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Abstract

Learning and Optimization for Personalized Cancer Treatment

by

Rebecca Sarto Basso

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Anil Aswani , Chair

Personalized cancer therapy is an emerging treatment strategy based on the ability to predict which
patients are more likely to respond well to specific treatments. It involves the systematic use of genetic or other
information about an individual patient to optimally select a course of treatment. This dissertation presents
mathematical models and algorithms to predict drug response on a personalized level and to understand the
causes of different responses.

Recent large cancer studies have measured somatic mutations in an unprecedented number of tumours.
These large datasets finally allow the identification of cancer-related sets of genetic mutations, in particular
we are interested in identifying groups of genetic mutations that are associated with positive or negative drug
response. We propose a combinatorial formulation for the problem, and prove that it’s computationally hard.
We design two optimization algorithms to solve the problem and implement them in our tool UNCOVER.
We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show
experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in
a variety of scenarios. In particular, we show that our algorithms find sets which are better than the ones
obtained by the state-of-the-art method. In addition, our algorithms are much faster than the state-of-the-art,
allowing the analysis of large datasets of thousands of target profiles from cancer cell lines. While we formulate
this as a more general computational problem, we use UNCOVER to analyze drug response data, identifying
sets of mutations associated with drug sensitivity.

Our next contribution is a computational method, named NETPHIX (NETwork-to-PHenotype assocIation
with eXclusivity), which aims to identify subnetworks of genes whose genetic alterations are associated with a
continuous cancer phenotype. Leveraging the properties of cancer mutations and the interactions among genes,
we formulate the problem as an integer linear program and solve it optimally to obtain a set of associated
genes. Note that this algorithm solves a related but different mathematical problem than the one considered
by UNCOVER since it also takes into account functional relationship among genes, which can be captured as
an input network. Additionally NETPHIX, unlike UNCOVER, allows to pick up mixed sensitivity modules.
Applied to a large-scale drug screening dataset, NETPHIX uncovered gene modules significantly associated
with drug response, and many of the modules are also validated in another independent dataset. Utilizing
interaction information, NETPHIX modules are functionally coherent, and can thus provide important
insights into drug action.

We also include a case study that provides novel biological insight obtained from NETPHIX and expression
correlation analysis to investigate the genetic mutations associated with mutational signatures. Specifically,
our analysis aims to answer the following two complementary questions: (i) what are functional pathways
whose gene expression activities correlate with the strengths of mutational signatures, and (ii) are there
pathways whose genetic alterations might have led to specific mutational signatures. Analyzing a breast
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cancer dataset, we identified pathways associated with mutational signatures on both expression and mutation
levels, elucidating differences between related signatures .

UNCOVER and NETPHIX can be used directly for personalized cancer treatment by looking at the

genomic alterations of patients and checking if these are correlated with drug sensitivity for any candidate

treatment. While these methods can lead to useful insight towards personalized drug treatment our last

contribution attempt to solve the more practical problem of predicting drug response based on all the

information oncologists have available about the patient, this can include genetic information but is more

often based on demographics, histology report, baseline labs and medical history recorded in the patient’s

Electronic Health Record. We propose a framework to simultaneously predict multiple outcomes for each

treatment i.e. we are not only concerned with the expected survival time of the patient, other relevant factors

such as quality of life and side effects are also considered as important quantifiable outcomes. These outcomes

are heavily correlated to each other and one can leverage this property to improve prediction performance

over predicting each outcome separately. Furthermore to the authors best knowledge there is no current

published work or package that is able to handle a mix of survival, continuous and categorical outcomes.

We provide a unified framework for prediction of heterogeneous outcomes in a clinical setting, leveraging

an ensemble learning method known as random forests. We propose an updated node splitting rule that

captures the heterogeneity of clinical outcomes.
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Chapter 1

Introduction

Cancer is a devastating disease that takes the lives of hundreds of thousands of people every
year. Due to disease heterogeneity, the effectiveness of any specific cancer therapy, such
as chemotherapy or radiation, widely differs between individual patients. This inherent
variability of cancer lends itself to the growing field of precision and personalized medicine.
Personalized cancer therapy is an emerging treatment strategy based on the ability to predict
which patients are more likely to respond well to specific treatments. It involves the systematic
use of genetic or other information about an individual patient to optimally select a course
of treatment.

Recent advances in sequencing technologies now allow the collection of genome-wide
measurements in large cohorts of cancer patients. In particular, they allow the measurement
of the entire complement of somatic (i.e., appearing during the lifetime of an individual)
alterations in all samples from large tumor cohorts. The study of such alterations has lead to
an unprecedented improvement in our understanding of how tumors arise and progress.

Several computational and statistical methods have been recently designed to identify
driver alterations, associated to the disease, and to distinguish them from random, passenger
alterations not related with the disease. The identification of genes associated with cancer is
complicated by the extensive intertumour heterogeneity, with large (100-1000’s) and different
collections of alterations being present in tumors from different patients and no two tumours
having the same collection of alterations. Two main reasons for such heterogeneity are
that i) most mutations are passenger, random mutations, and, more importantly, ii) driver
alterations target cancer pathways, groups of interacting genes that perform given functions
in the cell and whose alteration is required to develop the disease. Several methods have
been designed to identify cancer alterations using a-priori defined pathways or interaction
information in the form of large interaction networks.

One of the main remaining challenges is the interpretation of such alterations, in particular
identifying alterations with functional impact or with relevance to therapy.

Recent projects have characterized drug sensitivity in hundreds of cancer cell lines for a
large number of drugs. This data, together with information about the genetic alterations in
these cell lines, can be used to understand how genomic alterations impact drug sensitivity.
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While the success of network based methods in other cancer domains suggests that such
approaches should be also useful in the studies of drug response, most of previous approaches
focused on discrete phenotypic traits – e.g., cancer vs. healthy, good or bad prognosis, or
cancer subtypes – and therefore, cannot be directly applied to the analysis of continuous
features such as drug sensitivity.

To address these challenges, this dissertation presents a collection of mathematical models
and algorithms at the intersection of optimization and machine learning to identify the genetic
causes of different drug responses in cancer patients.

The remainder of this dissertation is organized as follows. In chapter 2 we study the
problem of finding groups of mutually exclusive alterations associated with a quantitative
target. Mutual exclusivity has been employed by several recent methods that have shown
its effectivenes in characterizing gene sets associated to cancer. Furthermore the availability
of quantitative target profiles, for instance from drug sensitivity experiments, provides
additional information that can be leveraged to improve the identification of cancer related
gene sets by discovering groups with complementary functional associations with such targets.
We propose a combinatorial formulation for the problem, and prove that the associated
computation problem is computationally hard. We design two optimization algorithms to
solve the problem and implement them in our tool UNCOVER. We provide analytic evidence
of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally
that UNCOVER finds sets of alterations significantly associated with functional targets in a
variety of scenarios. In particular, we show that our algorithms find sets which are better
than the ones obtained by the state-of-the-art method. In addition, our algorithms are much
faster than the state-of-the-art, allowing the analysis of large datasets of thousands of target
profiles from cancer cell lines. While we formulate this as a more general computational
problem, we use UNCOVER to analyze drug response data, identifying sets of mutations
associated with drug sensitivity.

In Chapter 3 we discuss a computational method, named NETPHIX (NETwork-to-
PHenotype assocIation with eXclusivity), which aims to identify subnetworks of genes whose
genetic alterations are associated with a continuous cancer phenotype. Leveraging the
properties of cancer mutations and the interactions among genes, we formulate the problem
as an integer linear program and solve it optimally to obtain a set of associated genes.
Note that this algorithm solves a related but different mathematical problem than the one
considered in Chapter 2 since it also takes into account functional relationship among genes,
which can be captured as an input network. Additionally NETPHIX, unlike UNCOVER,
allows to pick up mixed sensitivity modules. Applied to a large-scale drug screening dataset,
NETPHIX uncovered gene modules significantly associated with drug responses, and many
of the modules are also validated in another independent dataset. Utilizing interaction
information, NETPHIX modules are functionally coherent, and can thus provide important
insights into drug action.

Chapter 4 presents a case study that provides novel biological insight obtained from
NETPHIX and expression correlation analysis to investigate the genetic mutations associated
with mutational signatures. Studies of cancer mutations have typically focused on identifying
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cancer driving mutations that confer growth advantage to cancer cells. However, cancer
genomes accumulate a large number of passenger somatic mutations resulting from various
causes, including normal DNA damage and repair processes as well as mutations triggered by
carcinogenic exposures. Different mutagenic processes often produce characteristic mutational
patterns called mutational signatures. Identifying mutagenic processes underlying mutational
signatures shaping a cancer genome is an important step towards understanding tumorigenesis.
Specifically, our analysis aims to answer the following two complementary questions: (i)
what are functional pathways whose gene expression activities correlate with the strengths of
mutational signatures, and (ii) are there pathways whose genetic alterations might have led
to specific mutational signatures. Analyzing a breast cancer dataset, we identified pathways
associated with mutational signatures on both expression and mutation levels, elucidating
differences between related signatures . This work investigated, for the first time, a network
level association of mutational signatures and dysregulated pathways. The identified pathways
and subnetworks provide novel insights into mutagenic processes that the cancer genomes
might have undergone and important clues for developing personalized drug therapies.

While the methods outlined in Chapter 2 and 3 could be used as basis for prediction
models and can lead to useful insight towards personalized drug treatment, in Chapter 5
we are concerned with the more practical problem of predicting drug response based on
all the information oncologists have available about the patient, this can include genetic
information but is more often based on the demographic, histology, baseline labs and medical
history recorded in the patient’s Electronic Health Record. We provide a framework to
simultaneously predict multiple outcomes for each treatment ie we are not only concerned
with the expected survival time of the patient, other relevant factors such as quality of life,
side effects and tumor shrinkage are also considered as important quantifiable outcomes.
Such outcomes are captured by a mix of different data types, for instance overall survival is
usually measured with censored data, the presence of a particular side effect can be recorded
as a binary or categorical outcome and tumor shrinkage is a continuous measure. If these
outputs were unrelated then the obvious solution would be to predict each individual outcome
separately with a suitable prediction method but in the clinical settings these outcomes are
heavily correlated and one can leverage this property to improve prediction performance.
While substantial work has been done on multiple output prediction for the regression and
classification case very little work has been done on predicting multiple outcomes where
the output data type is censored data or a mix of continuous and categorical variables.
Furthermore to the authors best knowledge there is no current published work or package
that is able to handle a mix of survival, continuous and categorical outcomes. The goal of this
chapter is closing this gap by providing a unified framework for prediction of heterogeneous
outcomes in a clinical setting, leveraging an ensemble learning method known as Random
Forest. This method operates by constructing many decision trees and using the average
prediction across all trees, we propose an updated node splitting rule that captures the
heterogeneity of our outcomes.
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Chapter 2

Efficient algorithms to discover
alterations with complementary
functional association in cancer

2.1 Introduction

Recent advances in sequencing technologies now allow to collect genome-wide measurements
in large cohorts of cancer patients (e.g., [Brennan et al., 2013; Cancer Genome Atlas Network,
2015; Cancer Genome Atlas Research Network, 2013, 2014; Network et al., 2017a,b]). In
particular, they allow the measurement of the entire complement of somatic (i.e., appearing
during the lifetime of an individual) alterations in all samples from large tumour cohorts. The
study of such alterations has lead to an unprecedented improvement in our understanding of
how tumours arise and progress [Garraway and Lander, 2013]. One of the main remaining
challenges is the interpretation of such alterations, in particular identifying alterations with
functional impact or with relevance to therapy [McGranahan and Swanton, 2017].

Several computational and statistical methods have been recently designed to identify
driver alterations, associated to the disease, and to distinguish them from random, passenger
alterations not related with the disease [Raphael et al., 2014]. The identification of genes
associated with cancer is complicated by the extensive intertumour heterogeneity [Vandin,
2017], with large (100-1000’s) and different collections of alterations being present in tumours
from different patients and no two tumours having the same collection of alterations [Vandin,
2017; Vogelstein et al., 2013]. Two main reasons for such heterogeneity are that i) most
mutations are passenger, random mutations, and, more importantly, ii) driver alterations
target cancer pathways, groups of interacting genes that perform given functions in the cell
and whose alteration is required to develop the disease. Several methods have been designed
to identify cancer genes using a-priori defined pathways [Vaske et al., 2010] or interaction
information in the form of large interaction networks [Creixell et al., 2015; Leiserson et al.,
2015b].
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Recently several methods (see Section Related work) for the de novo discovery of mutated
cancer pathways have leveraged the mutual exclusivity of alterations in cancer pathways.
Mutual exclusivity of alterations, with sets of genes displaying at most one alteration for each
patient, has been observed in various cancer types [Garraway and Lander, 2013; Hanahan and
Weinberg, 2011; Kandoth et al., 2013; Vogelstein et al., 2013]. The mutual exclusivity property
is due to the complementarity of genes in the same pathway, with alterations in different
members of a pathway resulting in a similar impact at the functional level, while mutations
in different members of the same pathway may not provide further selective advantage or
may even lead to a disadvantage for the cell (e.g., in synthetic lethality). Even if mutual
exclusivity of alterations is neither a sufficient nor a necessary property of cancer pathways,
it has been successfully used to identify cancer pathways in large cancer cohorts [Ciriello
et al., 2012; Kandoth et al., 2013; Leiserson et al., 2015a].

An additional source of information that can be used to identify genes with complementary
functions are quantitative measures for each samples such as: functional profiles, obtained
for example by genomic or chemical perturbations [Aguirre et al., 2016; Cowley et al., 2014;
Tsherniak et al., 2017]; clinical data describing, obtained for example by (quantitative)
indicators of response to therapy; activation measurements for genes or sets of genes, as
obtained for example by single sample scores of Gene Set Enrichment Analysis [Mootha
et al., 2003; Subramanian et al., 2005]. The employment of such quantitative measurements
is crucial to identify meaningful complementary alterations since one can expect mutual
exclusivity to reflect in functional properties (of altered samples) that are specific to the
altered samples. For example, consider a scenario (Fig. 2.1) in which there are two altered
molecular mechanisms: one that is altered in almost all samples and one that is altered
in much fewer samples, but is related to the response to a given therapy (for example by
interacting with a drug target). Methods that ignore therapy response information will report
the first mechanism as significantly altered, while the second mechanisms, altered in a smaller
fraction of all samples, is identified only by considering the therapy response information.

Related work

Several recent methods have used mutual exclusivity signals to identify sets of genes important
for cancer [Yeang et al., 2008]. RME [Miller et al., 2011] identifies mutually exclusive sets
using a score derived from information theory. Dendrix [Vandin et al., 2012b] defines a
combinatorial gene set score and uses a Markov Chain Monte Carlo (MCMC) approach for
identifying mutually exclusive gene sets altered in a large fraction of the patients. Multi-
Dendrix [Leiserson et al., 2013] extends the score of Dendrix to multiple sets and uses
an integer linear program (ILP) based algorithm to simultaneously find multiple sets with
mutually exclusive alterations. CoMET [Leiserson et al., 2015a] uses a generalization of Fisher
exact test to higher dimensional contingency tables to define a score to characterize mutually
exclusive gene sets altered in relatively low fractions of the samples. WExT [Leiserson et al.,
2015a] generalizes the test from CoMET to incorporate individual gene weights (probabilities)
for each alteration in each sample. WeSME [Kim et al., 2016c] introduces a test that
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Figure 2.1. Alterations in the green set have high mutual exclusivity but no association
with the target profile (e.g., a molecular mechanism commonly altered in cancer).
Alterations in the orange set have lower mutual exclusivity but strong association with the
target profile (e.g., genes in the same pathway of the drug target). Methods that find
mutually exclusive sets of alterations without considering the target profile will identify the
green set as the most important gene set.

incorporates the alteration rates of patients and genes and uses a fast permutation approach
to assess the statistical significance of the sets. TiMEx [Constantinescu et al., 2015] assumes
a generative model for alterations and defines a test to assess the null hypothesis that mutual
exclusivity of a gene set is due to the interplay between waiting times to alterations and
the time at which the tumor is sequenced. MEMo [Ciriello et al., 2012] and the method
from [Babur et al., 2015] employ mutual exclusivity to find gene sets, but use an interaction
network to limit the candidate gene sets. The method by [Raphael and Vandin, 2015] and
PathTIMEx [Cristea et al., 2016] introduce an additional dimension to the characterization of
inter-tumor heterogeneity, by reconstructing the order in which mutually exclusive gene sets
are mutated. None of these methods take quantitative targets into account in the discovery
of significant gene sets and sets showing high mutual exclusivity may not be associated with
target profiles (Fig. 2.1).

[Kim, 2016] recently developed the repeated evaluation of variables conditional entropy
and redundancy (REVEALER) method, to identify mutually exclusive sets of alterations
associated with functional phenotypes. REVEALER uses as objective function (to score a
set of alterations) a re-scaled mutual information metric called information coefficient (IC).
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REVEALER employs a greedy strategy, computing at each iteration the conditional mutual
information (CIC) of the target profile and each feature, conditioned on the current solution.
REVEALER can be used to find sets of mutually exclusive alterations starting either from a
user-defined seed for the solution or from scratch, and [Kim, 2016] shows that REVEALER
finds sets of meaningful cancer-related alterations.

Contribution

In this chapter we study the problem of finding sets of alterations with complementary
functional associations using alteration data and a quantitative (functional) target measure
from a collection of cancer samples. Our contributions in this regard are fivefold. First, we
provide a rigorous combinatorial formulation for the problem of finding groups of mutually
exclusive alterations associated with a quantitative target and prove that the associated
computational problem is NP-hard. Second, we develop two efficient algorithms, a greedy
algorithm and an ILP-based algorithm to identify the set of k genes with the highest association
with a target; our algorithms are implemented in our method fUNctional Complementarity
of alteratiOns discoVERy (UNCOVER). Third, we show that our algorithms identify highly
significant sets of genes in various scenarios; in particular, we compare UNCOVER with
REVEALER on the same datasets used in [Kim, 2016], showing that UNCOVER identifies
solutions of higher quality than REVEALER while being on average two order of magnitudes
faster than REVEALER. Interestingly, the solutions obtained by UNCOVER are better
than the ones obtained by REVEALER even when evaluated using the objective function
(IC score) optimized by REVEALER. Fourth, we show that the efficiency of UNCOVER
enables the analysis of large datasets, and we analyze a large dataset from Project Achilles,
with thousands of genetic dependencies measurements and tens of thousands of alterations,
and a large dataset from the Genomics of Drug Sensitivity in Cancer (GDSC) project, with
hundreds of drug sensitivity measurements and tens of thousands of alterations. On such
datasets UNCOVER identifies several statistically significant associations between target
values and mutually exclusive alterations in genes sets, with an enrichment in well-known
cancer genes and in known cancer pathways.

2.2 Materials and methods

This section describes the problem we study and the algorithms we designed to solve it,
that are implemented in our tool UNCOVER. We also describe the data and computational
environment for our experimental evaluation.

UNCOVER: Functional complementarity of alterations discovery

The workflow of our algorithm UNCOVER is presented in Fig. 2.2. UNCOVER takes
in input information regarding 1. the alterations measured in a number of samples (e.g.,
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Figure 2.2.
UNCOVER takes in input the alterations information and a target profile for a set of
samples, and identifies the set of complementary alterations with the highest association to
the target by solving the Target Associated k-Set problem and performing a permutation
test.

patients or cell lines), and 2. the value of the target measure for each patient. UNCOVER
then identifies the set of mutually exclusive alterations with the highest association to
the target, and employs a permutation test to assess the significance of the association.
Details regarding the computational problem and the algorithms used by UNCOVER are
described in the following sections. The implementation of UNCOVER is available at
https://github.com/VandinLab/UNCOVER.

Computational problem

Let J = {j1, . . . , jm} be the set of samples and let G = {g1, . . . , gn} be the set of genes for
which we have measured alterations in J . We are also given a target profile, that is for each
sample j ∈ J we have a target value wj ∈ R which quantitatively measures a functional
phenotype (e.g., pathway activation, drug response, etc.). For each sample j ∈ J we also
have information on whether each g ∈ G is altered or not in j. Let Ag be the set of patients
in which gene g ∈ G is mutated. We say that a patient j ∈ J is covered by gene g ∈ G if
j ∈ Ag i.e. if gene g is mutated in sample j. Given a set of genes S ⊂ G, we say that sample
j ∈ J is covered by S if j ∈ ∪g∈SAg.

The goal is to identify a set S of at most k genes, corresponding to k subsets S1, S2, . . . Sk

where for each subset Si we have that Si ⊆ J , such that the sum of the weights of the

https://github.com/VandinLab/UNCOVER
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elements covered by S is maximized. We also penalize overlaps between sets when an element
is covered more than once by S by assigning a penalty pj for each of the additional times j is
covered by S. As penalty we use the positive average of the normalized target values if the
original weight of the element was positive. If the original weight of the element was negative
we assign a penalty equal to its weight.

Let cS(j) be the number of sets in S1, . . . , Sk that cover element j ∈ J . Therefore for a
set S of genes, we define its weight W (S) as:

W (S) =
∑

j∈∪s∈SAs

wj −
∑

j∈∪s∈SAs

(cS(j)− 1)pj (2.1)

The Target Associated k-Set problem: G iven a set J of samples, sets Ag1 , . . . , Agn

describing alterations of genes G = {g1, . . . , gn} in the set J , weights wj and penalties pj > 0
for each sample j ∈ J find the S of ≤ k elements maximizing W (S).

The following results defines the computational hardness of the problem above.

Theorem 1. The Target Associated k-Set problem is NP-hard.

Proof. The proof is by reduction from the Maximum Weight Submatrix Problem (MWSP)
defined and proved to be NP-hard in [Vandin et al., 2012c]. The MSWP takes as input
an m × n binary matrix A and an integer k > 0 and requires to find the m × k column
sub-matrix M̂ of A that maximizes the objective function |Γ(M)| − ω(M), where Γ(M) is
the set of rows with at least one 1 in columns of M and ω(M) =

∑
g∈M |Γ({g})| − |Γ(M)|.

Given an instance of Maximum Weight Submatrix Problem, we define an instance of the
Target Associated k-Set as follow: the set of samples J corresponds to the rows of A, the set
of genes G corresponds to the columns of A, and the set Sg of samples covered by gene g ∈ G
is the subset of the rows in which g has a 1. By setting wj = 1 and pj = 1 for all j ∈ J , we
have that the objective function of MWSP corresponds to the weight W (S) for the Target
Associated k-Set therefore the optimal solution of the Target Associated k-Set corresponds
to the optimal solution of MWSP.

ILP formulation

In this subsection we provide an ILP formulation for the Target Associated k-Set problem.
Let xi be a binary variable equal to 1 if set i ∈ G is selected and xi = 0 otherwise. Let zj be
a binary variable equal to 1 if element j is covered and zj = 0 otherwise. Let yj denote the
number of sets in the solution covering element j. Finally, let wj be the weight of element j
and pj be the penalty for element j

In our ILP formulation, the following constraints need to be satisfied by a valid solution:

• the total number of sets in the solution is at most k:
∑

i xi ≤ k

• for each element j ∈ J we have: yj =
∑

i:j∈Si
xi
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• for each element j ∈ J , if j is covered by the current solution then the number of times
j is covered in the solution is at least 1: yj ≥ zj

• for each element j ∈ J , if j is covered by at least one element in the current solution
then j is covered: zj ≥ yj/k.

With the variables defined above, the score for a given solution is

z(q) = max
m∑
j=1

(wj + pj)zj −
m∑
j=1

pjyj. (2.2)

z(q) constitutes the objective function of our ILP formulation.

Greedy algorithm

Since solving ILPs can be impractical for very large datasets, we also design a k-stage greedy
algorithm to solve the Target Associated k-Set problem. During each stage the algorithm
picks 1 set Ai to be part of the solution; this is done by first computing the total weight of each
subset which is defined as the sum of the weights of its elements W (Ai) =

∑
j∈Ai

wj. Then
the algorithm finds the subset Ai of maximum positive weight and adds it to the solution.
It may be that at some stage ` no additional set of positive weight can be selected, in this
case, the solution obtained after stage `− 1 will be our output. At the end of the iteration
the weight of every element j that belonged to the chosen set Ai is set to the negative of
penalty pj , in order to penalize future selections of the same elements. The greedy algorithm
is described in Algorithm 1.

Input: A set of elements J (samples), a class I of subsets of J (genetic alterations)
and an integer k (maximum number of alterations in the solution). Each
element j ∈ J has an associated weight wj (target profile) and a penalty pj.

Output: k subsets, S1, S2, . . . Sk , where each subset selected is a member of I, such
that the sum of the weights of the elements in the selected sets is
maximized and the overlap between selected sets is minimized.

for `← 1 to k do
for i← 1 to n do W (Ai)←

∑
j∈Ai

wj;

S` ← arg maxAi>0{W (Ai)};
for j ∈ S` do wj ← −pj;

end
return S1 . . . Sk;

Algorithm 1: Greedy Coverage

We note that our greedy algorithm is analogous to the greedy algorithm for the Maximum
k-Coverage problem [Hochbaum and Pathria, 1998] with the difference that rather than
eliminating the elements already selected we change their weight to a penalty. Also, assuming
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it is acceptable to return less than k sets, we only pick a set if it has a positive weight. The
running time of the algorithm is O(kmn) where m = number of samples and n = number of
alterations.

While the greedy algorithm may not return the optimal solution, we prove that it provides
guarantees on the weight of the solution it provides.

Proposition 1. Let S∗ the optimal solution of the Target Associated k-Set and Ŝ be the
solution returned by the greedy algorithm. Then W (Ŝ) ≥ W (S∗)/k.

Proof. Note that the weight of subsets in the optimal solution W (S∗) can only be lower
compared to the original weight of the subsets, since the only weight update operation
performed is to substitute positive weights of elements selected with a negative penalty.

The first subset Ŝ1 selected by our algorithm is the set of maximum weight out of all
subsets and therefore W (Ŝ1) ≥ W (S∗` ) for ` = 1..k. By the pigeonhole principle, one of
these subsets in the optimal solution must cover at least W (S∗)/k worth of elements. Thus
W (Ŝ1) ≥ W (S∗)/k. Therefore the first subset selected by the algorithm already gives a
1/k approximation of the optimal solution. In subsequent iterations of the algorithm we
only pick additional sets if they have a positive weight so our approximation ratio can only
improve.

We also prove that the bound above is tight

Proposition 2. There are instances of the Target Associated k-Set such that W (Ŝ) =
W (S∗)/k.

The proof is in Appendix A.
While the proposition above is based on an extreme example, our experimental analysis

shows that in practice the greedy algorithm works well and often identifies the optimal
solution. We therefore analyze the greedy algorithm under a generative model in which
there is a set H of k genes with mutually exclusive alterations associated with the target,
while each genes g ∈ G \H is mutated in sample j with probability pg independently of all
other events. We also assume that the weights wj are such that

∑
j∈J wj = 0 and for each

j : |wj ≤ 1|. (In practice this is achieved by normalizing the target values before running the
algorithm, by subtracting to each wj the average value

∑
j∈J wj/m and then dividing the

result by the maximum of the absolute values of the transformed wj’s.) Note that this last
condition implies that |pj| ≤ 1 for all j. We also assume that for genes in H the following
assumptions hold:

• the set H has an association with the target, i.e.: E[W (H)] ≥ m
c′

for a constant c′ ≥ 1.

• each gene of H contributes to the weight of H, i.e. for each S ⊂ H and each g ∈ H \ S
we have E[W (S ∪ {g})]− E[W (S)] ≥ W (H)

kc′′
for a constant c

′′ ≥ 1.

The following shows that, if enough samples from the generative model are considered,
the greedy algorithm finds the set H associated with the target with high probability.
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Proposition 3. If m ∈ Ω (k2 ln(n/δ)) samples from the generative model above are provided
to the greedy algorithm, then the solution of the greedy algorithm is H with probability ≥ δ.

The proof is in Appendix A.

Statistical significance

To assess the significance of the solution reported by our algorithms we use a permutation
test in which the dependencies among alterations in various genes are maintained, while the
association of alterations and the target is removed. In particular, a permuted dataset under
the null distribution is obtained as follows: the sets Ag, g ∈ G are the same as observed in
the data; the values of the target are randomly permuted across the samples.

To estimate the p-value for the solutions obtained by our methods we used the following
standard procedure: 1) we run an algorithm (ILP or greedy) on the real data D, obtaining a
solution with objective function oD; 2) we generate N permuted datasets as described above;
3) we run the same algorithm on each permuted dataset; 4) the p-value is then given by
(e+ 1)/(N + 1), where e is the number of permuted datasets in which our algorithm found a
solution with objective function ≥ oD.

Data and computational environment

Alteration Data. We downloaded data for the Cancer Cell Line Encyclopedia on 25th

September, 2017 from http://www.broadinstitute.org/ccle. In particular we used the
mutation (single nucleotide variants) and copy number aberrations (CNAs) which are derived
from the original Cancer Cell Line Encyclopedia (CCLE) mutations and CNA datasets.
The file we used is CCLE MUT CNA AMP DEL 0.70 2fold.MC.gct. It consists of a binary (0/1)
matrix across 1,030 samples and 48,270 gene alterations in the form of mutations, am-
plifications and deletions, with a 1 meaning that the alteration is present in a sample,
and a 0 otherwise. For the GDSC experiments [Barretina et al., 2012a; Stransky et al.,
2015], we used the alteration provided at https://depmap.org/portal/download/all/.
We downloaded the data on July 6th 2018. In particular we used mutation data from
portal-mutation-2018-06-21.csv that includes binary entries for 18652 mutations. Ad-
ditionally we considered 22746 amplifications and 22746 deletions computed from the gene
copy number data in portal-copy number relative-2018-06-21.csv, with an amplifica-
tion defined by a copy number above 2 and a deletion defined by a copy number below
-1.

Target Data. In terms of target values we use the same datasets used by [Kim, 2016] to
compare the performance of UNCOVER with REVEALER. In particular we used the following
files available through the Supplementary Material of [Kim, 2016]: CTNBB1 transcriptional

reporter.gct, which consists of measurements of a β-catenin reporter in 81 cell lines;
NFE2L2 activation profile.gct, which includes NFE2L2 enrichment profiles for 182 lung

http://www.broadinstitute.org/ccle
https://depmap.org/portal/download/all/
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cell lines; MEK inhibitor profile.gct, which contains MEK-inhibitor PD-0325901 sensitiv-
ity profile in 493 cancer cell lines from the Broad Novartis CCLE14l; and
KRAS essentiality profile.gct, which corresponds to the feature KRAS from a sub-
set of 100 cell lines from the Achilles project dataset. In all these cases we considered
the same direction of association (positive or negative) between alterations and the tar-
get as in [Kim, 2016]. Since our algorithm is very efficient we then decided to run it
on a large dataset on genetic dependencies from Project Achilles (https://portals.
broadinstitute.org/achilles), that uses genome-scale RNAi and CRISPR-Cas9 pertur-
bations to silence or knockout individual genes. In particular, we use the whole 2.4.2 Achilles
dataset (Achilles QC v2.4.3.rnai.Gs.gct) available from the project website. This dataset
provides phenotype values for 5711 targets, corresponding to genes silenced by shRNA. The
phenotype values correspond to ATARiS [Shao et al., 2013] gene (target) level scores, quanti-
fying the cell viability when the target gene is silenced by shRNA. These scores are provided
for 216 cell lines [Cowley et al., 2014], with 205 of them appearing in CCLE. We also used UN-
COVER to analyze a large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC)
project (https://www.cancerrxgene.org/) which provides drug sensitivity data generated
from high-throughput screening using fluorescence-based cell viability assays following 72
hours of drug treatment. In particular, we considered the area under the curve for each ex-
periment as target. These scores are provided in the file portal-GDSC AUC-2018-06-21.txt,
available trough the DepMap portal (https://depmap.org) [Yang et al., 2013b] for 265
compounds and 743 cell lines, with 736 having alteration data in DepMap.

Data Preprocessing. To be consistent with REVEALER we discarded features with high
or low frequency, in particular features present in less than 3 samples or more than 50 samples
were excluded from our analyses. The only exception was the MEK-inhibitor example, where
the high frequency threshold was changed to be 100 since the number of original samples
was substantially higher (i.e., 493) for this case. From the Achilles dataset we excluded
targets that have at least one missing value, in particular in this case we exclude 21 of the
5711 sets of target scores. From the GDSC dataset, since many samples have at least one
target with a missing value, for every target we excluded samples with missing value for that
target, that results in a different number of samples for each target. The number of samples
varied between 240 and 705. We filtered alterations to only have alterations with frequencies
between 0.1 and 0.25, removing in this way genes that have high alteration frequency due to
genomic features not important for to the disease (e.g., gene length) [Raphael et al., 2014].
In all our experiments we normalized the target values before running the algorithm, by
subtracting to each weight wj the average value

∑
j∈J wj/m and dividing the result by the

standard deviation of the (original) wj’s, in order to have both positive and negative target
values.

Simulated Data. We investigated how effective UNCOVER is at finding selected alter-
ations in a controlled setting, where the ground truth is known. We generated target values

https://portals.broadinstitute.org/achilles
https://portals.broadinstitute.org/achilles
https://www.cancerrxgene.org/
https://depmap.org
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according to a normal distribution with mean 0 and standard deviation 1. We tested dataset
with 200, 600, 1000 and 10000 samples. For each dataset we considered the 38002 gene
alterations present in CCLE and for each of them we placed alterations in the samples
independently of all other events with the same frequencies as they appear in CCLE. To
be consistent with the preprocessing done on real data we filtered alterations to only have
alterations with frequencies between 0.1 and 0.25. We also generated a set T of 5 features
to have an association with the target values. This association was varied throughout the
experiments to cover different percentages of positive and negative targets. In particular we
generated the selected features to cover 100%, 80%, 60%, 40% of the positive target values
and 5%, 10%, 15%, 20% of the negative target values respectively, choosing random subsets
of samples with positive or negative target values. We will refer to the parameter indicating
the percentage of samples with positive target values selected as P and to the parameter for
the percentage of samples with negative target values selected as N . We divided the number
of targets covered by each of the 5 mutations equally.

Computing Environment and Solver Configuration. To describe and solve an ILP we
used AMPL 20150516 and CPLEX 12.6.3. All parameters in CPLEX were left at their default
values. We implemented our greedy algorithm in Python 3.6.1. We run our experiments
on the same datasets considered by REVEALER [Kim, 2016] and on the Achilles project
dataset on a MacBook Air with 1.7 GHz Intel Core i7 processor, 8 GB RAM and 500 GB of
local storage. Experiments on simulated data were conducted on local nodes of a computing
cluster. Each node had the following configuration: four 2.27 GHz CPUs, 5.71 GB RAM
and 241 GB of storage. Experiments on the GDSC dataset for UNCOVER and REVEALER
were conducted on an iMac with 3.4 GHz Intel Core i5 processor and 16 GB RAM. For the
time comparison between UNCOVER and REVEALER we run the R code provided in [Kim,
2016] on the same machine used for UNCOVER, using R 3.5.1. All the parameters were left
at their given values except for the number of permutations used to calculate their p-value,
which we changed in order to compare the running time of the methods excluding the time
needed to compute p-values.

2.3 Results and discussion

We tested UNCOVER on a number of cancer datasets in order to compare its results to the
ones obtained without using the target, to state-of-the-art algorithms, and to test whether
UNCOVER allows the analysis of large datasets. In particular, we first assessed the impact
of the target values on the results of UNCOVER. We then compared UNCOVER with
REVEALER using four datasets described in [Kim, 2016] as well as the GDSC project dataset
described above. We then used simulated data to asses the performance of UNCOVERin
finding groups of alterations associated with a target. We then performed a scalability test
using a large dataset from the Achilles project and alterations from the Cancer Cell Line
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Encyclopedia (CCLE). Finally, we used UNCOVER to analyze a drug sensitivity dataset
from the GDSC project.

Impact of Target

We ran UNCOVER on the GDSC dataset for k = 3 and compared the results obtained when
the target values are not considered in the analysis, obtained running UNCOVER ILP with
k = 3 while setting the target values to 1 for all the samples considered in the analysis of a
target. The latter analysis corresponds to the extraction of sets with high mutual exclusivity
(e.g., by [Vandin et al., 2012c]). As expected, the solutions obtained in the two cases are very
different: the solution obtained without considering the target values has one alteration in
common with the solution obtained by UNCOVER using either positive or negative values of
the target for only 11 targets of the 265 in the GDSC dataset, and for no target the solutions
share more than 1 alteration. An example of the solutions obtained target using UNCOVER
and without considering the target values are shown in Fig. 2.3. We observe that while the
solutions obtained considering the target values display an association with the target profile
(positive or negative), the solution obtained when the target values are not considered, while
covering a large set of samples, does not display any positive or negative association with the
target profile.

To asses the association between target values and alterations more consistently we
calculated the point biserial coefficient for all 265 solutions. The coefficient varies between −1
and +1 with 0 implying no correlation. The average value obtained when ignoring the target
is −0.02 with standard deviation 0.05, while the the average value obtained by UNCOVER is
0.20 with standard deviation 0.05. These results show that a mutual exclusivity analysis that
disregards the values of the target does not identify sets of mutually exclusive alterations
associated with target values.

In addition, the genes in solution identified by considering the drug target have a much
more significant enrichment in known cancer genes, as reported in [Vogelstein et al., 2013],
than the genes in solution identified disregarding the values of the target (p = 3× 10−12 vs
p = 10−2).

Comparison with REVEALER

We run the greedy algorithm and the ILP from UNCOVER on the same four datasets
considered by the REVEALER publication [Kim, 2016]. We used the same values of k used
in [Kim, 2016], that is k = 3 for all the datasets, except from the KRAS dataset where k = 4
was used. For each dataset we recorded the solution reported by the greedy algorithm, the
solution reported by the ILP, the value of the objective functions for such solutions and the
running time to obtain such solutions. For ILP solutions, we also performed the permutation
test (see Materials and methods) to compute a p-value using 1000 permutations. The results
are reported in Table 2.1, in which we also show the results from REVEALER (without



CHAPTER 2. EFFICIENT ALGORITHMS TO DISCOVER ALTERATIONS WITH
COMPLEMENTARY FUNCTIONAL ASSOCIATION IN CANCER 16

initial seeds). Fig. 2.4 shows alteration matrices and the association with the target for the
solutions identified by UNCOVER.

We can see that the greedy algorithm identifies the same solution of the ILP based
algorithm in three out of four cases, and that the runtime of the ILP and the runtime of
greedy algorithm are comparable and very low (< 40 seconds) in all cases. In contrast, the
running time of REVEALER is much higher (> 1000 seconds in most cases). (We included all
preprocessing in the reported UNCOVER runtimes in Table 2.1 to ensure a fair comparison
with REVEALER; not including preprocessing our running times are all under 10 seconds.)
Comparing the alteration matrices of the solutions by UNCOVER and the ones of solutions
by REVEALER (Fig. S1) we note that alterations in solutions by UNCOVER tend to
have higher mutual exclusivity and to be more concentrated in high weight samples than
alterations in solutions by REVEALER. As expected, the value of the objective function we
use is much lower for solutions from REVEALER than for solutions from our algorithm.

Table 2.1. Comparison of UNCOVER with REVEALER on REVEALER’s datasets.
NFE2L2 activation MEK-inhibitor KRAS essentiality β-catenin activation

UNCOVER(ILP) KEAP1.MC MUT BRAF.V600E MUT KRAS.G12 13 MUT APC.MC MUT
solution ATP11B AMP KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

SPINT4 DEL NRAS MUT ATP8A2 AMP SLITRK1 AMP
C8orf22 AMP

Objective value 46.17 108.32 28.00 22.97
IC score 0.58 0.49 0.63 0.67
p-value 0.000999 0.000999 0.025974 0.1068931
Running time (s) 14 39 9 9
UNCOVER(Greedy) KEAP1.MC MUT BRAF MUT KRAS.G12 13 MUT APC.MC MUT
solution ATP11B AMP KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

SPINT4 DEL NRAS MUT ATP8A2 AMP SLITRK1 AMP
C8orf22 AMP

Objective value 46.17 104.29 28.00 22.97
IC score 0.58 0.5 0.63 0.67
Running time (s) 15 35 9 8
REVEALER KEAP1.MC MUT BRAF MUT KRAS.G12 13 MUT APC.MC MUT
solution LRP1B DEL KRAS.G12 13 MUT ZNF385B AMP CTNNB1.MC MUT

OR4F13P AMP NRAS MUT LINC00340 DEL ITGBL1 AMP
NUP153 MUT

Objective value 30.35 104.29 21.86 22.12
IC score 0.54 0.5 0.6 0.7
Running time (s) 1615 4965 1243 787

For each of the four targets (NFE2L2 activation, MEK-inhibitor, KRAS essentiality,
β-catenin activation) considered in [Kim, 2016], the set of alterations of cardinality k
reported by our ILP algorithm, by our greedy algorithm, and by REVEALER (without
seeds) is reported. k is chosen as in [Kim, 2016]. For each pair (algorithm, target) we also
report the (objective) value of our objective function for the solution, the value of the IC
score (that is, the objective function used in [Kim, 2016]), and the running time of the
algorithm for the target. For solutions found by our ILP we also report the p-value
computed by permutation test using 1000 permutations.
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We then compared the solutions obtained by our algorithms with the solutions from
REVEALER in terms of the information coefficient (IC), that is the target association score
used in [Kim, 2016] as a quality of the solution. Surprisingly, in two out of four datasets
UNCOVER, which does not consider the IC score, identifies solutions with IC score higher
(by at least 5%) than the solutions reported by REVEALER. For the other two cases, in one
dataset the IC score is very similar (0.50 vs 0.49) while in the other case the IC score by
REVEALER is higher (0.7 vs 0.67) but the solution reported by REVEALER differs from
the solution reported by UNCOVER by 1 gene only. Interestingly, the latter is the only
case where the solution from the ILP has a p-value > 0.1 (p < 0.03 in all other cases), and
therefore the solutions (by our methods and by REVEALER) for such dataset may be, at
least in part, due to random fluctuations of the data.

In terms of biological significance, in most cases the solutions by UNCOVER and by
REVEALER are very similar, with cancer relevant genes identified by both methods. For
NFE2L2 activation, both methods identify KEAP1, a repressor of NFE2L2 activation [Solis
et al., 2010]. For MEK-inhibitor, both methods find BRAF, KRAS, and NRAS, three
well known oncogenic activators of the MAPK signaling pathway, which contains MEK as
well. For KRAS essentiality, both methods report mutations in KRAS in the solution. For
β-catenin activation, both methods identify CTNNB1 mutations and APC mutations, that is
known to be associated to β-catenin activation [Minde et al., 2011]. These results show that
UNCOVER identifies relevant biological solutions that are better than the ones identified
by REVEALER when evaluated using our objective function and also when evaluated
according to the objective function of REVEALER with a running time that is on average
two orders of magnitude smaller than required by REVEALER. Since UNCOVER and
REVEALER consider two different objective functions, it is unclear whether the improvement
in running time comes from differences in implementation choices or from a inherently
different computational complexity. However, since UNCOVER’s objective function is easier
to compute than REVEALER’s objective function, we believe that the use of our objective
function plays an important role in the efficiency of UNCOVER.

Table 2.2. Comparison of UNCOVER with REVEALER on GDSC dataset.

Number Avg. effect Cancer genes enrichment Enriched KEGG
of genes size p-value (fold enrich.) pathways

REVEALER 570 0.11 2× 10−4 (3) 11
UNCOVER 491 0.20 3× 10−12 (7) 22

For each algorithm we report the distinct number of genes in its solutions, the average effect
size of the algorithm’s solutions, the p-value and fold enrichment for known cancer genes,
and the number of KEGG pathways enriched for genes in the solutions by the algorithm.

We also compared the solutions obtained by UNCOVER and by REVEALER on the
GDSC dataset. For both algorithms we obtained the solutions for k = 3. For UNCOVER,
we considered the solution returned by the ILP. For REVEALER, we could only obtain
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solutions for 246 targets, since for the other targets REVEALER terminated with an error
message. Due to the high running time of REVEALER, we only obtained sets of alterations
associated with positive values of the target (Table 2.2). For 33 targets the solution by
UNCOVER and the solution by REVEALER share 1 alteration, while for 33 targets the
solution by UNCOVER and the solution by REVEALER share 2 alterations; for no target
UNCOVER and REVEALER report the same solution. This shows that the two methods
identify completely different solution in most (> 73%) of the cases. We compared the solutions
obtained by UNCOVER and by REVEALER using the IC score considered by REVEALER
but not from UNCOVER: surprisingly, in more than 50% of the cases (113 out of 208) the IC
score of the solution from UNCOVER is higher than the IC of the solution from REVEALER.
On the other hand, for all targets the solution by REVEALER is worst than the solution
by UNCOVER when the UNCOVER objective function is considered. We also compared
UNCOVER and REVEALER evaluating the association between target values and alterations
in the solutions using a measure of association that is not considered by the two algorithms.
In particular, we considered the point biserial correlation coefficient [?]. In more than 95% of
the cases (199 out of 208) the point biserial correlation coefficient between the solution from
UNCOVER and the target is higher than the point biserial correlation coefficient between
the solution from REVEALER and the target, that is, the solution from UNCOVER has
an higher association with the target than the solution from REVEALER. On average, the
solution from UNCOVER has a point biserial correlation coefficient that is 37% higher than
the point biserial correlation coefficient of the solution from REVEALER. Moreover, the
average effect size of solutions from UNCOVER is more than 80% higher than the average
effct size of solutions from REVEALER (Table 2.2). In addition, the genes in solutions from
UNCOVER have a much higher enrichment (p = 3× 10−13; 7-fold enrichment) for known
cancer genes than solutions from REVEALER (p = 2×10−4; 3-fold enrichment). Analogously,
more KEGG pathways display a significant enrichment in genes from UNCOVER solutions
than from REVEALER solutions (22 vs 11). We also compared the running time of the two
methods: UNCOVER required 3 hours to complete the analysis, while REVEALER required
9 days. Overall, these results show that UNCOVER obtains better results than REVEALER
not only in terms of the UNCOVER objective function but also in terms of the score from
REVEALER as well as in terms of a independent measure of association, while being 70
times faster than REVEALER.

Results on simulated data

For each combination we generated 10 simulated datasets as described in Materials and
methods. Each dataset contains a planted set of 5 alterations associated with the target. We
used both the greedy algorithm and the ILP from UNCOVER with k = 5 to attempt to find
the 5 correct alteration, and evaluated our algorithms both in terms of fraction of the correct
(i.e., planted) solution reported and running time.
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As shown in Fig. 2.5, the greedy algorithm is faster than the ILP for all datasets, and the
difference in running time increases as the number m of samples increases, with the runtime
of the greedy algorithm being almost two orders of magnitude smaller than the runtime of the
ILP for m = 1000 samples. In addition, for a fixed number of samples and alterations, the
running time of the greedy algorithm is constant, that is it does not depend on the properties
of the planted solution, while the running time of the ILP varies greatly depending on these
parameters. For m = 10, 000 samples the running time of the ILP becomes extremely high, so
we restricted to consider only two sets of parameters (p− n = 0.95 and p− n = 0.2). In this
case the ILP took between 44 minutes and 7 hours to complete, while the greedy algorithm
terminates in 5 minutes.

In terms of the quality of the solutions found, as expected the ILP outperforms the
greedy (Fig. 2.6) but the difference among the two tends to disappear when the number of
samples is higher. In addition, since the ILP finds the optimal solution, we can see that
for a limited number of samples we may not reliably identify the planted solution with 200
samples unless the planted solution appears almost only in positive targets and in almost
all of them (p− n = 0.95), while for m=1000 we can reliably identify the planted solution
using both the ILP and the greedy algorithm even when the association with the target is
weaker (p− n = 0.6). When m = 10, 000, both the ILP and the greedy algorithm perform
well in terms of the quality of the solution: the ILP finds the correct alterations on every
experiment and the greedy identifies the whole planted solution in all experiments but one
for p− n = 0.2, for which it still reports a solution containing 4 genes in the planted solution.

These results show that for a large number of samples the greedy algorithm reliably
identifies sets of alterations associated with the target, as predicted by our theoretical
analysis, and is much faster than the ILP. For smaller sample size the ILP identifies better
solutions than the greedy and has a reasonable running time.

Analysis of Achilles project data

The efficiency of UNCOVER renders the analysis of a large number of targets, such as the
ones available through the Achilles project, possible. After preprocessing the dataset included
5690 functional phenotypes as targets, and for each of these the CCLE provides alteration
information for 205 samples and 31137 alterations. In total we have therefore run 11380
instances (i.e., 5690 targets screened for positive and for negative associations) looking for
both positive and negative association with target values. Since the number of samples (205)
is relatively small, we have run only the ILP from UNCOVER on the whole Achilles dataset
and looked for solutions with k = 3 genes. The runtime of UNCOVER to find both positive
and negative associations, including preprocessing, is 24 hours. Based on the runtime required
on the instances reported in [Kim, 2016] (see the Section Comparison with REVEALER),
running REVEALER on this dataset would have required about 5 months of compute time.

To identify statistically significant associations with targets in the Achilles project dataset
we used a nested permutation test. We first run the permutation test with 10 permutations
on all instances (i.e., on all targets for both positive association and negative association). We
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then considered all the instances with the lowest p-value (1/11) and performed a permutation
test with 100 permutations only for such instances. We the iterated such procedure once
more, selecting all the instances with lowest p-value (1/101) and performing a permutation
test with 1000 permutations only for such instances. For positive association we found 60
solutions with p-value < 0.001, and for negative association we found 102 solutions with
p-value < 0.001.

The genes in the solutions by UNCOVER with p-value 1/1001 are enriched (p = 2× 10−12

by Fisher exact test; 8 fold enrichment) for well-known cancer genes. We also tested whether
genes in solutions by UNCOVER (with p-value 1/1001) are enriched for interactions, by
comparing the number of interactions in iRefIndex [Razick et al., 2008] among genes in such
solution with the number of interactions in random sets of genes of the same cardinality.
Genes in solutions by UNCOVER are significantly enriched in interactions (p = 7× 10−3 by
permutation test; 2 fold enrichment). In addition, the genes in solutions by UNCOVER are
also enriched in genes in well-known pathways: 12 KEGG pathways [Kanehisa et al., 2017]
have a significant (corrected p ≤ 0.05) overlap with genes in solutions by UNCOVER and
four of these (endometrial cancer, glioma, hepatocellular carcinoma, EGFR tyrosine kinase
inhibitor resistance) are cancer related pathways. In addition, the targets (i.e., genes) with
solutions of p-value 1/1001 are enriched (p = 5× 10−4 by permutation test; 6 fold enrichment)
for interactions in iRefIndex and for well-known cancer genes (p = 2× 10−12 by Fisher exact
test; 8 fold enrichment) as reported in [Vogelstein et al., 2013]. These results show that
UNCOVER enables the identification of groups of well known cancer genes with significant
associations to important targets in large datasets of functional target profiles. For example,
for target (i.e., silenced gene) TSG101, related to cell growth, UNCOVER identifies the gene
set shown in Fig. 2.7 as associated to reduced cell viability. ERBB2 is a well known cancer
gene and CDH4 is frequently mutated in several cancer types, and both are associated to cell
growth.

Analysis of GDSC project data

We use UNCOVER to analyze the GDSC project data, identifying sets of alterations associated
with drug sensitivity. After preprocessing, the dataset included 64144 alterations and 265
targets, and for each of these the number of cell lines with available data varied between 240
and 705. In total we have therefore run 530 instances (i.e., 265 targets screened for positive
and for negative associations) looking for both positive and negative association with target
values.

We used the UNCOVER ILP for all instances to obtain solutions with k = 3 genes. For
each solution, we use 100 permutations to compute its p-value. For positive association we
found 51 solutions with p-value < 0.01, and for negative association we found 41 solutions
with p-value < 0.01. We used the following procedure to focus on the most significant
solutions: we run UNCOVER with k = 4 and computed the p-values for the solutions using
100 permutations; we then identified targets whose solution for k = 3 have p-value < 0.01 and
are contained in the solution for the same target with k = 4 and have p-value p < 0.01 for
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k = 4. In total, this procedure identifies 23 solutions for positive association and 22 solutions
for negative associations.

The genes in the solutions identified as above are enriched (p = 9× 10−10 by Fisher exact
test; 20 fold enrichment) for well-known cancer genes, as reported in [Vogelstein et al., 2013].
We also tested whether these genes in solutions are enriched for interactions, by comparing the
number of interactions in iRefIndex [Razick et al., 2008] among genes in such solution with
the number of interactions in random sets of genes of the same cardinality. Genes in solutions
by UNCOVER are significantly enriched in interactions (p = 2× 10−2 by permutation test; 6
fold enrichment). In addition, these genes are also enriched in genes in well-known pathways:
21 KEGG pathways [Kanehisa et al., 2017] have a significant (corrected p ≤ 0.05) overlap
with genes in solutions by UNCOVER and 19 of these are cancer related pathways (e.g.,
ErbB signaling pathway) or related to drug resistance (e.g., EGFR tyrosine kinase inhibitor
resistance).

For Palbociclib, UNCOVER identifies RB1 mutations, GRB7 amplifications, and RB1 dele-
tions with significant association with reduced sensitivity to drug. RB1 is a well known cancer
gene. The alterations are shown in Fig. 2.3a.While RB1 mutations and RB1 deletions are signif-
icantly associated when considered in isolation (the association of single alterations with drug
sensitivity and the drug targets have been obtained from https://www.cancerrxgene.org/),
GRB7 amplification is not associated with the target values when considered in isolation.
GRB7 encodes a growth factor receptor-binding protein that interacts with epidermal growth
factor receptor (EGFR). Both RB1 and EGFR are related to the cell cycle pathway, that is
the pathway target of the compound, and the drug targets (CDK4, CDK6) as well EGFR
are members of the PI3K-AKT pathway. For Sunitinib, UNCOVER identifies mutations in
SETD2, ARHGAP19, and RB1, with significant association with reduced sensitivity to drug.
The alterations are shown in Fig. 2.8a. RB1 is a well known cancer gene and SETD2 has
tumor suppressor functionality. None of these alterations have significant association with
drug sensitivity when considered in isolations. RB1 and SETD2 are involved in protein local-
ization to chromatin, and ARHGAP19 is part of Rho mediated remodeling. For PLX-4720-2,
UNCOVER identifies mutations in BRAF, CD244, and ARSB with significant association to
increased sensitivity to drug. The alterations are shown in Fig. 2.8b. BRAF is a well-known
cancer gene; it is the target of the compound and BRAF mutations have significant association
to increased sensitivity to the compound, while the other two alterations do not. BRAF and
CD244 are part of natural killer cell mediated cytotoxicity pathway, while ARSB is involved
in the regulation of cell adhesion, cell migration and invasion in colonic epithelium [?], and is
also part of metabolism related pathways. For VX-11e, UNCOVER identifies mutations in
BRAF, KRAS, and NRAS, with significant association to increased sensitivity to drug. The
alterations are shown in Fig. 2.8c. Only BRAF mutations have significant association with
the target when considered in isolation. The pathway target for the compound is the ERK
MAPK signaling pathway, to which all three alterations are related. All three genes have well
identified roles in cancer. These results show that UNCOVER enables the identification of
groups of relevant genes, many related to cancer, with significant associations to important
targets in large datasets of drug sensitivity profiles.

https://www.cancerrxgene.org/
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Conclusion

In this work we study the problem of identifying sets of mutually exclusive alterations
associated with a quantitative target profile.

We provide a combinatorial formulation for the problem, proving that the corresponding
computational problem is NP-hard. We design two efficient algorithms, a greedy algorithm
and an ILP-based algorithm, for the identification of sets of mutually exclusive alterations
associated with a target profile. We provide a formal analysis for our greedy algorithm,
proving that it returns solutions with rigorous guarantees in the worst-case as well under a
reasonable generative model for the data. We implemented our algorithms in our method
UNCOVER, and showed that it finds sets of alterations with a significant association with
target profiles in a variety of scenarios. By comparing the results of UNCOVER with the
results of REVEALER on four target profiles used in the REVEALER publication [Kim, 2016]
and on a large dataset from the GDSC project, we show that UNCOVER identifies better
solutions than REVEALER, even when evaluated using REVEALER objective function.
Moreover, UNCOVER is much faster than REVEALER, allowing the analysis of large datasets
such as the dataset from project Achilles and from the GDSC project, in which UNCOVER
identifies a number of associations between functional target profiles and gene set alterations.

Our tool UNCOVER (as well as REVEALER) relies on the assumption that the mutual
exclusivity among alterations is due to functional complementarity. Another explanation for
mutual exclusivity is the fact that each cancer may comprise different subtypes, with different
subtypes being characterized by different alterations [Leiserson et al., 2013]. UNCOVER can
be used to identify sets of mutually exclusive alterations associated with a specific subtype
whenever the subtype information is available, by assigning high weight to samples of the
subtype of interest and low weight to samples of the other subtypes. In addition, while
we consider a penalty based on mutual exclusivity, other types of penalties may be used
to identify sets of alterations associated with a target profile. The study of the theoretical
properties of the problem and the analysis of the results with different penalties are interesting
directions of future research.
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Figure 2.3.
UNCOVER results for target Palbociclib considering or ignoring target values. (a) Solution
found by UNCOVER looking for an association with samples with high target values. (b)
Solution found by UNCOVER looking for association with low target values. (c) Solution
found by UNCOVER when the target values are ignored. Each panel shows the value of the
target (top row) for various samples (columns), with yellow being negative and blue being
positive values. For each gene in the solution, alterations in each sample are shown in dark
blue, while samples not altered are in yellow. The last row shows the alteration profile of the
entire solution.
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Figure 2.4.

(a) Solution found by ILP and greedy for KRAS essentiality target. (b) Solution found by
ILP and greedy for β-catenin activation target. (c) Solution found by ILP for MEK inhibitor
target. (d) Solution found by greedy for MEK inhibitor target. (e) Solution found by ILP

and greedy for NFE2L2 activation target. Each panel shows the value of the target (top row)
for various samples (columns), with yellow being negative and blue being positive values. For
each gene in the solution, alterations in each sample are shown in dark blue, while samples
not altered are in yellow. The last row shows the alteration profile of the entire solution.
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Figure 2.5. The running time (expectation and standard deviation) of the greedy
algorithm and of the ILP approach are shown for different number of samples and the
difference p− n between the fraction p of samples with positive target and the fraction n of
samples with negative target covered by the the correct solution.
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Figure 2.6. The fraction of genes in the planted (i.e., correct) solution found by the greedy
algorithm and by the ILP approach are shown for different number of samples and the
difference p− n between the fraction p of samples with positive target and the fraction n of
samples with negative target covered by the the correct solution.
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Figure 2.7. The alteration matrix of genes in the solution identified by UNCOVER as
associated to reduced cell viability is reported. The value of the target (top row) for various
samples (columns) is shown, with yellow being negative and blue being positive values. For
each gene in the solution, alterations in each sample are shown in dark blue, while samples
not altered are in yellow. The last row shows the alteration profile of the entire solution.
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Figure 2.8. The alteration matrix of genes in some solutions identified by UNCOVER as
associated to drug sensitivity for different targets. (a) Solution for reduced sensitivity to
Sunitinib. (b) Solution for increased sensitivity to PLX-4720-2. (c) Solution for increased
sensitivity to VX-11e. Each panel shows the value of the target (top row) for various samples
(columns), with yellow being negative and blue being positive values. For each gene in the
solution, alterations in each sample are shown in dark blue, while samples not altered are in
yellow. The last row shows the alteration profile of the entire solution.
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Chapter 3

Identifying Drug Sensitivity
Subnetworks with NETPHIX

3.1 Introduction

Genetic alterations in cancer are associated with diverse phenotypic properties such as drug
response or patient survival. However, the identification of mutations causing specific pheno-
types and the interpretation of the phenotype-genotype relationships remain challenging due
to a large number of passenger mutations and cancer heterogeneity. Indeed, the relationships
between genotype and phenotype in most tumors are complex and different mutations in
functionally related genes can lead to the same phenotype. The pathway-centric view of
cancer [Garraway and Lander, 2013; Hanahan and Weinberg, 2011; Vogelstein et al., 2013] sug-
gests that cancer phenotype should be considered from the context of dysregulated pathways
rather than from the perspective of mutations in individual genes. Such a pathway-centric
view significantly advanced the understanding of the mechanisms of tumorigenesis. Many
computational methods to identify cancer driving mutations have been developed based
on pathway-centric approaches [Chuang et al., 2007; Dao et al., 2017b; Hofree et al., 2013;
Kim et al., 2013, 2016b; Vandin et al., 2012a]. Network based approaches have been further
applied to find subnetworks associated with various disease phenotypes [Carter et al., 2013;
Gilman et al., 2012; Hofree et al., 2013; Kim et al., 2016b; Zhang et al., 2018]. Those methods
have been developed aiming to find genes whose mutations are associated specifically with
given phenotypes rather than finding general cancer drivers.

Recent projects have characterized drug sensitivity in hundreds of cancer cell lines for a
large number of drugs [Barretina et al., 2012b; Yang et al., 2013a]. This data, together with
information about the genetic alterations in these cell lines, can be used to understand how
genomic alterations impact drug sensitivity. While the success of network based methods
in other cancer domains suggests that such approaches should be also useful in the studies
of drug response, most of previous approaches focused on discrete phenotypic traits – e.g.,
cancer vs. healthy, good or bad prognosis, or cancer subtypes – and therefore, cannot be
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directly applied to the analysis of continuous features such as drug sensitivity.
To address these challenges, we introduce a computational tool named NETPHIX

(NETwork-to-PHenotype assocIation with eXclusivity). With the goal of identifying mutated
subnetworks that are associated with a continuous phenotype, our algorithm builds on
combinatorial optimization techniques involving connected set cover. The objective function
of NETPHIX allows to find subnetworks with a mix of genes associated with increased or
decreased sensitivity simultaneously, considering interactions between resistance and sensi-
tivity alterations. In addition, we designed the objective function to allow for a preferential
selection of mutually exclusive genes in the solution. Based on the observation that cancer
related mutations tend to be mutually exclusive [Ciriello et al., 2013; Constantinescu et al.,
2015; Kim et al., 2015, 2016c; Leiserson et al., 2015a; Vandin et al., 2012a], we hypothesized
that mutual exclusivity may also be useful for the identification of gene modules associated
with drug response. This approach together with selecting significantly associated modules
allows to leave out passenger mutations from the sensitivity networks.

Several algorithms have been previously developed for the identification of mutations
associated with drug response [Kim, 2016; Knijnenburg et al., 2016; Sarto Basso et al., 2019]
but without considering functional relationships among genes. For example, REVEALER used
a re-scaled mutual information metric to iteratively identify a set of genes associated with the
phenotype [Kim, 2016]. UNCOVER employs an integer linear programming formulation based
on the set cover problem, by designing the objective function to maximize the association with
the phenotype and preferentially select mutually exclusive gene sets [Sarto Basso et al., 2019].
While UNCOVER uses a similar objective function as NETPHIX, it does not allow to pick
up mixed sensitivity modules nor utilize network information. LOBICO [Iorio et al., 2016;
Knijnenburg et al., 2016] is designed to identify a set of genes whose alterations are associated
with differences in drug response. The algorithm is formulated as an integer linear program,
based on logic models of binary input features that explain a continuous phenotype variable.
However, none of the algorithms mentioned above utilize network interaction information.
Since perturbations in functionally related genes are likely to lead to similar phenotypes,
functional interaction information can be helpful for the identification of phenotype associated
genes.

There have been related studies combining GWAS analysis with network constraints
[Azencott et al., 2013; Jia et al., 2011; Li and Li, 2008; Liu et al., 2017]. While these methods
generally perform well at broadly pointing to disease related genes, they do not consider
complex properties of cancer mutations such as the aforementioned mutual exclusivity of
cancer drivers, and are not designed to zoom in on subnetworks that are specific enough
to help understand drug action. As discussed later, the genomic landscape related to drug
response can be complex and mutations in different genes in the same pathway can affect the
response differently. Pharmaceutical drugs are often developed to target specific genes, and
the response depends on the function and the mutation status of the gene as well as other
genes in the same pathway.

We evaluated NETPHIX and other related methods using simulations and showed that
NETPHIX outperforms all the competing methods. Applying NETPHIX to a large scale drug
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response data (Genomics of Drug Sensitivity in Cancer(GDSC)), we identified sensitivity-
associated subnetworks for many of the drugs. We were also able to validate many of the
identified modules with an independent drug screening datase (The Cancer Therapeutics
Response Portal (CTRP)). These subnetworks provided important insights into drug action.
Effective computational methods to discover these associations will improve our understanding
of the molecular mechanism of drug sensitivity, help to identify potential drug combinations,
and have a profound impact on genome-driven, personalized drug therapy. NETPHIX is avail-
able at https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#netphix

3.2 Methods and Results

NETPHIX overview

Given gene alteration information and drug sensitivity profiles (or any cancer-related, con-
tinuous phenotype) for the same set of cancer samples (or cell lines), NETPHIX aims to
identify genetic alterations underlying the phenotype of interest (Fig. 3.1a). Based on the
assumption that genes whose mutations lead to the same phenotype must be functionally
related, NETPHIX also utilizes functional interaction information among genes as an input,
and enforces the identified genes to be highly connected in the network. The problem is
formulated as an integer linear program (ILP) based on a connected set cover approach.
Below we briefly describe the connected set cover based algorithm. For the formal definition
of the problem and the detailed ILP formulation, see Section B.1 and B.2, respectively.
By running ILP instances with different parameters and obtaining optimal solutions using
CPLEX [cpl], we generate candidate modules whose aggregate alterations may be associated
with a given drug response. Statistical significance of candidate modules is then assessed with
a permutation test, and a set of maximal modules are selected as final sensitivity modules.

Connected set cover. For the first step, to obtain candidate subneworks, we design our
algorithm based on connected set cover to maximize the total association with drug response
(Fig. 3.1b). Connected set cover approaches have been used successfully for the identification
of cancer driving mutations, to overcome the challenges posed by the heterogeneity of cancer
mutations and to help uncover relevant genes with rare or medium mutation frequencies
[Chowdhury and Koyuturk, 2010; Hristov and Singh, 2017; Kim et al., 2011, 2013, 2015;
Sarto Basso et al., 2019; Ulitsky et al., 2010]. Since we are interested in finding alterations
associated with drug response, we seek a connected set of genes that maximizes the total
weight where the weights are assigned based on drug sensitivity profile.

It has been observed that different patients can harbor mutations in different but func-
tionally related genes. This heterogeneity may arise when mutations in two different genes
lead to dysregulation of the same cancer pathway and the role of the two genes for cancer
progression is redundant. Building on this observation, NETPHIX identifies a connected set
of genes S that maximizes the sum of phenotypic weights of the patients who have alterations

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#netphix
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Figure 3.1. (a) Overview: NETPHIX takes a drug sensitivity profile (continuous phenotype values) and
alterations status for the same set of samples as input. In addition, the algorithm utilizes interaction
information among genes. Using a connected set cover based ILP algorithm, we first generate a set of
candidate modules. The final set of modules are selected based on a permutation test and include only
maximal modules among statistically significant optimal solutions. Genes associated with decreased and
increased sensitivity are marked as blue and red respectively. (b) NETPHIX finds a connected set of genes
for which corresponding mutations are associated with phenotype values (red colors in the drug response
profile indicate increased sensitivity values and blue colors are for decreased sensitivity values). We
considered the combined model in which all the selected genes are connected regardless of the directions of
association and the separate model in which two subnetworks are identified for increased and decreased
sensitivity module separately (c) The significance of identified modules are assessed using a permutation test
in which drug sensitivity profiles are permuted.
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in any genes in S. In addition, NETPHIX allows to add penalties in the objective function
for overlapping mutations to enforce mutual exclusivity in the selected modules. While set
cover approach can capture the heterogeneity of mutations, the penalties can be used to
further reinforce the property of mutual exclusivity.

There may be genes associated with either directions of drug response - genes whose
alterations correlate with increased sensitivity to the drug (decreased cell survival) and genes
whose alterations correlate with decreased sensitivity to the drug (increased cell survival). Our
algorithm is designed to find a module that includes both types of genes simultaneously. When
modeling the connectivity constraints, we considered two different models – the combined
model and the separate model (Fig. 3.1b). In the “combined” model, we identify one
connected subnetwork which include all genes associated with either direction, assuming
that alterations in different genes belonging to the same functional module can lead to
different directions of drug response. In the “separate” model, we seek the solutions with
two connected subnetworks, one for increased sensitivity and one for decreased sensitivity
separately. This model can capture the case when two different functional modules affect
drug response in different ways. As shown later in the results, the combined model finds
more associated modules in general than the separate model, although there are a few drugs
whose responses are associated more significantly with two separate subnetworks.

Selecting final modules. We run multiple ILP instances for different module sizes and
connectivity options to obtain candidate modules. Once we obtain the optimal gene module for
each parameter combination, we assess the significance of the identified module by performing
a permutation test (Fig. 3.1c). Note that our algorithm is designed to identify the modules
associated specifically with a given phenotype (e.g., drug sensitivity to each drug) rather than
finding general cancer drivers, and therefore, a permutation test was performed by permuting
the drug sensitivity profile so that the significance of the association is assessed in comparison
with randomly generated phenotype. Among all significantly associated subnetworks, we
obtain the final drug sensitivity modules by selecting maximal modules to remove redundancy.
See Section B.3 for the details of the permutation test and maximal module selection.

Method evaluation on simulated data

We generated a set of simulated instances where we planted phenotype associated modules
with varying parameters onto the background of real cancer cell mutation data (Section B.4).
We then compared the performance of NETPHIX and three related methods – LOBICO,
UNCOVER and SigMOD. LOBICO is a logic model based algorithm, developed to identify
a set of genes whose alterations are related to drug response [Knijnenburg et al., 2016].
UNCOVER [Sarto Basso et al., 2019] was proposed as a method to identify a set of phenotype-
associated genes by taking a set cover approach similar to ours. While both LOBICO and
UNCOVER find an optimal solution using an integer linear program but neither algorithms
utilizes interaction network information. SigMOD is a recently proposed module identification
algorithm combining GWAS and network based approach, and was found to outperform other
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related methods [Liu et al., 2017]. SigMOD requires individual association scores of genes to
a phenotype as an input, for which we used the p-value of association of each gene to a given
phenotype by performing t-tests on the coefficients of univariate linear regression.

For the evaluation purposes, we considered simple cases where alterations are associated
with only one direction (either increased or decreased). Even though NETPHIX can identify
subnetworks with mixed associations simultaneously, UNCOVER considers each direction
separately. In addition, the logic models of LOBICO become more complicated and difficult
to solve when both sides of associations are present. We planted modules of size 3, 4, and 5
and evaluated the accuracy of the three methods in identifying the planted modules (Fig.
3.2ab). For all algorithms except SigMOD, we ran the algorithm for different k’s (k is a
parameter for the size of a module searched by the algorithms), while SigMOD automatically
adjusted its parameters to find the best module. Also for all ILP based algorithm, we limit
the running time up to 24 hours, meaning the algorithms will stop and output the current
solution (which may be suboptimal) when the time limit reaches.

As shown in Fig. 3.2a, only NETPHIX shows very low rate of false positives, i.e.,
falsely identified genes for all module sizes including when bigger modules than Afatinib and
selumetinib planted are searched. NETPHIX usually does not extend the best module with
spurious genes even if we searched for modules bigger than planted while UNCOVER and
LOBICO tends to add more genes when increasing k. SigMOD identified a large number
of false positives along with the planted modules (approx. 100-180 genes) that are not
associated with phenotypes. In general, the algorithms uncovered the planted modules in
most of instances (Fig. 3.2b) as long as the size of serached modules are at least as big as the
planted module sizes. However, LOBICO solutions miss true positives more often possibly
due to the fact that the algorithm returns suboptimal solutions after the time limit reaches.
Note that the LOBICO results previously reported have been obtained with pre-selected
genes/pathways (consisting of 1,000 elements) while in this simulation we used genome-wide
alteration profiles without prefiltering. Both UNCOVER and NETPHIX found optimal
solutions well within the time limit (See Fig. B.2).

Analysis of drug screening dataset

Using NETPHIX, we analyzed a large scale drug screening dataset (GDSC) for which genomic
alteration profiles for hundreds of cell lines and drug sensitivity data for 265 drugs are available
(Section B.4). Application of NETPHIX to the dataset resulted in identifying a total of 476
modules for 194 drugs (for the remaining drugs no modules with significant association were
identified. Since there can be multiple functional modules affecting drug efficacy, our method
allows to identify multiple associated modules for a specific drug. Out of 476 identified
modules, 258 modules are one connected modules based on the combined model (for 163
drugs) and 218 modules consist of two connected components based on the separate model
(for 136 drugs). See Appendix B.3 for detailed description on how the final modules are
selected.
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Figure 3.2. (a-b) Method comparison on simulated data. (a) False discovery rate and (b) True
positive rate for the modules identified by NETPHIX (red), LOBICO (blue), UNCOVER (green), and
SigMOD (orange). (c-d) Properties of NETPHIX modules. (c) Average distances between genes in
the selected modules. Distances for genes associated with increased sensitivity (Inc), decreased sensitivity
(Dec), all genes in the selected modules (All), and distances between increased sensitivity genes and
decreased sensitivity (Between) are shown (d) Average distances between selected genes and the
corresponding drug targets. Distances for genes associated with increased sensitivity (Inc), decreased
sensitivity (Dec), all genes in the selected modules (All) are shown
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NETPHIX modules are functionally related and close to the drug target. NET-
PHIX is designed to choose modules in which genes are highly connected. As we will discuss
in Section 3.2, we observed that utilizing network information and finding connected gene
sets indeed helps identify drug sensitivity modules (Fig. 3.3(f)). Since NETPHIX modules
are connected, the genes in the selected modules are naturally close in terms of distance in
the network (the mean of avg. distances = 1.78, Fig. 3.2c). The proximity in the network
means that the genes are more likely to be functionally related. In addition, the genes with
the same direction of association (decreased or increased) tend to be closer to each other
than the genes associated in opposite direction although the two groups of genes are still
close in the network (the mean of avg. distances between the two groups = 1.96).

To examine the relationship between the sensitivity modules and the targets for the
corresponding drugs, we also computed the distances between the drug targets and the
selected genes for each drug (Fig. 3.2d). We found that the genes in drug sensitivity modules
are located near drug targets in the network (the mean of avg. distances = 2.12). Interestingly,
we observed that the genes associated with increased sensitivity are closer to drug targets
than the genes associated with decreased sensitivity (the mean of avg. distance 1.97 vs. 2.37,
p < 10−13, t-test), indicating that having perturbations in genes closer to drug targets could
potentially improve the efficacy of the drugs.

NETPHIX identified biomarkers for drugs. Many of the modules identified by NET-
PHIX provide interesting insights related to drug action. In particular, we analyzed the
response to drugs targeting the RAS/MAPK pathway (Fig. 3.3e). This pathway regulates
growth, proliferation and apoptosis and is often dysregulated in various cancers. Among
the most common mutations of this pathway are mutations of BRAF/KRAS/NRAS. Inter-
estingly, NETPHIX identified modules including those genes (mostly BRAF, KRAS and
sometimes NRAS) as associated with increased sensitivity to all MEK inhibitors (Selumetinib,
Trametinib, CI-1040, PD0325901, and Refametinib) and an ERK inhibitor (VX-11e). All
these six drugs act by blocking MEK1/MEK2 or ERK genes that are immediately down-
stream of BRAF/KRAS/NRAS and the increased sensitivity attributed to the alterations
in this subnetwork is consistent with the action of these drugs. Modules associated with
decreased sensitivity to the drugs are more diverse but NETPHIX frequently selected the
module of genes ERBB2 (amplification), MYC and RB1 (mutations) or the module with
TP53 mutations. All the genes in the modules are related to the MAPK/ERK signaling
pathway. The mutation status of BRAF and KRAS, the core members of the pathway, were
previously identified as predictors of MEK inhibitors although KRAS mutations can affect
drug responses differently depending on the mutation types [Li et al., 2018; Nakayama et al.,
2008; Sun et al., 2014]. ERBB2 is a receptor protein that signals through this pathway, while
MYC, RB1 and TP53 are downstream of the MAPK/ERK signaling pathway. RB1 was
found to be associated to the resistance to MEK inhibitors [Gong et al., 2019] and MYC
degradation by inhibition of MEK leads to an increase in both ERBB2 and ERBB3 mRNA
expression, causing intrinsic drug resistance [Sun et al., 2014]. TP53 mutations are associated
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Figure 3.3. (a-d) Sensitivity networks identified by NETPHIX. Alternation profile and
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with multiple drug resistance [Keshelava et al., 2001; Najem et al., 2017]. These findings
indicate that the alterations in different components of the same pathway can contribute to
drug sensitivity in different ways.

In contrast to the response to MEK1/2 and ERK2 inhibitors, the drugs directly targeting
BRAF are associated with more heterogeneous modules. While all BRAF inhibitors (except
HG6-64-1) commonly exhibit increased sensitivity in BRAF mutant cell lines, KRAS mutations
help the action of Type II BRAF inhibitors (AZ628) but develop resistance to Type I inhibitors
such as Dabrafenib, PLX-4720, and SB590885, which is consistent with the previous findings
[Sanchez-Laorden et al., 2014]. This suggests that patient specific mutational profiles can
provide important clues in predicting drug response.

NETPHIX modules suggest candidates for drug combination therapy. We hy-
pothesize that pairs of drugs can potentially be candidates for combination therapy if they
are associated with similar modules but the genes in the modules are associated with drug
responses in opposite directions. By analyzing the identified modules for pairs of drugs with
such property, we identified 169 drug pairs. Although the systematic validation could not
be performed due to the lack of validation dataset, we found the evidences in literature
for the efficacy of several drug combinations. For example, Afatinib, a pan-ErbB inhibitor,
have associated modules of KRAS, NRAS (mutations) for decreased sensitivity and EGFR,
ERBB2 (amplification) and ARAF (deletion) for increased sensitivity. This suggests that
it might be beneficial to use Afatinib in combination with MEK 1/2 and ERK2 targeting
drugs discussed above (Fig. 3.3a-d). Indeed, studies showed that Afatinib and Selumetinib
work synergistically [Sun et al., 2014] and clinical trials for combination therapy are currently
underway [afa]. In addition, the efficacy of PD0325901 and Afatinib combination is also
reported [Lin et al., 2019]. Both Selumetinib and PD0325901 have associated modules similar
to Afatinib but in opposite direction.

Another example is the combination of Lapatinib and Vorinostat (Fig. B.1cd). Lapatinib
is a drug that inhibits EGFR/ERBB2 and Vorinostat is a histone deacetylase (HDAC)
inhibitor. Vorinostat has been shown to improve how well Lapatinib kills cancer cells in
clinical trials [lap] and Lapatinib in general enhances the antitumor activity of the histone
deacetylase inhibitor synergistically [LaBonte et al., 2011].

Validation of identified sensitivity modules with independent
datasets

To examine if the alterations in the modules identified by NETPHIX indeed lead to different
responses for the corresponding drugs, we performed the validation of the identified subnet-
works with CTRP (Cancer Therapeutics Response Portal), an independent drug screening
data. Among 194 drugs for which NETPHIX identified at least one module, 65 drugs have
the drug response profiles reported in CTRP dataset, and many of the drugs have multiple
associated modules, resulting in 164 modules available for validation. We divided the cell
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lines in the dataset depending on the alteration status in the identified genes for each drug
and tested if the cell survival rates differ between different groups. We found that 44 out of
65 drugs (68%) have at least one module having a statistically significant difference (p < 0.05
(ANOVA), FDR < 9% (BH)), and 94 modules in total (out of 164, 57 %) were confirmed in
the validation.

Impact of NETPHIX design choices on the results

While the benefits of using gene interactions for the identification of cancer drivers are
generally accepted, it was not investigated before how much gain the network usage provides
in the context of drug responses. Here we use the same validation set to compare the
performance of our algorithm with and without network information. Similarly, we also
investigated the impact of using penalty that reinforces mutual exclusivity and different
connectivity models by measuring the difference in performance in terms of the number of
validated instances in the independent dataset.

Network information helps identify drug sensitivity modules. NETPHIX find a
set of connected genes that are associated with drug response. To investigate the effects of
using network information on the performance, we ran the algorithm without connectivity
constraints and compared the solutions with NETPHIX modules.

As shown in Fig. 3.3f, NETPHIX finds more significant modules when network information
is used (476 modules compared to 274 modules without network). The number of drugs
with at least one associated modules is also larger (194 drugs with network vs. 175 drugs
without network). We further compared the effects of penalties in terms of the number of
drugs/modules confirmed in CTRP dataset. Without network, only 46 out of 88 tested
modules (52%) were confirmed whereas 94 out of 164 tested modules (57%) were confirmed
when connectivity was imposed. In addition, only 36 drugs had at least one confirmed
modules (62% of tested drugs) without network compared with 44 drugs with network (68%
of tested drugs). Overall the results show that network information significantly helps find
more modules that are statistically significant, and the identified modules has a higher
percentage of true positives as demonstrated in the validation using the independent dataset.

Imposing penalty on overlapping mutations may improve drug sensitivity module
identification. Our objective function in ILP has an option to include penalties to further
penalize overlapping mutations and enforce mutually exclusivity between mutations. We
investigated the effects of using penalties on the performance by running the algorithm
without penalties in the objective function and compared with our results obtained when
penalties are used (Fig. 3.3g). We observe that NETPHIX finds a lesser number of significant
modules when penalties are not included (459 modules compared to 476 modules in the
original solution) although the numbers of drugs with at least one associated modules are
similar (191 drugs without penalty vs. 194 drugs with penalty). In terms of the number
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of drugs/modules confirmed in CTRP dataset, only 81 modules out of 152 tested modules
(54%) were confirmed without penalty whereas 94 modules out of 164 tested modules (56%)
were confirmed with penalty. In addition, 39 drugs had at least one confirmed modules (63%
of tested drugs) without penalty compared with 44 drugs with penalty (68% of tested drugs).

Combined vs. separate connectivity model. Next, we compared the performance
of two connectivity models – the combined model where all selected genes are connected
and the separate model in which two modules are identified for increased and decreased
sensitivity separately (Fig. 3.3h). It was not immediately obvious which approach would be
more successful; On one hand, one can hypothesize that genes responsible for either type of
response are functionally related. However, it was also possible that mutations associated with
drug resistance may occur in a separate module such as genes related to drug metabolism.

We found that a similar number of modules were identified with the combined model and
the separate model (269 vs. 268 modules) for 177 vs. 170 drugs. However, the combined
connectivity model has a higher percentage of confirmed modules/drugs. Among 90 and 93
modules tested with CTRP dataset for the combined and separate model respectively, 58
(64%) and 47 modules (51%) were confirmed. In terms of the number of drugs with at least
one confirmed modules, the combined model has 39 out of 57 drugs (68%) confirmed whereas
the separate model has 32 drugs confirmed out of 59 (54%).

Among the drugs with only the combined model being confirmed in CTRP dataset is
IGF-1R inhibitors, BMS-754807. The module has KRAS mutations associated with increased
sensitivity and PTEN (mutations and deletions) with decreased sensitivity (Fig. B.1a). Both
genes have been previously shown as biomarkers for IGF-1R inhibitors [Dillon and Miller,
2014; King et al., 2014; Molina-Arcas et al., 2013; Patel et al., 2014] although there are
conflicting reports depending on cancer types and molecular status of other genes [Huang
et al., 2015; King et al., 2014]. The module that NETPHIX identified for BMS-754807 was
confirmed in the CTRP dataset (Fig. B.1a), showing a significant different in the cell survival
rates of the two groups (p < 0.00035, ANOVA).

We hypothesize that there may be cases where activation and repression genes are
less tightly related and the separate connectivity model may capture the two modules
simultaneously. Several modules identified with the separate connectivity model include
ADAM22 amplification. ADAM22 has been previously found as a prognostic and therapeutic
drug target in endocrine-resistant breast cancer [Bolger and Young, 2013; McCartan et al.,
2012]. On the other hand, for some drugs such as Cytarabine, both the combined and the
separate model identified statistically significant modules, which are confirmed in CTRP
dataset. In particular, the module associated with Cytarabine in the separate model (Fig.
B.1b) includes UGT2B17 amplification and CYP2E1 deletion associated with decreased
sensitivity. Both enzymes are hypothesized to be important players in the metabolism of
common drugs [Garcia-Suastegui et al., 2017; Guillemette et al., 2014].

In summary, while the combined connectivity model works better in terms of the number
of significant and validated modules, there are several drugs for which the separate model
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provides different insights on drug action.

3.3 Discussion

We developed a new computational method, NETPHIX (NETwork-to-PHenotpe assocIation
with eXclusivity), for the identification of mutated subnetworks that are associated with a
continuous phenotype. Using simulations and analyzing a large scale drug screening dataset,
we showed that NETPHIX can uncover the subnetworks associated with response to cancer
drugs with high precision. We found many statistically significant and biologically relevant
modules associated with drug response, including MAPK/ERK signaling related modules
associated with opposite response to drugs targeting RAF, MEK and ERK genes. The genetic
alteration status in many of identified modules indeed make differences in cell survival rates,
as validated with an independent dataset. Overall, the modules identified by NETPHIX are
in good correspondence with the action of the respective drugs, suggesting that NETPHIX
can correctly identify relevant modules and the modules can thus be used to predict potential
patient-specific drug combinations and to provide guidance to personalized treatment.

We demonstrate that the preferential selection of mutually exclusive genes was important
for a better performance of the method. Interestingly, although one might assume that
genes affecting drug resistance are not necessarily functionally related to the genes increasing
drug sensitivity, we found that the combined connectivity model outperforms the separate
connectivity model, indicating that the two groups of genes in fact might be related.

The applicability of NETPHIX can go far beyond the drug response discussed in this
paper, to any continuous cancer phenotypes. We expect that NETPHIX will find broad
applications in many types of network-to-phenotype association studies.
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Chapter 4

Network-based approaches to
elucidate differences between
mutational signatures in Breast
Cancer

4.1 Introduction

Cancer genomes accumulate a high number of mutations, only a small portion of which are
cancer driving mutations. Most of such mutations are passenger somatic mutations, not
directly contributing to cancer development. Analyses of large scale cancer genome data
revealed that these passenger mutations often exhibit characteristic mutational patterns
called “mutational signatures” [Alexandrov et al., 2013a]. Importantly, these characteristic
mutational signatures are often linked to specific mutagenic processes, making it possible
to infer which mutagenic processes have been active in the given patient. This information
often provides important clues about the nature of the diseases. For example, the presence
of specific signatures associated with homologous recombination repair deficiency (HRD)
can help identify patients who can benefit from PARP inhibitor treatment [Davies et al.,
2017]. With the increased interest in the information on mutagenic processes acting on
cancer genomes, several computational approaches have been developed to define mutational
signatures in cancer [Alexandrov and Stratton, 2014; Alexandrov et al., 2013a,b; Fischer
et al., 2013; Goncearenco et al., 2017; Helleday et al., 2014], to identify patients whose
genome contains given signatures [Fischer et al., 2013; Goncearenco et al., 2017; Huang et al.,
2018b], to map patient mutations to these signatures [Huang et al., 2018a] and to identify
superposition of several mutagenic processes [Wojtowicz et al., 2020].

Despite the importance of understanding cancer mutational signatures, the etiology of
many signatures is still not fully understood. It is believed that mutational signatures may
arise not only as a result from exogenous carcinogenic exposures (e.g., smoking, UV exposures)
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but also due to endogenous causes (e.g., HRD signature mentioned above). That is, human
genomes are protected by multiple DNA maintenance and repair mechanisms in the presence
of various types of DNA damage but aberrations or other malfunctions in such mechanisms
can leave errors not repaired, generating specific patterns of mutations [Knijnenburg et al.,
2018].

From the perspective of individual patients, it is important to determine mutational
signatures imprinted on each patient’s genome and the strength of the (sometimes unknown)
mutagenic processes underlining the signatures. Signature strength can be measured by the
number of mutations that are attributed to the given signature and thus can be considered as
a continuous phenotype. With this view in mind, we investigate the relation of this phenotype
with other biological properties of cancer patients. In this study, we focus on the relation of
mutational signature strength with gene expression in biological processes and gene alteration
in subnetworks.

The hypothesis that mutational signatures can be related to aberrant gene expression or
alterations in DNA repair genes is well supported. For example, the deactivation of MUTYH
gene in cancer patients is associated with a specific mutational signature [Chae et al., 2016;
Knijnenburg et al., 2018; Ma et al., 2018]. Previous studies identified correlations between
several mutational signatures and some cancer drivers and acknowledged that the cause-effect
relation between signatures and cancer drivers can be in either direction [Poulos et al., 2018].
On the other hand, like many other cancer phenotypes, the causes of mutational signatures
can be heterogeneous and the same signature can arise due to different causes. For example,
the above mentioned signature caused by the inactivation of the MUTYH gene was also
found in cancers that do not harbor this aberration [Viel et al., 2017]. With the observation
that different mutations in functionally related genes can lead to the same cancer phenotype
[Garraway and Lander, 2013; Hanahan and Weinberg, 2011; Vogelstein et al., 2013], cancer
phenotypes are increasingly considered in the context of genetically dysregulated pathways
rather than in the context of individual genes [Chuang et al., 2007; Dao et al., 2017b; Hofree
et al., 2013; Kim et al., 2013, 2016b; Vandin et al., 2012a]. Hence, we postulated that
identifying mutated subnetworks and differentially expressed gene groups that are associated
with mutational signatures can provide new insights on the etiology of mutational signatures.

In this study, we focused on mutational signatures in breast cancer, for which a large
data set is available, including whole genome mutation profiles as well as expression data
[Nik-Zainal et al., 2016]. The mutagenic landscape of this cancer type is complex and is yet
to be fully understood. For example, previously defined COSMIC signatures present in breast
cancer [Nik-Zainal et al., 2016] include two signatures (Signatures 1 and 5) as age related
(clock-like) and two signatures associated with the activities of APOBEC enzyme (Signatures
2 and 13). The mechanisms underlying the differences between two distinct signatures with
similar etiology are not fully understood.

The clock-like signatures (COSMIC Signatures 1 and 5) have been found correlated with
the age of patients but the strengths of correlation differ between the two signatures and vary
across different cancer types [Alexandrov et al., 2015]. Signature 1 is considered to arise from
an endogenous mutational process initiated by spontaneous deamination of 5-methylcytosine
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while the etiology of Signature 5 is less understood. Therefore, it is important to understand
what processes, other than patient’s age, contribute to each of these signatures.

APOBEC signatures have been the subject of particular attention [Buisson et al., 2017;
Burns et al., 2013; Cescon and Haibe-Kains, 2016; Green et al., 2016; Leonard et al., 2013;
Nik-Zainal et al., 2014; Seplyarskiy et al., 2016; Shimizu et al., 2018; Wang et al., 2018].
The proteins encoded by APOBEC gene family (known to be involved in immune response)
deaminate cytosines in single-stranded DNA (ssDNA). Such deamination, if not properly
repaired, can lead to C>T (Signature 2) or C>G (signature 13) mutations depending on how
the resulting lesion is repaired or bypassed during the replication [Morganella et al., 2016].
Thus the final imprint of APOBEC related mutations on the genome depends on several
factors: expression level of APOBEC genes, the amount of accessible ssDNA, and the lesion
bypass mechanism. In particular, clustered APOBEC-induced mutations (kataegis) in breast
cancer are assumed to be a result of the mutation opportunity offered by single-stranded DNA
during repair of double-stranded breaks (DSBs). However, ssDNA regions can also emerge
for other reasons such as topological stress. Thus, although several aspects contributing to
the APOBEC signatures have been known for some time, we are yet to uncover the full
complexity of the APOBEC derived signatures.

To address these challenges, we took two complementary pathway based approaches: one
focused on gene modules whose expression correlates with signature strength and the second
based on the identification of subnetworks of genes whose alterations are associated with
mutational signatures.

Our study provides several new insights on the mutagenic processes in breast cancer
including: (i) association of the NER pathway and oxidation processes with the strength
of clock-like Signature 5 (ii) differences between the two clock-like signatures with respect
to their associations with cell cycle (iii) differences in mutated subnetworks associated with
different signatures including APOBEC related signatures. We demonstrate that our findings
are consistent with the results from recent studies and provide additional insights that are
important for understanding mutagenic processes in cancer and developing anti-cancer drugs.

4.2 Methods

Overview

In this study we consider mutational signatures in cancer patients and attempt to identify
genes and pathways whose expression and/or genetic alterations are potentially causative
of differences in mutational signature strength. We utilized the somatic mutations in the
cohort of 560 breast cancer (BRCA) whole-genomes [Nik-Zainal et al., 2016]. We used 12
COSMIC signatures indited as active in BRCA in previous studies (Signatures 1, 2, 3, 5,
6, 8, 13, 17, 18, 20, 26, and 30). Since recent studies revealed that mutations occurring in
close proximity to each other, referred to here as cloud mutations, have distinct properties
from dispersed mutations [Huang et al., 2018a; Supek and Lehner, 2017], we additionally
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subdivided all mutations (and subsequently their attributed signatures) into two groups –
close-by Cloud mutations and Dispersed mutations (see Methods section: Data)
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Figure 4.1. (A) The input data for this study consist of gene expression, mutational
signature counts, and gene alteration across a number of cancer patients. (B) The functional
pathways whose gene expression levels are associated with mutational signatures were found
by computing correlations between expression levels of all genes and signature mutation
counts, filtering out weak correlations, clustering expression correlation profiles, and
performing GO enrichment analysis of the identified clusters. (C) The pathways whose gene
alterations are associated with mutational signatures were found by applying NETPHIX to
the transformed signature mutation counts (z-score of log-transformed counts), gene-patient
alteration matrix and a known functional interactions network.

In the first part of the analysis, we looked for the genes whose expression levels are
significantly correlated with mutational signature strength (Fig. 4.1A,B). Specifically, we
first selected genes exhibiting significant correlation with at least one mutational signature by
computing the correlation coefficient of the expression profile and mutation counts for each
pair of genes and signatures. The selected genes were clustered based on their expression
correlation patterns across mutational signatures (see Methods section: Expression correlation
analysis).

The second part of the analysis involves uncovering subnetworks of genes whose alterations
are associated with mutational signature strength (Fig. 4.1A,C). We hypothesize that a
certain mutational signature can arise when a related pathway (e.g. DNA damage repair
mechanism) is dysregulated. Due to the complex nature of cancer driving mutations, we
adapted the NETPHIX method – a recently developed network based method to identify
mutated subnetworks associated with continuous phenotypes [Kim et al., 2019]– to identify
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such pathways. In this analysis, we consider the mutation count of a mutational signature in
a whole cancer genome to be a cancer phenotype and aim to identify a subnetwork of genes
whose alterations are associated with the phenotype. Importantly, when assessing association
between gene level alterations and a mutational signature, the mutations attributed to the
given mutational signature were not incorporated into the alteration information (Fig. 4.1C;
Methods section: Mutation analysis, and Additional file 1: Supplemental Methods) in order
to increase the likelihood of uncovered subnetworks being drivers of the signatures rather
than their effect.

Data

We analyzed the somatic mutations in the cohort of 560 breast cancer (BRCA) whole-genomes
published by Nik-Zainal et al. [Nik-Zainal et al., 2016]. The mutation data (single base
substitutions and small indels) were downloaded from the ICGC data portal (release 22)
[icg]. The most likely assignments of 3,479,652 individual point mutations to mutational
signatures were generated with SigMa [Huang et al., 2018a] using 12 predefined COSMIC
signatures (version 2; https://cancer.sanger.ac.uk/cosmic/signatures_v2) known to
be active in BRCA (Signatures 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, and 30) [Nik-Zainal et al.,
2016]. SigMa is a probabilistic model of sequential dependency for mutation signatures that
allows for an accurate assignment of mutations to predefined signatures (it does not infer
new signatures). To ensure SigMa’s robustness with respect to random initialization used in
its learning process, we computed the majority assignments over 31 random initialization
runs. SigMa relies on the observation that adjacent mutations in a given cancer genome
are more likely to be the result of the same mutation signature and that mutations that
are assigned to the same signature can have distinct properties when being isolated versus
being localized in clusters [Morganella et al., 2016; Nik-Zainal et al., 2016; Supek and Lehner,
2017]. Thus, it divides all mutations into two groups – close-by (clustered) Cloud mutations
and Dispersed (sky) mutations. The sequential dependencies between close-by mutations are
modeled by a Hidden Markov model, while for dispersed mutations we use a multinomial
mixture model. Here, we treat cloud and dispersed mutations, and their associated signatures,
separately. For each patient, we computed signature profiles based on the patient mutation
counts assigned to each specific signature, separating cloud and dispersed mutations. The
mutational signature profiles were used as phenotype profiles in the expression correlation
and mutated pathway analyses (Fig. 4.1A). For further analysis, we used only sufficiently
abundant mutational signatures for cloud or dispersed mutations whose overall exposure
levels are above 10% within both groups of mutations. This created 10 different phenotype
profiles for Signatures 1D, 2C/D, 3C/D, 5D, 8C/D, and 13C/D, where the numbering refers
to the COSMIC signature index and C/D denotes signatures attributed to close-by cloud
and dispersed mutations.

https://cancer.sanger.ac.uk/cosmic/signatures_v2
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Figure 4.2. (A) All genes significantly correlated with at least one signature (|corr| ≥ 0.3
and adjusted pv ≤ 0.005). (B) DNA metabolic process genes, based on Gene Ontology
(GO), significantly correlated with at least one signature. For both (A and B), we show a
heatmap of mean expression correlation for each cluster and signature (left), number of genes
in each cluster (middle), and representative GO terms enriched in cluster genes (right). For
the DNA metabolic process, we also show representative genes for each cluster.

Expression correlation analysis

To identify expression based pathways that are associated with signatures, we downloaded the
normalized gene expression data for 266 BRCA patients from Table S7 in [Nik-Zainal et al.,
2016] and used correlation analysis followed by clustering of correlation patterns. Specifically,
we first computed the Spearman correlation coefficient of the expression level and mutation
count for each pair of genes and mutational signatures. We then selected the genes exhibiting
significant correlation with at least one of 10 mutational signatures; the expression of a gene
is considered significantly correlated with a signature if |corr| ≥ 0.3 and adjusted pv ≤ 0.005
(corr is Spearman correlation coefficient, BH corrected p-value). The procedure selected
3,763 genes. We then clustered the genes based on their correlation pattern using a consensus
K-means algorithm; running K-means clustering 100 times with random start and varying k
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from 5 to 50 and subsequently running hierarchical clustering with consensus matrix from
100 runs of K-means. GO enrichment analysis was performed using hypergeometric test
and significant terms were selected with nominal p-value < 0.05. The final 7 clusters and
enrichment analysis results are summarized in Fig. 4.2A.

To take a closer look at DNA repair genes, we performed similar analysis with genes in
GO DNA metabolic process. 184 genes are selected with the same significance cut-offs. The
hierarchical clustering of the consensus clustering for 100 K-means (k = 2 to 20) generated 4
clusters shown in Fig. 4.2B. The enrichment analysis was performed using hypergeometric
test with only the genes in GO DNA metabolic process as the background, and only for the
GO terms with significant overlaps with GO DNA metabolic process (at least 2 genes in
common and p-value of the intersection < 0.05).

Mutation analysis

To find alteration based pathways for signatures, we adapted the method proposed in Section
2, NETPHIX, which identifies mutated subnetworks associated with a continuous phenotype
[Kim et al., 2019]. Given gene alteration information of cancer samples and continuous
phenotype values for the same samples, NETPHIX aims to identify a connected subnetwork
whose aggregated alterations are associated with the phenotype of interest (mutation counts
for cancer mutational signatures in this study). NETPHIX utilizes functional interaction
information among genes and enforces the identified genes to be connected in the network
while, at the same time, making sure that the aggregated alterations of these genes are
significantly associated with the given phenotype. In addition, in its integer linear program
formulation, NETPHIX recognizes that cancer driving mutations tend to be mutually exclusive
[Ciriello et al., 2013; Constantinescu et al., 2015; Kim et al., 2015, 2016c; Leiserson et al.,
2015a; Vandin et al., 2012a] and incorporates this property in its objective function [Kim
et al., 2019]. The detailed description of NETPHIX is given in Chapter 3.

For the gene level alteration information (the bottom matrix in Fig. 4.1A), we utilized
all somatic point mutations and small indels for the same 560 patients data. In processing
the somatic mutation data, we defined a gene to be altered if it has at least one non-silent
mutation in its genomic region. In addition to somatic mutations, DNA repair genes can
undergo alternative mechanisms of inactivation including pathogenic germline variants and
promoter hypermethylation. A recent paper highlighted the importance of these mechanisms
in inactivating the homologous recombination pathway [Davies et al., 2017]. To account for
these additional sources of inactivation, we also defined a gene to be altered in a patient if
the gene is annotated as being biallelic inactivated for the patient in Supplementary Table 4a
and 4b from [Davies et al., 2017]. The gene alteration information is used to find mutated
subnetworks associated with each signature (Fig. 4.1C). When computing association with
a specific signature, we further refined the information to increase the likelihood that the
association is causative (i.e., gene alteration causes mutational signatures, not vice versa).
Specifically, the gene alteration information for the association analysis with a specific
mutational signature were constructed after excluding the mutations attributed to the given
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mutational signature (see Additional file 1: Supplemental Methods for details). Similarly,
we removed all indels when we considered the associations with Signature 3 and 8 as these
signatures are believed to lead to a high burden of indels. The assignment of mutations to
signatures was performed using SigMa (see above).

For each mutational signature, we normalized the mutation counts by taking log and
subsequently computing z-scores, and used the profiles as phenotype inputs to NETPHIX. For
functional interactions among genes, we used the data downloaded from STRING database
version 10.0 [str], only including the edges with high confidence scores (≥ 900 out of 1,000).
The alteration tables were constructed as described above and genes altered in less than 1%
of patients were removed from further consideration. We ran NETPHIX for each mutational
signature with density constraint of 0.5 and for a fixed size modules k from 1 to 7. The
appropriate k was selected by examining the increase of the objective function values and
the significance of the solution using permutation tests. Specifically, the best k was selected
to be maximal index for which the optimal objective function increased more than 5% with
respect to previous index and the permutation p-value did not increase, with this property
holding for all smaller indices (k′ < k). The permutation test is computed by permuting the
phenotype (the mutation counts for each signature in this case) and comparing the objective
function value to the ones obtained with the permuted phenotypes. We define the identified
module to be significant if the FDR adjusted p-value is less than 0.1.

For the analyses with BRCA subtypes, we utilized AIMS subtypes provided in Supple-
mentary Table 18 [Nik-Zainal et al., 2016]. The association analyses with gene alteration
information were performed with 78, 111, and 64 samples categorized as Luminal A, B and
Basal subtypes, respectively (There are only 10 samples in HER2 subtype hence the results
are not reported).

4.3 Results

Expression analysis to identify biological processes associated
with mutational signatures

In order to identify biological processes associated with individual signatures, we clustered
gene expression-signature correlation profiles as described in the Methods section. To obtain
a bird’s eye view, we first used all genes whose expression is correlated with at least one
signature (Fig. 4.2A and Additional File 1: Fig. S1; see Methods section). Next, to obtain
a finer scale expression modules related to DNA repair, we zoomed in on genes involved in
Gene Ontology DNA metabolic process (Fig. 4.2B).

The first striking observation is the similarity of gene expression patterns among both
variants of Signatures 3 and 13 and all other cloud signatures (2C and 8C). Since Signature
3 and 13 are considered to be associated with homologous recombination deficiency and
APOBEC activity respectively, in what follows we refer to this group of signatures as HRD-
APOBEC signature group. Note that Signature 2 is also known as an APOBEC related
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signature but the group includes only Signature 2C but not 2D. Below, we will discuss
insights obtained for the age-related signatures and the APOBEC signatures, and also provide
independent supporting evidence from literature. Given expression correlation similarity
within the members of the HRD-APOBEC group (all positively correlated with cell cycle,
DNA repair, and immune response), we defer the analysis of this group to the next section
where we look at this group through the lenses of mutated subnetworks.

The expression correlation analysis reveals important differences between the
APOBEC signatures. Surprisingly, among 4 APOBEC related signatures (Signature
2C/D and 13C/D) Signature 2D has strikingly different correlation patterns compared to the
remaining three APOBEC signatures. APOBEC activities are considered to be related to
immune response. While the expression correlation patterns of all other APOBEC signatures
are consistent with such understanding, Signature 2D exposure level has slightly negative
correlation with immune response (4.2A, aC6). This is consistent with our previous observation
that there is no positive correlation between Signature 2D and APOBEC expression [Huang
et al., 2018a].

In addition, Signature 2 exposure level is either not correlated (2D) or has a weak
correlation (2C) with the cluster enriched with translesion synthesis (4.2, aC7 and mC4)
whereas both Signature 13C and 13D show positive correlation. This last observation supports
the previous claim that the difference between Signatures 2 and 13 is related to differences
in the repair mechanism [Morganella et al., 2016]. Specifically, it has been suggested that
mutations in Signatures 13 emerge when lesions created by APOBEC activity are repaired by
DNA translesion polymerase, which inserts ‘C’ opposite to the damaged base while Signatures
2 occurs when the damaged base is simply paired with ‘A’.

Clock-like signatures 1D and 5D have different expression associations suggesting
differences in their etiology. Although weaker than the correlation with the HRD-
APOBEC Signature group, two clusters enriched in cell cycle function are positively correlated
with Signature 1D (Fig. 4.2A, aC4 and aC5), which is consistent with the previous observation
that Signature 1 is associated with aging [Alexandrov et al., 2015], and thus postulated to be
correlated with the number of cell divisions. Consistent with this interpretation, many cancer
types with high level of Signature 1 are derived from normal epithelia with high turnover
such as stomach and colorectum [Alexandrov et al., 2015].

On the other hand, Signature 5D is not positively correlated with the expression of cell
cycle genes despite the fact that Signature 5 is also considered to be a clock-like signature.
This suggests that accumulation of mutations attributed to Signature 5 is related to the
exposure to naturally occurring environmental/external processes. Interestingly, Signature
5D has a positive correlation with the cluster enriched in oxidative processes (Fig. 4.2A, aC1)
and the cluster enriched in nucleotide excision repair (NER) pathway (Fig. 4.2B, mC1). The
accumulation of oxidation base lesions is also assumed to be age-related [Hamilton et al.,
2001], suggesting that Signature 5 might be related to oxidative damage. NER pathway
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is involved in neutralizing oxidative DNA damage [Melis et al., 2013] and Signature 5 has
been also associated with smoking [Alexandrov et al., 2016], which itself is associated with
oxidative damage. Indeed Signature 5 was linked to the NER pathway in a recent study [Kim
et al., 2016a]. Finally, comparative analysis of Signature 5 mutation rates in various types of
kidney cancers supports the hypothesis that continuous exposure to ubiquitous metabolic
mutagens may underlie Signature 5 mutations [Alexandrov et al., 2015].

The positive correlation of Signature 1 with the expression of cell cycle genes and lack
of such correlation for Signature 5 may explain the stronger association of Signature 5 with
the age of patients than Signature 1 in breast cancer [Alexandrov et al., 2015; Huang et al.,
2018a] because cancer related cell division might obscure the association of Signature 1 with
a patient’s age.

Identifying mutated subnetworks associated with mutational
signatures

The analysis of expression correlation clusters revealed different biological processes associated
with some signatures but the signatures in HR-APOBEC group have largely similar expression
patterns and require further investigation. Complementary to the expression analysis, we
next searched for possible associations with subnetworks of mutated genes. Some mutational
signatures can arise due to endogenous causes; aberrations in genes responsible for different
DNA repair mechanisms can lead to the malfunctioning of the corresponding repair process,
leaving errors not repaired and in turn generating specific patterns of mutations. We
applied NETPHIX, a method to identify phenotype associated subnetworks, which can help
to uncover a subnetwork of genes whose alterations are potentially causative of specific
mutational signatures directly or indirectly. Note that not all mutational signatures have
such association with mutated pathways. Mutational signatures arising from environmental
exposure, age, or other external factors are not necessarily expected to have casual associations
with mutated subnetworks.

Figure 4.3 shows all statistically significant subnetworks (phenotype permutation test;
see Methods section) identified by NETPHIX and their alteration profiles. See Methods
section (Mutation analysis) for how the module for each signature was selected. The extended
subnetworks obtained with less stringent cutoffs are shown in Additional file 1: Fig. S2.

As expected, no modules are found to be significantly associated with the age related
signatures 1D and 5D. This is consistent with the current understanding that these signatures
can accumulate due to naturally occurring processes. In addition, consistently with the
previous studies that linked the genes underlying the HRD to Signature 3 in breast cancer
[Polak et al., 2017], the subnetworks identified for Signature 3 C/D contain BRCA1 and
BRCA2 genes, two important genes in HR-mediated double-strand break (DSB) repair.

The agreement of the modules identified by NETPHIX with the current knowledge
confirms its ability to correctly infer mutated subnetworks associated with signatures.

Encouraged by the results, we examined the remaining subnetworks identified by NET-
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Figure 4.3. Panel for each signature consists of a network view of a module (left) and a
heatmap showing an association of module gene alterations with signature strength across
patients (right). The network node size indicates the gene robustness (regarding NETPHIX
results for different random initialization runs of SigMa) while the darkness of red color
represents its individual association score (empirical p-value based on phenotype
permutation test). Each heatmap shows the number of mutations attributed to a given
signature for all patients (orange; top row; log10 scale) sorted from low to high (columns).
For each gene in the module, gene alteration information observed in each patient are shown
in gray, while patients not altered are in white. The last row shows the alteration profile of
the entire subnetwork in black. Only subnetworks significant in phenotype associations for
mutational Signatures 2C, 2D, 13C, 13D, 3C, 3D, and 8C are shown; results for Signatures
1D and 5D were not significant.

PHIX. Among statistically significant modules, TP53 was included in all modules associated
with cloud signatures. TP53 is known to play a crucial role in DNA damage responses,
including DSB repair. We note that its dysfunction could contribute to increased mutation
burden and in turn to the emergence of cloud mutations independently of mutagenic processes
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underlying individual signatures. However, whether or not TP53 mutations are causal or
are a result of yet another mutagenic process cannot be concluded from this study. Compli-
cating this picture, a recent study demonstrated that p53 controls expression of the DNA
deaminase APOBEC3B suggesting a possible mechanism by which mutations in p53 can
promote APOBEC expression [Periyasamy et al., 2017] and thus APOBEC related mutations.
Hence the reason for the strong association of TP53 with cloud mutational signatures requires
further investigation.

Compared to the modules obtained from expression analysis, the analysis with genetic
alterations offers a better differentiation among the signatures in the HRD-APOBEC group.
While most of the signatures in the group contain TP53, they also include different genes in
the modules. In the subnetworks associated with Signatures 13 C/D, TP53 is accompanied
by NOTCH1; NOTCH pathway regulates many aspects of metazoan development, including
the control of proliferation and differentiation. CHEK2 is selected in addition to TP53 and
NOTCH1 for Signature 13C. CHEK2 is a tumor suppressor regulating a cell cycle checkpoint
and mutations in the gene confer an increased risk for breast cancer [Desrichard et al., 2011;
Meijers-Heijboer et al., 2002]. CHEK2 plays multiple roles in DNA damage response [Zannini
et al., 2014], including DSB repair in the emergence of clustered APOBEC related mutations.

In the subnetwork associated with Signature 2C, TP53 is accompanied by APC (Adeno-
matous Polyposis Coli), which is a tumor-suppressor gene frequently mutated in Colorectal
cancer (CRC) and involved in the Wnt signalling pathway. A recent study linked APC to
several DNA repair mechanisms, including the base excision repair (BER) pathway [Jaiswal
and Narayan, 2008], DSB repair [Kouzmenko et al., 2008] and genomic stability [Fodde et al.,
2001; Meniel et al., 2015].

Finally, the subnetwork for Signature 2D (dispersed, APOBEC related signature) consists
of PIK3CA, CDH1 and CDH10 genes and is completely different from the subnetworks
corresponding to the cloud variant of Signature 2 and other HR-APOBEC related signatures.
Previous studies have found that some recurring mutations in PIK3CA are consistent with
Signature 2 and may result from APOBEC activities [Poulos et al., 2018; Temko et al., 2018].
However, our analysis associated PIK3CA mutations with Signature 2 even after removing
point mutations attributed to Signature 2, suggesting a more complex relation between
Signature 2 and PIK3CA mutations.

In addition to PIK3CA, the subnetwork associated with Signature 2D has two Cadherin
genes: CDH1 and CDH10. Cadherins are important in maintenance of cell adhesion and
polarity, and alterations of these functions can contribute to tumorigenesis. CDH1 germline
mutations have been associated with hereditary lobular breast cancer [Masciari et al., 2007]
and hereditary diffuse gastric cancer [Hansford et al., 2015; Kaurah et al., 2007], while a
recent study linked mutations in CDH1 and PIK3CA to the immune-related invasive lobular
carcinoma of the breast [An et al., 2018]. In breast cancer, mutations in CDH1-PIK3CA
module are mutually exclusive with mutations in TP53 and are strongly enriched in Luminal
A subtype [Dao et al., 2017a]. Indeed, our analyses of individual subtypes show that the
association of a PIK3CA module with Signature 2D is significant only with Luminal A
subtype. Interestingly, the module identified in Luminal A contains, in addition to PIK3CA,
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PTEN gene which is known to be a negative regulator of the PIK3CA [Carracedo and
Pandolfi, 2008]. This, combined with the differences in expression correlations noted in
the previous section, suggest that the etiology of Signature 2D is different from the other
APOBEC mutational signatures (Signature 2C and 13)

4.4 Discussion

In order to gain insights into the etiology of mutational processes in cancer, we propose two
complementary computational approaches and apply them to gain insights into the etiology
of mutational processes in breast cancer. Both approaches leverage the idea of network level
association of mutation signatures with gene networks and pathways but differ in the type of
utilized data and mathematical formulation. The first approach uses gene expression data the
second approach is focused on the identification of subnetworks of genes whose alterations
are associated with each signature.

The expression correlation based approach allowed us to uncover important differences
between clock-like signatures. Clock-like signatures can occur from life long exposure to
naturally occurring mutagenic processes, thus related to aging. The most prominent clock-like
signatures are Signature 1 and 5. Signature 1, a relatively well characterized clock-like
signature, is considered to be the result of an endogenous mutational process related to
spontaneous deamination of 5-methylcytosine. Each cell division provides an opportunity
for such mutations to occur. This explains why many cancer types with high mutation
rates of Signature 1 are derived from normal epithelia with high turnover [Alexandrov et al.,
2015]. The correlation of Signature 1 mutation counts with the expression level of cell cycle
genes observed in this study provides further support for this explanation. The etiology
of Signature 5 was less clear. Our expression based analysis revealed that, differently from
Signature 1, Signature 5 is not positively correlated with expression of cell cycle genes.
Instead, we found an association of Signature 5 with oxidation process. This observation is
consistent with several previous findings. In particular, our findings support the hypothesis
that cell proliferation rate may not be a major factor for Signature 5 [Alexandrov et al.,
2015]. In addition, accumulation of oxidation base lesions is assumed to be related to aging
[Hamilton et al., 2001] as well as smoking, while the association of Signature 5 with smoking
was observed in a previous study [Alexandrov et al., 2016]. More supporting evidence is
provided by the association of Signature 5 with the nucleotide excision repair (NER) pathway
which was shown to be involved in neutralizing oxidative DNA damage [Melis et al., 2013].
These results support the view that the correlation of Signature 5 with age is related to a
continuous exposure to an environmental/metabolic mutagen.

While expression based analysis was very valuable for understanding the differences
between Signatures 1 and 5, many signatures especially in the HRD-APOBEC signature
group exhibit similar expression correlation patterns. The mutated pathway analysis provided
additional insights into the differences among these signatures. In particular, both cloud and
dispersed Signature 3 are associated with BRCA 1/2 genes while the subnetwork associated
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with Signature 3C additionally contains TP53. The results of mutated subnetwork analysis
also revealed the association of mutations in tumor suppressor APC for two different cloud
signatures (Signature 2C and Signature 8C with a lenient cutoff) and NOTCH1 mutations
for both variants of Signature 13.

In order to increase the probability that inferred mutated subnetworks are causal, we
removed the mutations attributed to the signature of interest. This eliminates the possibility
that the mutations resulted directly from the mutagenic process underlying the signature
although it still does not guarantee causality. In particular, the consistent presence of TP53
in the subnetworks associated with cloud signatures makes it tempting to speculate that
mutations in TP53 generally increase the mutation rates leading to an increase in cloud
mutations. However, other indirect reasons for this association cannot be ruled out. Our
analysis also showed unique properties of Signature 2D relative to the remaining APOBEC
signatures. This signature is the only signature associated with PIK3CA and not TP53.
Previous studies have found that several recurring mutations in PIK3CA are consistent with
Signature 2 [Poulos et al., 2018; Temko et al., 2018]. However, our analysis indicates that
even after removing mutations attributed to Signature 2, the association between PIK3CA
mutations and Signature 2D remains. Another known cancer gene present in this subnetwork
is CDH1. CDH1 was previously linked to hereditary lobular breast cancer [Corso et al.,
2016] and hereditary diffuse gastric cancer and in particular, about 40% of hereditary diffuse
gastric cancer patients are found to have mutations in CDH1 [Hansford et al., 2015; Kaurah
et al., 2007]. Invasive lobular carcinoma is characterized by a unique immune signature [Du
et al., 2018] which might provide additional insights to the etiology of Signature 2. Our
previous studies with breast cancer demonstrated that mutations in CDH1-PIK3CA module
are mutually exclusive with mutations in TP53 and are enriched in Luminal A subtype [Dao
et al., 2017a]. Consistent with the observation, the subtype specific analysis using NETPHIX
indicated that the association between signature 2D and subnetwork involving PIK3CA is
particularly significant in the Luminal A subtype. Importantly, the module identified with
samples in Luminal A subtype contains PTEN (in addition to PIK3CA), a known negative
regulator of PIK3CA [Carracedo and Pandolfi, 2008]. These results suggest that the relation
between Signature 2 mutations and the activation of PI3K pathway might be more complex
than previously suggested.

Although our goal in this study was to investigate the genomic causes of mutational
signatures regardless of cancer subtypes, we also performed the analysis for each subtype
separately to examine the potential differences between subtypes. While generally consistent
with the results using all samples, the results based on individual subtypes suggest that some
associations are subtype specific and, as exemplified by the discussion of the PI3K-PTEN
pathway above, can provide additional insights to the relation between mutagenic processes
and mutated pathways.



CHAPTER 4. NETWORK-BASED APPROACHES TO ELUCIDATE DIFFERENCES
BETWEEN MUTATIONAL SIGNATURES IN BREAST CANCER 56

Conclusions

Patterns of somatic mutations in a cancer genome can shed light on mutagenic processes acting
on the genome. However, uncovering specific mutagenic processes underlying a given pattern of
mutations is challenging. Previous studies demonstrated that network-centric approaches can
be helpful for finding genotypic causes of diseases, classifying disease subtypes, and identifying
drug targets [Kim et al., 2016b]. In addition, a recent study demonstrated that, within the
same cancer type, different gene modules can be enriched in diffident mutational signatures
[Dao et al., 2017b]. However, a broader utility of network based approaches for understating
of mutagenic processes in caner was yet to be demonstrated. To fill this gap, we developed two
complementing computational approaches and performed the first network level association
analysis of mutation signatures with dysregulated pathways. Based on gene expression data,
we identified gene modules whose expression correlates with mutation counts attributed to
mutational signatures. Further analysis of these modules provided important insights into
the mutagenic processes underlying specific signatures. Complementing expression analysis,
we developed an ILP based method to identify subnetworks of genes whose alterations are
associated with each signature. This analysis provided information about potential differences
in the etiology of the signatures that could not be gained from the expression analysis alone.

Taken together, our study demonstrates the utility of these two complementary approaches
for studying mutational signatures in cancer and provided several new insights into the etiology
of mutational signatures.
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Chapter 5

Discussion and Future Work

5.1 Discussion

The oncology pharmaceutics and genome sequencing industries are booming, and a significant
challenge in modern medicine is analyzing the influx of data from these sources. Thousands
of cancer drugs are currently in development, and patient genomic data is becoming readily
accessible to physicians. There is little room for trial and error when treating cancer, and it
is imperative that physicians make informed decisions when prescribing drugs. By combining
drug response data and genomic information, physicians can make informed treatment
decisions based on the unique biology of each patient. In this dissertation, multiple methods
and algorithms to identify mutations that affect drug therapy response were presented.

Once we identify mutations that affect drug response, machine learning methods can
be applied to train classifiers used to predict the sensitivity of drugs in cancerous cell lines.
Methods outlined in Chapter 2 and 3 could be used as basis for prediction models and can
lead to useful insight towards personalized drug treatment.

In the remainder of this chapter we present the outline for an approach to solve the
practical problem of predicting drug response based on all the information oncologists have
available about the patient, this can include genetic information but is also based on the
demographic, histology, baseline labs and medical history recorded in the patient’s Electronic
Health Record. This is of critical importance in a world where more and more anti-cancer
drugs are being developed, and doctors face the ever-increasing challenge of prescribing the
right drug that will work best for an individual patient.
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5.2 Predicting multiple treatment outcomes using

random forests

Introduction

Due to disease heterogeneity, the effectiveness of any specific cancer therapy, such as chemother-
apy or radiation, widely differs between individual patients. This inherent variability of cancer
lends itself to the growing field of precision and personalized medicine. Personalized cancer
therapy is an emerging treatment strategy based on the ability to predict which patients
are more likely to respond well to specific treatments. It involves the systematic use of the
information available about an individual patient to optimally select a course of treatment.

We present a framework for the problem of predicting multiple heterogenous clinical
outcomes based on all the information oncologists have available about the patient, this can
include genetic information but is more often based on the demographic, histology, baseline
labs and medical history recorded in the patient’s Electronic Health Record.

When oncologists make decisions about different treatment options they take into account
various factors, besides the obvious expected survival time under different regimens. For
instance one might also be interested in predicting early treatment discontinuation due to side
effects, or the expected shrinkage of the tumor. Ideally during the decision making process
the physician would have access to a complete picture of the outcomes for each treatment
option (survival time, quality of life, side effects etc)

The aforementioned different treatment outcomes are recorded as heterogeneous data
types. For instance overall survival is usually measured as censored data, the presence of a
particular side effect can be recorded as a binary or categorical outcome and tumor shrinkage
is a continuous measure.

If these outputs were unrelated then the obvious solution would be to predict each
individual outcome separately with ad hoc methods. But in the clinical settings these
outcomes are heavily correlated, for instance the expected survival time of a patient is
often correlated with a potential tumor progression or the insurgence of serious side effects.
Predicting multiple correlated outcomes simultaneously has shown in many cases to improve
the prediction performance compared to predicting each outcome separately.

While substantial work has been done on multiple output prediction for the regression
and classification case (for the classification case the problem is called multi-label), very little
work has been done on predicting multiple outcomes where the data type is censored data
[Su and Fan, 2004] or a mix of continuous and categorical variables [Ishwaran and Kogalur,
2020], [Moreno-Muñoz et al., 2018] and [Au et al., 2019]. Furthermore to the authors best
knowledge there is no current published work or package that is able to a handle a mix of
survival, continuous and categorical outcomes. The goal of this work is to close this gap by
providing a unified framework for prediction of heterogeneous outcomes in a clinical setting,
leveraging an ensemble learning method known as random forests. This method operates by
constructing many decision trees and using the average prediction across all trees, see the
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next section for a detailed description.

Materials and Method

Background

Most frequently, supervised learning problems involve the prediction of a single outcome.
However for some applications we are required to predict multiple outcomes simultaneously,
i.e. multiple outputs can be assigned to each observation and we need predictions for all of
them. If these outputs were unrelated then the obvious solution would be to predict each
individual outcome separately. But in many cases these outcomes present a certain degree of
correlation and this property can be exploited to improve prediction accuracy. The problems
of multi-output regressions and multi-output classification have been object of numerous
studies, see [Borchani et al., 2015] for a review of the former.

There are two main approaches for solving multi-outcome problems: problem transfor-
mation methods that transform the multi-output problem into independent single output
problems and algorithm adaptation methods that adapt specific single-output methods to
handle multi-output data. In the second category we find several extensions of standard
machine learning algorithms including statistical methods, support vector machines, kernel
methods and decision trees.

Our method belongs to this last category. Decision trees are constructed by performing
a series of splits on the values of predictor variables with the goal of creating groups of
observations at each node that have similar outcome variable value. To construct the tree we
need to iteratively identify the predictor and optimal splitting point. For continuous outcome
variables this is often achieved by minimizing the sums of squared errors of each daughter
node.

One way to improve the prediction performance of a single tree is to use an ensemble of
decision trees and aggregate their predictions. There are two primary methods to create such
ensembles, bagging and boosting. In bagging a set of trees is fit to bootstrap samples and
the prediction is calculated as the average across all trees. This improves the the prediction
error by decreasing the variance of the model and the influence of extreme observations. In
boosting we build trees sequentially, each trying to focus on observations that were poorly
predicted by the previous tree. In this chapter we focus on an extension of the bagging
algorithm, an approach known as random forests [Breiman, 2001] where we randomly select
the set of predictors evaluated for each tree split decision.

Method Description

For simplicity we use the same notation as [Ishwaran and Kogalur, 2020], since our work is
an extension of their R package. Denote the response for patent i by Yi ∈ R. Suppose the
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proposed split for the root node is of the form xi <= c and xi > c for a continuous x-variable
xi, and a split value of c. The split rule is to minimize

D(x, c) =
1

nl

∑
xi≤c

(Yi − Ȳl)2 +
1

nr

∑
xi>c

(Yi − Ȳr)2. (5.1)

where the subscripts l and r indicate left and right daughter node membership respectively.
A similar approach can be used for classification problems. In this case, an averaged

standardized Gini splitting rule can be used. In this model, the y-outcome associated with
an individual i is a single categorical value. Let p = (p1, . . . , pJ) be the class proportions for
the classes 1 through J respectively, for the y-outcome in the node. The impurity of the node
is defined as

φ(p) =
J∑

j=1

pj(1− pj) = 1−
J∑

j=1

p2j . (5.2)

The Gini index for a split c on x is

G(x, c) =
nl

n
φ(pl) +

nr

n
φ(pr), (5.3)

where nl and nr are the number of cases in the daughters such that (n = nl + nr).

The first approach to be proposed for extending decision trees to multiple outcomes
prediction is [De’ath, 2002]. They present an extension of the classification and regression
tree algorithm (CART) to the multi-output regression problem. They follow the same steps
as CART: start with all instances at the root node, then iteratively finding the optimal split
and partitioning the leaves accordingly until a pre-defined stopping criterion is reached. The
only difference from CART is the redefinition of the node splitting rule as the sum of squared
error over the multi-variate response.

Suppose we have M outcomes with associated response variable: Yim ∈ R. The split rule
is to minimize

1

nl

∑
i:xi>c

∑
m:xi>c

(Yim − Ȳlm)2 +
1

nr

∑
i:xi>c

∑
m:xi>c

(Yim − Ȳrm)2. (5.4)

A similar rule can be defined for the the multi-output classification case by generalizing
(5.3).

In [Ishwaran, 2015] they show that for mixed continuous and categorical outcomes we
can form a combined splitting rule. The regression and classification settings present similar
theoretical splitting properties and are combined in [Ishwaran and Kogalur, 2020] to form
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a composite splitting rule. The new rule is a composite standardized split rule of the
mean-squared error (5.4) and the Gini index splitting (5.3):

θ(x, c) = D∗(x, c) +G∗(x, c) (5.5)

where D∗(x, c) and G∗(x, c) are maximization multi-output equivalents of (1) and (3)
respectively. See [Tang and Ishwaran, 2017] for details.

Note that while this approach can handle the prediction of continuous and binary clinical
outcomes, it does not currently permit the inclusion of censored outputs. The prediction of
expected survival time for a specific therapy is a key metric to consider in the decision-making
process.

In survival analysis, the response associated with individual i is a pair of values specifying
a non-negative survival time and censoring information. Denote the response for i by
Yi = (Ti, δi). An individual is said to be right censored at time Ti if δi = 0 and is said to have
died at time Ti if δi = 1. An individual i who is right censored at Ti simply means that the
individual is known to have been alive at Ti, but the exact time of death is unknown. The
Cox proportional hazard regression model and its extensions are very often used to study
survival outcomes with censoring. Survival trees and forests are popular alternatives to such
models. They offer great flexibility and can automatically detect certain types of interactions
without the need to specify them beforehand and a single tree can naturally group subjects
according to their survival behavior based on their covariates. Moreover, survival trees are
ideal candidates for combination by means of an ensemble method such as the aforementioned
survival forests. There are multiple split rules that can be used to grow survival trees. In
[Ishwaran and Kogalur, 2020] they use Log-rank splitting. In this case the best split is the
one that maximizes survival differences between the two daughter nodes.

Let t1 < t2 < ... < tm be the distinct times of death in the parent node h, and let dk,l
and Yk,l equal the number of deaths and individuals at risk respectively at time tk in the left
daughter node for k ∈ 1, . . . ,m. Similarly let dk,r and Yk,r refer to the right daughter node.
Note that Yk,s is the number of individuals in daughter s ∈ l, r who are alive at time tk, or
who have an event (death) at time tk. More precisely,

Yk,l = #{i : Ti ≥ tk, xi ≤ c}, Yk,r = #{i : Ti ≥ tk, xi > c},
where xi is the value of x for individual i = 1, . . . , n. Define Yk = Yk,l + Yk,r and

dk = dk,l + dk,r. Let ns be the total number of observations in daughter s, Thus,n = nl + nr,
where nl = #{i : xi ≤ c} and nr = #{i : xi > c}. The log-rank test for a split at the value c
for an variable x is

L(x, c) =

m∑
k=1

(
dk,l − Yk,l

dk
Yk

)
√√√√ m∑

k=1

Yk,l
Yk

(
1− Yk,l

Yk

)(
Yk − dk
Yk − 1

)
dk

. (5.6)
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The value |L(x, c)| is a measure of node separation. Larger values of |L(x, c)| imply a
greater the difference between the two groups, and the better the split.

Going back to our original problem to predict continuous, categorical and censored outputs
simultaneously, one could integrate the log-rank splitting rule in (6) in the composite splitting
rule (5) introduced by [Ishwaran and Kogalur, 2020]. The proposed approach is to implement
a new composite splitting rule

θ(x, c) = w1D
∗(x, c) + w2G

∗(x, c) + w3|L(x, c)| (5.7)

where w1, w2, w3 can be input parameters either to be picked by the user to control the
overall contribution of each different outcome (i.e. one might be more interested in the overall
survival then accurately predicting the presence of nausea) or these can be parameters to be
tuned to improve overall prediction performance.

Future work includes the testing of this method on real and simulated data and the
comparison of with the standard approach of predicting each outcome separately.

5.3 Conclusion

In this work we presented a new set of data-driven models and algorithms with practical
applications to problems in personalized cancer therapy. We briefly summarize the key
contributions of each chapter here.

In Chapter 2 we study the problem of identifying sets of mutually exclusive alterations
associated with a quantitative target profile. We provide a combinatorial formulation for the
problem, proving that the corresponding computational problem is NP-hard. We design two
efficient algorithms, a greedy algorithm and an ILP-based algorithm, for the identification
of sets of mutually exclusive alterations associated with a target profile. We provide a
formal analysis for our greedy algorithm, proving that it returns solutions with rigorous
guarantees in the worst-case as well under a reasonable generative model for the data. We
implemented our algorithms in our method UNCOVER, and showed that it finds sets of
alterations with a significant association with target profiles in a variety of scenarios. By
comparing the results of UNCOVER with the results of REVEALER on four target profiles
used in the REVEALER publication and on a large dataset from the GDSC project, we show
that UNCOVER identifies better solutions than REVEALER, even when evaluated using
REVEALER objective function. Moreover, UNCOVER is much faster than REVEALER,
allowing the analysis of large datasets such as the dataset from project Achilles and from the
GDSC project, in which UNCOVER identifies a number of associations between functional
target profiles and gene set alterations.

In Chapter 3 we developed a new computational method, NETPHIX (NETwork-to-
PHenotpe assocIation with eXclusivity), for the identification of mutated subnetworks that
are associated with a continuous phenotype. Using simulations and analyzing a large scale
drug screening dataset, we showed that NETPHIX can uncover the subnetworks associated
with response to cancer drugs with high precision. We found many statistically significant and



CHAPTER 5. DISCUSSION AND FUTURE WORK 63

biologically relevant modules associated with drug response, including MAPK/ERK signaling
related modules associated with opposite response to drugs targeting RAF, MEK and ERK
genes. The genetic alteration status in many of identified modules indeed make differences in
cell survival rates, as validated with an independent dataset. Overall, the modules identified
by NETPHIX are in good correspondence with the action of the respective drugs, suggesting
that NETPHIX can correctly identify relevant modules and the modules can thus be used to
predict potential patient-specific drug combinations and to provide guidance to personalized
treatment. We demonstrate that the preferential selection of mutually exclusive genes was
important for a better performance of the method. Interestingly, although one might assume
that genes affecting drug resistance are not necessarily functionally related to the genes
increasing drug sensitivity, we found that the combined connectivity model outperforms the
separate connectivity model, indicating that the two groups of genes in fact might be related.

In Chapter 4 we developed two complementing computational approaches and performed
the first network level association analysis of mutation signatures with dysregulated pathways.
Based on gene expression data, we identified gene modules whose expression correlates with
mutation counts attributed to mutational signatures. Further analysis of these modules
provided important insights into the mutagenic processes underlying specific signatures.
Complementing expression analysis, we deploy the ILP based method outlined in Chapter 3
to identify subnetworks of genes whose alterations are associated with each signature. This
analysis provided information about potential differences in the etiology of the signatures
that could not be gained from the expression analysis alone. Taken together, our study
demonstrates the utility of these two complementary approaches for studying mutational
signatures in cancer and provided several new insights into the etiology of mutational
signatures.
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Appendix A

A.1 Proofs from Chapter 2

Proposition 4. There are instances of the Target Associated k-Set such that W (Ŝ) =
W (S∗)/k.

Proof. To see that the bound is tight just consider the following example. We want to pick k
sets out of n sets A1...An. Sets A1...Ak include 2 elements of respective weight a ≥ 0 and
b = a/(k − 1). Subset Ak+1 includes all the elements of weight b from the previous k sets
and one element with a small weight ε. Each of the remaining sets Ak+2...An include an
arbitrary number of elements with overall weight ≤ 0. We choose a penalty of value a. Note
that one can choose the weights of elements in sets Ak+2...An in such a way that the average
of all positive normalized weights is equal to a. Clearly the optimal solution to the Target
Associated k-Set problem consists of sets A1...Ak with an objective value of k(a+ b). The
greedy algorithm will pick set Ak+1 at the first iteration and then assign a new weight to its
elements equal to −a. The updated weight of sets A1...Ak is now 0 and the algorithm will
stop and output Ak+1 as the solution, giving an approximation ratio of

kb+ ε

k(a+ b)
=

1

k
+

ε

kb

Proposition 5. If m ∈ Ω (k2 ln(n/δ)) samples from the generative model above are provided
to the greedy algorithm, then the solution of the greedy algorithm is H with probability ≥ δ.

Proof. We prove that in iteration i of the greedy algorithm, conditioning on the current
solution being a set S with S ⊂ H, then the greedy algorithm adds a gene in H \ S to the
solution with probability ≥ delta/k, and that the first gene added by the greedy algorithm is
g ∈ H. The result then follows by union bound on the k iterations of the greedy algorithm.

Consider the first iteration of the greedy algorithm and consider a gene g ∈ G. Note that if
g 6∈ H then E[W ({g})] ≤ 0, since E[

∑
j∈Ag

wj ] = 0 because the samples in which g is mutated

are taken uniformly at random while
∑

j∈Ag
(cS(j)− 1) ≥ 0. If g ∈ H by the assumptions of
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the model we have E[W ({g})] ≥ m
kc′′′

for a constant c′′′ ≥ 1. Note that W ({g}) can be written
as the sum

∑m
i=1Xi of random variables (r.v.’s) Xi where Xi is the contribution of sample i

to W ({g}) with Xi ∈ [−1, 1]. By the Azuma-Hoeffding inequality [Mitzenmacher and Upfal,
2017] and union bound (on the n genes) the first gene chosen by the greedy algorithm is not

gene g ∈ H with probability ≤ e
− 2m2

4mk2(c
′′′

)2 which is ≤ δ/k when m ∈ Ω (k2 ln(nk/δ))).
Now assume that in iteration i, for the current solution S ⊂ H. Consider a gene

g ∈ G \ H, then E[W (S ∪ {g}) −W (S)] ≤ 0, since E[
∑

j∈∪s∈S∪gAs
wj −

∑
j∈∪s∈SAs

wj] ≤ 0

(by the assumptions of the model W (S) > 0 and the fact that alterations in {g} are placed
uniformly at random among samples) and E[

∑
j∈∪s∈S∪g

(cS(j)− 1)−
∑

j∈∪s∈S
(cS(j)− 1)] ≥ 0

(because for each sample i, the number of alterations of S∪{g} in i is a superset of the number
of alterations of S in i). Consider now a gene g ∈ H \ S: by the assumptions of the model
E[W (S ∪ {g})−W (S)] ≤ m

kc′′′
for a constant c

′′′
> 1. Note that E[W (S ∪ {g})−W (S) can

be written as the sum of
∑m

i=1Xi of random variables (r.v.’s) Xi where Xi is the contribution
of sample i in the increase in weight from W (S) to W (S ∪ {g}), where Xi ∈ [−1, 1]. By the
Azuma-Hoeffding inequality and union bound (on the < n genes considered for addition by
the greedy algorithm) the gene g added to S by the greedy algorithm in iteration i is not in

H \ S with probability ≤ e
− 2m2

4mk2(c
′′′

)2 which is ≤ δ/k when m ∈ Ω (k2 ln(nk/δ))).
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Appendix B

B.1 Formal definition of the computational problem

We are given a graph G = (V,E), with vertices V = {1, . . . , n} representing genes and
edges E representing interactions among genes. Let P denote the set of m patients (or cell
lines). For each sample j ∈ P , we are also given a phenotype profile value wj ∈ R which
quantitatively measures a phenotype (e.g., drug response in our study). Let Pi ⊆ P be the
set of patients in which gene i ∈ V is altered. We say that a patient j ∈ P is covered by gene
i ∈ V if j ∈ Pi i.e. if gene i is altered in sample j. We say that a sample j ∈ P is covered
by a subset of genes (or vertices) S ⊆ V , if there exists at least one vertex v in S such that
j ∈ Pv.

For simplicity of description, we start with the formulation in the case where the association
is in one direction, for example, with increased drug sensitivity. Later we will show how to
extend the problem to accommodate the case where mixed associations are allowed in the
same module. Our goal is to identify a connected subgraph S of G of at most k vertices
such that the sum of the weights of the samples covered by S is maximized. The weights are
computed based on drug sensitivity. Since we are interested in functionally complementary
mutations, we also penalize coverage overlap when a sample is covered more than once by S
by assigning a penalty pj for each of the additional times sample j is covered by S. Let cS(j)
be the number of times element j ∈ P is covered by S. For a set S of genes, we define its
weight W (S) as:

W (S) =
∑

j∈∪s∈SPs

wj −
∑

j∈∪s∈SPs

(cS(j)− 1)pj (B.1)

Thus, we define the optimization problem for one-side association as follows: Given a
graph G defined on a set of n vertices V , a set P , a family of subsets P = {P1, . . . , Pn} where
for each i, Pi ⊆ P is associated with i ∈ V , weights wj and penalties pj ≥ 0 for each sample
j ∈ P , find the subset S ⊆ V of ≤ k connected vertices maximizing W (S).

Since genetic alterations may affect the increase or decrease of drug sensitivity, we extend
the problem to identify genes with associations in both directions in one module. Considering
genes with increased and decreased sensitivity simultaneously can pick up stronger signals of
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associations and allow to take into account the interactions between alterations affecting drug
responses in different ways. Let I include the genes associated with increased sensitivity overall
(i.e., genes i with positive total weights,

∑
j∈Pi

wj ≥ 0) and D is the set of genes associated
with decreased sensitivity overall (i.e., genes i with negative total weights,

∑
j∈Pi

wj < 0).
Our objective function is then defined as follows:

W (S) =
∑

j∈∪s∈S
⋂

IPs

wI
j−

∑
j∈∪s∈S

⋂
IPs

(cS⋂
I(j)−1)pIj+(

∑
j∈∪s∈S

⋂
DPs

wD
j −

∑
j∈∪s∈S

⋂
DPs

(cS⋂
D(j)−1)pDj )

(B.2)
where we define wI

j = wj and wD
j = −wj. We considered two versions of connectivity

constraints among the associated genes as illustrated in Fig. 3.1b. In the first model, we
insisted that all selected genes should be connected whether they are associated with increased
or decreased sensitivity. In the second model, we ensured the connectivity of genes with the
same direction of association, resulting in two connected components in a solution (one for
increased and the other for decreased sensitivity).

Although the problem is NP-hard (by a reduction to set cover) even for the simple
one-sided case without network constraints, we formulated it as an integer linear program as
described in the next subsection, and solved it to optimality using CPLEX, which can be run
in a reasonable amount of time (See Fig. B.2 for running times for the simulation instances
with different k’s). For the instances requiring a large amount of resources solving ILP, we
set the time limit of 24h and the memory space limit of 10 GB.

B.2 ILP formulation

Let xi be a binary variable (denoted with xi ∈ B) equal to 1 if gene i ∈ V is selected and
xi = 0 otherwise. Let zIj ( resp., zDj ) be a binary variable equal to 1 if sample j is covered by
a gene i ∈ I (resp., i ∈ D) and 0 otherwise. Let yIj (resp., yDj ) denote the number of genes in
I (resp., D) cover sample j in the solution. Finally, let wj be the weight of sample j and
pj be the penalty for sample j. When sample j is covered by a gene in I, the weight and
penalty remain the same wI

j = wj. When j is covered by a gene in D, wD
j = −wj. Our ILP

formulation for the combined model is defined as follows:
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z(q) = max
∑
j

(wI
j + pIj )z

I
j −

∑
j

pIjy
I
j +

∑
j

(wD
j + pDj )zDj −

∑
j

pDj y
D
j (B.3)

s.t.
∑
i

xi ≤ k, (B.4)

yIj =
∑

i:j∈Pi,i∈I

xi, ∀j (B.5)

yDj =
∑

i:j∈Pi,i∈D

xi, ∀j (B.6)

yIj ≥ zIj , ∀j (B.7)

yDj ≥ zDj , ∀j (B.8)

zIj ≥ yIj /k, ∀j (B.9)

zDj ≥ yDj /k, ∀j (B.10)

xi, zj ∈ B, yj ∈ D ∀i, j (B.11)∑
l:il∈E

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈V

xl − 1

)
∀i ∈ V (B.12)

Constraint (B.4) impose that the total number of sets (i.e., selected genes) in the solution
is at most k. Constraints (B.5) and (B.6) define how many times each sample has been
covered by genes in I and D, respectively. Constraints (B.7) (resp., Constraints (B.8)) ensure
that for each sample j ∈ P , if j is covered by increased (resp., decreased) sensitivity genes in
the current solution then the number of times j is covered by I (resp., D) in the solution
is at least 1. Constraints (B.9) (resp., Constraints (B.10)) impose that for each element
(sample) j ∈ P , if j is covered by at least one increased (resp., decreased) sensitivity gene in
the current solution then j is covered by I (resp., D).

Constraints (B.12) were used to ensure the high connectivity of a selected module (the
combined connectivity model). Specifically, the constraints enforce that each selected gene is
connected with at least C fraction of genes in the selected module (other than the gene itself).
Note that if C ≥ 0.5, the module is a connected subgraph since for any two non-adjacent
vertices, they must have a common neighbor (C = 0.5 is used in our analysis). In our study,
we used a functional interaction network (from STRING database), which is relatively dense.
For sparse networks where highly connected components are rare, we may use an alternative
approach based on a branch-and-cut algorithm to ensure the connectivity [Bomersbach et al.,
2016; Fischetti et al., 2017; Wang et al., 2017].

Note that Constraints (B.12) forces the connectivity among all selected genes regardless
of the directions of association. For the separate connectivity model, we identify candidate
modules so that the connectivity is only enforced among the genes in I and D, separately.
In this case, we replace the connectivity constraints given in (B.12) with the following
constraints.
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∑
l:il∈E,l∈I

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈I

xl − 1

)
∀i ∈ I (B.13)

∑
l:il∈E,l∈D

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈D

xl − 1

)
∀i ∈ D (B.14)

B.3 Selecting final modules.

By computing the optimal solutions of ILP instances with different sizes k (k = 1 to 5)
and two connectivity options (the combined and separate model), we first obtain a pool
of candidate modules. For each candidate module, we run a permutation test to assess
the statistical significance of association and select maximal modules among significantly
associated ones. Note that we allow to choose multiple modules associated with a drug in
the final solution because it is possible that multiple functional components are associated
with drug response.

Permutation test: For each candidate module, we assess the statistical significance of the
association between their alteration profile and drug response by a phenotype permutation test.
In the phenotype permutation, the dependencies among alterations in genes are maintained,
while the association between alterations and the phenotype is removed. Specifically, a
permuted dataset under the null distribution is obtained as follows: the graph G = (V,E)
and the sets Pi, i ∈ V are the same as observed in the data; the values of the phenotype are
randomly permuted across the samples (Fig. 3.1c). Once we find the optimal solution for the
original instance, we can run ILP as a feasibility test simply checking if a permuted instance
has a solution with objective value that is greater than or equal to the optimal.

To estimate the p-value for the solutions obtained by ILP, we used the following standard
procedure: 1) we run an algorithm on the real data D, obtaining a solution with objective
function oD; 2) we generate N permuted datasets as described above; 3) we run the same
algorithm on each permuted dataset; 4) the p-value is then given by (e+ 1)/(N + 1), where e
is the number of permuted datasets in which our algorithm found a solution with objective
function ≥ oD. We used N = 100 permutations in our analysis and considered the modules
with p < 0.05 (FDR < 10%, BH) as significantly associated modules.

Selecting maximal modules: Among all significantly associated modules obtained based
on the permutation test, we remove redundant modules by selecting only maximal modules.
In other words, let M1,M2, ...,Mt be the set of significantly associated modules for a drug.
For any two modules Mi and Mj such that Mi ⊂ Mj then we only include Mj in the final
solution for the drug.
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B.4 Datasets and Method Details

Drug sensitivity dataset: The Genomics of Drug Sensitivity in Cancer Project ( https:
//www.cancerrxgene.org/) consists of drug sensitivity data generated from high-throughput
screening using fluorescence-based cell viability assays following 72 hours of drug treatment.
In particular, we considered the area under the curve for each experiment as a phenotype.
These scores are provided in the file portal-GDSC AUC-201806-21.txt available through
the DepMap data portal (https://depmap.org) for 265 compounds and 743 cell lines,
with 736 having alteration data available through the DepMap portal. For the DepMap
experiments [Barretina et al., 2012a; Stransky et al., 2015], we used the alteration provided
at https://depmap.org/portal/download/all/. We downloaded the data on July 6th

2018. In particular we used mutation data from the file portal-mutation-201806-21.csv

that includes binary entries for 18,652 gene-level mutations. Additionally, we considered
22,746 amplifications and 22,746 deletions computed from the gene copy number data in
portal-copy number relative-2018-06-21.csv, with an amplification defined by a copy
number above 2 and a deletion defined by a copy number below -1.

Preprocessing drug sensitivity data: For every drug response profile, we excluded
samples with missing values for that phenotype, which results in a different number of
samples for each phenotype. The number of samples varied between 240 and 705. To generate
drug sensitivity values for the patients, we took the negatives of cell viability (i.e., increased
cell survival indicates decreased sensitivity to the drug and vice versa) and then normalized
the phenotype values before running the algorithm, by using standard z-scores (subtracting
the average value

∑
j∈J wj/m from each weight wj and dividing the result by the standard

deviation of the (original) wj ’s), in order to have both positive and negative phenotype values.
We excluded genes with low (present in less than 1% samples from our analyses. As penalty
for increased sensitivity pIj , we use the average of the positive phenotype values if the original
value of the element was positive (wj > 0) and assign a penalty equal to its absolute value
otherwise. The penalty for decreased sensitivity pDj is computed in the opposite way. The
negative of the average of the negative phenotype values is used if the original value of the
element was negative (wj < 0) and assign a penalty equal to its absolute value otherwise

Interaction network and computing distances in the network: For functional inter-
actions among genes, we used the data downloaded from STRING database version 10.0 [str].
We only included the edges with high confidence scores (≥ 900 out of 1000) as an input to
NETPHIX. The resulting interaction network includes 9,215 nodes and 160,249 edges.

For the average distances within modules, we computed the pairwise shortest distances
within modules and take the average distances. For each drug, we only used the drug targets
present in the functional network that are reachable from the selected modules and computed
the average distance for all pairs of genes.

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://depmap.org
https://depmap.org/portal/download/all/
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Running simulated experiments: For the background of simulation data, we use the
same gene alteration table and interactions from drug sensitivity dataset described previously
in this section. The phenotype values for individual samples are randomly drawn from
normal distribution N(0, 1). We then planted randomly generated phenotypes and associated
modules to the background as follows.

Phenotypes: α fraction of patients P (α) (α = 0.1, 0.2, and 0.3) were randomly selected and
assigned phenotype values drawn randomly from N(z, 0.5) where z is a z-score corresponding
to a cumulative p-value p (p = 0.005, 0.1, 0.99, and 0.995).

Associated gene modules: we randomly selected a gene set S(k) of size k (k = 3, 4, and
5) and added random alterations in S(k) for patients P (α) so that each patient in P (α)
has an alteration in exactly one gene in S(k). Therefore, the added alterations among the
patients P (α) are mutually exclusive although there may be overlapping mutations due to
the background alterations. We also added random edges among the genes S(k) so that they
satisfy the density constraints (C = 0.5)

We generated 10 random instances for each combination of parameters (k, α, z) and ran
the module identification algorithms.

For LOBICO [Knijnenburg et al., 2016], we used its R implementation [rlo] with the default
parameter settings, except the logic function parameters (K and M) and the maximum
running time. The OR logic model with K = k and M = 1 was used for increased sensitivity
modules and the AND logic module with K = 1 and M = k for decreased sensitivity modules,
where k is the size of the searched module. We limited the running time of LOBICO to be
24h and reported the best current solution (which may be suboptimal) when the program
stops.

Validation of identified modules with CTRP dataset: For validation of NETPHIX
modules, we utilized an independent drug response dataset from the Cancer Therapeutics
Response Portal (CTRP) [Seashore-Ludlow et al., 2015]. The drug screening results were
downloaded from https://portals.broadinstitute.org/ctrp/ (Version 2). The area under the
curve (AUC) values were used for drug response phenotypes. For the alteration profiles
for the cell lines, we used CCLE MUT CNA AMP DEL binary Revealer.gct downloaded from
https://portals.broadinstitute.org/ccle/data (08/21/2017).

We found the drug response profiles for 76 drugs in both CTRP and GDSC datasets,
among which 69 drugs have at least one drug sensitivity module identified by NETPHIX.
821 cell lines having both drug response and gene alteration profiles were used for validation.
To test if the alteration status of selected genes are associated with different drug response,
we divided the cell lines into three groups; The cell lines (CI) with alterations in increased
sensitivity genes but no alterations in decreased sensitivity genes, the cell lines (CD) with
alterations in decreased sensitivity genes but no alterations in increased sensitivity genes, and
the cell lines (CN) with no mutations in the identified genes. We then performed ANOVA
test for the cell survival rates for the three groups (CI , CD, and CN).

https://portals.broadinstitute.org/ccle/data
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Figure B.1. (a) Sensitivity module for Cytarabine identified based on the combined
connectivity model. (b) Sensitivity module for JQ1 identified based on the separate
connectivity model. (c-d) Sensitivity module for Lapatinib (c) and Vorinostat (d). The two
modules associated with the drugs are similar but they are associated with opposite
directions. The efficacy of combination therapy with Lapatinib and Vorinostat is confirmed
in clinical trials.
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Appendix C

C.1 Supplemental Methods for Chapter 4

Construction of Gene Alteration Table
The gene level alteration information for the input to NETPHIX is constructed by utilizing

all somatic point mutations and small indels for the same 560 patients data. In general,
we defined a gene g to be altered for a patient p if it has at least one “valid” mutation in
the genomic region of g for p. The definition of “valid” mutations can be different for each
signature as we further refined the information by removing mutations attributed to the
signature. For example, the input alteration table used for the association with Signature 2
is constructed after removing all somatic mutations assigned to Signature 2. Formally, for
the alteration table ALTi used for association with Signature i, a gene g in ALTi is defined
to be altered only if it has at least one non-silent mutation in the genomic region of g that is
not attributed to Signature i. For ALT3 and ALT8, we additionally removed all indels as
these signatures are believed to lead to a high burden of indels. Finally, we augmented the
alteration table if the gene is annotated as being biallelic inactivated (Supplementary Table
4a and 4b from Davies et al. [2017]).



APPENDIX C. 74

a2C1

a2C2

a2C3

a2C4

a2C5

a2C6

a2C7cl
us

te
rs

2C 8C 13C 13D 3C 3D 5D 1D 2D 8D

-0.14 -0.31 -0.25 -0.27 -0.37 -0.42 0.19 -0.044 0.092 0.092

-0.22 -0.33 -0.31 -0.3 -0.38 -0.39 0.16 -0.092 0.012 -0.006

-0.15 -0.28 -0.21 -0.2 -0.31 -0.29 0.065 -0.067 0.044 -0.028

-0.073 -0.23 -0.16 -0.2 -0.29 -0.33 0.16 0.001 0.097 0.084

0.28 0.43 0.38 0.35 0.44 0.46 -0.15 0.16 0.018 0.03

0.22 0.3 0.28 0.24 0.3 0.31 -0.084 0.14 0.036 0.065

0.19 0.36 0.3 0.32 0.41 0.47 -0.2 0.058 -0.058 -0.06

0.15 0.29 0.26 0.29 0.36 0.44 -0.22 0.023 -0.055 -0.087

0.066 0.22 0.16 0.22 0.28 0.37 -0.2 -0.022 -0.098 -0.12

0.12 0.21 0.21 0.24 0.27 0.34 -0.19 -0.033 -0.027 -0.049

0.13 0.25 0.19 0.21 0.28 0.32 -0.11 0.033 -0.038 -0.009

0.17 0.27 0.24 0.25 0.3 0.35 -0.13 0.059 -0.01 -0.024

a2C8

a2C9

a2C10

a2C11

a2C12

signatures−0.30
−0.15

0.00
0.15
0.30
0.45

co
rre

la
tio

n

Cilium morphogenesis, oxidation

Regulation of Notch signaling pathway

Cell projection, cell cyle arrest

Immune response, Leukocyte migration

Cell cycle

Cell cycle

Nuclear export, RNA localization

Landmark GO terms

Negative regulation of protein tyrosine kinase

Immune response, Immune effector process

DNA repair, Translesion synthesis

Regulation of immune system process, 
Regulation of cell-cell adhesion

Telomere organization

#genes

90

524

189

528

268

340

209

93

809

253

145

315

Figure C.1. Gene expression correlation modules. Clustering of all genes
significantly correlated with at least one of the signatures. This shows a more fine-grained
clustering (12 clusters) than in Fig. 4.2. A heatmap of mean expression correlation for each
cluster and signature (left), number of genes in each cluster (middle), and representative GO
terms enriched in each cluster of genes (right) are shown.
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Figure C.2. Subnetworks identified by NETPHIX using less stringent cut-off (refers to
Fig. 4.3). The best m (the module size) using less stringent cut-offs was selected as maximal index for
which the optimal objective function increased more than 1% with respect to previous index and the
phenotype p-value did not increase. Panel for each signature consists of a network view of a module (left)
and a heatmap showing the association of selected gene alterations with signature strength across patients
(right). The network node size indicates the gene robustness (regarding NETPHIX results for different
random initialization runs of SigMa) while the darkness of red color represents its individual association
score (p-value). Each heatmap shows the number of mutations attributed to a given signature for all samples
(orange; top row; log10 scale) sorted from low to high (columns). For each gene in the module, gene
mutations observed in each sample caused by other signatures are shown in gray, while samples not altered
are in white. The last row shows the mutation profile of the entire subnetwork in black. Only subnetworks
that changed with respect to the normal cut-offs (see Fig. 4.3 and Materials and Methods) are shown.
Results for Signatures 2D and 3C did not change with respect to the normal cut-offs and results for
Signatures 1D and 5D stayed insignificant (the FDR adjusted p-value above 0.1).
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Table C.1. Subnetwork associated with mutational signatures for each subtype

Signature Subtype Subnetwork P -value
2C Lum B APC, TP53, SMAD4, PTEN 0.004
2D Lum A PIK3CA, PTEN 0.0049
3C Lum B BRCA2, TP53, MAP9 0.001
3C Basal BRCA1, BRCA2 0.023
3D LumA BRCA1, ARID1A, BRCA2, TP53, NF1 0.002
3D LumB BRCA2, TP53, MAP9 0.001
3D Basal BRCA1, BARD1, BRCA2, FANCA 0.002
8C LumB BRCA2, TP53, KRT19 0.002

13C LumA CASP8, TP53, AR, SIN3A, HDAC2 0.023
13C LumB CREBBP, BRCA2, TP53 0.003
13D LumA HIF1A, BRCA2, TP53, ATM, HDAC2 0.021
13D LumB CREBBP, BRCA2, TP53 0.001
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