
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
The Interaction of Neonatal Intensive Care Unit Microbes with the Microbiome of the 
Developing Preterm Infant Gut

Permalink
https://escholarship.org/uc/item/1dj668jk

Author
Brooks, Brandon

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dj668jk
https://escholarship.org
http://www.cdlib.org/


 
The Interaction of Neonatal Intensive Care Unit Microbes with the Microbiome of 

the Developing Preterm Infant Gut 
 
 

By 
 

Brandon Brooks 
 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree of 
 

Doctor of Philosophy 
 

in 
 

Microbiology 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 

Committee in charge: 
 

Professor Jillian F. Banfield, chair 
Professor Steven E. Lindow 

Professor William W Nazaroff 
 

Fall 2016 
  



 



 1 

Abstract 
 

The Interaction of Neonatal Intensive Care Unit Microbes with the Microbiome of the 
Developing Preterm Infant Gut 

 
by 
 

Brandon Brooks 
 

Doctor of Philosophy in Microbiology 
 

University of California, Berkeley 
 

Professor Jillian F. Banfield, Chair 
 

Humans spend approximately 90% of their time indoors, yet we know very little about 
the microbial ecosystem of the built environment and how it impacts occupants. Here we use 
infants hospitalized in a neonatal intensive care unit (NICU) as a model system to track the 
exchange of microbes between room and occupants. By leveraging high-throughput sequencing 
and other “omics” technologies, we conducted four major studies to broadly address the 
composition of microbes populating NICU surfaces, how these microbes migrate to the infant 
gut, and once in the gut, how these microbes compete for resources. Over the course of these 
campaigns we collected and processed over 5,000 samples from hospital room surfaces and over 
300 infant fecal samples creating the largest collection of hospital samples to be interrogated 
with next-generation sequencing techniques. Using an approach that reassembles the entire 16S 
rRNA gene from room amplicons and gut metagenomics data, we discovered several organisms 
on room surfaces before their detection in the infant gut. Once in the gut, we used a 
metaproteomics technique to investigate the metabolisms of early infant gut colonizers. Unlike 
the anaerobic gut environment of older children and adults, we discovered a relatively high 
utilization of aerobic pathways in many of the facultative anaerobes colonizing the infant gut. 
We also observed niche partitioning amongst closely related Citrobacter strains in our strain-
resolved proteomics data, providing insight into how early colonizers compete in the nascent 
infant gut. To better understand biomass trends inside and outside the gut, we developed an assay 
to quantify 16S rRNA gene copies using droplet digital PCR (ddPCR). We discovered a 
surprising amount of variation in bacterial densities across different NICU environments. These 
data also allowed us to adapt a novel in silico data cleaning method that leverages the 
quantification of negative controls to provide data less impacted by the inherent noise of low-
biomass amplicon workflows. Cleaner data allowed us to apply a machine learning classifier that 
showed each infant’s room had a distinct microbial fingerprint. To validate this result, we 
conducted a metagenomics campaign on pooled room samples from six different infants. After 
assembly and binning, we were able to recover hundreds of high quality genomes. Utilizing 
genomes from this dataset and previously isolated genomes from our lab, we discovered the 
same strains in the room as in infants. Further, we found several taxa frequently isolated from 
infant gut samples in this NICU are the same strains in the NICU room metagenomes. Overall, 
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the analysis from this work suggests that where a premature infant is born and the history of 
room occupancy can impact its gut microbiome development.   



 i 

TABLE OF CONTENTS 
ABSTRACT ................................................................................................................................... 1	

TABLE OF CONTENTS .............................................................................................................. I	
FIGURES INDEX ....................................................................................................................... III	

TABLES INDEX ......................................................................................................................... IV	

DEDICATION .............................................................................................................................. V	

INTRODUCTION ........................................................................................................................ 1	
1	 MICROBES IN THE NEONATAL INTENSIVE CARE UNIT RESEMBLE 

THOSE FOUND IN THE GUT OF PREMATURE INFANTS ............................................... 4	
1.1	 ABSTRACT ....................................................................................................................... 5	
1.2	 INTRODUCTION ................................................................................................................ 5	
1.3	 METHODS ........................................................................................................................ 7	

1.3.1	 Sample collection .................................................................................................... 7	
1.3.2	 DNA extraction and PCR amplification ................................................................. 7	
1.3.3	 Sequencing preparation and sequencing ................................................................ 8	
1.3.4	 EMIRGE assembly of full-length 16S rRNA gene amplicons ................................. 8	
1.3.5	 Metagenomic EMIRGE assembly of 16S rRNA gene ............................................. 8	
1.3.6	 Community analysis of room and fecal samples ..................................................... 9	
1.3.7	 Metagenomic assembly and gene prediction .......................................................... 9	
1.3.8	 Enterococcus faecalis concatenated ribosomal protein phylogeny ........................ 9	

1.4	 RESULTS ........................................................................................................................ 10	
1.4.1	 Stability of NICU room samples over time and space .......................................... 10	
1.4.2	 Time-series characterization of fecal samples ...................................................... 10	
1.4.3	 Highly connected BE microbes ............................................................................. 11	
1.4.4	 The NICU as a reservoir for gut colonists ............................................................ 11	
1.4.5	 Shared gut colonizers ............................................................................................ 12	
1.4.6	 Genes relevant to adaptation to the NICU environment ...................................... 12	

1.5	 DISCUSSION ................................................................................................................... 12	
1.6	 CONCLUSION .................................................................................................................. 15	
1.7	 ABBREVIATIONS ............................................................................................................ 15	
1.8	 COMPETING INTERESTS .................................................................................................. 16	
1.9	 AUTHORS’ CONTRIBUTIONS ........................................................................................... 16	
1.10	 ACKNOWLEDGEMENTS ................................................................................................... 16	

2	 STRAIN-RESOLVED MICROBIAL COMMUNITY PROTEOMICS REVEALS 
SIMULTANEOUS AEROBIC AND ANAEROBIC FUNCTION DURING EARLY 

STAGE GASTROINTESTINAL TRACT COLONIZATION .............................................. 32	
2.1	 ABSTRACT ..................................................................................................................... 33	
2.2	 INTRODUCTION .............................................................................................................. 33	
2.3	 MATERIALS AND METHODS ........................................................................................... 34	

2.3.1	 Infant description and sample collection .............................................................. 34	
2.3.2	 Protein extraction, digestion, and Nano-2D-LC-MS/MS ..................................... 34	
2.3.3	 Database composition and peptide matching ....................................................... 35	



 ii 

2.3.4	 Pathway analysis .................................................................................................. 35	
2.4	 RESULTS AND DISCUSSION ................................................................................... 36	

2.4.1	 General proteome description .............................................................................. 36	
2.4.2	 Microbial community profile and general functional characterization ............... 36	
2.4.3	 Aerobic and anaerobic respiration ....................................................................... 36	
2.4.4	 Fermentation pathways ......................................................................................... 37	
2.4.5	 Motility, toxicity, and invasion .............................................................................. 38	
2.4.6	 Comparison of major and minor Citrobacter strains ........................................... 39	

2.5	 CONCLUDING REMARKS ................................................................................................ 40	
2.6	 ACKNOWLEDGEMENTS ................................................................................................... 41	
2.7	 CONFLICT OF INTEREST .................................................................................................. 41	

3	 THE DEVELOPING PREMATURE INFANT GUT MICROBIOME IS A MAJOR 
FACTOR SHAPING THE MICROBIOME OF NEONATAL INTENSIVE CARE UNIT 

ROOMS ....................................................................................................................................... 53	
3.1	 ABSTRACT ..................................................................................................................... 54	
3.2	 INTRODUCTION .............................................................................................................. 54	
3.3	 METHODS ...................................................................................................................... 55	

3.3.1	 Sample Collection ................................................................................................. 55	
3.3.2	 DNA extraction and PCR amplification ............................................................... 56	
3.3.3	 Sequencing preparation and sequencing .............................................................. 57	
3.3.4	 16S amplicon data processing .............................................................................. 57	
3.3.5	 Metagenomic assembly and data processing ........................................................ 57	

3.4	 RESULTS ........................................................................................................................ 58	
3.4.1	 Sequencing summary and contamination removal ............................................... 58	
3.4.2	 Biomass and taxonomic variation across petri dish replicates ............................ 58	
3.4.3	 Biomass varies significantly across sample type .................................................. 58	
3.4.4	 Skin associated taxa dominate the NICU surface environment ............................ 58	
3.4.5	 Biomass suggests growth patterns in sink basins ................................................. 59	
3.4.6	 NICU rooms harbor a unique microbial signature .............................................. 59	
3.4.7	 Composition of persister taxa in the room echoes infant gut composition ........... 60	

3.5	 DISCUSSION ................................................................................................................... 61	
3.6	 COMPETING INTERESTS .................................................................................................. 63	
3.7	 AUTHORS’ CONTRIBUTIONS ........................................................................................... 63	
3.8	 ACKNOWLEDGMENTS .................................................................................................... 63	

4	 HOSPITALIZED INFANTS ARE COLONIZED BY MICROBES FROM THE 
ROOM ENVIRONMENT .......................................................................................................... 89	

4.1	 ABSTRACT AND INTRODUCTION ..................................................................................... 90	
4.2	 RESULTS AND DISCUSSION ............................................................................................. 90	
4.3	 COMPETING INTERESTS .................................................................................................. 94	
4.4	 AUTHORS’ CONTRIBUTIONS ........................................................................................... 94	
4.5	 ACKNOWLEDGMENTS .................................................................................................... 94	

5	 CONCLUDING REMARKS AND FUTURE PERSPECTIVES ................................. 100	

6	 REFERENCES .................................................................................................................. 103	
 

  



 iii 

FIGURES INDEX 
FIGURE 1-1: TAXONOMIC CLASSIFICATION OF INFANT 1 AND 2’S NICU ROOM MICROBES ............. 17	
FIGURE 1-2: PRINCIPAL COORDINATES ANALYSIS (PCOA) BASED ON UNIFRAC SCORES OF ROOM 

AND GUT MICROBES ............................................................................................................... 18	
FIGURE 1-3: TIME-SERIES COVERAGE EMERGENT SELF-ORGANIZING MAPS (ESOMS) REVEAL 

DISCRETE GENOME BINS FOR EACH INFANT’S DATASET .......................................................... 19	
FIGURE 1-4: SPRING WEIGHTED EDGE-EMBEDDED NETWORK PLOTS OF ROOM AND FECAL OTUS .. 21	
FIGURE 1-5: COMMUNITY COMPOSITION OF GUT COLONIZING MICROBES AND ROOM MICROBES 

THROUGH THE FIRST MONTH OF LIFE ...................................................................................... 23	
FIGURE 1-6: THE MOST PROBABLE SOURCE OF GUT COLONIZING MICROBES .................................. 24	
FIGURE 1-7: ENTEROCOCCUS FAECALIS PHYLOGENY USING 32 CONCATENATED RIBOSOMAL 

PROTEINS REVEALS CLOSELY RELATED STRAINS .................................................................... 26	
FIGURE 2-1: MICROBIAL COMMUNITY COMPOSITION OBSERVED VIA READ AND PEPTIDE MAPPING 42	
FIGURE 2-2: METABOLIC POTENTIAL OF MICROBES COLONIZING A PRETERM INFANT GUT ............. 44	
FIGURE 2-3: EXPRESSION OVER POTENTIAL RATIO OF INFANT GUT MICROBES ............................... 46	
FIGURE 2-4: EXPRESSION OVER POTENTIAL RATIO OF INFANT GUT MICROBES (SUBSET) ................ 49	
FIGURE 2-5: COMPARISON OF PROTEOMIC PROFILES OF TWO CLOSELY RELATED CITROBACTER 

STRAINS ................................................................................................................................. 50	
FIGURE 3-1: VARIATION ACROSS DDPCR REPLICATES ................................................................... 64	
FIGURE 3-2: BIOMASS VARIES BY 5-6 ORDERS OF MAGNITUDE IN A NICU ..................................... 66	
FIGURE 3-3: TOP 10 NICU OTUS COMPRISE > 50% OF NICU TAXA ............................................. 70	
FIGURE 3-4: SOURCETRACKER REVEALS HUMAN SKIN IS DOMINANT SOURCE OF NICU MICROBES 71	
FIGURE 3-5: ALPHA-DIVERSITY IN THE NICU ................................................................................ 72	
FIGURE 3-6: GROWTH DETECTED IN NICU SINK SAMPLES ............................................................. 74	
FIGURE 3-7: NICU ROOMS HAVE A UNIQUE MICROBIAL SIGNATURE .............................................. 76	
FIGURE 3-8: TOP 10 MOST IMPORTANT TAXA DRIVING THE MACHINE LEARNING MODEL ............... 77	
FIGURE 3-9: FECAL SAMPLE COMMUNITY COMPOSITION ................................................................ 78	
FIGURE 3-10: EPISODIC INCREASES OF “PERSISTER” TAXA IN THE NICU ....................................... 81	
FIGURE 3-11: PERSISTER TAXA IN THE ROOM REFLECT COMPOSITION OF THE INFANT GUT ............ 84	
FIGURE 4-1: SIMILAR ROOM STRAINS ARE FOUND IN THE INFANT GUT ACROSS SEVERAL COHORTS 

AND YEARS ............................................................................................................................ 95	
FIGURE 4-2: TIME SERIES ROOM METAGENOMES REVEAL INFANT TO ROOM DIRECTIONALITY ....... 96	
 
 
  



 iv 

TABLES INDEX 
TABLE 1-1: HEALTH PROFILE OF PREMATURE INFANT COHORT ...................................................... 28	
TABLE 1-2: SAMPLE COLLECTION SUMMARY AND SUMMARY OF THE NUMBER OF 16S RRNA GENES 

ASSEMBLED ............................................................................................................................ 29	
TABLE 1-3: ALPHA DIVERSITY INDEXES FROM NICU ROOM AND FECAL SAMPLES ......................... 30	
TABLE 1-4: GENOME SUMMARIES .................................................................................................. 31	
TABLE 2-1: GENOME AND PROTEOMICS SUMMARY ........................................................................ 52	
TABLE 3-1: TOP 10 OTUS IN THE NICU ........................................................................................ 87	
TABLE 3-2: MOST IMPORTANT VARIABLES TO SVM MODEL .......................................................... 88	
TABLE 4-1: STRAINS ISOLATED FROM HOSPITAL SOURCES HAVE VARYING DEGREES OF SIMILARITY 

TO PUBLICLY AVAILABLE REFERENCE GENOMES .................................................................... 97	

 
 
  



 v 

Dedication 
 
To the hardest working man I know, my father, Randy Brooks. Inheriting your work ethic is the 
only way a scientist named “Bubba” could survive grad school.   
 
To my loving mother, Sue Brooks. You tolerated my curiosities for years. It seems to have paid 
off.  
 
To my creative inspiration, my wife, Emma Brooks. You challenge me to do better. Thank you. 
 



 
 

1 

Introduction 
 

Humans spend approximately 90% of their time indoors (Klepeis et al., 2001), yet we 
know very little about the microbial ecosystem of the built environment and how it impacts 
occupants. Understanding room and occupant interaction has minor human health implications in 
quotidian settings, like discomfort from allergens in an office or classroom, to more life 
threatening outcomes in hospital intensive care wards. While microbiome studies from a variety 
of building types have been conducted (e.g., in classrooms (Qian et al., 2012; Meadow et al., 
2014), offices (Chase et al., 2016), clean rooms (Mahnert et al., 2015; Weinmaier et al., 2015), 
homes (Ruiz-Calderon et al., 2016; Barberan et al., 2015; Lax et al., 2014; Adams et al., 2013), 
and the international space station (Checinska et al., 2015)), no studies  have implemented next-
generation sequencing technologies to directly link colonization of occupants by strains sourced 
from the built environment. Two main reasons drive this knowledge gap. One, humans older 
than 2.5 years old have a fully developed gut microbiome (Koenig et al., 2011). Any innocuous 
strain from the room is not likely to perturb a mature microbiome, since the adult microbiome is 
relatively stable over time and resistant to perturbation (David et al., 2014). This feature makes 
detection of a room strain difficult due to its low abundance relative to the mature, established 
microbial community. Two, recovering genomes from complex adult microbiome samples has 
only recently been achieved (Di Rienzi et al., 2013). This limitation in earlier research is notable 
as strain-level resolution is essential in determining if the same room microbe is colonizing 
occupants.  

From a microbial standpoint, newborn infants represent a “blank canvas” that is highly 
susceptible to environmental influences and perturbations of the colonization process. The 
colonization process is critical (Cahenzli et al., 2013; Costello et al., 2012; Arrieta et al., 2015; 
Sim et al., 2013). Recent evidence suggests that aberrant patterns of microbiome development in 
newborns are linked to adverse short-term complications such as sepsis (Madan et al., 2012) and 
necrotizing enterocolitis (Morowitz et al., 2010b) and long-term complications such as asthma 
(Huffnagle, 2010) and atopic skin disease (Kong et al., 2012). Here, we implement a series of 
studies that leverage recently developed ‘omics’ techniques to characterize the microbes of the 
neonatal intensive care unit (NICU) built environment and link these microbes to the 
colonization of preterm infant occupants.  

At the time our first study was designed (Brooks et al., 2014), only four published studies 
using molecular techniques to characterize microbes in intensive care unit wards had been 
conducted (Bokulich et al., 2013; Hewitt et al., 2013; Poza et al., 2012; Oberauner et al., 2013). 
Briefly, these prior studies found major differences between different regions of the hospital. The 
general access hallways have much higher microbial diversity relative to restricted access 
intensive care units. Microbes in a NICU largely resemble human-associated taxa and cleaning 
practices maintained low levels of biomass in the NICU. We designed an experiment to test if we 
could find 16S rRNA genes on NICU room surfaces before they were detected in the gut of 
infants. We found several instances where this was true (Brooks et al., 2014), indicating NICU 
surfaces could be a reservoir that continually seeds the nascent infant gut. We then scaled up a 
second experiment to include more infants, more time points, and deeper sequencing, ultimately 
with the goal of linking the same room strain with strains recovered in metagenomic data from 
infant gut samples.  
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We also investigated the metabolisms of early infant gut colonizers. Early in infant gut 
colonization there is often a shift from an aerobic to anaerobic state (Penders et al., 2006). Since 
many organisms commonly detected in the early preterm infant gut are facultative anaerobes, it 
was unclear if the infants in our cohorts were utilizing the aerobic or anaerobic repertoire of their 
metabolic potential, or both. To address this matter, we coupled strain-resolved community 
metagenomics data with mass spectrometry-based proteomics to resolve growth mode and to 
compare activity levels during colonization of a preterm infant (Brooks et al., 2015). The results 
showed utilization of both lifestyles, highlighting niche partitioning in the infant gut. This study 
was the first to differentiate expression profiles between two closely related strains in the gut, 
two Citrobacter spp, using an untargeted metaproteomics technique. 

We developed a wet lab workflow to circumvent major problems with processing of the 
vast number of low biomass samples collected during the NICU room-occupant campaign. 
Popular iTag sequencing workflows are notorious for generating spurious OTUs and are highly 
influenced by contamination (Lazarevic et al., 2016). We leveraged template counting via 
droplet digital PCR and developed an in silico method to generate cleaner data and mediate 
common pitfalls in cleanroom microbiology. The results from this effort were compiled in a 
study that quantified biomass in the NICU over time. Surprisingly there is a wide range of 
bacterial density in the NICU, with occupancy driving much of this signal. We also implemented 
a machine learning algorithm which highlighted how each infant’s NICU room contains a unique 
microbial fingerprint. This fingerprint echoes much of the successional patterns in the infant’s 
gut. This emerging information led us to propose a model in which microbes bloom in the infant 
gut, are shuttled to the room via healthcare providers, they then tolerate the room environment 
and colonize downstream infants, resetting the cycle. This model was inferred from 16S rRNA 
gene amplicon data obtained from room samples and metagenomics data obtained from infant 
fecal samples. To validate this model, room metagenomics was needed. 

Since our main NICU study collected over 3,700 samples, it offered the opportunity to 
conduct metagenomics on room samples. NICU room sample are extremely low biomass relative 
to most studies that attempt to recover genomes from metagenomic data. Fortunately, we had 
quantified biomass in these samples via ddPCR and were able to extrapolate the amount of 
genomic DNA (gDNA) in these samples in order to reach the minimum recommend amount for 
Illumina library construction.  After a massive sample pooling effort and deep sequencing on an 
Illumina 4000 sequencing instrument, we successfully recovered hundreds of genomes from 
NICU surfaces. This outcome represents the first time that researchers have recovered genomes 
of this quality from indoor surfaces. The success of our effort was attributable in part to a priori 
knowledge of biomass per sample, the amount of sequencing allocated, and our lab’s experience 
in genome recovery from complex microbial samples. Perhaps the most exciting finding from 
this effort, and possibly the most exciting finding from this dissertation, was confirmation of our 
hypothesis. Specifically, we found several genomes in room samples, resolved to the strain level, 
before they were detected in infant gut samples. Many of these strains have been consistently 
recovered from infant gut samples years apart in this NICU (Raveh-Sadka et al., 2016). 

Overall results from this work suggest a cycle of room to occupant interaction. Preterm 
infants enter the NICU with a relatively sterile gut microbiome. They then source a subset of 
microbes from the room. Once in the gut, microbes bloom and are dispersed to the immediate 
environment. The relative abundance of these dispersed microbes varies with cleaning, but 
despite efforts to maintain rooms in a clean and hygienic state, it is never possible to sterilize 
rooms (Hu et al., 2015).  We now have evidence this cycle continues for years, maintaining a 
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subset of taxa that appear to specialize at preterm infant gut colonization and also possess a 
tolerance for hospital surfaces. Knowing that one cannot remove or kill these persistent 
organisms despite careful efforts to maintain room hygiene and cleanliness at a high state, 
perhaps a more holistic approach to hospital hygiene should be explored. 
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Chapter 1: 

1 Microbes in the neonatal intensive care unit resemble those found in the 
gut of premature infants 

 
Brandon Brooks1, Brian A. Firek3, Christopher S. Miller2,4, Itai Sharon2,6, Brian C. 

Thomas2, Robyn Baker5, Michael J. Morowitz3, Jillian F. Banfield2 

 
1 – Department of Plant and Microbial Biology, University of California, 

Berkeley, CA 
2 – Department of Earth and Planetary Sciences, University of California, 

Berkeley, CA 
3 – University of Pittsburgh School of Medicine, Pittsburgh, PA 

4 – Department of Integrative Biology, University of Colorado Denver, Denver, 
CO (current address) 

5 – Division of Newborn Medicine, Children’s Hospital of Pittsburgh of UPMC, 
Pittsburgh, PA 

6 – Department of Computer Science, Tel-Hai College, Safed, Israel (current 
address) 

 
This material was published in an open access journal and is freely available here 
(Brooks et al., 2014): http://www.microbiomejournal.com/content/2/1/1  
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1.1 Abstract 
 
Background 

The source inoculum of gastrointestinal tract (GIT) microbes is largely influenced by 
delivery mode in full-term infants, but these influences may be decoupled in very low birth 
weight (VLBW, <1,500 g) neonates via conventional broad-spectrum antibiotic treatment. We 
hypothesize the built environment (BE), specifically room surfaces frequently touched by 
humans, is a predominant source of colonizing microbes in the gut of premature VLBW infants. 
Here, we present the first matched fecal-BE time series analysis of two pre-term VLBW 
neonates housed in a neonatal intensive care unit (NICU) over the first month of life. 
 
Results 

Fresh fecal samples were collected every three days and metagenomes sequenced on an 
Illumina HiSeq2000. For each fecal sample, approximately 33 swabs were collected from each 
NICU room from six specified areas: sink, feeding and intubation tubing, hands of healthcare 
providers and parents, general surfaces, and nurse station electronics (keyboard, mouse, and cell 
phone).  Swabs were processed using a recently developed EMIRGE amplicon pipeline in which 
full-length 16S rRNA amplicons were sheared and sequenced using an Illumina platform, and 
short reads reassembled into full-length genes. Over 24,000 full-length 16S rRNA sequences 
were produced, generating an average of approximately 12,000 OTUs (clustered at 97% 
nucleotide identity) per room-infant pair. Dominant gut taxa, including Staphylococcus 
epidermidis, Klebsiella pneumoniae, Bacteroides fragilis, and Escherichia coli, were widely 
distributed throughout the room environment with many gut colonizers detected in more than 
half of samples. Reconstructed genomes from infant gut colonizers revealed a suite of genes that 
confer resistance to antibiotics (e.g., tetracycline, fluoroquinolone, and aminoglycoside) and 
sterilizing agents, which likely offer a competitive advantage in the NICU environment. 
 
Conclusion 

We have developed a high-throughput culture-independent approach that integrates room 
surveys based on full-length 16S rRNA gene sequences with metagenomic analysis of fecal 
samples collected from infants in the room. The approach enabled identification of discrete ICU 
reservoirs of microbes that also colonized the infant gut and provided evidence for the presence 
of certain organisms in the room prior to their detection in the gut. 
 
1.2 Introduction 
 

From birth to death, humans spend approximately 90% of their time indoors (Klepeis et 
al., 2001).  This realization, coupled with advancements in DNA sequencing technologies, has 
spawned a new interest in studying buildings as ecosystems. Pioneering efforts have revealed a 
built environment (BE), a term used here to collectively describe both the biotic and abiotic 
features of a building structure, that is far more complex than originally imagined (Tringe et al., 
2008; Rintala et al., 2008). Diverse microbial communities have been uncovered in a variety of 
BEs (Kelley and Gilbert, 2013) and, surprisingly, from sites engineered to be sterile or near-
sterile, such as NASA clean rooms (La Duc et al., 2007, 2012) and high-risk hospital wards 
(Perkins et al., 2009; Poza et al., 2012; Oberauner et al., 2013; Hewitt et al., 2013). Additionally, 
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recent studies characterizing different building types have revealed general trends suggesting a 
room’s function or architecture influences the BE’s microbiome (Poza et al., 2012; Kembel et 
al., 2012). Intra-building experiments in hospitals have corroborated this concept, showing that 
general use areas, like waiting rooms and lobbies, have a markedly different microbial 
community compared to more restrictive hospital zones such as intensive care units (Poza et al., 
2012). The exchange between the BE microbiome and the human microbiome communities 
remains unclear; however, the observation that human pathogens are enriched in hospital settings 
is of obvious concern (Kembel et al., 2012). Here we aimed to characterize the interaction 
between the BE’s microbiome and the human microbiome through study of very low birth 
weight (VLBW, < 1500 g) infants housed in a NICU as our model system. 

Infants housed in a NICU are well suited to studies that aim to characterize interactions 
between the BE and occupants. In utero, infants are canonically thought to exist in a sterile or 
near-sterile environment (Penders et al., 2006). Acquisition of the microbiome starts at birth and 
is strongly influenced by mode of delivery (Dominguez-Bello et al., 2010). Patterns of 
colonization in full-term infants tend to follow a well documented trajectory affected by diet, 
host genotype, and a limited set of other variables, with the infant gut converging on an adult-
like state around 2.5 years of life (Palmer et al., 2007; Trosvik et al., 2010). In VLBW infants, 
early gut succession is characterized by extremely limited diversity, chaotic flux in community 
composition, and an abundance of opportunistic pathogens (Morowitz et al., 2010a; Wang et al., 
2009; Morowitz et al., 2010b; Mshvildadze et al., 2010). It is possible that a high rate of 
caesarean deliveries and the routine use of broad-spectrum antibiotics during the first week of 
life serve to decouple VLBW infants from source inoculum introduced during the birthing 
process. These influences likely render premature infant microbiomes especially susceptible to 
environmental influences.  
  There is strong evidence suggesting that the ICU serves as a reservoir of clinically 
relevant pathogens. “Outbreaks” of disease in ICUs are relatively common, and a recent study 
estimated at least 38% of all ICU outbreaks could be attributed to microbial sources within the 
ICU environment, such as equipment, or personnel (Gastmeier et al., 2007). In addition, upward 
of 63% of extremely preterm infants develop life-threatening infections (Stoll et al., 2010). 
Epidemiologic investigations indicate environmental sources of infective agents in air (Adler et 
al., 2005), infant incubators (Singh et al., 2005; Touati et al., 2009), sink drains (Bonora et al., 
2004), soap dispensers (Buffet-Bataillon et al., 2009), thermometers (Van Den Berg et al., 2000), 
and baby toys (Naesens et al., 2009). Clearly there is a growing need for comprehensive 
ecological surveys of the hospital BE to better understand the overall process of microbe 
migration and establishment on and in the bodies of occupants. Here, we performed the first 
matched time series characterization of the NICU and infant gut. Our analysis used two main 
approaches: (a) metagenomic sequencing of microbial community DNA extracted from fecal 
samples to evaluate the metabolic potential of gut colonizing microorganisms and (b) a recently 
developed EMIRGE amplicon protocol to profile the microbial community composition of BE 
samples collected from six environment types (Miller et al., 2013). Our protocol was aimed at 
addressing the hypothesis that the BE, specifically room surfaces frequently touched by humans, 
is a predominant source of colonizing microbes in the GI tract of premature infants. 
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1.3 Methods 
 
1.3.1 Sample collection 
 

Fecal samples were collected every third day, starting on the third day of life, for one 
month from two infants. Infants were enrolled in the study based on the criteria that they were 
<31 weeks gestation, <1250 g at birth, and were housed in the same physical location within the 
NICU during the first month of life. A summary of health-related metadata including antibiotics 
exposure is provided in Table 1-1. Fecal samples were collected using a previously established 
perineal stimulation procedure and were stored at -80 °C within 10 minutes (Morowitz et al., 
2010a). All samples were collected after signed guardian consent was obtained, as outlined in 
our protocol to the ethical research board of the University of Pittsburgh (IRB PRO11060238). 
This consent included sample collection permissions and consent to publish study findings.   

All samples were obtained from a private-style NICU at Magee-Womens Hospital of the 
University of Pittsburgh Medical Center. Room samples were collected concurrently with fecal 
samples and spanned four time points on days of collection (9:00, 12:00, 13:00, and 16:00). Most 
frequently touched surfaces were determined by visual observation and health care provider 
interviews in the weeks leading up to sample collection. Microbial cells were removed from 
surfaces using foam tipped swabs (BBL CultureSwab EZ Collection and Transport System, 
Franklin Lakes, NJ, USA) and a sampling buffer of 0.15 M NaCl and 0.1% Tween20. Six 
frequently touched areas were processed per infant room: sink, feeding and intubation tubing, 
hands of healthcare providers and parents, general surfaces, access knobs on the incubator, and 
nurse station electronics (keyboard, mouse, and cell phone). All samples were placed in a sterile 
transport tube and stored within 10 minutes at -80 °C until further processing. 
 
1.3.2 DNA extraction and PCR amplification 
 

Frozen fecal samples were thawed on ice and 0.25 g of thawed sample added to tubes 
with pre-warmed (65 °C) lysis solution from the PowerSoil DNA Isolation Kit (MoBio 
Laboratories, Carlsbad, CA, USA). The incubation was conducted for five minutes and the 
manufacturer’s protocol followed thereafter. Swab heads followed the same procedure, except 
heads were cut with sterilized scissors into the extraction tube before starting the protocol.  
 DNA extracted from swabs was pooled such that the four time points sampled in one day 
per environment were consolidated to one. Pooled DNA was used as template for amplification 
of the full-length 16S rRNA gene with 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492R 
(5’-GGTTACCTTGTTACGACTT-3’) primers (Stackebrandt and Goodfellow, 1991). To limit 
PCR bias, gradient PCR was performed with 5 units µl-1 of TaKaRa Ex TaqTM (Takara Bio Inc., 
Otsu, Japan) across 7 different annealing temperatures with the following reaction: 1 min at 94 
°C; 35 cycles of 1 min at 94 °C, 30 s at 48–58 °C (7 temperature gradient) and 1 min at 72 °C; 
and a final extension for 7 min at 72 °C. Amplicons were combined across gradients and cleaned 
with the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) as directed by the 
manufacturer. Cleaned amplicons were quantified via Qubit and input into an Illumina library 
preparation pipeline.   
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1.3.3 Sequencing preparation and sequencing 

 
Illumina library construction followed standard protocols at the University of California 

Davis DNA Technologies Core Facility (http://dnatech.genomecenter.ucdavis.edu) as previously 
described (Miller et al., 2013). Briefly, amplicons were fragmented to an average size of 225 bp 
using the Bioruptor NGS (Diagenode), and sheared fragments were used in a robotic library 
preparation protocol using the Appollo 324 robot (Integenx) following the manufacturer's 
instructions. Each sample was tagged with unique barcodes consisting of 6 nucleotides internal 
to the adapter read as a separate indexing read, and ligated to each fragment. Twelve cycles of 
PCR were enriched for adapter-ligated fragments before library quantification and validation. 
Fecal samples underwent the same preparation with two exceptions: (1) Genomic DNA was used 
and (2) DNA was fragmented to 550 bp. Libraries were added, in equimolar amounts, to the 
Illumina HiSeq 2000 platform. Paired-end sequences were obtained with 100 cycles and the data 
processed with Casava version 1.8.2. Raw read data have been deposited in the NCBI Short Read 
Archive (accession numbers SRP033353). 
 
1.3.4 EMIRGE assembly of full-length 16S rRNA gene amplicons 
 

EMIRGE is an iterative template-guided assembler that relies on a database of 16S rRNA 
gene sequences to probabilistically generate full-length 16S rRNA gene sequences and provide 
the relative abundance of these sequences in the assayed consortia (Miller et al., 2011). For the 
reference database, we used version 108 of the SILVA SSU database, filtered to exclude 
sequences < 1200 bp and > 1900 bp (Pruesse et al., 2007). To remove closely related sequences, 
we clustered the database at 97 % identity with USEARCH (Edgar, 2010). One million paired-
end reads from each barcoded library were sampled randomly without replacement to 
accommodate computational restrictions associated with use of the full dataset. Reads from the 
subsample from each library were stringently trimmed using Sickle (Joshi, 2011) for quality 
scores > 30 and length > 60 bp. Trimmed reads were input into an amplicon-optimized version of 
EMIRGE (Miller et al., 2013) for assembly using default parameters. Eighty iterations were 
performed for each subsample. EMIRGE-reconstructed sequences without Ns (ambiguous bases) 
and with an estimated abundance of 0.01 % or greater were kept for analysis. Putative chimeras 
were removed by using the intersection between two chimera detection programs, DECIPHER 
(Wright et al., 2012) and UCHIME v6.0 (Edgar et al., 2011) searched against the 2011 
Greengenes database (McDonald et al., 2012).  Finally, reconstructed sequences from a spike-in 
control experiment (data not shown) were removed for downstream analysis. Sequences used in 
the analysis are publicly available as a project attachment at http://ggkbase.berkeley.edu/NICU-
Micro/organisms. 
 
1.3.5 Metagenomic EMIRGE assembly of 16S rRNA gene 
 

Metagenomic sequencing of 16 fecal samples on one lane of an Illumina HiSeq 2000 
produced ~350 Mbp of 101 bp paired-end reads. Trimmed reads were input into EMIRGE and 
default parameters run for 80 iterations using the aforementioned database. After the final 
iteration, 153,980 reads, spanning all samples, were used in reconstructing fecal 16S rRNA 
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sequences. Downstream filtering and analysis of reconstructed 16S rRNA gene sequences from 
fecal samples followed that of the room samples.  
 
1.3.6 Community analysis of room and fecal samples 
 

For community analysis, EMIRGE-reconstructed sequences were input into the standard 
QIIME 1.5.0 workflow (Caporaso et al., 2010b). For presence/absence analyses, representative 
OTUs were clustered at the > 97% identity level using USEARCH (Edgar, 2010) and an OTU 
table was constructed using QIIME’s pick_otus_through_otu_table.py script. An adjusted OTU 
table that incorporated EMIRGE generated abundances was constructed using an in-house script 
(Miller et al., 2013) and is publicly available as a project attachment at 
http://ggkbase.berkeley.edu/NICU-Micro/ . OTUs were aligned to the Greengenes (DeSantis et 
al., 2006) reference alignment (gg_97_otus_4feb2011.fasta) using the PyNAST aligner 
(Caporaso et al., 2010a) and a phylogenetic tree built using FastTree v.2.1.3 (Price et al., 2010) 
with default parameters. Beta diversity was calculated from similar trees using Fast UniFrac 
scores and visualized with principal coordinates analysis (PCoA) (Hamady et al., 2010). 
Taxonomy was assigned to each OTU at the genera and/or species level using the RDP classifier 
(Wang et al., 2007) at a confidence interval of 0.8 and trained with the same Greengenes 
database. OTUs were visualized across room-infant pairs in a spring weighted, edge-embedded 
network plot by using QIIME’s make_otu_network.py script (Caporaso et al., 2010b) with the 
modified OTU table as input.  
 
1.3.7 Metagenomic assembly and gene prediction 
 

Assemblies were constructed using idba_ud (Peng et al., 2012) and an iterative 
implementation of Velvet (Zerbino and Birney, 2008; Sharon et al., 2013). For idba_ud 
assemblies, trimmed reads were assembled using default parameters. For the Velvet assemblies, 
sequence coverage bins representing major genomes in the dataset were identified by first 
running the program with permissive parameters in which the k-mer size covered the whole 
range of observed coverages. We summed the k-mer coverages for all contigs generated by this 
assembly to define the coverage bins (each of which contains one or more genomes). This 
provided bin-specific expected coverage, k-mer size, coverage cutoff, and coverage collection 
threshold parameters for the iterative assembly. After each iteration targeting a specific bin, the 
bin-specific reads were removed from the dataset. 

Time-series-coverage-based emergent self-organizing maps (ESOMs) were used to bin 
scaffolds generated by metagenomic assembly (Ultsch and Mörchen, 2005). Genes were 
predicted and translated into protein sequences using Prodigal (Hyatt et al., 2010). Functional 
annotation was added with an in-house pipeline (Sharon et al., 2013). Genome completeness was 
determined based on the number of single-copy genes and other conserved genes (Sorek et al., 
2007; Wu and Eisen, 2008) identified in each bin. The relative abundance of each organism in 
each sample was calculated by mapping reads to unique regions on the assembled genomes. 
Metagenomic assemblies along with their annotations are publicly available at 
http://ggkbase.berkeley.edu/NICU-Micro/.  
 
1.3.8 Enterococcus faecalis concatenated ribosomal protein phylogeny  
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For phylogenetic resolution beyond the 16S rRNA gene, 32 highly conserved, single 
copy ribosomal proteins were used from infant 1 and 2’s assemblies (RpL10, 13, 14, 16, 17, 18, 
19, 2, 20, 21, 22, 24, 27, 29, 3, 30, 4, 5, and RpS10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 5, 6, 7, 8).  
The same genes from recently sequenced Enterococcus faecalis genomes, in addition to genes 
from more distantly related taxa, were obtained from the JGI IMG database. Together, each gene 
set was aligned using MUSCLE 3.8.31 (Edgar, 2004a, 2004b) and manually curated to remove 
ambiguously aligned regions and end gaps (Hug et al., 2013). The curated alignments were 
concatenated to form a 32 gene, 39 taxa, 4,101-position alignment. A maximum likelihood 
phylogeny for the concatenated alignment was conducted using PhyML under the LG + α + γ 
model of evolution with 100 bootstrap replicates.    
 
1.4 Results 
 
1.4.1 Stability of NICU room samples over time and space 
 

After sample preparation, 57 and 36 room samples amplified successfully and were 
subsequently analyzed for Infant 1 and Infant 2, respectively (Table 1-2). EMIRGE generated 
approximately 12,000 full-length 16S rRNA sequences and OTUs for each room-infant pair 
(clustered at the 97% nucleotide identity level). Broadly speaking, species richness decreased 
from electronics > sinks > surfaces > incubators > hands > tubes, a finding that was corroborated 
with several alpha diversity indexes (Table 1-3). Nearly 300 genera were detected in the NICU. 
To broadly visualize temporal stability of environments across time and space, the phylum level 
classifications are plotted in Figure 1-1. Actinobacteria, Firmicutes, and Proteobacteria dominate 
the sampled environments, with areas most exposed to human skin deposition having the most 
variation over time. At lower taxonomic levels, similar trends are observed. Based on the twenty 
most abundant families, frequently touched surfaces are distinct from infrequently touched 
surfaces (Figure 1-1). UniFrac distance-based community composition PCoA reveals four 
discernible ecosystem types (skin associated communities, sinks, tubes, and feces) and confirms 
clustering of samples prone to skin deposition via touching (Figure 1-2).  
 
1.4.2 Time-series characterization of fecal samples 
 

More than 94% of the reads from Infant 1’s samples mapped to scaffolds generated by 
the idba_ud assembly.  Consequently, this assembly was accepted for further analysis. In 
comparison, the initial idba_ud assembly of metagenomic data from Infant 2 was highly 
fragmented, and less than 40% of reads could be mapped to the assembled scaffolds. Subsequent 
reassembly of metagenomic data from Infant 2’s samples using the iterative Velvet-based 
assembly approach (Sharon et al., 2013) generated a significantly better result. As > 90% of 
reads could be mapped to the scaffolds generated by the Velvet assembly, this assembly was 
chosen for further analysis. 
 The de novo assemblies reconstructed a majority of the genomes for four of the five and 
eight of the eleven most abundant bacterial colonists from Infant 1 and Infant 2’s metagenomes, 
respectively. For Infant 1, time-series organism abundance patterns in the sample sets analyzed 
via ESOM (Figure 1-3) defined 5 major genome bins for which between 37 and 99% of the 
single copy genes were identified, based on standard analyses of the single copy gene inventory 
(Table 1-4). For Infant 2, time-series organism abundance patterns in the sample sets analyzed 
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via ESOM (Figure 1-3) defined 11 major genome bins for which between 27 and 99% of the 
single copy genes were identified (Table 1-4).   

Infant 1 and Infant 2’s GIT microbial communities are distinctly different. Infant 1’s 
colonization pattern echoes the canonical observation in infant GIT succession that facultative 
anaerobes dominate early phase colonization whereas late stage colonizers are primarily obligate 
anaerobes (Penders et al., 2006). This shift is observed on day of life 12 in Infant 1, but is not 
observed in Infant 2, in whom facultative anaerobes were observed throughout the study period. 
The metagenomic EMIRGE analyses corroborated the binning-based compositional analyses in 
that no sequences for new taxa were assembled for scaffolds included in the ESOM.  Some 16S 
rRNA genes were identified in the metagenomic assemblies and match EMIRGE generated 
sequences with ~100% identity.  The Enterococcus faecalis sequence from Infant 1 was not 
identified by EMIRGE due to low abundance, but was extracted from the assembly using 
RNAmmer for the phylogenetic analysis (Lagesen et al., 2007).  
 
1.4.3 Highly connected BE microbes 
 

The distribution of shared OTUs across sampled sites was visualized through a spring-
weighted edge-embedded network plot. To limit the noise from infrequently detected 
microorganism types, we restricted the plot to OTUs occurring in two or more samples from 
each infant (Figure 1-4). The spring weight is derived from EMIRGE generated abundances, and 
the distribution of OTUs in the plot is governed both by frequency of occurrence and abundance. 
In Figure 1-4, the circular white nodes (representing OTUs) found in many environment types 
(more edges) are pulled closer to the middle of the network whereas OTUs shared by only two 
samples (fewer edges) are positioned closer to the periphery of the network. The top 5% of most 
frequently occurring OTUs aggregate in a central cluster in the middle of the network. Similar to 
the PCoA plot, general clustering is observed based on environment type (i.e. skin-associated 
sites cluster together, as do sink samples). When restricting the network for OTUs only found in 
fecal samples (Figure 1-4 zooms), one can visualize the OTU distribution across the sampled 
NICU environments. Three highly connected OTUs are present in fecal samples, two of which 
are in the top 5% most frequently occurring OTUs in Infant 1’s room samples. Several of the 
OTUs in Infant 2’s fecal samples fall within the top ten most frequently occurring OTUs in the 
room environment. Interestingly, Infant 2’s most abundant gut colonists, Staphylococcus sp. and 
Enterococcus faecalis, are the two most frequently occurring OTUs in the room environment.   
 
1.4.4 The NICU as a reservoir for gut colonists 
 

Figure 1-5 summarizes the gut colonizing organisms found in room samples at the genera 
level. Typically, for both infants, electronics had the lowest relative abundance of organisms 
detected in the gut whereas tubing had the highest. Temporal variation of gut genera was extreme 
in most environments.  

The use of Bayesian microbial source tracking software (Knights et al., 2011), with the 
perspective of room samples as the source and fecal samples as the sink, produced mixed results 
in terms of finding likely gut reservoirs (Figure 1-6). In Infant 1, tubing, surfaces, and electronics 
had the highest probabilities as sources, but the bloom of B. fragilis, from a source not detected 
by our sampling regime, lowered the probability of sampled source environments for the latter 
half of the sampling period. Infant 2’s samples showed the opposite pattern in that early gut 
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colonists migrated from an unknown reservoir, whereas later in sampling, incubator, tubing, 
surfaces, and hands were the most probable reservoirs.  
 
1.4.5 Shared gut colonizers 
 
 The infant cohort shared only one gut colonizer, Enterococcus faecalis, which contained 
100% 16S rRNA gene level sequence identity.  A higher resolution analysis using a concatenated 
alignment of 32 highly conserved, single-copy genes show the strains differ by only two amino 
acids across the 4,101 positions. These two E. faecalis strains phylogenetically cluster most 
closely to each other, but are very closely related to other E. faecalis strains (Figure 1-7).  

To further explore similarity of shared strains, reads from Infant 1 were mapped to Infant 
2’s assembled contigs. Infant 1’s reads covered 95% of the length of Infant 2’s assembly at an 
average of 4.66X coverage. Read mapping revealed two distinct SNP profiles for Infant 1’s 
reads, a major strain divergent from Infant 2’s assembly and a minor strain identical to the strain 
in Infant 2.  Seventy seven percent (77%) of the length of Infant 2’s E. faecalis assembly is 
covered by Infant 1’s reads mapped as mate pairs with no mismatches. This outcome suggests 
that Infant 1’s E. faecalis minor strain is the same strain dominating Infant 2’s gut. Pheromone-
responsive plasmids were found in both infants. The plasmid from Infant 2 occurs in low 
abundance in Infant 1 (as expected based on the low representation of E. faecalis in Infant 1), but 
with high sequence identity. 
 
1.4.6 Genes relevant to adaptation to the NICU environment 
 

Analysis of reconstructed genomes for gut microorganisms can lend clues as to how 
organisms detected in the GIT and room environment are able to persist in the NICU, which is 
subjected to regular cleaning and sterilization.  Numerous antibiotic resistance genes were found 
in genomes of microorganisms in fecal samples of both infants. A large portion of these were 
efflux pumps, with representatives from all four families of multidrug transporters: major 
facilitator superfamily (MFS), small multidrug resistant (SMR), resistance-nodulation-cell 
division (RND), and multidrug and toxic compound extrusion (MATE) proteins (van Veen, 
2010). Particularly interesting are genes encoding the QacA/B MFS,  SugE SMR, and MexA/B 
RND proteins, which are a growing concern in hospitals due to co-selection through the practice 
of combining two or more types of antibiotic treatments (Fernández and Hancock, 2012). 
Resistance to multiple types of antibiotics can arise from a single resistance mechanism such as 
efflux pumping (Buffet-Bataillon et al., 2012). In addition to antibiotics, these pumps can expel 
quaternary ammonium compounds (QACs), the active biocide in the detergent used to clean 
hospital surfaces during the study. Other notable observations were the presence of biofilm 
forming genes in most colonizers, which can be induced by exposure to aminoglycosides 
(Hoffman et al., 2005), a suite of genes that confer resistance to starvation, and the presence of 
antibiotic resistance genes encoded on several phage and plasmid genomes, as well as microbial 
genomes.  

 
1.5 Discussion 
 

Increasing throughput, decreasing cost, and rapid development of informatics and 
sequencing pipelines has reshaped the field of microbial ecology, allowing researchers to survey 
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a breadth of new environments (Mackelprang et al., 2011; Dick et al., 2013; Joshi, 2011; Fierer 
et al., 2010). Recently, the first ICU survey to utilize next generation sequencing technology was 
published (Poza et al., 2012) and showed a surprising amount of bacterial diversity for an 
environment under constant attack via aggressive sanitation and antibiotic treatment efforts. The 
consortia were generally diverse, but some consortia contained a high representation of members 
of the family Enterobacteriaceae, typically considered to be gut microbes. Subsequently, a study 
characterizing a snapshot of surfaces and sinks in two NICU rooms corroborated high 
proportions of fecal coliform bacteria on surface samples (Hewitt et al., 2013). Certainly the 
NICU has the capacity to retain enteric microbes, but their propensity to migrate to the gut 
remains unclear. 
 Next-generation sequencing surveys in the ICU have reported high levels of community 
diversity. Poza et al found 1145 distinct OTUs in an ICU in Spain (Poza et al., 2012) and 
subsequent studies reported 1621 and 3925 OTUs in a NICU in the US and in an Austrian ICU, 
respectively (Hewitt et al., 2013; Oberauner et al., 2013). While comparing these studies is 
difficult due to differences in sample size and protocols, we can begin to appreciate the need to 
better understand why so many types of bacteria can be found in a regularly cleaned 
environment. Our study, the first time series survey of an ICU using next-generation sequencing 
technologies, unveiled over 20,000 OTUs across two NICU rooms occupied by different infants 
with partial time overlap. Our study is distinct from prior NICU surveys in that it used amplicon-
EMIRGE, a16S rRNA gene assembly software which can be more sensitive in OTU detection 
(Miller et al., 2013) and can provide increased confidence when making lower taxonomic level 
classifications (Ong et al., 2013). The increase in OTUs from study to study might be attributed 
to increases in sequencing read lengths and, in this study, increased information from 
reassembled, full-length genes, but the biological relevance of this increase is unclear. Notably, 
of the over 20,000 OTUs characterized here, only 984 were found in two or more samples. 
Further surveys are needed, integrating time-series sampling and samples from multiple surface 
types from different hospitals, to better characterize the expected number of OTUs in an ICU and 
the implications of this number for ICU occupants. 
 The increased sensitivity provided by EMIRGE was helpful when evaluating temporal 
patterns, especially pertaining to source-sink characterization. Similarly, our source-sink 
analyses benefited from the increased number of samples and time points relative to prior studies 
(Poza et al., 2012; Hewitt et al., 2013; Oberauner et al., 2013), which did not attempt to identify 
source-sink relationships. The SourceTracker results suggest the most probable room reservoir 
for gut colonists is tubing followed by surfaces, incubators, and hands (Figure 1-6). The tubing 
area sampled, the hub of the silastic nasogastric feeding tube, is the closest in proximity to the 
infant and, since SourceTracker is not bidirectional, it is difficult to tease out the directionality in 
this exchange (Knights et al., 2011). Incubators from both infants also appear to mirror 
successional patterns in the infant’s GIT, but without finer scale temporal sampling it is difficult 
to differentiate between the source and the sink. The observation that hands tend to show a 
variable amount of potential fecal colonist is likely due to the variability in sampling and hand 
hygiene, as hand samples were taken both before and after infants received care from healthcare 
providers. A good example of this is Infant 1’s DOL 27 hand sample in which the large spike in 
Escherichia likely came from a swab collected directly after contact with the infant (Figure 1-5).   

Given the large inventory of sequences and the time-series dataset, it was possible to 
identify likely reservoirs of microorganisms in the room environment, prior to their appearance 
in the GIT (e.g., the asterisked OTUs in Figure 1-4). Many of these sequences had perfect or near 
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perfect identity between room and GIT 16S rRNA genes. Two notable examples include the K. 
pneumoniae in Infant 1 and F. magna in Infant 2, whose fecal to room sequence best hits 
averaged 99.4% and 99.6% identity respectively. Infant 1’s K. pneumoniae is first detectable in 
the gut on DOL 9, but NICU samples first detect the organism on electronic and sink samples 
starting at DOL 3, our earliest sampling point. Interestingly, the K. pneumoniae is outcompeted 
in the gut, yet is reintroduced on two separate occasions. This observation could be a byproduct 
of our detection limits, but Klebsiella’s relatively high abundance in many NICU samples and its 
availability at all time points, suggests the opportunity for reinoculation from multiple room 
reservoirs. The F. magna in Infant 2’s samples exhibit similar patterns in that it is initially a high 
ranking taxa that is out competed by other Firmicutes, but is reintroduced later in the time series.  

If the environment is a reservoir for gut colonizing microbes in our cohort, then it is 
likely infants housed in close proximity will share the same strain. The 16S rRNA gene survey 
shows the availability of reservoirs of colonizing populations (likely with multiple strain 
variants) in the infant’s immediate environment.  However, it cannot discriminate at the strain 
level, so the mere existence of a phylotype in the room prior to gut colonization is not a direct 
measure of BE to infant transfer. The current work resolves this, by using extensive genome 
sequence comparison of E. faecalis from the gut of two infants housed in the same ward to 
establish that environment to room occupant transfer occurs in the NICU. The mode of 
acquisition of Infants 2’s abundant strain by Infant 1 is unclear, but nosocomial infection by 
enterococci is not uncommon.  

Enterococci are particularly difficult to classify due the plasticity of their genomes. 
Upwards of 25% of E. faecalis genomes may be comprised of mobile or acquired elements 
(Arias and Murray, 2012). Recent experiments attribute this genome flexibility partially to the 
ability to produce transconjugant hybrid strains in which several 100 kb fragments can be 
transferred between donor and recipient strain (Manson et al., 2010). Transfer of these genome 
fragments is dependent on pheromone-responsive plasmids, which were found in all strains 
studied here. The ability to form hybrids not only confounds the ability to confirm identical 
strains, unless the entire genome has been recovered, it also provides a competitive advantage in 
the hospital BE where enterococci have been problematic for decades (Murray, 1990; Arias and 
Murray, 2012). Enterococci are notoriously hardy and are able to persist on medical equipment 
and hospital surfaces for long periods (Bradley and Fraise, 1996; Arias and Murray, 2012). They 
are able to withstand chlorine, heat, some alcohol treatments, and possibly most concerning, 
several types of antibiotics (Arias and Murray, 2012). Their genome plasticity and ability to 
easily acquire new genes from other strains make them particularly well suited to thrive in the 
hospital environment. 

Gut colonists must withstand selective pressures both inside and out of the gut. Two 
obvious forms of selection in the NICU come from hospital cleaning and the broad use of 
antibiotics. All rooms were cleaned daily using wet solutions containing QACs and all infants 
were administered multiple types of antibiotics. Incorrect administration of biocides, through 
misuse or unintended mixing with existing fluids (i.e. water from sink samples or removing 
sanitizing agents via water rinsing), could enrich for resistance genes (Condell et al., 2012). Even 
if used to factory standards, if surface-dried cells or biofilms remain, biocide activity could be 
ineffective and contribute to cross-resistance to biocides and antibiotics (Weiss-Muszkat et al., 
2010).   Biofilm forming communities can be upwards of 1000 times more resistant to QACs 
than their planktonic forms (Romanova et al., 2007) and biofilm formation can be triggered by 
the types of antibiotics administered in this study (Hoffman et al., 2005). These characteristics 
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may be a contributing factors as to why a recent study found enteric microbial communities to be 
relatively unaltered before and after routine NICU surface cleaning (Bokulich et al., 2013). 
Certain types of biofilms in many Enterobacteriaceae, including those studied here, contain 
amyloid fibers, called curli. Curli have been implicated in adhesion to abiotic surfaces, like 
polystyrene, Teflon, and stainless steel, and contribute to adhesion to host epithelial cells and 
invasion by E. coli in the gut (Barnhart and Chapman, 2006). This type of dual-purpose 
adaptation may allow enteric organisms to persist on NICU surfaces until transmission to a more 
favorable environment like the gut. Efflux pumps are another multi-purpose adaptation 
conferring competitive advantages inside and out of the gut. Numerous pumps from every major 
class of efflux pump were identified here and, collectively, can function to pump out QACs and 
administered antibiotics. Previous studies have positively correlated high QAC MICs with 
increased antibiotic resistance markers in enteric microbes (Buffet-Bataillon et al., 2011), 
indicating biocide efflux may be an important function for microbes in the ICU. Efflux and 
biofilm formation are two of many possible explanations as to how colonizers combat both 
biocides administered during NICU cleaning and host-administered antibiotics.  
 
1.6 Conclusion 
 

Through a time series analysis using full-length rRNA gene sequences, we have 
established that organisms that appear in the GI tract in the early phase of colonization have 
reservoirs in the room environment. The findings point to a scenario in which gut microbes are 
introduced from room sources, thrive in the gut, and are disseminated to the immediate 
environment, creating a cycle of room to infant colonization. The research also highlights the 
value of extensive genome comparisons to link colonists from different individuals, an approach 
that in the future may also target populations sampled directly from room reservoirs.  
 
1.7 Abbreviations 
 
BE built environment 
DOL day of life 
ESOM emergent self-organizing map 
GIT  gastrointestinal tract 
ICU  intensive care unit 
MATE multidrug and toxic compound extrusion 
MFS major facilitator superfamily  
MIC minimum inhibitory concentration 
NICU neonatal intensive care unit 
OTU operational taxonomic unit 
PCoA principal coordinates analysis 
QAC quaternary ammonium compound 
RND resistance-nodulation-cell division 
SMR small multidrug resistant 
VLBW very low birth weight  
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Figure 1-1: Taxonomic classification of Infant 1 and 2’s NICU room microbes  

Phylum- (top) and family- (bottom) level classifications were assigned using the RDP classifier 
on assembled full-length 16S rRNA genes. Day of life (DOL) is plotted on the x-axis and relative 
abundance, generated by EMIRGE, is plotted on the y-axis. 
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Figure 1-2: Principal coordinates analysis (PCoA) based on UniFrac scores of room and 
gut microbes  

This figure reveals four discernible ecosystem clusters: skin associated communities, sinks, 
tubes, and feces.  
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Figure 1-3: Time-series coverage emergent self-organizing maps (ESOMs) reveal discrete 
genome bins for each infant’s dataset 

The underlying ESOMs are shown in a tiled display with each data point colored by its 
taxonomic assignment. Labels to the left are colored to match their respective data points and 
numbers in parentheses correspond to the bin number in Table 4. 
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Figure 1-4: Spring weighted edge-embedded network plots of room and fecal OTUs 

Spring weighted edge-embedded network plots of room and fecal OTUs found in two or more 
samples (Infant 1 (a), Infant 2 (b)). Left, the entire network is displayed. To better visualize the 
distribution of gut colonizers across room samples, only room samples sharing fecal OTUs are 
shown in the excerpt (right). Triangles represent samples and circles represent OTUs. Spring 
weight is derived from EMIRGE generated abundances and edges are colored by environment 
type. Each OTU has a taxonomic label and asterisks indicate OTUs detected in room samples 
before detection in the gut. 
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Figure 1-5: Community composition of gut colonizing microbes and room microbes 
through the first month of life 

Time-series characterization of the fecal microbial community (left) and fecal microbes 
concurrently collected from the room (right) display discrete reservoirs of gut colonizers in the 
NICU. 
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Figure 1-6: The most probable source of gut colonizing microbes 

The most probable source of gut colonizing microbes was generated using the source-sink 
characterization software, SourceTracker (Knights et al., 2011). NICU room sequences were 
designated as putative sources and fecal sequences sinks. 
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Figure 1-7: Enterococcus faecalis phylogeny using 32 concatenated ribosomal proteins 
reveals closely related strains 

Maximum likelihood phylogeny of E. faecalis strains was based on a concatenation of single-
copy, highly conserved ribosomal proteins from our data set and available reference genomes. 
Bootstrap values greater than 100 are shown. An excerpt of the E. faecalis clade is shown to the 
right. 
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Table 1-1: Health profile of premature infant cohort 

 Infant 1 Infant 2 
Gestational age 26 3/7 wk 28 2/7 wk 
Weight 951 g 1148 g 
Multiple gestation No Twin 
Delivery mode vaginal vaginal 
Chorioamnionitis yes yes 
DOL 1-7 antibiotics ampicillin, gentamycin ampicillin, gentamycin 
Other antibiotics No DOL 14-16, vancomycin, cefotaxime 
Feeding initiated DOL 3, maternal milk DOL 8, artificial formula 
Survive to discharge yes yes 
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Table 1-2: Sample collection summary and summary of the number of 16S rRNA genes 
assembled 

 Infant 1 Infant 2 
Number of Samples 
Electronics 10 4 
Surfaces 7 5 
Incubator 8 4 
Sink 9 10 
Hands 8 2 
Tubes 6 4 
Fecal 9 7 
Total 57 36 
Number of EMIRGE Sequences 
Electronics 3359 1298 
Surfaces 2440 2205 
Incubators 2270 1751 
Sinks 2936 4766 
Hands 1783 812 
Tubes 272 198 
Fecal 33 32 
Total 13093 11062 
Number of OTUs 
Electronics 3353 1293 
Surfaces 2436 2197 
Incubators 2264 1749 
Sinks 2933 4762 
Hands 1781 812 
Tubes 271 198 
Fecal 33 32 
Total 13071 11043 
Shared OTUs 3822 
Number of unique OTUs 
Electronics 2486 1202 
Surfaces 2211 2015 
Incubators 2048 1606 
Sinks 2756 4453 
Hands 1603 801 
Tubes 256 185 
Fecal 11 11 
Total 10371 10273 
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Table 1-3: Alpha diversity indexes from NICU room and fecal samples 

 Shannon Simpson Chao1 
Infant 1 2 1 2 1 2 
Surfaces 8.43 8.76 0.997 0.998 4.3 ´ 104 4.7 ´ 104 
Electronics 8.36 8.28 0.997 0.997 4.6 ´ 104 3.4 ´ 104 
Incubators 8.11 8.76 0.996 0.998 3.0 ´ 104 7.6 ´ 104 
Sinks 8.29 8.83 0.997 0.998 4.1 ´ 104 9.7 ´ 104 
Hands 7.56 8.61 0.993 0.997 2.9 ´ 104 8.9 ´ 104 
Tubes 5.06 5.21 0.962 0.964 1.8 ´ 103 1.8 ´ 103 
Fecal 1.71 2.10 0.641 0.748 9.7 13.7 
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Table 1-4: Genome Summaries 

Infant 1 
Taxa Bin # bp Contigs N50 %GC Cvg %SCG 
Bacteroides fragilis 6 4,551,095 39 249,654 43.3 1,930.3 99 
Bacteroides phage1 4 205,842 1 205,842 41.9 2,221.4 0 
Bacteroides phage2 5 144,903 1 144,903 42.0 2,060.8 0 
Enterococcus faecalis 8 2,649,897 93 40,945 37.8 7.6 99 
Clostridium ramosum 7 3,630,043 63 78,436 31.4 23.5 99 
Escherichia coli 3 5,035,302 53 218,574 50.5 1,254.1 57 
Klebsiella pneumoniae 1 5,447,442 78 189,741 57.3 345.0 37 
Staphylococcus epidermidis plasmid 2 20,739 2 11,095 31.5 14.5 0 
Infant 2 
Taxa Bin # bp Contigs N50 %GC Cvg %SCG 
Actinomyces neuii strain 1 18 1,580,717 37 280,583 56.9 15.6 27 
Actinomyces neuii strain 2 24 2,375,188 27 179,095 56.7 17.6 70 
Actinomyces sp.  6 2,666,449 11 345,356 59.3 55.4 99 
Anaerococcus prevotii 1 1,599,845 13 225,571 33.1 39.2 99 
Caudovirales bacteriophage 26 18,308 1 18308 29.5 1169.7 0 
Dermabacter sp. 4 2,040,279 12 289,797 62.8 51.9 90 
Enterococcus faecalis 9 3,011,019 26 499,183 37.1 147.3 99 
Enterococcus faecalis phage 14 335,286 39 12,896 34.8 103.7 0 
Enterococcus faecalis plasmid 22 8,514 2 4,866 30.4 90.6 0 
Finegoldia magna 7 1,729,913 42 78,482 32.0 93.0 99 
Finegoldia phage 25 3,168 1 3,168 32.3 138.5 0 
Finegoldia plasmid 1 23 7,589 2 3,969 33.0 103.4 0 
Finegoldia plasmid 2 21 28,958 3 15,674 55.4 10.9 0 
Pseudomonas aeruginosa 5 6,755,599 64 212,603 66.0 51.5 99 
Staphylococcus epidermidis 10 1,902,759 82 40,484 33.0 65.4 7 
Staphylococcus epidermidis mobile 17 55,503 10 6,452 31.7 54.5 43 
Staphylococcus epidermidis phage 2 11 19,082 2 12,983 29.4 84.3 0 
Staphylococcus epidermidis strain  3 81,754 9 14,965 29.4 67.1 0 
Staphylococcus phage 1 13 216,785 13 8,080 29.5 45.7 0 
Staphylococcus phage 2 16 198,742 14 20,782 0.3 79.3 0 
Staphylococcus phage 3 and plasmid 15 137,609 12 19,343 29.3 67.8 0 
Staphylococcus warneri 8 2,363,750 22 198,467 32.8 33.9 53 
Veillonella sp. 2 2,281,484 223 12,637 37.8 56.2 70 
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2.1 Abstract 
 
While there has been growing interest in the gut microbiome in recent years, no studies 

have coupled strain-resolved community metagenomics with high-throughput mass 
spectrometry-based proteomics to study functional changes in the microbial community during 
infant gut colonization. Here, we implemented this approach to characterize fecal samples 
collected on days of life 5-21 from an infant born at 28 weeks gestation. Genomic sequences 
were manually curated for strain-level resolution of populations of Citrobacter, an abundant 
organism present during the later stage of colonization. Proteome extracts from fecal samples 
were processed via a nano-2D-LC-MS/MS and searched against the metagenomic database. The 
results show a microbial community dominated by facultative anaerobes. We document the 
utilization of both aerobic and anaerobic metabolisms throughout the time series, likely 
indicating growth in distinct niches within the gastrointestinal tract. Additionally, we uncover 
differences in the physiology of coexisting Citrobacter strains, including differences in motility 
and chemotaxis functions, and resolve a specific community-essential role in vitamin metabolism 
and a predominant role in propionate production for this organism.  Finally, we detect 
differences between genome abundance and activity levels for the dominant populations, 
underlining the value in layering proteomic information over genetic potential. 
 
2.2 Introduction 

 
The human gastrointestinal tract (GIT) harbors a complex ecosystem of microorganisms, 

the microbiome, whose cell count outnumbers the cells of the human body by nearly ten to one 
(Smith, 2014). The genes of the microbiome encode byproducts critical for host health and 
development (Groer et al., 2014). Recent excitement in the field has been generated from 
findings implicating the microbial community in a variety of dysbioses from gut associated 
diseases like obesity and malnutrition (Turnbaugh et al., 2006; Smith et al., 2013), inflammatory 
bowel disease (Hold, 2014), and celiac disease (Nistal et al., 2012) to neurological disorders like 
depression (Park et al., 2013), anxiety (Diaz Heijtz et al., 2011) and autism (Hsiao et al., 2013). 
While significant contributions have been made to understand developed microbial communities 
in healthy and diseased adults, large gaps remain in understanding the acquisition of the human 
microbiome at birth, especially among preterm infants (Groer et al., 2014). 

In utero, infants have a sparse microbiome (Ardissone et al., 2014), with the first major 
microbial inoculum encountered during the birthing process. Delivery mode, i.e. vaginal versus 
caesarean section, can play a significant role in how a baby is colonized (Dominguez-Bello et al., 
2010) as can dietary input, breast milk versus formula (Guaraldi and Salvatori, 2012), and 
exposure to antibiotics (Groer et al., 2014).  For example, infants born vaginally acquire a 
community more similar to the mother’s vaginal and fecal microbiota whereas infants born by 
caesarean section have a microbiome that is more similar to those of skin and hospital 
environments (Brooks et al., 2014; Dominguez-Bello et al., 2010). Caesarean section infants 
appear to have lower microbial richness and diversity relative to vaginally born infants at four 
months of age (Song et al., 2013). Throughout the first year of life the microbial community 
increases in diversity, reaching an adult-like state around 2.5 years of life (Koenig et al., 2011). 
The long term health effects of different colonization paths remains to be determined, but with 
the many direct and indirect effects of the microbiome, it is likely to play a critical role in the 
development of many diseases. Understanding dynamics that govern colonization, and ultimately 
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defining a healthy colonization trajectory is critical, especially for preterm infants that are 
susceptible to numerous infections and developmental issues. 

Very low birth weight (VLBW) infants accounted for approximately 35% of all infant 
deaths in 2009 (Groer et al., 2014). These infants have an increased risk for cardiorespiratory, 
hematological, gastroenterologic, infectious, and neurological disorders (Groer et al., 2014). 
Most spend several months of their early lives in the neonatal intensive care unit (NICU), where 
administration of antibiotics is commonplace. Among VLBW infants, incidence rates of sepsis 
and necrotizing entercolitis (NEC) remain high (Bizzarro et al., 2014). Both diseased and non-
diseased VLBW infants are characterized by low bacterial diversity, abrupt shifts in community 
composition (which can be phage mediated (Sharon et al., 2013)), and an abundance of 
opportunistic pathogens (Sharon et al., 2013), relative to their full term counterparts. Most 
opportunistic pathogens in VLBW infants are facultative anaerobes.  Typically during the first 
weeks of life, there is a shift from facultative to obligate anaerobes (Penders et al., 2006). 
Because facultative anaerobes are capable of growth with and without oxygen, their mode of 
growth cannot be determined from genomic sequence information alone. Further, organisms may 
be abundant but characterized by low activity levels, or vice versa. Here, we coupled strain-
resolved community metagenomics data with mass spectrometry-based proteomics to resolve 
growth mode and to compare activity levels during colonization of a preterm infant. The samples 
collected during the first month of life for this VLBW infant were ideal for metaproteomic study 
because curated genomes for the dominant organisms were available and because the 
communities contained a limited number of highly abundant organisms (Morowitz et al., 2010a), 
enabling deep proteomic analysis. We identified differences in metabolic potential and protein 
abundance levels in closely related strains, determined that both aerobic and a variety of 
anaerobic pathways were operational, and confirmed differences between genome abundance 
and metabolic activity. 
 
2.3 Materials and Methods 
 
2.3.1 Infant description and sample collection 

 
The female infant was delivered by caesarean section at 28 weeks gestation after 

premature rupture of membranes. The infant received antibiotics (ampicillin/gentamicin) for the 
first seven days of life (DOL). Breast milk enteral feeding was administered on DOL 4-9 but was 
stopped on DOL 9-13 because of abdominal distension. Enteral feeding was slowly resumed on 
DOL 13 with artificial formula (Similac Special Care 20 calories per fluid ounce; Abbott 
Nutrition). Additionally, parenteral nutrition was provided until caloric intake from enteral 
nutrition was adequate (DOL 28). Fresh fecal samples were collected on DOL 5-21 as available 
using a previously described technique (Morowitz et al., 2010a). Informed parental consent was 
obtained before patient enrollment and research protocol approved by the Institutional Review 
Board of The University of Chicago (protocol # 15895A).  
  
2.3.2 Protein extraction, digestion, and Nano-2D-LC-MS/MS 

 
Complete details of protein extraction, digestion, and nanospray-two dimensional liquid 

chromatography coupled with tandem mass spectrometry (nano-2D-LC-MS/MS) are reported 
elsewhere (Young et al., 2015). Briefly, fecal material was boiled in Tris-Cl containing SDS and 
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DTT, and underwent bead beating for 30 minutes to lyse cells and denature proteins. The 
supernatant was collected, boiled again, spun down, and precipitated overnight. Protein pellets 
were washed, re-solubilized, and sonicated to break up the pellet. Iodoacetamide was added to 
block disulfide bond reformation. Proteins were then diluted, and enzymatically digested using 
sequencing grade trypsin (Promega). Peptides were diluted, a second dose of trypsin added, and 
digestion continued overnight. An acidic salt solution was used to clean up the peptides, which 
were then spun through a 10 kDa cutoff spin column filter (VWR).  
 Peptides were then loaded onto a split-phase fused silica column containing reverse phase 
(C18) and strong cation exchange (SCX) materials. Samples were washed and placed in line with 
a nanospray emitter (New Objective) packed with reverse phase material then separated on-line 
using high performance two-dimensional liquid chromatography. Peptides were eluted, ionized 
via nanospray (200 nl/min) (Proxeon, Cambridge MA), and analyzed using an LTQ Orbitrap 
Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA). The mass spectrometer was 
run in data-dependent mode with the top ten most abundant peptides in full MS selected for 
MS/MS, and dynamic exclusion enabled (repeat count=1, 60 s exclusion duration). Full MS 
scans were collected in the Orbitrap at 30K resolution. Two microscans were collected in 
centroid mode for both full and MS/MS scans. Technical duplicates were run for all samples. 
 
2.3.3 Database composition and peptide matching 
 

A search database was generated from manually curated genomes assembled from 
metagenomic reads previously published (Morowitz et al., 2010a).  Four taxa dominate these 
samples: Serratia (UC1SER), major and minor strain Citrobacter (UC1CIT and UC1CITii), and 
Enterococcus (UC1ENC). These taxa represent approximately 75% of the community 
composition, with the remaining 25% apportioned to several low ranking taxa (Morowitz et al., 
2010a). Low ranking taxa were excluded from the database to focus on organisms with higher 
peptide coverage. Strain-level variation between Citrobacter strains was resolved manually using 
Strainer version r-34 (Eppley et al., 2007). MS/MS spectra were searched against the 
concatenated database using MyriMatch version 2.1.111. The protein database is publicly 
accessible at http://ggkbase.berkeley.edu/UC1/, and the MS raw files have been uploaded to 
ProteomeXchange Consortium with the dataset identifier number px-submission PXD000114. 
 
2.3.4 Pathway analysis  

 
To summarize metabolic potential, we compiled lists of genes using annotation search 

terms implemented via the ggKbase lists function. List search terms were manually compiled, 
and made use of EC numbers, KO numbers, and other search terms to describe pathways. 
ggKbase is an online tool for genome binning, metabolic pathway curation and community 
composition analysis. The current dataset is available at http://ggkbase.berkeley.edu/UC1/. To 
easily visualize both metabolic potential and protein expression, an expression versus potential 
ratio was plotted across all available lists and a subset of curated ggKbase lists (Figure 2-3 and 
Figure 2-4, respectively). This ratio is the non-redundant count of features per list that were 
identified via proteomics, divided by the count of features per list. ggKbase lists are dynamic, so 
a static version linking genes to lists is available at 
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00654/full.  
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2.4 RESULTS AND DISCUSSION  
 
2.4.1 General proteome description 
 

We characterized fecal proteome extracts from seven fecal samples via nano-2D-LC-
MS/MS (DOL 13-21) and uniquely identified 1149 to 2636 microbial proteins per sample based 
on 4300 to 15370 distinct spectra. Additionally, many human proteins were detected. A detailed 
analysis is described in Young et al. (2015). In total across all samples, we detected 
approximately 1000 proteins per organism for each of the three most abundant organisms. These 
quantities represent coverage of 22% of the predicted proteomes of these organisms (Table 2-1). 
On average, approximately 550 proteins per organism were identified with unique peptides in 
each sample. DOL 13 samples exhibited extremely low peptide detection with unique spectral 
matches totaling 190 and proteins with unique spectral matches totaling 79. This sample was 
excluded from most analyses unless explicitly stated. 
 
2.4.2 Microbial community profile and general functional characterization  
 

To survey the microbial community, we compared results from read and peptide mapping 
to the metagenomics derived database. Read mapping results confirmed the dominance of 
UC1SER, with lower abundances of UC1CITs and UC1ENC (Morowitz et al., 2010a). Even 
when the UC1CITs are taken together, Citrobacter reads are less abundant than Serratia. 
Interestingly, the matched proteomic data indicate that, in combination, the Citrobacter account 
for the largest proportion of the proteome, suggesting that the activity level of these organisms is 
higher than that of UC1SER and UC1ENC. The apparent difference in cell abundance compared 
to activity, based on differences between read mapping and peptide mapping, is most 
pronounced on DOL 18.  For this sample, the read count data indicate UC1SER comprised ~ 
60% of the community but its proteins only accounted for 35% of the community proteome 
(Figure 2-1).  
 
2.4.3 Aerobic and anaerobic respiration 
 

During the latter phase of colonization, the infant was supplied with infant formula. 
Lactose, an abundant constituent in infant formula, can be respired aerobically or fermented. 
During the period of formula feeding, the community was dominated by Serratia and 
Citrobacter strains. These species can grow both aerobically and anaerobically, and capacities 
for both growth modes are encoded in the genomes of the Citrobacter and Serratia strains 
studied here (Figure 2-2). Evidence for respiration-based metabolism includes detection of 
proteins from the essentially complete TCA cycle (Figure 2-3). A strong indicator of aerobic 
respiration is the identification of most enzymes of the electron transport chain, including 
cytochrome c proteins and multiple terminal oxidases (Figure 2-4).  The aerobic growth pathway 
was operational throughout this colonization phase in both organisms. Given that the likely 
source of O2 is the intestinal tissue, and that the O2 gradient decreases toward the (Albenberg et 
al., 2014), it seems likely that UC1CITs and UC1SER growing aerobically are localized towards 
the mucosa. 

Products of glycolysis could also be respired anaerobically, given the presence of 
pathways for nitrate, nitrite, and sulfate reduction in the genomes (Figure 2-2). The mass 
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spectrometry measurements identified many Citrobacter enzymes likely involved in anaerobic 
respiration, including proteins from all of these pathways, excluding sulfate reduction (Figure 
2-4). The Serratia proteome also included proteins associated with many of these functions.  
Also expressed are genes involved in the anaerobic reduction of dimethyl sulfoxide and formate. 
Nitrate reductase proteins were particularly abundant across all time points; this finding was 
more pronounced for UC1CITs but still detectable in UC1SER. The source of nitrate is likely the 
host’s immune response through various inflammatory pathways. Nitrate availability in the gut 
has been shown to give Enterobacteriaceae a fitness advantage over obligate anaerobes (Winter 
et al., 2013). Citrobacter also expresses nitric oxide dioxygenase, which is involved in aerobic 
detoxification of NO, presumably protecting the bacterium (and the community) from various 
toxic nitrogen compounds.  
 
2.4.4 Fermentation pathways 
 

As with the human milk oligosaccharides they mimic, formula oligosaccharides can be 
fermented to short chain fatty acids (SCFAs). The genomes of all microorganisms present in the 
third phase of colonization encode a variety of fermentation pathways and there is clear 
proteomic evidence for fermentation-based metabolism in both Citrobacter strains, the Serratia 
strain and Enterococcus faecalis. These pathways generate SCFAs that are likely absorbed by the 
infant.  

A particularly abundant pathway in Citrobacter for which proteins were detected was for 
the fermentation of fucose to propionate (Figure 2-4 and Figure 2-5). L-fucose isomerase, the 
first enzyme needed to degrade L-fucose to L-fuculose, was identified in two samples. The 
adjacent gene, L-fuculokinase, responsible for conversion of 1-fucose 1-phosphate, was not 
identified. L-fucose aldolase, also encoded in this region, converts 1-fucose 1-phosphate to L-
lactaldehyde; this protein was also not identified, but the adjacent fructose operon regulator was 
identified in one sample.  

Although both UC1CITs have pathways for the anaerobic degradation of rhamnose as 
well as fucose, the genes for rhamnose degradation (and transport) were not detected. 
The protein encoded by the next gene in the anaerobic fucose degradation pathway converts L-
lactaldehyde to 1,2-propanediol (1,2-PD). This protein was identified in all samples. Citrobacter 
also can convert 1,2-PD to propionyl-CoA, and probably does so within a well-characterized 
organelle (a microcompartment), which prevents the accumulation of toxic aldehyde 
intermediate (Kerfeld and Erbilgin, 2014).  Shell proteins for this microcompartment, 
specifically shell protein PduA, were consistently identified in samples from most days. 
Propionyl-CoA is likely degraded to propionyl phosphate then to propionate (a SCFA) as 
propionate kinase, the final enzyme that converts propyionyl phosphate to propionate, was 
consistently identified in both UC1CITs. Propionate may then be excreted, and is likely to have 
been absorbed by the infant (Tan et al., 2014). Interestingly, Serratia does not appear to have the 
capacity to ferment either fucose or rhamnose, which may be the metabolic basis of their niche 
separation.   

Another prominent fermentative pathway found in the Citrobacter proteomes involves 
enzymes that degrade glycerol, several of which are vitamin B12-dependent. Production of 
vitamin B12 (cobalamin) is unique to bacteria and archaea, and is an essential cofactor for many 
forms of life. We consistently detected proteins required for the biosynthesis of vitamin B12, 
specifically CbiG and CbiK, from UC1CIT. The UC1CITs are the only relatively abundant 
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organisms in the infant’s gut that encode cobalamin biosynthesis genes, and consistent 
expression of this pathway suggests it to be a key role in the community (Figure 2-3). Notably, 
these cobalamin biosynthesis enzymes operate under anaerobic conditions, a further indication of 
anaerobic niches in the gut during this phase of colonization. 

Additionally, enzymes were identified for a fermentation pathway that converts glycerol 
to 1,3-propanediol (1,3-PD) and other SCFA byproducts (using the glycerol dehydratase 
complex: EC:4.2.1.30; three subunits, all of which were identified by proteomics in all samples). 
Citrobacter is one of a small number of bacterial genera with the glycerol fermentative pathway 
(others include Klebsiella, Clostridium, and Lactobacillus). The SCFA byproducts of this 
pathway are acetate and sometimes butyrate (Abbad-Andaloussi et al., 1996).  For the latter, the 
enzymes required for acetyl-CoA conversion to butyrate are poorly maintained within the 
genomes of each of these genera, and only select strains contain them (Louis et al., 2004). 
Citrobacter has the genes to convert acetyl CoA to crotonoyl-CoA (e.g., for amino acid 
biosynthesis), but lacks those required to form butanoate.  

For glycerol breakdown, Serratia lacks the glycerol dehydratase complex found in 
Citrobacter (EC:4.2.1.30). However, it has glycerol kinase (EC:1.1.1.6) and glycerone kinase 
(EC: 2.7.1.29), allowing it to convert glycerol to glycerone phosphate, potentially for 
consumption via glycolysis.  Both of these enzymes were identified by proteomics, although 
only in the day 21 sample.  Serratia also has glycerophosphoryl diester phosphodiesterase 
(EC:3.1.4.46) that converts alpha glycerophosphodiester to sn-glycerol-3-phosphate. This is also 
the product of glycerol kinase (EC:2.7.1.30, which was identified by proteomics in all samples). 
The sn-glycerol-3-phosphate can be degraded by glycerol-3-phosphate dehydrogenase (EC: 
1.1.5.3) to dihydroxyacetone phosphate (glycerone phosphate), and some of these proteins were 
identified.  Serratia then combines sn-glycerol-3-phosphate with acyl CoA to form 1-acyl-sn-
glycerol 3-phosphate (identified by proteomics in one sample). These, and other proteins, are 
likely redirected for use in lipid biosynthesis.  

We also identified multiple Serratia proteins of the inositol degradation pathway, 
including inositol 2-dehydrogenase, myo-inositol catabolism protein IolH, inosose dehydratase, 
3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase, and 5-dehydro-2-deoxygluconokinase.  
The strong representation of these enzymes indicates a potentially important role for Serratia in 
degradation of this compound, which is an important component of both breast milk and infant 
formula (Sharon et al., 2013). Citrobacter also has some enzymes for inositol degradation. 
However, the identification of only two proteins from the Citrobacter pathway may indicate that 
inositol is a less important substrate for this organism compared to Serratia. 
 
2.4.5 Motility, toxicity, and invasion 
 

Several pathways enable microorganisms to cope with the gut immune system, respond 
to administered antibiotics, and to manage compounds produced by other microorganisms. 
Catalase, an enzyme used to protect cells from reactive oxygen species (ROS) by degrading 
hydrogen peroxide to water and oxygen, is consistently found in both UC1CITs and UC1SER on 
most days. Hydrogen peroxide can be produced by the intestinal epithelium and neutrophils 
during inflammation response, along with other ROS (Winter et al., 2013). Other protective 
antioxidant proteins such as lipid hydroperoxide peroxidase, alkyl hydroperoxide reductase, 
superoxide dismutase, and glutathione peroxidase were identified in samples collected on most 
days, and were particularly abundant in UC1CITs and UC1SER.  
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Often ROS exposure occurs in close proximity to the host epithelium (Winter et al., 
2013). The ability to move away from ROS and towards a more favorable environment seems 
critical for microbes in our dataset. We identified many UC1CITii polar flagella-related proteins 
in samples collected on several days; no lateral flagella proteins were identified and flagella 
proteins were not identified for UC1CIT (Figure 2-4). Proteins for twitching motility were 
detected for UC1CITii. Additionally, proteins for chemotaxis, specifically chemotaxis protein 
methyltransferase CheR, are detected on all days in UC1CITii. Chemotaxis related proteins were 
not detected in the dominant strain, or UC1SER, possibly suggesting a more planktonic state for 
the minor strain. Perhaps the increased motility allows the minor strain to escape ROS, as 
expression levels and frequency of oxidative stress related genes are lower in the minor strain 
(Figure 2-4).  

In contrast to chemotaxis and flagellar movement, proteins for biofilm formation and 
many fimbrial attachment proteins are detected in UC1CIT and UC1SER, though these are also 
detectable in UC1CITii. Type-1 fimbrial proteins, associated with capacity to attach to host gut 
epithelium (Juge, 2012), were detected consistently across the time series, as were proteins for 
biofilm regulation and formation.  Transcriptional regulator and periplasmic proteins csgD and 
csgF, involved in curli biosynthesis, were also detected on one day in UC1CITii (Barnhart and 
Chapman, 2006). It is unclear whether curli expression in UC1CITii is promoting adherence to 
one another or host adherence, as it is capable of both (Barnhart and Chapman, 2006). 
Citrobacter’s affinity for host fucosylated glycans would suggest colonization of the mucosa. 

Proteins that respond to both host and inter-species bacterial attack, such as the type VI 
secretion system (T6SS) in UC1SER, were detected on several days. T6SS were first investigated 
for their role in pathogenesis (Jani and Cotter, 2010), but have been studied more recently for 
“T6SS-dueling”, a mechanism in which the T6SS can kill and outcompete neighboring microbes 
for resources (Basler et al., 2013). Proteins involved in production of bacteriocin toxins like 
colicin were also detected on most days, but only from U1CITii. Many gram-negative bacteria 
can produce a variety bacteriocins that can target closely related species or strains that occupy 
similar niches (Kleanthous, 2010).  

A competitive advantage for niche space (and persistence in the hospital environment) is 
also gained through various antibiotic resistance mechanisms. A variety of antibiotic resistance 
proteins were detected for all organisms across the time series, but most frequently in the 
UC1CITs. Most consistently detected for all organisms were efflux pumps. Efflux pumps can 
remove various toxins, waste products, and antibiotics (Fernández and Hancock, 2012). It was 
speculated that the multipurpose functionality of such pumps could aid in survival, both in and 
out of the host, as antibiotics and various biocides are encountered in both environments (Brooks 
et al., 2014).  
 
2.4.6 Comparison of major and minor Citrobacter strains 
 

The two UC1CITs strains share 98.96% and 99.23% nucleotide and amino acid identity 
between their orthologs, respectively. Read mapping data confirms genome abundances 
previously published (Morowitz et al., 2010a), with a drop in the minor strain population around 
DOL 18 (Figure 2-1). Interestingly, metabolic activity, as reflected in the proteome composition, 
does not correlate closely with genome abundance, as no decrease in protein spectral counts 
mapping to the minor strain occurs (Figure 2-1). This observation could reflect steady state 
growth of the abundant Citrobacter strain and rapid growth of the minor strain. This result 
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highlights the value of proteomic data for uncovering aspects of the dynamics not apparent from 
genome abundance information alone. Difference between genome abundance (from 16S rRNA 
gene surveys or metagenomics) and microbial activity levels have been reported previously. 

Different methodologies can distinguish living from dead or inactive cells. For example, 
Maurice et al., distinguished subgroups based on nucleic acid concentrations and lack of 
membrane integrity (Maurice et al., 2013). However, Franzosa et al. showed that RNA and DNA 
abundances were generally well correlated, with the exception of a few select pathways 
(Franzosa et al., 2014). Erickson et al. reported varying degrees of incongruence between 
organisms based on mapped metagenomic reads versus peptide spectral counts in patients with 
Crohn’s disease (Erickson et al., 2012). To our knowledge, no genome abundance to protein 
expression difference, as detected here, has been reported for gut-associated microorganisms in 
infants.  

We looked for differences in overall proteome composition for the Citrobacter strains, 
and for evidence for the production of proteins unique to one of the strains. Spectral coverage 
across the genomes was relatively complete, and generally, expression of the minor strain 
tracked with the major stain (Figure 2-5). Notable exceptions were the flagella and chemotaxis-
related proteins, as noted above, and drops in coverage often associated with phage related 
regions, mobile elements, and some regions associated with transport and membrane proteins. 
Interestingly, several unique genes, genes encoded in one strain and not the other, were 
expressed. There are 233 and 84 genes not shared with the other strain in UC1CIT and UC1CITii 
respectively, and 25 and 10 of these proteins were detected via proteomics for UC1CIT and 
UC1CITii, respectively. These span broad functions from transcription, translation, and 
metabolism related proteins. From the major strain, novel proteins were identified on most days, 
such as carbamoyl phosphate synthase involved in pyrimidine and amino acid metabolisms, an 
alcohol dehydrogenase used in ethanol production, a transporter for glutathione binding, and an 
aromatic amino acid aminotransferase. Carbamoyl phosphate synthase is the rate-limiting step in 
L-arginine production and has been linked to an increase of NEC in preterm infants (Watkins 
and Besner, 2013). In the minor strain, ABC transporters and a DNA translocase FtsK variant 
involved in cell division and chromosome separation were detected on most days. In 
combination, the differences in proteome composition support the inference that the Citrobacter 
strains occupy distinct niches. 
 
2.5 Concluding Remarks  
 

The VLBW infant gut microbiome is relatively uncharacterized and little is known about 
microbial metabolism during the critical first few weeks of life. The opportunity for organisms to 
growth via both aerobic and anaerobic respiration might be anticipated to develop over the time 
period in which GI tract transitions from an aerobic to anaerobic state. However, the range of 
aerobic and anaerobic metabolisms detected at the same time may suggest heterogeneity in the 
developing gut in which facultative anaerobes are likely to dominate. Different niches may be 
associated with sub-populations of Serratia and the two Citrobacter strains in different gut 
niches. Further, metabolic differences between the Citrobacter strains support the suggestion that 
the populations occupy distinct niches. The distinct differences in inferred abundances and 
activity levels for these strains likely reflect changing opportunities occurring during this 
colonization phase. 
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Figure 2-1: Microbial community composition observed via read and peptide mapping  

Relative proportion of reads (A) and unique peptides (B) mapped to a database of metagenomes 
derived from dominant gut colonizers in a preterm infant.   
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Figure 2-2: Metabolic potential of microbes colonizing a preterm infant gut  

ggKbase lists illustrate the broad metabolic potential of microbes colonizing a preterm infant in 
the first month of life. 
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Figure 2-3: Expression over potential ratio of infant gut microbes 

A non-redundant count of the number of features identified via proteomics in a metabolic 
ggKbase list was divided by the number of features in that list and plotted for each organism 
using separate symbol colors to represent each day of life time point. 
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Figure 2-4: Expression over potential ratio of infant gut microbes (subset) 

A non-redundant count of the number of features identified via proteomics in a metabolic 
ggKbase list was divided by the number of features in that list and plotted for each organism 
across time.  
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Figure 2-5: Comparison of proteomic profiles of two closely related Citrobacter strains  

Unique peptide counts, normalized by the length of the protein, were mapped to UC1CITs 
contigs (aligned on the x-axis). Panels are separated by day of life. Triangles represent genes 
unique to the respective strain. Annotations marked with arrows indicate features of interest. 
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Table 2-1: Genome and proteomics summary  

taxa UC1CIT UC1CITii UC1CITp UC1ENC UC1ENCp UC1ENCv UC1SER 
bp 4,902,348 4,901,982 59,966 2,576,397 77,038 37,230 5,027,440 
contigs 10 10 2 785 2 2 9 
max contig 2,550,874 2,550,962 57,067 18,409 68,691 28,900 2,360,977 
genes 4,829 4,696 61 3,589 94 56 4,569 
%GC 52 52 53 37 34 32 60 
SCG (51 total) 50 48 0 40 0 0 45 
unique proteins 
detected 1,049 1,017 5 195 4 1 1,021 
avg unique protein 
per day 619 603 2 84 2 1 520 
unique protein 
matches 20,038 19,207 26 1,636 25 17 16,129 
avg unique protein 
matches per day 3,331 3,192 5 270 7 5 2,677 
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3.1 Abstract 
 

The neonatal intensive care unit (NICU) contains a unique cohort of patients with 
underdeveloped immune systems and nascent microbiome communities. Patients often spend 
several months in the same room and it has been previously shown that the gut microbiomes of 
these infants often resemble the microbes found in the NICU. Little is known, however, about 
the identity, persistence and absolute abundance of NICU room-associated bacteria over long 
stretches of time. Here we couple droplet digital PCR (ddPCR), 16S rRNA gene surveys, and 
recently published metagenomics data from infant gut samples to infer how infants acquire 
microbes from their immediate NICU environment. Over 3,700 swabs, wipes, and air samples 
were collected from sixteen private-style NICU rooms housing very low birthweight (<1,500 g), 
premature (<31 weeks’ gestation) infants. For each infant, room samples were collected daily, 
Monday through Friday, for one month.  The first samples from the first infant and last samples 
from the last infant were collected 383 days apart. Twenty-two NICU locations spanning room 
surfaces, hands, electronics, sink basins, and air were collected. Results show a room community 
largely dominated by 5-10 taxa, mostly skin associated. Biomass estimates reveal 5-6 orders of 
magnitude difference between the least to the most dense microbial communities, air and sink 
basins, respectively. Biomass trends from bioaerosol samples and petri dish dust collectors 
suggest occupancy to be a main driver of suspended biological particles within the NICU. Using 
a machine learning algorithm to classify the origin of room samples, we show that each room has 
a unique microbial fingerprint. Several important taxa driving this model were dominant gut 
colonizers of infants housed within each room. Collectively, the data suggests that housed 
infants, in combination with their caregivers, shape the microbiome of NICU rooms.  

 
3.2 Introduction 
  
 Hospital acquired infections (HAIs) remain a major problem in the US. One out of every 
twenty-five patients will experience a HAI, costing the US approximately $30 billion per year 
(CDC, 2016). Infants hospitalized in the neonatal intensive care units (NICU) are particularly 
susceptible to infection due to their underdeveloped immune systems (Arrieta et al., 2015; 
Cahenzli et al., 2013).  To protect against infection, infants are often prescribed antibiotics 
during the first week of life. In fact, antibiotics are 3 of the 6 most commonly administered 
medications in the NICU (Gasparrini et al., 2016). This treatment largely kills microbes acquired 
during the birthing process (Raveh-Sadka et al., 2015) and promotes a categorically different 
colonization pattern in preterm infants relative to full term infants (Groer et al., 2014). Preterm 
infants are often colonized by ESKAPE organisms (Enterococcus spp., Staphylococcus aureus, 
Klebsiella spp., Acinetobacter spp., Pseudomonas aeruginosa, Enterobacteriaceae), which are 
also the most frequent cause of nosocomial infections (Hu et al., 2015). The relatively sterile 
preterm infant gut microbiome and the high frequency at which infants are colonized by hospital 
associated microbes, creates a valuable study setting to better understand how room microbes are 
exchanged with occupants. Here, we conducted an experiment to quantify and characterize 
NICU room microbes and their role in infant gut colonization.  
 The source of early stage gut colonizers in preterm infants is poorly understood.  In a 
recent pilot study, we tracked two infants over the first month of life, collecting samples from 
room surfaces and infant fecal samples (Brooks et al., 2014). Using an amplicon-EMIRGE 
approach, which allows for recovery of the full-length 16S rRNA gene (~1500 b) (Miller et al., 
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2011), as opposed to the more common hypervariable region approach (~150-400 b), we 
detected the same sequences in room samples before they were detected in gut samples. With 
genomes recovered from the infant metagenomic data, we found that the same strain of 
Enterococcus faecalis colonized both infants. The results from that study suggested that infants 
housed in the same NICU at approximately the same time acquire initial gut colonizers from the 
room environment.  
 Subsequent studies from our group and others offer a more nuanced perspective. While it is 
possible to have the same strain colonize several cohoused infants, the vast majority of strains 
are not shared (Raveh-Sadka et al., 2015). Nearly 150 strains were recovered from 10 infants’ 
fecal samples and only 4 of these were shared. These samples were collected within a month of 
each other, suggesting that a multitude of strains is available in the NICU at any given point in 
time, and only a few strains may be widespread. Infant fecal samples collected years apart, in 
this same NICU, show some strains that are consistently shared across time (Raveh-Sadka et al., 
2016). These “persister” strains were not found to differ significantly in virulence, antibiotic 
resistance, or metabolism from other non-persister strains. A recent study, however, using a 
different functional metagenomics approach, found 794 antibiotic resistance genes in preterm 
infant stool samples, 79% which had not previously been classified as associated with resistance 
(Gibson et al., 2016). It is possible these antibiotic resistance genes not only offer a competitive 
advantage in the gut, but also allow tolerance to surface cleaning outside the gut (Buffet-
Bataillon et al., 2011).  
 The results from the prior studies suggest that a subset of bacteria that colonize infants are 
sourced from their room environment, but specific reservoirs remain elusive. To address this 
knowledge gap, we designed a study with more infants (n = 16), finer temporal sampling 
(Monday through Friday), and more sites (n = 22) relative to our pilot study.  Additionally we 
performed droplet digital PCR (ddPCR) on all room samples to better understand how biomass 
varies in the NICU and used quantification of negative controls to account for background taxa. 
Overall, our experimental design broadly aimed to better understand room-occupant interactions, 
with the results furthering our understanding of infant gut colonization and the dynamics that 
govern how patients acquire microbes during their hospitalization. 
 
3.3 Methods 
 
3.3.1 Sample Collection 
 

Infants were enrolled in the study based on the criteria that they were < 31 weeks 
gestation, < 1250 g at birth, and were housed in the same physical location within the NICU 
during the first month of life. Samples were collected Monday through Friday for days of life 
(DOL) 5-28. Fecal samples were collected using a previously established perineal stimulation 
procedure and were stored at -80 °C within 10 minutes (Morowitz et al., 2010a). When fresh 
samples were not available, diaper samples were used (noted within the metadata). All samples 
were collected after signed guardian consent was obtained, as outlined in our protocol to the 
ethical research board of the University of Pittsburgh (IRB PRO11060238). This consent 
included sample collection permissions and consent to publish study findings.   

All samples were obtained from a private-style NICU at Magee-Womens Hospital of the 
University of Pittsburgh Medical Center. Twenty-two of the most frequently touched surfaces 
were determined by visual observation and health care provider interviews in the weeks leading 
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up to sample collection. Microbial cells were removed from most surfaces using nylon 
FLOQSwabs (Copan Diagnostics, Brescia, Italy) and a sampling buffer of 0.15 M NaCl and 
0.1% Tween20. Samples were collected by one research nurse to ensure consistent sampling 
technique. Ten square centimeters of each surface was sampled or, for smaller surfaces, the 
entire surface itself (e.g., isolette knobs and sink basin drain grill). Wipe samples were collected 
from the floor and exterior top of the isolette using Texwipe TX1086 wipes (Texwipe, 
Kernersville, NC, USA). Before collecting each wipe sample, the collector would put on latex 
examination gloves and clean these gloves with an isopropanol wipe. The wiped surface area 
was approximately forty-eight square centimeters or, for smaller surfaces, the entire surface itself 
(e.g., isolette top). A wipe was also used to collect microbial cells at the exterior facet of the 
heating, ventilation and air conditioning (HVAC) system. The wipe was suspended via airflow 
on the exterior (upstream) face of the MERVE 8 pleated filter, the zone in which supply and 
return air are mixed before thermal and humidity treatment of the airstream for four days. 
Features of the HVAC system are described in detail in a recently published paper (Licina et al., 
2016).   

Air samples were collected using the NIOSH two-stage bioaerosol cyclone 251 sampler 
(Lindsley et al., 2010) and a suspended petri dish method (Adams et al., 2013).  The NIOSH 
sampler collected samples continuously Monday through Friday, comprising approximately 96 
hours of sampling at 3.5 L/minute (total volume sampled = 20 m3). Petri dish samples were 
suspended approximately one meter below the drop ceiling in the corner of the room that was the 
furthest away from the sink.  These samplers were maintained in place for the duration of the 
infant’s stay. Petri dish “cooler” samples are plates that were taped to the top of a cooler which 
collected abiotic aerosol data (Licina et al., 2016). At the end of the sample collection period, all 
samples were placed in a sterile transport tube and stored within 10 minutes at -80 °C until 
further processing. 

 
3.3.2 DNA extraction and PCR amplification 
 

Frozen fecal samples were thawed on ice and 0.25 g of thawed sample added to tubes 
with pre-warmed (65 °C) lysis solution from the PowerSoil-htp 96 Well DNA Isolation Kit 
(MoBio Laboratories, Carlsbad, CA, USA). The incubation was conducted for five minutes and 
the manufacturer’s protocol followed thereafter. Swab heads followed the same procedure, 
except heads were snapped at the perforation into the extraction tube before starting the protocol. 
Wipe samples were stored in a sterile 250 mL tissue culture flask upon collection and thawed on 
ice before extraction. Cells were dislodged from wipes in a protocol adapted from Yamamoto et 
al. (Yamamoto et al., 2011).  Briefly, 150 mL of dislodging buffer was poured into a flask (1X 
PBS, 0.04% Tween 80, passed through a 0.2 µm filter), the flask was shaken vigorously for one 
minute, and then shaken at medium speed on a flask shaker for approximately one hour at room 
temperature. Supernatant was then decanted into a 250 mL disposable filter funnel with a pore 
size of 0.2 µm (Thermo Scientific, Waltham, MA, USA) and the filter was then placed in a 
MoBio PowerWater extraction tube. PowerWater extraction followed manufacturer 
recommendations.  

Genomic DNA from room samples were subjected to 16S rRNA V3-4 MiSeq library 
preparation which included dual-barcoded multiplexing with a heterogeneity spacer for higher 
sequence quality (Fadrosh et al., 2014). Two microliters of 5X concentrated gDNA template was 
used in the reaction and run at 35 cycles. Amplicons were purified using the Just-a-Plate PCR 
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normalization and purification kit (Charm Biotech, San Diego, CA, USA). Equal amounts of 
each sample were sent to the University of California Davis DNA Technologies Core Facility 
(http://dnatech.genomecenter.ucdavis.edu) and run on a MiSeq with v3 300PE chemistry.   

Droplet digital PCR (ddPCR) was adapted from a method previously published on 
quantification of 16S rRNA templates in infant fecal samples (Raveh-Sadka et al., 2015). The 
only deviation from the previous method was that a diluted gDNA template of 1:10 instead of 
1:1000 was utilized. Both MiSeq library preparation and ddPCR were performed in 96-well plate 
format. Each plate had three no template PCR controls, one no template extraction control, and 
three positive controls containing varying concentrations of purified E. coli gDNA. Counts from 
the negative control types were averaged across type and the highest was used to correct for 
contaminant counts in sample data. 

 
3.3.3 Sequencing preparation and sequencing 
 

Illumina library construction followed standard protocols at University of California QB3 
Vincent J. Coates Genomics Sequencing Core Facility (http://qb3.berkeley.edu/gsl/). Briefly, 
gDNA was sheared using a Covaris to approximately 600 bp and 1000 bp. Wafergen’s PrepX 
DNA library prep kits were used in conjunction with the Apollo324 robot following factory 
recommendations (Integenx). Thirteen cycles of PCR were used during library construction. 
Libraries were added at 12 samples per lane, in equimolar amounts, to the Illumina HiSeq 2500 
platform. Paired-end sequences were obtained with 150 cycles and the data processed with 
Casava version 1.8.2. Raw read data will be deposited in the NCBI Short Read Archive 
(accession numbers pending). 

 
3.3.4 16S amplicon data processing 
 

The LotuS 1.53 pipeline in short amplicon mode was used for quality filtering, 
demultiplexing, and OTU picking (Hildebrand et al., 2014). LotuS was run with the following 
command line options: ‘-refDB SLV,GG -highmem 1 -p miseq -keepUnclassified 1 -
simBasedTaxo lambda -threads 10.’ The OTU data was rarefied to 1,000 sequences per sample, 
without replacement, unless explicitly stated. The final OTU table and mapping file is publicly 
available at the QIITA database (https://qiita.ucsd.edu/, pending). 

 
3.3.5 Metagenomic assembly and data processing 
 

Metagenomic sequencing of 290 fecal samples on twenty-five lanes of an Illumina HiSeq 
2500 produced ~800 Gb of 150 bp paired-end reads. Reads were trimmed with Sickle (Joshi, 
2011), mapped to the human genome using Bowtie2 (Langmead and Salzberg, 2012) to remove 
human contamination, and assembled with idba_ud (Peng et al., 2012) using default parameters 
for all programs. Prodigal (Hyatt et al., 2010) was used for gene prediction of scaffolds longer 
than 1 kb. Genes were annotated using USEARCH (Edgar, 2010) to search against KEGG 
(Kanehisa et al., 2014), UniReff100 (Suzek et al., 2007), and UniProt databases. Matches with 
bit scores greater than 60 were saved as were reciprocal best hits with scores greater than 300. 
rRNA sequences were identified using Infernal (Nawrocki and Eddy, 2013), and tRNAs with 
tRNAscan_SE (Lowe and Eddy, 1996). 
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3.4 Results 
 
3.4.1 Sequencing summary and contamination removal 
 

In all, 2584 samples were processed through a MiSeq library protocol. After quality 
filtering and demultiplexing, 96,876,367 reads were generated. These reads were clustered into 
17,932 OTUs. Using a ratio OTU (ROTU) method that leverages biomass quantification and 
sequencing of negative controls (Lazarevic et al., 2016), 270 OTUs and 924 samples were 
removed from the dataset when using an ROTU threshold of 0.001. A second in silico 
contamination cleaning method was applied (Meadow et al., 2015), which removed an additional 
324 OTUs and 1 sample.  This indicates that approximately 4% of generated OTUs and 36% of 
samples present too weak of a signal to confidently distinguish them from negative control 
signatures.  

 
3.4.2 Biomass and taxonomic variation across petri dish replicates 
 
 Biological and technical replicates performed for petri dish plates established the 
reproducibility of extraction of DNA from petri dish swabs and provided evidence for highly 
reproducible ddPCR measurements (Figure 3-1). The highest standard deviation in ddPCR 
values for biological replicates in a single room was 106,760 copies/sample (infant 6’s petri 
plates; mean = 99,677) and for technical replicates, the largest standard deviation was 15,534 
copies/sample (infant 12’s petri plates, mean = 81,044). The lowest standard deviation for 
biological replicates was 1,981 copies/sample (infant 1’s petri plates, mean = 13,785) and 737 
copies/sample for technical replicates (infant 11’s petri plates, mean = 32,396). Overall, this 
equates to a reproducibility range of 2.69 to 6.87´ more reproducibility across technical ddPCR 
runs relative to biological replicates, with an average reproducibility ratio of 5.37´ better for 
technical replicates. 
 
3.4.3 Biomass varies significantly across sample type 
 
 16S rRNA gene copies were quantified for 2,584 samples (Figure 2). Samples from the 
HVAC system had the highest biomass of all types and bioaerosol samples had the lowest 
(Figure 2 a and b). Sinks had the highest biomass of the swabbed samples and hands had the 
lowest average median template count. Petri dishes suspended from the ceiling had the lowest 
biomass relative to other passive dust collectors, whereas the nurse’s station dishes contained the 
highest bacterial load. The infant room consistently had higher template counts than the hallway 
bioaerosol samples. Overall, the biomass varied approximately 5-6 orders of magnitude across 
all sample types.   
 
3.4.4 Skin associated taxa dominate the NICU surface environment 
 

The microbial communities in most NICU environments were highly uneven and were 
dominated by 5-10 taxa (Figure 3-3). Approximately 50% of all amplicon reads belong to five of 
the top taxa in the NICU (Figure 3-3 and Table 3-1). Most of these taxa are human associated 
with many originating from the skin (Propionibacterium), mouth (Streptococcus), or nose 
(Staphylococcus). SourceTracker (Knights et al., 2011) was run using skin, oral, and fecal 
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samples from the American Gut project as the putative source database with NICU samples 
labeled as “sink” samples. Skin was the most likely contributor to taxa in the NICU followed by 
oral and fecal samples (Figure 3-4).   

Samples collected from the HVAC system had the highest bacterial diversity with 405 
OTUs on average per sample, whereas bioaerosol samples had the lowest, with 13 (Figure 3-5a). 
The HVAC samples had the highest Shannon community evenness, followed by floor wipes, and 
the bioaerosol samples had the lowest Shannon diversity (Figure 3-5b). Thus, overall, the HVAC 
had highly even consortia with great diversity. As expected due to heavy filtration and air 
exchange, the NICU room air has low biomass and low diversity, and with strong dominance by 
members of the Aeromonadaceae.  

All touched surfaces had similar numbers of OTUs per sample, although the surface 
monitors showed the most unevenness. These surfaces were dominated by similar groups of 
microbes. Although many touched surfaces were associated with skin-associated bacteria, gut 
associated Enterobacteriaceae OTUs also dominated environments such as the surface monitors, 
counter tops, and scanners. In contrast, the sink basins had comparatively low numbers of OTUs 
per sample (Figure 3-5a), in part due to the high dominance by four bacterial groups (Figure 
3-3).  

 
3.4.5 Biomass suggests growth patterns in sink basins 
 
 A range of 29 to 38 sink basin samples per day of the week was collected from 14 unique 
sink basins. When comparing biomass trends across weekdays (Figure 3-6a), a distinct pattern of 
decreasing biomass is apparent in sink samples relative to other swabbed environments. In 
comparing Shannon diversity across weekdays (Figure 3-6b), bacterial diversity in Tuesday 
versus Friday samples were the most distinct whereas biomass was most different in Monday 
versus Thursday samples (Wilcoxon rank sum, Bonferroni adjusted p = 0.4 and 0.012, 
respectively). Sink basins were cleaned approximately every twenty-four hours, but less 
frequently on the weekends so the elevated biomass at the beginning of the week may be due to 
regrowth of sink adapted taxa throughout the weekend (e.g., Pseudomonas, Aeromonas, and 
Enterobacteriaceae). The increase in Shannon diversity from Monday to Friday strengthens this 
inference.  
 
3.4.6 NICU rooms harbor a unique microbial signature 
 
 Using a support vector machine (SVM) classifier with a linear kernel (Chase et al., 2016), 
we determined that each room’s microbiome contained a unique microbial fingerprint. We could 
predict the room origins with an overall accuracy of 51% (when we knew the room’s origin but 
withheld that information from the classifier), which is 4.6x better than random chance (Figure 
3-7). The use of ROTU over a standard QIIME pipeline achieved an increase in accuracy of 
approximately 12%. Typically, the most confusion occurred between samples that were collected 
at similar times (i.e. infant 2 and 3’s samples). Important OTUs driving the SVM model are 
plotted and listed in Figure 3-8 and Table 3-2. Interestingly, there is an overlap between room 
specific OTUs that drive the SVM model and occurrence of these taxa in the gut of infant 
occupants. For example, the most visible signature in SVM taxa comes from a spike in 
Veillonella in infant 6’s room on DOL 18 (Figure 3-8). The first major increase of Veillonella in 
infant 6’s gut occurs on DOL 16 (Figure 3-9). The same pattern is seen for infant 8, and in fact, 
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most infants that contain Veillonella have strong SVM signals associated with their room. The 
second strongest signal from the SVM model comes from a Clostridum OTU. This group is 
present in infants 2, 3, and 8’s room samples and it strongly contributes to the SVM model 
prediction. All three of these infants have high abundances of Clostridium.  
 
3.4.7 Composition of persister taxa in the room echoes infant gut composition 
 
 To visualize the distribution of taxa that are known to persist in infants over multi-year 
periods (Gibson et al., 2016; Raveh-Sadka et al., 2016), we collapsed each study day and infant 
pairing by averaging all amplicon abundance data across environments (Figure 3-10, “average” 
panel).  In this analysis, the subset of all OTUs that was classified as persister taxa was assigned 
a distinct color. Each color represents one family, but the same color was used multiple times if 
more than one OTU could be distinguished within a family. Due to high abundance, we gave 
OTU_5 (an Enterobacteriaceae) dedicated coloring. Surprisingly, persister taxa often account 
for > 50% of the data at many time points.  
 Episodes of particularly high persister abundance occurred in rooms housing infants 1, 9, 
12, and 16. To better visualize which samples contributed to the averaged data (Figure 3-10, 
“average” panel), we also plotted data for the specific environments for which we had the most 
samples (armrests and sinks). Both the armrests and sinks are dominated by persister taxa during 
these episodes, but Staphylococcaceae OTUs are much more abundant in armrest samples 
relative to sinks. Two dominant Pseudomonas OTUs that comprised 70% and 24% of all 
Pseudomonadaceae (OTU_8 and OTU_15, respectively) were detected throughout the time 
series, but were at very low abundance in armrest samples over long time spans.   
 Since the room data for infant 9 had a strong persister signal, we analyzed samples from all 
environments separately to visualize temporal patterns (Figure 3-11a). Persister taxa dominated 
most of infant 9’s room samples, with cellphones having the fewest and scanner and surface 
counter samples having the most persister groups per sample. The red lines in Figure 3-11a 
highlight the time point where a major increase in relative abundance of Enterobacteriaceae taxa 
occurred in infant 9’s gut (Figure 3-11b). This group is present in multiple room environments 
prior to the increase, particularly associated with the isolette and armrest. At subsequent time 
points, this group becomes highly prominent in some room environments (e.g., scanner and 
surface counter).  
 OTUs belonging to the persister groups can only be resolved to the genus level and in the 
case of OTU_5, the family level. Since Enterobacteriaceae dominates the gut of infant 9, we 
leveraged room and fecal sample context to infer a possible identity for OTU_5. Using OTU_5’s 
reference sequence as a query, we ran ublast (Edgar, 2010) on a database of 16S rRNA genes 
reassembled from infant 9’s fecal metagenomic samples using the EMIRGE-like REAGO 
algorithm (Miller et al., 2011; Yuan et al., 2015). The top hit to our 429 bp query was 99.5% 
identical (2 mismatches) and came from several of infant 9’s fecal samples. Most of the top hits 
have the entire 16S rRNA gene recovered from the REAGO assembly (~1,520 bp). These fecal 
sequences were searched against the Silva database (SLV_119_SSU) and returned identical, full-
length matches to Klebsiella pneumoniae. While this is an extrapolation from the V3-4 region, it 
is possible that OTU_5 in the room is a Klebsiella and may be Klebsiella pneumoniae, the 
dominant bacterium colonizing infant 9.  
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3.5 Discussion 
  
 The first question that we aimed to answer in this study related to how biomass varies 
across a NICU. Using ddPCR to quantify 16S rRNA gene copy number, we show biomass 
density varies across NICU surfaces by 5-6 orders of magnitude (Figure 3-2). Surprisingly, the 
floor in front of the infant’s isolette had the highest density of microbes relative to any other 
environment within the NICU. Naively, it may seem intuitive that the region with the most foot 
traffic, e.g. the floor at the main entrance of the NICU, would have the highest biomass. While 
the main entrance floor has a high density, it is significantly lower than the floor in front of the 
isolette. This finding may be due to the increased occupancy at the isolette versus the main 
entrance, where occupancy is more transient.  
 Petri dish data also suggest that higher levels of human activity drive higher amounts of 
microbial deposition in the room environment. Notice that the nursing station has higher petri 
dish-associated biomass than the infant room, followed by the hallway (Figure 3-2). This 
outcome occurred despite the fact that the infant room and hallway coolers collected dust at the 
same height (1 m), whereas the nurse station collector was at approximately double the height 
(1.8 m). As height above the floor increases, detection of resuspended particles from dust 
decreases exponentially (Luoma and Batterman, 2001; Fairchild and Tillery, 1982). This finding 
suggests that floor dust is not the main source of biological particles accumulated in the petri 
dishes, but rather the microbes are human-derived.  Greater occupancy or rigor of activity 
(Bhangar et al., 2016) at the nursing station compared to the infant room and hallway likely 
explains this result.  
 A recently published paper noted a stronger occupancy signal from the occupancy sensors 
in the infant room compared to the hallway (Licina et al., 2016). The occupancy signal directly 
overlapped with the coarse particle signal (which detected particles > 10 µm in diameter). This 
signal was interpreted to indicate that resuspension or deposition of particles from occupants is 
be the largest contributor of aerosolized particles in the NICU. In the current study, our Petri dish 
ceiling analyses suggest a similar conclusion for settled particles, but in this case based on 
biological data.   
 If occupancy is a key feature of the NICU environment, one would expect human 
associated microbes to dominate in most room environments. We found that 5-10 taxa account 
for most of the amplicon data and a majority of these are typically skin, nose, or fecal associated 
(Figure 3-3). The enrichment of human associated taxa is likely due to tight control of the 
building envelope via HVAC treatment (Kembel et al., 2012) combined with a strict cleaning 
schedule.  
 An interesting finding of this study related to the change in biomass and microbial 
community structure of the sink basins over the course of the week.  We attribute this pattern to 
the room cleaning regime, which is more limited on weekend days than during the week. On 
Mondays, the sink biomass is highest (Figure 3-6a) and communities are relatively uneven 
(Figure 3-6b), presumably due to extensive growth of a few sink-associated taxa over the 
weekend. More intensive cleaning of the sink early in the week likely removes the majority of 
biomass, which is presumed to be comprised of the sink-adapted taxa.  These events enable 
detection of small numbers of many different types of bacteria that are less well-adapted to the 
sink environment later in the week. 
 The second question addressed in our study related to the taxa that dominate NICU 
surfaces. To investigate this, it was necessary to adapt a method to eliminate spurious 
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contaminant-based signals in data from low biomass samples (Lazarevic et al., 2016). The 
ROTU cleaning method implemented here to clean data of spurious OTUs and contaminants in 
silico was made possible due to the availability of ddPCR quantification of negative controls. 
This capability is particularly important for NICU studies since the rooms are cleaned regularly, 
causing low biomass levels to be present in many samples. Some of the bacteria that we 
conclude were introduced in sample processing are skin associated, although many other groups 
were encountered. After accounting for contamination, we conclude that human associated taxa 
dominate most surfaces.  
 Human associated taxa are likely sourced and trafficked throughout the NICU by 
healthcare providers (Kembel et al., 2014) and many hand hygiene studies have reported as 
much (Luangasanatip et al., 2015). Here, we implemented a machine learning classifier to 
address the possibility that infants and their caretakers shape the microbiome to be distinctive in 
each room. Our model reliably classified samples of unknown origin to their correct room-infant 
pair at an accuracy two times better than a recently published office microbiome study (Chase et 
al., 2016) and achieved predictive power nearly five times better than random chance. This 
outcome suggests that NICU rooms are more personalized than offices. There are typically a 
larger variety of activities and people in office spaces and air treatment is lower (lower air 
exchange rates and less filtration). The combination of less frequent cleaning, increased 
occupancy, and more unfiltered outdoor air supply drives many of the differences between other 
common indoor environments and the NICU. The more unique room signal based on NICU 
room microbes suggests a localized source of bacteria, since a more diffuse source would cause 
lower prediction accuracy. 
 Finally, we tested for patterns of association between room-occupants and NICU room 
environments.  We found that many taxa driving our machine learning model for the room 
microbiome were from groups also present in the gut of the infant occupant. Other signals came 
from Firmicutes and Actinobacteria not affiliated with the infant gut and that were relatively 
uniquely detected in certain rooms. Focusing on the subset of taxa that are gut colonizers, we 
show a relatively high abundance of these taxa throughout the sampling campaign (Figure 3-10). 
Episodes where persistent taxa increase and 2-3 OTUs comprise > 30% of the data across all 
environments occurred several times throughout the study (e.g., in infants 9, 12, and 16). These 
OTUs are detected in low abundance in the room before detection in the gut (  
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Figure 3-11). Once in the infant gut, a far more favorable environment for growth and 
reproduction than on exposed hospital surfaces, bacterial density can reach nearly 10 billion cells 
per gram (Raveh-Sadka et al., 2015). After a bloom in the gut, we see these organisms expand 
into the room environment, mirroring gut colonization. It is impossible to resolve room 16S 
rRNA amplicon data to the strain-level in order to make claims that the same gut bloom resulted 
in a subsequent expanded appearance in the room. Contextually, however, we linked infant 9’s 
dominant gut Klebsiella pneumonia to the Enterobacteriaceae increase in the room. 
Interestingly, the same strain of K. pneumoniae has been detected years apart in different infants 
within this NICU (Raveh-Sadka et al., 2016). To validate if indeed the increase of infant 
colonizing microbes in the room are the same strains as in the gut, whole genome recovery is 
needed.  
 Based on the current study, we conclude that two factors shape room microbiomes.  First, 
our taxa identifications and occupancy results strengthen prior findings of a strong link between 
human activity levels and room microbiology (Licina et al., 2016; Bhangar et al., 2016; Brooks 
et al., 2014). In fact, this connection appears to be strong enough to give rise to a relatively 
unique room microbiome character.  Second, environmental stresses, likely associated with 
cleaning (Brooks et al., 2014; Buffet-Bataillon et al., 2011; Romanova et al., 2007; Weiss-
Muszkat et al., 2010; Hoffman et al., 2005), may be selectively shaping NICU microbiomes, 
primarily by selecting for microbial specialists (microbes that persist because they can both 
thrive in the gut and tolerate the NICU environment). While daily cleaning substantially lowers 
the bioburden in the NICU (Bokulich et al., 2013), the harshest cleaning methods cannot sterilize 
hospital surfaces (Hu et al., 2015). Creative new approaches to displace or prevent entrenchment 
of these NICU specialists, possibly through prebiotic building materials or clever probiotics, may 
present opportunities to break the room-occupant cycle.  
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Figure 3-1: Variation across ddPCR replicates 

16S rRNA template copy number was quantified via ddPCR for three petri dish dust collectors 
suspended from the drop ceiling in each infant’s room. Each dot reflects the average across 
triplicates runs. Each infant set is labeled at the top of the plot facets. 
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Figure 3-2: Biomass varies by 5-6 orders of magnitude in a NICU 

16S rRNA template copy number was quantified via ddPCR. Each dot reflects the average across 
triplicates runs. Grey diamonds represent averages per environment. Figure 3-2a depicts surface 
samples in copies/cm2 and Figure 3-2b and Figure 3-2c shows bioaerosol and HVAC samples in 
copies/sample.  
  



 
 

67 

 

 
 



 
 

68 

 

 
  



 
 

69 

 
  



 
 

70 

Figure 3-3: Top 10 NICU OTUs comprise > 50% of NICU taxa 

Amplicon data from a 16S rRNA V3-4 workflow is plotted for each environment. Only the top 
10 OTUs, determined from averages across all samples, are plotted. Each OTU is colored by its 
family-level classification.  
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Figure 3-4: SourceTracker reveals human skin is dominant source of NICU microbes 

American Gut skin, oral, and fecal samples were used as “sources” and NICU room samples 
were used as “sinks” and input into the SourceTracker software. Plotted on the y-axis is the mean 
relative contribution of each human-associated sources to each environmental sample. 
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Figure 3-5: Alpha-diversity in the NICU 

16S rRNA amplicon data was used to calculate number of OTUs per environment (a) and the 
Shannon diversity (b). 
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Figure 3-6: Growth detected in NICU sink samples 

16S rRNA template copy number was quantified via ddPCR. Average copy number was 
averaged for each weekday and swabbed environment and displayed in this heatmap (a). 16S 
rRNA amplicon data was used to calculate number of OTUs, Shannon, and Inverse Simpson 
diversity metrics for sink basin samples (b). Black diamonds represent averages per weekday. 
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Figure 3-7: NICU rooms have a unique microbial signature 

16S rRNA amplicon data was split into training, test, and validation sets to train, test, and 
validate a support vector machine classifier. The confusion matrix plots the accuracy of our 
model on the validation dataset. Percentages note the number of times a sample was predicted to 
belong to a room-infant pairing divided the total number of samples for that room-infant pairing. 
The heat coloring is based on shown percentages. 
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Figure 3-8: Top 10 most important taxa driving the machine learning model 

The top 10 most important variables driving the SVM model are plotted for each infant. On the 
y-axis, “Abundance”, notes the relative importance. 
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Figure 3-9: Fecal sample community composition 

Plotted in each panel is the community composition of each infant’s fecal samples derived from 
metagenomics data. 
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Figure 3-10: Episodic increases of “persister” taxa in the NICU 

The “average” panel represents 16S amplicon data averaged across all samples at each time point 
per infant. The “armrest” and “sink_basins” panel is the same data but without averaging across 
environments. The red line highlights the time point in which an increase of Enterbacteriaceae 
was detected in infant 9’s gut. Samples are plotted in chronological order on the x-axis. The plot 
is split across two pages for clarity.  
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Figure 3-11: Persister taxa in the room reflect composition of the infant gut 

Infant 9’s room amplicons are plotted for each swabbed environment (a). Colored are OTUs that 
belong to a persister lineage. Red lines highlight day of life 9, which coincides with an increase 
of several Enterobacteriaceae taxa in the infant gut (b). (b) is the microbial profile for fecal 
samples generated via genomes recovered from a metagenomics approach. 
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Table 3-1: Top 10 OTUs in the NICU 

  Kin
gdo
m 

Phylum Class Order Family Genus Species relative
counts 

OT
U_5 

Bact
eria 

Proteoba
cteria 

Gammaprote
obacteria 

Enterobact
eriales 

Enterobacter
iaceae 

? ? 232 

OT
U_6 

Bact
eria 

Firmicut
es 

Bacilli Bacillales Staphylococ
caceae 

Staphylococcus ? 133 

OT
U_4 

Bact
eria 

Actinob
acteria 

Actinobacteri
a 

Propioniba
cteriales 

Propionibact
eriaceae 

Propionibacteri
um 

? 128 

OT
U_7 

Bact
eria 

Firmicut
es 

Bacilli Lactobacill
ales 

Streptococca
ceae 

Streptococcus uncultured 
organism 

126 

OT
U_9 

Bact
eria 

Proteoba
cteria 

Gammaprote
obacteria 

Aeromonad
ales 

Aeromonada
ceae 

Aeromonas ? 125 

OT
U_1
0 

Bact
eria 

Proteoba
cteria 

Alphaproteob
acteria 

Rhizobiales Rhizobiacea
e 

Rhizobium ? 82 

OT
U_8 

Bact
eria 

Proteoba
cteria 

Gammaprote
obacteria 

Pseudomon
adales 

Pseudomona
daceae 

Pseudomonas ? 66 

OT
U_1
1 

Bact
eria 

Proteoba
cteria 

Gammaprote
obacteria 

Pseudomon
adales 

Moraxellace
ae 

Acinetobacter ? 42 

OT
U_2
9 

Bact
eria 

Firmicut
es 

Clostridia Clostridiale
s 

Clostridiace
ae 1 

Clostridium 
sensu stricto 1 

uncultured 
organism 

34 

OT
U_3
2 

Bact
eria 

Proteoba
cteria 

Alphaproteob
acteria 

Caulobacte
rales 

Caulobacter
aceae 

Brevundimonas ? 33 
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Table 3-2: Most important variables to SVM model 

 
  King

dom 
Phylum Class Order Family Genus Species 

OTU
_29 

Bacte
ria 

Firmicute
s 

Clostridia Clostridiale
s 

Clostridiace
ae 1 

Clostridium sunsu 
stricto 1 

uncultured organism 

OTU
_39 

Bacte
ria 

Actinoba
cteria 

Actinoba
cteria 

Micrococca
les 

Micrococcac
eae 

Rothia uncultured organism 

OTU
_41 

Bacte
ria 

Firmicute
s 

Bacilli Bacillales Family XI Gemella ? 

OTU
_30 

Bacte
ria 

Actinoba
cteria 

Actinoba
cteria 

Micrococca
les 

Micrococcac
eae 

Kocuria ? 

OTU
_45 

Bacte
ria 

Actinoba
cteria 

Actinoba
cteria 

Actinomyce
tales 

Actinomycet
aceae 

Actinomyces ? 

OTU
_43 

Bacte
ria 

Firmicute
s 

Bacilli Bacillales Alicyclobaci
llaceae 

Tumebacillus uncultured Firmicutes 
bacterium 

OTU
_76 

Bacte
ria 

Firmicute
s 

Clostridia Clostridiale
s 

Family XI Peptoniphilus ? 

OTU
_74 

Bacte
ria 

Actinoba
cteria 

Actinoba
cteria 

Actinomyce
tales 

Actinomycet
aceae 

Actinomyces uncultured organism 

OTU
_28 

Bacte
ria 

Firmicute
s 

Negativic
utes 

Selenomon
adales 

Veillonellac
eae 

Veillonella uncultured organism 

OTU
_66 

Bacte
ria 

Firmicute
s 

Bacilli Lactobacill
ales 

Streptococca
ceae 

Streptococcus ? 
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4.1 Abstract and Introduction 
 

Infants are born with a near sterile microbiome and acquire most of their initial colonizers 
during birth (Dominguez-Bello et al., 2010). Extremely preterm infants, however, are often 
treated with antibiotics that reset the colonization process (Raveh-Sadka et al., 2015). These 
infants exhibit categorically different colonization patterns relative to full term infants, and it is 
speculated that the infant’s room environment may contribute to infant microbiome colonization 
(Brooks et al., 2014; Shin et al., 2015). Here, we conducted a genome-resolved metagenomics 
study that enabled comparison of genotypes present in the gastrointestinal tracts of infants with 
those of bacteria in the neonatal intensive care unit (NICU) room environment. We show that 
strains detected in hospitalized infants also occur in sinks and on surfaces. Interestingly, a few 
room-associated strains are indistinguishable from strains reported from around the world, 
suggesting their widespread dissemination in the human population. However, comparative 
genomic analyses revealed that many strains shared by the room and infants are distinct from 
strains reported from other systems, supporting the conclusion that the room environment is a 
major reservoir of bacteria that colonize hospitalized infants. Further, Pseudomonas aeruginosa, 
Klebsiella oxytoca and Escherichia coli that colonized infants were present in NICU rooms 
months before infant colonization occurred. Even more importantly, although Enterococcus 
faecalis is relatively uncommon in the room environment, the strains that were detected are those 
that are shared amongst infants over a multi-year period. Thus, we conclude that an important 
component of infant colonization is the cycle of room and occupant exchange in which an 
infant’s immediate room environment shapes early stage microbiome colonization. Where a 
premature infant is born and the history of room occupancy can impact infant microbiome 
development. 
 
4.2 Results and Discussion 
 

Almost 10% of all births in the United States are preterm (Hamilton et al., 2015). Many 
preterm infants are immunocompromised and are especially susceptible to hospital-acquired 
infections (HAI). To reduce the risk of infection, antibiotic treatment is common, and accounts 
for the top three of six medications administered in the NICU (Gasparrini et al., 2016). 
Ironically, following this rigorous broad spectrum antibiotic treatment period, many preterm 
infants acquire an initial microbiome that resembles a collection of common hospital-associated 
pathogens (Gibson et al., 2016). These strains are often resistant to the antibiotics administered 
to the infant, explaining their fitness advantage and frequency of detection. What remains 
unclear, however, is the source of these strains. 

Previous hospital microbiome studies have implicated the room environment as an 
important source of strains that colonize hospitalized infants, but these studies were conducted 
using 16S rRNA surveys that cannot reliably distinguish different bacteria from the same 
taxonomic family (Tu et al., 2014; Jovel et al., 2016). This limitation is important. For example, 
there are dozens of different genera within the family Enterobacteriacaea, including 
Escherichia, Klebsiella, Yersinia, Serratia, and Citrobacter. Even within a particular genus, 
there are numerous distinct species. For example, Escherichia fergusonii and E. coli have distinct 
physiologies and medical implications (Luo et al., 2011). Further, within E. coli, there are 
numerous strains that can differ enormously in their pathogenicity and antibiotic resistance 
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(Tenaillon et al., 2010). Methods that can determine which strains are present are necessary to 
ascertain the potential medical significance of room- and infant-associated bacteria. Similarly, 
strain-resolved methods are essential to determine if the room environment is the actual source 
for organisms detected in infants or if related organisms were introduced from external sources. 
The taxonomic limitation of rRNA gene survey-based methods motivated us to conduct the first 
metagenomic study in which genomes were reconstructed from room surfaces and from the fecal 
samples of premature infants hospitalized in those rooms. Thus, we could test for a direct link 
between strains in the NICU environment and the infant gut.  
 Sixteen preterm infants (< 31 week’s gestation, < 1500 g) housed in a NICU in the USA 
were studied from day of life (DOL) 5 to DOL 28. We collected 295 fecal samples from the 
infants (primarily obtained by perineal stimulation) at the same time that 3700 room samples 
were obtained using swabs and wipes. Room samples were derived from a variety of touched 
surfaces as well as from the interior of handwashing sink basins. Overall, 22 different hospital 
surface types were represented. DNA was extracted from all fecal samples. Due to extremely low 
biomass, DNA from multiple samples collected at different times from the same room were 
pooled, generating three sample types per room: swabs, wipes, and sinks. DNA from both fecal 
samples and room samples was sequenced, generating a total of ~1 Tb of data. Sequencing reads 
were trimmed, assembled and the data binned using a previously described metagenomics 
analysis pipeline (Olm et al., 2016). For room samples, sequencing allocations were increased 
relative to allocations for fecal samples to compensate for the expected higher levels of microbial 
diversity in the room samples. Our approach generated hundreds of draft quality genomes for 
bacteria present in both the infant gut and room samples. The successful recovery of reasonably 
high quality genomes directly from room-collected samples is unprecedented. 
 Recent genome-based metagenomic studies suggested that most strains that colonize 
infants in the same NICU are not shared amongst cohoused infants, although similar species and 
strains were identified (Raveh-Sadka et al., 2015). Of the few strains that are shared by different 
infants, many reoccurred in samples from infants present in the NICU several years apart 
(Raveh-Sadka et al., 2016). A “strain” or “strain type” was considered the same if two near-
complete genome bins had greater than 98% average nucleotide identity (ANI) across 95% of the 
bin. Currently, there is no standard convention for strain identity thresholds in bacteria. This 
classification likely will not be finalized soon, since the species concept of bacteria has been 
contested for decades (Ellegaard and Engel, 2016). Though, the ability to readily reproduce the 
same genomes at a high identity (> 99.9% ANI) across multiple time points from the same infant 
is strong support that these methods are reproducing the same “strain.” Perhaps even more 
compelling is the genomes have the same level of identity to reference genomes which were 
generated via isolation and Sanger sequencing (discussed below). The results suggested to us that 
room reservoirs may exist for “persister” strains, and that reseeding of sequential room occupants 
occurs from these reservoirs. To test this hypothesis, we compared the bacterial genome 
sequences reconstructed from room and infant samples to determine whether the same strains 
occurred in both environments. The genomes were clustered at an ANI > 98% using the MASH 
algorithm (Ondov et al., 2015). Three strains (Escherichia coli, Enterococcus faecalis, 
Pseudomonas aeruginosa) from among the five persister strains previously reported were 
recovered from room samples (Figure 4-1). Thus, we conclude that indeed, room habitats may 
host bacteria that repeatedly colonize infants housed in the NICU.  

We detected a high degree of overlap in bacterial strain composition between room and 
infant samples (Figure 4-1). Of the 67 distinct bacterial genotypes found in more than one infant 
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in the studied cohorts, 17 were recovered from room samples (25%). Interestingly, Firmicutes 
(Clostridium and Enterococcus) were relatively rarely detected in room habitats. This 
observation may indicate that these obligately anaerobic bacteria are not well suited to grow in 
the room environment. Alternatively, they may have been under-detected, possibly because of 
sporulation triggered by the hostile room conditions, increasing the difficulty of DNA extraction. 

The overlap in room and infant microbes cannot distinguish seeding of the room from the 
infant versus colonization of the infant from a room reservoir. Analysis of directionality can be 
undertaken using time series data. We sequenced room samples from infant 5 that were collected 
at different times during hospitalization. Samples collected early, middle and at late time points 
were pooled to ensure sufficient DNA for sequencing while still accounting for sampling time 
(DOL 5-12, 13-20, and 21-28, respectively). No organisms were detected in early room pools 
before they were detected in infant 5’s fecal samples (Figure 4-2). This observation does not 
necessary rule out room to infant transfer, but does indicate infant to room dispersal. Following 
detection in the infant, all infant-associated strains, excluding one Streptococcus, were detected 
in the infant’s room samples (Figure 2-2). This pattern led us to posit that infants disperse 
microbes into the room where the microbes can persist, and the persistent microbes may later 
colonize other infants housed in the same room.   

To test for a cyclical pattern of infant-room-infant transfer, we further investigated 
genomes of bacteria that were most frequently found in both room and infant samples. While 
MASH clustering at > 98% ANI provides high confidence that two bacteria belong to the same 
species and likely the same strain, strains-level resolution can be imprecise. Thus, we 
implemented a highly sensitive approach (Olm et al., 2016) that involved mapping of sequencing 
reads from room samples to a database of genomes reconstructed from infant 5’s fecal samples. 
Near complete genomes were recovered from nearly all room samples for Klebsiella oxytoca, 
Pseudomonas aeruginosa, Staphylococcus epidermidis, and Klebsiella pneumoniae. We found 
that the bacteria represented by these room sample-derived genomes appeared in samples 
collected from infants months to years before and after their detection in the room. Excluding 
reads from infant 5’s room, the highest identity match showed infant 3’s sink basin reads 
mapping to infant 5’s Pseudomonas aeruginosa gut genome at 99.9% ANI at 98.7% genome 
breadth. We also compared reads from all rooms to recently acquired skin and oral metagenomes 
from infant 5 and found the highest identity hit is infant 18’s room swab reads to infant 5’s oral 
Staphylococcus epidermidis genome. Remarkably, 8 of 14 genomes detected in infant 5’s gut 
were identified in the room reads from other infants’ rooms (ANI > 99% and genome breadth > 
90%). Not detected were Clostridium perfringens, Enterococcus faecalis, Propionibacterium sp. 
HGH0353, Serratia marcescens, Streptococcus mitis, Streptococcus sp. SK140.  Based on infant 
5’s room reads results, all of the bacteria in infant 5’s gut were identified in infant 5’s room 
except C. perfringens and S. sp. SK140. The detection of room strains before and after detection 
in infant 5’s fecal samples supports our model of cyclic passage between room and human 
reservoirs. However, we cannot rule out the possibility that virtually all strains are everywhere 
and host selection is driving the observed colonization patterns.  

We next applied the same room read mapping approach to a database of publicly 
available genomes and genomes recovered from infants in this NICU prior to the current study. 
We first focused on Pseudomonas aeruginosa since it was the most commonly recovered 
genome in room samples (14/24 samples). Seventy-two complete NCBI genomes and 10 
previously assembled genomes from our lab were included in the database. Interestingly, the 
highest scoring match was from infant 18’s sink sample reads and a genome deposited by a 
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group in Orsay, France in 2016 (99.9% ANI and 99.9% genome breadth). This finding may 
indicate that this P. aeruginosa strain is widely distributed in the human population. 

Many of the top hits for room reads obtained in the current study were to genomes 
previously assembled from the same hospital. This finding confirms that “persister” strains occur 
in the room environment (Table 4-1). Interestingly, a high quality match occurred between the 
room reads that we obtained from samples collected in 2014 in Pittsburgh and the genome of a 
bacterium that was isolated from a burn patient in 2006 in Boston. In fact, the P. aeruginosa 
genomes only differ by 78 SNPs. The broad distribution of this strain suggests their facile 
dispersal and strong selective pressures for this genotype within the hospital environment.  

Next we compared the genome of Klebsiella oxytoca, the second most frequently 
recovered genotype detected in the room samples (13/24 samples), to a database that includes 18 
NCBI genomes and 8 previously assembled genomes from our lab. Unlike Pseudomonas, none 
of the publicly available genomes had high scoring hits. The closest strain was isolated in 2015 
from a group in Jikei, Japan (ANI 99.8%, genome breadth of 87.2%). In contrast, the highest 
scoring match for infant 5’s room swab reads was to a genome that we reconstructed from fecal 
samples collected in 2012. The ability to only detect high quality hits of room reads to genomes 
of gut-associated bacteria previously reconstructed from samples collected from infants in the 
same hospital makes a links between these K. oxytoca populations highly probable. However, a 
better representation of K. oxytoca genomes from other localities in reference databases may 
increase the probability that some infant-associated populations are externally derived.  

Although many strains found in infants are also found in their rooms and other rooms, the 
opposite is not true. For example, many sink-associated bacteria (including numerous 
Gammaproteobacteria) do not colonize infants. Further, only a subset of species/strains in many 
room samples is found in infants. Thus, it is likely that environmental selection has some role in 
shaping even the earliest establishing microbiomes. The counterpoint is that we recently showed 
that identical strains colonize mouth, skin and gut habitats of premature infants (Olm et al., 
2016).  In combination, the prior work and genome-resolved studies reported here suggest that, 
for those strains that can colonize infants, there is a relatively low level of host selection during 
initial microbiome development. Thus, it seems likely that niche occupation by closely related 
taxa, via the founder effect (Waters et al., 2013), may be a key determinant in early infant 
microbiome colonization. 

Preterm infants hospitalized within a NICU constitute a particularly vulnerable cohort with 
a high risk for hospital-acquired infections. Here, we directly link genomes from the room that 
later colonize infants several days to years later. Evidence supports the suggestion that the rooms 
are a reservoir for early stage colonizers of the infant microbiome. The results may be 
generalizable to other patient populations. An important implication of our findings is that the 
hospital in which a premature infant is born, the room that it occupies, and the infants previously 
housed there can shape early microbiome development. Given that gut colonization patterns 
during this time period are critical to human health (Cahenzli et al., 2013; Costello et al., 2012; 
Arrieta et al., 2015; Sim et al., 2013), further research exploring the properties of the NICU built 
environment and its microbiome may provide clever ways to protect these vulnerable patient 
populations. 
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Figure 4-1: Similar room strains are found in the infant gut across several cohorts and 
years 

Each infant and its affiliated time series of fecal samples is represented along the x-axis. The y-
axis labels correspond to genomes that have > 98% ANI with other genomes across infants. 
Genome labels on the y-axis are for representative genomes within that cluster. Only genomes 
that were found in infants across different cohorts or are shared with a genome in the room are 
displayed. The blue panel highlights samples sourced from the room. Year of collection is 
provided in the key.  
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Figure 4-2: Time series room metagenomes reveal infant to room directionality 

Infant 5’s time series fecal and room samples are plotted on the x-axis in chronological order by 
time of collection. The y-axis labels correspond to genomes that have > 98% ANI with other 
genomes across samples. Genome labels (y-axis) are for representative genomes within that 
cluster. The blue panels highlight samples sourced from the room. 
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Table 4-1: Strains isolated from hospital sources have varying degrees of similarity to 
publicly available reference genomes 

Room reads were mapped to a database of publicly available genomes and genomes previously 
isolated from this hospital by our lab to observe the global ubiquity of room microbes. The top 
10 hits are provided. 
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S
N
Ps 

bread
th 

consen
sus_A
NI 

genome sample locatio
n 

date 
deposit
ed 

source 

Pseudomonas aeruginosa 
68 0.9994

05028 
0.9999
89394 

GCF_900095805.1_PA14Or_geno
mic.fna 

Infant 18 sink 
samples 

Orsay, 
France 

2016 NA 

86 0.9990
07125 

0.9999
87096 

NECEvent2014_3_6_Pseudomonas
_aeruginosa_65_49.contigs.fna 

Infant 18 sink 
samples 

Pittsbu
rgh, 
PA 

2014 infant fecal 
sample 

78 0.9985
82212 

0.9999
87809 

GCF_000014625.1_ASM1462v1_
genomic.fna 

Infant 18 sink 
samples 

Boston
, MA 

2006 clinical 
isolate; burn 
patient 

38
8 

0.9955
11975 

0.9999
35215 

Infant_2_PA.contigs.fna Infant 12 sink 
samples 

Pittsbu
rgh, 
PA 

2011 infant fecal 
sample 

14
26 

0.9873
71486 

0.9996
83952 

NECEvent2014_3_6_Pseudomonas
_aeruginosa_65_49.contigs.fna 

Infant 12 sink 
samples 

Pittsbu
rgh, 
PA 

2014 infant fecal 
sample 

46
4 

0.9873
38114 

0.9999
22458 

NIHY1_18_45__Pseudomonas_aer
uginosa.contigs.fna 

Infant 12 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

10
5 

0.9861
11251 

0.9999
74379 

GCF_900095805.1_PA14Or_geno
mic.fna 

Infant 12 sink 
samples 

Orsay, 
France 

2016 NA 

85 0.9837
49355 

0.9999
79234 

GCF_000014625.1_ASM1462v1_
genomic.fna 

Infant 12 sink 
samples 

Boston
, MA 

2006 clinical 
isolate; burn 
patient 

43
9 

0.9825
05499 

0.9999
31941 

65_007_Pseudomonas_aeruginosa_
66_63.contigs.fna 

Infant 18 sink 
samples 

Pittsbu
rgh, 
PA 

2013 infant fecal 
sample 

27
2 

0.9809
95951 

0.9999
57789 

NIHY1_14_298__Pseudomonas_a
eruginosa.contigs.fna 

Infant 18 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

Klebsiella oxytoca 
12
3 

0.9913
51015 

0.9999
78546 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 5 early 
swab samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

84 0.9910
57012 

0.9999
85337 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 3 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

95 0.9906
13175 

0.9999
83394 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 5 early 
sink samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

12
1 

0.9898
89236 

0.9999
78808 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 6 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

34
1 

0.9895
50781 

0.9999
4017 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 12 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

16
4 

0.9889
48185 

0.9999
711 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 5 late 
sink samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

18
7 

0.9877
65478 

0.9999
66816 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 18 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 
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45 0.9743
41384 

0.9999
89695 

NIHY1_19_62__Klebsiella_oxytoc
a.contigs.fna 

Infant 3 swab 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

48 0.9613
81845 

0.9999
85613 

NIHY1_21_47__Klebsiella_oxytoc
a_rel.contigs.fna 

Infant 5 early 
swab samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 

42 0.9592
61836 

0.9999
87355 

NIHY1_21_47__Klebsiella_oxytoc
a_rel.contigs.fna 

Infant 3 sink 
samples 

Pittsbu
rgh, 
PA 

2012 infant fecal 
sample 
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5 Concluding remarks and future perspectives 
  

The data and analyses presented here suggest the place an infant is born has major 
implications for its health and development. Through a series of experiments we show several 
ESKAPE related organisms are readily recovered from NICU surface samples before and after 
their detection in infant gut samples (Figures 1-5, 3-10, 3-11, 4-1, 4-2). Using multiple molecular 
techniques we show strong evidence that room microbes colonize infants, but also that infants 
are major contributors to shaping the microbiome of each NICU room (Figure 3-7). The ability 
of a patient to change the microbiome of the built environment has been previously reported, but 
most of these studies focus on nosocomial infection. For example, if the previous patient has a 
vancomycin resistant enterococcus (VRE), methicillin-resistant Staphylococcus aureus, 
Clostridium difficile, or Acinetobacter baumannii  infection, subsequent patients in the same 
room have a 73% increase chance of acquiring this infection (Carling and Bartley, 2010). The 
approaches presented here offer an unbiased perspective of what microbes persist on NICU 
surfaces, what strains successfully colonize occupants, and what adaptations may contribute to 
this cycle of room to occupant exchange. However, assuming the ultimate application of the 
knowledge generated from hospital microbiome studies is curbing nosocomial infection and 
facilitating better occupant health, many questions remain unanswered.  
 Recent studies have highlighted that very few strains are shared amongst cohoused 
preterm infants in a NICU (Raveh-Sadka et al., 2015). Most of the strains colonizing preterm 
infants appear to be sourced from a vast reservoir containing, at the very least hundreds, likely 
thousands of strain types (Raveh-Sadka et al., 2016). Since very few strains are shared, two 
possible sources of colonization seem likely. One, the room may have little influence on infant 
colonization and microbes detected in the gut are sourced from the birthing process. This seems 
unlikely since recent studies using ddPCR to quantify biomass in infant fecal samples show the 
antibiotic treatments administered cause biomass to become undetectable (Raveh-Sadka et al., 
2015). Two, most microbes are sourced from the NICU environment but the large reservoir of 
strain types makes the probability of observing shared strains less likely. If this were true, with 
more infant fecal samples collected, more shared strains across infants would be observed.  

While not explicitly addressed in Chapter 4, there is a trend emerging in the number of 
“persister” strains seen in this NICU over time as more samples are collected. For example, K. 
oxytoca was not identified as a persistent strain in a 2016 study (Raveh-Sadka et al., 2016), but 
with the data presented here, it is very clearly a “persister.” The same strain of K. oxytoca is 
recovered from many of the room metagenomes and several infant fecal samples. To fully 
characterize the level of strain diversity in the NICU, more room metagenomic samples are 
needed. A simple approach in designing a follow-up study would be to plot a collectors curve 
based on the data generated (i.e. number of samples on the x-axis and number of genomes 
recovered on the y-axis). Using such a curve as a guide, the campaign size could then be 
extrapolated from this preliminary data. As the cost of sequencing continues to decrease, 
exhaustively sampling a NICU to recover the entirety of strain-diversity may not be too cost 
prohibitive.  
 As the database of NICU strain diversity grows, so will understanding of the population 
structure of these NICU-adapted, ESKAPE related organisms. Recent studies detailing the 
expansion of the K. pneumoniae population provide an apt case study in what trends may emerge 
as researchers begin applying isolate-independent, metagenomic techniques in hospitals. The 
population structure of K. pneumoniae has been elucidated from a variety of molecular methods 
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(Bialek-Davenet et al., 2014; Brisse et al., 2009; Diancourt et al., 2005). Popular over the past 
decade has been the use of multilocus sequence typing (MLST) in which seven chromosomally 
encoded housekeeping genes are targeted for sequencing (Brisse et al., 2009; Diancourt et al., 
2005). These methods originally produced three phylogenetically distinct K. pneumoniae 
groupings (types I, II, and III), which were later classified as K. pneumoniae, K. 
quasipneumoniae, and K. variicola (Rosenblueth et al., 2004; Brisse et al., 2014; Holt et al., 
2015). Increased efforts in whole genome sequencing in recent years, however, has revealed a 
vast complexity within the K. pneumoniae population. Using 289 K. pneumoniae genomes in a 
whole-genome based analysis, a recent study found 157 distinct lineages (Holt et al., 2015), 155 
of which have been documented using MLST methods (Bialek-Davenet et al., 2014). However, 
this campaign was far from an exhaustive survey of the K. pneumoniae population. A recent 
review plotted the number of K. pneumoniae lineages discovered versus the number of 
sequenced isolates to create a collector’s curve. This curve indicates the number of possible K. 
pneumoniae lineages to be in the thousands (Wyres and Holt, 2016). The persistence of this 
many lineages has yet to be explained but may be due to K. pneumoniae’s ability to occupy a 
wide variety of ecological niches (Ullmann, 1998; Bagley, 1985; Holt et al., 2015).  

Many of the K. pneumoniae and ESKAPE related studies are implemented using a 
targeted approach focused on disease or are based on isolation via culturing. The approaches 
presented here offer several advantages over these culture-dependent techniques, but the most 
important are whole-genome information and scalability. While all ESKAPE organisms are 
relatively easy to culture, using an isolate based approach is low throughput. Using a sample 
pooling scheme across NICU environments, we were able to recover dozens of K. pneumoniae 
and K. oxytoca genomes, which are not represented in the above mentioned Klebsiella strain type 
databases. Since sink basin samples are dominated by Enterobacteriaceae, a follow up study 
focusing on sink samples could greatly expand the Klebsiella radiation previously documented 
by low throughput methods. Another added benefit of metagenomics approaches is whole 
genome information and community context of genomes in the environment.  

Whole genome information and community context could be leveraged to provide 
interventions to prevent nosocomial infection. One possible approach could be to introduce a 
standard metagenomic surveillance protocol of room surfaces to be included in the regular 
surveillance activities common in most hospitals. Typically infectious disease specialists use 
antibiotic resistance panels and enrichment media to monitor relative contamination levels on 
hospital surfaces (Sydnor and Perl, 2011). In conducting metagenomic surveillance, recovering 
the entire genome of hospital surface associated organisms would reveal the pathogenic potential 
of surface microbes, their antibiotic resistance potential, and provide information as to what 
features allow persistent surface colonization.  

Several examples using metabolic potential to predict what features enable hospital 
surface colonization were highlighted here. A good example is biofilm formation, discussed in 
Chapter 1. Biofilms on hospital surfaces often have increased antibiotic resistance potential and 
are highly resistant to removal via cleaning (Weiss-Muszkat et al., 2010; Romanova et al., 2007; 
Hu et al., 2015). Utilizing the genomic information from these communities, it may be possible 
to genetically engineer communities unable to form biofilms or engineer biofilms that are more 
susceptible to cleaning. With recent advances in gene editing technology, e.g. CRISPR-Cas9 
(Ledford, 2016), introducing a genetically engineered probiotic consortia of hospital surface 
associated microbes is becoming increasingly more attainable. Another possibility could be the 
implementation of cleverly designed building materials that act as prebiotics to selectively enrich 
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for innocuous microbes to dominate hospital surfaces. Creating prebiotic building materials 
would be challenging for numerous reasons but essential first steps is generating more 
metagenomic, as well as transcriptomic, data to better understand the metabolic processes 
contributing to surface colonization.  

Hospital acquired infections remain a significant problem in the US, costing 
approximately $30 billion per year to manage (CDC, 2016). The data presented here suggests not 
only are pathogens sourced from the hospital environment to colonize patients, but so are 
commensal organisms in the case of preterm infants. Using metagenomics techniques we show 
many strains from infant fecal samples are recoverable year after year and these strains are 
identical to strains found on NICU surfaces. Some of these strains are endemic while others are 
more globally dispersed. Future studies should continue to generate genome focused data using 
high throughput techniques. Perhaps unattainable years ago due to sequencing costs, scientists 
should aim to sequence everything in the hospital (i.e. surfaces, air, water, and people). The data 
generated will be invaluable information in better understanding organisms that have significant 
implications for human and building health.  
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