
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Enumerating small hyperbolic 3-manifolds

Permalink
https://escholarship.org/uc/item/1dj7q73s

Author
Thurston, Nathaniel

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dj7q73s
https://escholarship.org
http://www.cdlib.org/

Enumerating small hyperbolic 3-manifolds

by

Nathaniel Thurston

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Robion Kirby, Co-chair
Professor David Gabai, Co-chair

Professor Ian Agol
Professor Steven Evans

Summer 2023

Enumerating small hyperbolic 3-manifolds

Copyright 2023
by

Nathaniel Thurston

1

Abstract

Enumerating small hyperbolic 3-manifolds

by

Nathaniel Thurston

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Robion Kirby, Co-chair

Professor David Gabai, Co-chair

This paper documents a computer-assisted procedure for rigorously analyzing small hyper-
bolic 3-manifolds. Briefly, we will define a compact six-dimensional space P that parame-
terizes pairs of elements of Isom(H3), and then construct a regular binary space partition
(BSP) tree which subdivides P into subregions Pi and whose leaves are — with a few ex-
ceptions — labeled with killerwords. These killerwords will encode miniature proofs that Pi

cannot contain any points which correspond to particular choices of pairs of generators of
any torsion-free discrete group of Isom(H3). This tree of mini-proofs will then be used to ex-
haustively isolate all possible manifolds which can have properties related to the dimensions
of P .

This method has been used as a foundation for tackling multiple long-standing problems
at the interface of hyperbolic geometry and low-dimensional topology. In particular: topo-
logical rigidity of hyperbolic 3-manifolds; the generalized Smale conjecture for hyperbolic
3-manifolds; finding the closed 3-manifold of least volume; and the Gordon conjecture on
exceptional Dehn fillings.

1

Chapter 1

Introduction

This paper documents a computer-assisted procedure for rigorously analyzing small hyper-
bolic 3-manifolds. Briefly, we will define a compact six-dimensional space P that parame-
terizes pairs of elements of Isom(H3), and then construct a regular binary space partition
(BSP) tree which subdivides P into subregions Pi and whose leaves are — with a few ex-
ceptions — labeled with killerwords. These killerwords will encode miniature proofs that Pi

cannot contain any points which correspond to particular choices of pairs of generators of
any torsion-free discrete group of Isom(H3). This tree of mini-proofs will then be used to ex-
haustively isolate all possible manifolds which can have properties related to the dimensions
of P .

The first two applications of the procedure were used to prove a proposition from [GMT]:

Proposition 1.1. [GMT] Let M be an orientable hyperbolic 3-manifold, and let δ be a
shortest geodesic. Then, either tuberadius(δ) > ln(3)/2, or M lies within one of seven
tightly constrained exceptional geodesic-geometry regions.

A more precise form of this proposition is restated in the next chapter as 2.1. This
proposition and a related one were used in the proof of the main technical result of [GMT],
the topological rigidity of hyperbolic 3-manifolds.

Theorem 1.2. [GMT] Every closed hyperbolic 3-manifold has a non-coalescible insulator
family, indeed one coming from a shortest geodesic. As a consequence, homotopy hyperbolic
3-manifolds are hyperbolic.

More recently, the proposition has been sharpened:

Theorem 1.3. Let M be an orientable hyperbolic 3-manifold, and let δ be a shortest geodesic.
Then, either tuberadius(δ) > ln(3)/2, or M is isometric to one of seven specific manifolds.

Proof. Let X0, · · · , X6 denote the exceptional regions of Proposition 2.1 with Ni the corre-
sponding conjectural manifold. [GMT] showed that N0=Vol3 is the unique manifold in the
region and [JR] showed that Vol3 covered no 3-manifold. [JR] also proved that N5 and N6

2

are isometric. [CLLMR] and [L] identify a manifold in each region and [CLLMR] show that
these manifolds are the unique ones in its region. [CLLMR] show that N1, N5 and N6 cover
no manifold. In [GT] the proof is completed by showing that N3 covers no manifold and
each of N2 and N4 2-fold cover manifolds, however the quotients are all non exceptional, i.e.
each shortest geodesic has a ln(3)/2 tube.

Other applications of the procedure:

Theorem 1.4. [G2] (Smale conjecture of hyperbolic 3-manifolds) If N is a closed hyperbolic
3-manifold, then the natural inclusion Isom(N) → Diff(N) is a homotopy equivalence.

The proof makes essential use of the fact that a shortest geodesic of a closed hyperbolic
3-manifold satisfies the insulator condition [GMT].

Theorem 1.5. [GMM], [Mi] The Weeks manifold is the unique closed orientable hyperbolic
3-manifold of minimal volume.

In addition to [GMT] this result relies on

Lemma 1.6. [ACS] Suppose that M is a closed, orientable hyperbolic 3-manifold, and that
C is a shortest geodesic in M. Set N = drillC(M). If tuberad(C) ≥ ln(3)/2 then volN <
3.0177volM .

This is based on a result of [ADST], that makes essential use of Perelman’s [Pe1], [Pe2]
Ricci flow with surgery and as well as his monotonicity result, which are key elements of his
proof of geometrization. Lemma 1.6 is used to prove other results such as:

Theorem 1.7. [ACS] Suppose that M is a closed, orientable, hyperbolic 3-manifold such
that vol(M) ≤ 1.22. Then H1(M : Zp) has dimension at most 3 for every prime p.

That result also requires this work and [GMT].

The methods of this work are crucial to the following result.

Theorem 1.8. [GHMTY] The figure-8 knot complement is the unique 1-cusped hyperbolic
3-manifold with 9 or more non hyperbolic fillings.

This result gives a positive proof of the long-standing Gordon exceptional filling conjec-
ture that has attracted much attention. See [GHMTY] for a detailed history. An important
result in this direction was the theorem of Lackenby and Meyerhoff [LM] who showed that a
cusped hyperbolic 3-manifold has at most 10 exceptional fillings. That result also relied on
rigorous computer assistance using the AffApprox technology.

For a survey of this work and further developments including other applications, see
[GMTY].

This paper is organized as follows.

3

In Chapter 2 we introduce [GMT]; Proposition 1.28 as Theorem 2.1, and sketch its proof.
In Chapter 3 we provide a formal statement and proof of Theorem 2.1.
In Chapter 4, the method for describing the decomposition of the parameter space W

into sub-regions is given, and the conditions used to eliminate sub-regions are discussed.
Near the end of this section, the first part of a detailed example is given.

Eliminating a sub-region requires that a certain function is shown to be bounded ap-
propriately over the entire sub-region. This is carried out by using a first-order Taylor
approximation of the function together with a remainder bound. Our computer version of
such a Taylor approximation with remainder bound is called an AffApprox and in Chapter
5, the relevant theory is developed. At this point, the detailed example of Chapter 4 can be
completed.

In Chapter 6 and 7, round-off error analysis appropriate to our set-up is introduced.
Specifically, in Chapter 7, round-off error is incorporated into the AffApprox formulas in-
troduced in Chapter 5. The proofs here require an analysis of round-off error for complex
numbers, which is carried out in Chapter 6.

In Section 8 we give some hints about the search for a tree, in the hope that they will
help others endeavoring to apply these methods.

Prior publication: Chapter 2 includes material from section 0 of [GMT]. Chapters 3
through 7 originally appeared as sections 1 and 5 through 8 of [GMT], and are reproduced
here with minor revision. In particular, Chapter 3 is a somewhat abridged version of section
1 of [GMT]. Chapter 8, which includes new insights, also contains material which originally
appeared in remarks in [GMT], and is related to material which originally appeared in
[GMTY].

Acknowledgements:

1. David Gabai (relentless hope; orchestrating support; ruthless focus)

2. Robert Meyerhoff (writing down AffApprox proofs)

3. The Geometry Center (creative environment)

4. UC Berkeley (patience)

4

Chapter 2

Technical Introduction

Here is a brief description of why Proposition 1.2 might be amenable to computer-assisted
proof. If a shortest geodesic δ in a hyperbolic 3-manifold N does not have a ln(3)/2 tube
then there is a 2-generator subgroup G of π1(N) = Γ which also does not have that property.
Specifically, take G generated by f and w, with f ∈ Γ a primitive hyperbolic isometry whose
fixed axis δ0 ⊂ H3 projects to δ, and with w ∈ Γ a hyperbolic isometry which takes δ0 to
a nearest translate. Then, after identifying N = H3/Γ and letting Z = H3/G, we see that
the shortest geodesic in Z (which corresponds to δ) does not have a ln(3)/2 tube. Thus,
to understand solid tubes around shortest geodesics in hyperbolic 3-manifolds, we need to
understand appropriate 2-generator groups, and this can be done by a parameter space
analysis as follows. (Parameter space analyses are naturally amenable to computer proofs.)

The space of relevant (see Definition 3.10) 2-generator groups in Isom+(H
3) is naturally

parametrized by a subset P of C3. Each parameter corresponds to a 2-generator group G
with specified generators f and w, and we call such a group a marked group. The marked
groups of particular interest are those in which G is discrete, torsion-free, parabolic-free,
f corresponds to a shortest geodesic δ, and w corresponds to a covering translation of a
particular lift of δ to a nearest translate. We denote this set of particularly interesting
marked groups by T . We show that if tuberadius(δ) ≤ ln(3)/2 in a hyperbolic 3-manifold N,
then G must correspond to a parameter lying in one of seven small regions Rn, n = 0, . . . , 6
in P . With respect to this notation, we have:

Proposition 2.1. T ∩ (P − ∪n=0,...,6Rn) = ∅.

5

The full statement of Proposition 2.1 explicitly describes the seven small regions of the
parameter space as well as some associated data.

Here is the idea of the proof. Roughly speaking, we subdivide P into a billion regions of
varying sizes, and show that all but the seven exceptional regions cannot contain a parameter
corresponding to a “shortest/nearest” marked group. For example we would know that a
region R contained no such group if we knew that for each point ρ ∈ R, Relength(fρ) >

Relength(wρ). (Here Relength(fρ) (resp. Relength(wρ)) denotes the real translation length
of the isometry of H3 corresponding to the element f (resp. w) in the marked group with
parameter ρ.) This inequality would contradict the fact that f corresponds to δ which is a
shortest geodesic. Similarly, there are nearest contradictions.

6

Chapter 3

Killerwords and the parameter space

Notations And Conventions 3.1. . A hyperbolic 3-manifold is a Riemannian 3-manifold
of constant sectional curvature −1. All hyperbolic 3-manifolds under consideration will be
closed and orientable. We will work in the upper-half-space model for hyperbolic 3-space:
H3 = {(x, y, z) : z > 0} with metric dsH = dsE/z. The distance between two points w and v
in H3 will be denoted ρ(w, v).

It is well known that Isom+(H
3) = PSL(2,C), where an element of PSL(2,C) acts as

a Möbius transformation on the bounding (extended) complex plane and the extension to
upper-half-space is the natural extension (see [Bea]). If M is a hyperbolic 3-manifold, then
M = H3/Γ where Γ is a discrete, torsion-free subgroup of PSL(2,C).

For computational convenience, we will often normalize so that the (positive) z-axis is
the axis of an isometry. As such, we set up some special notation. Let B(0;∞) denote the
oriented geodesic {(0, 0, z) : 0 < z < ∞}, with negative endpoint (0, 0, 0). (An endpoint of
an axis refers to a limit point of the axis on S2

∞.) Let B(−1;1) denote the oriented geodesic
with negative endpoint (−1, 0, 0) and positive endpoint (1, 0, 0).

When working in a group G generated by f and w and looking at words in f, w, f−1, w−1

we will often let F and W denote f−1 and w−1, respectively.

Definition 3.2. If f is an isometry, then we define

Relength(f) = inf{ρ(w, f(w)) | w ∈ H3}.

Thus Relength(f) = 0 if and only if f is either a parabolic or elliptic isometry. If Relength(f)
is positive, then f is hyperbolic and maps a unique geodesic σ in H3 to itself. In that case
σ is oriented (the negative end being the repelling fixed point on S2

∞) and the isometry f
is the composition of a rotation of t (mod 2π) radians along σ (the sign of the angle of
rotation is determined by the right-hand rule) followed by a pure translation of H3 along σ
of l = Relength(f). We define length(f) = l + it, and call Af = σ the axis of f. Now, Af is
an oriented interval with endpoints in S2

∞, the orientation being induced from σ.
If the geodesic σ is given a fixed orientation, we define an l + it translation f along σ to

be a distance l translation in the positive direction, followed by a rotation of σ by t radians.

7

Of course if l < 0, then each point of σ gets moved −l in the negative direction. Also, via
the right-hand rule, the orientation determines what is meant by a t-radian rotation. Thus
if l > 0, the orientation induced on σ by f (as in the previous paragraph) equals the given
orientation. If l < 0, then the induced orientation is opposite to the given orientation and f
is a −(l + it) translation of −σ in the sense of the previous paragraph.

If f is elliptic, then f is a rotation of t radians where 0 ≤ t ≤ π about some oriented
geodesic, and we define length(f) = ti. If f is parabolic or the identity, we define length(f) =
0 + i0. So, for all isometries we have that Relength = Re(length).

Definition 3.3. If G is a subgroup of Isom+(H
3), then we say that f is a shortest element

in G if f ̸= id and Relength(f) ≤ Relength(g) for all g ∈ G, g ̸= id.

Definition 3.4. If σ, τ are disjoint oriented geodesics in H3 which do not meet at infinity,
then define distance(σ, τ) = length(w) where w ∈ Isom+(H

3) is the hyperbolic element which
translates H3 along the unique common perpendicular between σ and τ and which takes the
oriented geodesic σ to the oriented geodesic τ . The oriented common perpendicular from
σ to τ is called the orthocurve between σ and τ . The ortholine between σ and τ is the
complete oriented geodesic in H3 which contains the orthocurve between σ and τ .

If σ and τ intersect at one point in H3 then there is an elliptic isometry w taking σ to
τ fixing σ ∩ τ. Again, define distance(σ, τ) = length(w). In this case, the orthocurve is the
point σ ∩ τ, and the ortholine O from σ to τ is oriented so that σ, τ, O form a right-handed
frame.

If σ and τ intersect at infinity, then there is no unique common perpendicular, hence no
ortholine, and we define distance(σ, τ) = 0 + i0, or 0 + iπ depending on whether or not σ
and τ point in the same direction at their intersection point(s) at infinity.

Define Redistance = Re(distance).
As defined, Redistance is nonnegative. In Definition 3.6, it will be useful to have a

broader definition. Given an oriented geodesic α in H3 orthogonal to oriented geodesics β
and γ, define dα(β, γ) ∈ C where a dα(β, γ) translation of H3 along α takes β to γ.

Definition 3.5. A tube of radius r about a geodesic δ0 in H3 is {w ∈ H3 | ρ(w, v) ≤ r for
some v ∈ δ0}. If δ is a simple closed geodesic in the hyperbolic 3-manifold N and if {δi} is the
set of pre-images of δ in H3, then define tuberadius(δ) = 1

2
min{Redistance(δi, δj) | i ̸= j}. If

r = tuberadius(δ), then define a maximal tube about δ to be the image of a tube of radius r
about δ0. Note that tuberadius(δ) = sup{r | there exists an embedded tubular neighborhood
of radius r about δ}.

Definition 3.6. Our desire to understand tuberadii about closed geodesics, and especially
about a simple closed geodesic δ, leads us to investigate certain 2-generator subgroups G =
⟨f, w⟩ of Isom+(H

3) with the generator f corresponding to a primitive isometry fixing δ0
and the generator w corresponding to an element taking δ0 to its nearest covering translate.
We investigate these 2-generator groups by using certain subsets of C3 as parameter spaces.

8

A marked (2-generator) group is a triple {G, f, w} consisting of a 2-generator subgroup
G of Isom+(H

3) and an ordered pair of isometries f, w of H3 which generate G such that
Relength(f) > 0 and if Af is the axis of f, then w(Af)∩Af = ∅ (here, intersection is taken in
H3 ∪ S2

∞). Two marked groups {G1, f1, w1} and {G2, f2, w2} are conjugate if G1 and G2 are
conjugate via an element of Isom+(H

3) and this conjugating element takes f1 to f2 and w1 to
w2. Within any conjugacy class of marked groups is a unique normalized element {G, f, w}
where f is a positive translation along the (oriented) geodesic B(0;∞), and the orthocurve
from w−1(B(0;∞)) to B(0;∞) lies on B(−1;1) on the negative side of B(−1;1)∩B(0;∞). To minimize
notation, we will frequently equate a conjugacy class with its normal representative.

Given (L,D,R) = (l + it, d + ib, r + ia) ∈ C3 with l > 0, d > 0, one can associate a
group G generated by elements f and w as follows. Define f to be an l+ it translation along
B(0;∞) and w to be a d+ ib translation along B(−1;1) followed by an r + ia translation along
B(0;∞) (here, r can be negative, in which case this is equivalent to a −r− ia translation along
−B(0;∞)). Conversely if {G, f, w} is a normalized marked group then f is an L translation
of B(0;∞) and w is a D translation of B(−1;1) followed by an R translation of B(0;∞). Thus
P ′ = {(l + it, d+ ib, r + ia) ∈ C3| l > 0, d > 0} parametrizes the set of conjugacy classes of
marked groups. In particular, the parametrization is surjective and locally one-to-one.

We are primarily interested in the set T ′ ⊂ P ′ which parametrizes all conjugacy classes of
marked groups {G, f, w} for which f is a shortest element of G which (positively) translates
B(0;∞) and w ∈ G takes B(0;∞) to a nearest translate w(B(0;∞)) such that −Relength(f)/2 <
Re(dB(0;∞)

) (ortholine from w−1(B(0;∞)) to B(0;∞)), (ortholine from B(0;∞) to w(B(0;∞))))) ≤
Relength(f)/2. See Figure 3. Note that because f is shortest and Relength(f) > 0, it follows
that G must be discrete, torsion-free, and parabolic-free.

Remark 3.7. T ′ consists of those parameters corresponding to marked groups {G, f, w}
such that l is the real length of a shortest element of G, d is the real distance between B(0;∞)

and a nearest translate, and −l/2 < r ≤ l/2. In what follows, it is essential to remember
that an element α of P ′ corresponds not only to a group G, but to a marked group. To
further establish the point, we note that, for elements of T ′, the parameter l is an invariant
of G alone (that is, l is the shortest real length of an element of G), while the parameter d
is determined by G and f (that is, the notion of “nearest” used to define w in the definition
of T ′ requires a choice of f).

As mentioned in the introduction to this paper, we are only interested in the subset of
T ′ corresponding to parameters α with d ≤ ln(3). The following two propositions imply this
subset of T ′ lives in a compact subset of P ′.

Proposition 3.8. All closed geodesics of length less than 0.0979 in all hyperbolic 3-manifolds
have (embedded) tubes of radius ln(3)/2.

9

C

fw -1 (B(0; ∞))

B(0; ∞)

D=d+ib

L=1+it

R=r+ia

 w -1 (B(0; ∞)) w (B(0; ∞))

Proof. In [Me] it is proved that a closed geodesic of length x+ iy has a tube (embedded) of
radius r(x+ iy) satisfying

sinh2(r(x+ iy)) = max
n∈Z+

1

2

(√
1− 2k(x, y, n)

k(x, y, n)
− 1

)

where
k(x, y, n) = cosh(nx)− cos(ny),

where we restrict to x + iy values which produce positive radii r(x + iy) by means of this
formula. It is easy to compute that for a given x + iy we need to have n for which 0 <
k(x, y, n) <

√
2− 1 to produce a positive radius tube by this method.

The function 1
2
(
√
1−2k
k

−1) is decreasing on the interval (0,−1+
√
2). It is easy to solve for

the k value that produces radius r = ln(3)/2 and it is just over 0.3397. Thus, by restricting
to k values in the interval (0, 0.3397) we guarantee radii r greater than ln(3)/2.

Thus, to complete the proof of this proposition, we need to show that when a closed
geodesic has real length x less than 0.0979, there exists a positive integer n for which k(x, y, n)
is less than 0.3397 for all angles y. Because cosh is an increasing function, we can restrict
our analysis to x = 0.0979. Thus, we need only show that given any angle y, we can find a
positive integer n such that cosh(n0.0979)− cos(ny) < 0.3397. When n > 8 we can compute
that cosh(n0.0979)− cos(ny) > 0.3397, and we therefore restrict to positive integers n ≤ 8.

We now consider angles y. Because cos is an even function, we need only consider y ∈
[0, π]. Finally, we complete the proof by covering [0, π] by 11 overlapping closed sub-intervals
σi each of which has an associated positive integer ni for which cosh(ni0.0979)− cos(niy) <

10

0.3397 is true for all y ∈ σi:

σ0 = [0.000, 0.843] n0 = 1 σ5 = [1.733, 1.858] n5 = 7
σ1 = [0.835, 0.960] n1 = 7 σ6 = [1.832, 2.357] n6 = 3
σ2 = [0.951, 1.143] n2 = 6 σ7 = [2.334, 2.3792] n7 = 8
σ3 = [1.123, 1.391] n3 = 5 σ8 = [2.3789, 2.647] n8 = 5
σ4 = [1.386, 1.755] n4 = 4 σ9 = [2.630, 2.755] n9 = 7

σ10 = [2.730, π] n10 = 2

Proposition 3.9. A shortest geodesic δ in a closed hyperbolic 3-manifold has

i) tuberadius(δ) ≥ l/4 where l = Relength(δ), and

ii) tuberadius(δ) > ln(3)/2 if Relength(δ) ≥ 1.289785.

Proof. Part i) is a consequence of the following well-known argument: Uniformly expand a
tube around a shortest geodesic in the hyperbolic 3-manifold. If the expanding tube hits itself
before a radius of l/4 then we will construct a loop of length less than l, which produces a
contradiction to being shortest. Drop the two obvious perpendiculars from the hitting point
down to the core geodesic. Consider the following loop—down one perpendicular, follow the
shorter direction on the core geodesic, up the other perpendicular. Because a lift of this loop
to H3 is not closed, this loop is homotopically nontrivial. By construction it has length less
than l/4 + l/2 + l/4 = l.

To prove part ii), we improve on this loop. Replace the first half of the journey by the
hypotenuse of the right triangle formed by the first perpendicular and the first half of the
shorter arc along the core geodesic. Replace the second half of the journey by the hypotenuse
of the right triangle formed by the second perpendicular and the second half of the shorter
arc along the core geodesic. Now, to analyze the specific case of tuberadius ln(3)/2, we use
the hyperbolic Pythagorean theorem (see [F]) cosh c = (cosh a)(cosh b) with a = ln(3)/2 and
b = l/4. We get that the length of the constructed loop is 2Arccosh(cosh(ln(3)/2) cosh(l/4))
and this is less than l when l > 1.289784 . . ., by a calculation (which follows) and the fact
that

2Arccosh(cosh(ln(3)/2)(cosh(l/4))− l

is a decreasing function of l.
We solve explicitly for the value of l at which

2Arccosh(cosh(ln(3)/2)(cosh(l/4))− l = 0.

Noting that cosh(ln(3)/2) = 2√
3
we get 2√

3
(cosh(l/4)) = cosh(l/2). Using a half-angle formula

for cosh(l/2) we get 2√
3
(cosh(l/4)) = 2 cosh2(l/4) − 1. Setting x = cosh(l/4) we get the

quadratic 2√
3
x = 2x2 − 1. Solving and substituting, we get l = 1.289784 . . .

11

Definition 3.10. Let P ⊂ P ′ be the set of those parameters α = (l+ it, d+ ib, r+ ia) such
that

a) 0.0978 ≤ l ≤ 1.289785,

b) l/2 ≤ d ≤ ln(3),

c) 0 ≤ r ≤ l/2,

d) −π ≤ t ≤ 0,

e) −π ≤ b ≤ π,

f) −π ≤ a ≤ π.

Define T = T ′ ∩ P .

The point of the definition of P and T is as follows. We want to analyze by computer
the relationship between lengths of shortest geodesics and their tuberadii in hyperbolic 3-
manifolds. We were naturally led to the parameter space P ′ and its subset T ′. But P ′ is
problematic from the computational viewpoint because it is noncompact. We wish to replace
P ′ by P which is compact, and T ′ by T in our computer analysis. This is carried out in
Lemma 3.11. Note that we worked to make P as small as reasonable to save computation
time; for example, the t and r restrictions above cut down the parameter space by a factor
of 4 over the obvious t and r restrictions.

Lemma 3.11. If α = (l + it, d + ib, r + ia) ∈ T ′ has d ≤ ln(3) and corresponds to a 2-
generator group {Gα, fα, wα}, then there exists a parameter β = (l′+ it′, d′+ ib′, r′+ ia′) ∈ T
with associated group {Gβ, fβ, wβ} such that Gβ is conjugate (in Isom(H3)) to Gα.

Proof. We note that d < l/2 is eliminated from consideration by Proposition 3.9i) and the
definition of T ′. If d ≤ ln(3), then 0.0978 ≤ l ≤ 1.289785 by Propositions 3.8 and 3.9 ii) If
for the marked group {G, f, w} we have −l/2 < r < 0, then the marked group {G, f, w−1}
is conjugate to an element of T whose new r-parameter is −r. Thus we can assume that
conditions a, b, c from Definition 3.10 hold for the relevant {G, f, w}. Further, conditions e
and f hold.

This leaves condition 3.10 d. Conjugating G by a reflection in the geodesic plane spanned
by B(0;∞) and B(−1;1) changes the t-parameter to −t (mod 2π) but leaves the r and d param-
eters unchanged. The effect on b and a is irrelevant.

By [G1] Lemma 5.9 a closed orientable hyperbolic 3-manifold N satisfies the insulator
condition provided that tuberadius(δ) > ln(3)/2 for some closed geodesic δ ⊂ N. Thus we
are led to consider:

Problem 3.12. List all closed orientable hyperbolic 3-manifolds N possessing a shortest
geodesic δ such that tuberadius(δ) ≤ ln(3)/2.

Remark 3.13. If a shortest geodesic δ in N satisfies tuberadius(δ) ≤ ln(3)/2, then N gives
rise to an element α ∈ T . (In fact N may give rise to finitely many different elements of T .)
Thus we need to investigate:

12

Problem 3.14. Find all parameters α = (l + it, d+ ib, r + ia) ∈ T .

Remark 3.15. In the next paragraphs, we will describe our method of (partially) answering
Problem 3.14. But before starting this description, we mention a technical point: starting
with Definition 3.20, we will realize major advantages by working in the space W ⊃ exp(P),
and our results will ultimately be described in terms of W . But for now, for simplicity, we
will describe the results in terms of the unexponentiated space P .

We will partition P into about one billion regions {Pi} and show that T is disjoint
from all but seven small such regions. Suppose that Pi is a region of this partition and
α ∈ Pi. Let h be a word in the letters f, w and their inverses. Associated to the parameter
α = (lα + itα, dα + ibα, rα + iaα) there are the group elements fα, wα and hence hα. If hα is
not the identity then we ask

a) Is Relength(hα) < Relength(fα) = lα?

b) Is Redistance(hα(B(0;∞)), B(0;∞)) < Redistance(wα(B(0;∞)), B(0;∞)) = dα?

If either a) or b) is true, then α /∈ T .
Now let β ∈ Pi, with fβ, wβ, and hβ the associated hyperbolic isometries. If, say, a)

is true for α then so is the statement Relength(hβ) < Relength(fβ) = lβ for β sufficiently
close to α. Thus we can show that T ∩ Pi = ∅ if we can find an α for which, say, statement
a) is true, and then use first-order Taylor approximation (with error/remainder term) to
show that the corresponding statement holds for all β ∈ Pi while continuing to avoid the
prohibition that hβ not be the identity.

Definition 3.16. A word h in w, f, w−1, f−1 for which statement a) (resp. b)) in Remark
3.15 holds for each β ∈ Pi and for which hβ is not a power of fβ for each β ∈ Pi is called a
killerword for Pi with respect to contradiction a) (resp. b)).

Summary 3.17. With seven exceptions, to each of the approximately one billion regions
partitioning P , we will associate a killerword and a contradiction.

Remark 3.18. Computers are well suited for partitioning a set such as P into many re-
gions {Pi}, and finding a killerword hi which eliminates all αi ∈ Pi due to contradiction
Ci. Depending on the contradiction, we find computable expressions for approximations of
the values of Relength(hβ) or Redistance(hβ(B(0;∞)), B(0;∞)) and thus use the computer to
eliminate all of Pi.

Remark 3.19. . To analyze Relength and Redistance as in Remark 3.15, we would be led
to work with the Arccosh function, because,

length(f) = 2Arccosh(trace(A)/2)

where A ∈ SL(2,C) represents the isometry f. (As we do not need this formula for length(f)
we will neither prove the formula, nor explain technical details about it.) This would be prob-
lematic from the view-point of error analysis—we do not want to deal with transcendental
functions such as Arccosh.

13

This problem can be avoided slickly by exponentiating the preliminary parameter space
P to get the parameter space W (the definition of W is given in Definition 3.20). Lemmas
3.22 and 3.23 then demonstrate that while working in W one need only understand the basic
arithmetic operations +,−,×, /,

√
. The machine implementation of these basic operations

is governed by the IEEE standard IEEE-754 (see [IEEE]).

To expand a bit on the problematic nature of transcendental functions, we note that
our computer version of Taylor approximations (see Preview 3.32 and Chapters 5 and 7) is
designed to work for functions built up out of the basic arithmetic operations. It would be
a nightmare to include functions such as the Arccosh.

Definition 3.20. Let

W = {(x0, x1, x2, x3, x4, x5) : |xi| ≤ 4× 2(5−i)/6 for i = 0, 1, 2, 3, 4, 5}

⊃ exp(P) = {(x0, x1, x2, x3, x4, x5) | x0 + ix3 = exp(e), x1 + ix4 = exp(f),

x2 + ix5 = exp(g) where(e, f, g) ∈ P}
and let

S = exp(T).

As we are taking exp of the various complex co-ordinates, it is notationally convenient to
replace our complex parameters L = l+it, D = d+ib, R = r+ia by exponentiated versions.
That is, let

L′ =exp(L) = exp(l + it), D′ = exp(D) = exp(d+ ib),

R′ =exp(R) = exp(r + ia).

Remarks 3.21. i) We work withW instead of exp(P) because we want our initial parameter
space to be a (6-dimensional) box that is easily subdivided. This has the side effect that
certain regions (sub-boxes) Wi of W will be eliminated because they are outside of exp(P)
not because of the analogues of conditions a) and b) in Remark 3.15 The entire collection of
conditions is given in Chapter 4.

ii) The presence of the factor 2(5−i)/6 in the definition of W is explained in Construction
4.3. Briefly, the main reason for including it is to make the shape of regions stay as uniform
and “round” as possible under subdivision. This makes the Taylor approximations efficient,
hence fast.

iii) We chose the co-ordinates of W so that L′ = x0 + ix3, D′ = x1 + ix4, R′ = x2 + ix5

to gain a mild computer advantage.

Lemma 3.22. If (L′, D′, R′) ∈ W and {G, f, w} is the associated normalized marked group,
then f and w have matrix representatives

a) f =

(√
L′ 0

0 1/
√
L′

)
,

14

b) w =

(√
R′ ∗ ch

√
R′ ∗ sh

sh/
√
R′ ch/

√
R′

)
where ch = (

√
D′ + 1/

√
D′)/2 and sh = (

√
D′ − 1/

√
D′)/2.

Proof. a) In our set-up the (oriented) axis of f is B(0;∞). As such, f corresponds to a
diagonal matrix, with diagonal entries p and p−1, with |p| > 1. The action of f on the
bounding complex plane is simply multiplication by p2. Extending this action to upper-half-
space in the natural way rotates the z-axis by angle arg(p2) and sends (0, 0, 1) to (0, 0, |p|2).
Thus,

Im(length(f)) = arg(p2) = Im(ln(p2))

and, using the hyperbolic metric,

Re(length(f)) = ln(|p|2) = Re(ln(p2)).

That is, length(f) = ln(p2) and

p = ± exp(length(f)/2) = ±
√

exp(length(f)) = ±
√
exp(L) = ±

√
L′.

Now, we take the positive square root (taking the negative square root produces the other
lift from PSL(2,C) to SL(2,C)).

b) w = β ◦ α where β is translation of distance R along B(0;∞) and α is translation of
distance D along B(−1;1). Thus, a matrix representative of β is(√

R′ 0

0 1/
√
R′

)
and a matrix representative of α can be computed to be(

cosh(D/2) sinh(D/2)
sinh(D/2) cosh(D/2)

)
.

But cosh(D/2) = (exp(D/2) + exp(−D/2))/2 = (
√
D′ + 1/

√
D′)/2 = ch and similarly for

sh. Thus,

α =

(
ch sh
sh ch

)
and b) follows by matrix multiplication.

Lemma 3.23. If h ∈ Isom+(H
3) is represented by the matrix

A =

(
a b
c d

)
∈ SL(2,C),

then

15

• a) exp(Relength(h)) = |trace(A)/2±
√

(trace(A)/2)2 − 1|2,

• b) exp(Redistance(h(B(0;∞)), B(0;∞))) = |orthotrace(A)±
√
(orthotrace(A))2 − 1| where

orthotrace(A) = ad+ bc.

In both cases, the +,− produce reciprocal values for the right-hand side, and we take the one
producing the larger value, unless the value is 1, in which case there is no need to choose.

Proof. a) If A is elliptic or parabolic, the proof is straightforward (the trace of a parabolic
is ±2 while the trace of an elliptic is a real number between 2 and -2).

We assume A is hyperbolic. Because trace is a conjugacy invariant, we can assume the
oriented axis of A is B(0;∞). Thus A is a diagonal matrix with p and p−1 along the diagonal
with |p| > 1, and, as in the proof of Lemma 3.22, we see that exp(length(h)) = p2. Of course,
trace(A) = p + p−1, and it is easy enough to solve for p. Specifically, p = trace(A)/2 ±√
(trace(A)/2)2 − 1. Thus,

exp(Relength(h)) = | exp(length(h))| = |p|2

= |(trace(A)/2)±
√
(trace(A)/2)2 − 1|2.

b) If B(0;∞) and h(B(0;∞)) intersect at infinity, then the proof is straightforward. For
example, if h fixes the point (0, 0, 0) at infinity, then c = 0, ad = 1 and the formula holds.
Similarly for the other cases in which B(0;∞) and h(B(0;∞)) intersect at infinity.

We assume B(0;∞) and h(B(0;∞)) do not intersect at infinity. We will compute the length
of k, the square of the transformation taking B(0;∞) to h(B(0;∞)) along their ortholine. Let τ
be 180-degree rotation about B(0;∞), then (h◦τ ◦h−1) is 180-degree rotation about h(B(0;∞)),
and we have that k = (h ◦ τ ◦ h−1) ◦ τ. Now, τ and h are represented by the matrices(

i 0
0 −i

)
and

(
a b
c d

)
∈ SL(2,C).

Hence, k = (h ◦ τ ◦ h−1) ◦ τ can be computed to have matrix representation(
ad+ bc 2ab
2cd ad+ bc

)
.

Thus,

exp(Redistance(h(B(0;∞)), B(0;∞)))

= exp(Relength(k)/2) =
√
| exp(length(k)|

= |(trace(k)/2)±
√
(trace(k)/2)2 − 1|

= |(ad+ bc)±
√

(ad+ bc)2 − 1|.

16

Remark 3.24. i) It follows from Lemma 3.23 that if h is a word in f, w, f−1, w−1, then for
any parameter value α ∈ W ,

exp(Relength(hα)), and exp(Redistance(hα(B(0;∞)), B(0;∞)))

can be computed using only the operations +,−,×, /,
√
.

ii) During the course of the computer work needed to prove the main theorems, the
parameter space W was decomposed into sub-boxes by computer via a recursive subdivision
process: Given a sub-box being analyzed, either it can be killed directly (that is, eliminated
by a killerword and associated condition as described in Remark 3.15 or for the trivial reason
described in Remark 3.21 i), or it cannot. If it cannot be killed directly, it is subdivided
in half by a hyperplane {xi = c} (where i runs through the various co-ordinate dimensions
cyclically) and the two pieces are analyzed separately, and so on.

As such, a sub-box ofW can be described by a sequence of 0’s and 1’s where 0 means “take
the lesser xi values” and 1 means “take the greater xi values.” For the decomposition of W
into sub-boxes, all the sub-box descriptions could be neatly encoded into one tree (although
in practice we found it preferable to use several trees to describe the entire decomposition.
See Chapter 4).

iii) In the following proposition, seven exceptional boxes are described as sequences of 0’s
and 1’s. Four of the exceptional boxes—X0, X4, X5, X6—are each the union of two abutting
sub-boxes, X0 = X0a ∪X0b and so on. It is a pleasant exercise to work through the fact that
they abut. It should be noted that had the set-up for W been different, more sub-boxes (or
perhaps fewer) might have been needed to construct the seven exceptional regions.

It is also a pleasant exercise to calculate by hand the co-ordinate ranges of the various
sub-boxes. For example, the range of the last co-ordinate (i.e., x5) of the sub-box

17

X6a = 111000000001000111 111111110101001111 011111010111111111

110001001011000111 0

is found by taking the 6th entry, the 12th entry, the 18th entry, and so on. These entries are
011111111111. The first entry (0) means take the lesser x5 values, and produces the interval
[−4, 0]. The second entry (1) means take the greater x5 values, and produces the interval

[−2, 0]. The third entry (1) produces [−1, 0]. Continuing, we see that X6a has −2−9 ≤ x5 =
Im(R′) ≤ 0. The other co-ordinates can be computed in the same fashion, although they
must at the end be multiplied by the factor 2(5−i)/6 (see the definition of the initial box W).
The range of co-ordinate values for each exceptional box X0, X1, . . . , X6 is given in Table 3 (a
limited number of significant digits is given), and then a range of co-ordinates for exceptional
regions (in P) Ri ⊃ exp−1(Xi) is given (see Remarks 3.28i) and 3.28ii) in Table 3. (Note
that this use of the symbol Ri differs slightly from the use in §0.) Finally, two quasi-relators
are given in Theorem 2.1 for each exceptional box X0, X1, . . . , X6 (see the next definition).

Definition 3.25. A quasi-relator in a sub-box X of W is a word in f, w, F = f−1,W = w−1

that is close to the identity throughout X and experimentally appears to be converging to
the identity at some point in X. In particular, a quasi-relator rigorously has Relength less
than that of f at all points in X.

Theorem 3.26. 2.1 Within the parameter space W but outside the seven exceptional boxes
there are no parameter points corresponding to marked groups {G, f, w} where G is discrete,
torsion-free and parabolic-free; f corresponds to a shortest geodesic δ of tuberadius ≤ ln(3)/2;
and w takes a particular lift of δ to a nearest translate. Specifically, S∩(W−

⋃
n=0,...,6Xn) = ∅

where the Xn are the exceptional boxes

X0 = X0a ∪X0b,

X0a = 001000110111110001 101001010101011001 011011010111101101
100001101101000111 010001110101100101 1101110111110100,

X0b = 001001110110110000 101000010100011000 011010010110101100
100000101100000110 010000110100100100 1101100111100100,

X0 quasi-relators:
r1 = fwFwwFwfww,
r2 = FwfwfWfwfw,

X1 = 001000110001110110 011101000110111110 100010110000100011
101101001101001000 110101011000000100 000.

X1 quasi-relators:
r1 = FFwFWFWfWFWFwFFww,
r2 = FFwwFwfwfWfwfwFww,

X2 = 001000110101010010 101010110001100101 110111100001101010

18

111100100000010001 111100,

X2 quasi-relators:
r1 = FwfwfWffWfwfwFww,
r2 = FFwFFwwFwfwfwFww,

X3 = 111000000001000110 011011101101011000 111101011110001100
111111100110110000 0000100010100010,

X3 quasi-relators:
r1 = FFwfwFFwwFWFwFWfWFWffWFWfWFwFWFww,
r2 = FFwfwFwfWfwfWWfwfWfwFwfwFFwwFWFww,

X4 = X4a ∪X4b,

X4a = 111000000001000110 011001001111101010 011110110110111101
100011111110110110 10000111101,

X4b = 111000000001000110 011001001111101010 111110010110011101
000011011110010110 00000101101,

X4 quasi-relators:
r1 = FFwfwFwfWfwfWfwFwfwFFwwFWFwFWFww,
r2 = FFwfwFwfwFFwwFWFwFWfWFWfWFwFWFww,

X5 = X5a ∪X5b,

X5a = 001000110001110111 001111000101111111 101111100111001111
000001111011110111 1,

X5b = 001001110000110110 001110000100111110 101110100110001110
000000111010110110 1,

X5 quasi-relators:
r1 = FwFWFwFwfwfWfwfw,
r2 = FwfwfWfWFWfWfwfw,

X6 = X6a ∪X6b,

X6a = 111000000001000111 111111110101001111 011111010111111111
110001001011000111 0,

X6b = 111001000000000110 111110110100001110 011110010110111110
110000001010000110 0,

X6 quasi-relators:
r1 = FWFwFWfWFwFWFwfw,
r2 = FWFwfwFwfWfwFwfw.

19

Proof. The proof follows along the lines presented in Remark 3.15 Two computer files contain
the data needed for the proof. The first computer file describes the partition of W into sub-
boxes and attaches an integer to each such sub-box, and the second file, called “conditionlist”
is an ordered list of conditions and killerwords. The integer associated to a sub-box in the
first file describes the numbered condition/killerword from conditionlist that will eliminate
the sub-box in question (other than those corresponding to the Xi). A computer program
named verify shows that the conditions and killerwords in question actually do kill off their
associated sub-boxes (see Section 4 for more details). This computer program addresses the
issues of Remark 3.18. The code for verify is available at the Annals web site.

In addition, a mild modification of verify showed that the listed words were quasi-relators
for the given sub-boxes.

Corollary 3.27. If δ is a shortest geodesic in N, a closed orientable hyperbolic 3-manifold,
then

• i) either tuberadius(δ) > ln(3)/2 or exp(length(δ)) ∈ L(Xk) for some k ∈ 0, . . . , 6
where L(Xk) denotes the range of L′ values in the exceptional box Xk.

• ii) Either tuberadius(δ) > ln(3)/2 or tuberadius(δ) = Re(D)/2 where exp(D) ∈ D(Xk)
for some k ∈ 0, . . . , 6 and D(Xk) denotes the range of D′ values in the exceptional box
Xk.

Remarks 3.28. i) The values in Table 1.1 are only approximations of actual values which
can be computed as in Remark 3.24iii.

ii) The values in Table 3 correspond to boxes in P which contain the natural log of the
(exceptional) boxes in Table 3 (here we use the true co-ordinates of the boxes, not just the
approximation-by-truncation co-ordinates). For example, the rectangle in C determined by
lmin, lmax, tmin, tmax for R0 contains the natural log of the rectangle in C determined by
l′min, l

′
max, t

′
min, t

′
max for X0.

The following conjecture apppeared in [GMT]. It has since been proven, with item iii)
amended; see the Introduction

Conjecture 3.29. Each exceptional box Xi, 0 ≤ i ≤ 6, contains a unique element si of S.
Further, if {Gi, fi, wi} is the marked group associated to si then Ni = H3/Gi is a closed
hyperbolic 3-manifold with the following properties:

• i) Ni has fundamental group ⟨f, w; r1(Xi), r2(Xi)⟩, where r1(Xi), r2(Xi) are the quasi-
relators associated to the box Xi.

• ii) Ni has a Heegaard genus 2 splitting realizing the above group presentation.

• iii) Ni nontrivially covers no manifold.

20

Table 3.1: Exceptional boxes in (L′, D′, R′) co-ordinates in W ; truncated values

X0

l′min = −0.84065 l′max = −0.84060 t′min = −2.13726 t′max = −2.13722
d′min = −0.84064 d′max = −0.84059 b′min = −2.13729 b′max = −2.13722
r′min = 0.999979 r′max = 1.000022 a′min = −0.00006103 a′max = 0.00006103

X1

l′min = −1.34852 l′max = −1.34831 t′min = −2.66102 t′max = −2.66072
d′min = −0.54334 d′max = −0.54315 b′min = −2.85877 b′max = −2.85849
r′min = 0.90390 r′max = 0.90408 a′min = −1.47167 a′max = −1.47143

X2

l′min = −1.78701 l′max = −1.78527 t′min = −2.27253 t′max = −2.27130
d′min = −1.07428 d′max = −1.07273 b′min = −2.71846 b′max = −2.71736
r′min = 0.74163 r′max = 0.74301 a′min = −1.52929 a′max = −1.52832

X3

l′min = 0.58117 l′max = 0.58160 t′min = −3.31221 t′max = −3.31190
d′min = 1.15644 d′max = 1.15683 b′min = −2.75628 b′max = −2.75573
r′min = 1.40420 r′max = 1.40454 a′min = −1.17968 a′max = −1.17919

X4

l′min = 0.33321 l′max = 0.33495 t′min = −3.31959 t′max = −3.31898
d′min = 0.97739 d′max = 0.97817 b′min = −2.82533 b′max = −2.82478
r′min = 1.35413 r′max = 1.35482 a′min = −1.22558 a′max = −1.22460

X5

l′min = −1.37984 l′max = −1.37810 t′min = −2.53706 t′max = −2.53460
d′min = −1.37967 d′max = −1.37657 b′min = −2.53650 b′max = −2.53430
r′min = 0.99989 r′max = 1.00265 a′min = −0.001953 a′max = 0.001953

X6

l′min = 1.37810 l′max = 1.37984 t′min = −2.53706 t′max = −2.53460
d′min = 1.37657 d′max = 1.37967 b′min = −2.53650 b′max = −2.53430
r′min = 0.99989 r′max = 1.00265 a′min = −0.001953 a′max = 0.001953

21

Table 3.2: Exceptional regions (boxes) in (L,D,R) co-ordinates in P

R0

lmin = 0.8314 lmax = 0.8315
tmin = −1.9456 tmax = −1.9455
dmin = 0.8314 dmax = 0.8315
bmin = −1.9456 bmax = −1.9455
rmin = −0.00002051 rmax = 0.00002267
amin = −0.00006105 amax = 0.00006105

R1

lmin = 1.0928 lmax = 1.0931 tmin = −2.0399 tmax = −2.0397
dmin = 1.0680 dmax = 1.0682 bmin = −1.7587 bmax = −1.7585
rmin = 0.5463 rmax = 0.5465 amin = −1.0201 amax = −1.0198

R2

lmin = 1.0608 lmax = 1.0617 tmin = −2.2375 tmax = −2.2366
dmin = 1.0720 dmax = 1.0727 bmin = −1.9473 bmax = −1.9466
rmin = 0.5298 rmax = 0.5308 amin = −1.1193 amax = −1.1182

R3

lmin = 1.2126 lmax = 1.2129 tmin = −1.3972 tmax = −1.3969
dmin = 1.0947 dmax = 1.0951 bmin = −1.1736 bmax = −1.1733
rmin = 0.6063 rmax = 0.6067 amin = −0.6988 amax = −0.6984

R4

lmin = 1.2046 lmax = 1.2050 tmin = −1.4708 tmax = −1.4702
dmin = 1.0949 dmax = 1.0953 bmin = −1.2378 bmax = −1.2374
rmin = 0.6019 rmax = 0.6027 amin = −0.7357 amax = −0.7349

R5

lmin = 1.0595 lmax = 1.0606 tmin = −2.0694 tmax = −2.0683
dmin = 1.0591 dmax = 1.0604 bmin = −2.0694 bmax = −2.0680
rmin = −0.0001069 rmax = 0.002654 amin = −0.001954 amax = 0.001954

R6

lmin = 1.0595 lmax = 1.0606 tmin = −1.0733 tmax = −1.0722
dmin = 1.0591 dmax = 1.0604 bmin = −1.0736 bmax = −1.0722
rmin = −0.0001069 rmax = 0.002654 amin = −0.001954 amax = 0.001954

22

• iv) N6 is isometric to N5.

• v) If (Li, Di, Ri) is the parameter in T corresponding to si, then Li, Di, Ri are related
as follows.

For X0, X5, X6 : L = D, R = 0.

For X1, X2, X3, X4 : R = L/2.

The following conjecture is a succinct, though slightly weaker form of Conjecture 3.29.

Conjecture 3.30. If δ is a shortest geodesic in a closed orientable hyperbolic 3-manifold N,
then either tuberadius(δ) > ln(3)/2 or N is one of six exceptional manifolds.

Remark 3.31. Here we outline our method for finding a decomposition of the initial box
W into sub-boxes (other than those making up the seven exceptional boxes) each with a
condition/killerword that kills off the entire associated sub-box. For convenience, we will
generally refer to a “sub-box” simply as a “box.”

A simple algorithm for finding a killerword for a region is as follows. Work with a set of
words to consider, initialized to the null word. At each step, remove the oldest word from
the set, and test to see if that word is a killerword. If it is not, put the word back into the
set, concatenated with each of the generators and their inverses. Eventually, this algorithm
will enumerate all words, and so, if there is a killerword, the algorithm will eventually find
it. In practice, there are two problems with this approach: there is no provision for the
possibility that no killerword exists for the region under consideration, and the time to find
a word of length n grows exponentially.

When we also take into account the possibility of subdividing the box, getting an answer
in finite time will be possible; but the search is in practice very expensive. The most obvious
way of speeding it up is to avoid the search entirely when feasible: a killerword works on
a neighborhood of a region, and by testing killerwords found for nearby boxes, most of the
time the search is not necessary.

Still, there are words of length as long as 44 that were considered, and testing all of
the roughly 344 combinations would be prohibitive on today’s computers. In practice (due
to a bug), the search algorithm used for most of the parameter space was no better than
the brute-force method just described, but to find killerwords for the remaining regions,
an improvement was needed. Rather than blindly selecting words in first-in-first-out order,
the algorithm can rank the words under consideration based on a heuristic estimate of the
likelihood of their being useful (a word is useful if it is a prefix of a killerword). We note
first that short words tend to be better than long words, as they have fewer steps and less
error. Second, we note that words with a large translation distance are given a bad ranking,
for two reasons: they will need more generators appended before they get back to the small
translation distance which is needed for a contradiction, and computations with those words
introduce more error per step than computations with closer words.

23

This approach was an improvement, but was not finding enough killerwords in the regions
around X3 and X4. Further investigation showed that the algorithm was getting stuck on
an identity: once it found an identity, it would consider only words which started with that
identity, and ignored all of the other words. To fix this problem, a “diversity” heuristic was
introduced, to give special consideration to unlikely but unusual words.

To prevent the search from running forever, it is temporarily abandoned after some
number of steps, and re-done with twice as many steps every time the number of descendant
boxes doubles. This way, the search could run forever, but only if the subdivision process
runs forever. This merged process of alternately searching and subdividing we call the
decomposition algorithm.

The decomposition algorithm went through several revisions; at each stage of the revision
process, the algorithm effectively increased the extent to which killerwords found for one
region were used to kill other regions. The first attempt—used to determine the feasibility
of the whole effort— iterated over regions in depth-first order, performing the search as
described above. At that stage, it became evident that the search process, as opposed to the
subdivision process, was consuming nearly all of the computation time, and so the second
version iterated over regions in breadth-first order, and, once it found a killerword, tried to
use that word on all adjacent regions.

The breadth-first version was used to analyze the entire parameter space, although it
skipped some parts due to various bugs; the search heuristic was replaced once, and there
was considerable human input to tell the search about particularly difficult killerwords, or
to tweak its search parameters (length, and weightings in the heuristic).

The third stage of the revision process reduced the number of boxes by attempting all
found killerwords in a large region (about a thousand boxes) on all boxes in the region. It
did not do any searching, since it was provided with a list of killerwords known to work.

The final version was created when the bugs in evaluation were brought to light, and the
existing killerword tree was found to be insufficient. It used the list of killerwords used for
the entire tree, and some statistics about the number of subdivisions required in order for
a given word to kill a particular box, and evaluated each word on each box. Whenever a
word was evaluated, a kind of triage was used to determine whether that word was likely
to kill the box in question, likely to kill any of its nth generation descendants, or unlikely
to kill any descendants of the box; the answer to that heuristic either allowed more detailed
evaluation (with the error term included), deferred further evaluation until the box had
been subdivided n more times, or excluded that word from further consideration on any
descendant of the box. With these heuristics, this program wound up evaluating on average
about 10 of the roughly 13200 words per box, and was able to construct the tree consisting
of the decomposition into sub-boxes with associated conditions/killerwords.

We mention that the bugs, complexity, and frequent changes in the search programs are
irrelevant to the accuracy of the verification. In fact, we shielded the verification programs
from internal issues related to the searching programs. Given a putative decomposition of the
parameter space into sub-boxes with associated conditions/killerwords the program verify
simply checks whether this decomposition with conditions/ killerwords works.

24

Preview 3.32. In Remark 3.15, we mentioned that we use first-order Taylor approxima-
tions, with remainder term, to show that a killerword which eliminates a point x ∈ Wi

eliminates all of Wi. The computational object we constructed to carry out these Taylor
approximations is called an AffApprox. In the parameter space W , all functions analyzed
via Taylor approximations in this way are built up from the operations +, −, ×, /,

√
.

We prove combination formulas for these operations, which show how the Taylor approxi-
mations (including the remainder term) change when one of these operations is applied to
two AffApproxes. This is carried out in Chapter 5

To ensure that all of our computer calculations are rigorous, we use a round-off error
analysis. Typically, this is done by using interval arithmetic on floating-point numbers.
Instead, we introduce round-off error at the level of AffApproxes and incorporate the round-
off error into the remainder term. The main reason for this additional complexity is to get
more accuracy in our calculation of AffApproxes, which allows us to analyze substantially
fewer boxes. Further, the individual computations are faster. This is all carried out in
Sections 6 and 7.

25

Chapter 4

Conditions and sub-boxes

In this section we expand on some topics mentioned briefly in Chapter 3 . As such, it would
be useful to look again at Definitions 3.6, 3.10, and 3.20, and Remark 3.7), where P , T and
their partners (under exponentiation) W , S are introduced, and at Definition 3.16 where the
notion of a killerword is introduced (the definition is phrased in terms of P , but the definition
also makes sense for W). Note that working with the region P is intuitively appealing, but
working with the box W is vastly superior computationally (see Remark 3.19).

The proof of Theorem 2.1 amounts to decomposing W into a collection of sub-boxes of
two types:

1) The 11 sub-boxes which comprise the exceptional boxes X0, X1, . . . , X6.

2) Sub-boxes each of which has an associated condition that will describe how to kill that
entire sub-box, perhaps with the help of a killerword. To k ill a sub-box means to show
that S −

⋃
n=0,...,6Xn has no point in the sub-box.

The set-up for efficiently describing these sub-boxes will be given in Construction 4.3.
We now list the conditions used to kill the nonexceptional sub-boxes. There are two

types of conditions: the trivial and the interesting. The trivial conditions kill sub-boxes in
W since the sub-boxes in question miss exp(P). The interesting conditions are where the
real work is done, and they require a killerword in f, w, f−1, w−1 to work their magic (see
Remark 3.15).

To be consistent with the computer program verify we use the following notation: L′ =
z0 + iz3, D′ = z1 + iz4, and R′ = z2 + iz5. Here (L′, D′, R′) ∈ W and L′ = exp(L) =
exp(l + it), D′ = exp(D) = exp(d+ ib), R′ = exp(R) = exp(r + ia).

The Trivial Conditions 4.1. Condition ‘s’ (short): Tests that all points in the sub-box
have |z0 + iz3| < 1.10274. This ensures that

exp(l) = | exp(L)| = |L′| = |z0 + iz3| < 1.10274 < exp(0.0978),

26

and Definition 3.10 tells us that we are outside of exp(P).

Condition ‘l’ (long): Tests that all points in the sub-box have |z0 + iz3| > 3.63201. This
ensures that

exp(l) = | exp(L)| = |L′| = |z0 + iz3| > 3.63201 > exp(1.289785)

and we are outside of exp(P).

Condition ‘n’ (near): Tests that all points in the sub-box have |z1+iz4| < 1. This ensures
that

exp(d) = | exp(D)| = |D′| = |z1 + iz4| < 1 = exp(0)

and we are outside of exp(P).

Condition ‘f’ (f ar): Tests that all points in the sub-box have |z1 + iz4| > 3. This ensures
that

exp(d) = | exp(D)| = |D′| = |z1 + iz4| > 3 = exp(ln 3)

and we are outside of exp(P).

Condition ‘w’ (whirle big): Tests that all points in the sub-box have |z2+iz5|2 > |z0+iz3|
This ensures that

exp(r) = | exp(R)| = |R′| = |z2 + iz5| >
√

|z0 + iz3| =
√

exp(l) = exp(l/2)

and we are outside of exp(P).

Condition ‘W’ (whirle small): Tests that all points in the sub-box have |z2 + iz5| < 1.
This ensures that

exp(r) = | exp(R)| = |R′| = |z2 + iz5| < 1 = exp(0)

and we are outside of exp(P).

The Interesting Conditions 4.2. Condition ‘L’: This condition comes equipped with a
killerword k in f, w, f−1, w−1, and tests that all points in the sub-box have | exp(length(k))| <
|L′| = | exp(L)|, where length(k) means the length of the isometry determined by k. This,
of course, contradicts the fact that L is the length of the shortest geodesic.

It is easy to carry out the test | exp(length(k))| < |L′| because Lemma 3.23 a) can be
used. Note that in verify the function which computes exp(length) is called length.

Of course, Condition ‘L’ also checks that the isometry corresponding to the word k is not
the identity.

Condition ‘O’: This condition comes equipped with a killerword k in f, w, f−1, w−1, and
tests that all points in the sub-box have

| exp(distance(k(B(0,∞)), B(0,∞)))| < |D′| = | exp(D)|.

27

(Recall that B(0;∞) denotes the oriented geodesic {(0, 0, z) : 0 < z < ∞}, with negative
endpoint (0, 0, 0).) This, of course, contradicts the “nearest” condition.

It is easy to carry out the test | exp(distance(k(B(0,∞)), B(0,∞)))| < |D′| because Lemma
3.23 b) can be used. Note that in verify the function which computes the quantity

exp(distance(k(B(0,∞)), B(0,∞)))

is called orthodist.
Also, Condition ‘O’ checks that the isometry corresponding to the word k does not take

the axis of f to itself.

Condition ‘2’: This is just the ‘L’ condition without the “not-the-identity” check, but
with the additional proviso that the killerword k is of the form fpwq. This ensures that k is
not the identity, because for k to be the identity f and w would have to have the same axis,
which contradicts the fact that d can be taken to be greater than or equal to l/4.

Condition ‘conjugate’: There is one other condition that is used to eliminate points in
W . Following Definition 3.10 (and Lemma 3.11) we eliminate all boxes with 0 < t ≤ π.
Of course, after exponentiating L = l + it, this corresponds to eliminating all boxes with
z3 > 0. Specifically, we toss all sub-boxes of W whose fourth entry is a 1. This condition
does not appear in verify because it is applied “outside” of these programs, as described in
Construction 4.3.

Construction 4.3. : We now give the method for describing the roughly 930 million sub-
boxes that the initial box W is subdivided into.

All sub-boxes are obtained by subdivision of a previous sub-box along a real hyper-plane
midway between parallel faces of the sub-box before subdivision. Of course, these midway
planes are of the form xi = a constant. We use 0’s and 1’s to describe which half of a
subdivided sub-box to take (0 corresponds to lesser xi values). For example, 0 describes the
sub-box

W ∩ {(x0, x1, x2, x3, x4, x5) : x0 ≤ 0},

010 describes the sub-box

W ∩ {(x0, x1, x2, x3, x4, x5) : x0 ≤ 0, x1 ≥ 0, x2 ≤ 0},

and so on.
In this way, we get a one-to-one correspondence between strings and sub-boxes. If s is a

string of 0’s and 1’s, then let Z(s) denote the sub-box corresponding to s. The range of values
for the ith coordinate in the sub-box Z(s) is related to the binary fraction 0.sisi+6 . . . si+6k.
The two sub-boxes gotten from subdividing Z(s) are Z(s0) and Z(s1).

The directions of subdivision cycle among the various coordinate axes: the nth subdivision
is across the (n mod 6)th axis. The dimensions of the top-level box W were chosen so that
subdivision is always done across the longest dimension of the box, and so that all of the

28

sub-boxes are similar. The dimensions of W have the beneficial effect of making the sub-
boxes as “round” as possible, hence making the Taylor approximation calculations efficient
and fast. This explains the factor of 2(5−i)/6 in Definition 3.20

To kill a sub-box Z(s), the checker program has two (recursive) options: use a condition
and, if necessary, an associated killerword to kill Z(s) directly, or first kill Z(s0) and then
kill Z(s1). At this point, it may seem as if the second option is not necessary, because surely
a condition which kills two halves also kills the whole. The answer to this has been hinted
at in Remarks 3.15 and 3.32 where it is noted that our evaluation of a function arising
from a killerword is via first-order Taylor approximation, complete with remainder/error
term. (Note that the remainder/error term incorporates bounds on both the theoretical
error arising from using a first-order Taylor approximation to approximate a function, and
the accumulated round-off error; see Chapters 5, 6, 7. Even if a killerword could theoretically
kill off a sub-box, it is quite possible that our first-order Taylor approximation approach
would not be able to prove this because its remainder/error term is too large. However,
if we subdivide the sub-box, then the first-order Taylor approximations on the two halves
should be more accurate. Thus, we want to have the recursive subdivision option at our
disposal. Note that because the checker program does in fact do such recursive subdivisions,
the actual number of sub-boxes in the ultimate subdivision is larger (perhaps substantially
larger) than the 930 million sub-boxes of the initial data tree.

It is also possible that the checker program will employ neither of the two options de-
scribed in the previous paragraph, and will instead employ a third option: do not kill Z(s),
and instead mark s as omitted. Any omitted sub-boxes are checked with another instance
of the checker program, unless the sub-box is one of the 11 exceptional sub-boxes (which
produce the seven exceptional boxes after joining abutters). Note that according to the defi-
nition of “kill” given at the beginning of this section, the exceptional boxes are automatically
killed.

Thus, a typical output from verify would be

verified000000111101111111

−{0000001111011111110 000000111101111111110}.

which means that the sub-box Z(000000111101111111) was killed except for its sub-boxes
Z(0000001111011111110) and Z(000000111101111111110). The output

verified0000001111011111110− { }.
and

verified000000111101111111110− { }.

shows that these sub-boxes were subsequently killed as well, and thus the entire sub-box
Z(000000111101111111) has been killed.

Instead of immediately working on killing the top-level box, we subdivide in the six
co-ordinate directions to get the 64 sub-boxes

Z(000000), Z(000001), Z(000010), Z(000011), . . . , Z(111111).

29

We then throw out the ones with fourth co-ordinate equal to 1 (see condition ‘conjugate’),
leaving the 32 sub-boxes

Z(000000), Z(000001), Z(000010), Z(000011), . . . , Z(111011).

We then use verify to kill these.

The choices in verify are made for it by a sequence of integers given as input. The
sequence of integers containing the directions for killing Z(000000) is contained in the file
data/000000 (actually, data/000000.d). In such a sequence, 0 tells verify to subdivide the
present box (by xi = c), to position itself on the “left-hand” box (xi ≤ c) created by that
subdivision, and to read in the next integer in the sequence. A positive integer n tells
verify to kill directly the sub-box it is positioned at, using the condition (and killerword,
if necessary) on line n in the “conditionlist” file, and then to position itself at the “next”
natural sub-box. Now, −1 tells verify to omit the sub-box, and mark it as skipped (the
sequence of integers used in killing the skipped box Z(s) is contained in a file data/s).

The checker program verify, its inputs, and the list of conditions are available from the
Annals of Mathematics web site.

Example 4.4. To illustrate the checking process in action, this is a (non-representative)
example, which shows how the sub-box Z(s) (minus a hole) is killed, where

s = 0010001100011101110011110001011111111011111

00111001111000001111011110111.

The input associated with this sub-box is

(0, 0, 0, 1929, 12304, 0, 0, 7, 0, 1965, 0, 1929, 1929, 1996,−1),

which causes the program to kill Z(s) in the following fashion:
kill Z(s):
kill Z(s0):
kill Z(s00):
kill Z(s000) with condition 1929 = “L(FwFWFWfWFWFwFwfww)”
kill Z(s001) with condition 12304 = “L(FwfWFFWFwFwfwfWfwfw)”
kill Z(s01):
kill Z(s010):
kill Z(s0100) with condition 7 = “L(w)”
kill Z(s0101):
kill Z(s01010) with condition 1965 = “L(fwFwFWFFWFwFwfwww)”
kill Z(s01011):
kill Z(s010110) with condition 1929
kill Z(s010111) with condition 1929

30

s011

1996

1929

s010111

0

s010

0

s0101

7

s0100

0

s01011

1929

s010110

1965

s01010

s01
0

0

s010

s 00
0

000
1929

s

001
12304

s

ss s0
0 0 -1

1

Figure 4.1: Six levels of subdivision, in two projections, with all the trimmings.

kill Z(s011) with condition 1996 = “L(FwFwFWFWfWFWFwFwfww)”
omit Z(s1)

as shown in Figure 4.4.
Z(s1) is ignored, so the checker would indicate this omission in its report. In fact, Z(s1)

is one of the 11 exceptional sub-boxes (seven boxes after joining abutters), specifically X5a,
hence killed automatically.

The use of condition “L(w)” so deep in the tree is unusual. In this case, it is because the

31

manifold in the exceptional sub-box has length(f) = length(w), so that the program will
frequently come to places where it can bound length(f) > length(w) nearby.

The sequence 0, 1929, 1929 in the input for Z(s) tells the checker to subdivide Z(s01011),
and then use the condition 1929 on both halves to kill them separately, thereby killing
Z(s01011). As mentioned above, the reason for carrying out this subdivision is that the
remainder/error bound in the calculation for Z(s01011) using condition 1929 was not good
enough to prove that the sub-box is killed directly.

In the input for Z(s) we could have replaced 0, 1929, 1929 with 1929 alone and then the
checker program itself would be smart enough to carry out the subdivision after 1929 failed to
kill the sub-box Z(s01011). This recursive subdivision tool is quite useful when dealing with
the remainder/error term—if a killerword barely misses killing off a sub-box, then recursively
subdivide the sub-box and use the same killerword on the pieces until it succeeds. We note
that the theoretical error arising from using a first-order Taylor approximation is likely to
be significantly improved by subdivision, whereas the round-off error is relatively unaffected
because the killerword used is unchanged (hence the number of mathematical operations
performed is unchanged).

The binary numbers used by the computer require too much space to print. In the
example calculation which follows, we instead use decimal representations (although we print
fewer digits than could be gotten from the 53 binary digits used for the actual calculations).

The sub-box Z(s01011) is the region where
−1.381589027741 . . . ≤ Re(L′) ≤ −1.379848991182 . . .
−1.378124546093 . . . ≤ Re(D′) ≤ −1.376574349753 . . .
0.999893182771 . . . ≤ Re(R′) ≤ 1.001274250703 . . .

−2.535837191243 . . . ≤ Im(L′) ≤ −2.534606799593 . . .
2.535404997792 . . . ≤ Im(D′) ≤ −2.534308843448 . . .

−0.001953125000 . . . ≤ Im(R′) ≤ 0.000000000000 . . .


At this point, we would like to compute

f, w, g = f−1wf−1w−1f−1w−1fw−1f−1w−1f−1wf−1wfww, length(g),

and so on. However, these items take on values over an entire sub-box and thus are computed
via AffApproxes (first-order Taylor approximations with remainder/error bounds), which are
not formally defined until the next section. We complete Example 4.4 at the end of Chapter
5.

Remark 4.5. . For those planning on looking at the program verify we now tie in the above
description of its workings to a portion of the actual code in the program. We note that
the CWeb version of verify is extensively documented, and is organized so that the most
important details are presented first.

32

If the executable version of verify is called verify and we are in the correct place with
respect to the location of the data, then a typical UNIX command line would be

zcat data/000000.gz — verify 000000 ¿ output000000

This would run verify at the node 000000, and, when needed, would pipe in the unzipped
data from data/000000.gz. This unzipped data contains the tree decomposition of the pa-
rameter space at the sub-box 000000. The output from verify would be redirected to the file
output000000.

In verify, main would check for syntax errors in the command line, and if there were no
such errors, would read the location 000000 into the character array where and compute that
the depth of where was 6, which means that 000000 contains six subdivisions. It would then
immediately print

verified 000000 - {
into the file output000000, and then call the function verify, as follows:

verify(where, depth, 0);

The function verify(where, depth, autocode) is now invoked; this time with autocode
equal to 0. V erify would first check that depth was not too deep. Next, verify checks if
autocode is equal to 0, which it is, so it reads in the next (in this case, the first) integer from
the unzipped file data/000000.gz, and sets code equal to this integer. Now, verify recursively
calls itself on the left child (0000000) of the where box and the right child (0000001) of the
where box:

where[depth] = ‘0’;

verify(where, depth + 1, code);

where[depth] = ‘1’;

verify(where, depth + 1, code);

In general, verify(where, depth, autocode) does the following. It checks to see that depth
is not too deep. Then if autocode is equal to 0, it recursively calls itself on its left and
right children. If autocode is not equal to 0, then code is set equal to autocode, and three
possibilities can occur. Either,

1) code is less than zero, in which case we are at a sub-box to be skipped, and verify
prints out its location (where) in output000000 and recursively moves on to the next node
in the tree, or

2) code is greater than zero and it invokes a condition/killerword from the file conditionlist
which kills the entire sub-box where in which case verify simply recursively moves on to the
next node in the tree, or

3) code is greater than zero and it invokes a condition/killerword from the file conditionlist
which does not kill the entire sub-box where, in which case verify subdivides the sub-box

33

where and recursively calls itself on the left child and the right child, using the same code:

where[depth] = ‘0’;

verify(where, depth + 1, code);

where[depth] =‘1’;

verify(where, depth + 1, code);

In this way verify tests the entire starting box, in this case the sub-box 000000, and if
successful at killing it minus the omissions which it prints out, it finishes main by printing
out a right bracket into output000000.

34

Chapter 5

Affine approximations

Remark 5.1. To show that a sub-box of the parameter box W is killed by one of the
interesting conditions (plus associated killerword) we need to show that at each point in the
sub-box, the killerword evaluated at that point satisfies the given condition (see Chapter 4
). That is, we are simply analyzing a certain function from the sub-box to C.

As described in Remark 5.5, this analysis can be pulled back from the sub-box in question
to the closed polydisc A = {(z0, z1, z2) ∈ C3 : |zk| ≤ 1 for k ∈ {0, 1, 2}}. Loosely, we
will analyze such a function on A by using Taylor approximations consisting of an affine
approximating function together with a bound on the “error” in the approximation (this
could also be described as a “remainder bound”). This “error” is separate from round-off
error, which will be analyzed in Chapters 6 and 7.

Problem 5.2. There are two immediate problems likely to arise from this Taylor approx-
imation approach. The first problem is the appearance of unpleasant functions such as
Arccosh. We have already taken care of this problem by “exponentiating” our prelimi-
nary parameter space P . This resulted in all functions under consideration being built up
from the co-ordinate functions L′, D′, and R′ on W by means of the elementary operations
+, −, ×, /,

√
.

Second, for a given “built-up function” the computer needs to be able to compute the
Taylor approximation, and the error term. This will be handled by developing combination
formulas for elementary operations (see the propositions below). Specifically, given two
Taylor approximations with error terms representing functions g and h and an elementary
operation on g and h, we will show how to get the Taylor approximation with error term for
the resultant function from the two original Taylor approximations.

A similar approach was developed independently by Figuereido and Stolfi (see [FS]).

Remark 5.3. We set up the Taylor approximation approach rigorously as follows in Def-
inition 5.4. The notation will be a bit unusual, but we are motivated by a desire to stay
close to the notation used in the checker computer programs, verify. However, it should be
pointed out that the formulas in this chapter will be superseded by the ones in Chapter 7,

35

which incorporate a round-off error analysis. It is the Chapter 7 formulas that are used in
verify.

Definition 5.4. An AffApprox x is a five-tuple (x.f ; x.f0, x.f1, x.f2; x.e), consisting of
four complex numbers x.f, x.f0, x.f1, x.f2 and one real number x.e, which represents all
functions g : A → C such that

|g(z0, z1, z2)− (x.f + x.f0z0 + x.f1z1 + x.f2z2)| ≤ x.e

for all (z0, z1, z2) ∈ A. That is, x represents all functions from A to C that are x.e-well-
approximated by the affine function x.f + x.f0z0 + x.f1z1 + x.f2z2. We will denote this set
of functions associated with x by S(x).

Remark 5.5. As mentioned in Remark 5.1, given a sub-box to analyze, instead of working
with functions defined on the sub-box, we will work with corresponding functions defined
on A. Specifically, rather than build up a function by elementary operations performed on
the co-ordinate functions L′, D′, R′ restricted to the given sub-box, we will perform the
elementary operations on the following functions defined on A,

(p0 + ip3; s0 + is3, 0, 0; 0) (p1 + ip4; 0, s1 + is4, 0; 0) (p2 + ip5; 0, 0, s2 + is5; 0)

where (p0+ip3, p1+ip4, p2+ip5) is the center of the sub-box in question, and the si describe the
six dimensions of the box. In the computer programs, these three functions are called along,
ortho, and whirle, respectively, and pi and si are denoted pos[i] and s ize[i], respectively.

After the following remarks, we state and prove the combination formulas.

Remarks 5.6. i)i The reader may find useful the sequential correspondence between propo-
sitions of this Chapter and those of Chapter 7.

ii) The negation of a set of functions is the set consisting of the negatives of the original
functions, and similarly for other operations.

iii) The propositions that follow include in their statements the definitions of the various
operations on AffApproxes. What needs to be proved is that the S functions behave as
expected. For example, we need to show that under the definition given for addition, the
set of functions S(x+ y) contains all functions obtained by adding a function from S(x) to
a function from S(y).

Proposition 5.7. (unary minus) If x is an AffApprox, then S(−x) = −(S(x)) where

−x ≡ (−x.f ; −x.f0, −x.f1, −x.f2; x.e).

Proof.
|g(z0, z1, z2)− (x.f + x.f0z0 + x.f1z1 + x.f2z2)| ≤ e

if and only if

| − g(z0, z1, z2)− (−x.f − x.f0z0 − x.f1z1 − x.f2z2)| ≤ e.

36

Proposition 5.8. (addition)If x and y are AffApproxes, then S(x+ y) ⊇ S(x)+S(y), where

x+ y ≡ (x.f + y.f ;x.f0 + y.f0, x.f1 + y.f1, x.f2 + y.f2;x.e+ y.e).

Proof. If g ∈ S(x) and h ∈ S(y) then we must show that g + h ∈ S(x+ y).

|(g + h)(z0, z1, z2)

−((x.f + y.f) + (x.f0 + y.f0)z0 + (x.f1 + y.f1)z1 + (x.f2 + y.f2)z2)|
≤ |g(z0, z1, z2)− (x.f + (x.f0)z0 + (x.f1)z1 + (x.f2)z2)|
+|h(z0, z1, z2)− (y.f + (y.f0)z0 + (y.f1)z1 + (y.f2)z2)|

≤ x.e+ y.e.

Proposition 5.9. (subtraction)If x and y are AffApproxes, then S(x − y) ⊇ S(x) − S(y),
where

x− y ≡ (x.f − y.f ;x.f0 − y.f0, x.f1 − y.f1, x.f2 − y.f2;x.e+ y.e).

In what follows, “double” refers to a real number, and has an associated AffApprox, with
the last four entries zero. When we do machine arithmetic in Chapters 6 and 7, doubles will
be machine numbers.

Proposition 5.10. (addition of an AffApprox and a double) If x is an AffApprox and y is
a double, then S(x+ y) ⊇ S(x) + S(y), where

x+ y ≡ (x.f + y;x.f0, x.f1, x.f2;x.e).

Proposition 5.11. (subtraction of a double from an AffApprox) If x is an AffApprox and
y is a double, then S(x− y) ⊇ S(x)− S(y), where

x− y ≡ (x.f − y;x.f0, x.f1, x.f2;x.e).

Proposition 5.12. (multiplication) If x and y are AffApproxes, then S(x×y) ⊇ S(x)×S(y),
where

x× y ≡ (x.f × y.f ;x.f × y.f0 + x.f0 × y.f,

x.f × y.f1 + x.f1 × y.f, x.f × y.f2 + x.f2 × y.f ;

(size(x) + x.e)× (size(y) + y.e) + (|x.f | × y.e+ x.e× |y.f |))

with size(x) = |x.f0|+ |x.f1|+ |x.f2| and size(y) = |y.f0|+ |y.f1|+ |y.f2|.

Proof. If g ∈ S(x) and h ∈ S(y) then we must show that g× h ∈ S(x× y). That is, we need
to show

|(g × h)(z0, z1, z2)− ((x.f × y.f) + (x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2)|
≤ (size(x) + x.e)× (size(y) + y.e) + (|x.f | × y.e+ x.e× |y.f |).

37

Note that for any point (z0, z1, z2) ∈ A and any functions g ∈ S(x) and h ∈ S(y) we can find
complex numbers u, v with |u| ≤ 1 and |v| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.f0z0 + x.f1z1 + x.f2z2) + (x.e)u

and
h(z0, z1, z2) = y.f + (y.f0z0 + y.f1z1 + y.f2z2) + (y.e)v.

Multiplying out, we see that

(g × h)(z0, z1, z2)

= (x.f × y.f) + (x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2

+ (x.f × y.e)v + (x.e× y.f)u+ ((x.f0z0 + x.f1z1 + x.f2z2) + (x.e)u)

× ((y.f0z0 + y.f1z1 + y.f2z2) + (y.e)v).

Hence,

|(g × h)(z0, z1, z2)− ((x.f × y.f)

+ ((x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2))|
≤ (|x.f |y.e+ x.e|y.f |) + (size(x) + x.e)× (size(y) + y.e).

Proposition 5.13. (an AffApprox multiplied by a double) If x is an AffApprox and y is a
double, then S(x× y) ⊇ S(x)× S(y), where

x× y ≡ (x.f × y;x.f0 × y, x.f1 × y, x.f2 × y;x.e× |y|).

Proposition 5.14. (division) If x and y are AffApproxes with |y.f | > size(y) + y.e, then
S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (x.f/y.f ; (−x.f × y.f0 + x.f0 × y.f)/((y.f)2),

(−x.f × y.f1 + x.f1 × y.f)/((y.f)2),

(−x.f × y.f2 + x.f2 × y.f)/((y.f)2);

(|x.f |+ size(x) + x.e)/(|y.f | − (size(y) + y.e))

− ((|x.f |/|y.f |+ size(x)/|y.f |) + |x.f |size(y)/(|y.f ||y.f |))).

Proof. For notational convenience, denote (x.f0z0 + x.f1z1 + x.f2z2) by x.fkzk and similarly
for y.fkzk and so on. As above, note that for any point (z0, z1, z2) ∈ A and any functions
g ∈ S(x) and h ∈ S(y) we can find complex numbers u, v with |u| ≤ 1 and |v| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.fkzk) + (x.e)u

38

and
h(z0, z1, z2) = y.f + (y.fkzk) + (y.e)v.

We compare (g/h)(z0, z1, z2) with its putative affine approximation. That is, we analyze∣∣(x.f + (x.fkzk) + (x.e)u)/(y.f + (y.fkzk) + (y.e)v)

− ((x.f/y.f) +
(x.fk)y.f − x.f(y.fk)

(y.f)2
zk)
∣∣.

Putting this over a common denominator of |((y.f)2)(y.f +(y.fkzk)+(y.e)v)| and cancelling
equal terms (in the numerator) we are left with a quotient whose numerator is

|x.e((y.f)2)u− (x.fk)y.f(y.fk)zk − x.f((y.fk)
2)zk

+ (x.f)y.f(y.e)v + x.fk(y.f)y.e(v)zk − x.f(y.fk)y.e(v)zk|.

We must show this (first) quotient is bounded by

(|x.f |+ size(x) + x.e)/(|y.f | − (size(y) + y.e))

− ((|x.f |/|y.f |+ size(x)/|y.f |) + |x.f |size(y)/(|y.f ||y.f |)).

Putting this over a common denominator of |(y.f)|2(|y.f | − (size(y) + y.e)) and cancelling
equal terms (in the numerator) we are left with a second quotient, whose numerator is

x.e|y.f |2 − (−|x.f ||y.f |y.e− size(x)|y.f |(size(y) + y.e)− |x.f |size(y)(size(y) + y.e))

and we see that all terms in this numerator are positive. Further, the terms in the numerators
of the first and second quotients correspond in a natural way, and each term in the numerator
of the second quotient is greater than or equal to the absolute value of its corresponding term
in the numerator of the first quotient.

Finally, because the denominator in the second quotient is less than or equal to the
absolute value of the denominator in the first quotient, we see that the absolute value of the
first quotient is less than or equal to the second quotient, as desired.

Proposition 5.15. (division of a double by an AffApprox) If x is a double and y is an
AffApprox with |y.f | > size(y) + y.e, then S(x/y) ⊇ S(x)/S(y), where

x/y≡ (x/y.f ;−x× y.f0/((y.f)
2),−x.f × y.f1/((y.f)

2),−x.f × y.f2/((y.f)
2);

(|x|/(|y.f | − (size(y) + y.e))− (|x|/|y.f |+ |x|size(y)/(|y.f ||y.f |))).

Proposition 5.16. (division of an AffApprox by a double) If x is an AffApprox and y is a
double with |y| > 0, then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (x.f/y;x.f0/y, x.f1/y, x.f2/y;x.e/|y|).

Finally, we do the square root.

39

Proposition 5.17. (square root) If x is an AffApprox with |x.f | > size(x) + x.e, then
S(

√
x) ⊇

√
S(x), where

√
x =

(√
x.f ;

x.f0

2
√
x.f

,
x.f1

2
√
x.f

,
x.f2

2
√
x.f

;

√
|x.f | −

(
size(x)

2
√

|x.f |
+
√
|x.f | − (size(x) + x.e)

))
.

If |x.f | ≤ size(x) + x.e then we use the crude estimate(
0; 0, 0, 0;

√
|x.f |+ size(x) + x.e

)
.

The branch of the square root of a complex number is determined by the construction of
the square root of a complex in Proposition 6.23. In fact, the square root is in the first or
fourth quadrant.

Proof. As above, note that for any point (z0, z1, z2) ∈ A and any function g ∈ S(x) we can
find a complex number u with |u| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.fkzk) + (x.e)u.

Also, because |x.f | > size(x) + x.e. we see that the argument of x.f + (x.fkzk) + (x.e)u is
within π/2 of the argument of x.f , and therefore, we can require that

√
g(z0, z1, z2) have

argument within π/4 of the argument of
√
x.f.

We need to show that∣∣∣∣√x.f + x.fkzk + (x.e)u− (
√

x.f +
x.fkzk

2
√
x.f

)

∣∣∣∣
≤
√

|x.f | −

(
size(x)

2
√

|x.f |
+
√
|x.f | − (size(x) + x.e)

)
.

Or, after we multiply both sides by
√
|x.f |,∣∣∣√x.f(x.f + x.fkzk + (x.e)u)− (x.f + (x.fk)zk/2)

∣∣∣
≤ (|x.f | − size(x)/2)−

√
|x.f |(|x.f | − (size(x) + x.e)).

The two sides of the inequality are of the form A − B and C − D, and we “simplify” by
multiplying by A+B

A+B
and C+D

C+D
. We now show that the (absolute value of the) left-hand

numerator is less than or equal to the right-hand numerator. Later, we will show that

40

the (absolute value of the) left-hand denominator is larger than or equal to the right-hand
denominator. The left-hand numerator is

|x.f(x.f + x.fkzk + (x.e)u)− (x.f + (x.fk)zk/2)
2|

= |(x.f)2 + x.f(x.fk)zk + x.f(x.e)u− (x.f)2

−x.f(x.fk)zk − ((x.fk)
2)(zk)

2/4|

= |x.f(x.e)u− ((x.fk)
2)(zk)

2/4|.

The right-hand numerator is

(|x.f | − size(x)/2)2 − |x.f |(|x.f | − (size(x) + x.e))

= |x.f |2 − |x.f |size(x) + size(x)2/4− |x.f |2 + |x.f |size(x) + |x.f |x.e

= |x.f |x.e+ size(x)2/4.

So the left-hand numerator is indeed less than or equal to the right-hand numerator.

We now compare the denominators, but only after dividing each by
√
|x.f |. The left-hand

denominator is ∣∣∣∣√x.f + x.fkzk + (x.e)u+

(√
x.f +

x.fkzk

2
√
x.f

)∣∣∣∣
while the right-hand denominator is√

|x.f | − size(x)

2
√

|x.f |
+
√

|x.f | − (size(x) + x.e).

The claim that the left-hand denominator is greater than or equal to the right-hand denom-
inator is a bit complicated. First, compare the

√
x.f term and the

√
|x.f | terms. They are

the same distance from the origin. Next, note that as zk and u take on all relevant values,
x.f + x.fkzk + (x.e)u describes a disk centered at x.f with radius less than |

√
x.f |. Hence,√

x.f + x.fkzk + (x.e)u describes a convex set containing
√
x.f . This set is symmetric about

the line joining the origin and
√
x.f . Further,

√
x.f +

√
x.f + x.fkzk + (x.e)u describes a

convex set containing 2
√
x.f . This set is also symmetric about the line joining the origin

and
√
x.f . It is easy enough to see that no points on this convex symmetric set get closer

to the origin than
√

|x.f |+
√

|x.f | − (size(x) + x.e).

Finally, because |x.fkzk
2
√
x.f

| ≤ size(x)

2
√

|x.f |
, no points of

√
x.f +

√
x.f + x.fkzk + (x.e)u+

x.fkzk

2
√
x.f

can get closer to the origin than√
|x.f |+

√
|x.f | − (size(x) + x.e)− size(x)

2
√

|x.f |
.

41

Example 5.18. (Continuation of Example 4.4). We can now complete the analysis begun
in Example 4.4, because we can describe f and w as 2-by-2 matrices of AffApproxes. We
note the minor quibble that the full definition of AffApprox is given in Chapter 7, where
round-off error is incorporated into the remainder/error-bound term.

For convenience, we repeat the description of the sub-box under investigation. The sub-
box Z(s01011) with

s = 001000110001110111001111000101111111101111100111001111000001111011110111

is the region where

−1.381589027741 . . . ≤ Re(L′) ≤ −1.379848991182 . . .

−1.378124546093 . . . ≤ Re(D′) ≤ −1.376574349753 . . .

0.999893182771 . . . ≤ Re(R′) ≤ 1.001274250703 . . .

−2.535837191243 . . . ≤ Im(L′) ≤ −2.534606799593 . . .

2.535404997792 . . . ≤ Im(D′) ≤ −2.534308843448 . . .

−0.001953125000 . . . ≤ Im(R′) ≤ 0.000000000000 . . .


.

For this sub-box, we get (printing only 10 decimal places, for visual convenience):

f =




−0.8677851121 + i1.4607429651;
0.0000248810− i0.0003125810,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000289





0.0000000000 + i0.0000000000;

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000000



0.0000000000 + i0.0000000000;

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000000





−0.3006023265− i0.5060039953;

−0.0000909686− i0.0000593570,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000301





42

and

w =





−0.5845111829 + i0.4773282853;

0.0000000000 + i0.0000000000,

−0.0000296707− i0.0001657332,

−0.0004345111− i0.0001209539;

0.0000002590





−0.2840228472 + i0.9825063583;

0.0000000000 + i0.0000000000,

0.0000516606− i0.0001128245,

0.0005776611− i0.0001998632;

0.0000006462



−0.2832291572 + i0.9833572297;

0.0000000000 + i0.0000000000,

0.0000515806− i0.0001129408,

−0.0005778031 + i0.0002005440;

0.0000002806





−0.5846352333 + i0.4764792236;

0.0000000000 + i0.0000000000,

−0.0000294917− i0.0001656653,

0.0004341392 + i0.0001213070;

0.0000005286





.

Calculation of g = f−1wf−1w−1f−1w−1fw−1f−1w−1f−1wf−1wfww gives

g =





−0.5764337542 + i0.4752708071;

−0.0031657223− i0.0001436786,

−0.0017723577 + i0.0000352928,

−0.0011623491 + i0.0017516088;

0.0008229225





−0.2704033973 + i0.9822741250;

−0.0045902952− i0.0019135041,

−0.0026219461− i0.0007506230,

−0.0002823450 + i0.0033805602;

0.0008037640



−0.2861207992 + i0.9766064999;

−0.0002777968 + i0.0020330488,

0.0000837571 + i0.0010241875,

0.0028322367− i0.0005972336;

0.0018172437





−0.5861133046 + i0.4624368851;

−0.0021932627 + i0.0040523411,

−0.0008612361 + i0.0022394639,

0.0061581377− i0.0005862070;

0.0017738513





.

We then get

length(g) =



−1.3588762105− i2.4897230182;

0.0030210500− i0.0182284729,

0.0007938572− i0.0096614614,

−0.0122034521 + i0.0074353043;

0.0080071969


and

length(g)

L′ =



0.9825397896− i0.0008933519;

0.0053701602 + i0.0037789019,

0.0028076072 + i0.0018421952,

−0.0002400615− i0.0049443045;

0.0027802966

 .

43

This is not quite good enough to kill the sub-box, since |length(g)/L′| can be as high as
1.0001951323.

When we subdivide Z(s01011), we have to analyze two sub-boxes, Z(s010110) and
Z(s010111). For Z(s010110), the same calculation on the region

−1.381589027741073400 ≤ Re(L′) ≤ −1.379848991182205200

−1.378124546093485700 ≤ Re(D′) ≤ −1.376574349753672900

0.999893182771602220 ≤ Re(R′) ≤ 1.001274250703607400

−2.535837191243490300 ≤ Im(L′) ≤ −2.534606799593201600

−2.535404997792558600 ≤ Im(D′) ≤ −2.534308843448505900

−0.001953125000000000 ≤ Im(R′) ≤ −0.000976562500000000

gives

length(g)

L′ =



0.9814518667 + i0.0008103446;

0.0053616729 + i0.0037834001,

0.0028027236 + i0.0018435245,

−0.0013175066− i0.0032448794;

0.0019033926

 ,

and we can then bound
∣∣∣ length(g)L′

∣∣∣ ≤ 0.9967745579, which kills Z(s010110).

On Z(s010111), the calculation gives

length(g)

L′ =



0.9836225919− i0.0025990177;

0.0053786346 + i0.0037743930,

0.0028124892 + i0.0018408583,

−0.0013333182− i0.0032343347;

0.0019044429


and

∣∣∣ length(g)L′

∣∣∣ ≤ 0.9989610507, which kills Z(s010111).

44

Chapter 6

Complex numbers with round-off
error

Remark 6.1. The theoretical method for proving Theorem 1.2 has been implemented via
the computer program verify, which is available, together with the relevant data sets, at
the Annals web site. To make this computer-aided proof rigorous, we needed to deal with
round-off error in calculations.

One approach to round-off error would be to use interval arithmetic packages to carry
out all calculations with floating-point machine numbers, or to generate our own version of
these packages. However, it appears that this approach would be much too slow given the
size of our collection of sub-boxes and conditions/killerwords.

To solve this problem of speed, we implement round-off error at a higher level of pro-
graming. That is, we incorporate round-off error directly into AffApproxes, which makes
our error calculations more accurate, thereby avoiding much subdivision of sub-boxes. This
necessitates that we incorporate round-off error directly into complex numbers as well. In
this chapter we show how to do standard operations on complex numbers while keeping track
of round-off error. In the next chapter we work with AffApproxes.

Definition 6.2. There are two types of complex numbers to consider:

1) An XComplex x = (x.re, x.im) corresponds to a complex number that is represented
exactly; it simply consists of a real part and an imaginary part.

2) An AComplex x = (x.re, x.im;x.e) corresponds to an “interval” that contains the
complex number in question. Thus, it consists of an XComplex and a floating-point
number representing the error. In particular, the AComplex x represents the set S(x)
of complex numbers {w : |w− (x.re+ i(x.im))| ≤ x.e}. Note that S(x) is also defined
for an XComplex if we conceptualize an XComplex as an AComplex with x.e = 0.

Remark 6.3. In general, our operations act on XComplexes and produce AComplexes,
or they act on AComplexes and produce AComplexes. In one case, the unary minus, an

45

XComplex goes to an XComplex. In the calculations that follow the effect on the error is
the whole point.

Conventions 6.4. We begin, by writing down our basic rules, which follow easily from the
IEEE-754 standard for machine arithmetic (see [IEEE]). (Actually, the “hypot” function
h(a, b), which computes by elaborate chicanery

√
a2 + b2, is not part of the IEEE-754 stan-

dard, but satisfies the appropriate standard according to the documentation provided (see
[K1]).) The operations here are on double-precision floating-point real numbers (“doubles”)
and we denote a true operation by the usual symbol and the associated machine operation
by the same symbol in a circle, with two exceptions: a machine square root

√
a is denoted

o
√
a and the machine version of the hypot function is denoted h◦. Perhaps a third exception

is our occasional notation of true multiplication by the absence of a symbol.
There is a finite set of numbers (sometimes called “machine numbers”) which are repre-

sentable on the computer. With technicalities ignored, a nonzero floating-point number is
represented by a fixed number of bits of which the first determines the sign of the number,
the next m represent the exponent, and the remaining n represent the mantissa of the num-
ber. Because our nonzero numbers start with a 1, that means the n mantissa bits actually
represent the next n binary digits after the 1. That is, the mantissa is actually 1.b1b2b3...bn.
The IEEE-754 standard calls for 64-bit doubles with m = 11 and n = 52. We define EPS
to be 2−n, in which case EPS/2 is 2−(n+1).

The IEEE-754 standard states that the result of an operation is always the closest rep-
resentable number to the true solution (as long as we are in the bounds of representable
numbers). For example, for machine numbers a and b, we have a ⊕ b = m(a + b) where m
is the function which takes the machine value of its argument (when it lies in the range of
representable numbers). Thus, properties of the type

|(a+ b)− (a⊕ b)| ≤ (EPS/2)|a+ b|

follow immediately from the IEEE-754 standard, as long as we do not underflow or overflow
outside of the range of representable numbers. Specifically, underflow occurs when the result
of an operation is smaller in absolute value than 2−1022, and overflow occurs when the result
of an operation is larger in absolute value than roughly 21024 (see [IEEE], §7).

We further note that the formula

|(a+ b)− (a⊕ b)| ≤ (EPS/2)|a⊕ b|

follows because the true answer has “exponent” which is less than or equal to the exponent
of the machine answer. We reiterate, that in both cases, a and b are assumed to be machine
numbers.

Of course, a machine operation such as ⊕ must act on doubles, while a “true” opera-
tion such as + can act on reals (which includes doubles). In this chapter, long strings of
inequalities will be used to prove the various propositions, and care was taken to ensure
that machine operations act on machine numbers. In particular, the various variables ap-
pearing in the propositions are assumed to be doubles. The IEEE-754 standard provides

46

for conversions from decimal to binary (within the appropriate range, conversion is to the
nearest representable number) and from binary to decimal. However, these are rarely used
in this paper, although a trivial class of exceptions is provided by the decimal numbers in
the conditions of Chapter 4

When calculations underflow or overflow outside of the range of representable numbers,
we require that the computer inform us if either exception has occurred.

Basic Properties 6.5. (assuming no underflow and no overflow)

In the formulas that follow, a,b, and A are machine numbers and 1+k×EPS = 1⊕ (k⊗
EPS) when k is an integer which is not huge in absolute value (that is, smaller than roughly
250). Thus, within the appropriate range, 1 + k × EPS is a machine number. Similarly,
2k × A = 2k ⊗ A when k is an integer and 2k ⊗ A neither underflows nor overflows.

|(a+ b)− (a⊕ b)| ≤ (EPS/2)|a+ b|,
|(a+ b)− (a⊕ b)| ≤ (EPS/2)|a⊕ b|,
|(a− b)− (a⊖ b)| ≤ (EPS/2)|a− b|,
|(a− b)− (a⊖ b)| ≤ (EPS/2)|a⊖ b|,
|(a× b)− (a⊗ b)| ≤ (EPS/2)|a× b|,
|(a× b)− (a⊗ b)| ≤ (EPS/2)|a⊗ b|,
|(a/b)− (a⊘ b)| ≤ (EPS/2)|a/b|,
|(a/b)− (a⊘ b)| ≤ (EPS/2)|a⊘ b|,

|
√
a− o

√
a| ≤ (EPS/2)|

√
a|,

|
√
a− o

√
a| ≤ (EPS/2)| o

√
a|,

|h(a, b)− h◦(a, b)| ≤ (EPS)|h(a, b)|,
|h(a, b)− h◦(a, b)| ≤ (EPS)|h◦(a, b)|.

From these formulas, we immediately compute the following.

(1− EPS/2)|a+ b| ≤ |a⊕ b| ≤ (1 + EPS/2)|a+ b|,
(1− EPS/2)|a⊕ b| ≤ |a+ b| ≤ (1 + EPS/2)|a⊕ b|,

.

.

.

(1− EPS/2)|
√
a| ≤ | o

√
a| ≤ (1 + EPS/2)|

√
a|,

(1− EPS/2)| o
√
a| ≤ |

√
a| ≤ (1 + EPS/2)| o

√
a|,

(1− EPS)|h(a, b)| ≤ |h◦(a, b)| ≤ (1 + EPS)|h(a, b)|,
(1− EPS)|h◦(a, b)| ≤ |h(a, b)| ≤ (1 + EPS)|h◦(a, b)|.

47

Of course, we can also get the following type of formula, which is sometimes convenient, for
example, in the proof of Lemma 6.20:(

1

1 + EPS
2

)
|a⊕ b| ≤ |a+ b| ≤

(
1

1− EPS
2

)
|a⊕ b|.

Before stating our propositions, we prove two lemmas.

Lemma 6.6. (assuming no underflow and no overflow) For machine numbers a and b,

(1− EPS)⊗ |a⊕ b| ≤ |a+ b| ≤ (1 + EPS)⊗ |a⊕ b|.

Analogous formulas hold for −, ∗, /,
√
.

Proof. Assume a + b > 0. If (1 + EPS) ⊗ (a ⊕ b) < (a + b) then the machine number
(1 + EPS) ⊗ (a ⊕ b) is a better approximation to a + b than a ⊕ b, because (a ⊕ b) <
(1+EPS)⊗ (a⊕b). This contradicts the IEEE standard. The case a+b < 0 can be handled
similarly, and the case a+ b = 0 is trivial, similarly for the left-hand inequality.

Lemma 6.7.
(1 + EPS/2)aA ≤ (1 + kEPS)⊗ A

where A is a nonnegative machine number, and a is a (not huge) integer, such that for a
even, k = a

2
+ 1 and for a odd, k = a+1

2
+ 1.

Proof.
(1 + EPS/2)aA ≤ (1− EPS/2)(1 + kEPS)A ≤ (1 + kEPS)⊗ A.

The first inequality holds if a and k are as in the lemma, and the second inequality is a
consequence of one of the formulas preceding Lemma 6.6 (A ≥ 0).

We now begin our construction of complex arithmetic. We will give proofs for most of
the operations; the others should be straightforward to derive, or can be found in the Annals
web site.

Remarks 6.8. i) We remind the reader that all machine operations are on machine numbers,
and that the various variables appearing in the propositions are assumed to be doubles.

ii) The propositions that follow include in their statements the definitions of the various
operations (see Remark 5.6 iii).

Proposition 6.9. (−X) If x is an XComplex, then

−x ≡ (−x.re,−x.im).

Proposition 6.10. (X + D) If x is an XComplex and d is a double, then S(x + d) ⊇
S(x) + S(d), where

x+ d ≡ (x.re⊕ d, x.im; (EPS/2)⊗ |x.re⊕ d|).

48

Proof. The error is bounded by

|(x.re + d)− (x.re⊕ d)| ≤ (EPS/2)|x.re⊕ d| = (EPS/2)⊗ |x.re⊕ d|.

Proposition 6.11. (X − D) If x is an XComplex and d is a double, then S(x − d) ⊇
S(x)− S(d), where

x− d ≡ (x.re⊖ d, x.im; (EPS/2)⊗ |x.re⊖ d|).

Proposition 6.12. (X + X) If x and y are XComplexes, then S(x + y) ⊇ S(x) + S(y),
where

x+ y ≡ (x.re⊕ y.re, x.im⊕ y.im; (EPS/2)

⊗ ((1 + EPS)⊗ (|x.re⊕ y.re| ⊕ |x.im⊕ y.im|))).

Proof. The error is bounded by

|(x.re + y.re)− (x.re⊕ y.re)|+ |(x.im + y.im)− (x.im⊕ y.im)|

≤ (EPS/2)(|x.re⊕ y.re|+ |x.im⊕ y.im|)

≤ (EPS/2)((1 + EPS)⊗ (|x.re⊕ y.re| ⊕ |x.im⊕ y.im|))

= (EPS/2)⊗ ((1 + EPS)⊗ (|x.re⊕ y.re| ⊕ |x.im⊕ y.im|)).

To go from line 2 to line 3 we used Lemma 6.6.

Proposition 6.13. (X − X) If x and y are XComplexes, then S(x − y) ⊇ S(x) − S(y),
where

x− y ≡ (x.re⊖ y.re, x.im⊖ y.im;

(EPS/2)⊗ ((1 + EPS)⊗ (|x.re⊖ y.re| ⊕ |x.im⊖ y.im|))).

Proposition 6.14. (A+A) If x and y are AComplexes, then S(x+y) ⊇ S(x)+S(y), where

x+ y ≡ (re, im; e) with

re = x.re⊕ y.re

im = x.im⊕ y.im

e = (1 + 2EPS)⊗ (((EPS/2)⊗ (|re| ⊕ |im|))⊕ (x.e⊕ y.e)).

49

Proof. The error is bounded by the sum of the contributions from the real part, the imaginary
part, and the two individual errors:

|(x.re⊕ y.re)− (x.re + y.re)|+ |(x.im⊕ y.im)− (x.im + y.im)|+ (x.e+ y.e).

≤ (EPS/2)|x.re⊕ y.re|+ (EPS/2)|x.im⊕ y.im|+ (1 + EPS/2)(x.e⊕ y.e)

≤ (1 + EPS/2)(EPS/2)(|x.re⊕ y.re| ⊕ |x.im⊕ y.im|)

+(1 + EPS/2)(x.e⊕ y.e)

= (1 + EPS/2)((EPS/2)(|x.re⊕ y.re| ⊕ |x.im⊕ y.im|) + (x.e⊕ y.e))

≤ (1 + EPS/2)2(((EPS/2)(|x.re⊕ y.re| ⊕ |x.im⊕ y.im|))⊕ (x.e⊕ y.e))

≤ (1 + 2EPS)⊗ (((EPS/2)⊗ (|x.re⊕ y.re| ⊕ |x.im⊕ y.im|))⊕ (x.e⊕ y.e)).

The precedence for machine operations is the same as that for true operations, so some
parentheses are unnecessary and will often be omitted in what follows.

Proposition 6.15. (A−A) If x and y are AComplexes, then S(x−y) ⊇ S(x)−S(y), where

x− y ≡ (re, im; e) with

re = x.re⊖ y.re

im = x.im⊖ y.im

e = (1 + 2EPS)⊗ (((EPS/2)⊗ (|re| ⊕ |im|))⊕ (x.e⊕ y.e)).

Proposition 6.16. (X × D) If x is an XComplex and d is a double, then S(x × d) ⊇
S(x)× S(d), where

x× d ≡ (re, im; e) with

re = x.re⊗ d

im = x.im⊗ d

e = (EPS/2)⊗ ((1 + EPS)⊗ (|re| ⊕ |im|)).

Proposition 6.17. (X/D) If x is an XComplex and d is a double, then S(x/d) ⊇ S(x)/S(d),
where

x/d ≡ (re, im; e) with

re = x.re⊘ d

im = x.im⊘ d

e = (EPS/2)⊗ ((1 + EPS)⊗ (|re| ⊕ |im|)).

50

Proposition 6.18. (X × X) If x and y are XComplexes, then S(x × y) ⊇ S(x) × S(y),
where

x× y ≡ (re, im; e) with

re = re1⊖ re2, with re1 = x.re⊗ y.re and re2 = x.im⊗ y.im

im = im1⊕ im2, with im1 = x.re⊗ y.im and im2 = x.im⊗ y.re

e = EPS ⊗ ((1 + 2EPS)⊗ ((|re1| ⊕ |re2|)⊕ (|im1| ⊕ |im2|))).

Proof. The error is bounded by the sum of the contributions from the real part and the
imaginary part:

|(x.re× y.re− x.im× y.im)− ((x.re⊗ y.re)⊖ (x.im⊗ y.im))|

+|(x.re× y.im + x.im× y.re)− ((x.re⊗ y.re)⊕ (x.im⊗ y.im))|.

We want to bound this by a machine formula. Let us begin by bounding

|(x.re× y.re− x.im× y.im)− ((x.re⊗ y.re)⊖ (x.im⊗ y.im))|

by a machine formula:
|(x.re× y.re− x.im× y.im)− ((x.re⊗ y.re)⊖ (x.im⊗ y.im))|

≤ |((x.re× y.re)− (x.im× y.im))− ((x.re⊗ y.re)− (x.im⊗ y.im))|
+|((x.re⊗ y.re)− (x.im⊗ y.im))− ((x.re⊗ y.re)⊖ (x.im⊗ y.im))|

≤ |(x.re× y.re)− (x.re⊗ y.re)|+ |(x.im× y.im)− (x.im⊗ y.im)|
+(EPS/2)|(x.re⊗ y.re)− (x.im⊗ y.im)|

≤ (EPS/2)|(x.re⊗ y.re)|+ (EPS/2)|(x.im⊗ y.im)|
+(EPS/2)(|x.re⊗ y.re|+ |x.im⊗ y.im|)

= (EPS/2)(2)(|x.re⊗ y.re|+ |x.im⊗ y.im|)
≤ EPS(1 + EPS/2)(|x.re⊗ y.re| ⊕ |(x.im⊗ y.im|).

Almost the exact same calculation produces the analogous formula for the imaginary
contribution, and we now combine the two to get a bound on the total error.

≤ EPS(1 + EPS/2)(|x.re⊗ y.re| ⊕ |x.im⊗ y.im|)
+EPS(1 + EPS/2)(|x.re⊗ y.im| ⊕ |x.im⊗ y.re|)

≤ EPS ⊗ ((1 + 2EPS)⊗ ((|x.re⊗ y.re| ⊕ |x.im⊗ y.im|)
⊕(|x.re⊗ y.im| ⊕ |x.im⊗ y.re|))).

51

Proposition 6.19. (D/X) If x is a double and y is an XComplex, then S(x/y) ⊇ S(x)/S(y),
where

x/y ≡ (re, im; e) with

re = (x⊗ y.re)⊘ nrm where nrm = y.re⊗ y.re⊕ y.im⊗ y.im

im = −(x⊗ y.im)⊘ nrm

e = (2EPS)⊗ ((1 + 2EPS)⊗ (|re| ⊕ |im|)).

Proof. The true version of x/y is equal to

(x× y.re + i(−x× y.im))/((y.re)2 + (y.im)2)

and we need to compare this with the machine version to find the error. Further, this error
is less than or equal to the sum of the real error and the imaginary error. Thus, we start
with the real calculation (as in the statement of the proposition, we use nrm to represent
the machine version of (y.re)2 + (y.im)2).∣∣∣∣ x× y.re

(y.re)2 + (y.im)2
− ((x⊗ y.re)⊘ nrm)

∣∣∣∣
≤

∣∣∣∣(x⊗ y.re)⊘ nrm− x⊗ y.re

nrm

∣∣∣∣
+

∣∣∣∣x⊗ y.re

nrm
− x× y.re

nrm

∣∣∣∣+ ∣∣∣∣x× y.re

nrm
− x× y.re

(y.re)2 + (y.im)2

∣∣∣∣ .
Before continuing, let us compare 1

nrm
and 1

(y.re)2+(y.im)2
by developing a formula for

comparing 1
a2+b2

and its associated 1
nrm

:

Lemma 6.20. ∣∣∣∣ 1

nrm
− 1

a2 + b2

∣∣∣∣ ≤ (EPS + (EPS/2)2)
1

nrm

where nrm = a⊗ a⊕ b⊗ b.

Proof. We compute that(
1

1 + EPS/2

)2

× nrm ≤ a2 + b2 ≤
(

1

1− EPS/2

)2

× nrm;

hence
1

nrm
(1− EPS/2)2 ≤ 1

a2 + b2
≤ 1

nrm
(1 + EPS/2)2.

It then follows that∣∣∣∣ 1

nrm
− 1

a2 + b2

∣∣∣∣ ≤ 1

nrm
(1 + EPS/2)2 − 1

nrm

=
1

nrm
((1 + EPS/2)2 − 1) = (EPS + (EPS/2)2)

1

nrm
.

52

Getting back to our main calculation (with nrm = y.re ⊗ y.re ⊕ y.im ⊗ y.im),
we have∣∣∣∣(x⊗ y.re)⊘ nrm− x⊗ y.re

nrm

∣∣∣∣
+

∣∣∣∣x⊗ y.re

nrm
− x× y.re

nrm

∣∣∣∣+ ∣∣∣∣x× y.re

nrm
− x× y.re

(y.re)2 + (y.im)2

∣∣∣∣
≤ (EPS/2)

|x⊗ y.re|
nrm

+ (EPS/2)
|x⊗ y.re|

nrm
+ (EPS + (EPS/2)2)

|x× y.re|
nrm

= (EPS/2)

(
1

nrm

)
(2|x⊗ y.re|+ (2 + EPS/2)× |x× y.re|)

≤ (EPS/2)

(
1

nrm

)
(2|x⊗ y.re|+ (2 + EPS/2)(1 + EPS/2)× |x⊗ y.re|)

= (EPS/2)

(
1

nrm

)
(|x⊗ y.re|)(2 + (2 + EPS/2)(1 + EPS/2))

≤ (EPS/2)(4 + 3EPS/2 + (EPS/2)2)(|x⊗ y.re|)
(

1

nrm

)
≤ (EPS/2)(4 + 3EPS/2 + (EPS/2)2)(1 + EPS/2)(|x⊗ y.re| ⊘ nrm)

≤ (2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)(|(x⊗ y.re⊘ nrm)|).

We also get the analogous formula for the imaginary contribution for the error, so our total
error is bounded by

(2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)((|(x⊗ y.re)⊘ nrm|)
+(|(x⊗ y.im)⊘ nrm|))

≤ (2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)2

· ((|(x⊗ y.re)⊘ nrm|)⊕ (|(x⊗ y.im)⊘ nrm|))
≤ (2EPS)(1− EPS/2)(1 + 2EPS)

· ((|(x⊗ y.re)⊘ nrm|)⊕ (|(x⊗ y.im)⊘ nrm|))
≤ (2EPS)⊗ ((1 + 2EPS)⊗ ((|(x⊗ y.re)⊘ nrm|)
⊕(|(x⊗ y.im)⊘ nrm|))).

Here we used the fact that

(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)2 ≤ (1− EPS/2)(1 + 2EPS).

This should give the flavor of division proofs. As such, we will skip the proofs of X/X
and A/A and simply refer to the Annals web site.

53

Proposition 6.21. (X/X) If x and y are XComplexes, then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (re, im; e) with

re = (x.re⊗ y.re⊕ x.im⊗ y.im)⊘ nrm

where nrm = y.re⊗ y.re⊕ y.im⊗ y.im

im = (x.im⊗ y.re⊖ x.re⊗ y.im)⊘ nrm

e = (5EPS/2)⊗ ((1 + 3EPS)⊗ A) where

A = ((|x.re⊗ y.re| ⊕ |x.im⊗ y.im|)⊕ (|x.im⊗ y.re| ⊕ |x.re⊗ y.im|))⊘ nrm.

Proposition 6.22. (A/A) If x and y are AComplexes with y.e < 100EPS ⊗ |y|, or, more
accurately,

(y.e)2 < ((10000EPS)⊗ EPS)⊗ nrm

then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (re, im; e) with

re = (x.re⊗ y.re⊕ x.im⊗ y.im)⊘ nrm

where nrm = y.re⊗ y.re⊕ y.im⊗ y.im

im = (x.im⊗ y.re⊖ x.re⊗ y.im)⊘ nrm

e = (1 + 4EPS)⊗ (((5EPS/2)⊗ A⊕ (1 + 103EPS)⊗B)⊘ nrm) where

A = (|x.re⊗ y.re| ⊕ |x.im⊗ y.im|)⊕ (|x.im⊗ y.re| ⊕ |x.re⊗ y.im|)
B = x.e⊗ (|y.re| ⊕ |y.im|)⊕ (|x.re| ⊕ |x.im|)⊗ y.e.

In our last proposition we will construct the square-root function. As a warm-up, ignoring
round-off error, our construction is as follows. If x = x.re + ix.im then

√
x = s + id where

s =
√

(|x.re|+ h(x.re, x.im))/2 and d = x.im/(2s) when x.re > 0.0, and
√
x = d + is

otherwise. Thus, we take our (no-round-off) square roots to be in the first and fourth
quadrants.

Proposition 6.23. (
√
X) If x is an XComplex, then S(

√
x) ⊇

√
S(x) where we let so =

o
√

(|x.re| ⊕ ho(x.re, x.im))⊗ 0.5 and do = (x.im⊘ s)⊗ 0.5, and define

√
x ≡ (re, im; e) where

re = so if x.re > 0.0 and re = do otherwise,

im = do if x.re > 0.0 and im = so otherwise,

e = EPS ⊗ ((1 + 4EPS)⊗ (1.25⊗ so ⊕ 1.75⊗ |do|)).

Proof. This will be a little nasty. Let us begin by analyzing es, which is the difference
between the true calculation of s and the machine calculation of s, that is es = |s − so|.

54

First, we bound s.

s =
√
(|x.re|+ h(x.re, x.im)) ∗ 0.5

≤ (1 + EPS)1/2
√
(|x.re|+ ho(x.re, x.im)) ∗ 0.5

≤ (1 + EPS)1/2(1 + EPS/2)1/2
√

(|x.re| ⊕ ho(x.re, x.im)) ∗ 0.5
≤ (1 + EPS)1/2(1 + EPS/2)1/2

· (1 + EPS/2) o
√
(|x.re| ⊕ ho(x.re, x.im)) ∗ 0.5

= (1 + EPS)1/2(1 + EPS/2)3/2so.

By a power series expansion, we see that

(1 + EPS)1/2(1 + EPS/2)3/2 =

(
1 +

1

2
EPS − 1

8
EPS2 + · · ·

)
+

(
1 +

3

2
EPS/2 +

3

8
(EPS/2)2 + · · ·

)
=

(
1 +

5

4
EPS +

11

32
EPS2 + · · ·

)
,

so that,

s ≤
(
1 +

5

4
EPS +

11

32
EPS2 + · · ·

)
so.

Similarly,

s ≥
(
1− 5

4
EPS

)
so.

Thus, we can bound the s error,

es = |s− so| ≤
((

1 +
5

4
EPS +

11

32
EPS2 + · · ·

)
− 1

)
so

=

(
5

4
EPS +

11

32
EPS2 + · · ·

)
so.

Next, we analyze ed, which is the absolute value of the difference between the true

55

calculation of d and the machine calculation of d. That is, ed = |d− do|.

ed = |x.im/(2s)− x.im⊘ (2so)|
≤ |x.im⊘ (2so)− x.im/(2so)|+ |x.im/(2so)− x.im/(2s)|

≤ (EPS/2)|x.im/(2so)|+
∣∣∣∣x.im2 s− so

sso

∣∣∣∣
≤ (EPS/2)|x.im/(2so)|+

∣∣∣∣x.im2 1

sso
((5/4)EPS + (11/32)EPS2 + · · ·)so

∣∣∣∣
≤ (EPS/2)|x.im/(2so)|

+

∣∣∣∣x.im2 1

so(1− (5/4)EPS)
((5/4)EPS + (11/32)EPS2 + · · ·)

∣∣∣∣
= (EPS/2)|x.im/(2so)|

(
1 +

(5/2) + (11/16)EPS + · · ·)
(1− (5/4)EPS)

)
= (EPS/2)

(7/2) + (−9/16)EPS + · · ·
(1− (5/4)EPS)

|x.im/(2so)|

≤ (EPS/2)(1 + EPS/2)
7/2

(1− (5/4)EPS)
|x.im⊘ (2so)|

= (EPS/2)(1 + EPS/2)
7/2

(1− (5/4)EPS)
|do|.

56

Finally, we can bound the overall error e = es + ed.

es + ed ≤
(
5

4
EPS +

11

32
EPS2 + · · ·

)
so

+ (EPS/2)(1 + EPS/2)
7/2

(1− (5/4)EPS)
|do|

≤
(
EPS +

11

40
EPS2 + · · ·

)(
5

4
so

)
+ EPS(1 + EPS/2)

1

(1− (5/4)EPS)

∣∣∣∣74do
∣∣∣∣

≤ EPS(1 + EPS/2)
1

(1− (5/4)EPS)

(
5

4
so

)
+ EPS(1 + EPS/2)

1

(1− (5/4)EPS)

∣∣∣∣74do
∣∣∣∣

≤ EPS(1 + EPS/2)
1

(1− (5/4)EPS)

(
5

4
so +

∣∣∣∣74do
∣∣∣∣)

≤ EPS(1 + EPS/2)3
1

(1− (5/4)EPS)

(
5

4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣)
≤ EPS(1− (EPS/2))(1 + 4EPS)

(
5

4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣)
≤ EPS ⊗

(
(1 + 4EPS)⊗

(
5

4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣)) .

Now, we develop two formulas for the absolute value of an XComplex.

Formula 6.24. (absUB(X)) If x is an XComplex, then there is an upper bound on the
absolute value of x as follows:

|x| = h(x.re, x.im) ≤ (1 + EPS)h◦(x.re, x.im)

≤ (1− EPS/2)(1 + 2EPS)h◦(x.re, x.im)

≤ (1 + 2EPS)⊗ h◦(x.re, x.im).

Thus, we define
absUB(x) = (1 + 2EPS)⊗ h◦(x.re, x.im).

Formula 6.25. (absLB(X)). If x is an XComplex, then we get a lower bound on the
absolute value of x as follows.

|x| = h(x.re, x.im) ≥ (1− EPS)h◦(x.re, x.im)

≥ (1 + EPS/2)(1− 2EPS)h◦(x.re, x.im)

≥ (1− 2EPS)⊗ h◦(x.re, x.im).

57

Thus, we define
absLB(x) = (1− 2EPS)⊗ h◦(x.re, x.im).

Finally, in several places in the verify program we perform a standard operation on a
pair of doubles and must take into account round-off error. This is easy if we use Lemma
6.6.

For example, in inequalityHolds we want to show that

wh× wh > absUB(along),

where wh = absLB(whirle). By Lemma 6.6, we know that

(1− EPS)⊗ (wh⊗ wh) ≤ wh× wh

and we simply test that

(1− EPS)⊗ (wh⊗ wh) ≥ absUB(along).

A slightly more complicated version of this occurs in the computer calculation of pos[i]
and size[i], that is, the center and size of a sub-box. Prior to multiplication by scale[i] =
2(5−i)/6, the calculations of pos and size are exact. However, multiplication by scale in-
troduces round-off error. For the center of the sub-box we will have the computer use
pos[i] ⊗ scale[i] with the realization that this is not necessarily pos[i] × scale[i]. Thus, we
have to choose appropriate sizes to ensure that the machine sub-box contains the true sub-
box.

Notationally, this is annoying, because we typically use a computer command like pos[i] =
pos[i] ⊗ scale[i], while in an exposition, we need to avoid that. We will denote the true
center of the sub-box by p[i] and the machine center of the sub-box by p0[i], and the true
and machine sizes will be denoted s[i] and s0[i]. We will let pos[i] and size[i] be the position
and size (true and machine are the same) before multiplication by scale[i].

Let p[i] = pos[i] × scale[i], p0[i] = pos[i] ⊗ scale[i], and s[i] = size[i] × scale[i]. We
must select s0[i] so that p0[i] + s0[i] ≥ p[i] + s[i]. (Here, taking + on the left-hand side is
correct, because the need for machine calculation there is incorporated at other points in the
programs.) So, we must find s0[i] such that s0[i] ≥ (p[i]− p0[i]) + s[i].

(p[i]− p0[i]) + s[i]. ≤ (EPS/2)|p0[i]|+ size[i]× scale[i]

≤ (EPS/2)|p0[i]|+ (1 + EPS/2)(size[i]⊗ scale[i])

≤ (1 + EPS/2)((EPS/2)|p0[i]|+ (size[i]⊗ scale[i]))

≤ (1 + EPS/2)2((EPS/2)|p0[i]| ⊕ (size[i]⊗ scale[i]))

≤ (1 + 2EPS)⊗ ((EPS/2)|p0[i]| ⊕ (size[i]⊗ scale[i])).

Thus we take

s0[i] = (1 + 2EPS)⊗ ((EPS/2)|p0[i]| ⊕ (size[i]⊗ scale[i])).

This also works to give p0[i]− s0[i] ≤ p[i]− s[i].

58

Chapter 7

AffApproxes with round-off error

In Chapter 5, we saw how to do calculations with AffApproxes. Here, we incorporate round-
off error into these calculations.

Conventions 7.1. An AffApprox x is a five-tuple (x.f ;x.f0, x.f1, x.f2;x.err) consisting of
four complex numbers (x.f, x.f0, x.f1, x.f2) and one real number x.err. In Chapter 5 , the
real number was denoted x.e, but it seems preferable to use x.err here. Recall (Definition
5.4 that an AffApprox x represents the set S(x) of functions from A = {(z0, z1, z2) ∈ C3 :
|zk| ≤ 1 for k ∈ {0, 1, 2}} to C that are x.err-well-approximated by the affine function
x.f + x.f0z0 + x.f1z1 + x.f2z2.

Remarks 7.2. A review of Definition 6.2 (XComplexes and AComplexes; loosely, exact and
approximate complex numbers) might be helpful at this time.

One approach to round-off error for AffApproxes would be to replace the four complex
numbers in the definition of AffApprox by four AComplex numbers complete with their
round-off errors, and similarly for the one real number. We will not do this because it
would necessitate keeping track of five separate round-off-error terms when we do AffApprox
calculations.

Instead, we will replace the four complex numbers by four XComplexes and push all the
round-off error into the .err term. Thus, the definition of AffApprox remains essentially the
same as in 5 We note that, in doing an AffApprox calculation, our subsidiary calculations
will generally be on XComplex numbers and produce an AComplex number whose .e term
will be plucked off and forced into the .err term of the final AffApprox.

Conventions 7.3. i) In what follows, we will use Basic Properties 6.5 and Lemmas 6.6
and 6.7. Also, the corresponding propositions in Chapter 5 will be utilized. (for example,
Proposition 5.13 corresponds to Proposition 7.10.

ii) Some notational simplifications will be introduced: dist(x) before Proposition 7.9, ax
before Propositions 7.11, 7.12, 7.14, (the middle usage of ax differs slightly from the other
two), and ay before Propositions 7.11, 7.12.

iii) We will try to keep our notation fairly consistent with that of the verify computer

59

program, and this will produce some mildly peculiar notation. In particular, in the opera-
tions pertaining to Propositions 7.5 and beyond, the resultant AffApproxes will be denoted
(r f.z; r f1.z, r f2.z, r f3.z; r error) where the first four terms are XComplexes and the last
term is a double (technically, r f.z is the XComplex part of the AComplex r f and sim-
ilarly for the r fk.z terms). One break with the notation of the programs though is that
AffApproxes are called (in the programs) ACJ’s, which stands for “Approximate Complex
1-Jets.”

iv) The propositions that follow include in their statements the definitions of the various
operations on AffApproxes (see Remark 5.6 iii).

v) We remind the reader (see Conventions 6.4 that all machine operations act on machine
numbers, and that the various variables appearing in the propositions are assumed to be
doubles.

−X:

Proposition 7.4. If x is an AffApprox then S(−x) = −(S(x)) where

−x ≡ (−x.f ;−x.f0,−x.f1,−x.f2;x.err).

X + Y : We analyze the addition of the AffApproxes x = (x.f ;x.f0, x.f1, x.f2;x.err) and
y = (y.f ; y.f0, y.f1, y.f2; y.err). To get the first term in x+y we add the XComplex numbers
x.f and y.f ; which produce the AComplex number r f = x.f + y.f (see Proposition 6.12),
and then we pluck off the XComplex part, which we denote r f.z. The round-off error part
r f.e will be foisted into the overall error term r error for x+ y. Similarly for the next three
terms in x+ y.

Abstractly, the overall error term r error comes from adding the round-off error contri-
butions r f.e, r f0.e, r f1.e, r f2.e and the AffApprox error contributions x.err, y.err. Of
course, we have to produce a machine version.

Proposition 7.5. If x and y are AffApproxes, then S(x+ y) ⊇ S(x) + S(y), where

x+ y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f + y.f,

r fk = x.fk + y.fk,

r error = (1 + 3EPS)

⊗ ((x.err ⊕ y.err)⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))).

60

Proof. The error is given by

(x.err + y.err) + ((r f.e+ r f0.e) + (r f1.e+ r f2.e))

≤ (1 + EPS/2)(x.err ⊕ y.err)

+ (1 + EPS/2)((r f.e⊕ r f0.e) + (r f1.e⊕ r f2.e))

≤ (1 + EPS/2)3((x.err ⊕ y.err)⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e)))

≤ (1 + 3EPS)⊗ ((x.err⊕ y.err)⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))).

To get the last line we used Lemma 6.7.

X − Y :

Proposition 7.6. If x and y are AffApproxes, then S(x− y) ⊇ S(x)− S(y), where

x− y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f − y.f,

r fk = x.fk − y.fk,

r error = (1 + 3EPS)

⊗ ((x.err ⊕ y.err)⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))).

X + D: Here, we add the AffApprox x = (x.f ;x.f0, x.f1, x.f2;x.err) to the double y.
The only terms that change are the first and the last.

Proposition 7.7.If x is an AffApprox and y is a double, then S(x+y) ⊇ S(x)+S(y), where

x+ y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f + y,

r fk = x.fk,

r error = (1 + EPS)⊗ (x.err ⊕ r f.e).

Proof. The error is given by

x.err + r f.e ≤ (1 + EPS)⊗ (x.err ⊕ r f.e)

by Lemma 6.6.

X −D:

61

Proposition 7.8.If x is an AffApprox and y is a double, then S(x−y) ⊇ S(x)−S(y), where

x− y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f − y,

r fk = x.fk,

r error = (1 + EPS)⊗ (x.err ⊕ r f.e).

X × Y : We multiply the AffApproxes x and y while pushing all error into the .err term.
We will use the functions (see Formulas 6.24 and 6.25, at the end of Chapter 6) absUB =

(1 + 2EPS)⊗ hypoto(x.re, x.im) and absLB(x) = (1− 2EPS)⊗ hypoto(x.re, x.im).
When x is an AffApprox, we define dist(x) to be

(1 + 2EPS)⊗ (absUB(x.f0)⊕ (absUB(x.f1)⊕ absUB(x.f2))).

This is the machine representation of the sum of the absolute values of the linear terms in
the AffApprox x (the proof is straightforward).

Proposition 7.9. If x and y are AffApproxes, then S(x× y) ⊇ S(x)× S(y), where

x× y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f × y.f,

r fk = x.f × y.fk + x.fk × y.f,

r error = (1 + 3EPS)⊗ (A⊕ (B ⊕ C)),

and

A = (dist(x)⊕ x.err)⊗ (dist(y)⊕ y.err),

B = absUB(x.f)⊗ y.err ⊕ absUB(y.f)⊗ x.err,

C = (r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e).

Proof. We add the non-round-off error term for x × y to the various round-off error terms
that accumulated.

((dist(x) + x.err)× (dist(y) + y.err)) + ((absUB(x.f)× y.err

+ absUB(y.f)× x.err) + (r f.e+ r f0.e) + (r f1.e+ r f2.e))

≤ (1 + EPS/2)3[(dist(x)⊕ x.err)⊗ (dist(y)⊕ y.err)]

+ (1 + EPS/2)2{(absUB(x.f)⊗ y.err

⊕ absUB(y.f)⊗ x.err) + ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))}
≤ (1 + EPS/2)3A+ (1 + EPS/2)3(B ⊕ C)

≤ (1 + 3EPS)⊗ (A⊕ (B ⊕ C)).

62

X ×D:

Proposition 7.10.If x is an AffApprox and y is a double, then S(x × y) ⊇ S(x) × S(y),
where

x× y = (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f × y,

r fk = x.fk × y,

r error = (1 + 3EPS)

⊗ ((x.err ⊗ |y|)⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))).

X/Y : For convenience, let ax = absUB(x.f), ay = absLB(y.f).

Proposition 7.11. If x and y are AffApproxes with D > 0 (see below), then S(x/y) ⊇
S(x)/S(y), where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f/y.f,

r fk = (x.fk × y.f − x.f × y.fk)/(y.f × y.f),

r.error = (1 + 3EPS)⊗ (((1 + 3EPS)⊗ A⊖ (1− 3EPS)⊗B)⊕ C),

and

A = (ax⊕ (dist(x)⊕ x.err))⊘D,

B = (ax⊘ ay ⊕ dist(x)⊘ ay)⊕ ((dist(y)⊗ ax)⊘ (ay ⊗ ay)),

C = (r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e),

D = ay ⊖ (1 + EPS)⊗ (dist(y)⊕ y.err).

Proof. As usual, we add the round-off errors to the old AffApprox error, taking into account
round-off error, working on it bit by bit.

(ax+ dist(x) + x.err)/(ay − (dist(y) + y.err))

≤ (1 + EPS/2)2

× (ax⊕ (dist(x)⊕ x.err))/(ay − (1 + EPS)⊗ (dist(y)⊕ y.err))

≤ (1 + EPS/2)2(ax⊕ (dist(x)⊕ x.err))/
((1

1 + EPS/2

)
× (ay ⊖ (1 + EPS)⊗ (dist(y)⊕ y.err))

)
≤ (1 + EPS/2)4(ax⊕ (dist(x)⊕ x.err))

⊘(ay ⊖ (1 + EPS)⊗ (dist(y)⊕ y.err))

≤ (1 + 3EPS)⊗ A.

63

The next term, being subtracted, requires opposite inequalities.

(ax/ay + dist(x)/ay) + dist(y)× ax/(ay × ay)

≥ (1− EPS/2)(ax⊘ ay + dist(x)⊘ ay)

+(1− EPS/2)(dist(y)⊗ ax)/(
1

1− EPS/2
)(ay ⊗ ay)

≥ ((1− EPS/2)4((ax⊘ ay ⊕ dist(x)⊘ ay)⊕ ((dist(y)⊗ ax)⊘ (ay ⊗ ay)))

≥ (1 + EPS/2)(1− 3EPS)(B) ≥ (1− 3EPS)⊗B.

Finally, we do the round-off terms

((r f.e+ r f0.e) + (r f1.e+ r f2.e)) ≤ (1 + EPS/2)2C

and we put these three pieces together:

(ax+ dist(x) + x.err)/(ay − (dist(y) + y.err))

−((ax/ay + dist(x)/ay) + dist(y)× ax/(ay × ay))

+((r f.e+ r f0.e) + (r f1.e+ r f2.e))

≤ (1 + 3EPS)⊗ A− (1− 3EPS)⊗B + (1 + EPS/2)2C

≤ (1 + EPS/2)2(((1 + 3EPS)⊗ A⊖ (1− 3EPS)⊗B) + C)

≤ (1 + 3EPS)⊗ (((1 + 3EPS)⊗ A⊖ (1− 3EPS)⊗B)⊕ C).

D/X: We divide a double x by an AffApprox y. For convenience, let ax = |x|, ay =
absLB(y.f). Having done division out in the previous proposition, we will skip the proof of
Proposition 7.12. See the Annals web site for the proof.

Proposition 7.12. If x is a double and y is an AffApprox with D > 0 (see below), then
S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f =x/y.f,

r fk =−(x× y.fk)/(y.f × y.f),

r error=(1 + 3EPS)⊗ (((1 + 2EPS)⊗ (ax⊘D)⊖ (1− 3EPS)⊗B)⊕ C),

B= ax⊘ ay ⊕ (dist(y)⊗ ax⊘ (ay ⊗ ay)),

C =(r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e),

D= ay ⊖ (1 + EPS)⊗ (dist(y)⊕ y.err).

X/D: We divide an AffApprox x by a nonzero double y (the computer will object if
y = 0). The proof is easy and so we delete it.

64

Proposition 7.13. If x is an AffApprox and y is a nonzero double, then S(x/y) ⊇ S(x)/S(y),
where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error),

with

r f =x.f/y

r fk =x.fk/y

r error=(1 + 3EPS)⊗ ((x.err ⊘ |y|)⊕ [(r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e)]).

√
X: Here, x is an AffApprox and we let ax = absUB(x.f). There are two cases to

consider depending on whether or not D = ax⊖ (1 + EPS)⊗ (dist(x)⊕ x.err) is or is not
greater than zero.

Proposition 7.14. If x is an AffApprox and D = ax ⊖ (1 + EPS) ⊗ (dist(x) ⊕ x.err) is
not greater than zero, then S(

√
x) ⊇

√
S(x), where we use the crude overestimate

√
x ≡

(
0; 0, 0, 0; (1 + 2EPS)⊗ o

√
(ax⊕ (x dist⊕ x.err))

)
.

Proof.

√
ax+ x dist+ x.err ≤ (1 + EPS/2)

√
(ax⊕ (x dist⊕ x.err))

≤ (1 + 2EPS)⊗ o
√

(ax⊕ (x dist⊕ x.err)).

Proposition 7.15. If x is an AffApprox and D = ax ⊖ (1 + EPS) ⊗ (dist(x) ⊕ x.err) is
greater than zero, then S(

√
x) ⊇

√
S(x), where

√
x ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f =
√

x.f,

t = r f + r f,

r fk = AComplex(x.fk.re, x.fk.im; 0)/t.

(Simply put, r fk = x.fk/(2
√
x.f). The reason we have to fuss to define r fk is because√

x.f is an AComplex.)

r error=(1 + 3EPS)

⊗
{
(1 + EPS)⊗ o

√
ax⊖ (1− 3EPS)⊗ [dist(x)⊘ (2× o

√
ax)⊕ o

√
D]
}

⊕((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e)).

65

Proof. Let us work on the pieces.

√
ax ≤ (1 + EPS)⊗ o

√
ax.

Next,

dist(x)/(2
√
ax) +

√
ax− (dist(x) + x.err)

≥ (1− EPS/2)2dist(x)⊘ (2 o
√
ax)

+(1− EPS/2)1/2
√

ax⊖ (1 + EPS)⊗ (dist(x)⊕ x.err)

≥ (1− EPS/2)3
[
dist(x)⊘ (2 o

√
ax)⊕ o

√
D
]

≥ (1 + EPS/2)(1− 3EPS)
[
dist(x)⊘ (2 o

√
ax)⊕ o

√
D
]

≥ (1− 3EPS)⊗
[
dist(x)⊘ (2 o

√
ax)⊕ o

√
D
]
.

Adding in the usual term, we get as our error bound

√
ax− (dist(x)/(2

√
ax) +

√
ax− (dist(x) + x.err))

+ ((r f.e+ r f0.e) + (r f1.e+ r f2.e))

≤ (1 + EPS)⊗ o
√
ax− (1− 3EPS)⊗ [dist(x)⊘ (2 o

√
ax)⊕ o

√
D]

+ (1 + EPS/2)2((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))

≤ (1 + EPS/2)3
(
{(1 + EPS)⊗ o

√
ax

⊖ (1− 3EPS)⊗ [dist(x)⊘ (2 o
√
ax)⊕ o

√
D]}

⊕ ((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))
)

≤ (1 + 3EPS)⊗ ({(1 + EPS)⊗ o
√
ax

⊖ (1− 3EPS)⊗ [dist(x)⊘ (2 o
√
ax)⊕ o

√
D]}

⊕((r f.e⊕ r f0.e)⊕ (r f1.e⊕ r f2.e))).

66

Chapter 8

Hints from behind the curtain

8.1 Introduction

The goal of this thesis is to introduce new computational methods and use them to prove
Theorem 2.1. As noted in 4.3 to prove this theorem it sufficed to produce a data set which
is then shown by relatively simple methods to satisfy the desired conclusion. However,
constructing said data set required an enormous effort, both computationally and personally,
that required us to develop efficient tools, organization and approaches to both recognize
that the project is tractable and to carry it through completion. The goal of this chapter is
to briefly state and discuss some of these elements. Some such as affine approximation, are
central parts of the text, others are just casually used while others are totally suppressed.

8.2 Choosing The Computational Setup

It’s all about controlling the error, i.e. maximizing the impact of the boxes you kill. Note
that if the error is increased by 10%, you need at least roughly 1.16 as many boxes (about
twice as many). Moreover, if an error component compounds faster than linearly when you
compose isometries, the situation is much worse. We briefly describe some technique to
control error.

1. We discovered that standard interval arithmetic has far greater error compared with
1-jet arithmetic, so we went with that. We considered 2-jet arithmetic, however the
effort to set the foundations seemed untenable, especially considering that the 1-jet
material comprises 30+ pages of this thesis.

2. We exponentiated the parameter space to reduce the required arithmetic operations to
+, -, *, /, and square root. In particular we eliminated the need to work with functions
such as cosh and arccosh from the formulas.

67

3. We worked with three complex parameters rather than six real parameters. Among
other things when multiplying two complex numbers using 1-jets the error does not
grow exponentially under complex rotation.

4. We worked with box shapes that were as round as possible: By coordinating box shape
with cyclical subdivision, and interleaving real and imaginary parts, we arranged to
make all boxes similar.

In our early exploratory stage, we tried adaptively adjusting the shape based on the
error corresponding to different parameters. We ran into trouble, possibly due to a
feedback loop, and shelved the idea.

8.3 Getting Started

One must confront the question of whether or not a computer assisted project has an accept-
able chance of success. To address this we did a preliminary Monte Carlo probe: choosing
a few (later a few hundred) points in the parameter space, finding a killerword for the
point, finding the largest box containing the point that was killed, and finally measuring box
volume.

By examining the sampled distribution of volume of these killed boxes, it seemed likely
that it had a long tail, suggesting that any data-driven estimate of run time for a complete
search would likely be a lower bound. We had no idea how optimistic that lower bound was!
Nonetheless, it took us a month to learn enough to get through that stage.

8.4 Engineering - Mathematics Feedback

The search was aided by mathematical and experimental results that were discovered by the
search as well as previously known ones. Here are some examples.

1. We ran into early trouble in our search, with many thousands of problematic boxes
present after several cycles of six subdivisions each, and the number growing rapidly as
we progressed deeper. Investigation revealed a pattern: most of these problem boxes
had strange quasi-relators like fwf−1w−1.

Happily, a relator of this form implies that f and w share an axis which is impossible
in our setup.

After realizing this, it was easy to modify the search to take advantage of the insight,
kill all the problem boxes, and proceed deeper into the box tree.

2. Conjugation Symmetry: See 4.2. This was discovered by using Geomview and ndview
to visualize six-dimensional wireframes of unsolved boxes. A bilateral symmetry in
their arrangement caught our eye...

68

3. Mathematical Software: Snappea, Heegaard and Poincare were essential tools. For
example Snappea gave us confidence that a result along the lines we hoped for might
be true. However, it wasn’t perfect because the search discovered exceptional regions.
But then Heegaard and Poincare experimentally showed that manifolds existed in our
exceptional regions, giving confidence that we indeed found seven needles in our five
hundred million box haystack.

4. The Shimizu-Leutbecher Theorem: This theorem (not used in this thesis) is very useful
for finding buffer regions about varieties defined by quasi-relators and was successfully
used in our paper [GHMTY] to eliminate regions. See Lemma 2.13 of that paper.

8.5 The Computational Trilogy

We developed three separate programs to complete this project.

1. Verify: This clean and simple program written in CWEB rigorously checks that our
parameter space subdivision with killer words functions.

2. Decomposition: This program written in C++ finds the decomposition of parameter
space into exceptional boxes and boxes with killer words. It was frequently altered as
the search progressed, to take advantage of knowledge gained during the search. See
remark 3.31 for details.

3. Statistics and Control: This collection of small programs written in Perl (later Python)
does everything else, from estimating a lower bound on remaining search effort to
orchestrating multi-host parallelism to validating tree structure to rebalancing the
tree.

69

Bibliography

[ACS] I. Agol, M. Culler, and P. Shalen, Dehn surgery, homology and hyperbolic volume,
Algebr. Geom. Topol. 6 (2006), 2297–2312.

[ADST] I. Agol, P. Storm & W. Thurston (appendix by N. Dunfield), Lower bounds on
volumes of hyperbolic Haken 3-manifolds, J. AMS, 20 (2007), 1053-1077.

[Bea] A. Beardon, The Geometry of Discrete Groups, Graduate Texts in mathematics
91, Springer-Verlag,

[CLLMR] A. Champanerkar, J. Lewis, M. Lipyanskiy, S. Meltzer, (appendix by A. Reid)
Exceptional regions and associated exceptional hyperbolic 3-manifolds, Experi-
ment. Math. 16 (2007), no. 1, 107 - 118.

[F] W. Fenchel, Elementary Geometry in Hyperbolic Space, de Gruyter Studies
Math., 11, de Gruyter, Berlin (1989).

[FS] L. H. de Figueiredo and J. Stolfi, Self-validated numerical methods and applica-
tions, Brazilian Math. Colloq. Monograph, IMPA, Rio de Janeiro, Brazil (1997).

[G1] D. Gabai, On the Geometric and Topological Rigidity of Hyperbolic 3-Manifolds,
J. Amer. Math. Soc. 10 (1997), no. 1, 37?74.

[G2] D. Gabai, The Smale conjecture for hyperbolic 3-manifolds: Isom(M3) ∼=
Diff(M3), J. Diff. Geom. 58 (2001), 113-149.

[GMM] D. Gabai, R. Meyerhoff & P. Milley, Minimum volume cusped hyperbolic 3-
manifolds, J. AMS 22 (2009), 1157-1215.

[GMT] D.Gabai, R. Meyerhoff & N. Thurston, Homotopy Hyperbolic 3-Manifolds are
Hyperbolic, Annals of Math. (2) 157 (2003), 335–431.

[GT] D. Gabai & M. Trnkova, Exceptional hyperbolic 3-manifolds, Comment. Math.
Helv, 90 (2015), 703-730.

[GHMTY] D. Gabai, R. Haraway, R. Meyerhoff, N. Thurston, A. Yarmola, Hyperbolic 3-
manifolds of low cusp volume, preprint.

70

[GMTY] D. Gabai, R. Meyerhoff, N. Thurston, A. Yarmola, Enumerating Kleinian Groups,
to appear, Proceedings of Computational Aspects of Discrete Subgroups of Lie
Groups, AMS Contemporary Math. Series.

[IEEE] IEEE Standard for binary floating-point arithmetic (ANSI/IEEE Std 754-1985)
published by the Institute of Electrical and Electronics Engineers, Inc., New
York, NY, 1985.

[JR] K. Jones and A. Reid, Vol3 and other exceptional hyperbolic 3-manifolds, Proc.
A.M.S. 129 (2001), 2175–2185.

[K1] W. Kahan, Interval arithmetic options in the proposed IEEE floating point arith-
metic standard (Karl L. E. Nickel, ed.), in Interval Mathematics , 99–128 (1980).

[L] M. Lipyanskiy. A Computer-Assisted Application of Poincaré’s Fundamental
Polyhedron Theorem. Preprint, 2002.

[LM] M. Lackenby & R. Meyerhoff, The maximal number of exceptional Dehn surg-
eries, Invent. Math. 191 (2013), 341–382.

[Me] G. R. Meyerhoff, A Lower Bound for the Volume of Hyperbolic 3-Manifolds,
Canadian J. Math. 39 (1987) 1038-1056.

[Mi] P. Milley, Minimum volume hyperbolic 3-manifolds, J. Top. 2(2009), 181-192.

[Pe1] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math.DG/
0303109.

[Pe2] G. Perelman, The entropy formula for the Ricci flow and its geometric applica-
tions, arXiv:math.DG/0211159.

