————

22a3c0...
387469...
74fe6c...
9db37b...

A.3.4 Garbling the Circuit
In most real garbled circuit implementations, the three steps of labeling, encrypting and shuffling
will all be performed together at once for each gate. CypherCircuit enables the three to be separated;
however, to avoid having to tediously write out each method, the three are also bundled together in
a single garble method.

In [22]: and_gate.garble()

Like each of the other methods discussed so far, the entire circuit can be garbled at once using the
garble method.

In [23]: circuit.garble()

Once the circuit has been generated, the user can produce garblings of the circuit which can be
shared with another party. The garbling process occurs in a pipeline, with garbled chunks of the
circuit being produced one at a time. Since the circuit used in this example is small, only two chunks
are produced—one for the garbled tables in the circuit, and one mapping the output labels to output
values. If there were many gates to be encrypted (e.g. more than 1000), there would be multiple
garbling chunks with ‘table’ keys.

In [24]: list(circuit.pipeline_garbling())
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Out[24]: [{’class’: ’garbling’,
’subclass’: ’table’,
’circuit_id’: ’C0001’,
’number’: 1,
’tables’: {’G0001’: [’8f2e66c22d186c13e7f34d1b6928740900’,

’e426672a18a4a3736336a227a24859f400’,
’56d8784bababc0018f6ce8167b59172f01’,
’11d32fc0dec92c2bea851e70a91e5f2500’],

’G0002’: [’9b7b28f5c6478de2e250ccc30b79d7c101’,
’c2e793a7067aa1a8f7c77a61c34cdfc400’,
’3d429553acc7fd355667da06fabe601301’,
’19e3d07aff5df71cbb99f0e05f6b659500’]}},
{’class’: ’garbling’,
’subclass’: ’output’,
’circuit_id’: ’C0001’,
’outputs’: {’W0005’: [0, 0]}}]

A.4 Encoding and Evaluating Circuits in CypherCircuit
This section explains how CypherCircuit enables a circuit to be encoded by one party, shared with
a second party, and then securely evaluated by that second party. Recall that the garbling procedure
created a garbled table of encrypted tokens, each corresponding to a row in a truth table. Also,
notice that until this point, nothing is known a priori about either party’s inputs. All possible
inputs and outputs of the gate have been taken into account.

With the garbled circuit available, the CypherCircuit package allows a circuit generator to pro-
duce an encoding of a party’s inputs. This is the final item required by the generator before they are
able to share information with the evaluator. Three objects are shared in this process: the circuit
diagram, the garbling of the tables in the circuit, and the encoding of the circuit for the generator’s
inputs. Additionally, the evaluator’s labels are also communicated via oblivious transfer.

The process of creating a circuit diagram was discussed in Section A.1 and the garbling process
was discussed in Section A.3, leaving the only the circuit encoding process left to be covered. Like
in all previous sections, the process of encoding a circuit begins by importing all of the necessary
CypherCircuit elements.

In [1]: from cyphercircuit import CircuitBoard
from cyphercircuit.wires import Wire
from cyphercircuit.gates import Not, And, Nor

NOTICE: This computer software was prepared by National Technology & Engineering
Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-
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NA0003525 with the Department of Energy/National Nuclear Security Administration
(DOE/NNSA). All rights in the computer software are reserved by DOE/NNSA on
behalf of the United States Government and the Contractor as provided in the
Contract. You are authorized to use this computer software for Governmental
purposes but it is not to be released or distributed to the public.

NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice
including this sentence must appear on any copies of this computer software.

The comparator circuit introduced in the previous sections will be reused here to perform the en-
coding and decoding—this circuit is constructed and garbled as described in Sections A.1 and A.3.

In [2]: circuit = CircuitBoard()
X, Y = wire1, wire2 = Wire(circuit), Wire(circuit)
gate1, gate2 = Not(wire1), Not(wire2)
wire3, wire4 = gate1.output_wire, gate2.output_wire
gate3, gate4 = And(wire2, wire3), And(wire1, wire4)
wire5, wire6 = gate3.output_wire, gate4.output_wire
gate5 = Nor(wire5, wire6)
wire7 = gate5.output_wire
circuit.garble()

A.4.1 Encoding the Circuit
Once the circuit has been created and garbled, it can be encoded with the CircuitBoard object’s
encode method. This method accepts a user specified vector of input values—one value for each
input wire. If the party does not know the value on an input wire, they may give a value of None.

In [3]: # The encoding party knows the value on wire 1 but not 2
vector = [0, None]
default_encoding = circuit.encode(vector)

By default, the CircuitBoard object assumes that the input wires are all wires that do not orig-
inate from some other gate and that they were created in order (specifically, ordered by increasing
wire ID).3 When a vector is encoded, each value in the vector is matched with the next wire in the
predetermined set of input wires. For example, given the input vector[

v1, v2
]
, (A.4)

3Wires that have “fixed” values are excluded from consideration as input wires.
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values v1 and v2 would be assigned to circuit input wires 1 and 2 respectively.
If desired, the input wire order can be overwritten by providing circuit input wires manually.

Though not strictly required, it is recommended that the circuit input wires be set when building
complicated circuits.

In [4]: # A redundant operation, but shown here for completeness
circuit.set_input_wires([wire1, wire2])

This capability extends to the output wires as well. By default, a CircuitBoard determines all
output wires to be (in order of increasing wire ID) all those that do not terminate in a gate. For a
circuit—like the comparator with output wires 5, 6, and 7—the output vector would be[

v5, v6, v7
]
. (A.5)

Again, this default behavior can be overwritten by explicitly declaring the output wires of the
circuit. The comparator circuit actually provides a good illustration of why setting wires in this way
is important. From the diagram, it is obvious that wires 5, 6, and 7 are the desired circuit outputs.
However, the CircuitBoard will default to only registering wire 7 as an output, since both wires 5
and 6 feed into NOR gate 5. This behavior can be overridden by declaring all three wires as circuit
outputs.

In [5]: circuit.set_output_wires([wire5, wire6, wire7])

Once the circuit outputs have all be set, it remains to actually encode the circuit.

In [6]: vector = [None, 1]
encoding = circuit.encode(vector)
encoding

Out [6]: {’class’: ’encoding’,
’circuit_id’: ’C0001’,
’inputs’: {’W0001’: None, ’W0002’:

[’424d4f3834bb3f632b385ab6ac6c27e2’, 1]}}

The method returns a dictionary with the encoded information. The first two keys contain the meta
information: the class indicates that this dictionary is an encoding, and the circuit ID is used as a
cursory check that the encoding matches a given circuit. The third key is a dictionary of input wires
and the corresponding labels for the encoded vector. It can be shown that these two values match
the labels on wires 1 and 2 for inputs 0 and 1.

In [7]: print(wire1.labels[0].hex())
print(wire2.labels[1].hex())
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6b8117dee75934019baa70e25dff6ff7
424d4f3834bb3f632b385ab6ac6c27e2

A.4.2 Sharing and Evaluating the Circuit
At this point, all of the objects that need to be communicated between parties have been created.
To recap, this information has been generated in three serializable pieces:

1. A diagram outlining the general structure of the circuit (Section A.1)
2. A garbling of the circuit truth tables for randomly assigned labels and permutation bits (Sec-

tion A.3)
3. An encoding of the circuit for some input vector (Section A.4)
This information is all originally assembled by the circuit generator party, and must be conveyed

to the other party for evaluation. Additionally, the evaluator’s inputs must be received via oblivious
transfer. To do all of this communication, the CypherCircuit package provides a context manager
through the interaction.parties module to execute the protocol for each party. This context
manager initializes a Transmisssion Control Protocol (TCP) network connection and then handles
the transfer of information between the two parties interactively.

Once this information has all been exchanged—the three objects passed from the generator to
the evaluator and the evaluator’s labels acquired via oblivious transfer (OT)—the evaluator may
evaluate the circuit to get the answer. For every gate in the circuit with input wires wx and wy

where the evaluator possesses the input wire labels, they may learn the corresponding output label
using the decryption equation:

ℓ0wz
= Dℓ1wx

,ℓ0wy

(
Eℓ1wx

,ℓ0wy

(
ℓ0wz

))
. (A.6)

The input wire labels could have been acquired either from the generator directly, from OT, or from
the decryption of some other gate. The newly learned output wire labels are then used to decrypt
subsequent gates until all output wire labels in the circuit are known.

A.4.3 The Generator and Evaluator Context Managers
To reduce the burden on a user, CypherCircuit provides two context managers to assist in the entire
garbled circuit protocol. Both of the context managers (the Generator and the Evaluator) enable
users to easily perform each step in the garbled circuit protocol. For each party, those steps are as
follows:

Generator:
1. Building the circuit and sharing the diagram
2. Garbling the circuit
3. Encoding the circuit
4. Sharing the known encoded wire labels
5. Passing the evaluator’s wire labels using oblivious transfer
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6. Sharing the garbled tables

Evaluator:
1. Receiving the diagram and reproducing the circuit
2. Receiving the generator’s encoded wire labels
3. Acquiring their own labels through oblivious transfer
4. Receiving the garbled tables
5. Decoding the circuit

To simplify the work of a user even further, each party object also has an execute_protocol
method. This method accepts a vector with Boolean known values (and marked unknowns) for the
party, and then runs through each of the protocol steps for the party.

The following example follows the role of a circuit evaluator. First, a function to simulate the
circuit generator can defined and executed on a background process:

In [8]: from cyphercircuit.interaction.parties import Generator
from cyphercircuit.prefab.components import (

OneBitComparator as Comparator
)

def generator_role(address):
"""Assume the role of garbled circuit generator."""
# Build the comparator circuit
circuit = CircuitBoard()
X, Y = Wire(circuit), Wire(circuit)
Comparator(X, Y)
# Set the last 3 wires (5, 6, and 7) to be outputs
circuit.set_output_wires(circuit.wires[-3:])
# Use the generator context manager
with Generator(address, circuit) as generator:

# The generator knows the input of wire X is 0
# (wire Y is unknown)
generator.execute_protocol([0, None])

Since the generator and evaluator communicate over the network, the a network address for
communication must be specified. This address is given as an argument to the Generator and
Evaluator classes upon instantiation. CypherCircuit can be run through a local network using the
address 127.0.0.1.

In [9]: HOST = ’127.0.0.1’
PORT = 65432
ADDRESS = (HOST, PORT)
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Next, an analagous function is prepared for the evaluator:

In [10]: from cyphercircuit.interaction.parties import Evaluator

def evaluator_role(address):
"""Assume the role of garbled circuit evaluator."""
# Use the evaluator context manager
with Evaluator(address) as evaluator:

# The evaluator knows the input of wire Y is 1
# (wire X is unknown)
decoding = evaluator.execute_protocol([None, 1])

return decoding

Finally, when ready, the generator’s function is sent to a background process to run, and the
evaluator function may be executed. Where the tutorial notebooks packaged with the CypherCircuit
package rely on an IPython backend, the ‘backgroundjobs‘ IPython library is shown here handling
the background processes. Other networking and multiprocessing tools could be used to accomplish
this instead.

In [11]: from IPython.lib import backgroundjobs as bgj
jobs = bgj.BackgroundJobManager()

# Send the generator function to the background process
jobs.new(’generator_role(ADDRESS)’)

# Execute the evaluator’s function
decoding = evaluator_role(ADDRESS)
decoding

Out[11]: array([ True, False, False])

In [12]: assert list(decoding) == [True, False, False]

It can be seen that wire 5 (the first value in the decoding) has a value of True, so v1 < v2, as
expected. The value of wire 1 was set to be 0 by the generator and the value of wire 2 was set to
be 1 by the evaluator, so the output value should indicate that wire 1 had a value less than wire 2.
Neither party knew the other’s input, but the circuit produced the correct output.

Of course, in a problem as small as this, knowledge of the other party’s input is actually always
revealed by the nature of the circuit. If v1 < v2, then v1 = 0 and v2 = 1. If instead v1 > v2, then
v1 = 1 and v2 = 0. Or, if both values are equal, then each party knows that the other has the same
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value. However, by extending the garbled circuit protocol to use more complicated functions and
larger functions, the inputs become much less likely to be revealed by the circuit’s output.

A.5 CypherCircuit Language Basics
This final section describing the CypherCircuit package demonstrates how circuits may be richly
expressed using mathematical notation (rather than direct assembly using wires, gates, or other just
slightly more complex components).

Rather than constructing circuits as individual wires and gates, it is much more convenient to
build circuits using familiar mathematical notation. For example, in the previous sections, a com-
parison between numbers was performed by building a comparator circuit and feeding it the ap-
propriate wire values. Though an example showed how the prefabricated Comparator component
could simplify the construction step, the circuit protocol still required a user to manipulate wires
and their values.

To make things easier for more general users, the cctypes module enables users to work with
an interface that emulates traditional computer programming languages, while the package handles
implementation details of the types as collections of wires and gates. The CCInt and CCBool types
implement integers and Booleans as CypherCircuit objects.

In [1]: from cyphercircuit import CircuitBoard
from cyphercircuit.interaction.parties import (

Generator, Evaluator
)
from cyphercircuit.cctypes import CCInt, CCBool

NOTICE: This computer software was prepared by National Technology & Engineering
Solutions of Sandia, LLC, hereinafter the Contractor, under Contract DE-
NA0003525 with the Department of Energy/National Nuclear Security Administration
(DOE/NNSA). All rights in the computer software are reserved by DOE/NNSA on
behalf of the United States Government and the Contractor as provided in the
Contract. You are authorized to use this computer software for Governmental
purposes but it is not to be released or distributed to the public.

NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice
including this sentence must appear on any copies of this computer software.

As an example, a garbled circuit can be built to calculate the dot product between two vectors—
one held by each party—all while preserving the privacy of the parties. Here, the two parties each
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possess three integers (less than 2,147,483,648; the cctypes module only currently supports 32-bit
integers). Together, the two parties compute and learn the dot product of their vectors.

First, the two parties agree on a circuit that performs the calculation:

(x1 · x2) + (z1 · z2) + (z1 · z2) . (A.7)

The subscript indicates which party privately holds the value.

In [2]: def build_circuit():
circuit = CircuitBoard()
circuit.id = ’dot-product-calculator’
# Define vector elements for two parties
x1, y1, z1 = CCInt(), CCInt(), CCInt()
x2, y2, z2 = CCInt(), CCInt(), CCInt()
dot_product = (x1*x2) + (y1*y2) + (z1*z2)
# Set the output wires
circuit.set_output_wires(dot_product.wires)
return circuit, (x1, y1, z1), (x2, y2, z2), dot_product

This dot_product instance of the CCInt type illustrates the simplification that can be achieved
through this expressive syntax (the alternative method of constructing circuits would have required
192 input wires be manually fed into three 32-bit multipliers, with the outputs all piped back into
two 32-bit adders).

With the circuit in hand, the generator devises a function to assign their own values to the input
wires and then uses their Generator object to run the garbled circuit protocol. Here, they set the
values on their own inputs to be 3, 4, and 5.

In [3]: def generator_role(address):
"""Assume the role of garbled circuit generator"""
circuit, (x1, y1, z1), evaluator_vector, dot_product =
build_circuit()
with Generator(address, circuit) as generator:

# Set the values
x1.set_value(3)
y1.set_value(4)
z1.set_value(5)
# No need to exchange diagrams
# (this role already has access to the circuit structure)
generator.execute_protocol(exchange_diagram=False)

Next, the evaluator defines their algorithm. It is a nearly identical process; they use the same
circuit description, but set the values on their own input wires x2, y2, and z2 as 10, 20, and 30,
respectively.
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In [4]: def evaluator_role(address):
"""Assume the role of garbled circuit evaluator"""
circuit, generator_vector, (x2, y2, z2), dot_product =
build_circuit()
with Evaluator(address, circuit) as evaluator:

# Set the values
x2.set_value(10)
y2.set_value(20)
z2.set_value(30)
# No need to exchange diagrams
# (this role already has access to the circuit structure)
decoding = evaluator.execute_protocol(

exchange_diagram=False
)

return dot_product.value

The last thing to do before running the protocol is to define the network information required for
communication between the two parties.

In [5]: HOST = ’127.0.0.1’
PORT = 65432
ADDRESS = (HOST, PORT)

Finally, the two-party protocol can be run. The expected value is 260 for the values assigned
here.

In [6]: from IPython.lib import backgroundjobs as bgj
jobs = bgj.BackgroundJobManager()

# Send the generator function to the background process
jobs.new(’generator_role(ADDRESS)’)

# Execute the evaluator’s function
evaluator_role(ADDRESS)

Out [6]: 260
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