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ARTICLE

Tracheal aspirate RNA sequencing identifies
distinct immunological features of COVID-19 ARDS
Aartik Sarma 1, Stephanie A. Christenson1,47, Ashley Byrne 2,47, Eran Mick 1,2,3,47,

Angela Oliveira Pisco 2,47, Catherine DeVoe3, Thomas Deiss2, Rajani Ghale1,3, Beth Shoshana Zha1,

Alexandra Tsitsiklis 3, Alejandra Jauregui1, Farzad Moazed1, Angela M. Detweiler3, Natasha Spottiswoode4,

Pratik Sinha5, Norma Neff 2, Michelle Tan2, Paula Hayakawa Serpa3, Andrew Willmore1, K. Mark Ansel 6,7,

Jennifer G. Wilson8, Aleksandra Leligdowicz1,9,10, Emily R. Siegel11, Marina Sirota12, Joseph L. DeRisi2,13,

Michael A. Matthay 1,10,14, COMET Consortium*, Carolyn M. Hendrickson1, Kirsten N. Kangelaris4,

Matthew F. Krummel15, Prescott G. Woodruff1,7, David J. Erle 1,4,16,17, Carolyn S. Calfee1,10,14,48 &

Charles R. Langelier 2,3,48✉

The immunological features that distinguish COVID-19-associated acute respiratory distress

syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report

the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate

from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as

controls without ARDS. In contrast to a “cytokine storm,” we observe reduced proin-

flammatory gene expression in COVID-19 ARDS when compared to ARDS due to other

causes. COVID-19 ARDS is characterized by a dysregulated host response with increased

PTEN signaling and elevated expression of genes with non-canonical roles in inflammation

and immunity. In silico analysis of gene expression identifies several candidate drugs that

may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulo-

cyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia,

COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The

relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients

with COVID-19 ARDS when compared to patients with mild COVID-19. In summary,

assessment of host gene expression in the lower airways of patients reveals distinct

immunological features of COVID-19 ARDS.

https://doi.org/10.1038/s41467-021-25040-5 OPEN

A full list of author affiliations appears at the end of the paper.
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In its most severe form, coronavirus disease 2019 (COVID-19)
can precipitate the acute respiratory distress syndrome
(ARDS), which is characterized by low arterial oxygen con-

centrations, alveolar injury, and a dysregulated inflammatory
response in the lungs1. Early reports hypothesized that COVID-
19 ARDS was driven by a “cytokine storm” based on the detection
of higher circulating inflammatory cytokine levels in critically ill
COVID-19 patients compared to those with mild disease or
healthy controls2–4. Recent studies, however, have found that
patients with COVID-19 ARDS have lower plasma cytokine levels
compared to those with ARDS due to other causes5–7, high-
lighting a need to understand the underlying mechanisms of
COVID-19 ARDS.

Clinical trials have demonstrated a significant mortality benefit
for dexamethasone in COVID-19 patients with ARDS8, impli-
cating a role for dysregulated inflammation in COVID-19
pathophysiology given the immunomodulatory effects of corti-
costeroids. In contrast, clinical trials of corticosteroids for ARDS
prior to the SARS-CoV-2 pandemic have had mixed results,
ranging from benefit to possible harm1. These differences suggest
distinct, corticosteroid-responsive biology in COVID-19 ARDS,
with important implications for pathogenesis and treatment.

While several studies have assessed host lower respiratory tract
gene expression in patients with SARS-CoV-29–12, none has
compared COVID-19 ARDS to other causes of ARDS. Here, we
perform this comparison in a prospective cohort of critically ill
adults with ARDS from COVID-19 or from other etiologies, as
well as controls without ARDS. From RNA sequencing (RNA-
seq) of tracheal aspirate (TA), we identify distinct immunologic
features of COVID-19 ARDS.

Results
We conducted a prospective case-control study of 52 adults
requiring mechanical ventilation (Table 1, Supplementary Data 1,
Supplementary Fig. 1) for ARDS from COVID-19 (COVID-
ARDS, n= 15), ARDS from other etiologies (Other-ARDS, n=
32), or for airway protection in the absence of pulmonary disease
(No-ARDS, n= 5). Other ARDS etiologies included pneumonia,
aspiration, sepsis, and transfusion reaction. Patients were enrolled
at two tertiary care hospitals in San Francisco, California under
research protocols approved by the University of California San
Francisco Institutional Review Board. We excluded immuno-
suppressed patients to avoid confounding the measurement of
host inflammatory responses. TA was collected within 5 days of
intubation and underwent RNA-seq.

We began by comparing TA gene expression between COVID-
ARDS and Other-ARDS patients (Fig. 1a, Supplementary Fig. 2,
and Supplementary Data 2) and identified 793 differentially
expressed genes at a Benjamini–Hochberg false discovery rate
(FDR) < 0.1, as well as differentially activated pathways using
Ingenuity Pathway Analysis (IPA)13. IL-1, IL-6, and several other
cytokine signaling pathways were more highly activated in Other-
ARDS, whereas COVID-ARDS patients had inflammatory path-
way activation more similar to No-ARDS controls (Fig. 1b and
Supplementary Data 3). We also found relative attenuation of the
proinflammatory HIF-1α and nitric oxide signaling pathways in
COVID-ARDS compared to Other-ARDS patients.

Evaluation of genes with the most significant expression dif-
ferences in COVID-ARDS compared to Other-ARDS revealed
several differences in genes regulating immunity and inflamma-
tion (Supplementary Data 2 and Supplementary Fig. 3). For
instance, among genes upregulated in COVID-ARDS, P2RY14
functions in purinergic receptor signaling to mediate inflamma-
tory responses and its ligand UDP-glucose promotes neutrophil
recruitment in the lung14. Conversely, ARG1, which promotes

macrophage efferocytosis and inflammation resolution15, was
downregulated in COVID-ARDS versus Other-ARDS patients.
While the expression of several interferon-stimulated genes
(ISGs) (e.g., GBP5) differed between COVID-ARDS and Other-
ARDS groups (Supplementary Data 2), no differences in the
expression of any interferon regulatory genes (e.g., IRF7) were
observed.

We observed activation of PTEN signaling in COVID-ARDS
compared to both Other-ARDS and No-ARDS groups (Fig. 1b,
Fig. 1c, Supplementary Data 3 and 4). PTEN modulates both
innate and adaptive immune responses by opposing the activity
of PI3K16. Consistent with this, IPA upstream regulator analysis
predicted activation of PTEN and inhibition of PI3K in COVID-
ARDS versus Other-ARDS patients (Fig. 1c and Supplementary
Data 4). Applying this approach to upstream cytokines addi-
tionally predicted activation of IFNγ and CNTF, and inhibition of
IL-10 in COVID-ARDS versus Other-ARDS patients (Fig. 1c).

Next, we asked whether existing pharmaceuticals could counter
the dysregulated gene expression in COVID-19 ARDS by com-
paring genes that were differentially expressed in COVID-ARDS
and No-ARDS groups against the IPA database of 12,981 drug
treatment-induced transcriptional signatures derived from
human studies and cell culture experiments13 (Fig. 1d and Sup-
plementary Data 5). Dexamethasone was the compound pre-
dicted to most significantly counter-regulate the genes expressed
in COVID-ARDS patients compared to No-ARDS patients. This
finding was striking given that dexamethasone has a mortality
benefit in patients with severe COVID-19 in clinical trials8.
Granulocyte colony-stimulating factor (G-CSF), which was also
found to reduce COVID-19 mortality in a recent clinical trial17,
was also significant. Other corticosteroids (fluticasone, pre-
dnisolone), as well as omega-3 fatty acids (eicosapentaenoic and
docosahexaenoic acids), were additionally predicted to shift the
transcriptional profile of COVID-ARDS toward No-ARDS con-
trols (Fig. 1d and additional candidates in Supplementary Data 5).

To identify genes that might underlie the established ther-
apeutic benefit of dexamethasone, we examined genes differen-
tially expressed in COVID-ARDS that were also predicted to be
regulated by dexamethasone (Supplementary Data 6). Interest-
ingly, both dexamethasone and G-CSF were predicted to mod-
ulate the expression of several genes differentially expressed
between COVID-ARDS and controls. Many of these genes have
established roles in immunity, inflammation, and interferon
responses (Supplementary Fig. 3). For instance, both drugs were
predicted to inhibit the expression of P2YR14, which regulates
interferon-α secretion in plasmacytoid dendritic cells18 and
mediates chemotaxis of hematopoietic stem cells19, EPSTI1,
which promotes M1 macrophage polarization20, and STAT1,
which induces chemokine expression, regulates differentiation of
hematopoietic cells and promotes reactive oxygen species
production21.

Since TA contains a heterogeneous mix of cells from the air-
ways and alveoli, we conducted additional analyses to understand
which cells were contributing to the measured gene expression. In
silico prediction of cell-type composition demonstrated that
monocytes/macrophages and neutrophils were the most abun-
dant cell types in patients with COVID-ARDS as well as Other-
ARDS (Fig. 2a, Supplementary Fig. 1, and Supplementary Data 7).
While no differences in lymphocyte, macrophage, or neutrophil
populations were observed, decreased proportions of type-2
alveolar epithelial cells and increased proportions of goblet cells
were found in COVID-ARDS compared to Other-ARDS subjects.
This may reflect alveolar epithelial injury, airway remodeling,
and/or preferential SARS-CoV-2 infection of cells with the
highest expression of ACE2 and TMPRSS222.
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To evaluate the immune cell landscape in COVID-19 ARDS more
comprehensively, we performed single-cell RNA-seq (scRNAseq) on
CD45+- enriched TA specimens from six COVID-ARDS patients
(Fig. 2b). Monocytes, macrophages (in particular alveolar macro-
phages), and neutrophils were the most abundant cell types observed,
consistent with bulk deconvolution results and in line with previous
scRNAseq analyses of bronchial alveolar lavage (BAL) fluid from
patients with severe COVID-19 pneumonia10,11,23. We additionally
observed significant populations of CD4+ and CD8+ T cells, which
may interact with macrophages to drive dysregulated inflammatory
responses in COVID-1910.

ARDS is a heterogeneous syndrome caused by diverse infec-
tious and noninfectious insults. To determine if COVID-ARDS
had unique features compared to other types of infection-
associated ARDS, we performed secondary analyses comparing
the differential gene expression in COVID-ARDS without co-
infections (n= 8) to that of ARDS caused exclusively by other
viral (n= 4, Fig. 3a and Supplementary Data 8) or bacterial (n=
9, Fig. 3b and Supplementary Data 9) lower respiratory tract
infections (LRTI). COVID-ARDS was characterized by lower
expression of proinflammatory signaling pathways compared to
bacterial LRTI-associated ARDS but higher levels of the same
pathways compared to other viral LRTI-associated ARDS (Fig. 3c
and Supplementary Data 9).

Although interferon-related gene expression was higher in
COVID-ARDS compared to bacterial LRTI and No-ARDS con-
trols, it was markedly attenuated in ARDS patients with COVID-
19 versus those with other viral LRTI (Fig. 3d and Supplementary
Data 10). Given prior findings of impaired interferon responses in

patients with severe COVID-19, we evaluated ISGs more closely
by comparing expression levels against SARS-CoV-2 viral load
(Supplementary Fig. 6 and Supplementary Data 11). Prior studies
found a strong correlation between viral load and ISG expression
in the upper respiratory tract of patients with early, mild
disease24. In contrast, we observed decoupling of this relationship
for several ISGs (Supplementary Fig. 6 and Supplementary
Data 11).

Discussion
Our results challenge the “cytokine storm” model of COVID-19
ARDS. Instead, we observe a complex picture of host immune
dysregulation that includes upregulation of genes with non-
canonical roles in inflammation, immunity, and interferon sig-
naling that are predicted to be attenuated by dexamethasone, G-
CSF, and other potential therapeutics. Our transcriptomic data
suggest that compared to other types of ARDS, COVID-19 ARDS
is characterized by increased PTEN, interferon-γ, and CNTF-
stimulated gene expression juxtaposed against inhibition of genes
typically activated by IL-10. PTEN promotes inflammation in
acute lung injury models25,26, CNTF has been found to regulate
B-cell differentiation and bind the IL-6 receptor27, and IL-10 is a
central anti-inflammatory cytokine28, suggesting that a combi-
nation of inflammatory activation and dysregulated attenuation
may drive COVID-19 respiratory pathophysiology.

Trials of IL-6 receptor blockade in COVID-19 have had mixed
results29, with early trials showing no effect, but more recent
studies demonstrating a mortality benefit in patients con-
comitantly receiving corticosteroids29,30. Our analyses focused

Table 1 Clinical and demographic characteristics of patients with ARDS due to COVID-19 (COVID-ARDS), control patients with
ARDS due to other etiologies (Other-ARDS), and intubated control patients without ARDS (No-ARDS).

COVID-ARDS Other-ARDS P No-ARDS P

N 15 32 5
Age (median [IQR]) 54.8 [42.5, 67.5] 61.4 [47.3, 71.5] 0.205 66.2 [62.0, 82.0] 0.190
Male 9 (60.0) 20 (62.5) 1.000 2 (40.0) 0.795
30-day mortality 3 (20.0) 11 (34.4) 0.508 2 (40.0) 0.546
APACHE III 97 [88, 106] 95 [78, 126] 0.900 51 [50, 71] 0.011
Days since start of COVID-19 symptoms 10 [7, 17] – –
Duration of hospitalization (days) 24 [19, 40] 14 [8, 25] 0.006 7 [6,7] 0.002
Race (%) <0.001 0.029

Black 0 (0.0) 2 (6.2) 0 (0.0)
Asian 3 (20.0) 4 (12.5) 1 (20.0)
White 1 (6.7) 23 (71.9) 3 (60.0)
Other 11 (73.3) 3 (9.4) 1 (20.0)

Hispanic ethnicity 8 (53.3) 3 (9.4) 0.003 0 (0.0) 0.114
PaO2/FiO2 (median [IQR])a 74 [60, 115] 96 [67, 148] 0.114 296 [216, 367] 0.003
ARDS etiology (%) 0.109 <0.001

Aspiration 0 (0.0) 5 (15.6) 0 (0.0)
LRTI 15 (100.0) 20 (62.5) 0 (0.0)
Sepsis 0 (0.0) 4 (12.5) 0 (0.0)
Transfusion 0 (0.0) 2 (6.2) 0 (0.0)
Unknown 0 (0.0) 1 (3.1) 0 (0.0)
None 0 (0.0) 0 (0.0) 5 (100.0)

LRTI type (%) <0.001 <0.001
Bacterial 0 (0.0) 9 (28.1) 0 (0.0)
Viral 8 (60.0) 4 (12.5) 0 (0.0)
Viral + bacterial 4 (20.0) 3 (9.4) 0 (0.0)
Viral + viral 3 (20.0) 0 (0.0) 0 (0.0)
Unknown 0 (0.0) 4 (12.5) 0 (0.0)
None 0 (0.0) 12 (37.5) 5 (100.0)

IQR interquartile range.
P values represent comparisons versus COVID-ARDS. Reasons for intubation of No-ARDS patients included: hemorrhagic stroke, subdural hematoma, retroperitoneal hemorrhage, or other neurosurgical
procedures. Statistical significance was determined using Fisher’s exact test (discrete variables) or by the Wilcoxon test (continuous variables).
aLowest PaO2/FiO2 recorded in the first 5 days of mechanical ventilation. PF ratios were not available for two Other-ARDS subjects, who were diagnosed with ARDS based on an SaO2/FiO2 < 315.
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only on subjects who did not receive treatment with immuno-
modulating therapies to avoid confounding the assessment of
inflammatory gene expression. Future lower respiratory tran-
scriptomic studies will thus be needed to directly assess the effects
of dexamethasone at the transcriptional level and investigate
mechanisms of the interaction between dexamethasone and IL-6
receptor antagonists.

Our findings build on recent reports that dysregulated inter-
feron responses in patients with severe COVID-19 pneumonia
may be an important feature of disease31–33. This hypothesis is
supported by recent findings of impaired interferon signaling in
peripheral blood immune cells of patients with severe versus mild
COVID-1932, and a recent report suggesting that a dysregulated
interferon response may be a common feature of severe viral
infections33.

Relatively few studies have evaluated lower airway specimens
from COVID-19 patients using transcriptional profiling, and
those to date have examined BAL fluid. Due in part to updates in
clinical guidelines34, less invasive TA sampling is increasingly
employed for microbiologic diagnosis of pneumonia and offers
the advantage of reducing unnecessary exposure to SARS-CoV-2
containing aerosols during bronchoscopy. The similarity in cel-
lular populations in our TA scRNAseq data of critically ill
COVID-19 patients compared to previously published scRNAseq
data of BAL fluid suggests that TA may be a reasonable alter-
native specimen for transcriptional studies of the lower airways.
Significant overlap in comparative analyses of our bulk RNA-seq
data against external BAL RNA-seq datasets10,11,23,35 (Supple-
mentary Data 12) and similarities in the predicted cellular com-
position of matched TA and mini-BAL specimens
(Supplementary Data 13, Supplementary Fig. 7) also support
this idea.

This study has some limitations. First, TA contains a hetero-
geneous mix of cells from throughout the lower respiratory tract
and thus does not intrinsically distinguish between airway and
alveolar biological processes, and thus we cannot determine
precisely where in the lung differences in observed gene expres-
sion are occurring. However, as discussed above, our comparative
analyses suggest that TA has practical utility for assessing lower
respiratory tract biology. Our sample size, particularly with
respect to the Other Viral LRTI-ARDS and No-ARDS groups,
may limit the generalizability of these findings, which require
validation in a larger cohort. We were unable to directly measure
protein expression in the lower airway, which limits the scope of
our biological analysis. Pathway analyses and in silico drug dis-
covery results require validation in experimental models. While
our findings related to dexamethasone and G-CSF are supported
by results from recent human clinical trials8,17, additional studies
will be required to verify that the candidate genes identified in our
in silico approach drive the observed clinical benefit.

In summary, comparative TA transcriptional profiling identi-
fied a lower respiratory gene expression signature of COVID-19
ARDS characterized by dysregulated inflammatory signaling
different from other types of ARDS. Lower respiratory tract
RNA-seq holds promise for advancing our understanding of
other types of infectious and noninfectious ARDS, and for
identifying potential new therapeutics.

Methods
Study design, clinical cohort, and ethics statement. We conducted a case-
control study of patients with ARDS due to COVID-19 (n= 15) versus two control
groups. The first control group included patients with ARDS due to other causes
(n= 32) and the second included patients intubated for airway protection without
evidence of pulmonary pathology on imaging (n= 5). We studied patients who
were enrolled in either of two prospective cohort studies of critically ill patients at

Fig. 1 Lower respiratory tract transcriptional signature of COVID-19 ARDS. a Heatmap of the top 50 differentially expressed genes by adjusted P value
between patients with COVID-19-related ARDS (COVID-ARDS, red) versus controls with ARDS due to other etiologies (Other-ARDS, violet). Intubated
controls with no ARDS were also included in the unsupervised clustering (No-ARDS, gray). b P IPA activation Z-scores for selected pathways in Other-
ARDS and No-ARDS samples compared to COVID-ARDS samples. Values are tabulated in (Supplementary Fig. 3). c Predicted activation state of upstream
cytokines, PTEN and PI3K in Other-ARDS and No-ARDS relative to COVID-ARDS patients. Values tabulated in Supplementary Fig. 4. d Pharmacologic
agents predicted to mitigate the dysregulated host response of COVID-19 ARDS with respect to Other-ARDS (violet) or No-ARDS patients (gray)
identified in the IPA database of drug transcriptional signatures. Values tabulated in Supplementary Fig. 5. Source data are provided in the Source Data file.
P values were calculated using a one-sided Fisher’s exact test. G-CSF granulocyte colony-stimulating factor, EPA eicosapentanoic acid, DHA
docosahexanoic acid.
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Fig. 2 Cellular landscape of COVID-19 ARDS. a In silico deconvolution of cell types from tracheal aspirate bulk RNA-sequencing data using lung single-cell
signatures. The horizontal line inside the box denotes the median and the lower and upper hinges correspond to the first and third quartiles, respectively.
Pairwise comparisons between patient groups were performed with a two-sided Mann–Whitney–Wilcoxon test followed by Bonferroni correction (n= 15
COVID-ARDS, n= 32 Other-ARDS, n= 5 No-ARDS). Data for other cell types examined are plotted in Supplementary Fig. 4 and tabulated in
(Supplementary Data 7). b UMAP demonstrating the immune cell landscape of COVID-19 ARDS from scRNAseq of TA specimens. Inset demonstrates
cell-type proportions (n= 6, COVID-ARDS group). The bar plot denotes median and the error bars depict the interquartile range, respectively. Mac
alveolar macrophage, mDC monocyte-derived dendritic cell, RBC red blood cell. Source data are provided in the Source Data file.
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the University of California, San Francisco (UCSF) and Zuckerberg San Francisco
General Hospital. Both studies were approved by the UCSF Institutional Review
Board under protocols 17-24056 and 20-30497, respectively, which granted a
waiver of initial consent for tracheal aspirate and blood sampling. Subjects were
screened for enrollment from 7/2013 to 3/2020 in the first (pre-COVID-19) cohort
and 3/2020-7/2020 in the second cohort. Tracheal aspirates were collected within
five days of intubation. All consecutively enrolled patients were considered for
inclusion in this study.

For both the COVID-19 and control cohorts, if a patient met inclusion criteria,
then a study coordinator or physician obtained written informed consent for
enrollment from the patient or their surrogate. Patients or their surrogates were
provided with detailed written and verbal information about the goals of the study,
the data and specimens that would be collected, and the potential risks to the
subject. Patients and their surrogates were also informed that there would be no
benefit to them from being enrolled in the study and that they may withdraw
informed consent at any time during the course of the study. All questions were
answered, and informed consent was documented by obtaining the signature of the
patient or their surrogate on the consent document (or during the COVID-19
pandemic, the IRB-approved electronic equivalent, to enable touchless consent).

Many critically ill patients are unconscious at the time of intensive care unit
(ICU) admission due to their underlying illness and/or are endotracheally
intubated for airway management or acute respiratory failure. The patients who are
not unconscious are often in pain and may have acute delirium due to critical
illness and/or medications. For these reasons, many subjects are unable to provide
informed consent at the time of enrollment. Because this study could not
practically be done otherwise and was deemed to be a minimal risk by the UCSF
IRB, if a patient was unable and a surrogate was not available to provide consent,
patients were enrolled with the waiver of initial consent, including the collection of
biological samples.

Specifically, for subjects who were unable to provide informed consent at the
time of enrollment, our study team was permitted to collect biological samples as

well as clinical data from the medical record obtained prior to consent. Surrogate
consent was vigorously pursued for all patients; moreover, each patient was
regularly examined to determine if and when s/he was able to consent for him/
herself, and the nursing and ICU staff were contacted daily for information about
surrogates’ availability. For patients whose surrogates provided informed consent,
follow-up consent was subsequently obtained from the patient if they survived their
acute illness and regained the ability to consent. For subjects who died prior to the
consent being obtained, a full waiver of consent was approved by the UCSF IRB for
both cohort studies. Lack of a surrogate to provide consent is common in critically
ill patients. To address this, the UCSF IRB also approved a full waiver of consent
for subjects in the COVID-19 cohort who remained unable to provide informed
consent and had no contactable surrogate identified within 28 days. Before utilizing
this waiver, we made and documented at least three separate attempts to identify
and contact the patient or surrogate over a month-long period. While most patients
enrolled were consented by typical processes, nine died prior to consent being
obtained, and three were included with a full waiver of consent due to lack of
ability to consent and lack of contactable surrogate. Our IRB protocols permit
analysis and release of only nonidentifiable human transcriptomic data from such
patients and preclude direct analysis or public release of their raw sequencing data,
which would contain personally identifiable genetic information. As such, no
personally identifiable information has been included for any enrolled patients.

For this study, inclusion criteria were: (1) admission to the intensive care unit
for mechanical ventilation for ARDS or airway protection, (2) age ≥18 years, (3)
availability of TA collected within five days of intubation yielding 106 protein-
coding transcripts by RNA-seq. Exclusion criteria were: (1) withdrawal of consent,
(2) evidence of LRTI but no ARDS, (3) no TA specimen available within 5 days of
intubation, (4) TA specimen yielding <106 protein-coding transcripts by RNA-seq,
(5) receipt of immunosuppressive medication or underlying
immunocompromising condition prior to tracheal aspirate collection.

Clinical data were collected and stored securely using QuesGen and REDCap36

databases. Subject charts and chest X-rays were reviewed by at least two study

Fig. 3 Lower respiratory tract transcriptional signature of ARDS due to COVID-19 versus other viral or bacterial lower respiratory tract infections. a
Heatmap depicting expression and unsupervised clustering of top differentially expressed genes by adjusted P value between patients with COVID-19-
related ARDS (COVID-ARDS, red) versus ARDS due to viral LRTI (Viral-ARDS, blue). b Heatmap depicting z-scaled expression and unsupervised
clustering of the top 50 differentially expressed genes between patients with COVID-19-related ARDS (COVID-ARDS, red) versus ARDS due to bacterial
LRTI (Bacterial-ARDS, green). c Pathway analysis based on differentially expressed genes depicting relative expression of signaling pathways by IPA Z-
score with respect to a baseline of gene expression in COVID-ARDS. Values are tabulated in Supplementary Data 6. d Predicted activation of upstream
interferons in patients with ARDS due to viral or bacterial LRTI compared to those with COVID-ARDS revealed downregulation of type-I/III interferons in
COVID-ARDS versus other viral LRTI-related ARDS. Values tabulated in Supplementary Data 9. Source data are provided in the Source Data file.
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authors (A.S., P.S., E.S., F.M., C.D., M.M., C.L., and C.C.) to confirm a diagnosis of
ARDS using the Berlin Definition37. Lower respiratory tract infections were
adjudicated by two study physicians using the United States Centers for Disease
Control surveillance definition of pneumonia38. Of 75 potentially eligible patients,
nine COVID-ARDS, 11 Other-ARDS, and three No-ARDS subjects were excluded
because of treatment with immunosuppressant medications or because of an
underlying immunocompromising condition (e.g., solid organ transplantation,
bone marrow transplantation, human immunodeficiency virus infection)
(Supplementary Fig. 1).

Metagenomic sequencing. Following enrollment, TA was collected and mixed 1:1
with DNA/RNA shield (Zymo Research) to preserve nucleic acid. To evaluate host
gene expression and detect the presence of SARS-CoV-2 and other viruses,
metagenomic next-generation sequencing (mNGS) of RNA was performed on TA
specimens. Following RNA extraction (Zymo Pathogen Magbead Kit) and DNase
treatment, human cytosolic and mitochondrial ribosomal RNA was depleted using
FastSelect (Qiagen). To control for background contamination, we included
negative controls (water and HeLa cell RNA) as well as positive controls (spike-in
RNA standards from the External RNA Controls Consortium (ERCC))39. RNA was
then fragmented and underwent library preparation using the NEBNext Ultra II
RNAseq Kit (New England Biolabs). Libraries underwent 146 nucleotide paired-
end Illumina sequencing on an Illumina Novaseq 6000 instrument.

Host differential expression and pathway analysis. Following demultiplexing,
sequencing reads were pseudo-aligned with kallisto40 (v. 0.46.1; including bias
correction) to an index consisting of all transcripts associated with human protein-
coding genes (ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA
sequences, and the sequences of ERCC RNA standards. Samples retained in the
dataset had a total of at least 1,000,000 estimated counts associated with transcripts
of protein-coding genes, and the median across all samples was 7.3 million. Gene-
level counts were generated from the transcript-level abundance estimates using the
R package tximport v.1.1441, with the scaledTPM method.

Differential expression analysis was performed using DESeq2 v.1.32.0 in
Bioconductor v.3.1242. We modeled the expression of individual genes using the
design formula ~ARDSEtiology. In our primary analysis, the ARDS etiology was
categorized as COVID-ARDS, Other-ARDS, or No-ARDS. In our secondary
analysis, the ARDS etiology was categorized as COVID-ARDS, Viral-ARDS,
Bacterial-ARDS, or No-ARDS. COVID-ARDS patients with viral or bacterial co-
infections were excluded from this secondary analysis. Significant genes were
identified using an independent-hypothesis-weighted, Benjamini–Hochberg false
discovery rate (FDR) < 0.1 using IHW v.1.20.043,44. Empirical Bayesian shrinkage
estimators for log2-fold change were fit using apeglm v.1.14.045. We generated
heatmaps of the top 50 differentially expressed genes by absolute log2-fold change.
For visualization, gene expression was normalized using the variance stabilizing
transformation, centered, and Z-scaled. Heatmaps were generated using pheatmap
v1.0.12. Patients were clustered using Euclidean distance and genes were clustered
using Manhattan distance. Differentially expressed genes (FDR < 0.1 and absolute
log2 fold change > 0.5) were analyzed using ingenuity pathway analysis (IPA March
2021, Qiagen)13. We note that 793, 349, and 78 genes were differentially expressed
at an FDR of <0.1, <0.05, and <0.01, respectively, for our primary analysis
comparing COVID-ARDS to Other-ARDS (Supplementary Data 2).

Canonical pathway analysis and drug/cytokine upstream regulator analysis.
To evaluate signaling pathways and upstream transcriptional regulators from gene
expression data, we employed IPA. Specifically, genes were analyzed using core,
canonical pathway, and upstream regulator analysis on shrunken log2-fold change.
IPA upstream regulator analysis was employed to identify potential drug and
cytokine regulators and predict their activation states based on expected effects
between regulators and their known target genes or proteins annotated in the
Ingenuity Knowledge Base (IKB)13. IPA calculates a Fisher’s exact P value for
overlap of differentially expressed genes with curated gene sets representing
canonical biological pathways, or upstream regulators of gene expression, including
cytokines and 12,981 drugs. In addition, IPA calculates a Z-score for the direction
of gene expression for a pathway or regulator based on the observed gene
expression in the dataset. The Z-score signifies whether expression changes for
genes within pathways, or for known target genes of upstream regulators, are
consistent with what is expected based on previously published analyses annotated
in the IKB. Significant pathways and upstream regulators were defined as those
with a Z-score absolute value greater than 2 or an overlap P value <0.05.

In silico analysis of cell-type proportions. Cell-type proportions were estimated
from bulk host transcriptome data using the CIBERSORT X algorithm46. We used
the Human Lung Cell Atlas dataset47 to derive the single-cell signatures. The cell
types estimated with this reference cover all expected cell types in the airway. The
estimated proportions were compared between the three patient groups using a
Mann–Whitney–Wilcoxon test (two-sided) with Bonferroni correction.

Quantification of SARS-CoV-2 viral load by mNGS. All samples were processed
through a SARS-CoV-2reference-based assembly pipeline that involved removing

reads likely originating from the human genome or from other viral genomes
annotated in RefSeq with Kraken2 v.2.0.8_beta, and then aligning the remaining
reads to the SARS-CoV-2 reference genome MN908947.3 using minimap2 v.2.17.
We calculated SARS-CoV-2 reads-per-million (rpM) by dividing the number of
reads that aligned to the virus with mapq ≥ 20 by the total number of reads in the
sample (excluding reads mapping to ERCC RNA standards).

Single-cell RNA sequencing and transcriptome analysis. After collection, fresh
TA was transported to a BSL-3 laboratory at ambient temperature to improve
neutrophil survival. In total, 3 mL of TA was dissociated in 40 mL of PBS with 50
µg/mL collagenase type 4 (Worthington) and 0.56 ku/mL of Dnase I (Worthing-
ton) for 10 min at room temperature, followed by passage through a 70-mm filter.
Cells were pelleted at 350 × g 4 °C for 10 min, resuspended in PBS with 2 mM
EDTA and 0.5% BSA, and manually counted on a hemocytometer. Cells were
stained with MojoSort Human CD45 and purified by the manufacturer’s protocol
(Biolegend). After CD45-positive selection, cells were manually counted with try-
pan blue on a hemocytometer. Using a V(D)J v1.1 kit according to the manu-
facturer’s protocol, samples were loaded on a 10× Genomics Chip A without
multiplexing, aiming to capture 10,000 cells (10× Genomics). Libraries underwent
paired-end 150 base pair sequencing on an Illumina NovaSeq 6000.

Read count matrices were generated through the 10× Genomics Cell Ranger
pipeline v3.0. Cell barcodes were then determined based upon UMI count
distribution. Data were processed and analyzed using Scanpy v1.648. Cells that had
less than 200 genes or had greater than 30,000 counts were filtered. Mitochondrial
genes were removed and multi-sample integration was performed using Harmony
v0.1.449.

Comparison against external datasets. No publicly available lower respiratory
RNA-seq data were available to compare COVID-19 related ARDS to other types
of ARDS. Thus, we alternatively compared differential gene expression between
COVID-ARDS and No-ARDS subjects against three previously published studies
with comparisons of COVID-19 patients against controls10,12,35. The first used
Nanostring to assess transcript levels of angiogenesis and inflammation-associated
genes in autopsy lung specimens that were differentially expressed between patients
with severe COVID-19 and uninfected controls12. The second studied gene
expression in BAL in a rhesus macaque model of SARS-CoV2 infection. Gene
expression data were downloaded from the Gene Expression Omnibus
(GSE156701), and we used DESeq2 and apeglm to identify genes that were dif-
ferentially expressed between baseline and day 2 (the day of peak inflammatory
response in the macaque model). Third, we compared data against a study that
performed RNA-seq of macrophages from BAL to study intubated patients with
COVID-19 or controls. For this study, data were downloaded from the Gene
Expression Omnibus (GSE155249), and we used DESeq2 and apeglm to identify
genes that were differentially expressed. The ToppGene suite50 was used to carry
out functional enrichment analysis on overlapping genes differentially expressed at
an FDR < 0.1 in both our dataset and each external dataset.

Regression of ISG counts against viral load in TA and NP samples. We
assembled a set of 100 interferon-stimulated genes based on the “Hallmark
interferon-alpha response” gene set in MSigDB51. We then performed robust
regression of the quantile normalized gene counts (log2 scale), generated using the
R package limma, against log10(rpM) of SARS-CoV-2. This was done in two
separate datasets of COVID-19 patients: (i) the tracheal aspirate (TA) samples
from patients with COVID-19 ARDS reported in this study (n= 15); and (ii) the
nasopharyngeal swab (NP) samples from patients with mostly early and mild
disease that we previously reported (n= 93)24. The analysis was performed using
the R package robustbase v.0.93.6, which implements MM-type estimators for
linear regression. Model predictions were generated using the R package ggeffects
v.0.14.3 and used for display in the individual gene plots. Plots were generated
using ggplot2 v.3.3.3. Error bands represent normal distribution 95% confidence
intervals around each prediction. Reported P values for significance of the differ-
ence of the regression coefficient from 0 are based on a t-statistic and
Benjamini–Hochberg adjusted. Reported R2 values represent the adjusted robust
coefficient of determination.

Statistics and reproducibility. Statistical tests utilized for each analysis are described
in the figure legends and in further detail in each respective methods section. The
number of patient samples analyzed for each comparison is indicated in the figure
legends. Data were generated from single sequencing runs without technical
replicates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data are protected due to data privacy restrictions from the IRB
protocols governing patient enrollment in this study, which protect the release of raw
genetic sequencing data from those patients enrolled under a waiver of consent.
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Researchers who wish to obtain raw fastq files for the purposes of independently
generating gene counts can contact the corresponding author (chaz.langelier@ucsf.edu)
to be added to the IRB protocols and sign a materials transfer agreement from UCSF
ensuring that the data will be securely stored and only utilized for transcriptomic
analyses. The processed gene count data are available from the National Center for
Biotechnology Information Gene Expression Omnibus database under accession code
GSE163426. The published human lung single-cell datasets52 used for cell-type
proportions analysis can be obtained through Synapse under accessions syn21560510
and syn21560511. Source data are provided with this paper.

Code availability
Code for the differential expression, cell-type proportions, and scRNAseq analyses is
available at https://doi.org/10.5281/zenodo.4990584.
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