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Abstract

Linear and Nonlinear Electromagnetic Responses in Topological Semimetals

by

Shudan Zhong

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

The topological consequences of time reversal symmetry breaking in two dimensional
electronic systems have been a focus of interest since the discovery of the quantum Hall
effects. Similarly interesting phenomena arise from breaking inversion symmetry in three
dimensional systems. For example, in Dirac and Weyl semimetals the inversion symmetry
breaking allows for non-trivial topological states that contain symmetry-protected pairs of
chiral gapless fermions. This thesis presents our work on the linear and nonlinear electro-
magnetic responses in topological semimetals using both a semiclassical Boltzmann equation
approach and a full quantum mechanical approach. In the linear response, we find a “gy-
rotropic magnetic effect” (GME) where the current density jB in a clean metal is induced
by a slowly-varying magnetic field. It is shown that the experimental implications and mi-
croscopic origin of GME are both very different from the chiral magnetic effect (CME). We
develop a systematic way to study general nonlinear electromagnetic responses in the low-
frequency limit using a Floquet approach and we use it to study the circular photogalvanic
effect (CPGE) and second-harmonic generation (SHG). Moreover, we derive a semiclassical
formula for magnetoresistance in the weak field regime, which includes both the Berry cur-
vature and the orbital magnetic moment. Our semiclassical result may explain the recent
experimental observations on topological semimetals. In the end, we present our work on
the Hall conductivity of insulators in a static inhomogeneous electric field and we discuss its
relation to Hall viscosity.
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Chapter 1

Introduction

1.1 Background and motivation

According to the electronic properties, solid materials are divided into insulators, semicon-
ductors, semimetals and metals (conductors). During the past decade, topology has become
an important role in defining new phases of the matter and a new phase of matter called topo-
logical insulators has started to spurring researchers’ interest. Different from conventional
insulators, topological insulators have gapless surface states and quantized electronic re-
sponse functions. These properties are protected by topology, meaning that under a smooth
deformation (with the insulating gap open) of the Hamiltonian without breaking certain
symmetries one can not turn a topological class of insulators into another class, for example,
turning the topological insulators into conventional trivial insulators.

Similarly interesting phenomena have been found beyond insulating phases recently. An
example is the Weyl semimetal in three dimensional space. In the band structure of a Weyl
semimetal the conduction bands and valence bands intersect at isolated points. Those gap-
less points named as Weyl nodes are topologically protected in the sense that one can not
transform a Weyl semimetal into an insulator by small perturbations when charge conserva-
tion and transnational invariance is preserved. Weyl semimetals also have protected surface
states as in topological insulators.

The protection can be seen more clearly if one looks close to the Hamiltonian near a
Weyl node at momentum k∗:

H =
∑
ij

~σibij(kj − k∗j ) (1.1)

where σi are Pauli matrices in the basis of the two bands involved and bij are some real
parameters. As we can see, all Pauli matrices have been used up in this Hamiltonian, so one
can not gap out the spectrum by adding anticommuting matrices. Using this Hamiltonian
one can also define the chirality of the Weyl node by χ = sign det bij. The chirality is the
magnetic charge of a Weyl node: if one integrate the Berry curvature (It is like the magnetic
field and we will talk more about it in the next chapter. ) over a closed surface enclosing
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the Weyl node the value will be 2πχ.
Recently, the condensed matter community has been actively studying the unusual trans-

port and optical phenomena in Weyl semimetals. One important example is the chiral mag-
netic effect (CME) where Weyl nodes with different chemical potentials and a static magnetic
field give rise to an electric current parallel to the magnetic field. Another example is the
negative magnetoresistance where an applied static magnetic field leads to a large magne-
toresistance with unusual anisotropy. However, these phenomena in Weyl semimetals has
not been fully understood. In this thesis, we will try addressing the following concerns: (i)
Recently, there is a claim stating that, in Weyl semimetals, a static magnetic field by itself is
sufficient to drive a dissipationless current. Such an effect has been characterized as a type
of CME. However, even the existence of this type of CME is questionable since it violates
the Bloch theorem, which forbids the macroscopic currents in a bulk system in equilibrium.
While this has been actively debated, no thorough study has been carried out. (ii) Recent re-
search on the negative magnetoresistance in weak magnetic field using semiclassical approach
has considered only chiral anomaly (or Berry curvature). However, in a complete analysis,
another important component—orbital magnetic moment [67]—is indispensable. (iii) The
semiclassical approach (SCA) has been used to study the nonlinear optical responses in met-
als. The SCA conserves the properly defined volume in phase space and gives an intuitive
approach to many observable properties of metals. However, the SCA can make erroneous
predictions if used on nonlinear optical responses in metals. A full quantum theory approach
is necessary to confirm the validity of the results derived by the SCA.

In addition to studying the topological properties of the topological phases, an active area
of the recent research has been studying the geometrical properties of the topological phase,
such as the Hall viscosity. One question remained for the Hall viscosity is how to measure
it in experiment. Recent work[66, 15] shows that the Hall conductivity in an inhomogenous
electric field receives a contribution from the Hall viscosity. Therefore, the Hall viscosity
can be determined by measuring the the Hall conductivity. At the end of this thesis we will
present our work on the study of Hall conductivity in a inhomogenous electric field.

1.2 Overview

In this section we give an overview of the following chapters in this thesis.
Chapter 2 gives a brief review of the Berry phase, Berry curvature, quantum geometric

tensor, and quantum metric tensor. We give a short introduction of the semiclassical theory,
a tool we will use in the following chapters. At the end of this chapter we give an example
of using semiclassical equations to solve a transport problem in metals.

In Chapter 3, we study the linear electromagnetic response in metals using semiclassical
approach and a full quantum derivation. We find a “gyrotropic magnetic effect” (GME)
where the current density jB in a clean metal is induced by a slowly-varying magnetic field.
We make a distinction between the chiral magnetic effect (CME) and GME. and by doing
this we confirm that there can not be a dissipationless current in equilibrium. In the end



CHAPTER 1. INTRODUCTION 3

we work on a simple two band model of the Weyl semimetals and discuss the realization
of GME as the low frequency limit of natural optical activity (NOA) on mirror-free Weyl
semimetals.

In the supplemental material, we give the technical details of using Kubo formula to
calculate the linear-response of natural gyrotropy in metals at low frequencies. We also give
the derivation of a formula for the equilibrium optical activity coefficient of an isotropic
Weyl semimetal and the derivation of a formula for the nonequilibrium optical gyrotropy
of a Weyl semimetal due to the chiral anomaly. In addition to the technical details, we
discuss the reciprocity relation for a metal. The Onsager reciprocity principle requires that
in T -invariant materials there is no optical rotation in reflection (Kerr effect). We show how
this principle is reflected in our semiclassical results.

In Chapter 4, we study the angle-dependent magnetoresistance in topological semimet-
als using a semiclassical approach. We apply our semiclassical result on the Hamiltonian
for a Weyl semimetal and show that our result captures the directional anisotropy of lin-
ear conductivity under a magnetic field, which may explain the low-field regime of recent
experiments. In this chapter we also study the nonlinear optical responses using a Floquet
approach. Our approach reproduces the semiclassical formula for the circular photogalvanic
effect (CPGE) and provides a systematic way to study general nonlinear electromagnetic
responses in the low-frequency limit.

Chapter 5 studies the Hall conductivity of insulators in an inhomogeneous electric field
to the second order of the wave number q using both the Kubo formula and the semiclassical
approach. We show that in a special case when the system have only two bands and when the
bands are all flat the q2 term of the Hall conductivity is fully determined by an interplay of
the Berry curvature and the quantum metric tensor. In the end we do numerical studies on
the Chern insulators and discuss the relation between Hall conductivity and Hall viscosity.

1.3 List of publications

We list the publications for this thesis:

1. Semiclassical theory of nonlinear magneto-optical responses with applications to topo-
logical Dirac/Weyl semimetals, Takahiro Morimoto, Shudan Zhong, Joseph Orenstein
and Joel E. Moore, Phys. Rev. B, 94, 245121 (2016).

2. Gyrotropic magnetic effect and the orbital moment on the Fermi surface,Shudan Zhong,
Joel E. Moore, and Ivo Souza, Physical Review Letter, 116, 077201 (2016).

3. Optical Gyrotropy from Axion Electrodynamics in Momentum Space, Shudan Zhong,
Joseph Orenstein and Joel E. Moore, Physical Review Letter, 115, 117403 (2015).
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Chapter 2

Preliminaries

In this chapter, We will briefly review some basic techniques and concepts used in this thesis.

2.1 Berry phase

In 1984, Berry brings a geometrical phase factor to physicists’ attention in his famous pa-
per [11]. In the paper, the geometrical phase factor is shown exists in the adiabatic evolution
of a quantum system in an eigenstate when the path of the evolution makes up a circuit in
the Hamiltonian’s parameter space. The phase is also called Berry phase and it origins from
the nontrivial topological property of the parameter space. One example is the Aharonov-
Bohm(AB) effect where the Berry phase is given by a line integral of the vector potential A
along a closed loop,

φ =
q

~

∮
C

A(R) · dR . (2.1)

This phase is gauge invariant and hence physical. One can check it by turning the line
integral into a surface integral of the magnetic field B. Indeed, Berry phase can generally
be written as an integral of a field on the parameter space. The field is the Berry curvature.
Berry curvature is also gauge invariant and it is the antisymmetric part of a gauge invariant
quantum geometric tensor [12]

Tij = 〈∂in|(1− |n〉〈n|)|∂jn〉 (2.2)

where |n〉 denotes an eigenstate. The symmetric part of this tensor is called the quantum
metric tensor. It provides a natural means to measure the distances between states.
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2.2 Semiclassical theory

2.2.1 Bloch waves

In a crystal, atoms form a lattice which has discrete translational symmetry. The electrons
in a lattice will feel a periodic potential

V (r + R) = V (r) (2.3)

where R is a lattice vector. With the assumption that the electrons we consider are free,
meaning that they do not interact with each other (the interactions between electrons is
assumed to be represented by an effective one electron potential that is included in V ),
the eigenstates of the Hamiltonian for this system will be Bloch waves according to Bloch’s
theorem

HΨnk(r) = εnkΨnk(r), Ψnk(r) = eik·runk(r) . (2.4)

The unk(r) is periodic
unk(r + R) = unk(r) . (2.5)

One can check that Ψnk is also the eigenstate of the translational operator T , which can be
inferred from group theory

TΨnk(r + R) = Ψnk(r + R) = eik·(r+R)unk(r + R) = eik·RΨnk(r) . (2.6)

As a consequence, the k is called the crystal momentum.
The set of all vectors G that satisfied

G ·R = 2πN, N ∈ Z (2.7)

gives the reciprocal lattice. It can be shown that k is periodic: k + G is the same as k.
Therefore, we usually limit the values of k to be in any primitive unit cell of the reciprocal
lattice. There is one specific choice of the primitive unit cell called the Brillouin zone.

2.2.2 Semiclassical equations

In semiclassical theory, an electron is modeled as a wave packet. The wave packet is con-
structed from Bloch waves

|Ψ(rc,kc)〉 =

∫
[dk] a(k)Ψnk(r, t) . (2.8)

It is centered at rc in real space and kc in momentum space. a(k) is arbitrary function of k
as long as the spread of the wave packet in k space is narrow compared with the Brillouin
zone.
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The semiclassical equations of motion for the centers rc and kc of an electron wave packet
are [67]

ṙ =
1

~
∇kεk − k̇ ×Ω, (2.9)

k̇ = −eE − eṙ ×B. (2.10)

where

Ω = −Im[〈∇kuk| × |∇kuk〉] (2.11)

is the Berry curvature and the electron charge is (−e). We omit the subscript c for the wave
packet centers and n for the Bloch waves.

From the symmetry of these equations between position and momentum, it is clear that
Ω(k) can be viewed as an effective magnetic field in momentum space and the magnetic field
is the Berry curvature in real space.

One can see this symmetry more clearly with the Berry connection defined as

A(k) = i〈uk|∇k|uk〉 . (2.12)

The Berry connection can be viewed as the vector potential A in momentum space. The
Berry curvature will be given by

Ω(k) = ∇k ×A(k) . (2.13)

We know that in real space the Schrodinger equation

i∂tΨ(r, t) = H(r)Ψ(r, t) = −∇
2

2m
Ψ(r, t) + V (r)Ψ(r, t) (2.14)

is invariant under a global phase shift

Ψ(r, t)→ eiφΨ(r, t) (2.15)

since φ is a constant. In addition, the Schrodinger equation is also invariant under local
phase shift if it is for a charge particle. If we do a local phase shift to the wave function of
a charge particle

Ψ(r, t)→ eiφ(r,t)Ψ(r, t) (2.16)

the Schrodinger equation will be invariant if we also do a gauge transformation of the po-
tential ϕ and A

ϕ′ = ϕ− 1

q
∂tφ(r, t)

A′ = A +
1

q
∇φ(r, t) . (2.17)
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One can check that

(i∂t − qϕ′)eiφ(r,t)Ψ(r, t) = eiφ(r,t)(i∂t − qϕ′ − ∂tφ(r, t))Ψ(r, t) (2.18)

[
1

2m
(−i∇− qA′)2 + V ]eiφ(r,t)Ψ(r, t) = eiφ(r,t)[

1

2m
(−i∇− qA′ +∇φ(r, t))2 + V ]Ψ(r, t) .

(2.19)

With Eq. (2.17) we have

(i∂t − qϕ′)eiφ(r,t)Ψ(r, t) = [
1

2m
(−i∇− qA′)2 + V ]eiφ(r,t)Ψ(r, t) (2.20)

indicating that the Schrodinger equation is invariant. Using Eq. (2.12) a similar transforma-
tion can be done for a Bloch wave

|uk〉 → eiφ(k)|uk〉
A → A−∇kφ(k) . (2.21)

The minus sign can be removed by redefining A but we would like to keep the current
definition for it is used in the following chapters. It can be shown that the Bloch wave with
a local phase shift is still the solution of the Hamiltonian. The symmetry between position
and momentum in semiclassical equations can then be seen more clearly from

ṙ = ∇kεk − k̇× (∇k ×A)

k̇ = e∇rφ− eṙ× (∇r ×A) . (2.22)

There are two more important things one should pay attention to when using the semi-
classical equations. One is that the energy εk in Eq. (2.10) has a contribution from the
orbital magnetic moment [67],

εk = ε0k −mk ·B (2.23)

where Hk|uk〉 = ε0k|uk〉 with B = 0 and the orbital magnetic moment is given by

mk = −e
2

Im[〈∇kuk| × (Hk − ε0k)|∇kuk〉]. (2.24)

The orbital magnetic moment represents the self-rotation of a wave packet.
The other thing is that one should use a modified phase-space density which is induced

by an external magnetic field [77]

D = 1 + eB ·Ω (2.25)

in order to have the phase space volume conserved.
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2.2.3 Example: the response to a static magnetic field

The semiclassical equations with the Boltzmann equation have been successfully used to
understand various transport phenomena of solids, such as Haas-van Alphen oscillation,
anomalous Hall effect, etc. In this section, we will give an example of using semiclassical
equations to study the response to a static magnetic field.

In the presence of a static magnetic field, the electrons are in an equilibrium state with
the distribution function f(εk). We solve ṙ using Eq. (2.10):

ṙ =
1

D
[∇kεk + e(∇kεk ·Ω)B] . (2.26)

Note that εk = ε0k −mk ·B. The current density j is given by

j = −e
∫

[dk]Df(εk)ṙ . (2.27)

Focusing on the terms linear in B we will have

j = −e
∫

[dk]f(εk)[∇kεk + e(∇kεk ·Ω)B] (2.28)

= −e
∫

[dk]f(ε0)v0
k + f(ε0)∇k(−mk ·B) +

∂f(ε0)

∂ε0
(−m ·B)vk + f(ε0)e(vk ·Ω)B (2.29)

where vk = ∂kε
0. The first term gives zero. The second and third term cancel each other

after we do integral by parts. Finally we have

j = −e2

∫
[dk]f(ε0k)(vk ·Ω)B (2.30)

which is zero [76] for the ground state f(ε0k) or any distribution function depending only on
energy. To see that integral over occupied states of Ω · vk vanishes even in the presence of
monopole singularities in the Berry curvature, we write, v(k) = n̂dε/dk⊥, where n̂ is normal
to the surface of constant energy in momentum space and dk⊥ is the separation between
two such surfaces whose energy differs by dε. With this relation, the integral over occupied
states can be written, ∫

[dk]f(ε0)vk ·Ω =

∫ µ

εmin

dε

∫
ε

dSΩ · n̂ . (2.31)

The integral is clearly zero in the absence of singularities in Ω, as in this case ∇ ·Ω = 0 for
all k. However, the integral still is equal to zero [40] in the presence of singularities such as
Weyl nodes, in which case the integral can be written,∫

[dk]f(ε0)vk ·Ω = (µ− εmin)
∑
n

qn, (2.32)

which vanishes as the net monopole charge in the Brillouin zone is zero because of fermion
doubling on a lattice [58]. Actually it is required by Bloch’s theorem [80] that the “ trans-
port coefficient ” for the response to a static magnetic field should vanish identically: in
equilibrium there are no macroscopic currents in bulk system.
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Chapter 3

Gyrotropic magnetic effect and the
magnetic moment on the Fermi
surface

The current density jB induced in a clean metal by a magnetic field B is formulated as
the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a
multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for
αgme
ij = jBi /Bj in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch

electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive
picture of the effect, and takes into account the influence of scattering processes in dirty
metals. This “gyrotropic magnetic effect” is fundamentally different from the chiral magnetic
effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface,
and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry
curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the
Fermi-liquid description of transport in broken-symmetry metals.

3.1 Introduction

When a solid is placed in a static magnetic field the nature of the electronic ground state
can change, leading to striking transport effects. A prime example is the integer quantum
Hall effect in a quasi two-dimensional (2D) metal in a strong perpendicular field [69]. Novel
magnetotransport effects have also been predicted to occur in 3D topological (Weyl) metals,
such as an anomalous longitudinal magnetoresistance [56, 65], and the chiral magnetic effect
(CME), where an electric pulse E ‖ B induces a transient current j ‖ B [66]; both are related
to the chiral anomaly that was originally discussed for Weyl fermions in particle physics [1,
10]. In all these phenomena the role of the static B-field is to modify the equilibrium state,
but an E-field is still required to put the electrons out of equilibrium and drive the current
(since E = −Ȧ, the vector potential is time-dependent even for a static E-field).
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Recently, the intriguing proposal was made that a pure B-field could drive a dissipation-
less current in certain Weyl semimetals where isolated band touchings (the “Weyl points,” or
WPs) of opposite chirality are at different energies [88]. The existence of such an effect was
later questioned [71], and the initial interpretation as an equilibrium current was discounted.
(Indeed, that would a violate a “no-go theorem” attributed to Bloch that forbids macroscopic
current in a bulk system in equilibrium [80].) Subsequent theoretical work suggests that the
proposed effect can still occur in transport, as the current response to a B-field oscillating
at low frequencies [19, 29, 17, 18].

At present the effect is still widely regarded as being related to the chiral anomaly [19]
(or, more generally, to the Berry curvature of the Bloch bands [29, 17, 18, 28]), and is
broadly characterized as a type of “CME.” We show in this Letter that the experimental
implications and microscopic origin of this effect are both very different from the CME (as
defined in Ref. [66], consistent with the particle-physics literature [41]). Experimentally,
the effect is realized as the low-frequency limit of natural gyrotropy 1 in clean metals (see
also Ref. [28]), and we will call it the “gyrotropic magnetic effect” (GME). Both E and B
optical fields drive the gyrotropic current, but at frequencies well below the threshold for
interband absorption (~ω � εgap) their separate contributions can be identified. This allows
to infer from a low-frequency optical-rotation measurement the reactive current induced by
the oscillating B-field. The GME is predicted to occur not only in certain Weyl semimetals,
but in any optically-active metal (a necessary but not sufficient condition is lack of an
inversion center, and a sufficient but not necessary condition is structural chirality [44, 23,
55]).

Existing expressions for the natural gyrotropy current at low frequencies involve the
Berry curvature of all the occupied states (and velocities of empty bands) [29, 17, 18, 28], at
odds with the notion that transport currents are carried by states near the Fermi level εF.
Integrals over all occupied states involving the Berry curvature also appear in calculations
of a part of the low-frequency optical activity [61, 35, 86], and of the intrinsic anomalous
Hall effect (AHE); in the case of the AHE, a Fermi surface (FS) reformulation exists [30].
We find that the GME is not governed by the chiral anomaly or the Berry curvature, but by
the intrinsic magnetic moment of the Bloch states on the FS. Our analysis also takes into
account the finite relaxation time τ in real materials, which is shown to weaken the effect at
the lowest frequencies. The magnitude of the GME in the clean limit ωτ � 1 is estimated
for the optically-active semimetal SrSi2 [38].

1The term natural gyrotropy refers to the time-reversal-even part of the optical response of a medium at
linear order in the wavevector of light [44, 2]. The reactive part gives rise to natural optical activity, and the
dissipative part to natural circular dichroism. Gyrotropic effects that are time-reversal-odd and zeroth order
in the wavevector of light (e.g., Faraday rotation and magnetic circular dichroism [44]) are not considered in
this work.



CHAPTER 3. GYROTROPIC MAGNETIC EFFECT AND THE MAGNETIC
MOMENT ON THE FERMI SURFACE 11

3.2 Chiral magnetic effect versus gyrotropic magnetic

effect

Both effects can be discussed by positing a linear relation between j and B,

ji = αijBj. (3.1)

Suppose we use linear response to evaluate α for a clean metal, describing the B-field in
terms of a vector potential that depends on both q and ω. The result will depend on the
order in which the q→ 0 and ω → 0 limits are taken [19, 29, 17], much as the compressibility
and conductivity are different limits of electrical response. The CME tensor αcme can be
obtained from Eq. (3.1) in the equilibrium or static limit of the magnetic field (setting ω = 0
before sending q → 0), with an additional step needed to describe the E-field pulse. The
GME tensor αgme is extracted directly from Eq. (3.1) in the transport or uniform limit
(sending q → 0 before ω → 0) that describes conductivities in experiment. (Here “ω → 0”
means ~ω � εgap, but note that ωτ � 1 because the clean limit τ →∞ is assumed; effects
caused by finite relaxation times in dirty samples will be discussed later.) Only αgme is a
material property, since the details of the E-field pulse producing nonequilibrium are missing
from αcme. Below we derive microscopic expressions for both.

3.2.1 Chiral magnetic effect

The tensor α calculated in the static limit is isotropic, αij = αstatδij, with

αstat = −e
2

~
∑
n

∫
[dk] f 0

kn (vkn ·Ωkn) = 0 , (3.2)

where [dk] = d3k/(2π)3, the integral is over the Brillouin zone, f 0
kn = f(εkn) is the equilibrium

occupation factor, vkn = ∂~kεkn is the band velocity, Ωkn = −Im〈∂kukn| × |∂kukn〉 is the
Berry curvature, and −e is the electron charge. Equation (3.2) was derived in Ref. [87] using
the semiclassical formalism [75], and we obtain the same result from linear response. The
fact that αstat vanishes (see below) is in accord with Bloch’s theorem [80].

To turn the above “quasiresponse” into αcme, let us recast Eq. (3.2) as a FS integral.
Integrating by parts produces two terms. The one containing ∂k · Ωkn picks up monopole
contributions from the occupied WPs, and vanishes because each WP appears twice with
opposite signs [27]. In the remaining term we write ∂kf

0 = −v̂Fδ
3(k − kF) with v̂F the

FS normal at kF, and introduce the Chern number Cna = (1/2π)
∫
Sna

dS (v̂F ·Ωkn) of the
a-th Fermi sheet Sna in band n [30, 27]. After assigning different chemical potentials to
different sheets to account for the effect of the E-field pulse Eq. (3.2) becomes αcme =
−(e2/h2)

∑
n,a µnaCna, leading to the current density j = αcmeB [66, 80]. In equilibrium

µna = εF, and using
∑

n,aCna = 0 we find j = 0, as per Eq. (3.2).
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Figure 3.1: (a) Chiral magnetic effect in a T -broken Weyl semimetal in a static B-field. The
left- and right-handed Weyl nodes are at the same energy εL = εR, but the enclosing Fermi
pockets are not in chemical equilibrium (µL 6= µR) due to the application of an E ‖ B pulse,
and this drives the current [Eq. (3.3)]. (b) Gyrotropic magnetic effect. P symmetry is now
broken along with T , leading to εL 6= εR. The Fermi pockets are in chemical equilibrium,
µL = µR = εF, and an oscillating B-field drives the current [Eq. (3.17)]. The bottom of each
panel shows the Fermi pockets, and the arrows represent the Fermi velocities.
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For a Weyl semimetal with two Fermi pockets with C = +1 and C = −1 placed at
slightly different chemical potentials µL and µR

2 [Fig. 3.1(a)], a current develops,

j = (e2/h2)B(µR − µL) . (3.3)

3.2.2 Gyrotropic magnetic effect

Symmetry considerations already suggest a link between the GME and natural gyrotropy.
Both j and B are odd under time reversal T , and j is odd under spatial inversion P while
B is P -even, and so according to Eq. (3.1) the GME is T -even and P -odd, same as natural
gyrotropy [Note1].

To make the connection precise, consider the current density induced by a monochromatic
optical field A(t, r) = A(ω,q)ei(q·r−ωt) at first order in q,

ji(ω,q) = Πijl(ω)Aj(ω,q)ql . (3.4)

The T -even part ΠA
ijl of the response tensor is antisymmetric under i ↔ j. It has nine

independent components, and can be repackaged as a rank-2 tensor using [34, 48]

ΠA
ijl = iεilpα

gme
jp − iεjlpα

gme
ip (3.5a)

αgme
ij =

1

4i
εjlp
(
ΠA
lpi − 2ΠA

ilp

)
. (3.5b)

At nonabsorbing frequencies αgme(ω) is real and ΠA(ω) is purely imaginary, but otherwise
both are complex.

From now on we assume ~ω � εgap, so that only intraband absorption can occur. In this
regime αgme satisfies

jBi = −iωPB
i = αgme

ij Bj (3.6a)

ME
i = −(i/ω)αgme

ji Ej , (3.6b)

where E = iωA and B = iq ×A, and PB and ME are oscillating moments induced by B
and E respectively. The gyrotropic current jg

i = ΠA
ijlAjql = jBi + jEi has contributions from

both B and E, with jB given by Eq. (3.6a) and jE = iq ×ME. The dissipated power is
Re(jg ·E∗)/2 = ωεjlpqlIm(αgme

ij )Re(A∗iAp), confirming that Reαgme and Imαgme control the
reactive and dissipative gyrotropic responses respectively.

In the long-wavelength limit Eq. (3.6a) describes a transport current induced by B in
an optically-active metal (the direct GME), and Eq. (3.6b) describes a macroscopic magne-
tization induced by E; the dc limit of this inverse GME has been previously discussed for
metals with helical crystal structures [83].

2With our sign convention for the Berry curvature, a right-handed WP acts as a source in the lower
band and as a sink in the upper band [75]. An enclosing pocket, either electron-like or hole-like, has Chern
number C = −1.
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To derive Eq. (3.6), consider a finite sample of size L. Using Eq. (20) of Ref. [48] for
σA
ijl = (1/iω)ΠA

ijl we find 3

αgme
ij = (ω/2i)

(
χem
ij − χme

ji

)
+ (E. Q. terms) . (3.7)

“E. Q.” denotes electric quadrupole terms that keep αgme origin-independent at higher fre-
quencies [16, 48], but do not contribute to jB or ME when ~ω � εgap, as they are higher-
order in ω than the first term. The low-frequency gyrotropic response is controlled by the
magnetoelectric susceptibilities χem

ij = ∂Pi/∂Bj and χme
ij = ∂Mi/∂Ej. The dynamic po-

larization PB
i can be decomposed into T -even and T -odd parts (1/2)(χem

ij − χme
ji )Bj and

(1/2)(χem
ij + χme

ji )Bj
4, and Eq. (3.6a) corresponds to the former. Similarly, Eq. (3.6b) gives

the T -even part of the magnetization induced by E. (The T -odd part of the magnetoelectric
susceptibilities describes the linear magnetoelectric effect in insulators such as Cr2O3.)

In brief, the GME is the low-frequency limit of natural gyrotropy in P -broken metals,
in much the same way that the AHE is the transport limit of Faraday rotation in T -broken
metals. While the intrinsic AHE is governed by the geometric Berry curvature [75, 30] and
becomes quantized by topology in Chern insulators, the GME is controlled by a nongeometric
quantity, the intrinsic magnetic moment of the Bloch states 5.

To establish this result let us return to periodic crystals and derive a bulk formula for
αgme at ~ω � εgap. From Kubo linear response in the uniform limit we obtain [Note2]

ΠA
ijl =

e2ωτ

1− iωτ
∑
n

∫
[dk]

∂f

∂εkn

[
− gs

2me

εiplvkn,jSkn,p

+
vkn,i
~

Im〈∂jukn|Hk − εkn|∂lukn〉 − (i↔ j)
]
. (3.8)

(The calculation was carried out for a clean metal where formally τ = 1/η and η → 0+ [4].
Alternately one could retain a finite τ to give a phenomenological relaxation time in dirty
metals, and indeed the semiclassical relaxation-time calculation to be presented shortly gives
the same Drude-like dependence on ωτ as Eq. (3.8).) Skn is the expectation value of the
spin S = (~/2)σ of a Bloch state, gs ' 2 is the spin g-factor of the electron, and me is the
electron mass. Inserting Eq. (3.8) in Eq. (3.5b) gives

αgme
ij =

iωτe

1− iωτ
∑
n

∫
[dk] (∂f/∂εkn)vkn,imkn,j , (3.9)

where mkn = −(egs/2me)Skn + morb
kn is the magnetic moment of a Bloch electron, whose

orbital part is [75]

morb
kn =

e

2~
Im〈∂kukn| × (Hk − εkn)|∂kukn〉 . (3.10)

3To recover the bulk result from Eq. (3.7), the L→∞ limit should be taken faster than the ω → 0 limit,
consistent with the order of limits discussed earlier for transport.

4This decomposition is obtained by invoking the Onsager relation χem
ij (ω)

∣∣
−Bext

= − χme
ji (ω)

∣∣
Bext

[51].
5Here the term geometric refers to the intrinsic geometry of the Bloch-state fiber bundle. The orbital mo-

ment of Bloch electrons can be considered geometric in a different sense: it is the imaginary part of a complex
tensor whose real part gives the inverse effective mass tensor, i.e., the curvature of band dispersions [26].
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At zero temperature, we can replace ∂f/∂εkn in Eq. (3.9) with −δ3(k−kF)/~|vkn| to obtain
the FS formula

αgme
ij =

e

(2π)2h

iωτ

iωτ − 1

∑
n,a

∫
Sna

dS v̂F,imkn,j . (3.11)

A nonzero mkn requires broken PT symmetry, but the GME can only occur if P is broken:
with P symmetry present m−k,n = mkn and v̂F(−kF) = −v̂F(kF), leading to αgme = 0.
Without spin-orbit coupling, only the orbital moment contributes.

Equations (3.6) and (3.11) are our main results. The GME is fully controlled by the
bulk FS and vanishes trivially for insulators, contrary to the AHE where the FS formulation
misses possible quantized contributions [30].

According to Eq. (3.11), the reactive response Reαgme is suppressed by scattering when
ω � 1/τ . It increases with ω, and levels off for ω � 1/τ (satisfying this condition with-
out violating ~ω � εgap requires sufficiently clean samples). The opposite is true for the
dissipative response Imαgme, which drops to zero at ω � 1/τ and becomes strongest at
ω � 1/τ . In this lowest-frequency limit jB → 0, and Eqs. (3.6b) and (3.9) for the induced
magnetization reduce to the expression in Ref. [83]. Thus, in the dc limit only a dissipative
inverse GME occurs.

3.3 Semiclassical picture of the gyrotropic magnetic

effect

Our discussion of the GME assumed from the outset ~ω � εgap. Since this is the regime
where the semiclassical description of transport in metals holds [6], it is instructive to rederive
Eqs. (3.6) and (3.11) by solving the Boltzmann equation. This provides an intuitive picture
of the GME and its modification by scattering processes. The key ingredient beyond previous
semiclassical approaches [61, 35, 86] is the correction to the band velocity (as opposed to the
Berry-curvature anomalous velocity) in the presence of a magnetic field [75]: vkn = ∂~kε̃kn,
where ε̃kn = εkn −mkn ·B.

In a static B-field, the conduction electrons reach a new equilibrium state with f 0
kn(B) =

f(ε̃kn) as the distribution function [17], and the current vanishes according to Eq. (3.2). Un-
der oscillating fields E, B ∝ ei(q·r−ωt) the electrons are in an excited state with a distribution
function gkn(t, r) which we find by solving the Boltzmann equation in the relaxation-time
approximation,

∂tgkn + ṙ
∂gkn
∂r

+ k̇
∂gkn
∂k

= −
[
gkn − f 0

kn(B)
]
/τ , (3.12)

where τ is the relaxation time to return to the instantaneous equilibrium state described by
f 0
kn(B(t, r)) (for a slow spatial variation of B). Using the semiclassical equations [75], the

distribution function to linear order in E and B is gkn(t, r) = f 0
kn(B(t, r)) + f 1

kn(t, r) with

f 1
kn =

∂f/∂εkn

1− q
ω
· vkn + i

ωτ

[
mkn ·B + (ie/ω)E · vkn

]
, (3.13)
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which at ωτ � 1 reduces to the result in Ref. [17].
As the current associated with f 0

kn(B) vanishes, the current induced by an oscillating
B-field is obtained by multiplying the first term in Eq. (3.13) with the band velocity. The
result in the long-wavelength limit is

jB =
ieωτ

1− iωτ
∑
n

∫
[dk] (∂f/∂εkn) vkn (mkn ·B) , (3.14)

in agreement with Eqs. (3.6a) and (3.9). Conversely, inserting the second term of Eq. (3.13)
in the bulk expression for M = Mspin + Morb [75] leads to Eqs. (3.6b) and (3.9) for the
magnetization induced by an oscillating E-field.

3.4 Applications in topological semimetals

Consider a situation where only two bands are close to εF, and couplings to more distant
bands can be neglected when evaluating the orbital moment on the FS (for simplicity, we
focus here on the orbital contribution to the GME in the clean limit). The 2×2 Hamiltonian
written in the basis of the identity matrix and the three Pauli matrices is Hk = εk1+ dk ·σ,
with eigenvalues εkt = εk + tdk where t = ±1 and dk = |dk|. Equation (3.99) becomes

morb
kt,i = − e

~
εijl

1

2d2
k

dk · (∂jdk × ∂ldk) . (3.15)

For orientation we study a minimal model for a Weyl semimetal where the FS consists
of two pockets surrounding isotropic WPs of opposite chirality. We allow the WPs to be
at different energies (this requires breaking P in addition to T ), but εF is assumed close to
both [Fig. 3.1(b)]. Near each WP the Hamiltonian is Hkν = εν1+χν~vFk ·σ, where ν labels
the WP, εν and χν = ±1 are its energy and chirality (positive means right-handed), k is
measured from the WP, and vF is the Fermi velocity. From Eq. (3.15) morb

kν = −χν(evF/2k)k̂,
and only the trace piece αgme = (

∑
i α

gme
ii ) /3 survives is Eq. (3.11); in the clean limit each

pocket contributes

αgme
ν = ∓1

3

e2

h2
χν~vFkF =

1

3

e2

h2
χν(εν − εF) , (3.16)

where the minus (plus) sign in the middle expression corresponds to εν < εF (εν > εF).
Summing over ν and using

∑
ν χν = 0 [57] gives αgme = (e2/3h2)

∑
ν χνεν . For a minimal

model ν = R, L, and the GME current is

jB = (e2/3h2)(εR − εL)B . (3.17)

Equation (3.17) looks deceptively similar to Eq. (3.3) for the CME. The prefactor is
different, but the key difference is in the meaning of the various quantities, and in their
respective roles. To stress this point, we have in both equations placed the “force” that drives
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the current at the end, after the equilibrium parameter that enables the effect. The GME
current is driven by the oscillating B-field, while εL and εR are bandstructure parameters,
with εR − εL reflecting the degree of structural symmetry breaking that allows the effect to
occur. Equation (3.3) is “universal” because of the topological nature of the FS integral
involved, while Eq. (3.17) is for spherical pockets surrounding isotropic Weyl nodes. For
generic two-band models 6, the non-FS expression found in Refs. [29, 17] for the orbital
contribution to αgme can be recovered from Eq. (3.9) in the clean limit.

We emphasize that breaking T is not required for the GME. If T is present (and P broken),
the minimum number of WPs is four, not two [84]. In the class of T -symmetric Weyl materials
so far discovered, T relates WPs of the same chirality and energy. Mirror symmetries connect
WPs of opposite chirality so that jB = 0, as expected since these symmetries tend to exclude
optical activity [23, 55]. Fortuitously, the predicted Weyl material SrSi2 has misaligned WPs
of opposite chirality due to broken mirror symmetry [38]. Its optical activity coefficient ρ
can be estimated from the energy splitting between WPs. Neglecting spin contributions that
were not included in Eq. (3.17), each WP pair contributes.

ρ = (2α/3hc) (εL − εR) , (3.18)

with α the fine-structure constant and c the speed of light. The calculated splitting |εL−εR| ∼
0.1 eV [38] gives |ρ| ∼ 0.4 rad/mm per node pair, about the same as |ρ| = 0.328 rad/mm
for quartz at λ = 0.63 µm [55]. This should be measurable in a frequency range from the
infrared (above which the semiclassical assumptions break down) down to 1/τ , which depends
on crystal quality. When εL = εR the natural optical activity vanishes in equilibrium, but
a nonequilibrium gyrotropic effect can still occur due to the chiral anomaly [35]. In polar
metals, the tensor αgme acquires am antisymmetric part (equivalent to a polar vector δ) that
does not contribute to optical rotation, but which leads to a transverse GME of the form
ME ∝ E× δ.

6In anisotropic models the traceless part of αgme is generally nonzero. For any number of bands, it
includes the traceless piece found previously [86], and the full tensor satisfies the microscopic constraint from
time-reversal invariance previously shown for one piece [86].
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3.5 Supplemental material for gyrotropic magnetic

effect

3.5.1 Kubo formula for natural gyrotropy in crystals

The electronic structure of the crystal is treated at the independent-particle level taking into
account the spin-orbit interaction. The Pauli Hamiltonian has the form [13, 79]

H0 =
p2

2me

+ V (r) +
~

4m2
e

(∂rV × p) · σ , (3.19)

where V (r) = V (r + R) is the periodic crystalline potential, p is the canonical momentum,
and σ is the vector of Pauli matrices. The kinematic momentum associated with H0 is

π =
me

i~
[r,H0] = p +

~
4me

σ × ∂rV , (3.20)

and it satisfies [ri, πj] = [ri, pj] = i~δij.
In the presence of an electromagnetic field with vector potential A(r, t) the Hamiltonian

becomes [79]

H =
1

2me

(p + eA)2 + V (r) +
~

4m2
e

[∂rV × (p + eA)] · σ + gS
µB

2
(∂r ×A) · σ , (3.21)

where me and −e are the electron mass and charge, gs = 2.0023 is the spin g-factor of the
electron, and µB = e~/2me is the Bohr magneton. Expanding Eq. (3.21) and comparing
with Eq. (3.20) we find H = H0 +HI +O(A2), where

HI =
e

2
(v ·A + A · v) +

gse

2me

(∂r ×A) · S . (3.22)

Here v = π/me is the velocity operator without the field,[79] and S = (~/2)σ is the spin
operator. The first and second terms describe the orbital and spin (Zeeman) couplings
respectively. The interaction Hamiltonian of Eq. (3.22) neglects orbital terms quadratic in
A, which do not contribute to the linear response we are interested in.

Consider an optical field A(t, r) = A(ω,q)eiq·r−iωt. The current-density operator in the
Fourier representation is

j = − e

2V

{
[v + (e/me)A]e−iq·r + e−iq·r[v + (e/me)A]

}
− i gse

2meV
q× Se−iq·r , (3.23)

where V is the volume of the crystal. The first term is the orbital current, comprising
paramagnetic (v) and diamagnetic (A) contributions; [74, 21] the diamagnetic term appears
because the total orbital current is given by the velocity operator in the presence of the
optical field, vtot = (1/i~)[r,H] = v + (e/me)A. The last term in Eq. (3.23) is the current
density associated with the induced spin magnetization.
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Expressing the total current density induced at linear order by the optical field as

ji(ω,q) = Πij(ω,q)A(ω,q) (3.24)

we find, following the standard perturbative calculation [21, 33] and setting ~ = 1,

Πij(ω,q) = − e2

me

∑
n

∫
[dk] fknδij − e2

∑
n,m

∫
[dk]

f 0
k−q/2,n − f 0

k+q/2,m

εk−q/2,n − εk+q/2,m + ω + iη
Mknm,ij(q) ,

(3.25)
where [dk] ≡ d3k/(2π)3, f 0

kn = f(εkn) is the occupation of the Bloch eigenstate |ψkn〉 =
eik·r|ukn〉 in equilibrium, and η is a positive infinitesimal. The first term is the diamagnetic
response, and the matrix in the second term is given by

Mknm,ij(q) = I∗kmn,i(q)Ikmn,j(q) (3.26)

Ikmn(q) = Iorb
kmn(q) + Ispin

kmn(q) (3.27)

Iorb
kmn(q) = 〈ψk+q/2,m|eiq·rv + veiq·r|ψk−q/2,n〉/2 = 〈uk+q/2,m|∂kHk|uk−q/2,n〉 (3.28)

Ispin
kmn(q) = −(igs/2me)〈uk+q/2,m|q× S|uk−q/2,n〉 . (3.29)

In Eq. (3.28) Hk ≡ e−ik·rH0e
ik·r, and we used ∂kHk = vk ≡ e−ik·rveik·r and vk±q/2 =

vk±q/2me.[13] At q = 0, Eq. (3.25) reduces to the Kubo formula for the optical conductivity
σij(ω, 0) = (1/iω)Πij(ω, 0) in the electric-dipole approximation.[33, 21] The dissipative (anti-
Hermitean) part of Eq. (3.25) corresponds to Eq. (40) in Ref. [48].

At nonabsorbing frequencies the response is purely reactive (i.e., Πij is Hermitean[51])
and we can set η = 0 in Eq. (3.25). Optical gyrotropy is described by the antisymmetric
part ΠA

ij = (Πij − Πji)/2 at O(q).[44] We therefore take

ΠA
ij(ω,q) = −ie2

∑
n,m

∫
[dk]

f 0
k−q/2,n − f 0

k+q/2,m

εk−q/2,n − εk+q/2,m + ω
ImMknm,ij(q) (3.30)

and Taylor expand it to O(q) to captural natural gyrotropy,[44]

ΠA
ij(ω,q) = ΠA

ij(ω, 0) + ΠA
ijl(ω)ql + . . . . (3.31)

Our goal is to calculate ΠA
ijl(ω � εgap/~), with εgap/~ the threshold for interband absorp-

tion. This low-frequency regime where the semiclassical description holds can be viewed the
ω → 0 limit of the Kubo formula (Ref. [6], p. 253). In Sec. 3.5.2 we calculate ΠA

ijl(ω → 0)
from Eq. (3.30) in the static limit (setting ω = 0 before sending q → 0) and in the uni-
form limit (sending q → 0 before ω → 0). The uniform-limit results are valid in the clean
limit ω � 1/τ where intraband scattering is negligible; the effects of scattering at lower
frequencies are included in Sec. 3.5.3.

For future reference we collect below the expressions for all q-dependent quantities in
Eq. (3.30) up to O(q). In particular, we expand the matrix-element part as

ImMknm,ij(q) ' ImMknm,ij(0) + Im(Mknm,ijl)ql (3.32)
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and consider separately the orbital and spin contributions, and the intraband (m = n) and
interband (m 6= n) parts. Using a simplified notation where |ukn〉 → |n〉 and ∂ki → ∂i, and
defining vni = ∂iεn and Sni = 〈n|Si|n〉, we find

f 0
k−q/2,n − f 0

k+q/2,m ' (f 0
n − f 0

m)− (1/2) (vnl∂f/∂εn + vnm∂f/∂εm) ql (3.33)

εk−q/2,n − εk+q/2,m + ω ' (εn − εm + ω)− (1/2)(vnl + vml)ql (3.34)

ImMknn,ij(0) = Im(vnivnj) = 0 (3.35)

ImMkn 6=m,ij(0) = −(εn − εm)2 Im(〈n|∂im〉〈m|∂jn〉) (3.36)

ImMorb
knn,ijl = vnjIm〈n|∂iH|∂ln〉 − (i↔ j) (3.37)

ImMorb
kn6=m,ijl = (1/2)(εn − εm)Im [−〈∂ln|∂iH|m〉〈m|∂jn〉

+〈n|∂iH|∂lm〉〈m|∂jn〉]− (i↔ j) (3.38)

ImM spin
knn,ijl = −(gs/2me)εiplSnpvnj − (i↔ j) (3.39)

ImM spin
kn6=m,ijl = −(gs/2me)(εn − εm)εiplRe(〈n|Sp|m〉〈m|∂jn〉)− (i↔ j) , (3.40)

where we have abbreviated ∂f/∂ε|ε=εkn as ∂f/∂εn, and Hk as H.

Some useful identities We list here some identities that will be used in subsequent
manipulations. Note that Eq. (3.45) has already been used in connection with Eqs. (3.35)-
(3.40) above.

〈n|∂im〉 = −〈∂in|m〉 (3.41)∑
m

|∂im〉〈m| = −
∑
m

|m〉〈∂im| (3.42)

(∂iH)|m〉 = (εm −H)|∂im〉+ vmi|m〉 (3.43)∑
m

〈∂in|H|∂lm〉〈m|∂jn〉 = −
∑
m

εm〈∂in|m〉〈∂lm|∂jn〉 (3.44)

〈n|∂iH|m〉 = −(εn − εm)〈n|∂im〉+ vniδnm (3.45)

〈n|∂iH|∂ln〉 =
∑
m

(εn − εm)〈∂in|m〉〈m|∂ln〉+ vni〈n|∂ln〉 (3.46)

〈n|∂iH|∂lm〉 = εn〈∂in|∂lm〉 − 〈∂in|H|∂lm〉+ vni〈n|∂lm〉 . (3.47)

Equations (3.41)–(3.43) are obtained by differentiating 〈n|m〉 = δnm, the completeness re-
lation

∑
m |m〉〈m| = 1, and H|m〉 = εm|m〉 respectively. Equation (3.44) follows from

Eq. (3.42), and Eqs. (3.45)-(3.47) from Eq. (3.43).

3.5.2 Low-frequency natural gyrotropic response without
dissipation

Orbital part
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Static limit Here ΠA
ijl denotes the orbital part of the purely reactive response of

Eq. (3.30) at O(q), calculated by setting ω = 0 before expanding in powers of q. We
decompose it into interband and intraband parts,

ΠA
ijl = ΠA,inter

ijl + ΠA,intra
ijl . (3.48)

The interband part is calculated from Eqs. (3.30), (3.33), (3.34), (3.36) and (3.38),

ΠA,inter
ijl = −ie

2

2

∑
n,m 6=n

∫
[dk] Im

{
(vnl∂f/∂εn + vnm∂f/∂εm) 〈n|∂im〉〈m|∂jn〉(εn − εm)

− (f 0
n − f 0

m)(vnl + vml)〈n|∂im〉〈m|∂jn〉
+ (f 0

n − f 0
m) [−〈∂ln|∂iH|m〉〈m|∂jn〉

+〈n|∂iH|∂lm〉〈m|∂jn〉 − (i↔ j)]
}
. (3.49)

The first, second, and third lines correspond to differentiating the occupation factors, ener-
gies, and matrix elements in Eq. (3.30) respectively, and Eq. (3.45) was used to cancel an
energy denominator in the last term. The summation over m can be extended to include
m = n, and exchanging dummy indices n ↔ m in terms containing fm renders them equal
to the corresponding fn terms. Using Eq. (3.41) in some terms we obtain

ΠA,inter
ijl = −ie2

∑
n,m

∫
[dk]

{
− ∂f

∂εn
vnlIm(〈∂in|m〉〈m|∂jn〉)(εn − εm)

+ f 0
n(vnl + vml)Im(〈∂in|m〉〈m|∂jn〉)

+ f 0
nIm [−〈∂ln|∂iH|m〉〈m|∂jn〉

+〈n|∂iH|∂lm〉〈m|∂jn〉 − (i↔ j)]

}
. (3.50)

At ω = 0 and for n = m, the fraction in Eq. (3.30) becomes ∂f/∂εn. Using Eq. (3.37)
we find for the intraband part

ΠA,intra
ijl = −ie2

∑
n

∫
[dk] (∂f/∂εn) vnj Im〈n|∂iH|∂ln〉 − (i↔ j) , (3.51)

which can be rewritten with the help of Eq. (3.46) as

ΠA,intra
ijl = −ie2

∑
n

∫
[dk] (∂f/∂εn) Im [−vnj〈∂ln|m〉〈m|∂in〉 − (i↔ j)] (εn − εm) . (3.52)

Adding Eqs. (3.50) and (3.52) gives ΠA
ijl as a sum of three types of terms, ΠA

ijl = T1 +T2 +T3.
They are

T1 = −ie2
∑
n,m

∫
[dk]

∂f 0
n

∂εn
Im [−vnl〈∂in|m〉〈m|∂jn〉 − vnj〈∂ln|m〉〈m|∂in〉
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+ vni〈∂ln|m〉〈m|∂jn〉] (εn − εm) (3.53)

T2 = −ie2
∑
n,m

∫
[dk] f 0

n Im [〈n|∂iH|∂lm〉〈m|∂jn〉 − 〈∂ln|∂iH|m〉〈m|∂jn〉 − (i↔ j)] (3.54)

T3 = −ie2
∑
n,m

∫
[dk] f 0

n(vnl + vml) Im(〈∂in|m〉〈m|∂jn〉) . (3.55)

Writing vnl∂f/∂εn = ∂lf
0
n in T1 and integrating by parts yields

T1 = −ie2
∑
n,m

∫
[dk] f 0

n

{
(εn − εm) Im [−〈∂jn|∂lm〉〈m|∂in〉+ 〈∂ln|∂jm〉〈m|∂in〉

+ 〈∂jn|∂im〉〈m|∂ln〉 − (i↔ j)]

+(vnl − vml) Im(〈∂in|m〉〈m|∂jn〉)
−(vnj − vmj) Im(〈∂in|m〉〈m|∂ln〉)

+(vni − vmi) Im(〈∂jn|m〉〈m|∂ln〉)
}
. (3.56)

In order to facilitate the collection of terms, we have adopted the following conventions. In
Im(〈∂an|∂bm〉〈m|∂cn〉) we set c = i, l but never c = j, and in Im(〈∂an|m〉〈m|∂bn〉) we choose
“a < b” where “i < j < l.”

Expanding the term T2 using Eq. (3.47) followed by Eq. (3.44),

T2 = −ie2
∑
n,m

∫
[dk] f 0

n

[
− (vnj + vmj) Im(〈∂in|m〉〈m|∂ln〉)− εn Im(〈∂jn|∂lm〉〈m|∂in〉)

− εm Im(〈∂jn|∂lm〉〈m|∂in〉)− εm Im(−〈∂ln|∂jm〉〈m|∂in〉
− 〈∂jn|∂im〉〈m|∂ln〉)− (i↔ j)

]
. (3.57)

Consider the identity obtained by multiplying Eq. (3.42) on the left with 〈∂ln| and on the
right with |∂jn〉. It implies that the second term in Eq. (3.57) (combined with its “−(i↔ j)”
partner) vanishes upon summing overm, and so−εn therein can be changed into εn. Likewise,
we can substitute −εm in the second line with εn − εm, to find

T2 = −ie2
∑
n,m

∫
[dk] f 0

n

[
− (vnj + vmj) Im(〈∂in|m〉〈m|∂ln〉)

+ (εn − εm) Im (〈∂jn|∂lm〉〈m|∂in〉 − 〈∂ln|∂jm〉〈m|∂in〉
− 〈∂jn|∂im〉〈m|∂ln〉)− (i↔ j)

]
. (3.58)

Adding Eqs. (3.55), (3.56), and (3.58) we obtain, upon invoking the completeness relation,

ΠA
ijl = ie2

∑
n

∫
[dk] f 0

n [vnlΩn,ij − (i↔ l)− (j ↔ l)] , (3.59)
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where Ωn,ij = −2Im〈∂in|∂jn〉 = −Ωn,ji is the Berry curvature. The quantity [. . .] in the
previous equation is totally antisymmetric, and so it can be written as Cnεijl, where Cn =
(1/6)εijl[. . .] = Ωn · vn. Thus,

ΠA
ijl = (ie2/~)εijl

∑
n

∫
[dk] f 0

n(Ωn · vn) = 0 (orbital, static limit) (3.60)

where we have restored ~. Using ji = ΠA
ijlAjql and Bi = −iεijlAjql we arrive at Eq. (2). The

vanishing of Eq. (3.60) was demonstrated in Ref. [87], and an alternate proof is given in the
main text.

Uniform limit We expand Eq. (3.30) in powers of q keeping ω finite, and send ω → 0
at the end. This change in the order of limits compared to the static case does not affect the
calculation of the interband term ΠA,inter

ijl , but the intraband term now vanishes. To show
this, define F ≡ f 0

k−q/2,n − f 0
k+q/2,n and G ≡ εk−q/2,n − εk+q/2,n + ω, so that

ΠA,intra
ijl = −ie2 lim

ω→0

∑
n

∫
[dk]

[
(F/G)|q=0 ImMorb

knn,ijl + ∂l (F/G)|q=0 ImMorb
knn,ij(0)

]
, (3.61)

where

(F/G)|q=0 = (f 0
n − f 0

n)/(εn − εn + ω) = 0 , (3.62a)

∂l (F/G)|q=0 = −(1/ω)vnl∂f/∂εn , (3.62b)

and ImMorb
knn,ij(0) = 0 according to Eq. (3.35). Thus ΠA,intra

ijl = 0, and so the response in the
uniform limit is purely interband. Since the interband term is independent of the order of
limits, and the net response vanishes in the static limit, the uniform-limit response equals
minus the static-limit intraband term. Using Eq. (3.43) in Eq. (3.51),

ΠA
ijl = (ie2/~)

∑
n

∫
[dk] (∂f/∂εn)vni Im〈∂jn|H − εn|∂ln〉 − (i↔ j) . (3.63)

Spin part

Static limit We again start with the interband part, and collectO(q) spin contributions
to Eq. (3.30). Since ImMkn 6=m,ij(0) is purely orbital [Eq. (3.36)] the only contribution comes
from Eq. (3.40), yielding

ΠA,inter
ijl = (igse

2/2me)
∑
n,m

∫
[dk] (f 0

n − f 0
m)εipl Re(〈n|Sp|m〉〈m|∂jn〉)− (i↔ j) . (3.64)
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Exchanging n↔ m indices in one term and using the completeness relation gives

ΠA,inter
ijl = (igse

2/2me)
∑
n

∫
[dk] f 0

nεipl∂jSnp − (i↔ j)

= −(igse
2/2me)

∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (3.65)

For the intraband part we use Eq. (3.39), which leads to the expression above with the
opposite sign. Thus,

ΠA
ijl = ΠA,inter

ijl + ΠA,intra
ijl = 0 . (3.66)

Uniform limit The steps in the derivation are similar to those carried out in Sec. 3.5.2
for the orbital contribution. The intraband part vanishes, and the interband part is the same
as in the static limit, Eq. (3.65). Thus,

ΠA
ijl = −(igse

2/2me)
∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (3.67)

3.5.3 Low-frequency natural gyrotropic response with dissipation

The low-frequency (~ω � εgap)natural gyrotropic response was evaluated in Secs. 3.5.2
and 3.5.2 in the clean limit ωτ � 1. It is well known that at q = 0 the Drude formula
for the complex optical conductivity (i.e., including both reactive and dissipative parts)
can be recovered heuristically from the intraband part of the Kubo formula (3.25) for a
pristine metal, by interpreting the positive infinitesimal η as a scattering rate 1/τ . [4] Here
we apply the same procedure to extend our calculation of natural gyrotropy in metals in the
semiclassical limit to arbitrarily low frequencies compared to 1/τ . The first step is to restore
η in the denominator of Eq. (3.30),

ΠA
ij(ω,q) = −ie2

∑
n,m

∫
[dk]

f 0
k−q/2,n − f 0

k+q/2,m

εk−q/2,n − εk+q/2,m + ~ω + i~η
ImMknm,ij(q) , (3.68)

and we have also brought back ~ for clarity. Multiplying and dividing by ~ω and then using
the identity

1

~ω(~ω + ∆)
=

1

∆

(
1

~ω
− 1

~ω + ∆

)
(3.69)

with ∆ = εk−q/2,n − εk+q/2,m + i~η we find

ΠA
ij(ω,q) =− ie2

∑
n,m

∫
[dk]

f 0
k−q/2,n − f 0

k+q/2,m

εk−q/2,n − εk+q/2,m + i~η
ImMknm,ij(q)
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+ ie2~ω
∑
n,m

∫
[dk]

f 0
k−q/2,n − f 0

k+q/2,m

εk−q/2,n − εk+q/2,m + i~η
ImMknm,ij(q)

~(ω + iη) + εk−q/2,n − εk+q/2,m

.

(3.70)

Consider first the dissipative response, given by the real part of this expression. The
semiclassical condition ~ω � εgap excludes interband absorption, and so we can set m = n.
The contribution from the first line is

− πe2
∑
n

∫
[dk]

(
f 0
k−q/2,n − f 0

k+q/2,n

)
δ(εk−q/2,n − εk+q/2,n)ImMknm,ij(q) , (3.71)

and it vanishes identically because whenever the first factor is nonzero the second factor
is zero, and vice-versa. Thus, intraband absorption comes entirely from the second line in
Eq. (3.70),

Re ΠA
ij(ω � εgap/~,q) = Re

{
ie2~ω

∑
n

∫
[dk]

∂f

∂εn

ImMknn,ij(q)

~(ω + iη) + εk−q/2,n − εk+q/2,n

}
.

(3.72)
The dissipative part of natural gyrotropy is given by the O(q) terms in this equation. Since
ImMknn,ij(0) = 0 according to Eq. (3.35), the only contribution comes from Taylor expanding
the numerator with q = 0 in the denominator. Identifying η with 1/τ and assuming it is
constant across the Fermi surface (FS) we find

Re ΠA
ijl(ω � εgap/~) = e2 Re

(
ωτ

1− iωτ

)
Gijl , (3.73)

where

Gijl =
∑
n

∫
[dk] (∂f/∂εn) ImMknn,ijl = Gorb

ijl +Gspin
ijl (3.74a)

Gorb
ijl = (1/~)

∑
n

∫
[dk] (∂f/∂εn)vni Im〈∂jn|H − εn|∂ln〉 − (i↔ j) (3.74b)

Gspin
ijl = −(gs/2me)

∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (3.74c)

To obtain the orbital term we used Eqs. (3.37) and (3.43), and for the spin term we used
Eq. (3.39).

The reactive part can be recovered from the Kramers-Krönig relation 7 for σijl = (1/iω)
Πijl, the O(q) part of the effective conductivity defined in Eq. (3.82) below. The result for
the full (complex) response at low frequencies is

ΠA
ijl(ω � εgap/~) = e2 ωτ

1− iωτ
Gijl (orbital + spin, uniform limit) (3.75)

7Like the Drude optical conductivity, natural gyrotropy at ~ω � εgap satisfies the Kramers-Krönig
relations.



CHAPTER 3. GYROTROPIC MAGNETIC EFFECT AND THE MAGNETIC
MOMENT ON THE FERMI SURFACE 26

which can be viewed as a Drude-like formula for natural gyrotropy in the semiclassical
regime. At ωτ � 1 the response becomes purely dissipative and at ωτ � 1 it becomes
purely reactive, reducing to the result from the rigorous Kubo-formula calculation in the
clean limit, Eqs. (3.63) and (3.67). Equation (7) is the combination of Eqs. (3.74) and (3.75).

3.5.4 Orbital GME in two-band models: comparison with the
previous literature

In the main text we obtained an expression, Eq. (17), for the orbital GME current jB =
αgmeB at ωτ � 1 in a Weyl semimetal with two isotropic Weyl points (WPs). Here we
consider a generic two-band model and show how to recover, starting from the Fermi-surface
formula for αgme, the expression given in Refs. [29, 17] for the trace piece αgme = tr(αgme)/3
(but keeping in mind that in anisotropic models the traceless part is generally nonzero;
specific traceless contributions will be considered in Sec. 3.5.5.4).

In two-band models the orbital moment is related to the Berry curvature by morb
kt =

(e/~)tdkΩkt, [82] in the notation of the the main text. Inserting this expression in Eq. (9)
and taking the trace gives, at ωτ � 1,

αgme = − e
2

3~
∑
t=±

∫
[dk] (∂f/∂εkt)tdkvkt ·Ωkt . (3.76)

Replacing vkt∂f/∂εkt with ∂~kf
0
kt and integrating by parts yields two terms; the one con-

taining ∂k ·Ωkt vanishes identically (see below), leaving

αgme =
e2

3~
∑
t=±

∫
[dk] f 0

ktΩkt · ∂~k(tdk) . (3.77)

Writing tdk as εkt − (εk+ + εk−)/2 and using Eq. (2) to eliminate a term we find

αgme = − e
2

3~
∑
t=±

∫
[dk] f 0

kt

vk+ + vk−

2
·Ωkt . (3.78)

The expression in Refs. [29, 17] amounts to 3/2 times Eq. (3.78) minus 1/2 times Eq. (3.76),
divided by two. To understand the division by two, recall from Eq. (6a) that αgme describes
the current response to the B-field component of the optical field. The E- and B-fields
contribute equal amounts to the component of the gyrotropic current along B (see Sec. 3.5.5.1
below), bringing our result in accord with Refs. [29, 17]. While strictly correct, the above
expression for αgme in two-band models is not physically transparent. It fails to recognize
the FS nature of the GME, and has led to the erroneous identification of the Berry curvature
as the key quantity controlling the effect.[29, 17, 18]

Between Eqs. (3.76) and (3.77) we dropped a term containing the divergence of the Berry
curvature,

e2

3~2

∑
t=±

∫
[dk] fkt(εkt − εk) (∂k ·Ωkt) . (3.79)
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The Berry curvature Ωkt = ∂ × Akt is divergence-free except at the WPs εkt = εk, which
act as monopole sources and sinks. The above expression is proportional to the sum over
all WPs, and over the two bands, of fkt times εkt − εk times δ-function singularities. Since
fkt = 0, 1 and εkt− εk = 0 are the same for the two bands at a WP, the summation only acts
on the last factor. But

∑
t=± ∂k ·Ωkt = 0, because each WP contributes twice with opposite

signs: once as a source term in one band, and another time as sink in the other band (see,
e.g., Eq. (10) in Ref. [27]). Thus, each WP gives a vanishing net contribution to Eq. (3.79),
which therefore vanishes identically.

3.5.5 Natural optical activity of metals in the semiclassical limit

3.5.5.1 Gyrotropic response in equilibrium

The GME in metals is conveniently formulated in terms of the dual tensors ΠA
ijl = −ΠA

jil and
αgme
ij , related to one another by Eq. (5). Instead, the gyrotropic response of a bulk medium

is usually discussed in terms of the antisymmetric part of the relative permittivity tensor
εAij(ω,q) = [εij(ω,q)− εji(ω,q)] /2 expanded to O(q),[44]

εAij(ω,q) = εAij(ω, 0) + iγA
ijl(ω)ql + . . . . (3.80)

The T -odd tensor εAij(ω, 0) describes magneto-optical gyrotropic effects such as Faraday ro-
tation and magnetic circular dichroism, and the T -even tensor γA

ijl(ω) = −γA
jil(ω) describes

natural gyrotropy (natural optical activity and natural circular dichroism). It is also useful
to introduce a dimensionless gyration tensor gij(ω) dual to γA

ijl(ω) according to[44]

γA
ijl = (c/ω)εijmgml (3.81a)

gij = (ω/2c)εilmγ
A
lmj , (3.81b)

where c is the speed of light. In order to convert between ΠA
ijl and αgme

ij on one hand and γA
ijl

and gij on the other, consider the effective conductivity tensor σij(ω,q) satisfying[51, 48]

ji(ω,q) = σij(ω,q)Ej(ω,q) . (3.82)

Using E = iωA and comparing with Eq. (3.24) gives Πij = iωσij. Hence the tensors εij, σij,
and Πij are related by[51]

εij(ω,q) = δij +
i

ωε0
σij(ω,q) = δij +

1

ω2ε0
Πij(ω,q) . (3.83)

Expanding the antisymmetric part to O(q) and comparing with Eq. (3.80) yields the relation

γA
ijl = −(i/ω2ε0)ΠA

ijl (3.84)
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between the two rank-3 gyrotropic tensors. The relation between their duals gij and αgme
ij

follows from combining Eqs. (3.81b), (3.84), and (5a). The result is (note the transposed
indices)

gij =
1

ωcε0

(
α̃gme
ji − 2αgmeδij

)
, (3.85)

where αgmeδij and α̃gme
ij are respectively the trace piece and the traceless part of αgme

ij .
Let us now specialize to a metal with cubic symmetry or higher, and express the optical

activity coefficient ρ (rotation angle per unit transmission length) in terms of the GME ten-
sor. In a medium with such high symmetry the tensors ΠA

ijl and γA
ijl are totally antisymmetric.

From Eq. (5) we get ΠA
ijl = −2iαgmeεijl and αgme

ij = αgmeδij, Eq. (6) gives jB = jE = αgmeB,
and finally γA

ijl = γεijl with

γ = −(2/ε0ω
2)αgme (3.86)

according to Eq. (3.84). The standard expression[54, 36] ρ = (ω2/2c2)Re γ for the rotatory
strength becomes ρ = − (1/ε0c

2) Reαgme. Together with Eq. (11), this implies that the
optical activity of a clean conductor goes to a constant at low frequencies. Instead, the
optical activity of an insulator decreases as ω2, because γ goes to a constant, as follows
from Eq. (3.84) and the ω2 scaling at low frequencies of Im ΠA

ijl(ω) = ωReσA
ijl(ω): see, e.g.,

Ref. [48].
As an example, consider a Weyl semimetal with isotropic Weyl nodes described by the

Hamiltonian (see main text)
Hkν = εν1 + χν~vFk · σ . (3.87)

The orbital contribution to αgme from a pair of nodes of opposite chirality (ν = L, R) is given
in the clean semiclassical limit by the prefactor in Eq. (17), yielding

ρ = (2α/3hc)(εL − εR) (3.88)

per node pair in the frequency range 1/τ � ω � εgap/~, where α = (1/4πε0)(e2/~c) ≈
1/137 is the fine-structure constant. This result, given as Eq. (18) in the main text, can be
extended to lower frequencies (in the relaxation-time approximation) by inserting a factor
of Re [iωτ/(iωτ − 1)] = ω2τ 2/(1 +ω2τ 2) on the right-hand-side. Therefore ρ decreases as ω2

in dirty metals, the same low-frequency behavior as in molecules[9] and insulators.[54, 48]

3.5.5.2 Nonequilibrium optical gyrotropy in Weyl semimetals driven by the
chiral anomaly

It was pointed out in Ref. [35] that the chiral-anomaly mechanism leads to circular dichroism
for light propagating inside a Weyl semimetal in the presence of electric and magnetic fields
E0 and B0 with E0 ·B0 6= 0. In the following we use our microscopic formulation of natural
gyrotropy in metals to calculate the induced response at low frequencies.

For Weyl nodes described by Eq. (3.87), we obtain from Eqs. (11) and (15) the following
expression for the orbital contribution to αgme

ij (ω) = αgme(ω)δij from the spherical pocket
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enclosing the ν-th node, with chemical potential µν ,

αgme
ν (ω) =

1

3

e

(2π)2h

iωτ

iωτ − 1
(4πk2

F)

(
∓χν

evF

2kF

)
(3.89)

= ∓1

3

e2

h2

iωτ

iωτ − 1
χν~vFkF =

1

3

e2

h2

iωτ

iωτ − 1
χν(εν − µν) . (3.90)

The minus (plus) sign in the intermediate expressions corresponds to εν < µν (εν > µν).
Consider a minimal model where ν = R, L. In the equilibrium situation (µL = µR = εF)

depicted in Fig. 1(b) in the main text, Eq. (3.89) reduces to Eq. (16) for ωτ � 1. Here we
are interested in the scenario where the background E0 · B0 field pumps charge across the
nodes, leading to µR 6= µL. Following Ref.[35] we assume ωτ � 1, and for simplicity we
set εL = εR ≡ εW as in Fig. 1(a), so that the equilibrium gyrotropic response of Eq. (3.88)
vanishes. Combining Eqs. (3.86) and (3.89) and taking the imaginary part yields

Im γν(ω � 1/τ) = −χν(µν − εW)e2τ

6π2ε0~2ω
. (3.91)

Summing over WPs and using
∑

ν χν = 0[57] gives for the orbital contribution to the nonequi-
librium circular dichroism

Im γ(ω � 1/τ) =
(µL − µR) e2τ

6π2ε0~2ω
. (3.92)

Equation (3.91) agrees with Eq. (11) of Ref. [35], except possibly for the numerical
prefactor. Exact agreement was not expected, since the calculation in Ref. [35] was based on
an incomplete formulation of optical gyrotropy in metals in terms of the Berry curvature. On
the other hand, semiquantitative agreement for two-band models seems plausible in view of
the simple relation between the Berry curvature and the orbital moment in such models.[82]

Consider now the nonequilibrium optical rotation. According to Eq. (3.89) Re γ(ω �
1/τ) = 0, suggesting an absence of optical rotation at the lowest frequencies as found in
Ref. [35]. Note, however, that Eq. (3.89) was obtained starting from Eq. (3.63), which
assumes an equilibrium situation where the current response vanishes in the static limit
according to Eqs. (3.60) and (3.66). In the presence of a chemical-potential imbalance a new
reactive term appears in the gyrotropic response: the optical B-field induces an extra current
at O(q) via Eq. (3), leading to optical rotation even for ω � 1/τ . Interestingly, this is a
genuine Berry-curvature – as opposed to orbital-moment – contribution to (nonequilibrium)
optical gyrotropy.

3.5.5.3 Reciprocity relation for a metal with a smooth interface

There is a general reciprocity principle for electromagnetic fields interacting with time-
reversal (T ) invariant media in equilibrium that requires the optical rotation in the reflection
geometry to vanish.[32, 24] Thus, while for a T -breaking material there are in general optical
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rotation effects both in transmission (Faraday) and in reflection (Kerr), optical rotation in
T -invariant materials occurs in transmission only. At first glance this is surprising, because
it implies a constraint on the nonlocal response functions imposed by T symmetry when
the gyrotropic coefficient varies in space, for example at an interface.[3, 14, 72] This has
been actively discussed recently in the context of optical rotation measured in reflection on
cuprate superconductors.[36, 5, 24]

We show in the following how this constraint appears in our treatment of natural optical
activity in metals. While the validity of the constraint is not in question, i.e., it had to
be satisfied, it seems worthwhile to explain how it arises, given the recent interest in the
nonlocal constitutive relation in spatially varying media with natural optical activity.

A T -invariant spatially-dispersive medium with a boundary or an interface is described,
taking into consideration only the first derivatives with respect to coordinates, by the fol-
lowing constitutive relation,

Di(ω, r) = ε0
[
εSij(ω, r)Ej(ω, r) + γA

ijl(ω, r)∂rlEj(ω, r) + Ej(ω, r)∂rlλ
A
ijl(ω, r)

]
. (3.93)

This is Eq. (8) in Ref. [3], with the T -breaking parameter Bext set to zero. Under those
conditions, the response tensors satisfy εSij(ω, r) = εSji(ω, r), γA

ijl(ω, r) = −γA
jil(ω, r), and

λA
ijl(ω, r) = −λA

jil(ω, r). (More generally, in a T -breaking material the constitutive relation
can be split into even and odd parts with respect to Bext, and Eq. (3.93) then corresponds to
the T -even part.) For an infinite macroscopically homogeneous medium the response tensors
are independent of r, and only the first two terms survive in Eq. (3.93). The last term is
an additional contribution coming from the spatial inhomogeneity of the medium near the
interface. The reciprocity constraint takes the form[3]

λA
ijl(ω, r) =

1

2
γA
ijl(ω, r) , (3.94)

which in turn implies vanishing optical rotation in reflection: see Ref. [24] and references
cited therein.

To obtain Eq. (3.94) for a metal subject to a low-frequency optical field, recall from the
discussion around Eq. (7) that the natural gyrotropy of metals at low frequencies is fully
determined by the magnetoelectric response of the medium, i.e., by the dynamic polarization
PB and magnetization ME induced by the optical fields B and E respectively. In the main
text, the T -even magnetoelectric response of a metal was calculated at ~ω � εgap using a
semiclassical Boltzmann formalism, and the result was of the form

PB
i (ω, r) = (i/ω)αgme

ij (ω, r)Bj(ω, r) (3.95a)

ME
i (ω, r) = −(i/ω)αgme

ji (ω, r)Ej(ω, r) , (3.95b)

with αgme given in the long-wavelength limit by Eq. (11). (The calculation was done for a
bulk metal where αgme is independent of r, but the semiclassical approach remains valid if
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we assume a smooth interface with a spatial variation that is slow on the scale of the mean
free path.) Writing the constitutive relation in terms of the auxiliary fields,

D(ω, r) = ε0E(ω, r) + P(ω, r) + (i/ω)∂r ×M(ω, r) , (3.96)

and using Eq. (3.95) together with Bj = −(i/ω)εjlp∂rlEp we find for the spatially-dispersive
part of Di(ω, r)

(1/ω2)
[
εilpα

gme
jp (ω, r)− εjlpαgme

ip (ω, r)
]︸ ︷︷ ︸

ε0γAijl(ω,r)

∂rlEj(ω, r) + Ej(ω, r)∂rl
[
(1/ω2)εilpα

gme
jp (ω, r)

]︸ ︷︷ ︸
ε0λijl(ω,r)

.

(3.97)
We have identified the tensors γA

ijl and λijl = λS
ijl + λA

ijl by comparing with Eq. (3.93),
noting that the term containing λS

ijl = λS
jil was included in the first term of Eq. (3.93).[3]

The expression for γA
ijl is consistent with Eqs. (3.84) and (5a) for a bulk medium, and by

inspection we obtain Eq. (3.94), with 2λA
ijl(ω, r) ≡ λijl(ω, r) − λjil(ω, r). In conclusion,

our microscopic formulation of natural gyrotropy in metals is consistent with the general
reciprocity principle.

3.5.5.4 Berry-curvature contributions

In Ref. [86] the natural optical activity of clean metals was studied using a semiclassical
“Berry-Boltzmann” approach, and a combination of the band velocity and the Berry curva-
ture was shown to give a traceless contribution to the gyration tensor. Here we show how
that contribution appears as part of the full microscopic expression in terms of the intrinsic
magnetic moment. We start by setting ωτ � 1 in Eq. (9) to get

αgme
ij = −e

∑
n

∫
[dk] (∂f/∂εkn)vkn,i

(
mspin

kn,j +morb
kn,j

)
= αspin

ij + αorb
ij , (3.98)

and note that Eq. (10) for morb
kn contains two terms, one of which involves the Berry curvature,

morb
kn = (e/2~)Im〈∂kukn| ×Hk|∂kukn〉+ (e/2~)εknΩkn = mH

kn + mΩ
kn . (3.99)

Accordingly we write αorb = αH +αΩ/2, with

αH
ij = − e

2

2~
εjlp
∑
n

∫
[dk] (∂f/∂εkn)vkn,iIm〈∂lukn|Hk|∂pukn〉 (3.100a)

αΩ
ij = −e

2

~
∑
n

∫
[dk] (∂f/∂εkn)vkn,iεknΩkn,j . (3.100b)

The reason for writing αΩ/2 is that αH can be further decomposed as (see derivation at the
end)

αH
ij = (1/2)αΩ

ij + ∆αorb
ij (3.101a)
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∆αorb
ij =

e2

2~2
εjlp
∑
n,m

∫
[dk] f 0

kn(1− f 0
km)∂i [(εkn + εkm)

Im(〈∂lukn|ukm〉〈ukm|∂pukn〉)] , (3.101b)

so that finally
αorb = αΩ + ∆αorb . (3.102)

The decomposition (3.102) has two noteworthy features. Firstly, the Berry-curvature
contribution is traceless,

tr
(
αΩ
)

=
e2εF
2~2

∑
n,a

∫
Sna

dS (v̂F ·Ωkn) =
πe2εF
~2

∑
n,a

Cna = 0 , (3.103)

for the same reason that the chiral magnetic effect vanishes when all Fermi sheets are in chem-
ical equilibrium (see main text). Secondly, αΩ and ∆αorb are separately gauge-invariant,
but they are not separately invariant under a shift of the zero of energy. Nevertheless, αΩ

can be further decomposed into two traceless parts, only one of which depends on the zero of
energy, by replacing vkn,i∂f/∂εkn in Eq. (3.100b) with (1/~)∂if

0
kn and integrating by parts,

αΩ
ij = αΩ,1

ij + αΩ,2
ij (3.104a)

αΩ,1
ij =

e2

~2

∑
n

∫
[dk] f 0

knεkn∂iΩkn,j (3.104b)

αΩ,2
ij =

e2

~
∑
n

∫
[dk] f 0

knvkn,iΩkn,j . (3.104c)

The trace of αΩ,1 vanishes for the same reason as Eq. (3.79), and the trace of αΩ,2 vanishes
according to Eq. (2). Clearly αΩ,1 depends on the zero of energy, but αΩ,2 does not.

The Berry-curvature contribution identified in Ref. [86] amounts to αΩ,2. To see this,
convert Eq. (3.104c) into a (traceless) contribution to the gyration tensor using Eq. (3.85),

gΩ,2
ij =

e2

~ωcε0

∑
n

∫
[dk] f 0

knvkn,jΩkn,i . (3.105)

To compare with Ref. [86] the expression above should be multiplied by icε0,8 leading to
Eq. (10) therein.9

In closing, we reiterate that even if Berry-curvature contributions can be identified (see
also Sec. 3.5.4), the magnetic moment on the FS provides a more natural and compact
description of the low-frequency natural gyrotropy of metals.

8In Ref. [86] the gyration tensor g̃ was introduced via the relation jgi = −iεijmg̃mlEjql, where jg is the
natural gyrotropy current jgi = ΠA

ijlAjql. Using Eqs. (3.81a) and (3.84) we find jgi = cε0εijmgmlEjql, where
g is the gyration tensor as defined in this work. Therefore, g̃ij = icε0gij .

9The sign convention for both the Berry curvature and for Fourier transforms is the opposite in Ref. [86]
compared to the present work, but this does not affect the combination (1/ω)Ωkn,i appearing in Eq. (3.105).
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Derivation of Eq. (3.101) Integrating Eq. (3.100a) by parts and inserting a complete
set of states gives, in the condensed notation used earlier,

αH
ij =

e2

2~2
εjlp
∑
n,m

∫
[dk] f 0

n ∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)]

=
e2

2~2
εjlp
∑
n,m

∫
[dk]

[
f 0
m − f 0

m

(
1− f 0

n

)
+ f 0

n

(
1− f 0

m

)]
∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)] .

Exchanging n and m in the first and second terms,

αH
ij =

e2

2~2
εjlp
∑
n,m

∫
[dk]

{
f 0
n ∂i [εnIm(〈∂lm|n〉〈n|∂pm〉)]

− f 0
n

(
1− f 0

m

)
∂i [εnIm(〈∂lm|n〉〈n|∂pm〉)]

+ f 0
n

(
1− f 0

m

)
∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)]

}
. (3.106)

Using Eq. (3.41) to combine the second and the third terms and to recast the first in terms
of the Berry curvature we obtain, after an integration by parts,

αH
ij = − e2

2~
∑
n

∫
[dk] (∂f/∂εn) vn,i (εnΩn,j)

+
e2

2~2
εjlp
∑
n,m

∫
[dk] f 0

n

(
1− f 0

m

)
∂i [(εn + εm)Im(〈∂ln|m〉〈m|∂pn〉)] , (3.107)

which is Eq. (3.101).



34

Chapter 4

Magnetoresistance and nonlinear
optical responses in metals

We study nonlinear optical responses of metals using a Floquet approach. We show that
the semiclassical formula for the circular photogalvanic effect arising from the Berry cur-
vature dipole is reproduced by a full quantum calculation using a Floquet approach. We
derive formulas for the magnetoconductivity by a semiclassical approach including both the
Berry curvature and orbital magnetic moment. Applied to Weyl fermions, the semiclassical
approach captures the directional anisotropy of linear conductivity under magnetic field as
a consequence of an anisotropic B2 contribution, which may explain the low-field regime of
recent experiments.

4.1 Introduction

The wavefunction of a single electron moving through a crystal has several geometric proper-
ties whose importance in insulators is well known. The most celebrated example is the Berry
phase derived from Bloch states. It gives a gauge field in momentum space that underlies
topological phases ranging from the integer quantum Hall effect to topological insulators.
These phases are characterized by topological invariants that can be expressed as integrals of
Berry gauge fields; even in ordinary insulators, similar integrals describe important physical
quantities such as electric polarization [68, 42] as well as the magnetoelectric response [63,
22, 49].

In metals, the Berry gauge field is known to give an additional term (the “anomalous
velocity”) in the semiclassical equations of motion that describe the motion in real and
momentum space of a wavepacket made from Bloch states. The anomalous velocity was
originally discussed in the context of the anomalous Hall effect in magnetic metals such as
iron. The semiclassical equations can be derived systematically to linear order in applied
electric and magnetic fields, under certain assumptions that we review more fully in Sec. 4.2
below. In several cases, such as the anomalous Hall effect [53] and the gyrotropic or “trans-
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port limit” of the chiral magnetic effect [85, 47], the semiclassical approach (SCA) fully
reproduces the results obtained from quantum-mechanical calculations based on the Kubo
formula.

The focus of this chapter is the semiclassical theory of nonlinear properties of metals that
are currently active subjects of experimental and theoretical investigation. One motivation
is that systematic quantum-mechanical derivations that capture all contributions to a given
nonlinear order in applied fields have not as yet been achieved. An example we consider is the
chiral anomaly, which in a solid is a particular type of angle-dependent magnetoresistance
with an enhanced electrical conductivity along the direction of an applied magnetic field.
This effect has been argued to exist based on linearization near isolated Dirac or Weyl
singularities, but the lesson of the past few years of work on the chiral magnetic effect is that
it can be dangerous to treat the singularities solely and without including all effects at a
given order. We derive a semiclassical formula for magnetotransport in the weak-field regime
of this problem, and discuss that including all terms gives an answer distinct from that in
other recent work, which may explain experimental observations on a Dirac semimetal in
this regime [46, 78].

The semiclassical equations of motion for an electron wavepacket in a metal are [67]

ṙ =
1

~
∇kεk − k̇ ×Ω, (4.1a)

~k̇ = −eE − eṙ ×B. (4.1b)

One new contribution compared to the version in older textbooks [7] is from the Berry
curvature in momentum space,

Ω = −Im[〈∇kuk| × |∇kuk〉], (4.2)

and another is from the orbital magnetic moment contribution to the energy dispersion:
εk = ε0k −mk ·B where Hk|uk〉 = ε0k|uk〉 with B = 0 and the orbital magnetic moment is

mk = − e

2~
Im[〈∇kuk| × (Hk − ε0k)|∇kuk〉]. (4.3)

(We note that we adopt the convention e > 0.)
The SCA equations conserve the properly defined volume in phase space and give an

intuitive approach to many observable properties of metals. However, the SCA can make
erroneous predictions if used outside the regime of its validity. To illustrate this point
we present, in Sec. 4.2, the predictions of semiclassical and fully quantum theories of a
fundamental nonlinear response in metals with low symmetry - the photogalvanic effect
(PGE) [25, 20, 60]. The term “photogalvanic” refers to the generation of a dc current by
a time-varying electric field, with amplitude proportional to the square of the applied field.
The PGE is distinguished from a conventional photovoltaic response by the dependence of
the dc current on the polarization state of the electric field. For example, in the the circular
PGE (CPGE) the direction of the dc current reverses when the polarization state of the
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time-varying field is changed from left to right circular. Using the SCA the CPGE has been
shown to have a Berry-phase contribution [61] in 2D and more recently in 3D [64] systems
such as Weyl semimetals.

In Sec. 4.2 we show that the previous semiclassical predictions for the CPGE can be
derived in a fully quantum theory by using the Floquet approach [52]. We first derive the
Berry curvature formula for CPGE in the case of two band and then generalize the derivation
to the cases with many bands. This indicates that the CPGE provides a good example where
the nonlinear effects that follow from semiclassical equations are exactly what is obtained
from a full quantum derivation, which was previously only known in the linear case. We
also show that in this same limit in which interband terms are neglected, there is close
quantitative relation between CPGE and second-harmonic generation (SHG).

In Sec. 4.3 we derive semiclassical formulas for magento conductance. In Sec. 4.4, we
apply our semiclassical formula to magneto-transport of Weyl/Dirac semimetals and study
the angle-dependent magnetoresistance. We find that there exist contributions of opposite
sign from orbital magnetic moment and Berry curvature in addition to the contribution
of the chiral anomaly. The angular dependence that we obtain by taking into account all
the contributions at the same order in the SCA is compared with recent magnetotransport
experiments [46, 78].

4.2 Nonlinear optical effects and Floquet approach

In this section, we first review formulas for the nonlinear Kerr rotation and CPGE. Previous
works based on SCA showed that those nonlinear optical effects are described by a geomet-
rical quantity, i.e., Berry curvature dipole [64]. We give an alternative derivation for those
formulas based on fully quantum theoretical treatment by applying Floquet formalism for a
two-band system.

4.2.1 Geometrical meaning of nonlinear optics in the
semiclassical approach

In previous semiclassical works [61, 64], it has been shown that the intraband contributions
to SHG and CPGE have a geometrical nature that are described by Berry curvatures of
Bloch wave functions. The SHG is the second order nonlinear optical effect that is described
by nonlinear current responses j(2ω)e−2iωt as

j(2ω)
a = σabcEbEc, (4.4)

when the external electric field is given by

E(t) = Ee−iωt +E∗eiωt. (4.5)
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Nonlinear Hall effect in Ref. [64] refers to a transverse current response that is described by
σabb with a 6= b. Similarly, the CPGE is the second order nonlinear optical effect in which
dc photocurrent of j(0) is induced by circularly polarized light as

j(0)
a = σabcEbE

∗
c . (4.6)

In a time reversal symmetric material, these nonlinear response tensors σ are given by

σabc = εadc
e3τ

~(1− iωτ)

∫
[dk]f0(∂bΩd), (4.7)

when the frequency ω is much smaller than the resonant frequency for optical transitions
(i.e., the intraband contribution). Here, εabc is the totally antisymmetric tensor, f0 is the
Fermi distribution function, and we used the notation [dk] = dk/(2π)d with the dimension
d.

We focus here on the case of a 3D material [64] but have adopted slightly different
notations for E(t) and j from those in Ref. [64], which resulted in a modified expression
for σ above. While these nonlinear effects are Fermi surface effects because one obtains
σabc ∝ εadc

∫
[dk](∂bf0)Ωd by integrating by parts, they can be also understood as currents

carried by electrons in the Fermi sea with anomalous velocity originating from the Berry
curvature dipole.

The way that the anomalous velocity (k̇ ×Ω) of electron wave packets driven by an ex-
ternal electric field leads to CPGE and SHG is schematically illustrated in Fig. 4.1. Circular
polarized light induces circular motion of the wave packet in momentum space [Fig. 4.1(a)].
In the Berry curvature dipole, the anomalous velocities in regions with Ω > 0 and Ω < 0
add, which results in dc current. Similarly, linearly polarized light induces an oscillation of
wave packet as shown in Fig. 4.1(b). The driven wave packet exhibits anomalous velocities
in the y direction that oscillate twice in the driving period, which results in SHG.

4.2.2 Fully quantum mechanical derivation by Floquet formalism

We study the nonlinear optical effects including CPGE and SHG from a fully quantum
mechanical treatment by using a two band model. The focus of interest is whether the
fully quantum mechanical expression coincides with the semiclassical formula. While SCA
partially includes high energy bands through Ω, it does not necessarily capture all effects of
the high energy bands. Thus it is an interesting question whether the geometrical formulas
for CPGE and SHG hold even in the fully quantum mechanical treatment. In the following,
we study the intraband contribution to CPGE and SHG by applying the Floquet formalism
and show that the Berry curvature formulas is indeed exact in the fully quantum mechanical
treatment.

First we study a two band system periodically driven by an external electric field by
using the Floquet formalism (for details of Floquet formalism, see Refs. [43, 59, 52]). When
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Figure 4.1: Semiclassical picture of CPGE and SHG induced by a Berry curvature dipole.
The distribution of Berry curvature in momentum space is indicated by the color scale, with
red region corresponding to Ωz > 0 and blue region to Ωz < 0. (a) CPGE arises from circular
motion of the electron wave packet in momentum space driven by circularly polarized light.
The dipole structure in Ω(k) induces an anomalous velocity (k̇ × Ω) in the x direction
denoted by green arrows. (b) SHG arises from oscillation of electron wave packet driven by
linearly polarized light in the x direction. The Berry curvature dipole leads to an anomalous
velocity that undergoes two oscillations in the y direction in one driving period. The shown
configuration of Berry curvature preserves C2v point group symmetry (which is present for
typical polar crystals that support CPGE and SHG), where the y-axis corresponds to the
polar axis and the yz-plane to the mirror plane.

the original Hamiltonian of the two band system is given by a Bloch Hamiltonian Horig(k),
the time dependent Hamiltonian of the system driven by E(t) = Ee−iωt +E∗eiωt is given by

H(t, k) = Horig(k + eA(t)), (4.8)

A(t) = i
E

ω
e−iωt − iE

∗

ω
eiωt, (4.9)

which is periodic in time with t → t + 2π/ω. For such periodically driven systems, the
Floquet formalism gives a concise description in terms of band picture as follows. The
Floquet formalism is, roughly speaking, a time-direction analog of Bloch’s theorem for time-
dependent Hamiltonian H(t) that satisfies H(t + T ) = H(t) with period T . Namely, in a
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similar manner to Bloch’s theorem, the solution for the time-periodic Schrödinger equation,

i~
∂ψ(t)

∂t
= H(t)ψ(t), (4.10)

is given by a time-periodic form

ψ(t) = e−iεt/~φ(t), φ(t+ T ) = φ(t), (4.11)

with the quasienergy ε. By using the time-periodic part of the wave function φ(t), the
time-dependent Schrödinger equation is rewritten as

(i~∂t + ε)φ(t) = H(t)φ(t). (4.12)

Since φ(t) is periodic in time, we can perform Fourier transformation of the both sides with

φ(t) =
∑
m

e−imωtφm, (4.13)

and obtain

(m~ω + ε)φm = H̃mnφn, (4.14)

H̃mn =
1

T

∫ T

0

dtei(m−n)ωtH(t). (4.15)

Here H̃mn is time-independent, but has an additional matrix structure spanned by Floquet
indices m and n. Thus the time-dependent Schrödinger equation effectively reduces to a
time-independent one in the Floquet formalism as,

HFφ = εφ, (4.16)

where the Floquet Hamiltonian is given by

(HF )mn =
1

T

∫ T

0

dtei(m−n)ωtH(t)− n~ωδmn. (4.17)

Floquet bands obtained by diagonalizing the Floquet Hamiltonian HF offer a concise un-
derstanding of the dynamics of a driven system in terms of an effective band picture. We
note that the energy spectrum of ε shows a periodic structure with ~ω as a consequence of
translation symmetry with respect to the Floquet index n. Thus the quasienergy spectrum
is essentially described within the range −~ω/2 ≤ ε < ~ω/2, which is an analog of “the first
Brillouin zone” in Bloch’s theorem.

Since we consider the case of driving frequency much lower than the band gap, we can
obtain the current expectation value by studying the Floquet band that is connected to
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the valence band in the undriven system. In order to do so, we use standard second order
perturbation theory for

HF = H0 +H1 +H2, (4.18)

whereHi represents a term in the Floquet Hamiltonian proportional toAi. The wave function
up to the second order in A reads

|ψn〉 = |n〉 −
∑
m 6=n

(H1)mn
Em − En

|m〉

∑
m6=n

[
− (H2)mn
Em − En

− (H1)mn(H1)nn
(Em − En)2

+
∑
k 6=n

(H1)mk(H1)kn
(Em − En)(Ek − En)

]
|m〉, (4.19)

where H0|n〉 = En|n〉. By applying the above formula to the Floquet Hamiltonian HF , we
obtain Floquet states |ψ〉 that describes the steady state under the drive of incident light.
The current responses in the steady state are obtained from perturbed Floquet states that
are connected to the original valence bands. This treatment can be justified when the fre-
quency of incident light is much smaller than the energy difference of valence and conduction
bands. (When ω satisfies conditions for optical resonances, Floquet bands originating from
valence and conduction bands anticross each other. In this case, we cannot naively deter-
mine occupation of resulting Floquet bands, which requires considering the coupling to a
heat bath [52].)

By using the Floquet state |ψ〉 connected to the valence band, the time dependent current
in the steady state is given by

Jα(t) =
∑
m,n

{tr[|ψ〉〈ψ|v̂α]}mne−i(m−n)ωt, (4.20)

where tr denotes the trace over the band index, m,n are Floquet indices, and v̂α is the
current operator along the α-direction is given by

(v̂α)mn =
1

T

∫ T

0

dtei(m−n)ωt∂H(t)

∂kα
. (4.21)

In the following, we derive representative components of nonlinear response tensor describing
CPGE and SHG by using the above method.

To study CPGE we consider a system subjected to the left circularly polarized light in
the xy plane, where the electric field is given by

E(t) = E(ex + iey)e−iωt + E∗(ex − iey)eiωt. (4.22)
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In this case, the Floquet Hamiltonian is written as

HF = H0 +H1, (4.23)

(H0)mn =

(
εv − nω 0

0 εc − nω

)
δmn, (4.24)

(H1)mn = −iA∗(vx − ivy)δmn−1 + iA(vx + ivy)δmn+1, (4.25)

where εv/c is energy of valence/conduction band, vi = ∂H0/∂ki is the velocity operator for
the static Hamiltonian, A = E/ω, and we set e = 1, ~ = 1 for simplicity. Here we dropped
the term H2 proportional to A2 because it does not contribute to dc photocurrent which is
proportional to AA∗ and does not involve A2 terms in the end. Since we are interested in the
second order nonlinear current responses, it is sufficient to consider the Floquet Hamiltonian
with n = −2, . . . , 2 by starting with the unperturbed wave function |ψini〉 = |uv,n=0〉. Now
we study dc current in the x-direction induced by circularly polarized light for the steady
state described by the Floquet state in Eq. (4.19). The velocity operator in the x-direction
is written up to linear order in A as

v̂x = vxδmn − iA∗∂kx(vx − ivy)δmn−1

+ iA∂kx(vx + ivy)δmn+1. (4.26)

By using Eq. (4.20), we obtain the CPGE photocurrent Jx =
∫

[dk]j
(0)
x as

j(0)
x =

∑
n

{tr[|ψ〉〈ψ|v̂x]}nn

= 4
|E|2

ω

{
Im[(∂kxvx)vc(vy)cv + (vx)vc(∂kxvy)cv]

(εv − εc)2

− 3
Im[(vx)vc(vy)cv][(vx)vv − (vx)cc]

(εv − εc)3

}
, (4.27)

where we dropped higher order terms with respect to ω by focusing on the current response
in the low frequency limit. We note that the contributions proportional to |E|2/ω2 vanish
due to the time reversal symmetry (e.g., the TRS T = K constrains Re[v] and Im[v] to be
odd and even functions of k, respectively), which is used when going from the first line to
the second line. In the case of two band models, the Berry curvature is written as

Ωz = −2Im[(vx)vc(vy)cv]

(εv − εc)2
, (4.28)

and the matrix elements of ∂kivj can be rewritten as

(∂kivj)vc = ∂ki [(vj)vc] + (vj)vc [i(ai)v − i(ai)c]
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+ (vi)vc
(vj)vv − (vj)cc

εv − εc
, (4.29)

with (ai)v/c = 〈uv/c|∂ki |uv/c〉. By using these formulas, the CPGE photocurrent can be
further reduced as

j(0)
x = 4

|E|2

ω

∂

∂kx

[
Im[(vx)vc(vy)cv]

(εv − εc)2

]
= −2

|E|2

ω
∂kxΩz. (4.30)

The nonlinear conductivity tensor is obtained by equating the above expression and jx in
terms of σ and E(t) [in Eq. (4.22)] given by

jx = −iσxxy|E|2 + iσxyx|E|2 = −2iσxxy|E|2. (4.31)

Here we used antisymmetry of imaginary part of σ with respect to the last two indices. This
leads to

σxxy =
1

iω

∫
[dk]∂kxΩz, (4.32)

and reproduces the semiclassical formula for σxxy in Eq. (4.7). We note that the factor
τ/(1− iωτ) in the semiclassical formula [Eq. (4.7)] is replaced by the factor i/ω in the above
formula because the τ →∞ limit (clean limit) is effectively taken in the Floquet perturbation
theory.

Next we study SHG by using Floquet perturbation theory and the two band model in
a similar manner to CPGE. We consider a system driven by linearly polarized light in the
x direction as Ex(t) = Ee−iωt + E∗eiωt and the SHG in the y direction. The corresponding
Floquet Hamiltonian is given by

HF = H0 +H1 +H2, (4.33)

(H0)mn =

(
εv − nω 0

0 εc − nω

)
δmn, (4.34)

(H1)mn = (−iA∗δmn−1 + iAδmn+1) vx, (4.35)

(H2)mn =

(
−(A∗)2

2
δmn−2 + |A|2δmn −

A2

2
δmn+2

)
∂kxvx. (4.36)

We take |ψini〉 = |uv,n=0〉 as the unperturbed wave function and keep the part of the Floquet
Hamiltonian within the range n = −2, . . . , 2. The velocity operator along the y-direction is
given by

v̂y = vyδmn + (−iA∗δmn−1 + iAδmn+1) ∂kxvy

+

(
−(A∗)2

2
δmn−2 + |A|2δmn −

A2

2
δmn+2

)
∂2
kxvy. (4.37)
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By using Eq. (4.20), we obtain the Fourier component of the current Jy =
∫

[dk]jy propor-
tional to e−2iωt as

j(2ω)
y =

∑
n

{tr[|ψ〉〈ψ|v̂y]}n+2,n

= −2i
E2

iω

∂

∂kx

[
Im[(vx)vc(vy)cv]

(εv − εc)2

]
= i

E2

ω
∂kxΩz. (4.38)

Here we again used the fact that the contributions proportional to E2/ω2 vanish due to the
time reversal symmetry, and also dropped contributions with higher powers of ω. The above
expression indicates that the nonlinear conductivity tensor σyxx is written as

σyxx =
i

ω

∫
[dk]∂kxΩz. (4.39)

This again reproduces the semiclassical formula for σyxx in Eq. (4.7).
We can extend the above analysis based on the Floquet formalism to general cases with

many bands and obtain the same Berry curvature dipole formula. We sketch the derivation
in the following (for details, see supplemental materials 4.5). We consider the general Floquet
Hamiltonian under the light irradiation which is given by

HF = H0 +H1 +H2, (4.40)

with

H1 =
∑
i

Aivi, H2 =
1

2

∑
i,j

AiAj∂kivj, (4.41)

where H0 represents a static Hamiltonian with many bands. By using the Floquet pertur-
bation theory in Eq. (4.19) and the expression for the current in Eq. (4.20), we obtain the
general expression for the nonlinear current response as

Jr =−
∑
i,j

AiAj

∫
[dk]

×
[∑
n,g

[f(εn)− f(εg)]

(
1

2

(vr)ng(∂kivj)gn
εn − (εg + 2ω)

+
(∂rvj)ng(vi)gn
εn − (εg + ω)

)
+
∑
n,g,m

( f(εn)

εn − εm − ω
− f(εg)

εg − εm + ω

)(vr)ng(vi)gm(vj)mn
εn − (εg + 2ω)

+
∑
n,g,m

f(εn)
(vj)nm(vr)mg(vi)gn

(εn − (εg + ω))(εn − (εm − ω))

+
∑
n

1

2
f(εn)(∂kr∂kivj)nn

]
,

(4.42)
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with Fermi distribution function f(ε) [where f(εn) = 1(0) for occupied (unoccupied) states
]. When we expand the current Jr with respect to ω, the lowest order contribution in ω is
proportional to ωA2 in the presence of time reversal symmetry. In the case of many bands,
the Berry curvature dipole for the nth band is written as

∂kiΩz,n = −2Im

[
〈n|∂kxH|m〉〈m|∂kyH|n〉

(εn − εm)2

]
, (4.43)

where n runs over occupied bands and m runs over unoccupied bands. By using this ex-
pression for the Berry curvature dipole, it turns out that the lowest order contribution of Jy
proportional to ωA2 is written as

Jy = −iwA2
x

∫
[dk]f(εn)∂kxΩz,n, (4.44)

which reproduces the Berry curvature dipole formula Eq. (4.7) for SHG in the case of many
bands. Details of the above calculation for many band cases are described in Appendix 4.5.

To summarize, we derived formulas for CPGE and SHG in the sufficiently low frequency
region in a fully quantum mechanical way by using Floquet perturbation theory. This re-
produces the semiclassical formula with Berry curvature dipole.

4.3 Semiclassical formulas for magnetoconductance

We apply SCA to obtain semiclassical formula for nonlinear magneto-conductivity that in-
cludes all terms proportional to B2E is applicable to Weyl semimetals and may explain direc-
tional anisotropy of magnetoconductivity of Weyl semimetals recently reported in Ref. [46,
78], which we perform in Sec. 4.4. Third, TR symmetric Weyl semimetals can support large
nonlinear Kerr rotation. Intraband contribution to SHG vanishes for B = 0 in TR symmetric
Weyl semimetals, and the SHG signal has a contribution linear in B. Thus application of B
may lead to giant nonlinear Kerr rotation.

We derive semiclassical formulas for nonlinear magneto-optical effects up to the second
order in E. It is convenient to rewrite the equations of motion (4.1) to collect time derivatives
on the left:

ṙ =
1

~D
[∇kεk + eE ×Ωk +

e

~
(∇kεk ·Ωk)B], (4.45)

~k̇ =
1

D
[−eE − e

~
∇kεk ×B −

e2

~
(E ·B)Ωk], (4.46)

D = 1 +
e

~
B ·Ωk. (4.47)

The charge density ρ and current density j are given by

ρ = −e
∫

[dk]Df, (4.48)
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j = −e
∫

[dk](Dṙ + ∇r ×mk)f, (4.49)

with [dk] = dk/(2π)3, where the second term of j is a contribution of magnetization current.
We note that the factor D arises from a field-induced change of the volume of the phase space
[77]. In the following, we focus on the uniform system. In this case, the expression of the
current density reduces to

j = −e
∫

[dk][ṽk +
e

~
E ×Ωk +

e

~
(ṽk ·Ωk)B]f, (4.50)

where we used

ṽp = vk − (1/~)∇k(m ·B), (4.51)

with vk = (1/~)∇kε
0
k.

Now we focus on responses driven by monochromatic light with the electric field E(t) =
Ee−iωt. We consider current responses at order of E. We write the distribution function in
Fourier components as

f = f0 + f1e
−iωt, (4.52)

where f0 is the unperturbed distribution function and other terms appear in the presence of
the electric field of the incident light. The steady-state distribution function is determined
by the Boltzmann equation

df

dt
=
f0 − f
τ

, (4.53)

where

df

dt
= k̇ ·∇kf + ∂tf. (4.54)

In the following, we apply the above SCA to the linear current responses in the presence of
magnetic fields.

We derive the semiclassical formula for the conductivity up to the second order of B in
terms of Berry curvature and orbital magnetic moment.

The current response of the frequency ω is obtained from f1 in Eq. (4.52). By equating
terms proportional to e−iωt in Eq. (4.54), we obtain

[−eE − e2

~
(E ·B)Ωk] ·∇pf0 − iωf1 = −f1

τ
, (4.55)

with ∇p = (1/~)∇k, where we dropped the term involving (∇kεk) ×B because it is per-
pendicular to ∇pf0 = (1/~)(∇kεk)∂εf0. This leads to

f1 =
−τ

1− iωτ
1

D
[−eE − e2

~
(E ·B)Ωk] ·∇pf0. (4.56)
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Now the current response linear in E is given by

j1 =
eτ

1− iωτ

∫
BZ

[dk]
1

D

{
[ṽk +

e

~
(ṽk ·Ωk)B]

× [−eE − e2

~
(E ·B)Ωk] ·∇pf0 +

e

~
E ×Ωkf0

}
, (4.57)

where f0 = θ(EF − εk − mk · B) with the step function θ(x) = 0(x < 0), 1(x ≥ 0).
This expression is reduced if we focus on the case where the electric field E is applied
along the ith direction and the system preserves the TRS in the absence of magnetic fields.
Specifically, we consider terms up to ∝ B that are nonvanishing with the TRS by expanding
as 1/D ' 1 + (e/~)B ·Ωk, which leads to

j1 =
eτ

1− iωτ

∫
BZ

[dk]{−vkeE(vk)i∂εf
′
0

+
e

~
(E ×Ωk)(m ·B)∂εf

′
0}, (4.58)

with f ′0 = θ(EF − εk), i.e., a distribution function when B = 0. Here we used the fact
that ∂pi ,vp,Ω,, and m are odd under the TRS. The first term in the integral is the metal-
lic conductivity, while the second term describes regular Hall conductivity linear in B (in
contrast to anomalous Hall conductivity which is nonzero in the absence of B). This second
term indicates that the orbital magnetic moment gives a semiclassic description related to
Landau level formation in the quantum limit. We note that there is no B-linear contribution
to the longitudinal conductivity σii because the Onsager relation constrains the conductivity
as σij(B) = σji(−B) and the longitudinal conductivity should be an even function of B.

Next, we derive the formula for the longitudinal magnetoconductance. Its lowest order
dependence on B is quadratic due to the Onsager relation. The B2 contribution to the
longitudinal current response is explicitly written as

jB2 =
e2τ

~

∫
BZ

[dk]
{
− e

~
E ·∇kf0(ε0)[−e(vk ·Ωk)(B ·Ωk)B− eΩk ·∇k(m ·B)B

+ e(B ·Ωk)2vk + (B ·Ωk)∇k(m ·B)] + [
1

~
E ·∇k(

∂f0(ε0)

∂ε
m ·B)

− e

~
(E ·B)(Ωk ·∇kf0(ε0))][e(vk ·Ωk)B− e(B ·Ωk)vk − ∂k(m ·B)]

+
e

~
(E ·B)[Ωk · ∂k(

∂f0(ε0)

∂ε
m ·B)]vk −

1

2
E · ∂k[

∂2f0(ε0)

∂ε2
(m ·B)2]vk

}
.

(4.59)

In addition to terms that contribute isotropically to the current density, there are sev-
eral terms that contribute to the current density specifically along B which results in an
anisotropic magnetoconductance if it is applied to Weyl semimetals as we discuss in Sec. 4.4.
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[ρxx(B)-ρxx(B=0)]/ρxx(B=0) 

(a) Berry curvature Ω (b) Orbital magnetic moment m

(c) Interplay of Ω and m

(B 2e2/ h̄2k4F )

(d) Total magneto-resistance

[ρxx(B)-ρxx(B=0)]/ρxx(B=0) (B 2e2/ h̄2k4F )

[ρxx(B)-ρxx(B=0)]/ρxx(B=0) (B 2e2/ h̄2k4F ) [ρxx(B)-ρxx(B=0)]/ρxx(B=0) (B 2e2/ h̄2k4F )

Figure 4.2: Angle-dependence of longitudinal magnetoresistance (LMR) for Weyl semimet-
als derived from the semiclassical approach [Eq. (4.59)]. Blue lines are polar plots of the
LMR [ρxx(B)− ρxx(B = 0)]/ρxx(B = 0) as a function of the relative angle θ between E and
B. We show angle-dependences of contributions to the LMR from (a) the Berry curvature,
(b) the orbital magnetic moment, (c) the interplay between the Berry curvature and the
orbital magnetic moment, and (d) the total angle-dependence of the LMR.
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4.4 Angle-dependent magnetoresistance

In this section, we study magnetoresistance by using the SCA developed in the previous sec-
tion. In particular, we focus on the current response J ∝ EB2 and study how the Berry cur-
vature and the orbital magnetic moment contribute to magnetoresistance in Weyl semimetals,
since the interplay of these two quantities in transport properties of Weyl semimetals has
not been fully investigated except for a few studies [85, 47, 62, 70]. The obtained angle-
dependence of magnetoresistance is compared with recent magneto-transport experiments
for Dirac semimetals [46, 78].

We consider the Hamiltonian for Weyl semimetals given by

H = ηvFσ · p, (4.60)

where vF is the Fermi velocity and η = ±1 specifies the chirality. In this case, the velocity
operator, the Berry curvature, the orbital magnetic moment are written as

vk = vF k̂, (4.61)

Ω = −η 1

2k2
k̂, (4.62)

m = −ηevF
2k
k̂, (4.63)

for the conduction band, where k̂ denotes the unit vector along k.
Now we apply the semiclassics formula Eq. (4.59) for the linear current response j1

proportional to B2 to Weyl semimetals and study the angle-dependent magnetoresistance.
First, we suppose that the electric field is applied in the z-direction as E = Eez where ez
denotes the unit vector along the z direction. In this case, the current along the z-direction
(j1)z is given by

(j1)z =
1

6π2~
τe2vFk

2
FE +

1

30π2~3k2
F

τe4vFB
2E (4.64a)

when E ‖ B, and

(j1)z =
1

6π2~
τe2vFk

2
FE −

1

60π2~3k2
F

τe4vFB
2E (4.64b)

when E ⊥ B (e.g. B ‖ x̂), where we assumed τω � 1. Here, the first term is the isotropic
dc conductivity and the second term is an anisotropic correction which originates from the
E · B term related to the chiral anomaly in Weyl semimetals. The second term accounts
for the negative magnetoresistance (MR) when E ‖ B, and the positive MR when E ⊥ B.
Thus the semiclassical theory for the linear conductivity including effects of both Ω and
m captures the directional anisotropy of linear conductivity in the B field which is usually
considered to be an evidence of a Weyl fermion in transport measurements.
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Next, we discuss the full angle dependence of the current response in the magnetic field.
When the electric field is applied in the direction tilted by θ from the direction of the magnetic
field B, the longitudinal magneto conductivity σ(B) is given by

σ(B)− σ(B = 0)

σ(B = 0)
=
−1 + 3 cos2 θ

10

e2B2

~2k4
F

. (4.65)

Equation (4.65) does not depend on the chirality of the Weyl node nor in which band the
chemical potential is located. It shows that the magnetoresistance (MR) is positive when
E ⊥ B and it decreases to negative as θ → 0. If we separately look at contributions to
the MR from the Berry curvature and the orbital magnetic moment, we find that either the
Berry curvature or the orbital magnetic moment alone gives a negative magnetoresistance
(Figs. 4.2a and 4.2b), while the interplay between the Berry curvature and the orbital mag-
netic moment gives a positive magnetoresistance (Fig. 4.2c). As a whole, Eq. (4.65) gives
the angular dependences as shown in Fig. 4.2d. We note that the anisotropic magnetocon-
ductance in the semiclassics [Eq. (4.65)] is not solely described by the contribution from the
chiral anomaly. Specifically, the contribution from the chiral anomaly which was discussed
in Ref. [65] is found in the term

−e4τ

~

∫
BZ

[dk](Ωk ·∇pf0(ε0))(vk ·Ωk)(E ·B)B (4.66)

in Eq. (4.59) and gives a negative magnetoresistance in Weyl semimetals. In contrast, there
are several terms involving the orbital magnetic moment which lead to contributions of
opposite signs.

A similar angular dependence of the magnetoresistance to Eq. (4.65) in the weak field
region have been observed in magneto-transport experiments of Dirac semimetals [46, 78].
In particular, Ref. [78] reported that the sign change of the MR occurs around 45◦ in the
low B region for Dirac semimetal Na3Bi, which is consistent with our semiclassical result
shown in Fig. 4.2(d). We note that our calculation for Weyl semimetals is also applicable to
Dirac semimetals with a mild assumption that the degenerate energy bands having opposite
chirality in Dirac semimetals are decoupled with each other.

Finally, we present estimates for the above nonlinear conductivities derived for Weyl
semimetals. The directional anisotropy of the linear conductivity is given by the ratio of the
two terms ∝ B0 and ∝ B2 in Eq. (4.64). The anisotropy ratio amounts to 0.06(B/1 T)2 for
typical parameters vF = 3× 105 m/s, EF = 10 meV for the Weyl semimetal material, TaAs
[73, 39].

4.5 Supplemental material for derivation of the Berry

curvature dipole formula for general bands

In this appendix, we apply the Floquet perturbation theory to systems with a general number
of bands and derive the formula for SHG in terms of Berry curvature dipole. The derivation
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proceeds in a similar manner to the two band case presented in Sec. 4.2B, but with involving
more band indices.

We consider the system irradiated with monochromatic light which is described by the
time-dependent Hamiltonian,

H̃(t) = H(p+ eA(t)) = H0 +H1 +H2 + · · ·

= H +
∑
i

(∂kiH)eAie
−iωt +

∑
i,j

1

2
(∂ki∂kjH)e2AiAje

−2iωt + · · · , (4.67)

where H0 ≡ H is the static Hamiltonian in the absence of the driving, and A(t) = Ae−iωt

is the vector potential. For the time periodic Hamiltonian H̃(t), the Floquet Hamiltonian is
defined by

(HF )mn =
1

T

∫ T

0

dtei(m−n)ΩtH̃(t)− n~Ωδmn, (4.68)

with Floquet indices m an n. In the following, we adopt a simplified notation where we write
contributions H i(t) to the Floquet Hamiltonian HF just by H i.

The standard perturbation theory gives the wave function for the perturbed Floquet
Hamiltonian HF as

|ψñ〉 = |ñ〉+
∑
g̃ 6=ñ

H1
g̃ñ

εñ − εg̃
|g̃〉+

∑
ñ6=m̃
g̃ 6=ñ

[
H1
g̃m̃H

1
m̃ñ

(εñ − εm̃)(εñ − εg̃)
−

H1
ññH

1
g̃ñ

(εñ − εg̃)2
+

H2
g̃ñ

εñ − εg̃

]
|g̃〉, (4.69)

where |ñ〉 is the unperturbed wave function satisfying H|ñ〉 = εñ|ñ〉, and ñ labels the set of
the band index and the Floquet index. Here we note that H1

ññ = 0 in the present case. The
explicit form of the wave function ψn with the band index n and any Floquet index (say, 0)
is given by

|ψn〉 =|n〉+ e
∑
n,g

(∂kiHAi)gn
εn − (εg + ω)

|g〉+
1

2
e2
∑
n,g

(∂ki∂kjHAiAj)gn

εn − (εg + 2ω)
|g〉

+ e2
∑
n,m,g

[
(∂kjHAj)gm(∂kiHAi)mn

(εn − (εm + ω))(εn − (εg + 2ω))

]
|g〉 , (4.70)

where |n〉 denotes the static wave function with the band index n, εn denotes the static
energy dispersion with the band index n, and Om,n = 〈m|O|n〉.

Now we consider the current response in the α-direction is given by

Jα(t) = −e
∑
n

f(εn)
∑
m′,n′

{tr[|ψ(n,0)〉〈ψ(n,0)|v̂α]}m′n′e−i(m
′−n′)ωt, (4.71)

where |ψ(n,0)〉 is the perturbed wave function with the band index n and the Floquet index
0, and m′, n′ denote the Floquet indices. The Fermi distribution function f(ε) is given
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by f(εn) = 1 for occupied bands and f(εn) = 0 for unoccupied bands. Since we consider
the low-frequency limit where optical transition does not take place, we can assume that
the occupation of the perturbed states coincides with that of the unperturbed states. The
operator v̂ is Floquet representation of the time-dependent velocity operator v(t) which is
given by

(v̂i)m′n′ =
1

T

∫ T

0

dtei(m
′−n′)ωtvi(t) (4.72)

vi(t) = v0
i + v1

i + v2
i + · · ·

= ∂kiH +
∑
j

(∂ki∂kjH)eAje
−iωt +

∑
i,j

1

2
(∂ki∂kj∂klH)e2AjAle

−2iωt + · · · . (4.73)

For the real external field A(t) = Ae−iωt + Aeiωt, we obtain the second-order current
response Jr along the r-direction which is proportional to e−i2ωt as

Jr = −e3
∑
i,j

AiAj

∫
[dk]

∑
n,g

[
1

2
f(εn)

(∂ki∂kjH)gn

εn − (εg + 2ω)
〈n|∂krH|g〉

+
1

2
f(εn)

(∂ki∂kjH)ng

εn − (εg − 2ω)
〈g|∂krH|n〉

+
∑
m

f(εn)

εn − εm − ω
(∂kjH)gm(∂kiH)mn

εn − (εg + 2ω)
〈n|∂krH|g〉

+
∑
m

f(εn)

εn − εm + ω

(∂kiH)nm(∂kjH)mg

εn − (εg − 2ω)
〈g|∂krH|n〉

+f(εn)
(∂kiH)gn

εn − (εg + ω)
〈n|∂kr∂kjH|g〉+ f(εn)

(∂kiH)ng
εn − (εg − ω)

〈g|∂kr∂kjH|n〉

+
∑
m

f(εn)
(∂kiH)gn

εn − (εg + ω)

(∂kjH)nm

εn − (εm − ω)
〈m|∂krH|g〉+

1

2
f(εn)〈n|∂kr∂ki∂kjH|n〉

]
.

(4.74)
This expression can be rewritten as

Jr = −e3
∑
i,j

AiAj

∫
[dk]

∑
n

[∑
g

1

2
(f(εn)− f(εg))

〈n|∂krH|g〉〈g|∂ki∂kjH|n〉
εn − (εg + 2ω)

+
∑
m,g

( f(εn)

εn − εm − ω
− f(εg)

εg − εm + ω

)〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉
εn − (εg + 2ω)

+
∑
g

(f(εn)− f(εg))
〈n|∂kr∂kjH|g〉〈g|∂kiH|n〉

εn − (εg + ω)

+
∑
m,g

f(εn)
〈n|∂kjH|m〉〈m|∂krH|g〉〈g|∂kiH|n〉

(εn − (εg + ω))(εn − (εm − ω))
+

1

2
f(εn)〈n|∂kr∂ki∂kjH|n〉

]
.
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(4.75)

Since we are interested in the intraband effects in the low frequency limit (ω much smaller
than the bandgap), we expand the current Jr in terms of ω as Jr = J0

r + J1
r + J2

r + . . ., with
Jnr ∝ ωn . The lowest order term in ω is the zeroth order term which is given by

J0
r = −e3

∑
i,j

AiAj

∫
[dk]

∑
n

[∑
g

1

2
(f(εn)− f(εg))

〈n|∂krH|g〉〈g|∂ki∂kjH|n〉
εn − εg

+
′∑

m,g

( f(εn)

εn − εm
− f(εg)

εg − εm

)〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉
εn − εg

+
′∑
g

(f(εn)− f(εg))
〈n|∂kr∂kjH|g〉〈g|∂kiH|n〉

εn − εg

+
′∑

m,g

f(εn)
〈n|∂kjH|m〉〈m|∂krH|g〉〈g|∂kiH|n〉

(εn − εg)(εn − εm)

−2
′∑
g

f(εn)
〈n|∂krH|g〉〈g|∂kiH|n〉〈n|∂kjH|n〉

(εn − εg)2

−2
′∑
g

f(εg)
〈n|∂krH|g〉〈g|∂kiH|g〉〈g|∂kjH|n〉

(εn − εg)2

+
′∑
m

f(εn)
〈n|∂kjH|m〉〈m|∂krH|n〉〈n|∂kiH|n〉

(εn − εm)2

+
′∑
g

f(εn)
〈n|∂kjH|n〉〈n|∂krH|g〉〈g|∂kiH|n〉

(εn − εg)2
+

1

2
e2f(εn)〈n|∂kr∂ki∂kjH|n〉

]
.

(4.76)

Here
∑′

g (
∑′

m,g) denotes the summation where the band index g (m, g) runs over those that
do not set the denominator to zero. We note that the 5th to 8th terms are obtained by
setting one energy denominator to be 1/ω and expanding the other energy denominator up
to ω2 in the 2nd and the 4th terms in Eq. (4.75). In addition, the time reversal symmetry,
T = K, leads to the symmetry properties of the Hamiltonian and its eigenstates given by

H(k) = H(−k), ε(k) = ε(−k), |n(k)〉 = 〈n(−k)|. (4.77)

By using these properties that hold in the presence of the time-reversal symmetry, we find
that the above expression for J0

r vanishes in the zeroth order. Therefore, the lowest order
term is actually the first order term J1

r .
The first order term in ω is written as

Jr = −e3ω
∑
i,j

AiAj

∫
[dk]

∑
n

[ ′∑
g

(f(εn)− f(εg))
〈n|∂krH|g〉〈g|∂ki∂kjH|n〉

(εn − εg)2
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+2
′∑

m,g

(
f(εn)

εn − εm
− f(εg)

εg − εm

) 〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉
(εn − εg)2

+
′∑

m,g

(
f(εn)

(εn − εm)2
+

f(εg)

(εg − εm)2

) 〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉
εn − εg

−4
′∑
g

f(εn)
〈n|∂krH|g〉〈g|∂kiH|n〉〈n|∂kjH|n〉

(εn − εg)3

−4
′∑
g

f(εg)
〈n|∂krH|g〉〈g|∂kiH|g〉〈g|∂kjH|n〉

(εn − εg)3

+
′∑
g

(f(εn)− f(εg))
〈n|∂kr∂kjH|g〉〈g|∂kiH|n〉

(εn − εg)2

−
′∑
m

f(εn)
〈n|∂kjH|m〉〈m|∂krH|n〉〈n|∂kiH|n〉

(εn − εm)3

+
′∑
g

f(εn)
〈n|∂kjH|n〉〈n|∂krH|g〉〈g|∂kiH|n〉

(εn − εg)3

−
′∑

m,g

f(εn)
〈n|∂kjH|m〉〈m|∂krH|g〉〈g|∂kiH|n〉

(εn − εg)(εn − εm)2

+
′∑

m,g

f(εn)
〈n|∂kjH|m〉〈m|∂krH|g〉〈g|∂kiH|n〉

(εn − εg)2(εn − εm)

]
. (4.78)

By using the properties from the time reversal symmetry, this can be reduced as

Jr = −2e3ω
∑
i,j

AiAj

∫
[dk]

∑
n

f(εn)

[ ′∑
g

f(εn)
〈n|∂krH|g〉〈g|∂ki∂kjH|n〉

(εn − εg)2

+2
′∑

m,g

1

εn − εm
〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉

(εn − εg)2

+
′∑

m,g

1

(εn − εm)2

〈n|∂krH|g〉〈g|∂kiH|m〉〈m|∂kjH|n〉
εn − εg

−3
′∑
g

〈n|∂krH|g〉〈g|∂kiH|n〉〈n|∂kjH|n〉
(εn − εg)3

+
′∑
g

〈n|∂kr∂kjH|g〉〈g|∂kiH|n〉
(εn − εg)2

−
′∑

m,g

〈n|∂kjH|m〉〈m|∂krH|g〉〈g|∂kiH|n〉
(εn − εg)(εn − εm)2

]
. (4.79)
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Now let us consider the specific case relevant to the Berry curvature dipole formula.
Namely we suppose that E is applied along the x-direction and consider the current J in
the y-direction:

Jy = −2e3ωAxAx

∫
[dk]

∑
n

f(εn)

[ ′∑
g

f(εn)
〈n|∂kyH|g〉〈g|∂kx∂kxH|n〉

(εn − εg)2

+2
′∑

m,g

1

εn − εm
〈n|∂kyH|g〉〈g|∂kxH|m〉〈m|∂kxH|n〉

(εn − εg)2

−3
′∑
g

〈n|∂kyH|g〉〈g|∂kxH|n〉〈n|∂kxH|n〉
(εn − εg)3

+
′∑

m,g

1

(εn − εm)2

〈n|∂kyH|g〉〈g|∂kxH|m〉〈m|∂kxH|n〉
εn − εg

+
′∑
g

〈n|∂ky∂kxH|g〉〈g|∂kxH|n〉
(εn − εg)2

−
′∑

m,g

〈n|∂kxH|m〉〈m|∂kyH|g〉〈g|∂kxH|n〉
(εn − εg)(εn − εm)2

]
. (4.80)

The k-integral of the Berry curvature dipole Ωz,n for the nth band is explicitly written in
many band systems as∫

[dk] ∂xΩz,n(k) = −2∂x

∫
[dk] Im[〈∂xn|∂yn〉]

= i∂x

∫
[dk]

∑
g

[〈∂xn|g〉〈g|∂yn〉 − 〈∂yn|g〉〈g|∂xn〉]

= i∂x

∫
[dk]

′∑
g

[
〈n|∂xH|g〉〈g|∂yH|n〉

(εn − εg)2
− 〈n|∂yH|g〉〈g|∂xH|n〉

(εn − εg)2

]

= −2i

∫
[dk]

′∑
g

[
〈n|∂yH|g〉〈∂xg|∂xH|n〉

(εn − εg)2
+
〈n|∂yH|g〉〈g|∂x∂xH|n〉

(εn − εg)2

+
〈n|∂yH|g〉〈g|∂xH|∂xn〉

(εn − εg)2
+
〈∂xn|∂yH|g〉〈g|∂xH|n〉

(εn − εg)2

+
〈n|∂x∂yH|g〉〈g|∂xH|n〉

(εn − εg)2
+
〈n|∂yH|∂xg〉〈g|∂xH|n〉

(εn − εg)2

− 2
〈n|∂yH|g〉〈g|∂xH|n〉

(εn − εg)3
[(vx)nn − (vx)gg]

]
= −2i

∫
[dk]

′∑
g

[
〈n|∂yH|g〉〈g|∂x∂xH|n〉

(εn − εg)2
+
〈n|∂x∂yH|g〉〈g|∂xH|n〉

(εn − εg)2

− 2
〈n|∂yH|g〉〈g|∂xH|n〉

(εn − εg)3
[(vx)nn − (vx)gg]

]
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+
′∑

g,m

[
− 〈n|∂yH|g〉〈g|∂xH|m〉〈m|∂xH|n〉

(εm − εg)(εn − εg)2
+
〈n|∂yH|g〉〈g|∂xH|m〉〈m|∂xH|n〉

(εn − εm)(εn − εg)2

− 〈n|∂xH|m〉〈m|∂yH|g〉〈g|∂xH|n〉
(εm − εn)(εn − εg)2

+
〈n|∂yH|g〉〈g|∂xH|m〉〈m|∂xH|n〉

(εm − εg)(εn − εm)2

]
,

(4.81)

where we have used the time reversal symmetry to simplify the expressions and the equation
〈n|∂km〉 = 〈n|v|m〉/(εm − εn). We note that the region of the above k-integration can be
any T -symmetric region that includes both k and −k, especially, the Fermi sea satisfying
f(εn) = 1.

By using Eq.(4.81), we finally obtain

Jy = −2e3ωAxAx

∫
[dk]

∑
n

f(εn)

[
∂xΩz,n

−2i
+

′∑
g

〈n|∂yH|g〉〈g|∂xH|n〉〈n|∂xH|n〉
(εn − εg)3

+
′∑
g

1

(εn − εg)2

〈n|∂kyH|g〉〈g|∂kxH|g〉〈g|∂kxH|n〉
εn − εg

+
′∑
g

1

εn − εg
〈n|∂kyH|g〉〈g|∂kxH|g〉〈g|∂kxH|n〉

(εn − εg)2

−3
′∑
g

〈n|∂kyH|g〉〈g|∂kxH|n〉〈n|∂kxH|n〉
(εn − εg)3

+2
′∑
g

〈n|∂yH|g〉〈g|∂xH|n〉
(εn − εg)3

[(vx)nn − (vx)gg]

]
= −ie3ωAxAx

∫
[dk] ∂xΩz.

(4.82)

This indicates that the nonlinear conductivity for the SHG is given by

σyxx =
ie3

ω

∫
[dk]

∑
n

f(εn)∂kxΩz,n, (4.83)

which reproduces Eq. (4.44) in Sec. 4.2B and proves the Berry curvature dipole formula for
SHG in general cases with many bands.
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Chapter 5

Hall conductivity in an
inhomogeneous electric field

In this chapter we will study the Hall conductivity of insulators in a static inhomogeneous
electric field to the second order of wave number q using the Kubo formula. We derive
general formulas for the q2 term in hall conductivity. We find that for an insulator with only
two bands that are flat, the q2 term is determined by the quantum metric tensor and the
Berry curvature. Using a semiclassical derivation we provide an intuitive picture of how the
quantum metric tensor appears. We end this chapter with numerical studies on a topological
flat band model and the Hofstadter model.

5.1 Preliminaries and background

Strain tensor [45]Under deformation the position x of a point in a solid body will be
mapped to a new position x′. We use Euclidean coordinates {xi} to label the original
position of the point and the deformation will be equivalent to a change of the metric of the
coordinate system. In the new Euclidean coordinate system the distance between two very
close points will be

dl′2 =
∑
i

dx′2i =
∑
i

(
∂x′i
∂xj

dxj)
2 =

∑
i

∂x′i
∂xj

∂x′i
∂xk

dxjdxk . (5.1)

We can rewrite it in terms of the displacement of the point ui = x′i − xi,

dl′2 = dl2 + 2uikdxidxk (5.2)

where uik = 1
2

( ∂ui
∂xk

+ ∂uk
∂xi

+ ∂ul
∂xi

∂ul
∂xk

) is the strain tensor. Usually the deformation we consider
is very small so we can neglect the last term in the strain tensor uik and have

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
(5.3)
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Stress tensor When deformation occurs forces will arise as they would like to make the
system return to equilibrium. These forces are called internal stresses and in our assumption
they have very short range of action.

Let’s consider one component of the total force caused by deformation on some portion
of the system. It will be given by ∫

Fi(~x)dV (5.4)

where the integral is taken over the volume of that portion of the body. Since the stress is
short range and hence can only act on the surface of the body, the integral should be able
to be rewritten as an integral over a surface. Therefore, there must exist a tensor σik such
that Fi is given by

Fi =
∂σik
∂xk

. (5.5)

The tensor σik here is called the stress tensor.

Viscosity The deformation of a body will be reversible if it occurs with an infinitesimal
speed so that the thermodynamic equilibrium is established at every moment. In the process
of realistic deformation if there is any internal motion in the body, there will be irreversible
processes arising from the finite velocity of that motion. The irreversible processes will then
lead to energy dissipation. This means of dissipation is called viscosity.

It is clear that the forces in the irreversible process should relate to the velocity of the
deformation. In addition, it should meet the requirement that when the motion of the system
is a general translation or rotation the forces should be zero as there is no internal motion.
It turns out that the dissipation can be described by the time derivative of the strain tensor
µ̇.

Including the forces from viscosity the stress tensor will be given by

σαβ = λαβγδµγδ − ηαβγδµ̇γδ (5.6)

where the first coefficient is called elastic modulus and the second is the viscosity tensor.

Odd viscosity In general, the viscosity tensor need not to be symmetric. Actually one
the symmetric part of the viscosity tensor describes the dissipation while the antisymmetric
part is not associated with dissipation. We call the antisymmetric part odd viscosity and it
vanishes if there is time reversal symmetry according to Onsager relation.

ηS(B) =ηS(−B)

ηA(B) =− ηA(−B)
(5.7)

In two dimensions, ηA has three independent coefficients ηA1112, η
A
1122, η

A
1222. In an isotropic

system we have
ηA1112 = ηA1222 = η, ηA1122 = 0 . (5.8)
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Hall viscosity Quantum fluids have a ground state with a finite gap. At zero temperature
they have nondissipative responses so we will have ηS = 0 while ηA may or may not be zero.

We now consider a family of Hamiltonians H(uαβ) which depends smoothly on uαβ.
According to the adiabatic response theory, in a uniform deformation we will have [8]〈

∂H

∂uαβ

〉
=

∂ε

∂uαβ
+
∑
λδ

Ωαβλδu̇λδ . (5.9)

where ε is the energy of the system. The adiabatic curvature Ω is the corresponding non-
dissipative (odd) viscosity tensor and it is also named as Hall viscosity.

Hall conductivity and Hall viscosity In a Galilean invariant system in which particles
have the same charge/mass ratio, it has been shown that Hall viscosity is related to the Hall
conductivity in an inhomogeneous electric field [37, 15]. It is shown that in a two dimensional
quantum Hall system, the Hall conductivity tensor σxy(q) can be expanded as

σxy(q)

σxy(0)
= 1 + C2(q2`2) +O(q4`4) (5.10)

where ` =
√

~c/eB is the magnetic length and

C2 =
ηA

~n
− 2π

ν

`2

~ωc
B2ε′′(B) (5.11)

where ν is the filling factor, ε is the energy density, n is the density of electrons and ωc = eB
mc

is
the cyclotron frequency of the quantum Hall state. For integer quantum Hall state with ν = 1
the first term gives 1

4
and the second term gives −1 and in total we will have C2 = −3

4
[37]. In

the following sections we will calculate the coefficient of the Hall conductivity in the second
order in q using Kubo formula and semiclassical theory.

5.2 Derivation of the q2 term in Hall conductivity

5.2.1 Symmetry analysis

Before we do the derivation we would like to first do the symmetry analysis for the Hall
conductivity tensor. We do it by looking at requirements on the dielectric tensor εij(ω,q) and
using the relation between the dielectric tensor and the Hall conductivity tensor, σij(ω,q) =
iωεij(ω,q). The dielectric tensor for a non-dissipative system obeys the following three
requirements:

• Hermitian: εij(ω,q) = ε∗ji(ω,q)

• Onsager’s relation: εij(ω,q, B) = εji(ω,−q,−B)
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• Eq.(103.9) in Landau’s book of Electrodynamics [44]: εij(ω,q) = ε∗ij(−ω,−q) .

By expanding those equations to the second order in q εij(ω,q) = ε0ij(ω) + ε1ijlql(ω) +
ε2ijlgqlqg(ω) and comparing coefficients at the same order of q we get:

• Hermitian: ε1ijl(ω) = ε1∗jil(ω), ε2ijlg(ω) = ε2∗jilg(ω)

• Onsager’s relation: ε1ijl(ω,B) = −ε1jil(ω,−B), ε2ijlg(ω,B) = ε2jilg(ω,−B)

• Eq.(103.9) in Landau’s book of Electrodynamics: ε1ijl(ω) = −ε1∗ijl(−ω), ε2ijlg(ω) =
ε2∗ijlg(−ω)

The dielectric tensor can be split into two parts: time reversal even εSij(B) = εSij(−B) and
time reversal odd εAij(B) = −εAij(−B). Since we would like to work on the Hall conductivity
we look at the time reversal odd part. The above equations will give

εA1
ijl (ω) = −εA1∗

ijl (−ω) = εA1
jil (ω) = εA1∗

jil (ω)
ε2Aijlg(ω) = εA2∗

ijlg (−ω) = −εA2
jilg(ω) = εA2∗

jilg (ω)
(5.12)

It indicates that εA1
ijl is real, odd in ω, and symmetric in i ↔ j and that εA2

ijlg is imaginary,
odd in ω, and antisymmetric in i↔ j. Similarly one can see that ε1Sijl is imaginary, even in ω,
and antisymmetric in i ↔ j and εS2

ijlg is real, even in ω, and symmetric in i ↔ j. Note that
the Hall conductivity tensor σij(q) for a static inhomogeneous electric field would be even
in ω and antisymmetric in i ↔ j. Therefore, we reach the conclusion that the next higher
order correction to the zeroth order hall conductivity σ0

ij is

σA2
ijlgqlqg = lim

ω→0
iωεA2

ijlg(ω)qlqg . (5.13)

5.2.2 Derivation using Kubo formula

In this section, we use Kubo formula to calculate the Hall conductivity σij(q) for an insulator.
The Hamiltonian we consider includes only one particle potential. The current response to
a vector potential A(ω,q) is given by

Ji(ω,q) =− e2

∫
[dk]

∑
n,m

f(εn,k−q/2)− f(εm,k+q/2)

εn,k−q/2 − εm,k+q/2 + ω

〈nk−q/2|∂iH|mk+q/2〉〈mk+q/2|∂jH|nk−q/2〉Aj(ω,q)

(5.14)

where εn is the band energy, |n〉 is short for |unk〉 and Aj(ω,q) = Aje
−iwt+iq·r. Since we work

on insulators, the distribution function f(εn,k + q/2) = f(εn) is 1 for occupied bands and 0
for unoccupied bands. As we work on Hall conductivity tensor we focus on the antisymmetric
part of the conductivity tensor and have

Ji(ω) =− e2

∫
[dk]

∑
n,m

f(εn)− f(εm)

εn,k−q/2 − εm,k+q/2 + ω

1

2
Im
[
〈nk−q/2|∂iH|mk+q/2〉〈mk+q/2|∂jH|nk−q/2〉 − (i↔ j)

]
Aj(ω,q) .

(5.15)
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In order to get the q2 term we would like to expand it in terms of q and ω. For simplicity
we assume q has only one component ql

1

εn,k−q/2 − εm,k+q/2 + ω
=

1

εn,k−q/2 − εm,k+q/2

− ω

(εn − εm)2
− ωql (Vnl + Vml)

(εn − εm)3

− ωq2
l 3 (Vnl + Vml)

2

4(εn − εm)4
+
ωq2

l (∂lVnl − ∂lVml)
4(εn − εm)3

+ · · ·
(5.16)

where Vnl = ∂klεn(k) is the band velocity. We have omitted the k dependence in the above
quantities. And the other part is also expanded:

〈nk−q/2|∂iH|mk+q/2〉〈mk+q/2|∂jH|nk−q/2〉 = 〈n|∂iH|m〉〈m|∂jH|n〉

+
ql
2

(
i Im[〈n|∂iH|∂lm〉〈m|∂jH|n〉 − 〈∂ln|∂iH|m〉〈m|∂jH|n〉 − (i↔ j)]

+ Re[〈n|∂iH|∂lm〉〈m|∂jH|n〉 − 〈∂ln|∂iH|m〉〈m|∂jH|n〉+ (i↔ j)]
)

+
qlql
4

(
i Im[

1

2
〈n|∂iH|∂lm〉〈∂lm|∂jH|n〉 − 〈∂ln|∂iH|m〉〈∂lm|∂jH|n〉

− 〈∂ln|∂iH|∂lm〉〈m|∂jH|n〉+
1

2
〈∂ln|∂iH|m〉〈m|∂jH|∂ln〉 − (i↔ j)]

+
1

2
i Im[〈n|∂iH|∂2

lm〉〈m|∂jH|n〉+ 〈∂2
l n|∂iH|m〉〈m|∂jH|n〉 − (i↔ j)]

+ Re[
1

2
〈n|∂iH|∂lm〉〈∂lm|∂jH|n〉 − 〈∂ln|∂iH|m〉〈∂lm|∂jH|n〉

− 〈∂ln|∂iH|∂lm〉〈m|∂jH|n〉+
1

2
〈∂ln|∂iH|m〉〈m|∂jH|∂ln〉+ (i↔ j)]

+
1

2
Re[〈n|∂iH|∂2

lm〉〈m|∂jH|n〉+ 〈∂2
l n|∂iH|m〉〈m|∂jH|n〉+ (i↔ j)]

)

(5.17)

The current which is first order in ω and second order in q is given by

J
(2)
i =− e2(∂xl∂xlEj)

∫
[dk]

∑
n,m 6=n

f(εn)
{

(
∂lVnl − ∂lVml
2(εm − εn)3

+
3(Vnl + Vml)

2

2(εm − εn)4

)
Im〈n|∂iH|m〉〈m|∂jH|n〉

− Vnl + Vml
(εm − εn)3

Im[〈n|∂iH|∂lm〉〈m|∂jH|n〉 − 〈∂ln|∂iH|m〉〈m|∂jH|n〉 − (i↔ j)]

+
1

2(εm − εn)2

(
Im[

1

2
〈n|∂iH|∂lm〉〈∂lm|∂jH|n〉 − 〈∂ln|∂iH|m〉〈∂lm|∂jH|n〉

− 〈∂ln|∂iH|∂lm〉〈m|∂jH|n〉+
1

2
〈∂ln|∂iH|m〉〈m|∂jH|∂ln〉 − (i↔ j)]

+
1

2
Im[〈n|∂iH|∂2

lm〉〈m|∂jH|n〉+ 〈∂2
l n|∂iH|m〉〈m|∂jH|n〉 − (i↔ j)]

)}
,

(5.18)
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To simplify the derivation we first work on a two band model with v and c denote the valence
band and the conduction band respectively. The current for a two band model is given by

J
(2)
i = −e2(∂xl∂xlEj)

∫
[dk]

{(∂lVvl − ∂lVcl
2(εc − εv)3

+
3(Vvl + Vcl)

2

2(εc − εv)4

)
Im〈v|∂iH|c〉〈c|∂jH|v〉

− Vvl + Vcl
(εc − εv)3

Im[〈v|∂iH|∂lc〉〈c|∂jH|v〉 − 〈∂lv|∂iH|c〉〈c|∂jH|v〉 − (i↔ j)]

+
1

2(εc − εv)2

(
Im[

1

2
〈v|∂iH|∂lc〉〈∂lc|∂j|v〉 − 〈∂lv|∂iH|c〉〈∂lc|∂jH|v〉

−〈∂lv|∂iH|∂lc〉〈c|∂jH|v〉+
1

2
〈∂lv|∂iH|c〉〈c|∂jH|∂lv〉 − (i↔ j)]

+
1

2
Im
[
〈v|∂iH|∂2

l c〉〈c|∂jH|v〉+ 〈∂2
l v|∂iH|c〉〈c|∂jH|v〉 − (i↔ j)

] )}
.

(5.19)

We then use
〈n|∂iH|m〉 = δnmVni + (εm − εn)〈n|∂im〉 (5.20)

and insert |v〉〈v|+ |c〉〈c| in proper positions in the first line in Eq.(5.19) to get

Im〈v|∂iH|c〉〈c|∂jH|v〉 = (εc − εv)2 Im〈∂iv|∂jv〉 . (5.21)

We do the same thing for the second line in Eq.(5.19)

Im[〈v|∂iH|∂lc〉〈c|∂jH|v〉 − 〈∂lv|∂iH|c〉〈c|∂jH|v〉 − (i↔ j)]

=(εv − εc){Im ∂l[〈v|∂ic〉〈c|∂jv〉(εv − εc)] + ∂j[〈v|∂lc〉〈c|∂iv〉(εv − εc)]
− ∂i[〈v|∂lc〉〈c|∂jv〉(εv − εc)] + Im[(Vvl + Vcl)〈v|∂ic〉〈c|∂jv〉]
+ 2 Im[Vvl〈∂iv|c〉〈c|∂jv〉+ Vvj〈∂lv|c〈c|∂iv〉 − Vvi〈∂lv|c〉〈c|∂jv〉]}

=− (εv − εc)[(Vvl + Vcl) Im〈∂iv|∂jv〉+ εijl(~Vv · Ωv)− εijl
1

e
(∇ · ~Mv)] .

(5.22)

where we have used the expression for orbital magnetic moment ~Mv = e
2

Im〈∇kv| × (H −
εv)|∇kv〉 and the expression for Berry curvature Ωvl = −εijl Im〈∂iv|∂jv〉. For the third line
in Eq.(5.19) we get

Im[
1

2
〈v|∂iH|∂lc〉〈∂lc|∂jH|v〉 − 〈∂lv|∂iH|c〉〈∂lc|∂jH|v〉

−〈∂lv|∂iH|∂lc〉〈c|∂jH|v〉+
1

2
〈∂lv|∂iH|c〉〈c|∂jH|∂lv〉 − (i↔ j)]

= Im[(εc − εv)〈∂lv|c〉〈c|∂lc〉〈∂jc|v〉Vvi + (εc − εv)〈∂lv|v〉〈v|∂lc〉〈∂jc|v〉Vci (5.23)

+
1

2
|〈∂lv|v〉|2〈∂iv|∂jv〉(εc − εv)2 +

1

2
|〈∂lc|c〉|2〈∂iv|∂jv〉(εc − εv)2 − (i↔ j)] (5.24)
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and

1

2
Im
[
〈v|∂iH|∂2

l c〉〈c|∂jH|v〉+ 〈∂2
l v|∂iH|c〉〈c|∂jH|v〉 − (i↔ j)

]
=

1

2
Im[〈v|∂2

l c〉〈∂jc|v〉(εc − εv)Vvi + 〈∂2
l v|c〉〈∂jc|v〉(εc − εv)Vci (5.25)

+ 〈v|∂ic〉〈c|∂2
l c〉〈∂jc|v〉(εc − εv)2 + 〈v|∂2

l v〉〈v|∂ic〉〈∂jc|v〉(εc − εv)2 − (i↔ j)] (5.26)

=
1

2
Im[〈v|∂2

l c〉〈∂jc|v〉(εc − εv)Vvi + 〈∂2
l v|c〉〈∂jc|v〉(εc − εv)Vci − (i↔ j)] (5.27)

− 〈∂lc|∂lc〉 Im[〈∂iv|∂jv〉](εc − εv)2 − 〈∂lv|∂lv〉 Im[〈∂iv|∂jv〉](εc − εv)2 . (5.28)

In the last equal sign we have used

Im[〈v|∂ic〉〈c|∂2
l c〉〈∂jc|v〉(εc − εv)2 − (i↔ j)]

= Im[〈v|∂ic〉〈c|∂2
l c〉〈∂jc|v〉(εc − εv)2 − 〈v|∂jc〉〈c|∂2

l c〉〈∂ic|v〉(εc − εv)2]

= (εc − εv)2 Im[〈c|∂2
l c〉〈v|∂ic〉〈∂jc|v〉+ 〈∂2

l c|c〉〈v|∂ic〉〈∂jc|v〉]
= −2(εc − εv)2 Im[〈∂lc|∂lc〉〈v|∂ic〉〈∂jc|v〉]
= −2(εc − εv)2〈∂lc|∂lc〉 Im[〈∂iv|∂jv〉] .

Similarly,

Im[〈v|∂2
l v〉〈v|∂ic〉〈∂jc|v〉(εc − εv)2 − (i↔ j)]

=− 2(εc − εv)2〈∂lv|∂lv〉 Im[〈∂iv|∂jv〉] .
(5.29)

Combining Eq.(5.24) and Eq.(5.28) we have

1

2
|〈∂lv|v〉|2 Im[〈∂iv|∂jv〉](εc − εv)2 +

1

2
|〈∂lc|c〉|2 Im[〈∂iv|∂jv〉](εc − εv)2 − (i↔ j)]

−〈∂lc|∂lc〉 Im[〈∂iv|∂jv〉](εc − εv)2 − 〈∂lv|∂lv〉 Im[〈∂iv|∂jv〉](εc − εv)2

= (εc − εv)2 Im[〈∂iv|∂jv〉] (〈∂lv|v〉〈v|∂lv〉 − 〈∂lv|v〉〈v|∂lv〉 − 〈∂lv|c〉〈c|∂lv〉+ (c↔ v))

= (εc − εv)2 Im[〈∂iv|∂jv〉] (−〈∂lv|c〉〈c|∂lv〉 − 〈∂lc|v〉〈v|∂lc〉)
= −2(εc − εv)2 Im[〈∂iv|∂jv〉]|〈∂lv|c〉|2.

(5.30)

Combining Eq.(5.23) and Eq.(5.27) we have

Im[(εc − εv)〈∂lv|c〉〈c|∂lc〉〈∂jc|v〉Vvi + (εc − εv)〈∂lv|v〉〈v|∂lc〉〈∂jc|v〉Vci − (i↔ j)]

+
1

2
Im[〈v|∂2

l c〉〈∂jc|v〉(εc − εv)Vvi + 〈∂2
l v|c〉〈∂jc|v〉(εc − εv)Vci − (i↔ j)]

=(εc − εv) Im[
1

2
〈∂2
l v|c〉〈∂jc|v〉(Vci − Vvi) + 〈∂lv|v〉〈v|∂lc〉〈∂jc|v〉(Vci − Vvi)− (i↔ j)]

(5.31)
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where we have used ∂2
l 〈v|c〉 = 〈∂2

l v|c〉 + 〈v|∂2
l c〉 + 2〈∂lv|∂lc〉 = 0. Substitute these results

into Eq.(5.19) we have

J
(2)
i = −e2(∂xl∂xlEj)

∫
[dk]{

(
∂lVvl − ∂lVcl

2(εc − εv)
+

(Vvl + Vcl)
2

2(εc − εv)2

)
Im〈∂iv|∂jv〉

+
Vvl + Vcl
(εc − εv)2

[εijl(~Vv · Ωv)− εijl
1

e
(∇ · ~Mv))]

+
1

2
(−2|〈∂lv|c〉|2 Im〈∂iv|∂jv〉+

1

εc − εv
Im[

1

2
〈∂2
l v|c〉〈∂jc|v〉(Vci − Vvi)

+ 〈∂lv|v〉〈v|∂lc〉〈∂jc|v〉(Vci − Vvi)− (i↔ j)])} .
(5.32)

Integral by parts for the first term we have

J
(2)
i = −e2(∂xl∂xlEj)

∫
[dk]{ 2VvlVcl

(εc − εv)2
Im〈∂iv|∂jv〉 −

Vvl − Vcl
2(εc − εv)

∂l Im〈∂iv|∂jv〉

+
Vvl + Vcl
(εc − εv)2

[εijl(~Vv · Ωv)− εijl
1

e
(∇ · ~Mv)]

+
1

2
(−2|〈∂lv|c〉|2 Im〈∂iv|∂jv〉+

1

εc − εv
Im[

1

2
〈∂2
l v|c〉〈∂jc|v〉(Vci − Vvi)

+〈∂lv|v〉〈v|∂lc〉〈∂jc|v〉(Vci − Vvi)− (i↔ j)])} .
(5.33)

Now we make a specific choice of the electric field ~E = Eeiqxx̂ and we get current along ŷ in
a 2D material

J (2)
y = −1

2
e2(∂2

xE)

∫
[d2k]{−2|〈∂xv|c〉|2 Im〈∂yv|∂xv〉

+
4VvxVcx

(εc − εv)2
Im〈∂yv|∂xv〉 −

Vvx − Vcx
(εc − εv)

∂x Im〈∂yv|∂xv〉

+
Vcy − Vvy
εc − εv

Im[
1

2
〈∂2
xv|c〉〈∂xc|v〉+ 〈∂xv|v〉〈v|∂xc〉〈∂xc|v〉]

−Vcx − Vvx
εc − εv

Im[
1

2
〈∂2
xv|c〉〈∂yc|v〉+ 〈∂xv|v〉〈v|∂xc〉〈∂yc|v〉])} .

(5.34)

The intraband contribution from the first term can be written as

J (2)
y = −1

2
e2(∂2

xE)

∫
[d2k](−2|〈∂xv|c〉|2 Im〈∂yv|∂xv〉)

=− 1

2
e2(∂2

xE)

∫
[d2k]|〈∂xv|c〉|2Ωyx

=
1

2
e2(∂2

xE)

∫
[d2k]〈∂xv|1− Pv|∂xv〉Ωxy

(5.35)
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where Pv = |v〉〈v| is the projection operator. Note that 〈∂xv|1 − Pv|∂xv〉 is the quantum
metric tensor. Note that in the above derivation we do not include the diamagnetic current
term

Ji = −e2

∫
[d2k]〈un|∂i∂jH|un〉Aj . (5.36)

As we can see it is symmetric and therefore does not contribute to the Hall current.
In the case that we have more than two bands. The current expression will be a bit

different. The last term in Eq. (5.18)

1

(εm − εn)2
( Im[

1

2
〈n|∂iH|∂lm〉〈∂lm|∂jH|n〉 − 〈∂ln|∂iH|m〉〈∂lm|∂jH|n〉

− 〈∂ln|∂iH|∂lm〉〈m|∂jH|n〉+
1

2
〈∂ln|∂iH|m〉〈m|∂jH|∂ln〉 − (i↔ j)]

+
1

2
Im[〈n|∂iH|∂2

lm〉〈m|∂jH|n〉+ 〈∂2
l n|∂iH|m〉〈m|∂jH|n〉 − (i↔ j)])

(5.37)

will equal to

1

(εm − εn)2
Im

(
1

2
(εg − εn)(εn − εk)〈n|∂ig〉〈g|∂lm〉〈∂lm|k〉〈k|∂jn〉

(εn − εk)(εm − εg)〈∂ln|g〉〈g|∂im〉〈∂lm|k〉〈k|∂jn〉 − (i↔ j)

(εn − εm)(εk − εg)〈∂ln|g〉〈g|∂ik〉〈k|∂lm〉〈m|∂jn〉 − (i↔ j)

1

2
(εm − εg)(εm − εk)〈∂ln|g〉〈g|∂im〉〈∂jm|k〉〈k|∂ln〉

1

2
(εn − εm)(εm − εg)〈∂2

l n|g〉〈g|∂im〉〈m|∂jn〉(g 6= m)

1

2
(εn − εm)(εm − εg)〈g|∂2

l n〉〈∂in|m〉〈∂jm|g〉(g 6= m)

1

2
(εn − εm)(εn − εg)〈∂in|g〉〈g|∂2

lm〉〈m|∂jn〉(g 6= n)

1

2
(εn − εm)(εn − εg)〈∂in|m〉〈∂2

lm|g〉〈g|∂jn〉(g 6= n)

)
.

(5.38)

In the end, we find from Eq. (5.34) that if the system have only two bands and if the
bands are flat, the current will be given by a very simple expression

J (2)
y =

1

2
e2(∂2

xE)

∫
[d2k]〈∂xv|1− Pv|∂xv〉Ωxy . (5.39)

It is an interplay of the Berry curvature and the quantum metric tensor.

5.3 Semiclassical derivation

In this section we would like to derive Eq. (5.39) using a semiclassical approach. As we have
mentioned before, in the semiclassical picture, electrons are modeled as wave packets. We
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construct a wavepacket centered at xc and kc with the eigenstates within a single band.

|Ψ〉 =

∫
[d2k] a(~k, t)ψ~k(x, t) (5.40)

~xc = 〈Ψ|x̂|Ψ〉 (5.41)

~kc =

∫
[d2k]~k|a(~k, t)|2. (5.42)

In a static inhomogeneous electric field ~E = x̂Eeiqx = −∇φ(x)the local Hamiltonian that
such a wave packet feels will be

H = H0(~k)− e
[
φ(xc) +

dφ

dx

∣∣∣∣
xc

〈Ψ|(x− xc)|Ψ〉+
1

2

d2φ

dx2

∣∣∣∣
xc

〈Ψ|(x− xc)2|Ψ〉
]

+ · · ·

= H0(~k)− e
(
φ(xc)−

1

2

dE

dx

∣∣∣∣
xc

〈Ψ|(x− xc)2|Ψ〉+ · · ·
)
.

(5.43)

We have used the fact that the wave packet is centered at xc. Since the wavepacket is not a
point particle, in the expansion above we have extra terms other than the electrical potential
−eφ(xc). We work on the first non-zero term

〈Ψ|(x− xc)2|Ψ〉 = 〈Ψ|x2|Ψ〉 − x2
c

=

∫
[d2k]

∫
[d2k′]a ∗ (k, t)a(k′, t) 〈ψnk|x2|ψnk′〉 − x2

c

=
∑
m

∫
[d2k′′]

∫
[d2k]

∫
[d2k′]a ∗ (k, t)a(k′, t) 〈ψnk|x|ψmk′′〉 〈ψmk′′ |x|ψnk′〉 − x2

c .

(5.44)

If m 6= n it will be∑
m

∫
[d2k′′]

∫
[d2k]

∫
[d2k′]a ∗ (k, t)a(k′, t)δ(k′′ − k′)δ(k − k′′)〈unk|i

∂umk
∂kx
〉〈umk|i

∂unk
∂kx
〉

=

∫
[d2k]|a(k, t)|2

〈
∂unk
∂kx

∣∣∣∣1− Pn∣∣∣∣∂unk∂kx

〉
=

〈
∂unk
∂kx

∣∣∣∣1− Pn∣∣∣∣∂unk∂kx

〉∣∣∣∣
k=kc

.

(5.45)

If n = m it will be∫
[d2k′′]

∫
[d2k]

∫
[d2k′]a∗(k, t)a(k′, t)

[(
i
∂

∂kx
+ 〈unk|i

∂unk
∂kx
〉
)
δ(k − k′′)

]
·
[(
−i ∂
∂k′x

+ 〈unk′ |i
∂unk′

∂k′x
〉
)
δ(k′ − k′′)

]
=

∫
[d2k]

[(
−i ∂
∂kx

+ 〈unk|i
∂unk
∂kx
〉
)
a∗(k, t)

] [(
i
∂

∂kx
+ 〈unk|i

∂unk
∂kx
〉
)
a(k, t)

]
.

(5.46)
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Writing the amplitude a(k, t) in the form of |a(k, t)|e−iγ(q,t) Eq.(5.46) will be∫
[d2k]

[
−ieiγ ∂|a(k, t)|

∂kx
+ a∗(k, t)

∂γ

∂kx
+ 〈unk|i

∂unk
∂kx
〉a∗(k, t)

]
·
[
ie−iγ

∂|a(k, t)|
∂kx

+ a(k, t)
∂γ

∂kx
+ 〈unk|i

∂unk
∂kx
〉a(k, t)

]
= x2

c +

∫
[d2k]

(
∂|a|
∂kx

)2

(5.47)

where we have used

xc =
∂γ(kc, t)

∂kcx
+ 〈unk|i

∂unk
∂kcx

〉 . (5.48)

Finally we have

〈Ψ|(x− xc)2|Ψ〉 =

〈
∂un
∂kx

∣∣∣∣1− Pn∣∣∣∣∂un∂kx

〉∣∣∣∣
~k= ~kc

+

∫
[d2k]

(
∂|a|
∂kx

)2

(5.49)

The first term is the quantum metric tensor, which describes the intrinsic contribution from
the Bloch waves while the second term is related to the details of how the wave packet
is constructed. Due to the first term in Eq. (5.49) we will have a correction term to the
semiclassical equation for the response to an inhomogeneous electric field. The semiclassical
equation will be modified by

~̇kc = −e
(
E(xc) +

1

2

d2E(xc)

dx2
c

〈
∂un
∂kcx

∣∣∣∣1− Pn∣∣∣∣ ∂un∂kcx

〉)
x̂ . (5.50)

The Hall velocity we will get from the second term is

δ~̇xc = −δ~̇kc × ~Ω = e
1

2

d2E(xc)

dx2
c

〈
∂un
∂kcx

∣∣∣∣1− Pn∣∣∣∣ ∂un∂kcx

〉
Ωxyŷ (5.51)

which leads to the Hall current

δJy = e2 1

2

d2E

dx2

∫
[d2k]

〈
∂un
∂kx

∣∣∣∣1− Pn∣∣∣∣∂un∂kx

〉
Ωxy . (5.52)

The result is the same as Eq. (5.39).
There are two comments for the quantum metric tensor and the semiclassical approach:

1. In the Fourier transform we have the relation 4x ·4k ≥ 1
2
. If we make our wavepacket

more localized in real space, the width of it in k space will be larger. However, the
intrinsic contribution to the Hall conductivity from the Bloch waves unk is independent
of how one construct the wave packet.

2. The quantum metric tensor also appears in construction of the maximally localized
Wannier functions [50]. It is the gauge invariant part of the maximally localized Wan-
nier function. For Chern insulators the Wannier function can not be localized in both
directions of the two dimensional space. However, we can still have a well defined
localization length in one direction.
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5.4 Numerical results for Chern insulators

5.4.1 Topological flat band model

First, we study the Hall conductivity in a topological flat band model. There have been sev-
eral papers studying how to construct 2D lattice tight binding models to produce topological
flat bands. Their purpose is to study whether the analytic structure of the wave functions
associated with the 2D Landau level is necessary for the fractional quantum Hall state. Here
we choose one of the proposed models. It is a two band Chern insulator with two nearly
flat bands. The details of this model can be found in [81]. Basically it is modified Haldane
model [31] with fine tuned parameters.

We compute the Hall conductivity in the zeroth order and the second order in q. The
Hall conductivity in the zeroth order is −3 with e = 1, h = 1. For computing the hall
conductivity in the second order in q we use two ways. One is that we use our Eq. (5.39)
which is valid for a two band insulator when the bands are flat,

J (2)
y =

1

2
e2(∂2

xE)

∫
[d2k]〈∂xv|1− Pv|∂xv〉Ωxy . (5.53)

This would not be the correct result since there are other terms contributing to the hall
conductivity when the bands are not entirely flat. However, it should be very close to the
right value since the model we choose has two nearly flat bands. To get the right value we
compute it using the expression from Kubo formula which includes all contributions. Indeed,
we get the value 0.44 from Eq. (5.39) and 0.43 from the expression including all contributions
with e = 1, h = 1 and they are very close to each other.

5.4.2 Hofstadter model

In the Hofstadter model, each plaquette in a two dimensional lattice encloses a magnetic
flux φ = φ0

n
where φ0 is one magnetic flux quantum h

2e
. The Hofstadter model will converge

to continuum Landau levels in the small flux limit n → ∞. Therefore, in the small flux
limit we expect to have C2 = −3

4
with the filling factor ν = 1. In this section, we get the

numerical results of C2 for each value of n in a Hofstadter model. In the following we will
always work with ν = 1 and we set e = 1, ~ = 1, and the area of each plaquette as 1.

As we can see from Fig.5.1, C2 is approaching to a constant as n grows. We do linear
fitting for C2 in Fig.5.2 and the linear fitting function is approximately

C2 = −3

4
+

2π

8n
(5.54)

The constant term is −3
4

as expected.
As we have discussed before, C2 can be divided into two parts, one is related to the Hall

viscosity and the other is related to the magnetic susceptibility

C2 =
ηA

~n
− 2π

ν

`2

~ωc
B2ε′′(B) . (5.55)
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Figure 5.3: The electron energy per unit cell vs the magnetic field B.

If we can get the value of ε′′(B) we will have the value of Hall viscosity ηA. There are two
ways we can compute ε′′(B). One is that we can get it from the electron energy which is a
function of the magnetic field. We plot the relation between the one electron energy per unit
cell and the magnetic field for the Hofstadter model and do linear fitting. From the fitting
result in Fig.5.4.2 we see that the one electron energy per unit cell is linear in the magnetic
field in the small flux limit. We thus have

ε(B) · 2π`2
B = ε(B) · 2π

B
= B + const (5.56)

and the magnetic susceptibility will be

ε′′(B) =
2

2π
. (5.57)

As we know, the magnetic susceptibility of the quantum Hall state at ν = 1 is

ε′′(B) =
1

2πm
. (5.58)

By comparing with Eq. (5.57) we can get the mass m = 1
2
. It is because in the small flux

limit the energy dispersion is k2 near k = 0 .
Another way to compute the magnetic susceptibility is from the symmetric part of the

conductivity tensor in the second order in q. The conductivity tensor can be divided into
two parts according to Read’s paper [15]

σij(q, w) =
1

m2w2
c

[
iκ−1

w+
qµqνεµiενj + (ηH(w = 0)− κ−1

wc
)q2εij] (5.59)
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Figure 5.4: Magnetic susceptibility of a Hofstadter model with 1
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where
κ−1(ν,B) = B2ε′′(B) . (5.60)

The first term is symmetric in i ↔ j and the second term is the hall conductivity tensor.
Therefore, we can compute the symmetric part of the conductivity tensor to get the magnetic
susceptibility using the Kubo formula

σSij = − e
2

iw

∫
[dk]

∑
n,m

f(εn,k−qx/2)− f(εm,k+qx/2)

εn,k−qx/2 − εm,k+qx/2

(5.61)

· Re[〈nk−qx/2|∂iH|mk+qx/2〉〈mk+qx/2|∂jH|nk−qx/2〉] . (5.62)

We plot the values and do linear fitting in Fig.5.5. The fitting function is approximately

ε′′(B) =
2

2π
− 3

4n
. (5.63)

We reach the same conclusion that ε′′(B) = 2
2π

and with that we have ηA = 1
4

as expected.
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