
Lawrence Berkeley National Laboratory
LBL Publications

Title

Omics-Driven Biotechnology for Industrial Applications

Permalink

https://escholarship.org/uc/item/1dh5w8j7

Authors

Amer, Bashar
Baidoo, Edward EK

Publication Date

2021

DOI

10.3389/fbioe.2021.613307
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dh5w8j7
https://escholarship.org
http://www.cdlib.org/


REVIEW
published: 23 February 2021

doi: 10.3389/fbioe.2021.613307

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 February 2021 | Volume 9 | Article 613307

Edited by:

Eduard Kerkhoven,

Chalmers University of

Technology, Sweden

Reviewed by:

Hyun Uk Kim,

Korea Advanced Institute of Science

and Technology, South Korea

Adam M. Feist,

University of California, San Diego,

United States

*Correspondence:

Edward E. K. Baidoo

eebaidoo@lbl.gov

Specialty section:

This article was submitted to

Synthetic Biology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 01 October 2020

Accepted: 11 January 2021

Published: 23 February 2021

Citation:

Amer B and Baidoo EEK (2021)

Omics-Driven Biotechnology for

Industrial Applications.

Front. Bioeng. Biotechnol. 9:613307.

doi: 10.3389/fbioe.2021.613307

Omics-Driven Biotechnology for
Industrial Applications
Bashar Amer 1,2 and Edward E. K. Baidoo 1,2,3*

1 Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States, 2 Biological Systems and

Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3U.S. Department of Energy, Agile

BioFoundry, Emeryville, CA, United States

Biomanufacturing is a key component of biotechnology that uses biological systems

to produce bioproducts of commercial relevance, which are of great interest to

the energy, material, pharmaceutical, food, and agriculture industries. Biotechnology-

based approaches, such as synthetic biology and metabolic engineering are heavily

reliant on “omics” driven systems biology to characterize and understand metabolic

networks. Knowledge gained from systems biology experiments aid the development

of synthetic biology tools and the advancement of metabolic engineering studies

toward establishing robust industrial biomanufacturing platforms. In this review, we

discuss recent advances in “omics” technologies, compare the pros and cons of the

different “omics” technologies, and discuss the necessary requirements for carrying

out multi-omics experiments. We highlight the influence of “omics” technologies on the

production of biofuels and bioproducts by metabolic engineering. Finally, we discuss the

application of “omics” technologies to agricultural and food biotechnology, and review

the impact of “omics” on current COVID-19 research.

Keywords: systems biology, genomics, transcriptomics, metabolomics, proteomics, multi-omics, metabolic

engineering, biotechnology

INTRODUCTION

Biotechnology employs biological processes, organisms, or systems to yield products and
technologies that are improving human lives (Bhatia, 2018). The use of biological systems to
manufacture bioproducts of commercial relevance (i.e., biomanufacturing) is a key component
of the biotechnology industry. This manufacturing approach is used by the energy, material,
pharmaceutical, food, agriculture, and cosmetic industries (Zhang et al., 2017). The bioproducts
made from biomanufacturing processes are typically metabolites and proteins, which can be
obtained from cells, tissues, and organs. The biological systems producing these bioproducts can be
natural or modified by genetic engineering (Zhang et al., 2017), metabolic engineering (optimizing
metabolic networks and pathways for increased production of metabolites and/or by-products),
synthetic biology (applying engineering principles to the chemical design of biological systems),
and protein engineering (optimizing protein design to develop valuable proteins) (Zhang et al.,
2017).

Modern biotechnology-based biomanufacturing started in the early twentieth century with the
production of short-chain alcohols and ketones, amino acids, organic acids, and vitamin C by
microbial mono-culture fermentation (Zhang et al., 2017). This was followed by the production
of antibiotics via microbial fermentation in the 1940s and protein drug production in animal cells
and microorganisms in the 1980s (Zhang et al., 2017). With the advent of translational research
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(e.g., stem cell research) in the 2000s, the bioproducts can
now be engineered cells, tissues, and organs (e.g., by stem cell
engineering) (Roh et al., 2016; Zhang et al., 2017). In addition
to this, advancements in synthetic biology and metabolic and
protein engineering have been applied to renewable energy
research in the development of advanced biofuel and hydrogen
production by engineered microorganisms (Zhang et al., 2017).
Research efforts are underway at bioenergy research centers (e.g.,
US DOE Bioenergy Research Centers) to make biofuels more
affordable by coproducing them with renewable bioproducts.
This is of great importance, as environmental, geopolitical, and
economic factors are reshaping our view of global energy and
manufacturing demands (Clomburg et al., 2017). The tools (and
ideology) from these approaches have also been leveraged by the
food industry to produce artificial food products via synthetic
biocatalysts in a sustainable way (Zhang et al., 2017).

Synthetic biology and metabolic engineering can benefit
from systems biology approaches, which in turn rely on
“omics” technologies to characterize and understand metabolic

networks. The considerable amount of knowledge obtained from

omics-driven systems biology experiments can be used in the
development of synthetic biology tools and the advancement
of metabolic engineering. This facilitates the manipulation of
complex biological systems toward establishing robust industrial
biomanufacturing platforms (Baidoo and Teixeira Benites, 2019).

In this review, we aim to examine the influence of
“omics” technologies on biotechnology research. “Omics”
techniques were compared to understand their relevance and
applicability to biotechnology research, especially in the context

FIGURE 1 | An overview of the flow of molecular information from genes to metabolites to function and phenotype, and the interactions between the “omes” and the

“omics” techniques used to measure them.

of microbial biotechnology, with the aim of facilitating the
experimental design of individual “omics” and multi-omics
studies. Finally, we compared the trends in “omics” utilization
during the last two decades to determine their progression in
biotechnology research.

A COMPARISON OF THE MAJOR “OMICS”
TECHNOLOGIES

Biological engineering requires the accurate prediction of
phenotype from genotype. Thus, testing and validating modified
and synthesized genomes (i.e, genomics) as well as the study
of the transcriptome (the complete set of RNA transcripts),
which is expressed from the genome (i.e., transcriptomics),
are crucial to evaluating genome engineering. Proteomics and
metabolomics have also gained a lot of attention due to their
provision of metabolic information pertaining to both function
and phenotype (Baidoo, 2019). Forty years ago, scientists realized
that the flow of biochemical information in biological systems
is not unidirectional from the genome to metabolome, but
rather a set of interactions between the “omes” (Roberts et al.,
2012). Therefore, a multi-omics approach is necessary for
the elucidation of chemical structure, function, development,
adaptation, and evolution of biological systems for deeper
understanding of the principles of life (Baidoo, 2019) (Figure 1).

In comparison to metabolites and proteins, genes are less
chemically heterogeneous. Each gene is made up of DNA
that is composed of only four basic nucleotides (i.e., guanine,
adenine, cytosine and thymine), whereas each protein is
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composed of a mixture of 32 amino acids, while metabolites
are much more variable in their chemical structures (Wang
et al., 2010). Therefore, it is analytically less challenging to
perform genomics and transcriptomics, when compared to
proteomics and metabolomics (Aizat et al., 2018). Consequently,
genomics and transcriptomics provide the most comprehensive
and robust platforms for biotechnology applications. Over
the past few decades, research has shown that genomics and
transcriptomics cannot solely provide a complete description of
complex biological systems as genetic information can produce
more questions than answers. For instance, genomics can
describe genes and their interactions (measure genotype) but
cannot explain phenotypes. Thus, the attention is turned to
the utilization of other “omics” techniques, such as proteomics
and metabolomics, which can bridge the gap between genetic
potential and final phenotype to facilitate a greater understanding
of biological systems (Smith and Figeys, 2006; Wilmes et al.,
2015). While transcriptomics (transcription) and proteomics
(translation) provide information on gene expression, the latter
directly links genotype to phenotype. In addition to providing
phenotypic information, the metabolome provides an instant
response to genetic and/or environmental perturbations and,
therefore, provides a snap shot of the actual metabolic and
physiological state of a cell (Tang, 2011). However, metabolomics
alone is not able to measure changes at the gene level and
correlate them with the observable properties of organisms,
the phenotypes, which are produced by the genotype in
the first place (Fiehn, 2001). Therefore, a comprehensive
understanding of an organism on a molecular level requires the
integration of “omics” data in order to discover new molecules
and pathways (Wang et al., 2010) (Figure 1). Integration of
“omics” data helps to assess the flow of information from
one “omics” level to the other and, therefore, links genotype
to phenotype (Subramanian et al., 2020). Furthermore, the
combination of “omics” techniques is important to address open
biological questions (i.e., data driven research) that accelerate our
understanding of the system as a whole and boost the use of
systems metabolic engineering tools in industrial settings (Zhao
et al., 2020).

Genomics and Transcriptomics
The construction of predictable and preferred phenotypes is
crucial in synthetic biology; therefore, tight and tunable control
of gene expression is highly desirable. Biological engineering,
moreover, is greatly benefiting from the recent innovations
in genomics and genome editing technologies, which offer
advanced tools to re-engineer naturally evolved systems and to
build new systems as well. In addition, advances in de novo
synthesis and in vivo gene targeting enable efficient testing of
model-driven hypotheses. Furthermore, genomics allows the
high-throughput DNA sequencing and large-scale bimolecular
modeling of metabolic and signaling networks in natural and
engineered strains (Pagani et al., 2012).

Genomics and Transcriptomics Analysis
One of the challenges facing traditional genomics (and
other “omics”) analyses is that not all microorganisms can

be cultured in a laboratory setting. Furthermore, isolated
strains might behave differently in culture than in their
natural environments. Therefore, there was an urgent need to
develop cultivation independent methods to study microbial
communities (VerBerkmoes et al., 2009). Metatranscriptomics
can reveal the diversity of active genes within microbial
communities (e.g., 16S rRNA sequencing for reconstructing
phylogenies) (Bashiardes et al., 2016).

Metagenomics studies the structure and function of genetic
material in complex samples of multi-organisms as well as of
entire microbial communities without a cultivation step and can
offer a solution for such challenges and facilitate the discovery
of novel genes, enzymes, and metabolic pathways. Metagenomics
analyses are classified as sequence-based and function-based
screening, which are used to discover and identify, respectively,
novel natural genes and compounds from environmental samples
(Chistoserdova, 2010; Gilbert and Heiner, 2015; Kumar Awasthi
et al., 2020). For example, metagenomics is actively used in
agricultural research to understand themicrobial communities in
the soil system (Durot et al., 2009), to examine various microbes
that can stimulate the cycling of macro- andmicro-nutrients, and
the release of essential enzymes, which enhance crop production
(Cupples, 2005).

Nanopore sequencers are massively parallel sequencing
technologies. Oxford Nanopore Technologies (ONT), in
particular, provides a single molecule sequencer using a
protein nanopore that realizes direct sequencing without DNA
synthesis or amplification (Brown and Clarke, 2016; Roumpeka
et al., 2017). The ONT sequencer can determine DNA/RNA
modifications and sequence an ultra-long read limited by the
input nucleotide length (Kono and Arakawa, 2019). However,
ONT reads require polishing and great care needs to be taken
when contigs are polished individually to avoid the removal of
true, natural sequence diversity due to cross mapping of reads in
repeat regions. Therefore, it was found that it is crucial to apply
long-range information technologies (e.g., 10x genomics, Hi-C,
synthetic long reads) and to develop new algorithms to simplify
the extensive assembly and polishing workflow (Somerville et al.,
2018).

Sort-seq is a single-cell sequencing platform, which combines
flow cytometry, binned fluorescence-activated cell sorting
(FACS), next-generation sequencing (NGS), and statistical
inference to quantify the dynamic range of many biosensor
variants in parallel (Rohlhill et al., 2017; Batrakou et al., 2020;
Koberstein, 2020). FACS, which enables the sorting of single
cells, allows the enrichment of specific cells to generate high-
resolution gene expression and transcriptional maps (Kambale
et al., 2019). NGS and RNA sequencing (RNA-seq) technologies
enable the large-scale DNA and RNA sequencing of the
entire genome and transcriptome, respectively, providing an
unbiased and comprehensive view of biological systems towards
understanding genomic function (Frese et al., 2013; Alfaro et al.,
2019; Stark et al., 2019). Examples of NGS platforms include
the Illumina HiSeq, Genome Analyzer Systems, 454 Genome
Sequencer FLX Titanium System, the Helicos HeliScope, the
SOLiD sequencing platform and the Ion Torrent Sequencing
platform. In addition, there are other techniques used to measure
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the interaction between proteins and DNA, such as chromatin
immunoprecipitation (ChIP). ChIP followed by NGS sequencing
(ChIP-seq) has high potential for detailing the binding sites
of various transcription factors and assaying protein–DNA
interaction at a whole-genome level (Roukos, 2012).

Bar-seq (barcode analysis by sequencing) is another high-
throughput quantitative DNA sequencing technique that enables
the parallel phenotyping of pools of thousands of mutants
and monitoring thousands of gene-chemical interactions (Smith
et al., 2010; Robinson et al., 2014). Techniques, such as bar-seq
can lower the complexity of data obtained from a large number of
sequence reads, thus, making NGS more efficient and affordable
(Smith et al., 2009).

New computational tools have enabled researchers to perform
fast and accurate analysis of big genomics data. Extracted
genomic information has been used tomodelmetabolic processes
and signaling networks across the entire cell, generating many
new testable hypotheses (Lewis et al., 2012; Esvelt and Wang,
2013). Due to the robustness of genomic measurements, there are
numerous genomics databases and data analysis tools available
(Roumpeka et al., 2017).

Proteomics
Proteomics focuses on the analysis of proteins and peptides
produced by cells at different stages of development and life
cycle and in biological systems under a given growth condition.
Proteomics is also used to elucidate the temporal dynamics
of protein expression levels or post-translational modification
(PTM) (VerBerkmoes et al., 2009).

Proteomics Sample Preparation
High biological sample diversity and complexity and the dynamic
range of protein levels present in such samples are the main
challenges that proteomics encounter. These factors, in addition
to the large number of proteins, complicate the analysis of
low abundance proteins. The development of automated sample
preparation workflows are becoming more common for high-
throughput, quantitative proteomic assays of microbes. One
automated workflow was able to quantify >600 peptides with
a 15.8% median coefficient of variation, demonstrating the
robustness of this approach (Chen et al., 2019). Another high-
throughput automatable workflow was developed to increase the
yield of lysis of several representative bacterial and eukaryotic
microorganisms via vigorous bead-beating with silica and
glass beads in presence of detergents (Hayoun et al., 2019).
Interestingly, a universal, high-throughput and a detergent-free
sample preparation protocol was developed this year for peptide
generation from various microbes [i.e., Escherichia coli (E. coli),
Staphylococcus aureus and Bacillus cereus]. The protocol holds
the potential to dramatically simplify and standardize sample
preparation while improving the depth of proteome coverage
especially for challenging samples (Doellinger et al., 2020).

Proteomics Data Acquisition

Protein Identification and Structural Elucidation
Most proteomics workflows are based on a bottom-up approach,
where protein is extracted, digested (e.g., trypsin digestion)

into proteolytic peptides, then analyzed via MS (Kleiner
et al., 2017). When liquid-chromatography is coupled to mass
spectrometry (LC-MS), both qualitative and quantitative data
analysis of proteins are improved. Moreover, the application of
multidimensional LC separation prior to MS protein analysis
provides enhancedMS sensitivity by reducing sample complexity
and increasing the number of chromatographic peaks that can
be resolved in a single analytical run (Hinzke et al., 2019;
Duong et al., 2020). Targeted proteomics via LC-tandemMS (LC-
MS/MS) is a commonly used MS method, where the analysis
focuses on a subset of biological proteins of interest (Marx,
2013). When a bottom-up approach is applied to all proteins
within a given biological system, it is called shotgun (untargeted)
proteomics (Wolters et al., 2001; Nesvizhskii and Aebersold,
2005). Top-down proteomics, conversely, is based on the analysis
(via LC-MS or LC-MS/MS) of intact proteins, and thus, provides
unique information about the molecular structure of proteins
(e.g., PTM) (Catherman et al., 2014). However, it is not always
possible to separate intact proteins, especially large proteins,
prior to MS analysis in a top-down approach. Besides that,
top-down is less sensitive and has a lower throughput than a
bottom-up approach (Catherman et al., 2014).

Accurate determination of protein structure helps to define
their roles and functions in biological systems. However, many
folded proteins have complex structures, which complicates
their structural elucidation (Yates, 2019). Therefore, cryogenic
electron microscopy and ion-mobility-MS are used to determine
the structures of such proteins such proteins (Yates, 2019).
Moreover, a combination of MALDI, high resolution MS (i.e.,
orbitrap and ion trap MS) and a UV–Vis-based reduction assay
is used to elucidate peptide modification via the analysis of
specific fragmentation of synthesized peptides, which might have
inhibitory effects on various diseases (Rühl et al., 2019).

The identification of PTM peptides can be difficult in the case
of labilemodifications (e.g., phosphorylation and S-nitrosylation)
that might break down during MS/MS fragmentation. Such
modifications require soft fragmentation and high-resolution
methods to identify and determine the location of a PTM.
Electron-transfer dissociation is considered to be the favorable
choice for the identification of liable PTM as it transfers electrons
to multi-protonated proteins or peptides, which leads to N-Cα

backbone bond cleavage (Chen et al., 2017).
Metaproteomics is the large-scale characterization of the

entire protein complement of environmental microbiota at
a given point in time to determine structure (Wilmes and
Bond, 2004; Kleiner et al., 2017), metabolism and physiology
of community components (Kleiner et al., 2012). The recent
advancement in LC and high-resolution MS have enabled
the identification and quantification of more than 10,000
peptides and proteins per sample in metaproteomics (Kleiner,
2019). Metaproteomics can also measure interactions between
community components (Hamann et al., 2016) and assess
substrate consumption (Bryson et al., 2016; Kleiner et al., 2018).

Protein Quantification
Besides identification, MS-based technologies became the tools
of choice for the quantification of proteins in an organism
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(Karpievitch et al., 2010). Stable isotope labeling is one approach
that can be used to quantify proteins by measuring the
relative abundance of labeled protein to non-labeled protein
(VerBerkmoes et al., 2009). However, the variation in ionization
efficiency among peptides and proteins and the low recovery of
some peptides (e.g., hydrophobic peptides adhere to surfaces)
can affect the accuracy of their direct quantification. Recent
advances in MS acquisition rate, detection, and resolution
have addressed much of the sensitivity concerns of MS-based
quantification for proteomics (Iwamoto and Shimada, 2018). MS
sensitivity was further enhanced with the application of micro-
flow (Krisp et al., 2015; Bian et al., 2020) and nano-flow (Wilson
et al., 2015) LC-MS. Another major advancement for global
protein quantification was the introduction of isobaric tags or
multiplexed proteomics, which in a single experiment enables the
quantification of proteins across multiple samples (Pappireddi
et al., 2019). Tandem-mass-tags are examples of commonly used
isobaric tags for instance in human cerebrospinal fluids (Dayon
et al., 2008).

Proteomics Data Analysis
Proteomics data analysis tools are generally used for protein
identification (via bioinformatics) and quantification, and
bioinformatics techniques tools used to process the proteomics
data. A few examples of data analysis tools that are used
for the identification of peptides and proteins include Mascot
(Eng et al., 1994), Swiss-Prot (Bairoch and Boeckmann, 1994),
Sequest (Perkins et al., 1999), Tandem (Craig and Beavis, 2004),
Skyline (MacLean et al., 2010), Uni-Prot,1 UniNovo (Jeong et al.,
2013), and SWPepNovo (Li et al., 2019). Such algorithm-based
software were developed to match the MS collected data from
peptide/protein analysis to their base peptides/proteins and with
in silico predicted intact masses and fragmentation patterns
(Urgen Cox andMann, 2011). Moreover, they determine both the
mass and exact location of any possible modifications (Hansen
et al., 2001; Savitski et al., 2006). Common bioinformatics
techniques tools for proteomics data analysis include CRONOS
(Waegele et al., 2009), COVAIN (Sun and Weckwerth, 2012),
SIGNOR (Perfetto et al., 2016), KEGG (Kanehisa et al., 2017), and
STRING v11 (Szklarczyk et al., 2019).

Metabolomics
Metabolomics, which is the measurement of small molecule
substrates, intermediates, and/or end products of cellular
metabolism (i.e. metabolites), provides an immediate and
dynamic response to genetic and/or environmental perturbations
in a biological system (Fiehn, 2002; Ellis and Goodacre, 2012;
Zhao et al., 2020). Targeted and untargeted metabolomics are
used to quantify a group of defined metabolites and determine
all measurable metabolites in a biological sample, respectively
(Scalbert et al., 2009). MS-based metabolomics, like proteomics,
normally employs separation [e.g. LC and gas chromatography
(GC)] or capillary electrophoresis (CE) before MS detection

1UniProt. Available online at: https://www.uniprot.org/ (accessed September 30,

2020).

(Fiehn, 2002). Whereas, MALDI-MS conducts high-throughput
screening without separation.

Nuclear magnetic resonance (NMR) spectroscopy is a
powerful analytical technique for high-throughput metabolic
fingerprinting and provides more reliable metabolite structure
(e.g., via 2D NMR) identification than MS (Giraudeau,
2020). However, although NMR offers unambiguous structure
determination of unknown metabolites via 1H- and 13C-NMR,
MS-based methods comprise widely accessed metabolomics
techniques due to higher sensitivity and lower instrumentation
cost (Chatham and Blackband, 2001). Furthermore, NMR is
semi-quantitative whereas MS is quantitative, thus, NMR and
MS are highly complementary techniques. In addition, the
diverse physiochemical properties (e.g., solubility, reactivity,
stability, and polarity) of the metabolome limits our ability
to analyze all metabolites from a biological system with a
single or even a limited-set of analytical techniques (Fiehn,
2002). Therefore, multiple methods are used for comprehensive
metabolome characterization.

Metabolomics Sample Preparation
Metabolites are constantly going under reformation and
transformation in biochemical reactions within a cell and/or
being thermally degraded (and in some cases oxidized) at
ambient conditions (Scalbert et al., 2009). Therefore, quick
and efficient metabolic quenching protocols are required to
accurately quantify metabolic information. Not surprisingly,
researchers tend to develop metabolic quenching methods in
conjunction to and metabolite extraction protocols. Doran
et al. (2017), for example, proposed an acidic-based metabolic
quenching to aqueous-alcohol metabolite extraction. This
protocol yielded low metabolite leakage and high extraction
recovery in Acidithiobacillus ferrooxidans. Complex biological
sample matrices can also suppress metabolite MS detection.
Thus, clean up strategies, such as solid phase extraction (SPE) and
solid phase micro-extraction (SPME) can reduce the complexity
of sample matrices prior to LC-MS and GC-MS analysis, thereby
increasing the quantitative capability of metabolomics methods
(Yang et al., 2011). The last 5 years witnessed the development
of high-throughput 96-well plate SPE (Li et al., 2015) and 96-
well automated SPME (Mousavi et al., 2015) for the simultaneous
extraction of metabolites and lipids from biological samples.

In addition, robotics and microfluidics tools can be applied
to high-throughput synthetic biology applications by automating
cell preparation and metabolite extraction to increase coverage
(Yizhak et al., 2010; Koh et al., 2018; Vavricka et al., 2020).
Automated liquid handler technologies, therefore, are important
for high-throughput sample preparation as they ensure good
quality and reproducibility of sample extraction and processing
for unbiased measurement of metabolic differences (e.g., based
on disease states or interventions stimuli) (Liu et al., 2019).

Metabolomics Data Acquisition
The development of nanoelectrospray-ionization and direct
infusion nanoelectrospray high-resolution MS have led to a
considerable increase in the dynamic range and detection
sensitivity of metabolites from tissues and biofluids in
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human studies (Chekmeneva et al., 2017; Southam et al.,
2017). Generally, nanospray technology is more sensitive
than electrospray, but suffer from low robustness. However,
nanoelectrospray employs low level of nebulization and flow rate
to achieve high sensitivity without compromising robustness
(Guo et al., 2016). Besides, the application of ion mobility and
high resolution MS has improved the identification of isomers,
thereby enabling a more accurate assessment of their biological
roles (Ren et al., 2018; Rathahao-Paris et al., 2019). Moreover,
new developments in orbitrap MS systems have improved
metabolites annotation and coverage in GC- and LC-MS studies
(Simirgiotis et al., 2017; Misra et al., 2018; Manier et al., 2019;
Stettin et al., 2020).

Although GC-MS requires more sample preparation steps
when derivatizing hydrophilic non-volatile metabolites, it is
more robust than LC-MS. Moreover, method development
is easier for GC-MS than for LC-MS. GC-MS also achieves
better identification of untargeted metabolites due to
standardized ionization conditions, which makes it possible
to set up a universal compound identification library/database,
such as NIST. While CE achieves the highest separation
efficiency, CE-MS is the least robust and sensitive of the three
separation techniques.

Real-time metabolomics enables the simultaneous and high-
throughput analysis of microbial metabolites without the need
for time-consuming sample preparation steps (Link et al., 2015;
Boguszewicz et al., 2019; Nguyen et al., 2020). However, the
lack of chromatographic or electrophoretic separation in this
approach reduces the quantitative capability of this technique
(Baidoo and Teixeira Benites, 2019). While MALDI can be used
for high-throughput metabolite screening, MALDI imaging MS
has emerged as a powerful tool for analyzing tissue specimen
in an unprecedented detail. MALDI imaging MS has made
significant contributions to the understanding of the biology of
disease and its perspectives for pathology research and practice,
as well as in pharmaceutical studies (Aichler and Walch, 2015;
Mahajan and Ontaneda, 2017; Schulz et al., 2019).

Metabolomics technologies are regularly applied to metabolic
flux analysis (MFA, i.e., 13C) studies (Baidoo and Teixeira
Benites, 2019). MFA determines the rates of in vivo metabolic
reactions. Thus, enabling an understanding of carbon and energy
flow throughout the metabolic network in a cell. Overall, MFA
accelerates the discovery of novel metabolic pathways and
enzymes for improved synthetic bioproduction (Feng et al., 2010;
Ando andGarcíaMartín, 2019; Babele and Young, 2019; Vavricka
et al., 2020). However, the availability and high cost of stable
isotope compounds can limit MFA capability (Gonzalez and
Pierron, 2015).

Metabolomics Data Analysis
Multivariate data analysis methods, such as principal component
analysis (PCA) and partial least squares (PLS) analysis are
used to analyze large quantities of metabolic profiling data
(i.e., reveal clustering-based on features). In addition, there
is a need for advanced pathway analysis tools to interpret
metabolomics data to solve some of the most challenging
biological paradoxes and reveal optimal conditions for biological

systems. Such techniques enable systems biology researchers
to utilize metabolomics data as a resource that contributes
to an iterative cycle of hypothesis generating and hypothesis
testing phases (Kell, 2004; Vavricka et al., 2020). To address
all of this, more attention is being paid to the area of
big data and machine learning. Thus, the state-of-the-art
understanding of cell metabolism can be improved and further
combined with mechanistic models to automate synthetic
biology and intelligent biomanufacturing (Oyetunde et al., 2018).
To this end, recent advancements in metabolomics tools for
data analysis, storing and sharing have been developed [e.g.,
WebSpecmine (Cardoso et al., 2019), SIRIUS 4 (Dührkop
et al., 2019), MetaboAnalyst 4.0 (Chong et al., 2018), and
SECIM (Kirpich et al., 2018)]. Knowledge of biology (e.g.,
regulation, metabolism, physiology, etc.) is still, however,
necessary for efficient experimental design and accurate data
interpretation in order to understand and accurately characterize
biological systems.

Multi-Omics for Systems Biology
The recent advancement in omics technologies has improved
the analysis efficiency by reducing cost and time, but also
by collecting informative and meaningful multi-omics data.
Thus, facilitating the implementation of multi-omics techniques
in systems biology studies. However, integrating multi-omics
platforms is still an ongoing challenge due to their inherent
data differences (Saito and Matsuda, 2010; Yizhak et al., 2010;
Brunk et al., 2016; Koh et al., 2018; Pinu et al., 2019; Vavricka
et al., 2020). For example, genomics data are qualitative, accurate
and reproducible, while other “omics” data, such as proteomics
and metabolomics are both qualitative and quantitative, not
as reproducible, and noisy (Kuo et al., 2002; MacLean et al.,
2010; Guo et al., 2013; Gross et al., 2018). Further, multi-omics
data is normally pre-treated by various data treatment methods
(e.g., deconvolution, normalization, scaling, and transformation)
and software before being integrated. Multi-omics studies also
require experts in their respective “omics” fields (as well as IT
support) to validatemulti-omics data.While this provides greater
data interpretation accuracy it does, however, complicate data
acquisition and analysis.

Recently, Pinu et al. discussed some recommendations
to overcome the major challenge facing the implementation
of multi-omics techniques in systems biology, which is the
differences among their inherent data. The aim of their
recommendations is tomake researchers aware of the importance
of having a proper experimental design in the first place.
Thus, the appropriate biological samples should be carefully
selected, prepared, and stored before planning any “omics”
study. Afterward, researchers should carefully collect quantitative
multi-omics data and associated meta-data and select better tools
for integration and interpretation of the data. Finally, develop
new resources for the deposition of intact multi-omics data sets
(Pinu et al., 2019). It is also necessary to select or developmethods
that keep the optimum balance between high recovery and low
degradation of extracted biological features.

As scientists are becoming more aware of the importance
of multi-omics analysis, a number of tools, databases, and
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methods are being developed for the aim of integrating multi-
omics data sets. These tools perform advanced statistics (e.g.,
multivariate data analysis) and data illustration (e.g., correlation
maps). Examples of databases used for multi-omics analysis
include ECMDB 2.0 (Sajed et al., 2016), Saccharomyces Genome
Database (MacPherson et al., 2017), YMDB 2.0 (Ramirez-Gaona
et al., 2017), GenBank (Benson et al., 2013), KEGG (Kanehisa
and Subramaniam, 2002), and many others. A recent review
by Subramaniam et al. showed that common multi-omics data
integration and interpretation tools were able to derive new
insights from data, conduct disease subtyping, and obtain
diagnostic biomarker prediction (Subramanian et al., 2020).

Table 1 provides a comprehensive comparison of the major
“omics” technologies. The aim of this comparison is to facilitate
the experimental design of individual “omics” and multi-
omics studies by highlighting the general characteristics of
each technology.

OMICS-GUIDED BIOTECHNOLOGY

“Omics” technologies are becoming increasingly involved
in the development of biotechnological processes for the
production of many substantial products. The use of “omics”
technologies to characterize and understand biological systems
has enabled researchers to select and predict phenotypes (Abid
et al., 2018; Babar et al., 2018), which aids the optimization
of biotechnological processes toward enhanced production
(in quality and quantity) of commercially relevant products
(Figure 2). This section discusses the application of “omics”
in the development of biofuels and bioproducts, agricultural
biotechnology, food biotechnology, and bio-therapeutics.
In addition, this section discusses the involvement of
“omics” technologies in the development of bio-therapeutics
for COVID-19.

Omics-Guided Metabolic Engineering of
E. coli and Yeast Toward the Production of
Primary and Secondary Metabolism-Based
Biofuels and Bioproducts
Microbial production of bio-based chemicals represents an
appealing and more sustainable alternative to traditional
petrochemicals (Opgenorth et al., 2019) and has led to a
growing catalog of natural products and high-value chemicals
(Carbonell et al., 2018). The use of lignocellulosic biomass
offers an economical approach to generate biofuels and
bioproducts (Fatima et al., 2018). However, to achieve consistent
conversion of low-cost input material into value-added products
(Yan and Fong, 2018) at industrial levels requires systematic
engineering workflows.

The Design-Build-Test-Learn (DBTL) cycle is becoming an
increasingly adopted frame-work for metabolic engineering
experiments (Opgenorth et al., 2019). It represents a systematic
and efficient approach to strain development efforts in biofuels
and bio-based products (Opgenorth et al., 2019). Growing
interest in the DBTL cycle for metabolic engineering is largely
due to improving capabilities in synthetic biology (e.g., synthetic

biology tools, DNA synthesis, and genome editing), “omics”
technologies, and Learning methods (Carbonell et al., 2018;
Opgenorth et al., 2019; Robinson et al., 2020). The DBTL cycle
uses synthetic biology to Design and Build genetic constructs
in microbial hosts, after which the information gained from
“omics” technologies, during the Test phase of the cycle, is
passed on to Learning processes (Figure 3). What is Learned
(e.g., COBRA models) is then fed back to new cycles of design
to advance the engineering biology goal (Vavricka et al., 2020) for
further strain development and optimization. Thus, facilitating
the rapid optimization of microbial strains for production of
any chemical compound of interest (Carbonell et al., 2018).
Arguably the weakest link in the DBTL cycle workflow is the
Learning process since mathematical models (of the engineered
bioproduct, pathway, biological system, or biome) are only as
good as their assumptions (Liu andNielsen, 2019). Consequently,
both high quality and large “omics” data sets are necessary
to improve training models, ensuring increased accuracy and
robustness of the Learning process.

Recently, Geiselman et al. utilized the DBTL cycle to engineer
Rhodosporidium toruloides, an oleaginous yeast species with the
ability to grow on lignocellulosic feedstock, to produce the
diterpene ent-kaurene, a potential therapeutic, by the native
mevalonate pathway and the non-native production of the
diterpene precursor geranylgeranyl diphosphate (GGPP). Multi-
omics data, in the first round of the DBTL cycle, suggested
a limited availability of GGPP. In successive DBTL cycles, an
optimal GGPP synthase (GGPPS) was selected, whose expression
was balanced with the addition of kaurene synthase from
Gibberella fujikuroi and a mutant version of farnesyl diphosphate
(FPP) synthase from Gallus gallus that produces GGPP under
strong promoters. The higher ent-kaurene titer achieved was the
first demonstration of the production of a non-native diterpene
from lignocellulosic hydrolysate in Rhodosporidium toruloides
(Geiselman et al., 2020). Additionally, Opgenorth et al. used
the DBTL cycle approach to optimize 1-dodecanol production
in E. coli MG1655 strains by modulating ribosome binding
sites and acyl-ACP/acyl-CoA reductase on a single operon. The
proteomics and metabolomics data collected during the first
DBTL cycle were used to train the Learning algorithms, with
protein profiles being used to suggest the second DBTL cycle,
which led to a 21% increase in 1-dodecanol titer. While this
resulted in a 6-fold increase in what was previously reported, the
study, however, highlighted the need for more accurate protein
expression predictive tools and the importance of genomic
sequencing checks on plasmids in cloning and production strains
to establishing robust microbial cell factories (Opgenorth et al.,
2019).

Adaptive laboratory evolution (ALE) studies the evolutionary
forces and adaptive changes influencing microbial strain
phenotypes, performance, and stability in order to acquire
production strains containing beneficial mutations and positive
traits (Dragosits and Mattanovich, 2013; Sandberg et al., 2019;
Gibson et al., 2020). Microorganisms are cultured in a desired
growth environment for an extended period of time, allowing
natural selection to enrich for mutant strains with improved
fitness (Johansen, 2018; Sandberg et al., 2019). Therefore, the
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TABLE 1 | A comparison of the major “omics” techniques.

Technique Genomics Transcriptomics Proteomics Metabolomics Multi-omics

Study - Genome (the complete set of

genes in a biological system)

- Genome sequence

- Gene functions and

interactions

- Metagenomics

- Transcriptome (the complete set of RNA

transcripts in a biological system)

- Gene transcription (i.e., gene expression)

- Transcriptome sequence

- Metatranscriptomics via 16S rRNA

- Proteome (the complete set of proteins in a

biological system)

- Protein translation (i.e., gene expression)

- Post-translational modification (PTM) state of

proteins

- Metaproteomics

- Metabolome (the complete set of metabolites in

a biological system)

- Metabolites (i.e., substrates, intermediates or

end products of cellular metabolism)

- Pathway flux (i.e., concentration and/or

metabolic flux analysis)

- Integrated information of genes,

transcriptomes, proteins, and metabolites

Advantages - Evaluate genome modification

in engineered vs. naturally

evolved systems

- Evaluate gene function via mRNA

transcripts

- 16S rRNA sequencing for

reconstructing phylogenies

- Assess gene function

- Evaluate protein translation

- Evaluate PTM

- Identify diagnostic biomarkers

- Provides phenotypic information

- Assess gene function

- Identify metabolic pathway bottlenecks

- Identify diagnostic biomarkers (e.g., productivity

biomarkers)

- Evaluate protein function

- Provides phenotypic information

- Identify diagnostic biomarkers with a high

degree of accuracy

- Provides a comprehensive knowledge

and understanding of biological systems

Challenges/

Disadvantages

- Cannot solely provide

complete description of

complex biological systems

(i.e., cannot describe

phenotypes)

- Cannot solely provide complete

description of complex biological systems

(i.e., cannot describe phenotypes)

- Insufficient information due to PTM

- Cross contamination and

cross hybridization

- High instrument cost

- Difficult protein/peptide quantification

- Inaccurate analysis of labile PTM

- Can be expensive as it requires advanced tools

(e.g., mass spectrometry)

- Low abundance proteins are difficult to analyze

- Cross contamination during enzymatic

proteolysis (same peptide may come from

different proteins)

- Difficult to cover whole proteome due to large

number of proteins

- High instrument cost

- The metabolome is very chemically diverse

- Metabolites can have short half-lives due to

instability and/or bio-transformations

- Low abundance metabolites are difficult to

analyze

- Challenging sample preparation (e.g.,

metabolite extraction, and matrix clean up)

- Difficult to identify source of metabolite

production and consumption in

microbial communities

- High data volume and complexity

- This approach can be very expensive

- Requires good/rigorous experimental

design that accounting for all parameters

pertaining to individual and combined

“omics” technologies

- Requires advanced data integration and

analysis tools, and specialists from

each discipline

Relative throughput - Highest (fast DNA sequencing) - High (fast RNA sequencing) - Moderate - Moderate - Depends on selected “omics”

Ideal for - Testing model-driven

hypotheses (targeted

approach)

- Testing model-driven hypotheses

(targeted approach)

- Targeted (i.e., bottom-up)

- Untargeted (i.e., shotgun)

- Identifying pathway bottlenecks

- Targeted analysis

- Untargeted analysis

- Identifying pathway bottlenecks

- Understanding biological systems

- Identify diagnostic biomarkers

- Identify bioproduction bottleneck

Pathway analysis - No - No - Yes (e.g., via protein abundance/quantity and

PTM)

- Yes (e.g., via the assessment of protein function

and metabolite production)

- Yes (integrated proteomics and

metabolomics)

Relative coverage - Very comprehensive - Comprehensive - Good - Moderate - Depend on selected “omics” techniques

Information gained - Genotype - Genotype - Phenotype - Phenotype - Connects genotype to phenotype

Type of data - Qualitative - Qualitative and quantitative - Qualitative and quantitative - Qualitative and quantitative - Qualitative and quantitative

Relative ease of

sample preparation

- Easiest (chemically

homogeneous, and stable,

thus, easy sample preparation,

storage and analysis)

- Easy to moderate - Moderate (proteins are chemically

heterogeneous, and moderately stable, thus,

challenging sample preparation, and

moderately hard to store)

- Difficult (metabolites are physio-chemically

heterogeneous, and unstable (e.g., thermally

labile), thus, challenging sample preparation

(e.g., metabolite extraction, and matrix clean

up), and storage)

- Most difficult

Relative ease of

data acquisition

- Easiest - Easy - Moderate to difficult - Difficult (no single analytical technique, nor

multiple analytical techniques (e.g., GC-MS,

LC-MS, CE-MS, and NMR) can cover the

whole metabolome)

- Depends on selected “omics” techniques

Key acquisition

tools

- Next generation sequencing

(NGS)

- PCR

- RFLP-PCR

- RNA sequencing (RNA-seq) - LC-MS (e.g., orbitrap, and TOF)

- MALDI

- LC-MS

- GC-MS

- CE-MS

- NMR

- Combination of “omics” acquisition tools

Relative ease of

data analysis

- Easiest (fast and accurate data

analysis)

- Easy - Difficult (protein identification and quantification

are challenging steps)

- Difficult (data need pre-treatment (e.g.,

normalization, scaling, and transformation)

before analysis)

- Most difficult (integration of various

“omics” data is challenging)

Key data analysis

tools

- EBI

- GEO

- ArrayExpress

- GenBank

- DESeq2

- DEXseq

- Mascot, Sequest

- Tandem

- Skyline

- Uni-prot, Swiss-prot

- R and Matlab based tools

- SIMCA

- WebSpecimine, SIRIUS 4

- MetaboAnalyst 4.0, SECIM

- COLMAR, MzMine

- ECMDB 2.0

- YMDB 2.0

- GenBank

Overall relative ease

of analysis

- Easiest - Easy - Moderate to difficult - Difficult - Most difficult

Reproducibility - High - Good - Moderate - Low to moderate - Depend on selected “omics” techniques
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FIGURE 2 | “Omics” approaches facilitate the development of new biotechnologies.

FIGURE 3 | The Design-Build-Test-Learn (DBTL) cycle of metabolic engineering.

throughput of ALE will depend on the experimental design.
Furthermore, the task of identifying all beneficial mutations of an
ALE experiment remains a major challenge for the field (Phaneuf

et al., 2020). ALE is often used to optimize microbial growth
rate, increase strain tolerance, improve stress regulation and
adaptation, improve substrate utilization and uptake, increase
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product titer/rate/yield, as well as for biological discovery via
systems biology, evolutionary modeling, and genome dynamics
(Bergh, 2018; Dourou et al., 2018; Sun et al., 2018; Wang
et al., 2018; Yan and Fong, 2018; Sandberg et al., 2019; Phaneuf
et al., 2020). ALE experiments allow researchers to learn how
to improve multiple strain properties simultaneously (Sandberg
et al., 2019).

ALE has become a valuable tool in metabolic engineering
for strain development and optimization by reliably facilitating
microbial fitness improvements, via both predictable and non-
intuitive mechanisms (Sandberg et al., 2019). ALE can be
employed in the DBTL cycle in the Build step to recover strains
with fitness issues or to optimize strains (Sandberg et al., 2019).
Furthermore, ALE can be used in the Design step to enrich for
mutant strains with improved fitness and can also replace both
Design and Build steps in situations where a desired phenotype
is tied to selection without the need for engineering (Sandberg
et al., 2019; Lee and Kim, 2020). While ALE can precede the
Test and Learn steps in the DBTL cycle, the information gained
from these steps can also be utilized by ALE to produce strains
with better properties. In this way, ALE may benefit from using
“omics” technologies during the Test phase of the DBTL cycle
(Horinouchi et al., 2018; Long and Antoniewicz, 2018; Walker
et al., 2019; Wu et al., 2020).

In most microbial metabolic engineering studies, however, the
Learn phase of the DBTL cycle is often addressed by hypothesis-
driven user intuition that is often based on empirical evidence
(Liu and Nielsen, 2019). As with the DBTL cycle, genomic
sequence information in the traditional approach is invariably
utilized in the initial stages of a study. However, genomics
has come a long way in the last decade. Bar-seq can now be
used to study population dynamics of Saccharomyces cerevisiae
(S. cerevisiae) deletion libraries during bioreactor cultivation,
enabling the identification of factors that impact the diversity
of a mutant pool (Wehrs et al., 2020). Whereas, a sort-seq-
guided engineering approach can be used to identify key mutated
promotors for tuning expression levels, thereby facilitating the
dynamic regulation of microbial growth as well as dynamic
pathway regulation (Rohlhill et al., 2017). While transcriptomics
yields gene expression data (i.e., activity of target genes,
gene sequence data, and gene expression levels), proteomics
and metabolomics approaches are increasingly being used for
pathway analysis studies as they can measure protein translation
and activity, respectively (Volke et al., 2019). Proteomics-guided
approaches have been used to engineer polyketide biosynthesis
platforms for aromatic compounds in yeast (Jakočiunas et al.,
2020) and in vitro production of adipic acid (Hagen et al., 2016).
In addition to this, metabolomics enables the assessment of
pathway flux, carbon source diversion, and cofactor imbalance,
which all contribute to the identification of pathway bottlenecks
(Nielsen and Jewett, 2007; Zhao et al., 2020, Volke et al., 2019).
Luo et al. used a metabolomics guided approach to characterize
cannabinoid production in engineered S. cerevisiae and identified
cannabinoid analogs produced by several promiscuous pathway
genes (Luo et al., 2019). Furthermore, metabolomics analysis
aided the design (Kang et al., 2016) and optimization (Kang et al.,
2019) of a novel isopentenyl diphosphate-bypass mevalonate

pathway in E. coli for C5 alcohol production. With a combined
genetic, biochemical and fermentation approach, Uranukul et al.
utilized the native glycolytic pathway in S. cerevisiae to produce
monoethylene glycol, an important commodity chemical , and
upon further metabolic engineering and process optimization
were able to achieve 4.0 g/L (Uranukul et al., 2019). The
integration of proteomics and metabolomics promises accurate
assessment of pathway flux due to proper accounting of protein
abundance. When pathway data is obtained in addition to
transcriptomics data and/or large scale targeted/untargeted
proteomics or metabolomics data, the impact of the engineered
pathway on cellular metabolism and physiology can be
determined. Exploring the interplay between heterologously
expressed pathways and endogenous metabolism could reveal
factors affecting strain variation, identify perturbed metabolic
nodes, and produce new engineering targets (Chen, 2016).

The Application of “Omics” Technologies
to Agricultural and Food Biotechnology
Recent advances in agricultural biotechnology have led to
new plant varieties being engineered by recombinant DNA
technology and grown by farmers to respond to market
demands and environmental challenges (https://www.usda.gov/
topics/biotechnology). “Omics” technologies are being applied
to agricultural biotechnology to enhance desirable phenotypic
traits (e.g., color, taste, drought tolerance, pesticide resistance,
etc.) (Aliferis and Chrysayi-tokousbalides, 2011; Van Emon,
2016). While “omics” plays a major role in improving crop
quality, consistency, and productivity, they have also led to
the development of food crops with enhanced nutritional
composition (Van Emon, 2019) (Figure 2). Moreover, omics-
driven systems biology provides an understanding of the
interactions between the “omes” and mechanisms involved and
provide links between genes and traits (Van Emon, 2016).

As arable land is being farmed more heavily, soil is
becoming more susceptible to loss of structure, organic matter,
minerals, and erosion. Thus, efforts are being made, via
agricultural biotechnology, to maintain a sustainable supply of
nutrients essential to the growth of crop plants. An integral
part of this approach is the use of biofertilizers, which are
the preparations containing specialized living organisms (i.e.,
microbial inoculants) that can fix, mobilize, solubilize, or
decompose nutrient sources, and are applied through seed
or soil to enhance nutrient uptake by plants (Mohanram
and Kumar, 2019). The sustainable enhancement in food
production from less available arable land relies on the balanced
utilization of inorganic minerals, organic matter, and biofertilizer
sources of plant nutrients to augment and maintain soil
fertility and productivity. Widespread adoption of this approach,
however, has been hindered by varying responses of microbial
inoculants across fields and crops (Mohanram and Kumar,
2019). As a result, there is an urgent need to understand
the mechanisms underlying the interdependencies between soil
microbial communities and the host plant and their impact
on crop productivity. These interactions are played out in
the rhizosphere, which encompasses the region of soil that is

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 February 2021 | Volume 9 | Article 613307

https://www.usda.gov/topics/biotechnology
https://www.usda.gov/topics/biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Amer and Baidoo Omics-Driven Biotechnology for Industrial Applications

directly influenced by root secretions and associated microbial
communities (Zhalnina et al., 2018). In a recent comparative
genomics and exo-metabolomics study, specific rhizosphere
bacteria were shown to have a natural preference for certain
aromatic organic acids exuded by plants, suggesting that plant
exudation traits and microbial substrate uptake traits interact to
yield the patterns of microbial community assembly (Zhalnina
et al., 2018). Furthermore, the application of genomics and
transcriptomics to the study of luxury phosphate uptake (i.e., the
ability of microalgae to take up more phosphorus than necessary
for immediate growth) revealed a range of Pi transporters in
various microalgae and their expression patterns in relation
to the availability of P (Yang et al., 2018; Mohanram and
Kumar, 2019; Solovchenko et al., 2019). At present, “omics”
technologies are being used to understand complex rhizospheric
intercommunications, which is crucial to the development and
choice of biofertilizer and, by extension, the construction of
rhizopheres that promote stable plant growth, better crop
productivity and yield (Mohanram and Kumar, 2019).

In the related field of food biotechnology, transcriptomics
and metabolomics analysis showed that Bacillus pumilus LZP02
promote the growth of rice roots by enhancing carbohydrate
metabolism and phenylpropanoid biosynthesis (Liu et al., 2020).
Further, the application of “omics” to starch bioengineering is
increasing our understanding of the specific contributions of
the most important enzymes for starch biosynthesis. This has
enhanced our ability to predict how starch-related phenotypes
can be modified, thus ensuring further progress in the research
field of rice starch biotechnology (Nakamura, 2018). “Omics”
are solving issues surrounding food quality and traceability,
to safeguard the origin of food, and discover biomarkers of
potential food safety problems (Ferranti, 2018). In the wine
industry, the wine microbiome associated with the fermentation
of must has a great influence on factors transforming grapes to
wine, including flavor and aroma. “Omics” characterization of
the complex interactions between these microbes, the substrate
and environment, is key to shaping wine production (Sirén
et al., 2019). Finally, combining “omics” technologies with
genome editing of food microbes can be used to generate
enhanced probiotic strains, develop novel bio-therapeutics and
alter microbial community structure in food matrices (Pan and
Barrangou, 2020).

The Use of “Omics” Technologies in the
Development of Therapeutics for COVID-19
The coronavirus disease 2019 (COVID-19) characterized by the
Severe acute respiratory syndrome coronavirus 2 [i.e., SARS-
CoV-2, which binds to the ACE2 receptor in the lung and other
organs (Ahmed et al., 2020)] has caused a global pandemic
and slowed much of the world’s economy. To date (December
5th, 2020), there are more than 64 million confirmed cases and
1.5 million confirmed deaths world-wide (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019). Thus, there is a
pressing need for an effective countermeasure to mitigate the
spread of the pandemic (van Doremalen et al., 2020).

Consequently, efforts are underway to fast-track the
development and production of safe and effective vaccines
against SARS-CoV-2. Prior knowledge of SARS and Middle East
respiratory syndrome (MERS) has enabled scientists to target
the spike protein as the viral antigen (via the ACE2 receptor).
Moreover, the release of the SARS-CoV-2 genome sequence in
January 2020 made it possible to expedite the development of
next generation mRNA [e.g., mRNA-1273 from NIH/Moderna
(Jackson et al., 2020) and BNT162 from Pfizer/BioNTech
(Mulligan et al., 2020)] and DNA [e.g., ChAdOx1 nCoV-19 from
University of Oxford/Vaccitech/AstraZeneca (Folegatti et al.,
2020; van Doremalen et al., 2020)] vaccine platforms that encode
for the antigen. Once injected into a host, the former (which is
encased in lipid nano-particles) remains in the cytoplasm while
the latter (which is encased in an attenuated adenovirus vector)
enters its nucleus. The host cell translates these genetic materials
into the spike protein, which decorates the surface of the cell and
elicits an adaptive immune response mediated by T cells (e.g.,
CD4+ and CD8+) and B cells (i.e., antibodies). These vaccines
were reported to be efficacious against SARS-CoV-2 in recent
clinical trials, which underscores the importance of genomics to
this new era of vaccine development.

Gordon et al. produced a SARS-CoV-2 protein interaction
map via a proteomics-based approach to reveal targets for drug
repurposing. They cloned, affinity tagged and expressed 26 of
the 29 SARS-CoV-2 proteins in human cells and identified the
associated proteins via proteomics analysis. A total of 66 human
proteins or host factors were identified as possible drug targets
of 69 compounds, from which two sets of these pharmacological
agents showed antiviral activity. This work highlights the
potential of host-factor-targeting agents, when acting alone or
in combination with drugs that target viral enzymes, to be
used as therapeutic treatments for COVID-19 (Gordon et al.,
2020). Furthermore, computational immunoproteomics studies
have the potential to guide lab-based investigations to evaluate
specificity of diagnostic products, to forecast on potential adverse
effects of vaccines and to reduce the use of animal models
(Tilocca et al., 2020).

Recently, metabolomics was able to distinguish COVID-19
patients from healthy controls via the analysis of 10 plasma
metabolites. Additionally, lipidomics data from this study
suggests monosialodihexosyl ganglioside enriched exosomes
could be involved in pathological processes related to COVID-
19 pathogenesis (Song et al., 2020). Recent proteomics and
metabolomics studies in COVID-19 patient sera suggest that
SARS-CoV-2 infection causes metabolic dysregulation of
macrophage and lipid metabolism, platelet degranulation,
complement system pathways, and massive metabolic
suppression (Shen et al., 2020); with the plasma metabolomic
signatures appearing to be similar to those described for sepsis
syndrome (Langley et al., 2013, 2014; Migaud et al., 2020).
Furthermore, transcriptomics results indicate higher expression
of genes related to oxidative phosphorylation both in peripheral
mononuclear leukocytes and bronchoalveolar lavage fluid,
suggesting a critical role for mitochondrial activity during
SARS-CoV-2 infection (Gardinassi et al., 2020). Understanding
the clinical presentation of COVID-19 as well as metabolomic,
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proteomic, and genetic profiles could lead to the discovery
of diagnostic, prognostic and predictive biomarkers, ensuring
the development of more effective medical therapy (Ahmed
et al., 2020). Moreover, identifying metabolic biomarkers of
severe vs. mild disease states in the lung during respiratory
infections could lead to the development of novel therapeutics
that modulate symptom and disease severity (Bernatchez and
McCall, 2020; Shen et al., 2020). It is, therefore, critical to develop
new approaches to early assess which cases will likely become
clinically severe (Shen et al., 2020).

TRENDS IN “OMICS” RELATED
BIOTECHNOLOGY RESEARCH

The aim of this section is to present the trends in “omics”
techniques utilization in biotechnology research (i.e., food,
natural products, agriculture, pharmaceutical, materials, and
bioenergy) during the course of last two decades. Such trends,
which are based on the number of annual publications obtained
from a search in Web of Science (www.webofknowledge.com)
topics, are used to illustrate the progression of “omics”
technologies in biotechnology. In Web of Science, the topics
searched are as follows: title, abstract, author keywords, and
keywords plus. It is worth noting that the trends in this section
showing a reduction in the number of publications for the current
year (i.e., 2020), which is expected to be a result of the COVID-
19 related shut-down that has affected scientific labs worldwide
and the mid-2020 collection of the data. Furthermore, it is

also important to note that search entries, such as food, and
bioenergy can generate publications based on the contributions
of both closely and, to a lesser extent, loosely related topics.
Additionally, it is worth noting that not all “omics” research
data (e.g., industrial-based studies) is being published and made
available to the public. Therefore, the trends data (Figures 4, 5)
represents a qualitative rather than a quantitative measure of
“omics” utilization.

Omics-based technologies serve as the connective tissue that
links biotechnology to these fields of research. For example,
the advancement in genomics technologies have improved
biotechnology platforms, which have led to developments in
pharmaceutical, bioenergy, food, materials, and agriculture
research (Oksman-Caldentey and Saito, 2005; Crommelin et al.,
2013; Misra et al., 2013; de Pablo et al., 2019; Rexroad et al.,
2019). Figure 4 shows a steady growth in the number of genomics
publications in biotechnology research, which might be due to
the advancement in DNA sequencing, resulting in reduced cost
and increased throughput (Pagani et al., 2012). Transcriptomics
also appears to show a slight increase in the application of
biotechnology-based research during the last decade (Figure 4).

Interestingly, while the utilization of proteomics in
biotechnology seems to be significantly increased in the period
of 2004–2006, it has generally plateaued during the following
years (Figure 4). However, Figure 4 suggests a growing trend
in the application of metabolomics studies to biotechnology-
based research during the last decade. Additionally, metabolic
flux analysis has also shown a slight growing trend in the
last decade.

FIGURE 4 | Number of annual publications that utilize “omics” technologies for biotechnology during the period of 2000–2020. Search criteria: the individual “omics”

technology was selected. The search was conducted using the Web of Science platform.
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FIGURE 5 | Number of annual publications that utilize “omics” technologies for biotechnology research areas during the period of 2000–2020. Search criteria: the

individual “omics” technology and the individual biotechnology research area were selected. The search was conducted using the Web of Science platform.

The performed search also suggests an increased utilization
of genomics, proteomics and metabolomics during the last
two decades in the following research fields: food, materials,
and natural products (Figure 5). This is not surprising as
there is a growing need for more phenotypic information.
Consequently, scientists are using these “omics” techniques to
facilitate their research. The improvements in proteomics and
metabolomics analytical capabilities may also have contributed
to the potential growth in their utilization over the last decade
for those fields. Genomics has shown an upward trend in the
number of publications for agriculture over the last 20 years
(Figure 5).

The utilization of metabolic flux analysis in all research
areas has shown a prospective slight growth trend during
the last decade (Figure 5). The number of metabolic
flux analysis publications, however, is relatively low in
the perspective areas for similar reasons to that described
for biotechnology.

CONCLUSIONS

The DBTL cycle is becoming an increasingly adopted framework
in metabolic engineering experiments as it provides a systematic
and efficient approach to strain development. However, the
DBTL cycle is limited by the Learning process since it requires
high quality and large “omics” data sets to increase the
accuracy and robustness of Learn methods. The DBTL cycle
relies heavily on “omics” technologies during the testing phase
of the cycle, and can be integrated into ALE experiments.
“Omics” technologies have played major roles in the metabolic
engineering of biofuels, bioproducts, and crop development.
Proteomics and metabolomics are routinely applied to the
analysis of engineered biosynthetic pathways in microbial
hosts. Genomics sequencing information appears to be a key
component in the development of next generation mRNA and
DNA vaccines against virus’s such as SARS-CoV-2. Whereas,
transcriptomics, proteomics, and metabolomics analyses are
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being used to guide the development of therapeutic drugs for
COVID-19. In the last 20 years, genomics has shown a steady
growth in the number of biotechnology publications, however,
the emergence of transcriptomics, proteomics, andmetabolomics
in this field of research is a testament to the development of
robust “omics” technologies and methods.
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