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Selecting the Number of Communities in Count-Weighted Networks

Abstract

This dissertation aims to address the problem of estimating the number of communities

in count-weighted networks. We propose two methods from very different perspectives.

The first method we propose is a stepwise procedure, referred to as Stepwise Model-

Assisted Spectral Thresholding (SMAST), selecting the number of communities in general

count-weighted networks, which are common in the real-world. In the 𝑚-th step of the

procedure, we first cluster the nodes into 𝑚 groups with a certain spectral clustering method,

and estimate the mean parameters of the general degree-corrected stochastic blockmodel

(DCSBM). Then the adjacency matrix is normalized by the estimated degree-correction

parameters as well as the solution to a small-scale matrix scaling problem. The eigenvalues

of the resultant normalized adjacency matrix are then truncated with the threshold (2+𝜖)
√
𝑛

in magnitude, where 𝜖 is a prespecified small constant, e.g. 0.05. The procedure continues to

the (𝑚 + 1)-th step if the number of remaining significant eigenvalues is greater than 𝑚, and

stops otherwise. A prominent feature of this method is that it is derived under the general

DCSBM, and can be applied to general count-weighted networks. In theory, if SCORE is

used for spectral clustering, SMAST is shown to be consistent in estimating the true number

of communities under certain assumptions that hold for a broad class of count-weighted

networks. An extension of the Nonsplitting Property of SCORE to the general DCSBM,

and recent results on spectral radii of inhomogeneous random matrices, play essential roles

in the analyses. Extensive numerical experiments on simulated and real networks have also

been conducted to demonstrate the empirical effectiveness of SMAST.

The second method is a network rank selection method based on approximate risk es-

timation. We treat the problem of estimating the number of communities in a network as

selecting the rank of the expected adjacency matrix. For each given rank 𝑟, the spectral

estimate of the expected adjacency matrix is obtained by spectral truncation of the observed
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adjacency matrix with rank 𝑟. The goodness of rank 𝑟 is evaluated by quantifying the es-

timation error of the estimated expected adjacency matrix. By choosing the error measure

based on the binomial deviance, following existing work in the literature on risk estimation

under the Bernoulli model, we can estimate the optimism of the apparent error over the

true error by the divergence of the estimator with respect to the observation. Moreover, the

divergence formula of any spectral function can be calculated in closed-form, which provides

an estimate of the true error as the apparent error plus the divergence. This framework can

be straightforwardly extended to Poisson networks, and thus can be used to solve the prob-

lem of rank selection for count-weighted networks. The closed-form formula of the estimated

true error is derived in this case as well. We have applied this method to several benchmark

networks in the literature and found the performance comparable and even better than other

state-of-the-art model-based approaches.
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CHAPTER 1

Introduction

In network analysis, community detection is regarding how to partition the vertices of a

graph into clusters with similar connection patterns. This is an important problem with var-

ious applications in sociology, biology, and machine learning. The study of relevant models,

methods, and theory has also attracted interest from researchers across a variety of fields in-

cluding statistics, computer science, and physics; see, e.g., the survey of Fortunato [2010]. In

order to derive community detection methods and analyze their theoretical properties, sto-

chastic blockmodels (SBM) [Holland et al., 1983] and its extensions such as degree-corrected

SBM (DCSBM) [Karrer and Newman, 2011] have been widely used in practice. Based on

these stochastic blockmodels, plenty of community detection methods have been derived in

the literature, such as likelihood-based methods [e.g., Amini et al., 2013; Bickel and Chen,

2009; Newman and Girvan, 2004; Zhao et al., 2012], spectral methods [e.g., Jin, 2015; Lei

and Rinaldo, 2015; Rohe et al., 2011], and convex optimization methods [e.g., Abbe et al.,

2015; Chen et al., 2018; Guédon and Vershynin, 2015].

Most proposed community detection methods in the literature require the knowledge

of the number of communities. Take spectral community detection as an example, which

usually carries out spectral clustering on some matrix derived from the observed network

data, such as the adjacency matrix or the graph Laplacian. Clearly, the 𝑘-means step

in spectral clustering requires the knowledge of the true number of communities, which is

usually unknown and needs to be estimated from the network data. A variety of procedures

and algorithms for the selection of the number of communities have already been proposed

in the literature. Examples include likelihood methods and BIC [Daudin et al., 2008; Hu
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et al., 2020; Latouche et al., 2012; Ma et al., 2021; Saldana et al., 2017; Wang and Bickel,

2017], cross-validation [Chen and Lei, 2018; Li et al., 2020], spectral methods [Le and Levina,

2015], goodness-of-fit [Jin et al., 2022], etc.

Note that the aforementioned methods are mostly proposed for unweighted (i.e. binary-

edge) networks, while model selection for weighted networks is little-studied. In fact, com-

munity detection for weighted networks is important not only because they are common in

practice, but also because weighted networks may present more refined community struc-

tures than unweighted networks because of more complicated connection patterns. This

dissertation is thereby focused on the problem of selecting the number of communities in

weighted networks. As a first step, we consider a special type of weighted network: the count-

weighted network, which is common in practice. One well-known example is the word-word

co-occurrence networks in natural language processing, where each edge-weight represents

the number of co-occurrences of that pair of words in some context. In the literature of

graph theory, count-weighted networks are also referred to as “multigraphs”.

In this dissertation, we are proposing two methods to estimate the number of communities

based on the adjacency matrix of a count-weighted network. Chapter 2 and 3 are devoted

to explaining the two methods in detail, respectively. Simulation studies on synthetic and

real-world networks are postponed to Chapter 4.

1.1. Selecting the Number of Communities in Count-Weighted Networks via

Stepwise Model-Assisted Spectral Thresholding

Spectral methods are generally believed to be more robust to distributional assumptions

than likelihood methods, but adaptive thresholds for spectral truncation are usually difficult

to obtain. The goal of this part of the dissertation is to develop a procedure for select-

ing the number of communities consistently for a broad class of count-weighted networks.

The proposed method is a procedure of stepwise spectral thresholding, in which adaptive

thresholds can be obtained with the help of model fitting. We first consider the general
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DCSBM with 𝐾 communities, in which we model the weighted network only in its mean

adjacency matrix rather than its whole distribution. In the 𝑚-th step of the procedure,

where 𝑚 = 2, 3, . . . (𝑚 = 1 is the trivial case) is the candidate number of communities, we

first group the nodes into 𝑚 distinct communities by using some spectral clustering method,

e.g. SCORE proposed in Jin [2015]. Then we estimate the DCSBM parameters based on

the estimated communities. Next, we aim to find diagonal matrix 𝑫, such that when 𝑚 = 𝐾,

we can truncate the spectrum of the normalized adjacency matrix 𝑨 B 𝑫1/2𝑨𝑫1/2 with an

explicit threshold in order to reveal the true number of communities. The construction of 𝑫

relies on estimated degree-correction parameters as well as solving a small-scale symmetric

matrix scaling problem. The stopping criterion relies on the comparison between 𝑚 and the

remaining eigenvalues of 𝑨. The details will be explained in Chapter 2.

The idea of spectral truncation on normalized adjacency matrix is inspired by a recent

work Landa et al. [2021], which studies how to reveal the rank of a Poisson data matrix by

spectral truncation. The major difference is on how to normalize the data matrix. Applying

their approach to count-weighted networks, the diagonal matrix 𝑫 is constructed by requiring

𝑫𝑨𝑫 to be doubly stochastic, i.e., solving a symmetric matrix scaling problem. This is

indeed a very interesting idea, but also has several drawbacks. First, the existence of such 𝑫

is not guaranteed. In fact, the classical result in guaranteeing the existence and uniqueness

of matrix scaling requires that all the entries of the matrix are strictly positive [Sinkhorn,

1967]. Second, straightforward matrix scaling on 𝑨 is a 𝑂 (𝑛)-scale problem, which will incur

high computational complexity when the network is large. In contrast, the matrix scaling

problem in each step of our procedure turns out to be a 𝑂 (𝑚)-scale problem, which is much

easier to solve in computation. Of course, our method relies on estimating parameters in the

DCSBM, so it involves spectral clustering in each step of the procedure. Once we have the

diagonal matrix 𝑫, the operator norm of 𝑫1/2(𝑨 − E[𝑨])𝑫1/2 can be tightly and explicitly
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controlled by recently established results on the spectral radii of inhomogeneous random

matrix in Lata la et al. [2018].

We establish the theoretical guarantees of our procedure under the general DCSBM with

certain underdispersed and subexponential conditions. Technically speaking, our theoretical

analysis is related to recent theoretical developments of stepwise model selection methods

for unweighted networks [e.g. Jin et al., 2022; Ma et al., 2021]. In particular, we follow the

analytical framework established in Jin et al. [2022] for the stepwise goodness-of-fit (StGoF)

method, which avoids the analysis of the over-fitting case. On the other hand, our under-

fitting case analysis relies on extending the Nonsplitting Property (NSP) shown in Jin et al.

[2022] for unweighted networks to count-weighted networks, in order to reduce the number

of possible realizations for the estimated DCSBM parameters, so that the probability union

bound can be thereby applied. This is a crucial result proved in this dissertation.

1.2. Spectral Divergence-Based Rank Selection for Network Data

The second method we propose is a network rank selection method based on approximate

risk estimation. Rather than imposing specific statistical models on the distribution of the

network data, we only assume that it has independent edges. We treat the problem of

estimating the number of communities in a network as selecting the rank of the expected

adjacency matrix, which is true for various SBM used in the literature, such as the standard

SBM, DCSBM, and mixed membership SBM.

For each given rank 𝑟, we consider the spectral estimate of the expected adjacency matrix,

which is obtained by the spectral truncation of the observed adjacency matrix with the

given rank. The goodness of rank 𝑟 is evaluated by quantifying the estimation risk of the

resultant estimate of the expected adjacency matrix. By choosing the error measures based

on the binomial deviance, following existing work in the literature of risk estimation under

Bernoulli models, we can estimate the optimism of the apparent error over the true error by

the divergence of the estimator with respect to the observations. Moreover, this divergence
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of spectral function can be calculated in closed-form by following existing results for singular

value decomposition (SVD)-based spectral functions [Candès et al., 2013].

The above risk estimation-based approach to network rank selection is first proposed for

standard Bernoulli networks with binary edges and symmetric entries. Interestingly, it can

also be straightforwardly extended to solving the problem of rank selection for the Poisson

network with count edges. We will give the closed-form formula of the estimated true error

in this scenario, too.

This method is closely related to model selection, and here we briefly discuss the closely

relevant ones. In linear models, for least squares estimate, if the error function is chosen as

the squared error, the degree of freedom is determined by the number of features [Mallows,

2000]. This result can be further extended to estimation in parametric models, where both

the estimator and error are likelihood-based [Akaike, 1974]. For the normal mean models, by

choosing the squared error, the degree of freedom can be estimated by the divergence of gen-

eral estimators [Stein, 1981], which further yields the famous Stein’s unbiased risk estimation

(SURE). On the other hand, for Bernoulli models and a broad class of error measures, it was

shown in Efron [1986] that the penalty is determined by the sum of covariances between the

estimates and the corresponding observations. This idea is also related to cross-validations

in Efron et al. [2004]. Moreover, it is shown in Efron et al. [2004] that under Bernoulli

models with general mean estimators, if the error measure is chosen as likelihood-based, the

covariance penalty can be usually approximated by the divergence of the estimator with

respect to the observations. This idea of approximation provides the essential idea to our

proposed method of network rank selection.

Another related topic to our proposed method is the differentials of spectral functions. In

fact, this is a well-studied area in the literature, see, e.g., Edelman [2005]; Lewis and Sendov

[2001]; Papadopoulo and Lourakis [2000]. It is interesting to see that the divergence of

SVD-based spectral functions on rectangular matrices has a very neat closed form formula
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[Candès et al., 2013; Yuan, 2016]. By following the steps in Candès et al. [2013], where

the arguments are based on the previous study of the Jacobians of spectral functions, we

provide analogous divergence formulas for eigenvalue decomposition-based spectral functions

on symmetric matrices.

A related model to our method is the rectangular data matrix with independent Poisson

entries. One example in network analysis is the model proposed in Ball et al. [2011], in

which overlapping 𝐾 communities in a network are defined based on the edges rather than

the nodes. In their work, the edges are assumed to have 𝐾 colors according to the 𝐾

communities, which are unobserved. For each pair of nodes 𝑖 and 𝑗 , the total number of edges

between 𝑖 and 𝑗 satisfies 𝐴𝑖 𝑗
indep∼ Poisson(∑𝐾

𝑘=1 𝜃𝑖𝑘𝜃 𝑗 𝑘 ), where 𝜃𝑖𝑘 for 𝑖 ∈ [𝑛] and 𝑘 ∈ [𝐾]

are unknown nonnegative parameters. Another example is nonnegative matrix factorization

(NMF) proposed in Lee and Seung [1999] with successful applications in image processing

and text mining, in which the count entries are assumed to be Poisson random variables,

and the objective function proposed is subsequently derived from the Poisson likelihood.

Risk estimation for SVD-based spectral estimators under this model has been studied in

Bigot et al. [2017]. In fact, our choice of error measures is exactly the same as theirs. The

major difference is on how to estimate the risk. An unbiased estimate of the discrepancy

between the true and apparent errors was given in their work by using an identity on Poisson

distribution identified in Hudson [1978]. However, this unbiased estimate is computationally

expensive to calculate directly, so approximation based on the sum over random directional

derivatives was proposed in their paper. In contrast, we use the divergence to approximate

this discrepancy by following the ideas in Efron et al. [2004], for which a closed-form formula

can be analytically obtained. In comparison to our method, the random approximation

approach in Bigot et al. [2017] relies sensitively on the choice of the random directional

derivative, and is usually more expensive in computation.
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CHAPTER 2

Selecting the Number of Communities in Count-Weighted

Networks via Stepwise Model-Assisted Spectral Thresholding

2.1. Methodology

Before delving into details, let’s introduce some notations used in this chapter. Denote

𝑎 ∧ 𝑏 = min(𝑎, 𝑏) and 𝑎 ∨ 𝑏 = max(𝑎, 𝑏). We use 𝑎 ≲ 𝑏 or 𝑏 ≳ 𝑎 to denote 𝑎 ≤ 𝐶𝑏 for a

constant 𝐶. Denote 𝑎 ≍ 𝑏 if 𝑎 ≲ 𝑏 and 𝑏 ≳ 𝑎. For a vector 𝒙 ∈ R𝑛, 𝑥𝑖 and 𝑥(𝑖) denote its

𝑖-th entry. We use ∥𝒙∥1 and ∥𝒙∥2 to denote the vector’s ℓ1 and ℓ2-norm, respectively. For

a matrix 𝑿 ∈ R𝑚×𝑛, 𝑋𝑖 𝑗 and 𝑋 (𝑖, 𝑗) denote its (𝑖, 𝑗)-th entry. Denote 𝜆𝑘 (𝑿) as the 𝑘−th (in

descending order of magnitudes) eigenvalue of a symmetric 𝑛 × 𝑛 matrix 𝑿. Denote 𝜎𝑘 (𝑿)

as the 𝑘−th (in descending order) singular value of a 𝑛 × 𝑚 matrix 𝑿. Denote the Schatten

𝑝-norm of a symmetric matrix 𝑿 as

∥𝑿∥𝑆𝑝 =
©­«
∑︁
𝑖

(∑︁
𝑗

𝑋2
𝑖 𝑗

) 𝑝/2ª®¬
1/𝑝

=

(∑︁
𝑖

|𝜆𝑖 (𝑿) |𝑝
)1/𝑝

,

and therefore the operator norm ∥𝑿∥ = ∥𝑿∥𝑆∞ . Denote the 𝑙∞ norm of a random variable 𝜉

as ∥𝜉∥∞.

As introduced in Chapter 1, the goal of the present chapter is to propose a generally

applicable method of estimating the number of communities in a wide class of count-weighted

networks. This section is intended to explain our stepwise procedure in detail. First, let’s

introduce the general DCSBM for count-weighted networks.
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2.1.1. General DCSBM. The standard DCSBM proposed in Karrer and Newman

[2011] can be extended to the general DCSBM for count-weighted networks by only modeling

the mean structure, rather than the whole distribution of the network.

To be specific, let 𝑨 be the symmetric adjacency matrix of the count-weighted network

with 𝑛 nodes, which belong to 𝐾 separate communities. Denote by N1, . . . ,N𝐾 the underlying

communities, with respective cardinalities 𝑛1, . . . , 𝑛𝐾 and hence 𝑛 = 𝑛1 + · · · + 𝑛𝐾 . Denote

by 𝜙 : [𝑛] → [𝐾] the community membership function of nodes, such that 𝜙(𝑖) = 𝑘 if and

only if node 𝑖 belongs to the community N𝑘 . We also use the vector 𝝅𝑖 ∈ R𝐾 to represent

the community belonging of node 𝑖 by letting 𝜋𝑖 (𝑘) = 1 if 𝑖 ∈ N𝑘 and 𝜋𝑖 (𝑘) = 0 otherwise.

Denote 𝚷 = [𝝅1, . . . , 𝝅𝑛]⊤ ∈ R𝑛×𝐾 as the community membership matrix.

Our general DCSBM only models the mean of the adjacency matrix 𝑨, denoted as

𝑴 B E[𝑨], to incorporate both the community structure and the heterogeneity of degrees.

Note that here we allow the network to have self-loops for simplicity of analysis without loss of

generality. Concretely, let 𝑩 be a 𝐾 ×𝐾 symmetric matrix with positive entries and diagonal

entries 𝐵𝑘𝑘 = 1 for 𝑘 = 1, · · · , 𝐾 for the sake of identifiability. Further, let 𝜃1, . . . , 𝜃𝑛 > 0 be

the degree-correction parameters. Denote 𝜽 = (𝜃1, . . . , 𝜃𝑛)⊤ and 𝚯 = diag(𝜃1, . . . , 𝜃𝑛). Then

the entries of the expected adjacency matrix are parameterized as

(2.1) 𝑀𝑖 𝑗 = 𝜃𝑖𝜃 𝑗𝐵𝜙(𝑖)𝜙( 𝑗) = 𝜃𝑖𝜃 𝑗𝝅
⊤
𝑖 𝑩𝝅 𝑗 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

In matrix form, the expected adjacency matrix can be represented as

(2.2) 𝑴 = 𝚯𝚷𝑩𝚷⊤𝚯.

A particular assumption made in our general DCSBM is the following “underdispersed”

assumption:

Var(𝐴𝑖 𝑗 ) ≤ E[𝐴𝑖 𝑗 ] 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

8



This assumption holds for basic count distributions including the binomial and Poisson

distributions.

2.1.2. Stepwise Clustering and DCSBM Parameter Estimation. Our method to

estimate the number of communities is a stepwise method that relies on fitting the general

DSCBM with the candidate number of communities 𝑚 = 1, 2, 3, . . .. In other words, for each

𝑚 ≥ 2 (𝑚 = 1 is the trivial case), we apply some standard community detection method to

obtain 𝑚 estimated communities, and then estimate the model parameters 𝜽 and 𝑩.

To be specific, suppose we apply some spectral clustering method, such as spectral clus-

tering on ratios-of-eigenvectors (SCORE) given in Jin [2015] or regularized spectral clustering

(RSC) in Joseph and Yu [2016], to obtain 𝑚 estimated communities N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 . Then,

the DCSBM parameters, i.e. 𝜽 and 𝑩, can be directly estimated by pretending the estimated

communities are the true communities. Here we review the formulas of such estimates with

the notations given in Jin et al. [2022].

Let’s first see how to represent 𝜽 and 𝑩 by the population adjacency matrix 𝑴, the true

communities N1, . . . ,N𝐾 , and the population degrees. Decompose 𝜽 as 𝜽 = 𝜽1 + · · · + 𝜽𝐾 ,

where 𝜽𝑘 ∈ R𝑛 for 𝑘 = 1, . . . , 𝐾 such that 𝜽𝑘 (𝑖) = 𝜃𝑖 if 𝑖 ∈ N𝑘 and 𝜽𝑘 (𝑖) = 0 otherwise. We

can similarly decompose the 𝑛-dimensional all-one vector into

(2.3) 1𝑛 = 11 + · · · + 1𝐾 ,

such that 1𝑘 ( 𝑗) = 1 if 𝑗 ∈ N𝑘 while 1𝑘 ( 𝑗) = 0 otherwise. It is easy to verify that for

1 ≤ 𝑘, 𝑙 ≤ 𝐾,

1⊤𝑘 𝑴1𝑙 = 𝐵𝑘𝑙 ∥𝜽𝑘 ∥1∥𝜽𝑙 ∥1.

Since we assume that 𝐵𝑘𝑘 = 1 for 𝑘 = 1, . . . , 𝐾, the above equality implies that

∥𝜽𝑘 ∥1 =
√︃
1⊤
𝑘
𝑴1𝑘 ,
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which further gives

(2.4) 𝐵𝑘𝑙 =
1⊤
𝑘
𝑴1𝑙√︃

1⊤
𝑘
𝑴1𝑘

√︃
1⊤
𝑙
𝑴1𝑙

.

Denoting the degrees of the network as 𝑑𝑖 =
∑𝑛
𝑗=1 𝐴𝑖 𝑗 , 𝑖 = 1, · · · , 𝑛. Then, for 𝑖 ∈ N𝑘 , the

population degree of node 𝑖 is

𝑑∗𝑖 B E[𝑑𝑖] = 𝜃𝑖 (𝐵𝑘1∥𝜽1∥1 + 𝐵𝑘2∥𝜽2∥1 + · · · + 𝐵𝑘𝐾 ∥𝜽𝐾 ∥1)

= 𝜃𝑖
©­­«
1⊤
𝑘
𝑴11√︃

1⊤
𝑘
𝑴1𝑘

+ · · · +
1⊤
𝑘
𝑴1𝐾√︃

1⊤
𝑘
𝑴1𝑘

ª®®¬ = 𝜃𝑖
1⊤
𝑘
𝑴1𝑛√︃

1⊤
𝑘
𝑴1𝑘

.

This implies that the degree-correction parameter 𝜃𝑖 can be expressed as

(2.5) 𝜃𝑖 =

√︃
1⊤
𝑘
𝑴1𝑘

1⊤
𝑘
𝑴1𝑛

𝑑∗𝑖 .

With (2.4) and (2.5), we can obtain plug-in estimates of 𝑩 and 𝜽 by replacing the true

communities N1, . . . ,N𝐾 with the estimated communities N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 , replacing 𝑴 with

𝑨, and replacing 𝑑∗
𝑖

with 𝑑𝑖. In analogy to the decomposition (2.3), we decompose the

all-one vector to the sum of indicator vectors corresponding to the estimated communities:

1𝑛 = 1̂(𝑚)1 + · · · + 1̂(𝑚)𝑚 , where for each 𝑗 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑚, 1̂(𝑚)
𝑘

( 𝑗) = 1 if 𝑗 ∈ N̂ (𝑚)
𝑘

and 1̂(𝑚)
𝑘

( 𝑗) = 0 otherwise. Then the plug-in estimates are

(2.6) 𝜃
(𝑚)
𝑖
B

√︃
(1̂(𝑚)
𝑘

)⊤𝑨1̂(𝑚)
𝑘

(1̂(𝑚)
𝑘

)⊤𝑨1𝑛
𝑑𝑖, for 𝑘 = 1, . . . , 𝑚 and 𝑖 ∈ N̂ (𝑚)

𝑘
,

and

(2.7) 𝐵
(𝑚)
𝑘𝑙
B

(1̂(𝑚)
𝑘

)⊤𝑨1̂(𝑚)
𝑙√︃

(1̂(𝑚)
𝑘

)⊤𝑨1̂(𝑚)
𝑘

√︃
(1̂(𝑚)
𝑙

)⊤𝑨1̂(𝑚)
𝑙

, for 1 ≤ 𝑘, 𝑙 ≤ 𝑚.
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Let’s come back to spectral clustering. In our theory, we consider SCORE in particular.

In SCORE, we first compute the 𝑚 leading eigenvectors of 𝑨: 𝒖1, . . . , 𝒖𝑚 corresponding to

the 𝑚 largest eigenvalues in magnitude. Then we construct an 𝑛×(𝑚−1) matrix of entrywise

ratios 𝑹(𝑚): 𝑅(𝑚) (𝑖, 𝑘) = 𝑢𝑘+1(𝑖)/𝑢1(𝑖) for 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑘 ≤ 𝑚 − 1. Finally, the rows of

the ratio matrix 𝑹(𝑚) are clustered by the 𝑘-means algorithm assuming there are 𝑚 clusters.

In the null case (𝑚 = 𝐾), the consistency of SCORE for unweighted networks has been

well-studied in Jin [2015]; Jin et al. [2017]. More importantly, in the under-fitting case

(𝑚 < 𝐾), it has been proved in Jin et al. [2022] that SCORE enjoys the Nonsplitting

Property (NSP), i.e., the true communities are refinements of the estimated communities,

for unweighted networks under some mild conditions. This property is essential for the

theoretical analysis of the under-fitting case, and we will show in this article that SCORE

enjoys NSP for a wide class of count-weighted networks under the general DCSBM.

It is noteworthy that we may replace SCORE with other spectral clustering methods. In

fact, the regularized spectral clustering (RSC) proposed in Joseph and Yu [2016] has been

shown to enjoy certain NSP in Ma et al. [2021] for unweighted networks. Extension of such

result to count-weighted networks can be left as future work.

2.1.3. Matrix Scaling and Spectral Thresholding. We first explain the heuristic

of matrix scaling and spectral thresholding in our method by assuming 𝜽, 𝑩 and the labeling

function 𝜙(·) are known.1 The key idea is to normalize 𝑨 such that the true number of

communities 𝐾 can be uncovered through spectral thresholding on the normalized adjacency

matrix. To be specific, for a diagonal matrix 𝚵 = diag(𝜉1, . . . , 𝜉𝑛) = diag(𝝃) whose diagonal

entries are all positive, we normalize the adjacency matrix and decompose it into

𝚵
1
2𝚯− 1

2 𝑨𝚯− 1
2𝚵

1
2 = 𝚵

1
2𝚯− 1

2 𝑴𝚯− 1
2𝚵

1
2︸                ︷︷                ︸

𝑳

+𝚵 1
2𝚯− 1

2 (𝑨 − 𝑴)𝚯− 1
2𝚵

1
2︸                          ︷︷                          ︸

𝑬

.

1This actually implies that 𝐾 is known, but of course we don’t use this information explicitly in the heuristic
of spectral thresholding.
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We refer to 𝝃 as the scaling factors. Note that rank(𝑳) = rank(𝑴) = 𝐾. Once we can

tightly control the operator norm of 𝑬, the rank of 𝑳 is likely to be uncovered by a spectral

thresholding on 𝚵
1
2𝚯− 1

2 𝑨𝚯− 1
2𝚵

1
2 . Therefore, the question is how to choose 𝝃 in order to

control the norm of 𝑬 tightly and explicitly.

In order to control the norm of 𝑬, noting that it has centered independent above diagonal

entries, we plan to choose 𝝃 such that the row sums of variances in 𝑬 are all upper bounded

by 𝑛. Then, by recently established results on the spectral radii of inhomogeneous random

graphs, e.g. Theorem 4.8 in Lata la et al. [2018], it is likely to have the bound ∥𝑬∥ ≤ (2+𝜖)
√
𝑛,

where 𝜖 is a small positive constant such as 0.05. Since 𝐸𝑖 𝑗 = (𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 )𝜉
1
2
𝑖
𝜉

1
2
𝑗
𝜃
− 1
2

𝑖
𝜃
− 1
2
𝑗

, the

underdispersed assumption implies

Var(𝐸𝑖 𝑗 ) ≤ 𝑀𝑖 𝑗𝜉𝑖𝜉 𝑗𝜃
−1
𝑖 𝜃

−1
𝑗 = (𝐵𝜙(𝑖)𝜙( 𝑗)𝜃𝑖𝜃 𝑗 )𝜉𝑖𝜉 𝑗𝜃−1𝑖 𝜃−1𝑗 = 𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 .

Then, we can simply require 𝝃 to satisfy

(2.8)
𝑛∑︁
𝑗=1

𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 = 𝑛 for 𝑖 = 1, . . . , 𝑛.

In fact, the quadratic equations (2.8) is known to be the symmetric version of matrix

scaling problem in the literature up to a global factor [Knight et al., 2014; Sinkhorn, 1967].

In particular, since all entries of
[
𝐵𝜙(𝑖)𝜙( 𝑗)

]𝑛
𝑖, 𝑗=1

are positive, the existence and uniqueness for

such positive 𝝃 are guaranteed by Sinkhorn [1967].

In practice, without the knowledge of the true node labels and the true model parameters

𝜽 and 𝑩, the above heuristic leads to plug-in estimates of the population scaling factors 𝝃.

For each candidate number of communities 𝑚, we use some spectral clustering method, e.g.

SCORE, to obtain the estimated communities N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 , as well as the estimates 𝜽 (𝑚)

and 𝑩(𝑚) in (2.6) and (2.7). Then, we define the estimated labeling mapping 𝜙 : [𝑛] → [𝑚]

such that 𝜙(𝑖) = 𝑘 if and only if 𝑖 ∈ N̂ (𝑚)
𝑘

. Then the sample scaling factors 𝝃 can be computed
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in analogy to (2.8):

(2.9)
𝑛∑︁
𝑗=1

𝐵
(𝑚)
𝜙(𝑖)𝜙( 𝑗)

𝜉
(𝑚)
𝑖
𝜉
(𝑚)
𝑗

= 𝑛 for 𝑖 = 1, . . . , 𝑛.

Finally, with the estimated degree-correction parameters 𝜽 (𝑚) and estimated scaling

factors 𝝃 (𝑚), we calculate a normalized adjacency matrix: 𝑨(𝑚) = 𝚵̂
1
2 𝚯̂

− 1
2 𝑨𝚯̂

− 1
2 𝚵̂

1
2 where

𝚵̂
(𝑚)

= diag(𝝃 (𝑚)), i.e.

(2.10) 𝐴
(𝑚)
𝑖 𝑗
B

√√√√
𝜉
(𝑚)
𝑖
𝜉
(𝑚)
𝑗

𝜃
(𝑚)
𝑖
𝜃
(𝑚)
𝑗

𝐴𝑖 𝑗 .

Then we count the number of eigenvalues of 𝑨(𝑚) that are greater than (2+𝜖)
√
𝑛 in magnitude.

Based on our heuristic, in the case 𝑚 = 𝐾, the number of such eigenvalues is likely to be less

than or equal to 𝑚. Our stopping rule is the following: If we have at least 𝑚 + 1 eigenvalues

with absolute values greater than (2 + 𝜖)
√
𝑛, 𝑚 is determined to be less than 𝐾, and the

stepwise procedure continues with candidate number of communities 𝑚 + 1; otherwise, we

choose 𝐾 = 𝑚, and stop the stepwise procedure.

Remark 1. Let’s discuss briefly the computational issues of the matrix scaling step (2.9).

At first glance, its computational cost seems to be high since the size of the problem is 𝑂 (𝑛).

It turns out that this scaling problem can be reduced to a much simpler weighted scaling

problem as follows:

(2.11)
𝑚∑︁
𝑙=1

���N̂ (𝑚)
𝑙

��� 𝐵(𝑚)
𝑘𝑙
𝑎
(𝑚)
𝑘
𝑎
(𝑚)
𝑙

= 𝑛 for 𝑘 = 1, . . . , 𝑚,

where 𝜉 (𝑚)
𝑖

= 𝑎
(𝑚)
𝑘

if 𝑖 ∈ N̂ (𝑚)
𝑘

for 𝑘 = 1, . . . , 𝑚. Therefore, the size of the scaling problem

is 𝑂 (𝑚) instead of 𝑂 (𝑛), which is much smaller in scale. We derive an algorithm to solve

the weighted scaling problem (2.11) by following the ideas in Knight et al. [2014], and the

details will be elaborated on in Chapter 4.
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2.1.4. Summary of Stepwise Model-Assisted Spectral Thresholding (SMAST).

Now we are ready to summarize our stepwise procedure to estimate the number of commu-

nities in count-weighted networks. For each 𝑚 = 1, 2, 3, . . ., our procedure implements the

following steps:

(1) Stepwise Clustering and DCSBM Parameters Estimation: If 𝑚 = 1, let

N̂ (1)
1 = {1, · · · , 𝑛} be the only estimated community. If 𝑚 > 1, implement some spec-

tral clustering method, such as SCORE, to the adjacency matrix with the candidate

number of communities equal to 𝑚. Denote the resulting clusters as N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 .

Fit the general DCSBM and obtain the estimates 𝜃 (𝑚)
𝑖

for 𝑖 = 1, . . . , 𝑛 by (2.6) and

𝐵
(𝑚)
𝑘𝑙

for 1 ≤ 𝑘, 𝑙 ≤ 𝑚 by (2.7). Denote 𝚯̂
(𝑚)

= diag(𝜃 (𝑚)1 , . . . , 𝜃
(𝑚)
𝑛 ).

(2) Matrix Scaling: Obtain the scaling factors 𝝃 (𝑚) ∈ R𝑛 as the solution to (2.9). Note

that this can be achieved by solving a small-scale scaling problem (2.11).

(3) Spectral Thresholding: Normalize the adjacency matrix 𝑨 to 𝑨(𝑚) as in (2.10).

Let the eigenvalues of 𝑨(𝑚) be 𝜆1(𝑨(𝑚)), ..., 𝜆𝑛 (𝑨(𝑚)) such that |𝜆1(𝑨(𝑚)) | ≥ · · · ≥

|𝜆𝑛 (𝑨(𝑚)) |. If |𝜆𝑚+1(𝑨(𝑚)) | > (2 + 𝜖)
√
𝑛 for some prespecified small constant 𝜖 , we

continue the procedure with the candidate number of communities 𝑚 +1; otherwise,

we stop the iteration and obtain the estimated number of communities 𝐾 = 𝑚.

2.2. Main Results

In this section, we will characterize the conditions for the general DCSBM described

above, under which SMAST is guaranteed to be consistent in selecting the number of com-

munities. Obviously, the consistency results consist of two parts: (1) the under-fitting case

(𝑚 < 𝐾) and (2) the null case (𝑚 = 𝐾). In the underfitting case, we need to show that

|𝜆𝑚+1(𝑨(𝑚)) | > (2 + 𝜖)
√
𝑛, so that there are at least 𝑚 + 1 eigenvalues of 𝑨(𝑚) remained

after the spectral thresholding step. In contrast, in the null case, we intend to show that

|𝜆𝑚+1(𝑨(𝑚)) | ≤ (2 + 𝜖)
√
𝑛, so that there are at most 𝑚 significant eigenvalues after spectral

thresholding.
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Let’s first explain the intuition and rationale behind both the under-fitting and null cases.

Without confusion in the context, we omit the superscript (𝑚) in the estimates. Notice that

the equality (2.10) implies that

𝑨 = 𝚵̂
1
2 𝚯̂

− 1
2 𝑨𝚯̂

− 1
2 𝚵̂

1
2

= 𝚵̂
1
2 𝚯̂

− 1
2 𝑴𝚯̂

− 1
2 𝚵̂

1
2 + 𝚵̂

1
2 𝚯̂

− 1
2 (𝑨 − 𝑴)𝚯̂− 1

2 𝚵̂
1
2

= 𝚵̂
1
2

(
𝚯̂

− 1
2𝚯

1
2

) (
𝚯− 1

2 𝑴𝚯− 1
2

) (
𝚯̂

− 1
2𝚯

1
2

)
𝚵̂

1
2

+
(
𝚵̂

1
2𝚵− 1

2

) (
𝚯̂

− 1
2𝚯

1
2

) (
𝚵

1
2𝚯− 1

2 (𝑨 − 𝑴)𝚯− 1
2𝚵

1
2

)
︸                             ︷︷                             ︸

𝑬

(
𝚯̂

− 1
2𝚯

1
2

) (
𝚵̂

1
2𝚵− 1

2

)

B 𝑨1 + 𝑨2.(2.12)

The above decomposition enables us to undertake analyses for both the null and under-

fitting cases. In the under-fitting case, we have 𝑚 + 1 ≤ 𝐾, and |𝜆𝑚+1(𝑨) | is thereby lower

bounded by ���𝜆𝑚+1(𝑨)��� ≥ ���𝜆𝐾 (𝑨)��� ≥ ���𝜆𝐾 (𝑨1)
��� − 


𝑨2





where the last inequality follows from Weyl’s inequality. We will show that under mild

conditions of the underdispersed DCSBM, we have
���𝜆𝐾 (𝑨1)

��� ≫ √
𝑛 and




𝑨2




 ≲ √
𝑛, which

guarantees
���𝜆𝑚+1(𝑨)��� > (2 + 𝜖)

√
𝑛.

On the other hand, for the null case 𝑚 = 𝐾, we intend to show
���𝜆𝐾+1(𝑨)��� ≤ (2 + 𝜖)

√
𝑛.

It is clear that rank(𝑨1) = 𝐾, which implies
���𝜆𝐾+1(𝑨1)

��� = 0. Moreover, we will show that,

under certain mild conditions for the underdispersed DCSBM, the matrix scaling introduced

in Section 2.1.3 yields the upper bound



𝑨2




 ≤ (2 + 𝜖)
√
𝑛 with high probability. The Weyl’s

inequality then gives
���𝜆𝐾+1(𝑨)��� ≤ ���𝜆𝐾+1(𝑨1)

��� + 


𝑨2




 ≤ (2 + 𝜖)
√
𝑛.

In the following, we will introduce our main results that summarize the above intuitions.

To this end, we first introduce a sequence of assumptions on the general DCSBM.
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2.2.1. Assumptions. The assumptions imposed on the general DCSBM are captured

by two constants 𝑐0 and 𝐶0. In particular, we use a unified 𝑐0 to capture various lower

bounds.

Assumption 1. We consider the general DCSBM described in Section 2.1.1 satisfying

the following conditions

• [Entrywise positivity] The 𝐾 × 𝐾 matrix 𝑩 is fixed, and its entries satisfy

(2.13) 𝐵𝑘𝑘 = 1 for 𝑘 = 1, . . . , 𝐾, 𝑐0 ≤ 𝐵𝑘𝑙 ≤ 1 for 1 ≤ 𝑘, 𝑙 ≤ 𝐾.

• [Spectrum of 𝑩] The eigenvalues of 𝑩 are assumed to satisfy

(2.14) 𝜆1(𝑩) > |𝜆2(𝑩) | ≥ · · · ≥ |𝜆𝐾 (𝑩) | ≥ 𝑐0 > 0.

• [Balancedness] Denote 𝜃max = max{𝜃1, . . . , 𝜃𝑛}, and 𝜃min = min{𝜃1, . . . , 𝜃𝑛}. The

following balancedness assumptions are satisfied:

(2.15) min
1≤𝑘≤𝐾

𝑛𝑘

𝑛
≥ 𝑐0 and

𝜃min

𝜃max
≥ 𝑐0.

• [Sparseness] 𝜃min is bounded by

(2.16)
1

𝑐0
≥ 𝜃max ≥ 𝜃min ≥ 𝐶0

√︄
log4 𝑛

𝑛
.

• [Underdispersion]

(2.17) Var(𝐴𝑖 𝑗 ) ≤ 𝑀𝑖 𝑗 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

• [Bernstein condition] For any 𝑖 ≤ 𝑗 and any integer 𝑝 ≥ 2, there holds

(2.18) E[|𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 |𝑝] ≤ 𝐶′
(
𝑝!

2

)
𝑅𝑝−2𝑀𝑖 𝑗 ,

where 𝐶′ and 𝑅 are constants only depending on 𝑐0.

Let’s explain some intuitions and implications of the above assumptions. Assumption

(2.13) means that the components of 𝑩 are positive and on the order of 𝑂 (1), so the sparsity
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of the network will be characterized by the degree correction parameters 𝜽. As with Jin

et al. [2017] and Jin et al. [2022], we assume the diagonal entries of 𝑩 to be 1 for the sake

of identifiability. Assumption (2.14) means that 𝑩 is nondegenerate. Here it is worth high-

lighting that Assumption (2.13) implies that there is actually an explicit eigengap between

the first and second largest eigenvalues of 𝑩 (in magnitude), as shown in Lemma 2.4.2 intro-

duced later. Assumption (2.15) means that the DCSBM is balanced to some extent in both

the community sizes and degree correction parameters. Assumption (2.16) characterizes the

sparsity of the network, so that the average degree of the nodes can be as low as 𝑂 (log4 𝑛).

The upper bound on 𝜃max implies that 𝑀𝑖 𝑗 ≤ 1/𝑐20 for all 𝑖 and 𝑗 . Assumption (2.17) is the

underdispersion condition introduced before, which holds for binomial and Poisson distri-

butions. Assumption (2.18) is a particular Bernstein condition, which also holds for some

distributions such as the Poisson distribution. In fact, for Poisson distribution we have the

following lemma:

Lemma 2.2.1. Let 𝑋 ∼ Poisson(𝜆), such that 𝜆 ≤ 𝐶 (𝑐0) where 𝐶 (𝑐0) is a constant only

depending on 𝑐0 > 0. Then, for any integer 𝑝 ≥ 2, there holds

E[|𝑋 − 𝜆 |𝑝] ≤
(
𝑝!

2

)
𝑅(𝑐0)𝑝−2𝜆,

where 𝑅(𝑐0) is a constant only depending on 𝑐0.

Proof. Since Poisson random variable is known to be discrete log-concave, by noting

that Var(𝑋) = 𝜆, this lemma can be directly obtained by Lemma 7.5 and Definition 1.2 of

Schudy and Sviridenko [2011]. □

2.2.2. Consistency of SMAST. We now introduce our main results that guarantee

the consistency of SMAST introduced in Section 2.1 in selecting the number of communities,

provided Assumption 1 holds. Following the aforementioned outline, our main results consist

of two parts: one for the null case and the other for the under-fitting case.
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Theorem 2.2.1 (Null Case). Consider the general DCSBM such that Assumption 1

holds. For any fixed 𝑐0, there exists a sufficiently large 𝐶0, such that with probability 1 −

𝑂 (𝑛−3), the following event holds: Implementing SMAST with SCORE and candidate number

of communities 𝑚 = 𝐾, the obtained the normalized adjacency matrix 𝑨(𝐾) defined in (2.10)

satisfies |𝜆𝐾+1(𝑨(𝐾)) | ≤ 2.05
√
𝑛.

Theorem 2.2.2 (Under-Fitting Case). Consider the general DCSBM such that Assump-

tion 1 holds. For any fixed 𝑐0, there exists a sufficiently large 𝐶0, such that with probability

1−𝑂 (𝑛−3), the following event holds: For any candidate number of communities 1 ≤ 𝑚 < 𝐾,

implementing SMAST with SCORE, the obtained normalized adjacency matrix 𝑨(𝑚) defined

in (2.10) satisfies |𝜆𝑚+1(𝑨(𝑚)) | > 2.05
√
𝑛.

Obviously, combining Theorems 2.2.1 and 2.2.2 shows the consistency of SMAST in esti-

mating 𝐾, the number of true communities. In Assumption (2.16), the sparsity assumption

𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

for might be suboptimal. In contrast, the corresponding assumption is

typically 𝜃min ≥ 𝐶0

√︃
log 𝑛
𝑛

in the literature of unweighted network model selection [e.g. Jin

et al., 2022]. The extra logarithm for the general DCSBM is majorly due to an application

of the truncation technique in the proof. In fact, existing tight bounds for spectral radii

of inhomogeneous random graphs recently established in the literature, e.g. Lata la et al.

[2018], require the entries in the random matrix to be uniformly bounded. This is why a

truncation technique needs to be employed. It is an interesting open question to improve

the logarithm factors for the general DCSBM in the future, but this may rely on improving

the state-of-the-art tight bounds for spectral radii of inhomogeneous random graphs.

2.2.3. Nonsplitting Property. Our analysis relies critically on the properties of the

estimates 𝜽, 𝑩 and 𝝃 defined in (2.6), (2.7) and (2.9), respectively. In the null case, we

can prove that SCORE is able to achieve exact recovery of the true communities with high

probability, thus the concentration of 𝜽, 𝑩 and 𝝃 around their population counterparts can
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be established. The under-fitting case of 𝑚 < 𝐾 is more difficult. As explained before, the

Nonsplitting Property established in [Jin et al., 2022; Ma et al., 2021] is crucial in reducing

the number of possible realizations of the estimates 𝜽 and 𝑩, so that the probability union

bound can be applied.

Definition 1 (Nonsplitting Property [Jin et al., 2022]). Let the ground truth of com-

munities in a network be N1, . . . ,N𝐾 . A stepwise community detection method is said

to satisfy the Nonsplitting Property (NSP), if for each candidate number of communities

𝑚 = 1, . . . , 𝐾, the true communities N1, . . . ,N𝐾 is a refinement of the estimated communi-

ties N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 , i.e., for any 𝑘 = 1, . . . , 𝐾, there is exactly one 𝑙 = 1, . . . , 𝑚, such that

N𝑘 ∩ N̂ (𝑚)
𝑙

≠ ∅.

Intuitively speaking, the NSP implies that in the under-fitting case, each estimated com-

munity of N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 is a union of several true communities of N1, . . . ,N𝐾 . NSP of

SCORE has been established in [Jin et al., 2022] for unweighted networks under standard

DCSBM, and here we extend it to the general DCSBM for count-weighted networks.

Lemma 2.2.2. Consider the general DCSBM satisfying Assumption 1. For any fixed 𝑐0,

there exists a sufficiently large 𝐶0, such that with probability 1 − 𝑂 (𝑛−3), SCORE satisfies

the NSP.

The proof of this lemma is similar to the one established in Jin et al. [2022] for unweighted

networks. A key component of the proof is the row-wise bounds of eigenvector perturbations

for adjacency matrices from count-weighted networks. To make this extension, we follow

the ideas in Jin et al. [2017], in which such row-wise bounds for unweighted networks are

proved, and a crucial tool is a generic row-wise eigenvector perturbation bound given in Abbe

et al. [2020]. The major difference is that we need to use the vector and matrix Bernstein

inequalities with Bernstein condition (2.18). We will give a self-contained proof in Section

2.4.
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2.3. Proofs of the Main Results

2.3.1. Preliminaries. We first cite two results in Landa [2020] for the sensitivity anal-

ysis of matrix scaling. Here we only state the results for symmetric matrix scaling with row

sums equal to 𝑛.

Lemma 2.3.1 (Lemma 2 in Landa [2020]). Let 𝑨 be an 𝑛 × 𝑛 symmetric matrix with

positive entries. Then, there exists a unique positive vector 𝒙 ∈ R𝑛 satisfying

𝑥𝑖

(
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗

)
= 𝑛 for all 𝑖 = 1, . . . , 𝑛.

Furthermore, denote 𝑎max = max1≤𝑖≤ 𝑗≤𝑛 𝐴𝑖 𝑗 and 𝑎min = min1≤𝑖≤ 𝑗≤𝑛 𝐴𝑖 𝑗 . Then

√
𝑎min

𝑎max
≤ 𝑥𝑖 ≤

√
𝑎max

𝑎min
, 𝑖 = 1, . . . , 𝑛.

Lemma 2.3.2 (Lemma 9 in Landa [2020]). Let 𝑨 be a symmetric matrix with positive en-

tries. Denote 𝑎max = max1≤𝑖≤ 𝑗≤𝑛 𝐴𝑖 𝑗 and 𝑎min = min1≤𝑖≤ 𝑗≤𝑛 𝐴𝑖 𝑗 . Suppose there is a constant

𝜖 ∈ (0, 1) and a positive vector 𝒙 ∈ R𝑛, such that������ 𝑛∑︁
𝑗=1

𝑥𝑖𝐴𝑖 𝑗𝑥 𝑗 − 𝑛

������ ≤ 𝑛𝜖, for all 𝑖 = 1, . . . , 𝑛.

Denote 𝑥min = min1≤𝑖≤𝑛 𝑥𝑖. Then there exists a positive vector 𝒙 ∈ R𝑛 such that

𝑛∑︁
𝑗=1

𝑥𝑖𝐴𝑖 𝑗𝑥 𝑗 = 𝑛, 𝑖 = 1, . . . , 𝑛

and ����𝑥𝑖𝑥𝑖 − 1

���� ≤ 𝜖

1 − 𝜖 + 4𝜖
√
𝑎max

𝑎2min𝑥
3
min

, 𝑖 = 1, . . . , 𝑛.

The following lemma provides a tight bound on the Schatten norms of inhomogeneous

random matrices.
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Lemma 2.3.3 (Theorem 4.8 in Lata la et al. [2018]). Suppose 𝑿 is a random matrix with

independent and centered upper-triangular entries, and define the quantities

𝜎𝑝 B

(∑︁
𝑖

(∑︁
𝑗

E 𝑋2
𝑖 𝑗

) 𝑝)1/2𝑝
, 𝜎∗

𝑝 B

(∑︁
𝑖, 𝑗

∥𝑋𝑖 𝑗 ∥2𝑝∞

)1/2𝑝
.

Then for every 𝑝 ∈ N (
E ∥𝑿∥2𝑝

𝑆2𝑝

)1/2𝑝
≤ 2𝜎𝑝 + 𝐶

√
𝑝𝜎∗

𝑝,

where 𝐶 is a universal constant. Moreover, we have

P
(
∥𝑿∥𝑆2𝑝 ≥ 2𝜎𝑝 + 𝐶

√
𝑝𝜎∗

𝑝 + 𝑡
)
≤ exp

©­«− 𝑡2

𝐶max
𝑖, 𝑗

∥𝑋𝑖 𝑗 ∥2∞
ª®¬

for all 𝑝 ∈ N and 𝑡 ≥ 0.

As a direct consequence of the previous lemma, the following corollary bounds the op-

erator norm of inhomogeneous random matrices, denoted as Remark 4.12 in Lata la et al.

[2018].

Corollary 2.3.1. Let 𝑿 be as in Lemma 2.3.3. Define the quantities

𝜎∞ B max
𝑖

√︄∑︁
𝑗

E 𝑋2
𝑖 𝑗
, 𝜎∗

∞ B max
𝑖, 𝑗

∥𝑋𝑖 𝑗 ∥∞.

Then for every 0 ≤ 𝜖 ≤ 1 and 𝑡 ≥ 0, we have

P (∥𝑿∥ ≥ 2(1 + 𝜖)𝜎∞ + 𝑡) ≤ 𝑛 exp

(
− 𝜖𝑡2

𝐶𝜎∗2
∞

)
where 𝐶 is a universal constant.

Proof. By Jensen’s inequality and monotonicity of the Schatten norm

(E ∥𝑿∥)2𝑝 ≤ E
(
∥𝑿∥2𝑝

)
≤ E ∥𝑿∥2𝑝2𝑝,
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Apply Lemma 2.3.3 with 𝑝 = 𝛼 log 𝑛 and 𝛼 ≥ 1, we have

E ∥𝑿∥ ≤ 2𝑒1/2𝛼𝜎∞ + 𝐶𝑒1/𝛼𝜎∗
∞
√︁
𝛼 log 𝑛.

Since 1 ≤ 𝑒1/2𝛼 ≤ 2 for 𝛼 ≥ 1, for every 0 ≤ 𝜖 ≤ 1, we have

E ∥𝑿∥ ≤ 2(1 + 𝜖)𝜎∞ + 𝐶𝜖𝜎∗
∞
√︁

log 𝑛

for a suitable constant 𝐶𝜖 depending on 𝜖 . Next, we follow arguments in Lemma 3.12

of Bandeira and Van Handel [2016] to derive the tail bound. By a form of Talagrand’s

concentration inequality,

P (∥𝑿∥ ≥ E ∥𝑿∥ + 𝑡) ≤ exp

(
− 𝑡2

𝐶𝜎∗2
∞

)
for all 𝑡 ≥ 0, where 𝐶 is a universal constant. Combining the above inequalities, we have

P
(
∥𝑿∥ ≥ 2 (1 + 𝜖) 𝜎∞ + 𝐶𝜖𝜎∗

∞
√︁

log 𝑛 + 𝑡
)
≤ P (∥𝑿∥ ≥ E ∥𝑿∥ + 𝑡) ≤ exp

(
− 𝑡2

𝐶𝜎∗2
∞

)
for every 𝑡 ≥ 0. For 𝑡 ≥

√︁
𝐶 log 𝑛, we have

P
(
∥𝑿∥ ≥ 2 (1 + 𝜖) 𝜎∞ + 𝐶′

𝜖𝜎
∗
∞𝑡

)
≤ P

(
∥𝑿∥ ≥ 2 (1 + 𝜖) 𝜎∞ + 𝐶𝜖𝜎∗

∞
√︁

log 𝑛 + 𝜎∗
∞𝑡

)
≤ exp

(
− 𝑡

2

𝐶

)
where 𝐶′

𝜖 is chosen appropriately; while for 𝑡 ≤
√︁
𝐶 log 𝑛,

P
(
∥𝑿∥ ≥ 2 (1 + 𝜖) 𝜎∞ + 𝐶′

𝜖𝜎
∗
∞𝑡

)
≤ 1 ≤ 𝑛 exp

(
− 𝑡

2

𝐶

)
.

Combining the above two bounds completes the proof. □

2.3.2. Supporting Lemmas of Theorem 2.2.1. In the null case, by the NSP, we

know that the estimated communities and the true communities give the same partitions of
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the nodes. Without loss of generality, let N̂𝑘 = N𝑘 for 𝑘 = 1, . . . , 𝐾. This also implies 1𝑘 = 1̂𝑘

for 𝑘 = 1, . . . , 𝐾.

We first show the concentration of 𝜃𝑖 around 𝜃𝑖 for 𝑖 = 1, . . . , 𝑛 and 𝐵𝑘𝑙 around 𝐵𝑘𝑙 for

1 ≤ 𝑘, 𝑙 ≤ 𝐾.

Lemma 2.3.4. Let 𝜖 > 0 be any fixed small constant. If 𝐶0 in Assumption 1 is sufficiently

large, with probability 1 −𝑂 (𝑛−3), there hold

1 − 𝜖 ≤ 𝜃𝑖

𝜃𝑖
≤ 1 + 𝜖 for 𝑖 = 1, . . . , 𝑛

and

1 − 𝜖 ≤ 𝐵𝑘𝑙

𝐵𝑘𝑙
≤ 1 + 𝜖 for 1 ≤ 𝑘, 𝑙 ≤ 𝐾.

Proof. Recall that 𝑑∗
𝑖
=

∑𝑛
𝑗=1 𝑀𝑖 𝑗 , which implies

∑
𝑗∈N𝑘

𝑑∗
𝑗
= 1⊤

𝑘
𝑴1𝑛. By the NSP, (2.6)

can be rewritten as 𝜃𝑖 =
𝑑𝑖∑

𝑗∈N𝑘
𝑑 𝑗

√︃
1⊤
𝑘
𝑨1𝑘 . Combined with (2.4), (2.5) and (2.7), we get

𝜃𝑖

𝜃𝑖
=
𝑑∗
𝑖

𝑑𝑖

∑
𝑗∈N𝑘

𝑑 𝑗∑
𝑗∈N𝑘

𝑑∗
𝑗

√︄
1⊤
𝑘
𝑴1𝑘

1⊤
𝑘
𝑨1𝑘

,(2.19)

𝐵𝑘𝑙

𝐵𝑘𝑙
=
1⊤
𝑘
𝑴1𝑙

1⊤
𝑘
𝑨1𝑙

√︄
1⊤
𝑘
𝑨1𝑘

1⊤
𝑘
𝑴1𝑘

√︄
1⊤
𝑙
𝑨1𝑙

1⊤
𝑙
𝑴1𝑙

.(2.20)

Let’s first study the concentration of 𝑑𝑖
𝑑∗
𝑖
. Since 𝑑𝑖 is the sum of independent random

variables satisfying (2.18) with some constant 𝑅, by Lemma A.1.1, we have

P
(
|𝑑𝑖 − 𝑑∗𝑖 | ≥ 𝜖′𝑑∗𝑖

)
≤ 2 exp

(
−

𝜖′2𝑑∗
𝑖

2(1 + 𝑅𝜖 ′)

)
(2.21)

for any fixed 𝜖′ > 0. Note that 𝑑∗
𝑖
≥ 𝑐0𝑛𝜃

2
min ≥ 𝐶0𝑐0 log4 𝑛. Therefore, if 𝐶0 in Assumption

1 is sufficiently large, with probability 1 −𝑂 (𝑛−3), we have

1 − 𝜖′ ≤ 𝑑𝑖

𝑑∗
𝑖

≤ 1 + 𝜖′ for 𝑖 = 1, . . . , 𝑛.
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Similarly, with probability 1 − 𝑂 (𝑛−3), we have 1 − 𝜖′ ≤ 1⊤
𝑘
𝑨1𝑘

1⊤
𝑘
𝑴1𝑘

≤ 1 + 𝜖′ for all 𝑘 = 1, . . . , 𝐾

and 1− 𝜖′ ≤ 1⊤
𝑘
𝑨1𝑙

1⊤
𝑘
𝑴1𝑙

≤ 1 + 𝜖 ′ for all 1 ≤ 𝑘 < 𝑙 ≤ 𝐾. By choosing 𝜖′ sufficiently small, our claim

is proved. □

Recall the population scaling parameters {𝜉𝑖}𝑛𝑖=1 defined in (2.8), and the sample scaling

parameters defined in (2.9). The following lemma shows the concentration of the sample

scaling parameters around the corresponding population counterparts.

Lemma 2.3.5. Let 𝜖 > 0 be any fixed small constant. If 𝐶0 in Assumption 1 is sufficiently

large, with probability 1 −𝑂 (𝑛−3), there hold

1 − 𝜖 ≤ 𝜉𝑖

𝜉𝑖
≤ 1 + 𝜖 for 𝑖 = 1, . . . , 𝑛.

Proof. Assumption 1 states that 𝑐0 ≤ 𝐵𝑘𝑙 ≤ 1 for all 1 ≤ 𝑘, 𝑙 ≤ 𝐾, thus the matrix

𝚷𝑩𝚷⊤ is strictly positive. By Lemma 2.3.1, 𝝃 = [𝜉1, . . . , 𝜉𝑛]⊤ is the unique positive vector

satisfying

𝜉𝑖

(
𝑛∑︁
𝑗=1

(
𝚷𝑩𝚷⊤)

𝑖 𝑗
𝜉 𝑗

)
=

𝑛∑︁
𝑗=1

𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 = 𝑛 for 𝑖 = 1, . . . , 𝑛,

and its entries satisfy

𝑐0 ≤
√︁

min𝑘,𝑙 𝐵𝑘𝑙

max𝑘,𝑙 𝐵𝑘𝑙
≤ 𝜉𝑖 ≤

√︁
max𝑘,𝑙 𝐵𝑘𝑙

min𝑘,𝑙 𝐵𝑘𝑙
≤ 𝑐−10 for 𝑖 = 1, . . . , 𝑛,

which also implies 𝜉min = min1≤𝑖≤𝑛 𝜉𝑖 ≥ 𝑐0. Fix 𝜖′ > 0. By Lemma 2.3.4, when 𝐶0 in

Assumption 1 is sufficiently large, with probability 1 −𝑂 (𝑛−3),

1 − 𝜖 ′ ≤ 𝐵𝑘𝑙

𝐵𝑘𝑙
≤ 1 + 𝜖 ′ for 1 ≤ 𝑘, 𝑙 ≤ 𝐾,

which implies 
min1≤𝑘,𝑙≤𝐾 𝐵𝑘𝑙 ≥ (1 − 𝜖′) min1≤𝑘,𝑙≤𝐾 𝐵𝑘𝑙 ≥ 𝑐0(1 − 𝜖′),

max1≤𝑘,𝑙≤𝐾 𝐵𝑘𝑙 ≤ (1 + 𝜖′) max1≤𝑘,𝑙≤𝐾 𝐵𝑘𝑙 ≤ (1 + 𝜖′)/𝑐0.
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Furthermore, there hold

1 − 𝜖′ ≤
∑𝑛
𝑗=1 𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗∑𝑛
𝑗=1 𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗

≤ 1 + 𝜖′ for 𝑖 = 1, · · · , 𝑛,

and thereby imply ������ 𝑛∑︁
𝑗=1

𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 − 𝑛

������ ≤ 𝑛𝜖′ for 𝑖 = 1, · · · , 𝑛.

Recall that 𝝃 is the vector satisfying
∑𝑛
𝑗=1 𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 = 𝑛. Since N̂𝑘 = N𝑘 for 𝑘 = 1, . . . , 𝐾,

we have 𝜙(𝑖) = 𝜙(𝑖) for 𝑖 = 1, · · · , 𝑛. Then by Lemma 2.3.2,�����𝜉𝑖𝜉𝑖 − 1

����� ≤ 𝜖′

1 − 𝜖 ′ +
4𝜖′

√
1 + 𝜖′

𝑐
11/2
0 (1 − 𝜖′)2

for 𝑖 = 1, . . . , 𝑛.

For any 𝜖 > 0, by choosing 𝜖′ appropriately, we have
��� 𝜉𝑖𝜉𝑖 − 1

��� ≤ 𝜖 for 𝑖 = 1, . . . , 𝑛. □

Recall that 𝑬 = 𝚵
1
2𝚯− 1

2 (𝑨 − 𝑴)𝚯− 1
2𝚵

1
2 . The following lemma gives a tight bound of

∥𝑬∥.

Lemma 2.3.6. For any fixed 𝜖 > 0, by choosing a sufficiently large 𝐶0 in Assumption 1,

with probability 1 −𝑂 (𝑛−3), there holds

∥𝑬∥ ≤ (2 + 𝜖)
√
𝑛.

Proof. Define 𝐸𝑖 𝑗 = 𝐸𝑖 𝑗1( |𝐸𝑖 𝑗 |<𝑞) and 𝐸𝑖 𝑗 = 𝐸𝑖 𝑗 − E 𝐸𝑖 𝑗 , where 𝑞 =
√
𝑛

log 𝑛 . We first bound

∥𝑬∥, and then ∥𝑬∥, and lastly ∥𝑬∥.

Notice that 𝑬 is symmetric with independent and centered entries for 𝑖 ≥ 𝑗 , and the

entries are uniformly bounded. Define the quantities

𝜎̃ B max
𝑖

√︄∑︁
𝑗

E 𝐸2
𝑖 𝑗
, 𝜎̃∗ B max

𝑖, 𝑗
∥𝐸𝑖 𝑗 ∥∞.
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Then apply Corollary 2.3.1 to 𝑬. For any 𝜖, 𝑡 > 0, there holds

P
(
∥𝑬∥ ≥ 2(1 + 𝜖)𝜎̃ + 𝑡

)
≤ 𝑛 exp

(
− 𝜖𝑡2

𝐶𝜎̃2
∗

)
.

By letting 𝑡 =
√︃

4𝐶
𝜖
𝜎̃∗

√︁
log 𝑛, with probability 1 −𝑂 (𝑛−3), we have

(2.22) ∥𝑬∥ ≤ 2(1 + 𝜖)𝜎̃ + 𝐶𝜖 𝜎̃∗
√︁

log 𝑛,

where 𝐶𝜖 is a constant depending on 𝜖 only. Note that 𝐸𝑖 𝑗 = (𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 )𝜉
1
2
𝑖
𝜉

1
2
𝑗
𝜃
− 1
2

𝑖
𝜃
− 1
2
𝑗

. Then

by Assumption (2.17),

E 𝐸2
𝑖 𝑗 = Var(𝐴𝑖 𝑗 )𝜉𝑖𝜉 𝑗𝜃−1𝑖 𝜃−1𝑗 ≤ 𝑀𝑖 𝑗𝜉𝑖𝜉 𝑗𝜃

−1
𝑖 𝜃

−1
𝑗 = 𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 .

Also, notice that

E 𝐸2
𝑖 𝑗 = Var

(
𝐸𝑖 𝑗

)
= Var

(
𝐸𝑖 𝑗

)
≤ E 𝐸2

𝑖 𝑗 ≤ E 𝐸2
𝑖 𝑗 .

Then the population scaling (2.8) gives
∑𝑛
𝑗=1 E 𝐸

2
𝑖 𝑗
≤ 𝑛 for 𝑖 = 1, · · · , 𝑛, which imply 𝜎̃ ≤

√
𝑛.

Next, since ∥𝐸𝑖 𝑗 ∥∞ ≤ 𝑞, we have
���E 𝐸𝑖 𝑗 ��� ≤ 𝑞 and thus ∥𝐸𝑖 𝑗 ∥∞ ≤ ∥𝐸𝑖 𝑗 ∥∞ +

���E 𝐸𝑖 𝑗 ��� ≤ 2𝑞,

which implies 𝜎̃∗ ≤ 2𝑞. Then, from (2.22), we have

(2.23) ∥𝑬∥ ≤ 2(1 + 𝜖)
√
𝑛 + 𝐶𝜖𝑞

√︁
log 𝑛.

Since 𝑞 =
√
𝑛

log 𝑛 , when 𝑛 is sufficiently large,

∥𝑬∥ ≤ 2(1 + 𝜖)
√
𝑛 + 𝐶𝜖

√︂
𝑛

log 𝑛
≤ (2 + 3𝜖)

√
𝑛.

Next, we give an upper bound of ∥𝑬∥. Since 𝑬 = 𝑬 −E 𝑬, we have ∥𝑬∥ ≤ ∥𝑬∥ + ∥ E 𝑬∥𝐹 .

Notice that

E 𝐸𝑖 𝑗1( |𝐸𝑖 𝑗 |≥𝑞) = E
(
𝐸𝑖 𝑗 − 𝐸𝑖 𝑗

)
= −E 𝐸𝑖 𝑗 .
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By Cauchy-Schwarz inequality,

(E 𝐸𝑖 𝑗 )2 =
(
E 𝐸𝑖 𝑗1( |𝐸𝑖 𝑗 |≥𝑞)

)2
≤

(
E 𝐸2

𝑖 𝑗

)
P

(
|𝐸𝑖 𝑗 | ≥ 𝑞

)
.

Since E 𝐸2
𝑖 𝑗

≤ 𝜉𝑖𝜉 𝑗𝐵𝜙(𝑖)𝜙( 𝑗), it suffices to control P
(
|𝐸𝑖 𝑗 | ≥ 𝑞

)
. Note that we have assumed

𝐵𝑘𝑙 ≤ 1 for 1 ≤ 𝑘, 𝑙 ≤ 𝐾, and shown in the proof of Lemma 2.3.5 that 𝑐0 ≤ 𝜉𝑖 ≤ 𝑐−10 for

𝑖 = 1, . . . , 𝑛. Since for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, 𝐴𝑖 𝑗 satisfies (2.17) and (2.18), by Lemma A.1.1, for

some constant 𝑅,

P( |𝐸𝑖 𝑗 | ≥ 𝑞) = P
(
|𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 | ≥ 𝑞

√︄
𝜃𝑖𝜃 𝑗

𝜉𝑖𝜉 𝑗

)

≤ 2 exp
©­­«−

𝑞2
𝜃𝑖𝜃 𝑗
𝜉𝑖𝜉 𝑗

2
(
𝑀𝑖 𝑗 + 𝑅𝑞

√︃
𝜃𝑖𝜃 𝑗
𝜉𝑖𝜉 𝑗

) ª®®¬
≤ 2 exp

©­­«−
𝑐20𝑞

2

2
(
1 + 𝑐−10 𝑅𝑞𝜃−1min

) ª®®¬
≤ 2 exp

(
−1

4

(
𝑐20𝑞

2 ∧ 𝑐30𝑅
−1𝑞𝜃min

))
.

Since 𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

and 𝑞 =
√
𝑛

log 𝑛 , when 𝑛 and 𝐶0 are sufficiently large, we have P( |𝐸𝑖 𝑗 | ≥

𝑞) ≤ 2𝑛−5. Then

∥ E 𝑬∥2𝐹 =
∑︁

1≤𝑖, 𝑗≤𝑛
(E 𝐸𝑖 𝑗 )2

=
∑︁

1≤𝑖, 𝑗≤𝑛

(
E 𝐸𝑖 𝑗1( |𝐸𝑖 𝑗 |≥𝑞)

)2
≤

∑︁
1≤𝑖, 𝑗≤𝑛

(
E 𝐸2

𝑖 𝑗

)
P

(
|𝐸𝑖 𝑗 | ≥ 𝑞

)
≤ 2𝑛−5

∑︁
1≤𝑖, 𝑗≤𝑛

𝜉𝑖𝜉 𝑗𝐵𝜙(𝑖)𝜙( 𝑗)

= 2𝑛−3,
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where the last equality is due to (2.8). Then

∥𝑬∥ ≤ ∥𝑬∥ + ∥ E 𝑬∥𝐹 ≤ (2 + 4𝜖)
√
𝑛.

Finally, since P( |𝐸𝑖 𝑗 | ≥ 𝑞) ≤ 2𝑛−5, we have P(𝑬 = 𝑬) ≥ 1 − 2𝑛−3. This implies that

with probability 1 − 𝑂 (𝑛−3), ∥𝑬∥ = ∥𝑬∥ ≤ (2 + 4𝜖)
√
𝑛. Replacing 4𝜖 with 𝜖 completes the

proof. □

2.3.3. Supporting Lemmas of Theorem 2.2.2. In the under-fitting case 𝑚 < 𝐾,

the NSP implies that the true communities N1, . . . ,N𝐾 are refinements of the estimated

communities N̂ (𝑚)
1 , . . . , N̂ (𝑚)

𝑚 . For each 𝑘 = 1, . . . , 𝑚, we assume that the number of true

communities contained in N̂ (𝑚)
𝑘

is 𝑟𝑘 ≥ 1, which implies that 𝑟1 + · · · + 𝑟𝑚 = 𝐾. Then we can

represent the estimated communities as

N̂ (𝑚)
𝑘

= Nℎ𝑘1 ∪ · · · ∪ Nℎ𝑘𝑟𝑘
, 𝑘 = 1, . . . , 𝑚.

Here all indices ℎ𝑘 𝑗 for 𝑘 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑟𝑘 are distinct over 1, . . . , 𝐾. We can also

decompose

1̂(𝑚)
𝑘

= 1ℎ𝑘1 + · · · + 1ℎ𝑘𝑟𝑘 , 𝑘 = 1, . . . , 𝑚.

Lemma 2.3.7. If 𝐶0 in Assumption 1 is sufficiently large, with probability 1 − 𝑂 (𝑛−3),

there hold

𝑐1 ≤ 𝜃𝑖

𝜃𝑖
≤ 1

𝑐1
for 𝑖 = 1, . . . , 𝑛,

and

𝑐1 ≤ 𝐵𝑘𝑙 ≤
1

𝑐1
for 1 ≤ 𝑘 < 𝑙 ≤ 𝑚,

where 0 < 𝑐1 < 1 is a constant only depending on 𝑐0 in Assumption 1.
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Proof. With the aforementioned notations, for 1 ≤ 𝑘, 𝑙 ≤ 𝑚, we have

1̂⊤𝑘 𝑴1̂𝑙 =

𝑟𝑘∑︁
𝑎=1

𝑟𝑙∑︁
𝑏=1

1⊤ℎ𝑘𝑎𝑴1ℎ𝑙𝑏

=

𝑟𝑘∑︁
𝑎=1

𝑟𝑙∑︁
𝑏=1

𝐵ℎ𝑘𝑎ℎ𝑙𝑏



𝜽ℎ𝑘𝑎

1 

𝜽ℎ𝑙𝑏

1 .
Thus by Assumption 1,

𝑐0

(
𝑟𝑘∑︁
𝑎=1



𝜽ℎ𝑘𝑎

1) (
𝑟𝑙∑︁
𝑏=1



𝜽ℎ𝑙𝑏

1) ≤1̂⊤𝑘 𝑴1̂𝑙 ≤
(
𝑟𝑘∑︁
𝑎=1



𝜽ℎ𝑘𝑎

1) (
𝑟𝑙∑︁
𝑏=1



𝜽ℎ𝑙𝑏

1) .(2.24)

Recall that 𝑑∗
𝑖
=

∑𝑛
𝑗=1 𝑀𝑖 𝑗 = 𝜃𝑖

∑𝐾
𝑙=1 𝐵𝜙(𝑖)𝑙 ∥𝜽 𝒍 ∥1, which implies

∑︁
𝑗∈N𝑘

𝑑∗𝑗 = ∥𝜽𝑘 ∥1

(
𝐾∑︁
𝑙=1

𝐵𝑘𝑙 ∥𝜽𝑙 ∥1

)
,

and further implies ∑︁
𝑗∈N̂𝑘

𝑑∗𝑗 =
𝑟𝑘∑︁
𝑎=1

∥𝜽ℎ𝑘𝑎 ∥1

(
𝐾∑︁
𝑙=1

𝐵ℎ𝑘𝑎𝑙 ∥𝜽𝑙 ∥1

)
.

Thus

𝑐0∥𝜽 ∥1
𝑟𝑘∑︁
𝑎=1

∥𝜽ℎ𝑘𝑎 ∥1 ≤
∑︁
𝑗∈N̂𝑘

𝑑∗𝑗 ≤ ∥𝜽 ∥1
𝑟𝑘∑︁
𝑎=1

∥𝜽ℎ𝑘𝑎 ∥1.(2.25)

From (2.5) and (2.6), 𝜃𝑖 =

√︃
1⊤
𝜙 (𝑖)𝑴1𝜙 (𝑖)∑
𝑗∈N𝜙 (𝑖) 𝑑

∗
𝑗
𝑑∗
𝑖

and 𝜃𝑖 =

√︃
1̂⊤
𝜙 (𝑖)

𝑨1̂
𝜙 (𝑖)∑

𝑗∈N̂
𝜙 (𝑖)

𝑑 𝑗
𝑑𝑖, thus

𝜃𝑖

𝜃𝑖
=
𝑑∗
𝑖

𝑑𝑖

∑
𝑗∈N̂

𝜙 (𝑖)
𝑑 𝑗∑

𝑗∈N𝜙 (𝑖) 𝑑
∗
𝑗

√√√√1⊤
𝜙(𝑖)𝑴1𝜙(𝑖)

1̂⊤
𝜙(𝑖)

𝑨1̂𝜙(𝑖)
.(2.26)
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Notice that by Lemma 2.3.4, for any 𝜖 > 0, if 𝐶0 in Assumption 1 is sufficiently large, with

probability 1 −𝑂 (𝑛−3),

1 − 𝜖 ≤ 𝑑𝑖
𝑑∗
𝑖

≤ 1 + 𝜖 for 𝑖 = 1, · · · , 𝑛,

1 − 𝜖 ≤
1⊤
𝑘
𝑨1𝑙

1⊤
𝑘
𝑴1𝑙

≤ 1 + 𝜖 for 1 ≤ 𝑘, 𝑙 ≤ 𝐾,

which further give

1 − 𝜖 ≤
∑
𝑗∈N̂𝑘

𝑑 𝑗∑
𝑗∈N̂𝑘

𝑑∗
𝑗

≤ 1 + 𝜖 for 𝑘 = 1, · · · , 𝑚,(2.27)

1 − 𝜖 ≤
1̂⊤
𝑘
𝑨1̂𝑙

1̂⊤
𝑘
𝑴1̂𝑙

≤ 1 + 𝜖 for 1 ≤ 𝑘, 𝑙 ≤ 𝑚.(2.28)

By (2.27) and (2.28), we have for any 𝜖′ > 0, if 𝐶0 in Assumption 1 is sufficiently large, with

probability 1 −𝑂 (𝑛−3),

1 − 𝜖′ ≤ 𝜃𝑖√︃
1̂⊤
𝜙 (𝑖)

𝑴1̂
𝜙 (𝑖)∑

𝑗∈N̂
𝜙 (𝑖)

𝑑∗
𝑗
𝑑∗
𝑖

≤ 1 + 𝜖′,

which by (2.26) further means

1 − 𝜖 ′ ≤ 𝜃𝑖

𝜃𝑖

©­«
∑
𝑗∈N̂

𝜙 (𝑖)
𝑑∗
𝑗∑

𝑗∈N𝜙 (𝑖) 𝑑
∗
𝑗

√√√√1⊤
𝜙(𝑖)𝑴1𝜙(𝑖)

1̂⊤
𝜙(𝑖)

𝑴1̂𝜙(𝑖)

ª®¬
−1

≤ 1 + 𝜖′.

Notice that ∑
𝑗∈N̂

𝜙 (𝑖)
𝑑∗
𝑗∑

𝑗∈N𝜙 (𝑖) 𝑑
∗
𝑗

√√√√1⊤
𝜙(𝑖)𝑴1𝜙(𝑖)

1̂⊤
𝜙(𝑖)

𝑴1̂𝜙(𝑖)
=

∑
𝑗∈N̂

𝜙 (𝑖)
𝑑∗
𝑗

∥𝜽𝜙(𝑖) ∥1
(∑𝐾

𝑙=1 𝐵𝜙(𝑖)𝑙 ∥𝜽𝑙 ∥1
)√√√ ∥𝜽𝜙(𝑖) ∥21

1̂⊤
𝜙(𝑖)

𝑴1̂𝜙(𝑖)

=

∑
𝑗∈N̂

𝜙 (𝑖)
𝑑∗
𝑗(∑𝐾

𝑙=1 𝐵𝜙(𝑖)𝑙 ∥𝜽𝑙 ∥1
) √︃

1̂⊤
𝜙(𝑖)

𝑴1̂𝜙(𝑖)

.
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Combined with (2.24), (2.25) and 𝑐0∥𝜽 ∥1 ≤ ∑𝐾
𝑙=1 𝐵𝜙(𝑖)𝑙 ∥𝜽𝑙 ∥1 ≤ ∥𝜽 ∥1, we have

𝑐0 ≤

∑
𝑗∈N̂

𝜙 (𝑖)
𝑑∗
𝑗∑

𝑗∈N𝜙 (𝑖) 𝑑
∗
𝑗

√√√√1⊤
𝜙(𝑖)𝑴1𝜙(𝑖)

1̂⊤
𝜙(𝑖)

𝑴1̂𝜙(𝑖)
≤ 𝑐−3/20 ,

which means for any 𝜖′ > 0, if 𝐶0 in Assumption 1 is sufficiently large, with probability

1 −𝑂 (𝑛−3),

𝑐0(1 − 𝜖′) ≤ 𝜃𝑖

𝜃𝑖
≤ 𝑐−3/20 (1 + 𝜖′) for 𝑖 = 1, · · · , 𝑛.

Next we deal with 𝐵𝑘𝑙 . Recall the definition from (2.7):

𝐵𝑘𝑙 =
1̂⊤
𝑘
𝑨1̂𝑙√︃

1̂⊤
𝑘
𝑨1̂𝑘

√︃
1̂⊤
𝑙
𝑨1̂𝑙

.

By (2.28), for any 𝜖′ > 0, if 𝐶0 in Assumption 1 is sufficiently large, with probability

1 −𝑂 (𝑛−3),

1 − 𝜖′ ≤ 𝐵𝑘𝑙

1̂⊤
𝑘
𝑴1̂𝑙√︃

1̂⊤
𝑘
𝑴1̂𝑘

√︃
1̂⊤
𝑙
𝑴1̂𝑙

≤ 1 + 𝜖′,

which by (2.24) gives

𝑐0 ≤
1̂⊤
𝑘
𝑴1̂𝑙√︃

1̂⊤
𝑘
𝑴1̂𝑘

√︃
1̂⊤
𝑙
𝑴1̂𝑙

≤ 𝑐−10 .

Thus for any 𝜖′ > 0, if 𝐶0 in Assumption 1 is sufficiently large, with probability 1 −𝑂 (𝑛−3),

𝑐0(1 − 𝜖′) ≤ 𝐵𝑘𝑙 ≤ 𝑐−10 (1 + 𝜖′) for 1 ≤ 𝑘 < 𝑙 ≤ 𝑚.

□

31



Lemma 2.3.8. If 𝐶0 in Assumption 1 is sufficiently large, with probability 1 − 𝑂 (𝑛−3),

there hold

𝑐2 ≤ 𝜉𝑖 ≤
1

𝑐2
for 1 ≤ 𝑖 ≤ 𝑛,

where 𝑐2 < 1 is a constant only depending on 𝑐0 in Assumption 1.

Proof. Notice that by Lemma 2.3.1, 𝝃 is the unique positive vector satisfying

𝑛∑︁
𝑗=1

𝐵𝜙(𝑖)𝜙( 𝑗)𝜉𝑖𝜉 𝑗 = 𝑛 for 𝑖 = 1, · · · , 𝑛,

and its entries satisfy√︃
min𝑘,𝑙 𝐵𝑘𝑙

max𝑘,𝑙 𝐵𝑘𝑙
≤ 𝜉𝑖 ≤

√︃
max𝑘,𝑙 𝐵𝑘𝑙

min𝑘,𝑙 𝐵𝑘𝑙
for 𝑖 = 1, . . . , 𝑛.

By Lemma 2.3.7, if 𝐶0 in Assumption 1 is sufficiently large, with probability 1 −𝑂 (𝑛−3),

𝑐1 ≤ 𝐵𝑘𝑙 ≤
1

𝑐1
for 1 ≤ 𝑘 < 𝑙 ≤ 𝑚

where 𝑐1 is a constant only depending on 𝑐0 in Assumption 1. Then there hold

𝑐
3/2
1 ≤ 𝜉𝑖 ≤ 𝑐−3/21 for 𝑖 = 1, . . . , 𝑛.

□

Lemma 2.3.9. For any fixed 𝐶1 > 0, if 𝐶0 in Assumption 1 is sufficiently large, with

probability 1 −𝑂 (𝑛−3), we have ���𝜆𝐾 (
𝑨1

)��� ≥ 𝐶1(log 𝑛)2
√
𝑛.

Proof. Recall that 𝑴 = 𝚯𝚷𝑩𝚷⊤𝚯, therefore,

𝚯− 1
2 𝑴𝚯− 1

2 = 𝚯
1
2𝚷𝑩𝚷⊤𝚯

1
2 .
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Observe that

𝚯
1
2𝚷 =

[√
𝜽1,

√︁
𝜽2, . . . ,

√︁
𝜽𝐾

]
.

Since {
√
𝜽𝑘 }𝐾𝑘=1 are orthogonal vectors, we have

𝜎𝐾

(
𝚯

1
2𝚷

)
= min

𝑘

√︁
∥𝜽𝑘 ∥1,

thus ���𝜆𝐾 (
𝚯− 1

2 𝑴𝚯− 1
2

)��� ≥ |𝜆𝐾 (𝑩) | · 𝜎𝐾
(
𝚯

1
2𝚷

)2
= |𝜆𝐾 (𝑩) | min

𝑘
∥𝜽𝑘 ∥1.

Combined with (2.14) and (2.15), we have���𝜆𝐾 (
𝚯− 1

2 𝑴𝚯− 1
2

)��� ≥ 𝑐20𝑛𝜃min.

By Lemma 2.3.7, if 𝐶0 in Assumption 1 is sufficiently large, with probability 1−𝑂 (𝑛−3),

𝑐1 ≤ 𝜃𝑖

𝜃𝑖
≤ 1

𝑐1
for 𝑖 = 1, . . . , 𝑛. Therefore,����𝜆𝐾 (

𝚯̂
− 1
2 𝑴𝚯̂

− 1
2

)���� ≥ 𝑐1 ���𝜆𝐾 (
𝚯− 1

2 𝑴𝚯− 1
2

)���
≥ 𝑐20𝑐1𝑛𝜃min

≥ 𝑐20𝑐1𝐶0(log 𝑛)2
√
𝑛.

Combined with Lemma 2.3.8, we have with probability 1 −𝑂 (𝑛−3),���𝜆𝐾 (
𝑨1

)��� ≥ 𝑐2 ����𝜆𝐾 (
𝚯̂

− 1
2 𝑴𝚯̂

− 1
2

)����
≥ 𝑐20𝑐1𝑐2𝐶0(log 𝑛)2

√
𝑛,

which proves the lemma. □

2.3.4. Proof of Theorem 2.2.1. Recall that 𝑨2 =

(
𝚵̂

1
2𝚵− 1

2

) (
𝚯̂

− 1
2𝚯

1
2

)
𝑬

(
𝚯̂

− 1
2𝚯

1
2

) (
𝚵̂

1
2𝚵− 1

2

)
.

By Lemma 2.3.4 and 2.3.5, for any fixed 𝜖 > 0, if 𝐶0 is sufficiently large, with probability
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1 −𝑂 (𝑛−3), we have

1 − 𝜖 ≤ 𝜃𝑖

𝜃𝑖
≤ 1 + 𝜖 for 𝑖 = 1, . . . , 𝑛,

1 − 𝜖 ≤ 𝜉𝑖

𝜉𝑖
≤ 1 + 𝜖, for 𝑖 = 1, . . . , 𝑛,

which gives





(𝚵̂ 1
2𝚵− 1

2

) (
𝚯̂

− 1
2𝚯

1
2

)



 ≤ 1 + 𝜖 . Next, by Lemma 2.3.6, for any fixed 𝜖 > 0, by

choosing a sufficiently large 𝐶0, with probability 1 −𝑂 (𝑛−3), there holds

(2.29) ∥𝑬∥ ≤ (2 + 𝜖)
√
𝑛.

Combining the results above, by choosing sufficiently small, we have with probability 1 −

𝑂 (𝑛−3), 


𝑨2




 ≤ 2.05
√
𝑛

2.3.5. Proof of Theorem 2.2.2. By Theorem 2.2.2, for any fixed 𝑐0, there exists a

sufficiently large 𝐶0 such that with probability 1 −𝑂 (𝑛−3), SCORE satisfies the NSP. First,

we show that, for any estimated community partition satisfying the NSP, with probability

1 −𝑂 (𝑛−3), the obtained normalized adjacency matrix 𝑨 satisfies

(2.30)
���𝜆𝑚+1(𝑨)��� > 2.05

√
𝑛.

By Lemma 2.3.9, for any fixed 𝐶1 > 0, if 𝐶0 in Assumption 1 is sufficiently large, with

probability 1 −𝑂 (𝑛−3), we have ���𝜆𝐾 (
𝑨1

)��� ≥ 𝐶1(log 𝑛)2
√
𝑛.
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By Lemma 2.3.7 and 2.3.8, if 𝐶0 is sufficiently large, with probability 1 −𝑂 (𝑛−3), we have

𝑐1 ≤ 𝜃𝑖

𝜃𝑖
≤ 1

𝑐1
for 𝑖 = 1, . . . , 𝑛,

𝑐2 ≤ 𝜉𝑖 ≤
1

𝑐2
for 𝑖 = 1, . . . , 𝑛,

where 𝑐1, 𝑐2 are constants only depending on 𝑐0. Also 𝑐
3
2
0 ≤ 𝜉𝑖 ≤ 𝑐

− 3
2

0 for 𝑖 = 1, . . . , 𝑛. Then

we have for some constant 𝐶 depending on 𝑐0



(𝚵̂ 1
2𝚵− 1

2

) (
𝚯̂

− 1
2𝚯

1
2

)



 ≤ 𝐶.

Combined with (2.29), we have with probability 1 −𝑂 (𝑛−3),


𝑨2




 ≤




(𝚵̂ 1

2𝚵− 1
2

) (
𝚯̂

− 1
2𝚯

1
2

)



2 ∥𝑬∥ ≲
√
𝑛,

where ≲ only hides a constant depending on 𝑐0. By Weyl’s inequality,���𝜆𝑚+1(𝑨)��� ≥ ���𝜆𝐾 (𝑨)��� ≥ ���𝜆𝐾 (𝑨1)
��� − 


𝑨2




 .
By combining the results above, (2.30) is shown.

Notice that the possible number of realizations of the estimated community partitions

N̂1, . . . , N̂𝑚 satisfying the NSP is small. By the probability union bound, with probability

1 −𝑂 (𝑛−3), ���𝜆𝑚+1(𝑨)��� > 2.05
√
𝑛.

2.3.6. Note on the Assumptions Under the Bernoulli DCSBM. In Assumption

1, we assume 𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

for technical reason as seen in the proof of Lemma 2.3.6. Here

we show that under the Bernoulli DCSBM, to show the consistency of SMAST, we only need

to assume 𝜃min ≥ 𝐶0

√︃
log 𝑛
𝑛

.

In Lemma 2.3.6, we apply Corollary 2.3.1 to the truncated matrix 𝑬 instead of 𝑬 as

under the general DCSBM, the entries of 𝑬 are not necessarily bounded. The key difference
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under the Bernoulli DCSBM is that the entries of 𝑬 are uniformly bounded by 1. Thus we

can obtain a tight bound of the operator norm of 𝑬 by directly applying Corollary 2.3.1 to

𝑬.

Lemma 2.3.10. Under the Bernoulli DCSBM, suppose Assumption 1 holds with (2.16)

replaced by 1 ≥ 𝜃max ≥ 𝜃min ≥ 𝐶0

√︃
log 𝑛
𝑛

. For any fixed 𝜖 > 0, by choosing a sufficiently large

𝐶0, with probability 1 −𝑂 (𝑛−3), there holds

∥𝑬∥ ≤ (2 + 𝜖)
√
𝑛.

Proof. Define the quantities

𝜎̃ B max
𝑖

√︄∑︁
𝑗

E 𝐸2
𝑖 𝑗
, 𝜎̃∗ B max

𝑖, 𝑗
∥𝐸𝑖 𝑗 ∥∞.

Then apply Corollary 2.3.1 to 𝑬. For any 𝜖, 𝑡 > 0, there holds

P (∥𝑬∥ ≥ 2(1 + 𝜖)𝜎̃ + 𝑡) ≤ 𝑛 exp

(
− 𝜖𝑡2

𝐶𝜎̃2
∗

)
.

By letting 𝑡 =
√︃

4𝐶
𝜖
𝜎̃∗

√︁
log 𝑛, with probability 1 −𝑂 (𝑛−3), we have

(2.31) ∥𝑬∥ ≤ 2(1 + 𝜖)𝜎̃ + 𝐶𝜖 𝜎̃∗
√︁

log 𝑛
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where 𝐶𝜖 is a constant depending on 𝜖 only. Notice that

𝜎̃2 = max
𝑖

∑︁
𝑗

𝜉𝑖𝜉 𝑗 (𝜃𝑖𝜃 𝑗 )−1𝑀𝑖 𝑗 (1 − 𝑀𝑖 𝑗 )

≤ max
𝑖

∑︁
𝑗

𝜉𝑖𝜉 𝑗 (𝜃𝑖𝜃 𝑗 )−1𝑀𝑖 𝑗

≤ max
𝑖

∑︁
𝑗

𝜉𝑖𝜉 𝑗𝐵𝜙(𝑖)𝜙( 𝑗) = 𝑛,

𝜎̃∗ = max
𝑖, 𝑗

(𝜉𝑖𝜉 𝑗 )
1
2 (𝜃𝑖𝜃 𝑗 )−

1
2 ∥𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 ∥∞

≤ max
𝑖, 𝑗

(𝜉𝑖𝜉 𝑗 )
1
2 (𝜃𝑖𝜃 𝑗 )−

1
2

≤ 𝑐−10 𝜃
−1
min ≤ 𝑐−10 𝐶

−1
0

√︂
𝑛

log 𝑛
.

Plugged into (2.31), we have

∥𝑬∥ ≤ 2 (1 + 𝜖)
√
𝑛 + 𝐶𝜖𝐶−1

0

√
𝑛 ≤ (2 + 3𝜖)

√
𝑛

provided that 𝐶0 is sufficiently large. □

2.4. Proof of the Nonsplitting Property for SCORE

2.4.1. Population Eigenstructure. We first study the eigenvalues and eigenvectors

of 𝑴. The population adjacency matrix 𝑴 is a rank-𝐾 matrix, with nonzero eigenvalues

𝜆∗1, 𝜆
∗
2, · · · , 𝜆

∗
𝐾

sorted in descending magnitude, and their corresponding unit-norm eigen-

vectors 𝒖∗
1, . . . , 𝒖

∗
𝐾

. Notice that by Perron’s theorem [Horn and Johnson, 2012], 𝜆∗1 is

positive with multiplicity 1, and we can choose 𝒖∗
1 such that all its entries are strictly

positive. Denote 𝑼∗ = [𝒖∗
2, . . . , 𝒖

∗
𝐾
] ∈ R𝑛×(𝐾−1) and

(
𝑼∗
𝑖·
)⊤

as its 𝑖-th row. Also denote

𝚲∗ = diag(𝜆∗2, · · · , 𝜆
∗
𝐾
) ∈ R(𝐾−1)×(𝐾−1).

We also define a diagonal matrix 𝑯 ∈ R𝐾×𝐾 such that 𝐻𝑘𝑘 = ∥𝜽𝑘 ∥2/∥𝜽 ∥2. For each

1 ≤ 𝑘 ≤ 𝐾, let 𝜆∗
𝑘

be the 𝑘-th largest eigenvalue of 𝑯𝑩𝑯 in magnitude, and let 𝒖̃∗
𝑘
∈ R𝐾 be

the associated (unit-norm) eigenvector. Similarly, by Perron’s theorem, 𝜆∗1 is positive with
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multiplicity 1, and the entries of 𝒖̃∗
1 are strictly positive. Moreover, there is a one-to-one

correspondence between (𝜆∗1, . . . , 𝜆
∗
𝐾
) and (𝜆∗1, . . . , 𝜆

∗
𝐾
), as well as the choice of (𝒖̃∗

1, . . . , 𝒖̃
∗
𝐾
)

and the choice of (𝒖∗
1, . . . , 𝒖

∗
𝐾
), characterized by the following lemma.

Lemma 2.4.1 (Lemma B.1 of Jin et al. [2022]). Suppose Assumption 1 holds. Let

𝜆∗
𝑘
, 𝜆∗

𝑘
, 𝒖∗

𝑘
, 𝒖̃∗

𝑘
be defined as above, then the following statements are true

(1) 𝜆∗
𝑘
= ∥𝜽 ∥22𝜆

∗
𝑘
for 1 ≤ 𝑘 ≤ 𝐾.

(2) If 𝒖̃∗
𝑘
is an eigenvector of 𝑯𝑩𝑯 corresponding to 𝜆∗

𝑘
, then ∥𝜽 ∥−12 𝚯𝚷𝑯−1𝒖̃∗

𝑘
is an eigenvec-

tor of 𝑴 corresponding to 𝜆∗
𝑘
, and conversely, if 𝒖∗

𝑘
is an eigenvector of 𝑴 corresponding

to 𝜆∗
𝑘
, then ∥𝜽 ∥−12 𝑯−1𝚷⊤𝚯𝒖∗

𝑘
is an eigenvector of 𝑴 corresponding to 𝜆∗

𝑘
.

Based on the previous Lemma, the following lemma, similar to Lemma B.1 of Jin et al.

[2017], provides bounds of 𝜆∗1, · · · , 𝜆
∗
𝐾

under Assumption 1, which help us to prove the row-

wise bounds for SCORE later. Notice that in this section, we use 𝐶 (𝑐0) to denote a constant

depending on 𝑐0.

Lemma 2.4.2. Under Assumption 1, the following statements are true

(1) 𝜆∗1 ≍ ∥𝜽 ∥22.

(2) 𝜆∗1 − |𝜆∗2 | ≍ 𝜆
∗
1.

(3) |𝜆∗
𝑘
| ≍ ∥𝜽 ∥22, 2 ≤ 𝑘 ≤ 𝐾.

Proof. Under Assumption 1, we can show that

𝐶 (𝑐0) ≥ 𝜆1(𝑩) > |𝜆2(𝑩) | ≥ · · · ≥ |𝜆𝐾 (𝑩) | ≥ 𝑐0 > 0,

𝐶′(𝑐0) ≤ ∥𝜽𝑘 ∥2/∥𝜽 ∥2 ≤ 𝐶 (𝑐0) 1 ≤ 𝑘 ≤ 𝐾.

Therefore, for each 1 ≤ 𝑘 ≤ 𝐾, by the definition of 𝜆∗
𝑘
,

|𝜆𝐾 (𝑩) | min
𝑘

∥𝜽𝑘 ∥22
∥𝜽 ∥22

≤
��𝜆∗𝑘 �� ≤ 𝜆1(𝑩)max

𝑘

∥𝜽𝑘 ∥22
∥𝜽 ∥22

,
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which by Lemma 2.4.1 means

𝐶′(𝑐0)∥𝜽 ∥22 ≤
��𝜆∗𝑘 �� ≤ 𝐶 (𝑐0)∥𝜽 ∥22.

Also by Theorem 1 of Han and Han [2019],

𝜆∗1 − |𝜆∗2 | ≥ (1 − 𝜏(𝑴)) min
𝑖

𝑛∑︁
𝑗=1

𝑀𝑖 𝑗

where

𝜏(𝑴) =
1 −

√︁
𝜌(𝑴)

1 +
√︁
𝜌(𝑴)

and 𝜌(𝑴) = min
𝑖, 𝑗 ,𝑘,𝑙

𝑀𝑖𝑘𝑀 𝑗 𝑙

𝑀 𝑗 𝑘𝑀𝑖𝑙

.

Notice that
∑𝑛
𝑗=1 𝑀𝑖 𝑗 ≍ ∥𝜽 ∥22, thus we have for a constant 0 < 𝑐 < 1 depending on 𝑐0,

𝜆∗1 − |𝜆∗2 | ≥ 𝑐𝜆
∗
1.

□

The following lemma from Jin et al. [2017] provides bounds for the entries of 𝒖∗
1 and

ℓ2−norms of the rows of 𝑼∗:

Lemma 2.4.3 (Lemma B.2 of Jin et al. [2017]). Under Assumption 1, the following

statements are true

(1) If we choose the sign of 𝒖∗
1 such that

∑𝑛
𝑖=1 𝑢

∗
1(𝑖) > 0, then the entries of 𝒖∗

1 are positive

satisfying 𝐶−1𝜃𝑖/∥𝜽 ∥2 ≤ 𝑢∗1(𝑖) ≤ 𝐶𝜃𝑖/∥𝜽 ∥2, 1 ≤ 𝑖 ≤ 𝑛.

(2) ∥𝑼∗
𝑖·∥2 ≤ 𝐶

√
𝐾𝜃𝑖/∥𝜽 ∥2, 1 ≤ 𝑖 ≤ 𝑛.

2.4.2. Row-Wise Perturbation for SCORE. Let’s come back to community detec-

tion with SCORE. Let |𝜆1 | ≥ |𝜆2 | ≥ · · · ≥ |𝜆𝐾 | be the leading 𝐾 eigenvalues of 𝑨 in mag-

nitude, with corresponding eigenvectors 𝒖1, . . . , 𝒖𝐾 . Denote 𝑼 = [𝒖2, . . . , 𝒖𝐾] ∈ R𝑛×(𝐾−1).

Define 𝑹(𝐾) as an 𝑛 × (𝐾 − 1) matrix constructed from the eigenvector 𝒖1, 𝒖2, ..., 𝒖𝐾 by
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taking entrywise ratios between 𝒖2,..., 𝒖𝐾 and 𝒖1, i.e., 𝑅(𝐾) (𝑖, 𝑘) = 𝑢𝑘+1(𝑖)/𝑢1(𝑖) for 1 ≤ 𝑖 ≤ 𝑛

and 0 ≤ 𝑘 ≤ 𝐾 − 1. For any 2 ≤ 𝑚 ≤ 𝐾, let 𝑹(𝑚) be an 𝑛 × (𝑚 − 1) matrix consists of the

first 𝑚 − 1 columns of 𝑹(𝐾). For any candidate number of clusters 𝑚, SCORE amounts to

conducting 𝑘-means clustering on the row vectors of 𝑹(𝑚). Therefore, we need to study the

statistical properties of the rows of 𝑹(𝑚).

As indicated in Jin et al. [2022], to establish the NSP for SCORE under the general

DCSBM, one needs to show that there exists some (𝐾−1)×(𝐾−1) orthogonal matrix 𝑸, such

that 𝑹(𝑚) is comparable to 𝑹∗(𝑚) (𝑸). Then roughly speaking, the NSP of 𝑘-means clustering

on the rows of 𝑹∗(𝑚) (𝑸) can be extended to that of 𝑹(𝑚). Here we follow the notations in Jin

et al. [2022] to construct 𝑹∗(𝑚) (𝑸). Denote O𝐾−1 as the space of (𝐾 −1) × (𝐾 −1) orthogonal

matrices. For any 𝑸 ∈ O𝐾−1, and any 2 ≤ 𝑘 ≤ 𝐾, let 𝒖∗
𝑘
(𝑸) be the (𝑘 − 1)-th column of

[𝒖∗
2, . . . , 𝒖

∗
𝐾
]𝑸. Define 𝑹∗(𝐾) (𝑸) ∈ R𝑛×(𝐾−1), whose (𝑘 − 1)-th column is the entrywise ratio

between 𝒖∗
𝑘
(𝑸) and 𝒖∗

1. For any 2 ≤ 𝑚 ≤ 𝐾, let 𝑹∗(𝑚) (𝑸) ∈ R𝑛×(𝑚−1) consist of the first 𝑚−1

columns of 𝑹∗(𝐾) (𝑸).

We will investigate the properties of the rows of 𝑹∗(𝑚) (𝑸) later. In this subsection we

focus on the comparison between 𝑹(𝑚) and 𝑹∗(𝑚) (𝑸). More specifically, we intend to show

that, with high probability, there exists some 𝑸 ∈ O𝐾−1, such that the row-wise deviation

between 𝑹(𝑚) and 𝑹∗(𝑚) (𝑸) is well-controlled. Before showing the row-wise deviation bounds

in Lemma 2.4.5, we first show a supporting lemma of eigenvector perturbation bounds.

Lemma 2.4.4. Under Assumption 1, with probability 1−𝑂 (𝑛−3), the following statements

are true:

• We can select 𝒖1 such that ∥𝒖1 − 𝒖∗
1∥∞ ≤ 𝑜(1/

√
𝑛).

• ∥𝑼𝑸⊤ −𝑼∗∥2→∞ ≤ 𝑜(1/
√
𝑛) for some 𝑸 ∈ O𝐾−1.

Proof. Divide 𝜆∗1, · · · , 𝜆
∗
𝐾

into three groups: (1) 𝜆∗1, (2) positive values in 𝜆∗2, · · · , 𝜆
∗
𝐾

,

and (3) negative values in 𝜆∗2, · · · , 𝜆
∗
𝐾

. We shall apply Theorem A.1.1 to all the three groups.
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For succinctness, we only show in detail applying the theorem to group (2), and the proof

for the other two groups is similar and thus omitted.

Denote 𝐾1 as the number of eigenvalues in group (2). Define 𝚲∗
1 as the diagonal matrix

consisting of eigenvalues in group (2), and 𝑼∗
1 as the matrix whose columns are the associated

eigenvectors. Define the two matrices’ empirical counterparts as 𝚲1 and 𝑼1. To show the

second bullet point, we aim to first show with high probability that

(i) ∥𝑼1𝑸
⊤ − 𝑨𝑼∗

1(𝚲
∗
1)−1∥2→∞ ≤ 𝑜(1/

√
𝑛) for some 𝑸 ∈ O𝐾1−1.

(ii) ∥𝑼∗
1 − 𝑨𝑼∗

1(𝚲
∗
1)−1∥2→∞ ≤ 𝑜(1/

√
𝑛).

Proof of (i). To apply Theorem A.1.1, we need to determine 𝛾 and 𝜑 : R+ → R+, and

then verify Assumption (A1)—(A4) as required by the theorem. Note that by Lemma 2.4.2,

we have

Δ∗ = min{𝜆∗1 − 𝜆
∗
2, |𝜆

∗
𝐾 |} ≥ 𝐶 (𝑐0)𝑛𝜃2min

and 𝜅 ≤ 𝐶 (𝑐0). We choose an appropriately large 𝐶1(𝑐0) and let

𝛾 =
𝐶1(𝑐0)√︁

log 𝑛
.

A1 This is trivial since

∥𝑴∥2→∞ ≤ 𝑐−20
√
𝑛𝜃2min ≤ Δ∗𝛾

when 𝑛 is sufficiently large.

A2 This obviously holds.

A3 In the proof of A4, we show that 𝜑(𝛾) ≤ 𝐶 (𝑐0) (log 𝑛)−3/2, therefore 32𝜅max{𝛾, 𝜑(𝛾)} ≤

1 when 𝑛 is sufficiently large.

Next, we show the spectral norm perturbation bound by applying the subexpo-

nential case of matrix Bernstein inequality (Theorem 6.2 of Tropp [2012], restated

as Lemma A.1.4 in this dissertation). Let 𝑿𝑖 𝑗 = (𝐴𝑖 𝑗 −𝑀𝑖 𝑗 ) (𝑬𝑖 𝑗 + 𝑬 𝑗𝑖) for 𝑖 < 𝑗 , and

𝑿𝑖𝑖 = (𝐴𝑖𝑖 −𝑀𝑖𝑖)𝑬𝑖𝑖 for 𝑖 = 1 · · · , 𝑛, where 𝑬𝑖 𝑗 is a 𝑛×𝑛 matrix with 1 on the (𝑖, 𝑗)-th
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entry and 0 elsewhere. Obviously, E[𝑿𝑖 𝑗 ] = 0. Notice that

E[(𝑿𝑖 𝑗 )𝑝] =


E[(𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 )𝑝] (𝑬𝑖 𝑗 + 𝑬 𝑗𝑖) when 𝑝 is odd;

E[(𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 )𝑝] (𝑬𝑖 𝑗 + 𝑬 𝑗𝑖) when 𝑝 is even.

Also note that −(𝑬𝑖𝑖 + 𝑬 𝑗 𝑗 ) ⪯ 𝑬𝑖 𝑗 + 𝑬 𝑗𝑖 ⪯ 𝑬𝑖𝑖 + 𝑬 𝑗 𝑗 . Then by Assumption (2.18),

for integer 𝑝 ≥ 2, we have��E[(𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 )𝑝]
�� ≤ E[|𝐴𝑖 𝑗 − 𝑀𝑖 𝑗 |𝑝] ≤ 𝐶′

(
𝑝!

2

)
𝑅𝑝−2𝑀𝑖 𝑗

where 𝐶′ and 𝑅 only depend on 𝑐0. Then

E[(𝑿𝑖 𝑗 )𝑝] ⪯ 𝐶′ 𝑝!

2
𝑅𝑝−2𝑀𝑖 𝑗 (𝑬𝑖𝑖 + 𝑬 𝑗 𝑗 ) for 𝑝 = 2, 3, 4, . . . .

Thus the conditions of Lemma A.1.4 are verified. Notice that
∑
𝑖≤ 𝑗 𝑿

𝑖 𝑗 = 𝑨 − 𝑴.

Denote

𝜎2 =






∑︁
𝑖≤ 𝑗

𝐶′𝑀𝑖 𝑗 (𝑬𝑖𝑖 + 𝑬 𝑗 𝑗 )





 = 𝐶′

(
max
𝑖

𝑛∑︁
𝑗=1

𝑀𝑖 𝑗

)
≲ 𝑛𝜃2min,

where ≲ only hides a constant depending on 𝑐0. Then for all 𝑡 ≥ 0,

P (∥𝑨 − 𝑴∥ ≥ 𝑡) ≤ 𝑛 exp

(
− 𝑡2

2(𝜎2 + 𝑅𝑡)

)
≤ 𝑛 exp

(
−1

4

(
𝑡2

𝜎2
∧ 𝑡

𝑅

))
.

By the assumption 𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

, when 𝑛 is sufficiently large, 𝑛𝜃2min ≫ log 𝑛,

so we can take 𝑡 = 𝐶 (𝑐0)𝜃min

√︁
𝑛 log 𝑛 for a sufficiently large 𝐶 (𝑐0). Then, with

probability 1 −𝑂 (𝑛−3),

∥𝑨 − 𝑴∥ ≤ 𝐶 (𝑐0)𝜃min

√︁
𝑛 log 𝑛.
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A4 By Lemma A.1.3, for any 1 ≤ 𝑖 ≤ 𝑛 and 𝑾 ∈ R𝑛×𝑟 , with probability at least 1− 𝑛−4,

there holds

(2.32) ∥(𝑨 − 𝑴)𝑖·𝑾∥2 ≤ 𝐶2(𝑐0) max
(
𝜃min∥𝑾∥𝐹

√︁
log 𝑛, ∥𝑾∥2→∞(log 𝑛)

)
for a sufficiently large 𝐶2(𝑐0). Since Δ∗ ≥ 𝐶 (𝑐0)𝑛𝜃2min, we have

∥(𝑨 − 𝑴)𝑖·𝑾∥2 ≤ 𝐶2(𝑐0)Δ∗∥𝑾∥2→∞ max

(√︁
𝑛 log 𝑛

𝑛𝜃min

∥𝑾∥𝐹√
𝑛∥𝑾∥2→∞

,
log 𝑛

𝑛𝜃2min

)
.

Now we follow similar arguments as in the proof of Lemma 2.1 of Jin et al. [2017].

Define the quantities 𝑡1 = 𝐶2(𝑐0) (𝑛𝜃min)−1
√︁
𝑛 log 𝑛 and 𝑡2 = 𝐶2(𝑐0)

(
𝑛𝜃2min

)−1
log 𝑛 .

Define the function

𝜑(𝑥) = min (𝑡1𝑥, 𝑡2) .

Then we have for all 1 ≤ 𝑖 ≤ 𝑛, with probability at least 1 − 𝑛−4,

(2.33) ∥(𝑨 − 𝑴)𝑖·𝑾∥2 ≤ Δ∗∥𝑾∥2→∞𝜑

(
∥𝑾∥𝐹√
𝑛∥𝑾∥2→∞

)
.

First, notice that (
√
𝑛∥𝑾∥2→∞)−1∥𝑾∥𝐹 ∈

[
𝑛−1/2, 1

]
. Then, observe that since

𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

, when 𝑛 is sufficiently large, we have 𝑡2/𝑡1 = (
√
𝑛𝜃min)−1

√︁
log 𝑛 >

𝑛−1/2 and 𝑡1 ≫ 𝑡2. Thus when 𝑥 ∈
[
𝑛−1/2, 𝑡2/𝑡1

]
, 𝑡1𝑥 ≤ 𝑡2, i.e., 𝜑(𝑥) = 𝑡2; when

𝑥 ∈ (𝑡2/𝑡1, 1], 𝑡1𝑥 > 𝑡2, i.e., 𝜑(𝑥) = 𝑡1𝑥. Therefore, we can construct 𝜑(·) as:

𝜑(𝑥) =



√
𝑛𝑡2𝑥 for 0 ≤ 𝑥 ≤ 𝑛−1/2;

𝑡2 for 𝑛−1/2 < 𝑥 ≤ 𝑡2/𝑡1;

𝑡1𝑥 for 𝑡2/𝑡1 < 𝑥 ≤ 1;

𝑡1 for 𝑥 > 1.
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Obviously, 𝜑(𝑥) is continuous and non-decreasing in R+, with 𝜑(0) = 0 and 𝜑(𝑥)/𝑥

being non-increasing in R+. By (2.33) and 0 ≤ 𝜑(𝑥) ≤ 𝜑(𝑥), we have with probability

at least 1 − 𝑛−4,

∥(𝑨 − 𝑴)𝑖·𝑾∥2 ≤ Δ∗∥𝑾∥2→∞𝜑

(
∥𝑾∥𝐹√
𝑛∥𝑾∥2→∞

)
.

Based on the definition of 𝑡1 and the assumption 𝜃min ≥ 𝐶0

√︃
log4 𝑛
𝑛

, we have 𝑡1 ≲

(log 𝑛)−3/2 where ≲ only hides a constant depending on 𝐶0 and 𝑐0. Furthermore,

since 𝜑(𝑥) ≤ 𝑡1, we have 𝜑(𝛾) ≤ 𝑡1 ≲ (log 𝑛)−3/2.

After verifying (A1)—(A4), we obtain the bound (A.1). Note that based on the definition

of 𝜑(𝑥), 𝜅(𝜅 + 𝜑(1)) ≤ 𝐶 (𝑐0) and 𝛾 + 𝜑(𝛾) ≤ 𝐶 (𝑐0)√
log 𝑛

. Also by Lemma 2.4.3, ∥𝑼∗
1∥2→∞ ≤ 𝐶 (𝑐0)√

𝑛
.

Since ∥𝑴∥2→∞ ≤ 𝑐−30
√
𝑛𝜃2min and Δ∗ ≥ 𝐶 (𝑐0)𝑛𝜃2min, ∥𝑴∥2→∞/Δ∗ ≤ 𝐶 (𝑐0)√

𝑛
. Finally, we obtain

that with probability 1 −𝑂 (𝑛−3),

∥𝑼1𝑸 − 𝑨𝑼∗
1(𝚲

∗
1)

−1∥2→∞ ≤ 𝐶𝜅(𝜅 + 𝜑(1)) (𝛾 + 𝜑(𝛾))∥𝑼∗
1∥2→∞ + 𝛾∥𝑴∥2→∞/Δ∗

≲
1√︁

𝑛 log 𝑛
,

where ≲ only hides a constant depending on 𝑐0 in Assumption 1.

Proof of (ii). Based on the fact 𝑼∗
1 = 𝑴𝑼∗

1(𝚲
∗
1)−1, we have

∥𝑼∗
1 − 𝑨𝑼∗

1(𝚲
∗
1)

−1∥2→∞ = ∥(𝑴 − 𝑨)𝑼∗
1(𝚲

∗
1)

−1∥2→∞.

By Lemma 2.4.3,


(𝑼∗

1

)
𝑖·



2
≤ 𝐶𝜃𝑖/∥𝜽 ∥2 ≤ 𝐶 (𝑐0)√

𝑛
, thus ∥𝑼∗

1∥𝐹 ≤ 𝐶 (𝑐0). Also since 𝜃min ≥

𝐶0

√︃
log4 𝑛
𝑛

, we have (
√
𝑛𝜃min)−1 ≤ 𝐶−1

0 (log 𝑛)−2. Apply (2.32) with 𝑾 = 𝑼∗
1 and combine the
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above facts, we have with probability 1 −𝑂 (𝑛−3),

∥(𝑨 − 𝑴)𝑼∗
1(𝚲

∗
1)

−1∥2→∞ ≤
(
max
1≤𝑖≤𝑛

∥(𝑨 − 𝑴)𝑖·𝑼∗
1∥2

)
· ∥ (𝚲∗

1)
−1∥

≤ 𝐶 (𝑐0) max
(
𝜃min∥𝑼∗

1∥𝐹
√︁

log 𝑛, ∥𝑼∗
1∥2→∞(log 𝑛)

)
· (𝑛𝜃2min)

−1

≤ 𝐶 (𝑐0) max

(
(
√
𝑛𝜃min)−1∥𝑼∗

1∥𝐹
√︂

log 𝑛

𝑛
, (
√
𝑛𝜃min)−2∥𝑼∗

1∥2→∞(log 𝑛)
)

≲
1√︃

𝑛 log3 𝑛

,

where ≲ only hides a constant depending on 𝐶0 and 𝑐0 in Assumption 1.

With (i) and (ii), we have ∥𝑼1𝑸
⊤ − 𝑼∗

1∥2→∞ ≤ 𝑜(1/
√
𝑛) for some 𝑸 ∈ O𝐾1−1. For

eigenvalues in group (3), we similarly define 𝐾2, 𝚲
∗
2, 𝑼

∗
2, 𝚲2 and 𝑼2, then there holds ∥𝑼2𝑸

⊤−

𝑼∗
2∥2→∞ ≤ 𝑜(1/

√
𝑛) for some 𝑸 ∈ O𝐾2−1. Combining these results yields the second bullet

point: With probability 1 −𝑂 (𝑛−3), we have

∥𝑼𝑸⊤ −𝑼∗∥2→∞ ≤ 𝑜(1/
√
𝑛) for some 𝑸 ∈ O𝐾−1.

To show the first bullet point, we apply Theorem A.1.1 to group (1) with 𝑠 = 0 and 𝑟 = 1.

Note that by Lemma 2.4.2, we have

Δ∗ = min{𝜆∗1, 𝜆
∗
1 − 𝜆

∗
2} ≥ 𝐶 (𝑐0)𝑛𝜃

2
min

and 𝜅 ≤ 𝐶 (𝑐0). Following similar procedures, we can select 𝒖1 such that

(i) ∥𝒖1 − 𝑨𝒖∗
1/𝜆

∗
1∥∞ ≤ 𝑜(1/

√
𝑛).

(ii) ∥𝒖∗
1 − 𝑨𝒖∗

1/𝜆
∗
1∥∞ ≤ 𝑜(1/

√
𝑛).

Thus with probability 1 −𝑂 (𝑛−3), we have

∥𝒖1 − 𝒖∗
1∥∞ ≤ 𝑜(1/

√
𝑛),

which proves the first bullet point.
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□

Lemma 2.4.5 (Row-wise deviation bound). For 2 ≤ 𝑚 ≤ 𝐾, denote
(
𝒓 (𝑚)
𝑖

)⊤
and

(
𝒓∗(𝑚)
𝑖

(𝑸)
)⊤

as the 𝑖-th row of 𝑹(𝑚) and 𝑹∗(𝑚) (𝑸), respectively. Under Assumption 1, with probability

1 −𝑂 (𝑛−3), there exists a (𝐾 − 1) × (𝐾 − 1) orthogonal matrix 𝑸, such that

(2.34) ∥𝒓 (𝑚)
𝑖

− 𝒓∗(𝑚)
𝑖

(𝑸)∥2 ≤ ∥𝒓 (𝐾)
𝑖

− 𝒓∗(𝐾)
𝑖

(𝑸)∥2 ≤ 𝑜(1)

for all 2 ≤ 𝑚 ≤ 𝐾 and 1 ≤ 𝑖 ≤ 𝑛.

Proof. By Lemma 2.4.4, with probability 1 −𝑂 (𝑛−3), we have

• We can select 𝒖1 such that ∥𝒖1 − 𝒖∗
1∥∞ ≤ 𝑜(1/

√
𝑛).

• ∥𝑼𝑸⊤ −𝑼∗∥2→∞ ≤ 𝑜(1/
√
𝑛) for some 𝑸 ∈ O𝐾−1.

First, ∥𝒓 (𝑚)
𝑖

− 𝒓∗(𝑚)
𝑖

(𝑸)∥2 ≤ ∥𝒓 (𝐾)
𝑖

− 𝒓∗(𝐾)
𝑖

(𝑸)∥2 obviously holds. For convenience, write

𝒓𝑖 = 𝒓 (𝐾)
𝑖

, 𝒓∗
𝑖
(𝑸) = 𝒓∗(𝐾)

𝑖
(𝑸) and 𝒓∗

𝑖
= 𝒓∗(𝐾)

𝑖
(𝑰𝐾−1). Notice that by the definitions, 𝒓𝑖 =

1
𝑢1 (𝑖)𝑼𝑖·,

𝒓∗
𝑖
= 1
𝑢∗1 (𝑖)

𝑼∗
𝑖· and 𝒓∗

𝑖
(𝑸) = 1

𝑢∗1 (𝑖)
𝑸⊤𝑼∗

𝑖·. Then we have

∥𝒓𝑖 − 𝒓∗𝑖 (𝑸)∥2 = ∥𝒓𝑖 − 𝑸⊤𝒓∗𝑖 ∥2 = ∥𝑸𝒓𝑖 − 𝒓∗𝑖 ∥2

and

𝑸𝒓𝑖 − 𝒓∗𝑖 =
1

𝑢1(𝑖)
𝑸𝑼𝑖· −

1

𝑢∗1(𝑖)
𝑼∗
𝑖·

=
1

𝑢1(𝑖)
(
𝑸𝑼𝑖· −𝑼∗

𝑖·
)
+

(
1

𝑢1(𝑖)
− 1

𝑢∗1(𝑖)

)
𝑼∗
𝑖·

=
1

𝑢1(𝑖)
(
𝑸𝑼𝑖· −𝑼∗

𝑖·
)
+
𝑢∗1(𝑖) − 𝑢1(𝑖)

𝑢1(𝑖)
𝒓∗𝑖 .

By Lemma 2.4.3, ∥𝑼∗
𝑖·∥2 ≤ 𝐶 (𝑐0)√

𝑛
, and 𝐶′ (𝑐0)√

𝑛
≤ 𝑢∗1(𝑖) ≤ 𝐶 (𝑐0)√

𝑛
for 1 ≤ 𝑖 ≤ 𝑛. Thus we have

∥𝒓∗
𝑖
∥2 ≤ 𝐶 (𝑐0). Also since ∥𝒖1−𝒖∗

1∥∞ ≤ 𝑜(1/
√
𝑛), 𝑢1(𝑖) ≥ 𝐶 (𝑐0)√

𝑛
for 1 ≤ 𝑖 ≤ 𝑛. Plug the above
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facts into the previous equation and we get

max
1≤𝑖≤𝑛

∥𝑸𝒓𝑖 − 𝒓∗𝑖 ∥2 ≲ max
1≤𝑖≤𝑛

√
𝑛
(
∥𝑸𝑼𝑖· −𝑼∗

𝑖·∥2 + 𝐶 (𝑐0) |𝑢∗1(𝑖) − 𝑢1(𝑖) |
)

≤
√
𝑛
(
∥𝑼𝑸⊤ −𝑼∗∥2→∞ + 𝐶 (𝑐0)∥𝒖1 − 𝒖∗

1∥∞
)

≤ 𝑜(1).

Here ≲ only hides a constant depending on 𝑐0. □

2.4.3. Proof of Theorem 2.2.2. Before proving the NSP in Theorem 2.2.2, it remains

to study the geometry underlying the rows of 𝑹∗(𝑚) (𝑸) for any 𝑸 ∈ O𝐾−1. Recall that 𝒖̃∗
𝑘

is the associated eigenvector of the 𝑘-th largest eigenvalue of 𝑯𝑩𝑯 in magnitude. For any

𝑸 ∈ O𝐾−1, and any 2 ≤ 𝑘 ≤ 𝐾, let 𝒖̃∗
𝑘
(𝑸) be the (𝑘 − 1)th column of [𝒖̃∗

2, . . . , 𝒖̃
∗
𝐾
]𝑸. Define

𝑹∗(𝐾) (𝑸) ∈ R𝐾×(𝐾−1), whose (𝑘 − 1)th column is the entrywise ratio between 𝒖̃∗
𝑘
(𝑸) and 𝒖̃∗

1.

For any 2 ≤ 𝑚 ≤ 𝐾, 𝑹∗(𝑚) (𝑸) ∈ R𝐾×(𝑚−1) consists of the first 𝑚 − 1 columns of 𝑹∗(𝐾) (𝑸).

For each 1 ≤ 𝑘 ≤ 𝐾, denote
(
𝒓̃∗(𝑚)
𝑘

(𝑸)
)⊤

as the 𝑘-th row of 𝑹∗(𝑚) (𝑸).

The following lemma is a result from Jin et al. [2022], which characterizes the relationship

between the rows of 𝑹∗(𝑚) (𝑸) and 𝑹∗(𝑚) (𝑸).

Lemma 2.4.6 (Lemma 4.2 of Jin et al. [2022]). Under Assumption 1, for any 𝑸 ∈ O𝐾−1

and for each 𝑖 ∈ [𝑛] and 𝑘 ∈ [𝐾], we have 𝒓∗(𝑚)
𝑖

(𝑸) = 𝒓̃∗(𝑚)
𝑘

(𝑸) if 𝑖 ∈ N𝑘 .

Next, we introduce the following concept from Jin et al. [2022] which defines a metric for

the relative positions of the 𝐾 cluster centers (rows of 𝑹∗(𝑚) (𝑸)).

Definition 2 (Definition 4.1 of Jin et al. [2022]). Fixing 𝐾 > 1 and 1 < 𝑚 ≤ 𝐾, consider

a 𝐾 × (𝑚 − 1) matrix 𝑼 = [𝒖1, . . . , 𝒖𝐾]⊤. First, let 𝑑𝐾 (𝑼) be the minimum pairwise distance

of all 𝐾 rows. Second, let 𝒖𝑘 and 𝒖𝑙 (𝑘 < 𝑙) be the pair that satisfies ∥𝒖𝑘 − 𝒖𝑙 ∥ = 𝑑𝐾 (𝑼) (if

this holds for multiple pairs, pick the first pair in the lexicographical order). Remove row
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𝑙 from the matrix 𝑼 and let 𝑑𝐾−1(𝑼) be the minimum pairwise distance for the remaining

(𝐾 − 1) rows. Repeat this step and define 𝑑𝐾−2(𝑼), ..., 𝑑2(𝑼) recursively.

The following lemma provides a uniform lower bound for 𝑑𝑚 (𝑹∗(𝑚) (𝑸)).

Lemma 2.4.7 (Lemma 4.3 of Jin et al. [2022]). Under Assumption 1, for each 2 ≤ 𝑚 ≤ 𝐾,

there exists a constant 𝐶𝑚 > 0 which may depend on 𝑚, such that

𝑑𝑚 (𝑹∗(𝑚) (𝑸)) > 𝐶𝑚

for any 𝑸 ∈ O𝐾−1.

Now, we introduce the new 𝑘-means theorem for SCORE proposed in Jin et al. [2022].

Lemma 2.4.8 (Theorem 4.1 of Jin et al. [2022]). Fix 1 < 𝑚 ≤ 𝐾 and let 𝑛 be sufficiently

large. Consider the vectors 𝒙1, . . . , 𝒙𝑛 that take only 𝐾 values in 𝒚1, . . . , 𝒚𝐾 . Write 𝒀 =

[𝒚1, . . . , 𝒚𝐾]⊤. Let 𝐹𝑘 = {1 ≤ 𝑖 ≤ 𝑛 : 𝒙𝑖 = 𝒚𝑘 } for 1 ≤ 𝑘 ≤ 𝐾. Suppose for some constants

0 < 𝛼0 < 1 and 𝛽0 > 0, min1≤𝑘≤𝐾 |𝐹𝑘 | ≥ 𝛼0𝑛 and max1≤𝑘≤𝐾 ∥𝒚𝑘 ∥2 ≤ 𝛽0𝑑𝑚 (𝒀). We apply

the 𝑘-means clustering to a set of n points 𝒙1, . . . , 𝒙𝑛 assuming ≤ 𝑚 clusters, and denote

by 𝑆1, . . . , 𝑆𝑚 the obtained clusters. There exists a constant 𝑐 > 0, which only depends on

(𝛼0, 𝛽0, 𝑚), such that, if max1≤𝑖≤𝑛 ∥𝒙𝑖 − 𝒙𝑖∥2 ≤ 𝑐𝑑𝑚 (𝒀), then #{1 ≤ 𝑗 ≤ 𝑚 : 𝑆 𝑗 ∩ 𝐹𝑘 ≠ 𝜙} = 1

for each 1 ≤ 𝑘 ≤ 𝐾.

With the above results, we are ready to establish the NSP for SCORE under the general

DCSBM. By Lemma 2.4.5, with probability 1 − 𝑂 (𝑛−3), there exists a (𝐾 − 1) × (𝐾 − 1)

orthogonal matrix 𝑸, such that for each 2 ≤ 𝑚 ≤ 𝐾,

(2.35) max
1≤𝑖≤𝑛

∥𝒓 (𝑚)
𝑖

− 𝒓∗(𝑚)
𝑖

(𝑸)∥2 ≤ 𝑜(1).

To prove Theorem 2.2.2, we apply Lemma 2.4.8 with 𝒀 = 𝑹∗(𝑚) (𝑸), 𝒙𝑖 = 𝑟
∗(𝑚)
𝑖

(𝑸),

𝒙𝑖 = 𝑟
(𝑚)
𝑖

and 𝐹𝑘 = N𝑘 . By Assumption 1, min1≤𝑘≤𝐾 |𝐹𝑘 | ≥ 𝑐0𝑛. As shown in the proof
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of Lemma 2.4.5, ∥𝒙𝑖∥2 ≤ ∥𝑟∗
𝑖
(𝑸)∥2 = ∥𝑟∗

𝑖
∥2 ≤ 𝐶 (𝑐0). Combined with Lemma 2.4.6, we

have max1≤𝑘≤𝐾 ∥𝒚𝑘 ∥2 ≤ 𝐶 (𝑐0), which by Lemma 2.4.7 further means max1≤𝑘≤𝐾 ∥𝒚𝑘 ∥2 ≤

𝐶 (𝑐0)𝑑𝑚 (𝒀).

Also by (2.35), we have max1≤𝑖≤𝑛 ∥𝒙𝑖 − 𝒙𝑖∥2 ≤ 𝑐 · 𝑑𝑚 (𝒀) for a sufficiently small constant

𝑐. The claim follows by applying Lemma 2.4.8.
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CHAPTER 3

Spectral Divergence-Based Rank Selection for Network Data

3.1. Methodology

Consider an undirected binary-edge network with independent edges and no self-loop, in

which 𝑛 nodes are represented by 1, . . . , 𝑛. In this case, the entries of the adjacency matrix

are distributed as

(3.1) 𝐴𝑖 𝑗
indep∼ Bernoulli(𝑀𝑖 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

In addition, 𝐴 𝑗𝑖 = 𝐴𝑖 𝑗 and 𝐴𝑖𝑖 = 0 so 𝑨 is a symmetric matrix. Here the expected adjacency

matrix 𝑴 = (𝑀𝑖 𝑗 ){1≤𝑖, 𝑗≤𝑛} is a 𝑛 × 𝑛 symmetric matrix whose entries are between 0 and 1.

In the literature, the mean matrix 𝑴 is sometimes referred to as the graphon (e.g. Gao

et al. [2015]), but we simply refer to it as the expected adjacency matrix. Since there is

no self-loop, the random graph does not rely on the diagonal entries of 𝑴. Therefore, the

diagonal entries of 𝑴 can be defined arbitrarily for the convenience of discussions without

loss of generality.

Our assumption is that there are 𝐾 communities within the observed network, and we

want to select 𝐾 accurately. In various widely used generative models to characterize the

communities in a network, the number of communities is exactly the same as the rank of the

expected adjacency matrix (with its diagonal entries appropriately chosen). In SBM, the

nodes are assumed to belong to 𝐾 communities, and the nodes 𝑖 and 𝑗 are connected with

probability 𝑀𝑖 𝑗 = 𝐵𝜙(𝑖)𝜙( 𝑗), where 𝜙(·) is the labeling mapping. It is straightforward to verify

that the rank of 𝑴 is 𝐾. SBM has various extensions and the most important one of them is

DCSBM, in which 𝑀𝑖 𝑗 = 𝜃𝑖𝜃 𝑗𝐵𝜙(𝑖)𝜙( 𝑗) with degree-correction parameters 𝜃1, · · · , 𝜃𝑛; another
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one is the Overlapping Continuous Community Assignment Model (OCCAM) [Zhang et al.,

2014], in which 𝑀𝑖 𝑗 = 𝜃𝑖𝜃 𝑗𝝅
⊤
𝑖
𝑩𝝅 𝑗 , and the 𝐾 dimensional vectors 𝝅𝑖 represents the propen-

sities of node 𝑖 to the 𝐾 groups. Again, it is clear that in all the above models, the rank of

𝑴 is 𝐾. Motivated by these examples, we treat the problem of estimating the number of

communities as a rank selection problem.

Instead of solving the rank selection problem directly, let’s consider a related problem:

For any candidate rank 𝑟, if we first perform spectral decomposition for the adjacency matrix,

denoted as 𝑨 =
∑𝑛
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

with |𝜆1 | > |𝜆2 | > . . . > |𝜆𝑛 | > 0, and then propose to estimate

the expected adjacency matrix 𝑴 through spectral truncation

𝑴𝑟 =

𝑟∑︁
𝑖=1

𝜆𝑖𝒖𝑖𝒖
⊤
𝑖 ,

then, can we evaluate how close this estimate is to the ground truth 𝑴? In other words, is

there a way to estimate the discrepancy between 𝑴𝑟 and 𝑴 from the data? If this is feasible,

we can simply choose the rank 𝑟 such that the estimated discrepancy is the smallest.

Classical methods such as cross-validation are usually computationally expensive, and

might be sensitive to the choice of hyperparameters. Instead, we will apply the risk estima-

tion framework proposed in Efron et al. [2004]. In particular, one interesting result we use

from Efron et al. [2004] is that for general mean estimators of independent Bernoulli vari-

ables, as long as the error measures are derived from the binomial deviation, the optimism of

the apparent error over the true error can be approximately estimated by the divergence of

the estimator with respect to the data. Although this approximation still lacks serious the-

oretical justification, empirically we have found that this idea is often effective and efficient

when applied to real-world data.

Now let’s introduce the risk estimation framework proposed in Efron et al. [2004]. For a

mean estimator 𝑴, we first choose an error measure 𝑞(𝑴, 𝑨) based on the binomial deviance

to quantify the discrepancy between the estimator and the original data matrix, and refer
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to it as the apparent error. This apparent error cannot be used directly for model selection,

since the data is used twice: one for the calculation of the estimator, and the other for the

evaluation of such estimator. In contrast, we define a companion true error 𝑄(𝑴,𝑴) to

quantify the discrepancy between 𝑴 and 𝑴. We will explain later in detail how to define

the true error 𝑄(·, ·) based on the apparent error 𝑞(·, ·).

Ideally, we should use 𝑄(𝑴,𝑴) to quantify the discrepancy between 𝑴 and 𝑴. However,

this is usually not applicable since 𝑴 is unknown. Then, the key question is how to estimate

the true error based on the apparent error. In fact, the true error 𝑄(𝑴,𝑴) is usually higher

than the apparent error, and the difference is called optimism, i.e.,

𝑄(𝑴,𝑴) = 𝑞(𝑴, 𝑨) + optimism.

For a general class of estimators and a wide class of error measures, it has been shown in Efron

[1986] that the optimism can be estimated by summing up the covariances cov(𝑀𝑖 𝑗 , 𝐴𝑖 𝑗 ). Fur-

thermore, if the error measures are chosen as the likelihood-based deviances, this covariance

penalty can be approximated by the divergence of the estimator with respect to the data

[Efron et al., 2004]. On the other hand, for SVD-based spectral estimators, closed-form

divergence formulas have been explicitly derived in the literature [Candès et al., 2013; Yuan,

2016]. A crucial idea of our method is to integrate these two ideas in order to provide a

closed-form approximate estimator for 𝑄(𝑴,𝑴).

Before we discuss the risk estimation method under the independent Bernoulli model in

Efron [1986] and Efron et al. [2004], let’s first review the Stein’s unbiased risk estimation

(SURE) framework for the normal mean estimation problem [Stein, 1981].

3.1.1. Stein’s Unbiased Risk Estimation for the Normal Model. The problem of

normal mean estimation is as follows: Suppose that our observation satisfies the stochastic

model 𝒚 = 𝝁 + 𝝐 , where 𝝁 ∈ R𝑛 is the mean vector, while 𝝐 ∼ N𝑛 (0, 𝜎2𝑰𝑛) represents the

i.i.d. normal noises. From the perspective of prediction, the standard linear regression model
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with i.i.d. normal noises is a special case of the above general model, where an additional

design matrix 𝑿 is also incorporated. The expectation of 𝒚, i.e. 𝝁, can be estimated by

methods such as James-Stein shrinkage [James and Stein, 1961], wavelet shrinkage [Donoho

and Johnstone, 1995] or Lasso [Tibshirani, 1996; Zou et al., 2007]. Sometimes the estimate

depends on some tuning parameter 𝜆, then one approach to selecting 𝜆 is based on the

evaluation of the estimate. Again, this involves the choice of the apparent error 𝑞( 𝝁̂, 𝒚), the

true error 𝑄( 𝝁̂, 𝝁), and the derivation of the estimated true error 𝑄( 𝝁̂, 𝝁).

Let 𝝁̂ = 𝑔(𝒚) be an estimate of 𝝁 with some almost differentiable function 𝑔 : R𝑛 → R𝑛.

The apparent error between the observed vector and the estimated mean is simply defined

as the squared error 𝑞( 𝝁̂, 𝒚) = ∥𝒚 − 𝝁̂∥2. Similarly, we also define the true error between 𝝁̂

and 𝝁 as the squared error

𝑄( 𝝁̂, 𝝁) = ∥ 𝝁̂ − 𝝁∥2 = ∥𝑔(𝒚) − 𝒚 + 𝝐 ∥2

= ∥𝑔(𝒚) − 𝒚∥2 + ∥𝝐 ∥2 + 2𝝐⊤ [𝑔(𝒚) − 𝒚]

Denote 𝑔𝑖 as the coordinate function of 𝑔. Denote ∇𝑔𝑖 (𝒚) =

(
𝜕𝑔𝑖
𝜕𝑦1
, · · · , 𝜕𝑔𝑖

𝜕𝑦𝑛

)⊤
and div(𝑔) =∑𝑛

𝑖=1
𝜕𝑔𝑖
𝜕𝑦𝑖

���
𝒚
. The Stein’s lemma [Stein, 1981] shows that as long as 𝑔 is almost differentiable

with E ∥∇𝑔𝑖 (𝒚)∥2 < ∞ for all 𝑖, one has E[𝝐⊤𝑔(𝒚)] = E[𝜎2div(𝑔)]. This implies

E ∥ 𝝁̂ − 𝝁∥2 = E ∥𝒚 − 𝝁̂∥2 + 𝑛𝜎2 + 2E
[
𝝐⊤ [𝑔(𝒚) − 𝒚]

]
= E

[
∥𝒚 − 𝝁̂∥2 − 𝑛𝜎2 + 2𝜎2div(𝑔)

]
.

Then an unbiased estimate of E ∥ 𝝁̂ − 𝝁∥2 is by SURE = ∥𝒚 − 𝝁̂∥2 − 𝑛𝜎2 + 2𝜎2div(𝑔).

Through this chapter, for simplicity, we do not differentiate between “estimated true

error” and “estimated risk”. In other words, we treat the estimated risk as an estimate of

the true error. Then we obtain a relationship between the estimated and apparent errors by

𝑄( 𝝁̂, 𝝁) = 𝑞( 𝝁̂, 𝒚) − 𝑛𝜎2 + 2𝜎2div(𝑔).
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3.1.2. Extension to the Bernoulli Model. Now, we give a short review of the ex-

tension of the SURE framework to the Bernoulli model proposed in Efron et al. [2004]. This

is straightforwardly related to the problem of network rank selection.

Suppose the observations follow 𝑦𝑖
indep∼ Bernoulli(𝜇𝑖), for 𝑖 = 1, . . . , 𝑛. The problem is

similar to that in the normal model: estimate 𝝁 from 𝒚 and evaluate this estimate. For

a given estimator 𝝁̂, one method to choose the true error between 𝝁̂ and 𝝁 as well as the

apparent error between 𝝁̂ and 𝒚 in Efron et al. [2004] is based on (half of) the binomial

deviance:

𝑄( 𝝁̂, 𝝁) =
𝑛∑︁
𝑖=1

[𝜇𝑖 (− log 𝜇𝑖) + (1 − 𝜇𝑖) (− log(1 − 𝜇𝑖))]

and

𝑞( 𝝁̂, 𝒚) =
𝑛∑︁
𝑖=1

[𝑦𝑖 (− log 𝜇𝑖) + (1 − 𝑦𝑖) (− log(1 − 𝜇𝑖))] .

As 𝝁 is not available, the goal is again to obtain an estimated true error 𝑄( 𝝁̂, 𝝁) based on

the apparent error 𝑞( 𝝁̂, 𝒚). Notice that

𝑄( 𝝁̂, 𝝁) − 𝑞( 𝝁̂, 𝒚) =
𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜇𝑖) [log 𝜇𝑖 − log(1 − 𝜇𝑖)] .

By denoting 𝜆𝑖 = log 𝜇𝑖 − log(1 − 𝜇𝑖), there holds

E[𝑄( 𝝁̂, 𝝁) − 𝑞( 𝝁̂, 𝒚)] =
𝑛∑︁
𝑖=1

E[(𝑦𝑖 − 𝜇𝑖)𝜆𝑖] =
𝑛∑︁
𝑖=1

E
[
E

[
(𝑦𝑖 − 𝜇𝑖)𝜆𝑖 |𝒚 (𝑖)

] ]
,

where 𝒚 (𝑖) = (𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑦𝑖+1, . . . , 𝑦𝑛)⊤. Notice that 𝜆𝑖 is a function of 𝒚 thus a function

of (𝑦𝑖, 𝒚 (𝑖)). Furthermore, given 𝑦𝑖 and 𝒚 (𝑖) are independent, we have

E
[
(𝑦𝑖 − 𝜇𝑖)𝜆𝑖

��𝒚 (𝑖)] = 𝜇𝑖 (1 − 𝜇𝑖) [𝜆𝑖 (1, 𝒚 (𝑖)) − 𝜆𝑖 (0, 𝒚 (𝑖))] .
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Similar to the discussion in Efron et al. [2004], this identity can be further approximated by

partial derivatives:

E
[
(𝑦𝑖 − 𝜇𝑖)𝜆𝑖

��𝒚 (𝑖)] ≈ 𝜇𝑖 (1 − 𝜇𝑖)
𝜕𝜆𝑖

𝜕𝜇𝑖

�����
𝜇𝑖

[
𝜇𝑖 (1, 𝒚 (𝑖)) − 𝜇𝑖 (0, 𝒚 (𝑖))

]
= 𝜇𝑖 (1 − 𝜇𝑖)

1

𝜇𝑖 (1 − 𝜇𝑖)
[
𝜇𝑖 (1, 𝒚 (𝑖)) − 𝜇𝑖 (0, 𝒚 (𝑖))

]
≈ 𝜕𝜇𝑖

𝜕𝑦𝑖

����
𝒚

.

The above approximation leads to the following estimated error for the Bernoulli model

(3.2) 𝑄( 𝝁̂, 𝝁) = 𝑞( 𝝁̂, 𝒚) +
𝑛∑︁
𝑖=1

𝜕𝜇𝑖

𝜕𝑦𝑖

����
𝒚

.

We want to emphasize that the approximation suggested in Efron et al. [2004] is𝑄(𝝁, 𝝁̂) =

𝑞(𝒚, 𝝁̂) + ∑𝑛
𝑖=1

𝜕𝜇𝑖
𝜕𝑦𝑖

���
𝝁̂
. However, based on the above approximation, the approximate risk

estimation (3.2) seems to be more natural and straightforward. The study on the distinction

of these two approximations can be left as future work.

3.1.3. Application to Binary Networks. Let’s now discuss how to apply the afore-

mentioned risk estimation method to the problem of rank selection in the network model

(3.1). As mentioned before, for a given rank 𝑟, we estimate 𝑴 by truncating the spectral

decomposition 𝑨 =
∑𝑛
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

into 𝑴𝑟 =
∑𝑟
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

.

For an undirected binary network, i.e. Bernoulli network, and a mean estimator 𝑴, we

define the true and apparent errors as in Section 3.1.2:

(3.3) 𝑄(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
(− log𝑀𝑖 𝑗 )𝑀𝑖 𝑗 + (− log(1 − 𝑀𝑖 𝑗 )) (1 − 𝑀𝑖 𝑗 )

and

(3.4) 𝑞(𝑴, 𝑨) =
∑︁

1≤𝑖< 𝑗≤𝑛
(− log𝑀𝑖 𝑗 )𝐴𝑖 𝑗 + (− log(1 − 𝑀𝑖 𝑗 )) (1 − 𝐴𝑖 𝑗 ).
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We can then obtain the formula for the estimated error from (3.2):

(3.5) 𝑄(𝑴,𝑴) = 𝑞(𝑴, 𝑨) +
∑︁

1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
.

Note that entries of the spectral truncation 𝑴𝑟 might be below 0 or above 1, in which case

the true error 𝑄(𝑴𝑟 ,𝑴), the apparent error 𝑞(𝑴𝑟 , 𝑨), and the estimated error 𝑄(𝑴𝑟 ,𝑴)

are ill-defined. Therefore, the entries (𝑀𝑟)𝑖 𝑗 are clipped into 𝜓((𝑀𝑟)𝑖 𝑗 ) by some clipping

function 𝜓 with range [𝛿, 1 − 𝛿]. In practice, we can set 𝛿 = 10−6.

The remaining task is to give a closed-form formula of the divergence term in the esti-

mated error (3.5). The mean estimator we are considering is the spectral truncation estima-

tor. In fact, Jacobians of general spectral functions have been widely studied in the literature,

see, e.g., Deledalle et al. [2012]; Edelman [2005]; Lewis and Sendov [2001]; Papadopoulo and

Lourakis [2000]. Moreover, the divergence formula of SVD-based spectral functions has been

explicitly calculated in Candès et al. [2013]; Yuan [2016] with distinct mathematical argu-

ments. Interested readers are referred to these papers. Here, we only restate the divergence

formula for SVD-based spectral truncation with rank 𝑟: For an 𝑛1 × 𝑛2 (𝑛1 ≤ 𝑛2) matrix 𝒀

with SVD 𝒀 :=
∑𝑛1
𝑖=1 𝜎𝑖𝒖𝑖𝒗

⊤
𝑖

where 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑟 > 𝜎𝑟+1 ≥ . . . ≥ 𝜎𝑛1 ≥ 0, the divergence

formula for the rank 𝑟 SVD spectral truncation 𝑴 :=
∑𝑟
𝑖=1 𝜎𝑖𝒖𝑖𝒗

⊤
𝑖

is

∑︁
1≤𝑖≤𝑛1

∑︁
1≤ 𝑗≤𝑛2

𝜕𝑀𝑖 𝑗

𝜕𝑌𝑖 𝑗
= (𝑛1 + 𝑛2 − 𝑟)𝑟 + 2

𝑟∑︁
𝑘=1

𝑛1∑︁
𝑙=𝑟+1

𝜎2
𝑙

𝜎2
𝑘
− 𝜎2

𝑙

.

However, to the best of our knowledge, an explicit divergence formula of spectral functions

for symmetric matrices has not been explicitly given in the literature. Recall the spectral

decomposition of the adjacency matrix as 𝑨 =
∑𝑛
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖
= 𝑼𝚲𝑼⊤ and denote 𝑈𝑖𝑘 as the

(𝑖, 𝑘)-th entry of 𝑼. By following the steps in Candès et al. [2013], we can obtain the following
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divergence formula of spectral truncation estimator 𝑴𝑟 :∑︁
𝑖< 𝑗

𝜕 (𝑀𝑟)𝑖 𝑗
𝜕𝐴𝑖 𝑗

=
𝑟 (2𝑛 − 𝑟 + 1)

2
+

𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑙

𝜆𝑘 − 𝜆𝑙
− 2

𝑟−1∑︁
𝑘=1

𝑟∑︁
𝑙=𝑘+1

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2

− 2
𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑘

𝜆𝑘 − 𝜆𝑙

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2 −
𝑟∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘 )4.(3.6)

We will give a complete derivation procedure in Section 3.3.

3.2. Extension to Count-Weighted Networks

The above framework for binary networks can be extended to count-weighted networks,

i.e., each pair of nodes can be connected with multiple edges. Count-weighted networks

usually arise when each edge represents some co-occurrence between two nodes. In this

chapter, we assume that each count edge follows Poisson distribution, and the edges between

different pairs of nodes are independent, then the count-weighted adjacency matrix 𝑨 has

independent (strict) upper triangular entries with the distribution

(3.7) 𝐴𝑖 𝑗
indep∼ Poisson(𝑀𝑖 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

where 𝑴 = (𝑀𝑖 𝑗 )(1≤𝑖, 𝑗≤𝑛) is a symmetric matrix with nonnegative entries.

For count-weighted networks, can we still estimate the number of communities by esti-

mating the rank of 𝑴? We justify this perspective by recalling the 𝐾-color model proposed

in [Ball et al., 2011], in which potential overlapping communities in a network based on edges

rather than nodes, are assumed to come from 𝐾 groups (or colors). Moreover, for a pair

of nodes and each given color of edge, the number of their edges of that color is assumed

to follow Poisson distribution, and all these Poisson random variables are assumed to be

independent. Mathematically, each node 𝑖 ∈ [𝑛] and each color 𝑘 ∈ [𝐾] are connected with

some parameter 𝜃𝑖𝑘 . For each pair of nodes 𝑖 and 𝑗 , the number of their edges with the

color 𝑘 is assumed to follow the distribution Poisson(𝜃𝑖𝑘𝜃 𝑗 𝑘 ). Given the fact that the sum of
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independent Poisson random variables is still a Poisson random variable, the total number of

edges between 𝑖 and 𝑗 satisfies 𝐴𝑖 𝑗
indep∼ Poisson(∑𝐾

𝑘=1 𝜃𝑖𝑘𝜃 𝑗 𝑘 ). Compare this with the above

general model (3.7), we have 𝑀𝑖 𝑗 =
∑𝐾
𝑘=1 𝜃𝑖𝑘𝜃 𝑗 𝑘 and it is straightforward to verify that the

rank of 𝑴 is 𝐾. This example serves as a reason why we still resort to rank selection for

count-weighted networks.

As with the case of binary network, for each candidate rank 𝑟, with the spectral de-

composition of the adjacency matrix 𝑨 =
∑𝑛
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

, we estimate the expected adjacency

matrix by the spectral truncation estimator 𝑴𝑟 =
∑𝑟
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

. In order to quantify the dis-

crepancy between 𝑴𝑟 and 𝑴, we need to define the true error 𝑄(𝑴𝑟 ,𝑴) and the apparent

error 𝑞(𝑴𝑟 , 𝑨), and then find a reasonable estimated error 𝑄(𝑴𝑟 ,𝑴).

To this end, let’s still resort to Efron et al. [2004] for the risk estimation framework of

the independent Poisson model. In fact, the Poisson case is quite similar to the Bernoulli

case. Suppose we have independent Poisson observations

𝑦𝑖
indep∼ Poisson(𝜇𝑖), 𝑖 = 1, . . . , 𝑛.

Again, for any estimator 𝝁̂, based on (half of) the Poisson deviance, the apparent error can

be defined as
∑𝑛
𝑖=1 [𝑦𝑖 (log 𝑦𝑖 − 1) − 𝑦𝑖 log 𝜇𝑖 + 𝜇𝑖]. Notice that our goal is to use the estimated

error to compare the accuracy of estimators, for which
∑𝑛
𝑖=1 [𝑦𝑖 (log 𝑦𝑖 − 1)] keeps unchanged.

Therefore, we can consider a simpler apparent error

𝑞( 𝝁̂, 𝒚) =
𝑛∑︁
𝑖=1

(−𝑦𝑖 log 𝜇𝑖 + 𝜇𝑖)

and the true error is consequently

𝑄( 𝝁̂, 𝝁) =
𝑛∑︁
𝑖=1

(−𝜇𝑖 log 𝜇𝑖 + 𝜇𝑖) .
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As with the Bernoulli case,

E [𝑄( 𝝁̂, 𝝁) − 𝑞 ( 𝝁̂, 𝒚)] =
𝑛∑︁
𝑖=1

E [(𝑦𝑖 − 𝜇𝑖) log 𝜇𝑖] =
𝑛∑︁
𝑖=1

E
[
E

[
(𝑦𝑖 − 𝜇𝑖) log 𝜇𝑖 |𝒚 (𝑖)

] ]
.

With the following Taylor expansion

log 𝜇𝑖 (𝑦𝑖, 𝒚 (𝑖)) ≈ log 𝜇𝑖 (𝜇𝑖, 𝒚 (𝑖)) +
1

𝜇𝑖 (𝜇𝑖, 𝒚 (𝑖))
𝜕𝜇𝑖

𝜕𝑦𝑖
(𝜇𝑖, 𝒚 (𝑖)) (𝑦𝑖 − 𝜇𝑖),

we have the approximation

E[(𝑦𝑖 − 𝜇𝑖) log 𝜇𝑖 |𝒚 (𝑖)] ≈ E
[
(𝑦𝑖 − 𝜇𝑖)

(
log 𝜇𝑖 (𝜇𝑖, 𝒚 (𝑖)) +

1

𝜇𝑖 (𝜇𝑖, 𝒚 (𝑖))
𝜕𝜇𝑖

𝜕𝑦𝑖
(𝜇𝑖, 𝒚 (𝑖)) (𝑦𝑖 − 𝜇𝑖)

) �����𝒚 (𝑖)
]

=
𝜇𝑖

𝜇𝑖 (𝜇𝑖, 𝒚 (𝑖))
𝜕𝜇𝑖

𝜕𝑦𝑖
(𝜇𝑖, 𝒚 (𝑖)) ≈

𝜕𝜇𝑖

𝜕𝑦𝑖
(𝜇𝑖, 𝒚 (𝑖)) ≈

𝜕𝜇𝑖

𝜕𝑦𝑖

�����
𝒚

.

Consequently, the estimated error of the Poisson model is the same as (3.2) in the form

𝑄( 𝝁̂, 𝝁) = 𝑞( 𝝁̂, 𝒚) +
𝑛∑︁
𝑖=1

𝜕𝜇𝑖

𝜕𝑦𝑖

����
𝒚

.

Applying the above result to the model of count-weighted networks (3.7), we have the

true and apparent errors defined for a mean estimator 𝑴 as

𝑄(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛

[
−𝑀𝑖 𝑗 log𝑀𝑖 𝑗 + 𝑀𝑖 𝑗

]
and

𝑞(𝑴, 𝑨) =
∑︁

1≤𝑖< 𝑗≤𝑛
[−𝐴𝑖 𝑗 log𝑀𝑖 𝑗 + 𝑀𝑖 𝑗 ] .

The estimated error is defined in the same form as (3.5), i.e.,

𝑄(𝑴,𝑴) = 𝑞(𝑴, 𝑨) +
∑︁

1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
.
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Notice that this approximate risk estimation is different from the one in Bigot et al. [2017],

in which an unbiased estimate of E [𝑄( 𝝁̂, 𝝁) − 𝑞 ( 𝝁̂, 𝒚)] is given by using an identity proved in

Hudson [1978]. This unbiased estimate is computationally expensive, and an approximation

by the sum of random directional derivatives has been proposed in Bigot et al. [2017]. In

contrast, our approach follows the ideas in Efron et al. [2004], and the resultant estimated

error has the same form as in the Bernoulli case. In the next subsection, we will introduce

the risk estimation method in Bigot et al. [2017] for symmetric Poisson networks.

3.2.1. Symmetric Poisson Network GSURE. We first introduce the following lemma,

which is a variant of Lemma 7 in Bigot et al. [2017] for symmetric Poisson networks.

Lemma 3.2.1. Let Rupp𝑛 ⊂ R𝑛×𝑛 be the space of 𝑛 × 𝑛 strictly upper triangular matrices.

Denote 𝑨upp as the upper triangular matrix consisting of the entries of 𝑨 above the diagonal.

Let 𝑓 : Rupp𝑛 → R𝑛×𝑛 such that 𝑴 = 𝑓 (𝑨upp). For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, denote 𝑓𝑖 𝑗 : Rupp𝑛 → R which

makes 𝑓𝑖 𝑗 (𝑨upp) the (𝑖, 𝑗)-th entry of the matrix 𝑓 (𝑨upp). Define 𝑬𝑖 𝑗 as the 𝑛 × 𝑛 matrix

with the (𝑖, 𝑗)-th entry being 1 and the rest being 0. Then we have

E

[ ∑︁
1≤𝑖< 𝑗≤𝑛

𝑀𝑖 𝑗 𝑓𝑖 𝑗 (𝑨upp)
]
= E

[ ∑︁
1≤𝑖< 𝑗≤𝑛

𝐴𝑖 𝑗 𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 )
]
.

Define the mean-squared error as

MSE(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
E(𝑀𝑖 𝑗 − 𝑀𝑖 𝑗 )2 =

∑︁
1≤𝑖< 𝑗≤𝑛

E
[
𝑀2
𝑖 𝑗 − 2𝑀𝑖 𝑗𝑀𝑖 𝑗 + 𝑀2

𝑖 𝑗

]
.

By Lemma 3.2.1, the following quantity

PURE(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
𝑀2
𝑖 𝑗 − 2𝐴𝑖 𝑗 𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 )

unbiasedly estimates MSE(𝑴,𝑴) − ∑
1≤𝑖< 𝑗≤𝑛 𝑀

2
𝑖 𝑗

.
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On the other hand, define the KL risk as

MKLA(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
E

[
𝑀2
𝑖 𝑗 − 𝑀𝑖 𝑗 − 𝑀𝑖 𝑗 log

𝑀𝑖 𝑗

𝑀𝑖 𝑗

]
.

By Lemma 3.2.1, the following quantity

PUKLA(𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
𝑀2
𝑖 𝑗 − 2𝐴𝑖 𝑗 log

(
𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 )

)
is an unbiased estimator of MKLA(𝑴,𝑴) + ∑

1≤𝑖< 𝑗≤𝑛 𝑀
2
𝑖 𝑗
− 𝑀𝑖 𝑗 log𝑀𝑖 𝑗 .

Let 𝚫 ∈ Rupp𝑛 such that for 𝑖 < 𝑗 , Δ𝑖 𝑗 ∈ {−1, 1} is Bernoulli distributed with 𝑝 = 0.5.

To avoid computation of 𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 ) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 in MKLA(𝑴,𝑴) and

PUKLA(𝑴,𝑴), the following approximation can be used:∑︁
1≤𝑖< 𝑗≤𝑛

𝐴𝑖 𝑗 𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 ) ≈
∑︁

1≤𝑖< 𝑗≤𝑛
𝐴𝑖 𝑗

[
𝑓𝑖 𝑗 (𝑨upp) − Δ𝑖 𝑗 (d 𝑓 [𝚫])𝑖 𝑗

]
,∑︁

1≤𝑖< 𝑗≤𝑛
𝐴𝑖 𝑗 log

(
𝑓𝑖 𝑗 (𝑨upp − 𝑬𝑖 𝑗 )

)
≈

∑︁
1≤𝑖< 𝑗≤𝑛

𝐴𝑖 𝑗 log
[
𝑓𝑖 𝑗 (𝑨upp) − Δ𝑖 𝑗 (d 𝑓 [𝚫])𝑖 𝑗

]
,

where d 𝑓 [𝚫] is the differential of 𝑓 (·) with input 𝚫 and can be calculated as in Section 3.3.

3.3. Derivation of Spectral Divergence Formula

Our rank selection method relies crucially on the estimated error (3.5), in which the

divergence term has a closed-form formula as shown in (3.6). This section aims to present a

complete derivation of this formula. As mentioned earlier, the divergence formula has been

derived for SVD-based spectral functions of rectangular matrices in Candès et al. [2013] and

Yuan [2016]. Compared to Yuan [2016], the approach in Candès et al. [2013] follows the

literature of Jacobians of spectral functions and gives the divergence formula for general

SVD-based spectral functions. We can derive (3.6) by similar arguments.
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Recall the spectral decomposition of the adjacency matrix as

𝑨 =

𝑛∑︁
𝑖=1

𝜆𝑖𝒖𝑖𝒖
⊤
𝑖 = 𝑼𝚲𝑼⊤,

where 𝑼 = [𝒖1, . . . , 𝒖𝑛] ∈ R𝑛×𝑛 is orthogonal, and 𝚲 = diag(𝜆1, . . . , 𝜆𝑛) is diagonal. Consider

a general spectral estimator

𝑴 =

𝑛∑︁
𝑖=1

𝑔𝑖 (𝜆𝑖)𝒖𝑖𝒖⊤
𝑖 := 𝑼𝑔(𝚲)𝑼⊤.

Let Rupp𝑛 ⊂ R𝑛×𝑛 be the space of 𝑛× 𝑛 strictly upper triangular matrices. Denote 𝑨upp as

the upper triangular matrix consisting of the entries of 𝑨 above the diagonal. Then we have

𝑨 = 𝑨upp + (𝑨upp)⊤.

We also denote

𝑴 = 𝑓 (𝑨upp),

where 𝑓 is determined by 𝑔. The differential of 𝑓 at 𝑨upp, d 𝑓 |𝑨upp , is defined to be the linear

mapping from Rupp𝑛 → R𝑛×𝑛 such that for any 𝚫 ∈ Rupp𝑛 ,

lim
𝚫→0

∥ 𝑓 (𝑨upp + 𝚫) − 𝑓 (𝑨upp) − d 𝑓 |𝑨upp [𝚫] ∥𝐹
∥𝚫∥𝐹

= 0.

Let d𝑼 |𝑨upp and d(𝑔 ◦ 𝚲) |𝑨upp be linear mappings defined similarly. For any 𝚫 ∈ Rupp𝑛 ,

denote 𝛀[𝚫] = 𝑼⊤d𝑼[𝚫]. By taking the differential on both sides of 𝑰𝑛 = 𝑼⊤𝑼, we get

0 = 𝑼⊤d𝑼[𝚫] + d𝑼[𝚫]⊤𝑼 = 𝛀[𝚫] +𝛀[𝚫]⊤,

which means 𝛀[𝚫] is skew-symmetric. Furthermore, by taking the differential on both sides

of 𝑨 = 𝑼𝚲𝑼⊤, we have

𝚫 + 𝚫⊤ = d𝑼[𝚫]𝚲𝑼⊤ +𝑼d𝚲[𝚫]𝑼⊤ +𝑼𝚲d𝑼[𝚫]⊤,
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which gives

𝑼⊤(𝚫 + 𝚫⊤)𝑼 = 𝛀[𝚫]𝚲 + d𝚲[𝚫] + 𝚲𝛀⊤ [𝚫]

= d𝚲[𝚫] + (𝛀[𝚫]𝚲 − 𝚲𝛀[𝚫]) .(3.8)

Notice that 𝚲 is diagonal and 𝛀[𝚫] is skew-symmetric, thus d𝚲[𝚫] is a diagonal matrix

while the diagonal elements of 𝛀[𝚫]𝚲 and 𝚲𝛀[𝚫] are zero. By comparing the diagonal and

off-diagonal entries of (3.8) separately, we have

d𝜆𝑘 [𝚫] = [𝑼⊤(𝚫 + 𝚫⊤)𝑼]𝑘𝑘 , for 𝑘 = 1, . . . , 𝑛

and

Ω𝑘𝑙 [𝚫] =
1

𝜆𝑙 − 𝜆𝑘
[𝑼⊤(𝚫 + 𝚫⊤)𝑼]𝑘𝑙 , for 𝑘 ≠ 𝑙.

By taking differentials on both sides of 𝑓 (𝑨upp) = 𝑼𝑔(𝚲)𝑼⊤, we get

d 𝑓 [𝚫] = d𝑼[𝚫]𝑔(𝚲)𝑼⊤ +𝑼d(𝑔 ◦ 𝚲) [𝚫]𝑼⊤ +𝑼𝑔(𝚲)d𝑼[𝚫]⊺ .

Then, by multiplying 𝑼⊤ and 𝑼 on left and right sides, respectively, we get

𝑼⊤d 𝑓 [𝚫]𝑼 = 𝛀[𝚫]𝑔(𝚲) + d(𝑔 ◦ 𝚲) [𝚫] + 𝑔(𝚲)𝛀[𝚫]⊤

= 𝛀[𝚫]𝑔(𝚲) + d𝑔𝚲 [d𝚲𝑨upp [𝚫]] − 𝑔(𝚲)𝛀[𝚫] .(3.9)

Notice that the diagonal elements of 𝛀[𝚫]𝑔(𝚲) and 𝑔(𝚲)𝛀[𝚫] are zero, while d𝑔𝚲 [d𝚲𝑨upp [𝚫]]

is a diagonal matrix. By comparing diagonal and off-diagonal entries of (3.9) separately, we

have

(𝑼⊤d 𝑓 [𝚫]𝑼)𝑘𝑘 = 𝑔′𝑘 (𝜆𝑘 )d𝜆𝑘 [𝚫]

= 𝑔′𝑘 (𝜆𝑘 ) [𝑼
⊤(𝚫 + 𝚫⊤)𝑼]𝑘𝑘 , for 𝑘 = 1, . . . , 𝑛
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and

(𝑼⊤d 𝑓 [𝚫]𝑼)𝑘𝑙 = (𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙))Ω𝑘𝑙 [𝚫]

=
𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)

𝜆𝑘 − 𝜆𝑙
[𝑼⊤(𝚫 + 𝚫⊤)𝑼]𝑘𝑙 , for 𝑘 ≠ 𝑙.

Thus we have the complete expression of 𝑼⊤d 𝑓 [𝚫]𝑼 for any 𝚫 ∈ Rupp𝑛 .

For any 𝑖 < 𝑗 , let 𝑬𝑖 𝑗 be an 𝑛 × 𝑛 matrix whose (𝑖, 𝑗)-th entry is 1 while all other entries

are 0. Denote 𝑳𝑖 𝑗 = 𝑼⊤𝑬𝑖 𝑗𝑼, then its (𝑘, 𝑙)-th entry is 𝐿
𝑖 𝑗

𝑘𝑙
= 𝑈𝑖𝑘𝑈 𝑗 𝑙 . Since {𝑬𝑖 𝑗 }1≤𝑖< 𝑗≤𝑛 is

the canonical basis of Rupp𝑛 , we have∑︁
1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
=

∑︁
1≤𝑖< 𝑗≤𝑛

⟨𝑬𝑖 𝑗 , d 𝑓 [𝑬𝑖 𝑗 ]⟩

=
∑︁

1≤𝑖< 𝑗≤𝑛
⟨𝑳𝑖 𝑗 ,𝑼⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼⟩

=
∑︁

1≤𝑖< 𝑗≤𝑛

∑︁
𝑘≠𝑙

𝐿
𝑖 𝑗

𝑘𝑙
· (𝑼⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼)𝑘𝑙︸                                      ︷︷                                      ︸
𝑆1

+
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛∑︁
𝑘=1

𝐿
𝑖 𝑗

𝑘 𝑘
· (𝑼⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼)𝑘𝑘︸                                       ︷︷                                       ︸
𝑆2

.
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By plugging the previous results of differentials into 𝑆1 and 𝑆2, after some tedious calculation,

one obtains

𝑆1 =
∑︁

1≤𝑖< 𝑗≤𝑛

∑︁
𝑘≠𝑙

𝐿
𝑖 𝑗

𝑘𝑙
· 𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)

𝜆𝑘 − 𝜆𝑙
[𝑼⊺ (𝑬𝑖 𝑗 + 𝑬 𝑗𝑖)𝑼]𝑘𝑙

=
∑︁
𝑖< 𝑗

{∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

(𝐿𝑖 𝑗
𝑘𝑙
+ 𝐿𝑖 𝑗

𝑙𝑘
) · 𝐿𝑖 𝑗

𝑘𝑙
+

∑︁
𝑘>𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

(𝐿𝑖 𝑗
𝑘𝑙
+ 𝐿𝑖 𝑗

𝑙𝑘
) · 𝐿𝑖 𝑗

𝑘𝑙

}
=

∑︁
𝑖< 𝑗

{∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

(𝐿𝑖 𝑗
𝑘𝑙
+ 𝐿𝑖 𝑗

𝑙𝑘
) · 𝐿𝑖 𝑗

𝑘𝑙
+

∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

(𝐿𝑖 𝑗
𝑙𝑘
+ 𝐿𝑖 𝑗

𝑘𝑙
) · 𝐿𝑖 𝑗

𝑙𝑘

}
=

∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

∑︁
𝑖< 𝑗

(𝐿𝑖 𝑗
𝑘𝑙
+ 𝐿𝑖 𝑗

𝑙𝑘
)2

=
∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

∑︁
𝑖< 𝑗

(𝑈𝑖𝑘𝑈 𝑗 𝑙 +𝑈𝑖𝑙𝑈 𝑗 𝑘 )2︸                       ︷︷                       ︸
𝑉1 (𝑘,𝑙)

and

𝑆2 =
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛∑︁
𝑘=1

𝐿
𝑖 𝑗

𝑘 𝑘
· 2𝐿

𝑖 𝑗

𝑘 𝑘
𝑔′𝑘 (𝜆𝑘 ) =

𝑛∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
∑︁

1≤𝑖< 𝑗≤𝑛
2(𝐿𝑖 𝑗

𝑘 𝑘
)2 =

𝑛∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
∑︁

1≤𝑖< 𝑗≤𝑛
2(𝑈𝑖𝑘𝑈 𝑗 𝑘 )2︸                  ︷︷                  ︸
𝑉2 (𝑘)

.
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Since 𝑼 is orthogonal, for each 𝑘 < 𝑙, 𝑉1(𝑘, 𝑙) can be simplified as

𝑉1(𝑘, 𝑙) =
∑︁

1≤𝑖< 𝑗≤𝑛
𝑈2
𝑖𝑘𝑈

2
𝑗 𝑙 +𝑈

2
𝑖𝑙𝑈

2
𝑗 𝑘 + 2𝑈𝑖𝑘𝑈𝑖𝑙𝑈 𝑗 𝑘𝑈 𝑗 𝑙

=
∑︁
𝑖≠ 𝑗

𝑈2
𝑖𝑘𝑈

2
𝑗 𝑙 +

∑︁
𝑖≠ 𝑗

𝑈𝑖𝑘𝑈𝑖𝑙𝑈 𝑗 𝑘𝑈 𝑗 𝑙

=

𝑛∑︁
𝑖=1

𝑈2
𝑖𝑘

(∑︁
𝑗≠𝑖

𝑈2
𝑗 𝑙

)
+

𝑛∑︁
𝑖=1

𝑈𝑖𝑘𝑈𝑖𝑙

(∑︁
𝑗≠𝑖

𝑈 𝑗 𝑘𝑈 𝑗 𝑙

)
=

𝑛∑︁
𝑖=1

𝑈2
𝑖𝑘 (1 −𝑈2

𝑖𝑙) +
𝑛∑︁
𝑖=1

𝑈𝑖𝑘𝑈𝑖𝑙
(
0 −𝑈𝑖𝑘𝑈𝑖𝑙

)
=

𝑛∑︁
𝑖=1

(𝑈2
𝑖𝑘 −𝑈

2
𝑖𝑘𝑈

2
𝑖𝑙) −

𝑛∑︁
𝑖=1

𝑈2
𝑖𝑘𝑈

2
𝑖𝑙

= 1 − 2
𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2.

Similarly, for each 𝑘 = 1, · · · , 𝑛, 𝑉2(𝑘) can be simplified as

𝑉2(𝑘) =
∑︁

1≤𝑖< 𝑗≤𝑛
2𝑈2

𝑖𝑘𝑈
2
𝑗 𝑘 =

∑︁
𝑖≠ 𝑗

𝑈2
𝑖𝑘𝑈

2
𝑗 𝑘 =

𝑛∑︁
𝑖=1

𝑈2
𝑖𝑘

∑︁
𝑗≠𝑖

𝑈2
𝑗 𝑘 =

𝑛∑︁
𝑖=1

𝑈2
𝑖𝑘

(
1 −𝑈2

𝑖𝑘

)
= 1 −

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘 )4.

Therefore we have

𝑆1 =
∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

[
1 − 2

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2
]
,

𝑆2 =

𝑛∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
[
1 −

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘 )4
]
.

Putting everything together, the divergence is∑︁
1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
=

∑︁
𝑘<𝑙

𝑔𝑘 (𝜆𝑘 ) − 𝑔𝑙 (𝜆𝑙)
𝜆𝑘 − 𝜆𝑙

[
1 − 2

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2
]
+

𝑛∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
[
1 −

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘 )4
]
.(3.10)

If the spectral estimator is the spectral truncation estimator with rank 𝑟 as we suggested

previously, i.e., 𝑴𝑟 =
∑𝑟
𝑖=1 𝜆𝑖𝒖𝑖𝒖

⊤
𝑖

, we further have 𝑔(𝜆𝑘 ) = 𝜆𝑘 if 𝑘 ≤ 𝑟 while 𝑔(𝜆𝑘 ) = 0 if
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𝑘 > 𝑟. In this case, both 𝑆1 and 𝑆2 can be further simplified as

𝑆1 =
𝑟 (2𝑛 − 𝑟 − 1)

2
+

𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑙

𝜆𝑘 − 𝜆𝑙
− 2

𝑟−1∑︁
𝑘=1

𝑟∑︁
𝑙=𝑘+1

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2

− 2
𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑘

𝜆𝑘 − 𝜆𝑙

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2

and 𝑆2 = 𝑟 −
∑𝑟
𝑘=1

∑𝑛
𝑖=1(𝑈𝑖𝑘 )4, which give the divergence

∑︁
1≤𝑖< 𝑗≤𝑛

𝜕 (𝑀𝑟)𝑖 𝑗
𝜕𝐴𝑖 𝑗

=
𝑟 (2𝑛 − 𝑟 + 1)

2
+

𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑙

𝜆𝑘 − 𝜆𝑙
− 2

𝑟−1∑︁
𝑘=1

𝑟∑︁
𝑙=𝑘+1

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2

− 2
𝑟∑︁
𝑘=1

𝑛∑︁
𝑙=𝑟+1

𝜆𝑘

𝜆𝑘 − 𝜆𝑙

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘𝑈𝑖𝑙)2 −
𝑟∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝑈𝑖𝑘 )4.(3.11)
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CHAPTER 4

Experiments

In this chapter, the methods introduced in Chapter 2 and 3 are referred to as “SMAST”

and “GSURE”, respectively.

4.1. Implementation Details of SMAST

First, we address the computational issue mentioned in Chapter 2. When solving (2.9) in

practice, in order to preserve the symmetry in the scaled matrix, we use the iterative scaling

algorithm introduced in Knight et al. [2014]. However, as shown in Chapter 2, the equivalent

weighted scaling problem (2.11) is much simpler to solve. Therefore, the following algorithm

is proposed based on the algorithm in Theorem 3.1 of Knight et al. [2014]. By Theorem

3.1 of Knight et al. [2014], lim
𝑠→∞

∑𝑚
𝑙=1

���N̂𝑙

��� 𝐹 (𝑠)
𝑘𝑙
𝑎
(𝑠)
𝑘
𝑎
(𝑠)
𝑙

= 1 for 𝑘 = 1, · · · , 𝑚. Therefore, the

output 𝝃 is the unique scaling vector solving (2.9). In the experiments, we set the tolerance

𝛿 = 10−8.

Algorithm 1 Symmetric Matrix Scaling

Input: Estimated communities N̂1, · · · , N̂𝑚, the 𝑚 × 𝑚 matrix 𝑩, tolerance 𝛿 > 0.

1: Initialize: 𝑭(0) = 𝑩, 𝒂 (0) = 1𝑚, 𝑠 = 0.

2: while max
𝑘

���∑𝑚
𝑙=1

���N̂𝑙

��� 𝐹 (𝑠)
𝑘𝑙

− 1
��� ≥ 𝛿, do:

3: • 𝑎 (𝑠+1) (𝑘) =
(∑𝑚

𝑙=1

���N̂𝑙

��� 𝐹 (𝑠)
𝑘𝑙

)−1/2
for 𝑘 = 1, · · · , 𝑚.

4: • 𝑭(𝑠+1) = diag(𝒂 (𝑠+1))𝑭(𝑠)diag(𝒂 (𝑠+1)).
5: • Update 𝑠 = 𝑠 + 1.

Output: 𝝃 ∈ R𝑛 such that 𝜉 (𝑖) =
√
𝑛 · 𝑎 (𝑠) (𝑘) if 𝑖 ∈ N̂𝑘 for 𝑘 = 1, . . . , 𝑚.

Notice that for SMAST, the DCSBM parameter estimates 𝜽 and 𝑩 need to be well-

defined and positive. We have shown this holds theoretically with high probability, however
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in all the simulations, in order to obtain valid estimators, we calculate the estimators in (2.6)

and (2.7) as

(4.1) 𝜃𝑖 =

√︃
1̂⊤
𝑘
𝑨1̂𝑘 ∨ 1

1̂⊤
𝑘
𝑨1𝑛 ∨ 1

· (𝑑𝑖 ∨ 1), for 𝑘 = 1, . . . , 𝑚 and 𝑖 ∈ N̂𝑘

and

(4.2) 𝐵𝑘𝑙 =
1̂⊤
𝑘
𝑨1̂𝑙 ∨ 1√︃

1̂⊤
𝑘
𝑨1̂𝑘 ∨ 1

√︃
1̂⊤
𝑙
𝑨1̂𝑙 ∨ 1

, for 1 ≤ 𝑘, 𝑙 ≤ 𝑚.

4.2. Synthetic Networks

This section studies the performance of SMAST in selecting the number of communities in

synthetic count-weighted networks. To compare its performance, we consider two penalized

likelihood methods: the corrected BIC (CBIC) in Hu et al. [2020] and integrated classification

likelihood (ICL) method in Daudin et al. [2008]. As discussed in Section 6.2 of Hu et al.

[2020], the likelihood is based on Poisson distribution so the methods naturally apply to

count-weighted networks from the general DCSBM.

Denote 𝒛 ∈ [𝐾]𝑛 as the node label vector. For CBIC, the penalized log-likelihood function

with 𝑚 communities in Hu et al. [2020] is:

CBIC(𝑚) = max
𝒛

sup
𝑩

log 𝑓 (𝑨|𝒛, 𝑩) −
[
𝜆𝑛 log𝑚 + 𝑚(𝑚 + 1)

2
log 𝑛

]
,

where the tuning parameter 𝜆 = 1 as suggested by the experiments in Hu et al. [2020]. On

the other hand, the penalized log-likelihood for ICL is:

ICL(𝑚) = max
𝒛

sup
𝑩

log 𝑓 (𝑨|𝒛, 𝑩) −
[
𝑚∑︁
𝑘=1

𝑛𝑘 log

(
𝑛

𝑛𝑘

)
+ 𝑚(𝑚 + 2)

2
log 𝑛

]
.

Since it is intractable to optimize the log-likelihood over all possible community assign-

ments, we use the label vector obtained by SCORE or the regularized spectral clustering

(RSC) algorithm [Amini et al., 2013; Joseph and Yu, 2016] to compute the log-likelihood.
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Since SMAST also involves spectral clustering, although we use SCORE for theory, in sim-

ulations we implement with both SCORE and RSC in order to be aligned with CBIC and

ICL for comparison. Notice that for RSC, the regularization applied is 0.25 × 𝑑/𝑛, where 𝑑

is the average node degree of the adjacency.

Now we discuss how to generate the expected adjacency matrix of DCSBM. The gener-

ating mechanism of the model parameters is similar to the one in Section 6.2 of Hu et al.

[2020]. Recall the expected adjacency matrix of DCSBM is parameterized as

𝑀𝑖 𝑗 = 𝜃𝑖𝜃 𝑗𝑩𝜙(𝑖)𝜙( 𝑗) , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

The entries of 𝑩 are set to 𝐵𝑘𝑙 = 𝜌 (1 + 𝑟 × 1(𝑘 = 𝑙)). We consider the following combinations

of (𝜌, 𝑟): (0.04, 4), (0.06, 3) and (0.12, 2). Let 𝐾 = 2, · · · , 6. The block sizes are set according

to the sequence (50, 100, 150, 50, 100, 150). For example, if 𝐾 = 2, (𝑛1, 𝑛2) = (50, 100); if

𝐾 = 3, (𝑛1, 𝑛2, 𝑛3) = (50, 100, 150). The degree-correction parameters are i.i.d. generated

from the following distribution:
Uniform(0.6, 1.4), with probability 0.8;

7/11, with probability 0.1;

15/11, with probability 0.1.

After generating 𝑴, we consider the following simulations to generate 𝑨:

• Simulation 1: Generate 𝐴𝑖 𝑗
𝑖𝑛𝑑∼ Poisson(𝑀𝑖 𝑗 ) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

• Simulation 2: Generate 𝐴𝑖 𝑗
𝑖𝑛𝑑∼ Binomial(5, 𝑀𝑖 𝑗/5) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

• Simulation 3: Generate 𝐴𝑖 𝑗
𝑖𝑛𝑑∼ NB(5, 𝑀𝑖 𝑗/5) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, where NB(𝑛, 𝑝)

is the negative binomial distribution with 𝑛 trials and success probability 𝑝 in each

trial.

Notice that in Simulation 3, Assumption (2.17) is slightly violated, and SMAST is applied

with 2.1
√
𝑛 as the spectral threshold.
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For each setting, we generate synthetic networks 𝑛max = 200 times and apply the afore-

mentioned methods to estimate the true rank 𝐾. Then the accuracy rates (“Rate”), defined

as the number of times a method correctly estimates 𝐾 divided by 𝑛max, are recorded. We

also record the average estimated number of communities for each setting of the 𝑛max sim-

ulated networks, denoted as “Mean” in the tables. For CBIC and ICL, a prespecified range

for 𝐾 is required, i.e., 𝐾 ∈ {1, 2, · · · , 𝐾max}, and we let 𝐾max = 15.

Table 4.1 to 4.3 display results from Simulation 1; Table 4.4 to 4.6 display results from

Simulation 2; Table 4.7 to 4.9 display results from Simulation 3.

SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.965 2.04 0.965 2.025 0.965 2.025

𝐾 = 3 0.675 3.36 0.385 3.20 0.39 3.22

𝐾 = 4 0.925 4.075 0.29 3.50 0.315 3.53

𝐾 = 5 0.95 5.04 0.32 4.485 0.32 4.445

𝐾 = 6 0.97 5.98 0.19 5.055 0.20 5.015

RSC

𝐾 = 2 1.00 2.00 1.00 2.00 1.00 2.00

𝐾 = 3 0.995 3.005 1.00 3.00 1.00 3.00

𝐾 = 4 1.00 4.00 0.685 3.685 0.925 3.925

𝐾 = 5 0.98 4.98 0.555 4.555 0.805 4.805

𝐾 = 6 0.75 5.75 0.275 5.275 0.555 5.555

Table 4.1. Comparison of SMAST, CBIC and ICL for Simulation 1 (Pois-
son): 𝜌 = 0.04, 𝑟 = 4.
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.99 2.01 0.995 2.005 0.995 2.005

𝐾 = 3 0.87 3.13 0.49 3.185 0.49 3.20

𝐾 = 4 0.975 4.015 0.125 3.205 0.135 3.235

𝐾 = 5 0.97 4.98 0.20 4.285 0.215 4.295

𝐾 = 6 0.735 5.745 0.21 5.11 0.215 5.10

RSC

𝐾 = 2 0.995 2.005 1.00 2.00 1.00 2.00

𝐾 = 3 0.995 3.005 1.00 3.00 1.00 3.00

𝐾 = 4 1.00 4.00 0.855 3.855 0.97 3.97

𝐾 = 5 0.88 4.90 0.415 4.415 0.70 4.70

𝐾 = 6 0.53 5.53 0.18 5.18 0.40 5.41

Table 4.2. Comparison of SMAST, CBIC and ICL for Simulation 1 (Pois-
son): 𝜌 = 0.06, 𝑟 = 3.

4.3. Real-World Networks

4.3.1. Binary Networks. In this subsection, we apply the two methods SMAST and

GSURE to the following real-world networks: Football [Girvan and Newman, 2002], Polit-

ical books [Newman, 2006], Dolphins [Lusseau et al., 2003], Karate [Zachary, 1977], Polit-

ical blogs [Adamic and Glance, 2005], UK faculty [Nepusz et al., 2008]. The datasets can

be downloaded from http://www-personal.umich.edu/~mejn/netdata/. The UKfaculty

network has an asymmetric adjacency matrix (directed), so it is symmetrized by ignoring

the edge directions. All these datasets are from binary-edge networks, and have been inten-

sively studied in the literature by methods estimating the number of communities in binary

networks. The true number of communities 𝐾 of each network has been widely discussed

in the literature, and some networks have multiple true 𝐾 proposed. For example, the Pol-

books network is suggested by Le and Levina [2015] to have 3 communities, but can also be

modeled by the degree corrected mixed-membership (DCMM) model with two communities
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.97 2.035 1.00 2.00 1.00 2.00

𝐾 = 3 0.955 3.045 0.825 3.13 0.825 3.13

𝐾 = 4 0.96 4.01 0.195 3.25 0.22 3.265

𝐾 = 5 0.915 4.925 0.095 4.195 0.095 4.195

𝐾 = 6 0.52 5.53 0.21 5.29 0.215 5.26

RSC

𝐾 = 2 0.97 2.03 1.00 2.00 1.00 2.00

𝐾 = 3 0.985 3.015 1.00 3.00 1.00 3.00

𝐾 = 4 0.97 4.01 0.685 3.685 0.855 3.855

𝐾 = 5 0.88 4.89 0.59 4.59 0.78 4.78

𝐾 = 6 0.315 5.31 0.235 5.245 0.35 5.36

Table 4.3. Comparison of SMAST, CBIC and ICL for Simulation 1 (Pois-
son): 𝜌 = 0.12, 𝑟 = 2.

[Jin et al., 2017], which makes 𝐾 = 2 also reasonable. For a discussion of the true 𝐾 of each

network and a summary of other methods’ performance, one can refer to Section 6 of Jin

et al. [2022]. In this section, for methods requiring a range of 𝐾 = 3, we set the maximum

candidate number of communities 𝐾max = 15. Table 4.10 displays the summary statistics of

the networks and the estimated number of communities by SMAST and GSURE.

For the Polblogs dataset, we apply SMAST and GSURE to the regularized adjacency

matrix 𝑨𝜏 = 𝑨+𝜏𝑱 where 𝑱 is the 𝑛×𝑛 matrix of 1’s and 𝜏 is a tuning parameter. The value

of 𝜏 tested ranges from 0.05 to 0.5. SMAST gives the estimated number of communities

𝐾 = 3 for 𝜏 = 0.05, 0.1, 0.15 and 𝐾 = 2 for 𝜏 ∈ [0.2, 0.5]; while GSURE gives 𝐾 = 3 for all

𝜏’s.

4.3.2. Les Misèrable Network. In this subsection, we study the count-weighted Les

Misèrable network compiled in Knuth [1993], also analyzed in the literature of network

analysis, see, e.g., Ball et al. [2011]; Newman and Girvan [2004]; Newman and Reinert
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.985 2.015 0.985 2.015 0.985 2.015

𝐾 = 3 0.80 3.215 0.45 3.125 0.45 3.105

𝐾 = 4 0.98 4.02 0.19 3.32 0.245 3.34

𝐾 = 5 0.98 4.99 0.205 4.46 0.23 4.455

𝐾 = 6 0.935 5.935 0.215 5.11 0.225 5.095

RSC

𝐾 = 2 1.00 2.00 1.00 2.00 1.00 2.00

𝐾 = 3 1.00 3.00 1.00 3.00 1.00 3.00

𝐾 = 4 0.99 3.99 0.68 3.68 0.945 3.945

𝐾 = 5 0.925 4.925 0.495 4.495 0.81 4.81

𝐾 = 6 0.675 5.675 0.325 5.325 0.625 5.625

Table 4.4. Comparison of SMAST, CBIC and ICL for Simulation 2 (Bino-
mial): 𝜌 = 0.04, 𝑟 = 4.

[2016]. In this network, any two characters (nodes) are connected by a count-weighted

edge representing the number of co-occurrences between the pair in the same chapter of the

book. There are six groups of characters corresponding to major subplots of the story. The

estimated number of communities by some model-based approach in Newman and Reinert

[2016] is 6.

A naive way to estimate the number of communities in this network is to treat it as

unweighted and apply certain method for binary networks. We want to investigate the

difference between the estimated numbers of communities when the network is treated as

unweighted and weighted. For the unweighted case, we apply CBIC, ICL, as well as two

popular methods for unweighted networks: the Bethe Hessian matrix (BH) and stepwise

goodness-of-fit (StGoF) to the unweighted adjacency matrix to obtain the estimated number

of communities 𝐾, as shown in Table 4.11. Notice that we use SCORE to cluster the nodes
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.975 2.025 0.99 2.01 0.99 2.01

𝐾 = 3 0.975 3.025 0.645 3.135 0.645 3.12

𝐾 = 4 1.00 4.00 0.17 3.255 0.185 3.235

𝐾 = 5 0.96 4.96 0.195 4.235 0.21 4.275

𝐾 = 6 0.66 5.66 0.21 5.18 0.205 5.17

RSC

𝐾 = 2 1.00 2.00 1.00 2.00 1.00 2.00

𝐾 = 3 1.00 3.00 1.00 3.00 1.00 3.00

𝐾 = 4 0.985 3.985 0.64 3.64 0.865 3.865

𝐾 = 5 0.84 4.84 0.435 4.435 0.715 4.715

𝐾 = 6 0.33 5.33 0.19 5.19 0.38 5.38

Table 4.5. Comparison of SMAST, CBIC and ICL for Simulation 2 (Bino-
mial): 𝜌 = 0.06, 𝑟 = 3.

whenever necessary for the methods. For StGoF, the algorithm fails to stop, so we choose

𝐾 = 3 as the number of communities minimizing the test statistic.

For the weighted case, we apply CBIC and ICL to the weighted adjacency while SMAST

is applied to the regularized weighted adjacency with tuning parameter 𝜏. Table 4.12 shows

the estimated number of communities of the three methods with SCORE and RSC as the

clustering methods.

In Figure 4.1, we plot the estimated node clusters by applying SCORE to the unweighted

adjacency with 3 communities and to the weighted adjacency with 6 communities.
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 1.00 2.00 1.00 2.00 1.00 2.00

𝐾 = 3 1.00 3.00 0.915 3.065 0.915 3.065

𝐾 = 4 0.99 3.99 0.30 3.38 0.32 3.39

𝐾 = 5 0.84 4.84 0.205 4.31 0.23 4.34

𝐾 = 6 0.255 5.255 0.115 5.135 0.125 5.145

RSC

𝐾 = 2 1.00 2.00 1.00 2.00 1.00 2.00

𝐾 = 3 1.00 3.00 1.00 3.00 1.00 3.00

𝐾 = 4 0.985 3.985 0.665 3.665 0.87 3.87

𝐾 = 5 0.775 4.775 0.615 4.615 0.825 4.825

𝐾 = 6 0.25 5.25 0.25 5.25 0.44 5.44

Table 4.6. Comparison of SMAST, CBIC and ICL for Simulation 2 (Bino-
mial): 𝜌 = 0.12, 𝑟 = 2.

(a) Unweighted with 3 communities (b) Weighted with 6 communities

Figure 4.1. Estimated node clusters in Les Misèrable by applying SCORE to
the unweighted adjacency with 3 communities and to the weighted adjacency
with 6 communities.
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.955 2.045 0.945 2.05 0.945 2.05

𝐾 = 3 0.695 3.335 0.335 3.15 0.335 3.195

𝐾 = 4 0.96 4.04 0.37 3.565 0.41 3.605

𝐾 = 5 0.96 5.04 0.245 4.605 0.245 4.61

𝐾 = 6 0.965 5.965 0.245 5.27 0.25 5.30

RSC

𝐾 = 2 0.995 2.005 1.00 2.00 1.00 2.00

𝐾 = 3 0.995 3.005 1.00 3.00 1.00 3.00

𝐾 = 4 1.00 4.00 0.80 3.80 0.97 3.97

𝐾 = 5 0.955 4.955 0.715 4.715 0.87 4.87

𝐾 = 6 0.725 5.725 0.435 5.435 0.685 5.685

Table 4.7. Comparison of SMAST, CBIC and ICL for Simulation 3 (Nega-
tive Binomial): 𝜌 = 0.04, 𝑟 = 4.

SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.97 2.03 0.995 1.995 0.995 1.995

𝐾 = 3 0.905 3.10 0.44 3.23 0.44 3.195

𝐾 = 4 0.96 4.03 0.23 3.395 0.24 3.39

𝐾 = 5 0.96 4.96 0.205 4.415 0.20 4.43

𝐾 = 6 0.87 5.87 0.245 5.39 0.26 5.40

RSC

𝐾 = 2 0.99 2.015 1.00 2.00 1.00 2.00

𝐾 = 3 0.99 3.01 1.00 3.00 1.00 3.00

𝐾 = 4 0.995 3.995 0.805 3.805 0.935 3.935

𝐾 = 5 0.92 4.92 0.725 4.725 0.91 4.91

𝐾 = 6 0.56 5.56 0.345 5.355 0.635 5.645

Table 4.8. Comparison of SMAST, CBIC and ICL for Simulation 3 (Nega-
tive Binomial): 𝜌 = 0.07, 𝑟 = 3.
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SMAST CBIC ICL

Rate Mean Rate Mean Rate Mean

SCORE

𝐾 = 2 0.955 2.045 1.00 2.00 1.00 2.00

𝐾 = 3 0.95 3.05 0.78 3.21 0.78 3.21

𝐾 = 4 0.98 4.02 0.23 3.475 0.235 3.51

𝐾 = 5 0.985 5.005 0.215 4.33 0.215 4.33

𝐾 = 6 0.785 5.785 0.16 5.335 0.175 5.335

RSC

𝐾 = 2 0.91 2.10 1.00 2.00 1.00 2.00

𝐾 = 3 0.965 3.035 0.995 3.005 0.995 3.005

𝐾 = 4 0.945 4.055 0.93 3.93 0.985 3.985

𝐾 = 5 0.95 5.00 0.815 4.815 0.94 4.94

𝐾 = 6 0.69 5.69 0.495 5.495 0.67 5.67

Table 4.9. Comparison of SMAST, CBIC and ICL for Simulation 3 (Nega-
tive Binomial): 𝜌 = 0.12, 𝑟 = 2.

Name 𝑛 𝐾 𝑑 SMAST GSURE

Football 115 11 10.66 8 10

Polbooks 105 2,3 8.4 3 3

Dolphins 62 2,4 5.13 2 2

Karate 34 2 4.59 1 2

UKfaculty 81 4 14.25 4 4

Polblogs 1222 2 27.36 2, 3 3

Table 4.10. Estimated 𝐾 in real-world networks.

BH CBIC ICL StGoF

𝐾 4 3 3 3∗

Table 4.11. Estimated 𝐾 in the unweighted adjacency of Les Misèrable.
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SMAST
(𝜏 = 0.05)

SMAST
(𝜏 = 0.1)

SMAST
(𝜏 = 0.25)

SMAST
(𝜏 = 0.5)

CBIC ICL

SCORE 7 6 7 6 7 7

RSC 7 7 6 6 7 5

Table 4.12. Estimated 𝐾 by applying SMAST to the regularized weighted
adjacency of Les Misèrable with different 𝜏 values and CBIC, ICL to the
original weighted adjacency.
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APPENDIX A

Appendix for Chapter 2

A.1. Preliminaries of Section 2.4

The following lemma provides a tail bound for the sum of independent random variables

satisfying the Bernstein condition.

Lemma A.1.1 (Bernstein’s Inequality, Corollary 2.11 of Boucheron et al. [2013]). Let

𝑋1, · · · , 𝑋𝑛 be independent real-valued random variables. Assume that there exist positive

numbers 𝑣 and 𝑐 such that
∑𝑛
𝑖=1 E[𝑋2

𝑖
] ≤ 𝑣 and

𝑛∑︁
𝑖=1

E |𝑋𝑖 |𝑞 ≤
𝑞!

2
𝑐𝑞−2𝑣 for all intergers 𝑞 ≥ 3.

Then for all 𝑡 > 0,

P

(
𝑛∑︁
𝑖=1

(𝑋𝑖 − E 𝑋𝑖) ≥ 𝑡
)
≤ exp

(
− 𝑡2

2(𝑣 + 𝑐𝑡)

)
.

Notice that this lemma can be viewed as a special case of the following vector Bernstein-

type inequality.

Lemma A.1.2 (Vector Bernstein-type inequality, Theorem 2.5 of Bosq [2000]). If {𝑿𝑖}𝑛𝑖=1
are independent random vectors in a separable Hilbert space (where the norm is denoted by

∥ · ∥) with E[𝑿𝑖] = 0 and

𝑛∑︁
𝑖=1

E ∥𝑿𝑖∥𝑝 ≤
𝑝!

2
𝜎2𝑅𝑝−2, 𝑝 = 2, 3, 4, . . .

Then,

P

(




 𝑛∑︁
𝑖=1

𝑿𝑖






 ≥ 𝑡
)
≤ 2 exp

(
− 𝑡2

2(𝜎2 + 𝑅𝑡)

)
, for all 𝑡 > 0.
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The following lemma is an application of the vector Bernstein-type inequality supporting

the proof of Lemma 2.4.4.

Lemma A.1.3. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying (2.18). Denote

𝜆𝑖 = E(𝑋𝑖), and suppose 𝜆max = max1≤𝑖≤𝑛 𝜆𝑖 ≤ 𝐶 (𝑐0). Let 𝒘1, . . . , 𝒘𝑛 ∈ R𝑑 be fixed vectors.

Then for all 1 ≤ 𝑖 ≤ 𝑛, with probability at least 1 − 𝑛−4,




 𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜆𝑖)𝒘𝑖







2

≤ 𝐶 (𝑐0) max
(√︁
𝜆max∥𝑾∥𝐹

√︁
log 𝑛, ∥𝑾∥2→∞(log 𝑛)

)
,

where 𝑾⊤ = [𝒘1, . . . , 𝒘𝑛].

Proof. By (2.18), there holds

𝑛∑︁
𝑖=1

E ∥(𝑋𝑖 − 𝜆𝑖)𝒘𝑖∥𝑝2 =

𝑛∑︁
𝑖=1

(E |𝑋𝑖 − 𝜆𝑖 |𝑝)∥𝒘𝑖∥𝑝2

≤
𝑛∑︁
𝑖=1

𝐶′
(
𝑝!

2

)
𝑅𝑝−2𝜆𝑖∥𝒘𝑖∥𝑝2

≤
𝑛∑︁
𝑖=1

𝐶′
(
𝑝!

2

)
𝑅𝑝−2𝜆max∥𝒘𝑖∥22∥𝑾∥𝑝−22→∞

=

(
𝑝!

2

)
(𝑅∥𝑾∥2→∞)𝑝−2 (𝐶′𝜆max∥𝑾∥2𝐹)

for 𝑝 = 2, 3, 4, . . ., where 𝑅 and 𝐶′ only depend on 𝑐0. Then by Lemma A.1.2, for any 𝑡 > 0,

P

(




 𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜆𝑖)𝒘𝑖







2

≥ 𝑡
)
≤ 2 exp

(
− 𝑡2

𝐶′𝜆max∥𝑾∥2
𝐹
+ (𝑅∥𝑾∥2→∞)𝑡

)
.

We can choose

𝑡 = 𝐶 (𝑐0) max
(√︁
𝜆max∥𝑾∥𝐹

√︁
log 𝑛, ∥𝑾∥2→∞(log 𝑛)

)
for some sufficiently large 𝐶 (𝑐0), and then prove the result. □

The following lemma is the subexponential case of matrix Bernstein inequality.
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Lemma A.1.4 (Theorem 6.2 of Tropp [2012]). Consider a finite sequence {𝑿𝑘 } of inde-

pendent, random, symmetric matrices with dimension 𝑑. Assume that

E[𝑿𝑘 ] = 0 and E[𝑿 𝑝

𝑘
] ⪯ 𝑝!

2
𝑅𝑝−2𝑨2

𝑘 for 𝑝 = 2, 3, 4, . . . .

Compute the variance parameter

𝜎2 B






∑︁
𝑘

𝑨2
𝑘






 .
Then, the following chain of inequalities holds for all 𝑡 ≥ 0:

P

(
𝜆max

(∑︁
𝑘

𝑿𝑘

)
≥ 𝑡

)
≤ 𝑑 exp

(
− 𝑡2

2(𝜎2 + 𝑅𝑡)

)
≤


𝑑 exp

(
−𝑡2/4𝜎2

)
for 𝑡 ≤ 𝜎2/𝑅;

𝑑 exp (−𝑡/4𝑅) for 𝑡 ≥ 𝜎2/𝑅.

The following theorem from Abbe et al. [2020] provides perturbation bound for eigenspaces

which is crucial to the proof of Theorem 2.2.2.

Theorem A.1.1 ([Abbe et al., 2020]). Suppose 𝑨 ∈ R𝑛×𝑛 is a symmetric random matrix,

and let 𝑨∗ = E[𝑨]. Denote the eigenvalues of 𝑨 by 𝜆1 ≥ · · · ≥ 𝜆𝑛, and their associated

eigenvectors by {𝒖 𝑗 }𝑛𝑗=1. Analogously for 𝑨∗, the eigenvalues and eigenvectors are denoted

by 𝜆∗1 ≥ · · · ≥ 𝜆∗𝑛 and {𝒖∗
𝑗
}𝑛
𝑗=1. For convenience, we also define 𝜆0 = 𝜆

∗
0 = ∞ and 𝜆𝑛+1 = 𝜆∗𝑛+1 =

−∞. Note that we allow eigenvalues to be identical, so some eigenvectors may be defined up

to rotations.

Suppose 𝑟 and 𝑠 are two integers satisfying 1 ≤ 𝑟 ≤ 𝑛 and 0 ≤ 𝑠 ≤ 𝑛 − 𝑟. Let 𝑼 =

[𝒖𝑠+1, . . . , 𝒖𝑠+𝑟] ∈ R𝑛×𝑟 , 𝑼∗ = [𝒖∗
𝑠+1, . . . , 𝒖

∗
𝑠+𝑟] ∈ R𝑛×𝑟 and 𝚲∗ = diag(𝜆∗

𝑠+1, . . . , 𝜆
∗
𝑠+𝑟) ∈ R𝑟×𝑟 .

Define

Δ∗ = (𝜆∗𝑠 − 𝜆∗𝑠+1) ∧ (𝜆∗𝑠+𝑟 − 𝜆∗𝑠+𝑟+1) ∧ min
1≤𝑖≤𝑟

|𝜆∗𝑠+𝑖 |

and

𝜅 = max
1≤𝑖≤𝑟

|𝜆∗𝑠+𝑖 |/Δ∗.

Suppose for some 𝛾 ≥ 0, the following assumptions hold:
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A1 (Incoherence) ∥𝑨∗∥2→∞ ≤ 𝛾Δ∗.

A2 (Row- and column-wise independence) For any 𝑚 ∈ [𝑛], the entries in the 𝑚-th row

and column of 𝑨 are independent with other entries: namely, {𝐴𝑖 𝑗 , 𝑖 = 𝑚 or 𝑗 = 𝑚}

are independent of {𝐴𝑖 𝑗 : 𝑖 ≠ 𝑚, 𝑗 ≠ 𝑚}.

A3 (Spectral norm concentration) 32𝜅max{𝛾, 𝜑(𝛾)} ≤ 1 and for some 𝛿0 ∈ (0, 1),

P (∥𝑨 − 𝑨∗∥ ≤ 𝛾Δ∗) ≥ 1 − 𝛿0.

A4 (Row concentration) Suppose 𝜑(𝑥) is continuous and non-decreasing in R+ with

𝜑(0) = 0, 𝜑(𝑥)/𝑥 is non-increasing in R+, and 𝛿1 ∈ (0, 1). For any 𝑖 ∈ [𝑛] and

𝑾 ∈ R𝑛×𝑟 ,

P

(
∥(𝑨 − 𝑨∗)𝑖·𝑾∥2 ≤ Δ∗∥𝑾∥2→∞𝜑

(
∥𝑾∥𝐹√
𝑛∥𝑾∥2→∞

))
≥ 1 − 𝛿1

𝑛
.

Under Assumptions (A1)—(A4), with probability at least 1 − 𝛿0 − 2𝛿1, there exists an

orthogonal matrix 𝑸 such that

(A.1) ∥𝑼𝑸 − 𝑨𝑼∗(𝚲∗)−1)∥2→∞ ≲ 𝜅(𝜅 + 𝜑(1)) (𝛾 + 𝜑(𝛾))∥𝑼∗∥2→∞ + 𝛾∥𝑨∗∥2→∞/Δ∗.

Here the notation ≲ only hides absolute constants.
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APPENDIX B

Appendix for Chapter 3

B.1. Extension to Pairwise Comparison Networks

The rank selection framework in Chapter 3 can be extended to pairwise comparison

networks as well. Let’s consider the Nonparametric Bradley-Terry model. Suppose for each

pair of players 𝑖 < 𝑗 from 𝑛 players, they play 𝑘𝑖 𝑗 games. Furthermore, assume that the

𝑘𝑖 𝑗 games have independent and identically distributed outcomes, and the probability that

player 𝑖 beats 𝑗 is 𝑀𝑖 𝑗 . Let the number of games in which 𝑖 actually wins 𝑗 be 𝐴𝑖 𝑗 , then we

have

𝐴𝑖 𝑗
ind∼ Binomial(𝑘𝑖 𝑗 , 𝑀𝑖 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Note that here we assume all games in the tournament are independent, and 𝐴𝑖 𝑗 ’s are thereby

independent. We assume there is no draw in this tournament, so for each 𝑖 < 𝑗 , the number of

games that player 𝑗 beats 𝑖 is 𝐴 𝑗𝑖 = 𝑘𝑖 𝑗 −𝐴𝑖 𝑗 . Let 𝑘 𝑗𝑖 = 𝑘𝑖 𝑗 . By further denoting 𝑀 𝑗𝑖 = 1−𝑀𝑖 𝑗 ,

we have 𝐴 𝑗𝑖
ind∼ Binomial(𝑘 𝑗𝑖, 𝑀 𝑗𝑖) for each 𝑖 < 𝑗 .

Let’s now transform both 𝑴 and 𝑨 into skew-symmetric matrices. For each 𝑖 ≠ 𝑗 , let

𝑀𝑖 𝑗 = 2𝑀𝑖 𝑗 − 1 and 𝐴𝑖 𝑗 = (2/𝑘𝑖 𝑗 )𝐴𝑖 𝑗 − 1. Straightforward calculation gives 𝑀𝑖 𝑗 = −𝑀 𝑗𝑖

and 𝐴𝑖 𝑗 = −𝐴 𝑗𝑖. Also notice that E[𝐴𝑖 𝑗 ] = 𝑀𝑖 𝑗 . By letting 𝑀𝑖𝑖 = 0 and 𝐴𝑖𝑖 = 0 for all

𝑖 = 1, . . . , 𝑛, we know both 𝑨 and 𝑴 are skew-symmetric. The fact E[𝑨] = 𝑴 implies that

the transformed data matrix 𝑨 is the empirical version of 𝑴, and we aim to estimate the

rank of 𝑴 by studying the spectrum of 𝑨.

Consider the Youla decomposition of 𝑨:

𝑨 =

⌊𝑛/2⌋∑︁
𝑘=1

𝜆𝑘
(
𝝓𝑘𝝍

⊤
𝑘 − 𝝍𝑘𝝓

⊤
𝑘

)
,
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where 𝜆1 > . . . > 𝜆⌊𝑛/2⌋ > 0, and 𝝓1,𝝍1, 𝝓2,𝝍2, . . . , 𝝓⌊𝑛/2⌋ ,𝝍⌊𝑛/2⌋ are orthonormal. The Youla

decomposition can also be represented in the matrix form 𝑨 = 𝑼𝚺𝑼⊤, where

𝑼 = [𝝓1,𝝍1, 𝝓2,𝝍2, . . . , 𝝓⌊𝑛/2⌋ ,𝝍⌊𝑛/2⌋]

is an orthonormal basis matrix, and

(B.1) 𝚺 =



0 𝜆1 0 0 . . . 0 0

−𝜆1 0 0 0 . . . 0 0

0 0 0 𝜆2 . . . 0 0

0 0 −𝜆2 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 𝜆⌊𝑛/2⌋

0 0 0 0 . . . −𝜆⌊𝑛/2⌋ 0



.

Given 𝑴 is also skew-symmetric, we know its rank must be even. Therefore, we can just

consider the candidate rank 𝑟 to be even. We propose to estimate 𝑴 by the truncated Youla

decomposition

𝑴 =

𝑟/2∑︁
𝑘=1

𝜆𝑘
(
𝝓𝑘𝝍

⊤
𝑘 − 𝝍𝑘𝝓

⊤
𝑘

)
.

Again, the question is to measure the discrepancy between 𝑴 and 𝑴, which relies on

defining the apparent error 𝑞(𝑴, 𝑨), the true error 𝑄(𝑴,𝑴), and the the estimated error

𝑄(𝑴,𝑴). Define ̂̃
𝑀 𝑖 𝑗 =

1+𝑀𝑖 𝑗

2 . Then
̂̃𝑴 is an estimate of 𝑴. Suppose we know how

to define the true error 𝑄(̂̃𝑴,𝑴) and apparent error 𝑞(̂̃𝑴, 𝑨), and assume that we know

to how to derive an estimated error 𝑄(̂̃𝑴,𝑴). Then we can achieve the goal by letting

𝑄(𝑴,𝑴) B 𝑄(̂̃𝑴,𝑴), 𝑞(𝑴, 𝑨) B 𝑞(̂̃𝑴, 𝑨) and 𝑄(𝑴,𝑴) B 𝑄(̂̃𝑴,𝑴).

Our approach to risk estimation for binomial data is quite similar to the Bernoulli case.

Assume that 𝑦𝑖
ind∼ Binomial(𝑘𝑖, 𝜇𝑖) for 𝑖 = 1, . . . , 𝑛. With some estimator 𝝁̂ = 𝑓 (𝒚), the
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apparent error between 𝝁̂ and 𝒚 can be defined as

𝑞( 𝝁̂, 𝒚) =
𝑛∑︁
𝑖=1

[−𝑦𝑖 log(𝜇𝑖) − (𝑘𝑖 − 𝑦𝑖) log(1 − 𝜇𝑖)] ,

and the corresponding true error is

𝑄( 𝝁̂, 𝝁) =
𝑛∑︁
𝑖=1

[−(𝑘𝑖𝜇𝑖) log(𝜇𝑖) − 𝑘𝑖 (1 − 𝜇𝑖) log(1 − 𝜇𝑖)] .

As with the Bernoulli and Poisson cases,

E [𝑄( 𝝁̂, 𝝁) − 𝑞 ( 𝝁̂, 𝒚)] =
𝑛∑︁
𝑖=1

E

[
(𝑦𝑖 − 𝑘𝑖𝜇𝑖) log

𝜇𝑖

1 − 𝜇𝑖

]
=

𝑛∑︁
𝑖=1

E

[
E

[
(𝑦𝑖 − 𝑘𝑖𝜇𝑖) log

𝜇𝑖

1 − 𝜇𝑖

�����𝒚 (𝑖)
] ]
.

Taylor expansion gives

log
𝜇𝑖 (𝑦𝑖, 𝒚 (𝑖))

1 − 𝜇𝑖 (𝑦𝑖, 𝒚 (𝑖))
≈ log

𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))
1 − 𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

+ 1

𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))
[
1 − 𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

] 𝜕𝜇𝑖
𝜕𝑦𝑖

(𝑘𝑖𝜇𝑖, 𝒚 (𝑖)) (𝑦𝑖 − 𝑘𝑖𝜇𝑖).

Thus we have the approximation

E

[
(𝑦𝑖 − 𝑘𝑖𝜇𝑖) log

𝜇𝑖

1 − 𝜇𝑖

�����𝒚 (𝑖)
]

≈E
[
(𝑦𝑖 − 𝑘𝑖𝜇𝑖)

(
log

𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))
1 − 𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

+ 1

𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))
[
1 − 𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

] 𝜕𝜇𝑖
𝜕𝑦𝑖

(𝑘𝑖𝜇𝑖, 𝒚 (𝑖)) (𝑦𝑖 − 𝑘𝑖𝜇𝑖)
) �����𝒚 (𝑖)

]
=

𝑘𝑖𝜇𝑖 (1 − 𝜇𝑖)
𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

[
1 − 𝜇𝑖 (𝑘𝑖𝜇𝑖, 𝒚 (𝑖))

] 𝜕𝜇𝑖
𝜕𝑦𝑖

(𝜇𝑖, 𝒚 (𝑖))

≈𝑘𝑖
𝜕𝜇𝑖

𝜕𝑦𝑖
(𝜇𝑖, 𝒚 (𝑖)) ≈ 𝑘𝑖

𝜕𝜇𝑖

𝜕𝑦𝑖

�����
𝒚

.
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We then define the estimated error as

(B.2) 𝑄( 𝝁̂, 𝝁) = 𝑞( 𝝁̂, 𝒚) +
𝑛∑︁
𝑖=1

𝑘𝑖
𝜕𝜇𝑖

𝜕𝑦𝑖

����
𝒚

.

Let’s come back to the problem of estimating the true error 𝑄(̂̃𝑴,𝑴). By the above

results, we can define the true error 𝑄(̂̃𝑴,𝑴) and the apparent error 𝑞(̂̃𝑴, 𝑨) as

𝑄(̂̃𝑴,𝑴) =
∑︁

1≤𝑖< 𝑗≤𝑛
(− log ̂̃

𝑀 𝑖 𝑗 )
(
𝑘𝑖 𝑗𝑀𝑖 𝑗

)
+ (− log(1 − ̂̃

𝑀 𝑖 𝑗 ))𝑘𝑖 𝑗 (1 − 𝑀𝑖 𝑗 )

and

𝑞(̂̃𝑴, 𝑨) = ∑︁
1≤𝑖< 𝑗≤𝑛

(− log ̂̃
𝑀 𝑖 𝑗 )𝐴𝑖 𝑗 + (− log(1 − ̂̃

𝑀 𝑖 𝑗 )) (𝑘𝑖 𝑗 − 𝐴𝑖 𝑗 ).

Then, the true error can be approximately estimated by

𝑄(̂̃𝑴,𝑴) = 𝑞(̂̃𝑴, 𝑨) + ∑︁
1≤𝑖< 𝑗≤𝑛

𝑘𝑖 𝑗
𝜕
̂̃
𝑀 𝑖 𝑗

𝜕𝐴𝑖 𝑗
.

By plugging in 𝐴𝑖 𝑗 = 𝑘𝑖 𝑗

(
1+𝐴𝑖 𝑗
2

)
, 𝑀𝑖 𝑗 =

1+𝑀𝑖 𝑗

2 , and ̂̃
𝑀 𝑖 𝑗 =

1+𝑀𝑖 𝑗

2 , we have

𝑄(𝑴,𝑴) B 𝑄(̂̃𝑴,𝑴)

=
∑︁

1≤𝑖< 𝑗≤𝑛
𝑘𝑖 𝑗

[(
− log

1 + 𝑀𝑖 𝑗

2

)
1 + 𝑀𝑖 𝑗

2
+

(
− log

1 − 𝑀𝑖 𝑗

2

)
1 − 𝑀𝑖 𝑗

2

]
and

𝑞(𝑴, 𝑨) B 𝑞(̂̃𝑴, 𝑨)
=

∑︁
1≤𝑖< 𝑗≤𝑛

𝑘𝑖 𝑗

[(
− log

1 + 𝑀𝑖 𝑗

2

)
1 + 𝐴𝑖 𝑗

2
+

(
− log

1 − 𝑀𝑖 𝑗

2

)
1 − 𝐴𝑖 𝑗

2

]
.
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Since
𝜕
̂̃
𝑀 𝑖 𝑗

𝜕𝐴𝑖 𝑗
= 1

𝑘𝑖 𝑗

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
, we have

∑
1≤𝑖< 𝑗≤𝑛 𝑘𝑖 𝑗

𝜕
̂̃
𝑀 𝑖 𝑗

𝜕𝐴𝑖 𝑗
=

∑
1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
. Therefore, we have the

following estimated error

𝑄(𝑴,𝑴) B 𝑄(̂̃𝑴,𝑴) = 𝑞(𝑴, 𝑨) +
∑︁

1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
.

Furthermore, since 𝑴 is the truncated Youla decomposition, we can calculate the diver-

gence as ∑︁
1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
=

(
𝑛 − 𝑟

2
− 1

2

)
𝑟 +

𝑟/2∑︁
𝑘=1

⌊𝑛/2⌋∑︁
𝑙=𝑟/2+1

𝜆2
𝑙

𝜆2
𝑘
− 𝜆2

𝑙

.

The complete derivation of this formula is given in the next section.

B.2. Divergence Formula of Spectral Denoising for Skew-Symmetric Matrices

For simplicity, we only consider the case when 𝑛 is even. Recall that

𝑨 =

𝑛/2∑︁
𝑘=1

𝜆𝑘
(
𝝓𝑘𝝍

⊤
𝑘 − 𝝍𝑘𝝓

⊤
𝑘

)
= 𝑼𝚲𝑼⊤,

where 𝑼 = [𝝓1,𝝍1, 𝝓2,𝝍2, . . . , 𝝓𝑛/2,𝝍𝑛/2] consists of orthonormal columns, and 𝚲 is a tridi-

agonal matrix as defined in (B.1).

As with the case of symmetric matrices, denote by Rupp𝑛 ⊂ R𝑛×𝑛 the space of 𝑛×𝑛 strictly

upper triangular matrices. Denote 𝑨upp as the upper triangular matrix consisting of the

entries of 𝑨 above the diagonal. Then we have

𝑨 = 𝑨upp − (𝑨upp)⊤.

Beyond spectral truncation, consider the general spectral estimator

𝑴 =

𝑛/2∑︁
𝑘=1

𝑔𝑘 (𝜆𝑘 )
(
𝝓𝑘𝝍

⊤
𝑘 − 𝝍𝑘𝝓

⊤
𝑘

)
B 𝑼𝑔 (𝚲)𝑼⊤ B 𝑓 (𝑨upp),
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where 𝑓 is determined by 𝑔. At any point 𝑨upp, the differentials d 𝑓 |𝑨upp (𝑨upp), d𝑼 |𝑨upp (𝑨upp),

d𝚲|𝑨upp (𝑨upp), etc, are similarly defined as in Section 3.3.

As with the symmetric case, for any 𝚫 ∈ Rupp𝑛 , denote 𝛀[𝚫] = 𝑼⊤d𝑼[𝚫]. By taking the

differential on both sides of 𝑰𝑛 = 𝑼⊤𝑼, we have that 𝛀[𝚫] = 𝑼⊤d𝑼[𝚫] is skew-symmetric.

Furthermore, by taking differentials on both sides of

𝑨 = 𝑼𝚲𝑼⊤ = 𝑨upp − (𝑨upp)⊤,

we have

𝚫 − 𝚫⊤ = d𝑼[𝚫]𝚲𝑼⊤ +𝑼d𝚲[𝚫]𝑼⊤ +𝑼𝚲d𝑼[𝚫]⊤,

which implies that

𝑼⊤(𝚫 − 𝚫⊤)𝑼 = 𝛀[𝚫]𝚲 + d𝚲[𝚫] + 𝚲𝛀[𝚫]⊤

= d𝚲[𝚫] + (𝛀[𝚫]𝚲 − 𝚲𝛀[𝚫]) .(B.3)

For a skew-symmetric matrix 𝑩 ∈ R𝑛×𝑛, denote the (2𝑘 − 1, 2𝑘) × (2𝑙 − 1, 2𝑙) block of size

2×2 in the matrix as 𝑩(𝑘,𝑙), for all 𝑘, 𝑙 ∈ {1, . . . , 𝑛/2}. Since 𝛀[𝚫] is skew-symmetric and 𝚲 is

of the form (B.1), it is easy to verify that for any 𝑘 = 1, . . . , 𝑛/2, the (2𝑘 −1, 2𝑘) × (2𝑘 −1, 2𝑘)

diagonal block of 𝛀[𝚫]𝚲−𝚲𝛀[𝚫] is 0. On the other hand, d𝚲[𝚫] is a complementary block-

diagonal matrix. Therefore, the {(2𝑘 − 1, 2𝑘) × (2𝑘 − 1, 2𝑘) : 𝑘 = 1, . . . , 𝑛/2} diagonal blocks

of 𝑼⊤(𝚫 − 𝚫⊤)𝑼 are uniquely determined by d𝚲[𝚫] and off-diagonal blocks are uniquely

determined by 𝛀[𝚫]𝚲 − 𝚲𝛀[𝚫].

To be concrete, for each 𝑘 = 1, . . . , 𝑛/2, the (2𝑘 − 1, 2𝑘) × (2𝑘 − 1, 2𝑘) diagonal block of

𝑼⊤(𝚫 − 𝚫⊤)𝑼 is

(B.4) (𝑼⊤(𝚫 − 𝚫⊤)𝑼)(𝑘,𝑘) = d𝜆𝑘 [𝚫]


0 1

−1 0

 ,
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while for each 𝑘, 𝑙 ∈ {1, . . . , 𝑛/2} and 𝑘 ≠ 𝑙, the (2𝑘 − 1, 2𝑘) × (2𝑙 − 1, 2𝑙) off-diagonal block

of 𝑼⊤(𝚫 − 𝚫⊤)𝑼 can be calculated as

(𝑼⊤(𝚫 − 𝚫⊤)𝑼)(𝑘,𝑙) =

−𝛀2𝑘−1,2𝑙 [𝚫]𝜆𝑙 −𝛀2𝑘,2𝑙−1 [𝚫]𝜆𝑘 𝛀2𝑘−1,2𝑙−1 [𝚫]𝜆𝑙 −𝛀2𝑘,2𝑙 [𝚫]𝜆𝑘

−𝛀2𝑘,2𝑙 [𝚫]𝜆𝑙 +𝛀2𝑘−1,2𝑙−1 [𝚫]𝜆𝑘 𝛀2𝑘,2𝑙−1 [𝚫]𝜆𝑙 +𝛀2𝑘−1,2𝑙 [𝚫]𝜆𝑘

 .
For notational simplicity, denote

(B.5) (𝑼⊤(𝚫 − 𝚫⊤)𝑼)(𝑘,𝑙) =

𝛼 𝛽

𝛾 𝛿

 .
Then solving for the (2𝑘 − 1, 2𝑘) × (2𝑙 − 1, 2𝑙) block of 𝛀[𝚫] yields

(𝛀[𝚫])(𝑘,𝑙) =
1

𝜆2
𝑘
− 𝜆2

𝑙


𝛾𝜆𝑘 − 𝛽𝜆𝑙 𝛿𝜆𝑘 + 𝛼𝜆𝑙

−𝛼𝜆𝑘 − 𝛿𝜆𝑙 −𝛽𝜆𝑘 + 𝛾𝜆𝑙

 .
Let’s now move to the differentials of 𝑓 (𝑨upp). The equality 𝑼𝑔 (𝚲)𝑼⊤ = 𝑓 (𝑨upp) gives

d 𝑓 [𝚫] = d𝑼[𝚫]𝑔(𝚲)𝑼⊤ +𝑼d(𝑔 ◦ 𝚲) [𝚫]𝑼⊤ +𝑼𝑔(𝚲)d𝑼[𝚫]⊤,

which further implies

𝑼⊤d 𝑓 [𝚫]𝑼 = 𝛀[𝚫]𝑔(𝚲) + d(𝑔 ◦ 𝚲) [𝚫] + 𝑔(𝚲)𝛀[𝚫]⊤

= d(𝑔 ◦ 𝚲) [𝚫] + (𝛀[𝚫]𝑔(𝚲) − 𝑔(𝚲)𝛀[𝚫]) .(B.6)

As with (B.3), the {(2𝑘−1, 2𝑘)× (2𝑘−1, 2𝑘) : 𝑘 = 1, . . . , ⌊𝑛/2⌋} diagonal blocks of 𝑼⊤d 𝑓 [𝚫]𝑼

are uniquely determined by d(𝑔 ◦𝚲) [𝚫] and the off-diagonal blocks are uniquely determined
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by 𝛀[𝚫]𝑔(𝚲) − 𝑔(𝚲)𝛀[𝚫]. To be concrete, for each 𝑘 = 1, . . . , 𝑛/2,

(𝑼⊤d 𝑓 [𝚫]𝑼)(𝑘,𝑘) = (d(𝑔 ◦ 𝚲) [𝚫])(𝑘,𝑘)

= 𝑔′𝑘 (𝜆𝑘 )d𝜆𝑘 [𝚫]


0 1

−1 0


= 𝑔′𝑘 (𝜆𝑘 ) (𝑼

⊤(𝚫 − 𝚫⊤)𝑼)(𝑘,𝑘) ,(B.7)

while for each 𝑘, 𝑙 ∈ {1, . . . , 𝑛/2} and 𝑘 ≠ 𝑙, the (2𝑘 − 1, 2𝑘) × (2𝑙 − 1, 2𝑙) block of 𝑼⊤d 𝑓 [𝚫]𝑼

is

(𝑼⊤d 𝑓 [𝚫]𝑼)(𝑘,𝑙)

=(𝛀[𝚫]𝑔(𝚲) − 𝑔(𝚲)𝛀[𝚫])(𝑘,𝑙)

=


−𝛀2𝑘−1,2𝑙 [𝚫]𝑔𝑙 (𝜆𝑙) −𝛀2𝑘,2𝑙−1 [𝚫]𝑔𝑘 (𝜆𝑘 ) 𝛀2𝑘−1,2𝑙−1 [𝚫]𝑔𝑙 (𝜆𝑙) −𝛀2𝑘,2𝑙 [𝚫]𝑔𝑘 (𝜆𝑘 )

−𝛀2𝑘,2𝑙 [𝚫]𝑔𝑙 (𝜆𝑙) +𝛀2𝑘−1,2𝑙−1 [𝚫]𝑔𝑘 (𝜆𝑘 ) 𝛀2𝑘,2𝑙−1 [𝚫]𝑔𝑙 (𝜆𝑙) +𝛀2𝑘−1,2𝑙 [𝚫]𝑔𝑘 (𝜆𝑘 )


=

1

𝜆2
𝑙
− 𝜆2

𝑘


𝛼 · 𝑝(𝜆𝑘 , 𝜆𝑙) + 𝛿 · 𝑞(𝜆𝑘 , 𝜆𝑙) 𝛽 · 𝑝(𝜆𝑘 , 𝜆𝑙) − 𝛾 · 𝑞(𝜆𝑘 , 𝜆𝑙)

𝛾 · 𝑝(𝜆𝑘 , 𝜆𝑙) − 𝛽 · 𝑞(𝜆𝑘 , 𝜆𝑙) 𝛿 · 𝑝(𝜆𝑘 , 𝜆𝑙) + 𝛼 · 𝑞(𝜆𝑘 , 𝜆𝑙)


=
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙


𝛼 𝛽

𝛾 𝛿

 +
𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙


𝛿 −𝛾

−𝛽 𝛼

 ,(B.8)

where 𝛼, 𝛽, 𝛾, 𝛿 are defined in (B.5) and


𝑝(𝜆𝑘 , 𝜆𝑙) B 𝜆𝑘𝑔𝑘 (𝜆𝑘 ) − 𝜆𝑙𝑔𝑙 (𝜆𝑙),

𝑞(𝜆𝑘 , 𝜆𝑙) B 𝜆𝑙𝑔𝑘 (𝜆𝑘 ) − 𝜆𝑘𝑔𝑙 (𝜆𝑙).

For any 𝑖 < 𝑗 , we still denote 𝑬𝑖 𝑗 as the 𝑛 × 𝑛 matrix whose the (𝑖, 𝑗)-th entry is 1 while

all other entries are 0, and 𝑳𝑖 𝑗 = 𝑼⊤𝑬𝑖 𝑗𝑼. Recall that 𝑼 = [𝝓1,𝝍1, 𝝓2,𝝍2, . . . , 𝝓𝑛/2,𝝍𝑛/2],
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which implies the (2𝑘 − 1, 2𝑘) × (2𝑙 − 1, 2𝑙) block of 𝑳𝑖 𝑗 is

𝑳𝑖 𝑗(𝑘,𝑙) =


𝜙𝑖𝑘𝜙 𝑗 𝑙 𝜙𝑖𝑘𝜓 𝑗 𝑙

𝜓𝑖𝑘𝜙 𝑗 𝑙 𝜓𝑖𝑘𝜓 𝑗 𝑙

 .
Since {𝑬𝑖 𝑗 }1≤𝑖< 𝑗≤𝑛 is the canonical basis for Rupp𝑛 , we have∑︁

1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
=

∑︁
1≤𝑖< 𝑗≤𝑛

⟨𝑬𝑖 𝑗 , d 𝑓 [𝑬𝑖 𝑗 ]⟩

=
∑︁

1≤𝑖< 𝑗≤𝑛
⟨𝑳𝑖 𝑗 ,𝑼⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼⟩

=
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛/2∑︁
𝑘=1

∑︁
𝑙≠𝑘

⟨𝑳𝑖 𝑗(𝑘,𝑙) , (𝑼
⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼)(𝑘,𝑙)⟩︸                                                  ︷︷                                                  ︸

𝑆1

+
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛/2∑︁
𝑘=1

⟨𝑳𝑖 𝑗(𝑘,𝑘) , (𝑼
⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼)(𝑘,𝑘)⟩︸                                              ︷︷                                              ︸

𝑆2

.

Note that for each 𝑘, 𝑙 ∈ {1, . . . , 𝑛/2},

(𝑼⊺ (𝑬𝑖 𝑗 − 𝑬 𝑗𝑖)𝑼)(𝑘,𝑙) =

𝐿
𝑖 𝑗

2𝑘−1,2𝑙−1 − 𝐿
𝑗𝑖

2𝑘−1,2𝑙−1 𝐿
𝑖 𝑗

2𝑘−1,2𝑙 − 𝐿
𝑗𝑖

2𝑘−1,2𝑙

𝐿
𝑖 𝑗

2𝑘,2𝑙−1 − 𝐿
𝑗𝑖

2𝑘,2𝑙−1 𝐿
𝑖 𝑗

2𝑘,2𝑙 − 𝐿
𝑗𝑖

2𝑘,2𝑙


=


𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙 𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙

𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙 𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙

 .
Therefore, plugging 𝚫 = 𝑬𝑖 𝑗 into (B.8) gives

(𝑼⊺d 𝑓 [𝑬𝑖 𝑗 ]𝑼)(𝑘,𝑙) =
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙


𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙 𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙

𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙 𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙


+ 𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙


𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙 −(𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙)

−(𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙) 𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙

 ,(B.9)

92



and plugging 𝚫 = 𝑬𝑖 𝑗 into (B.7) gives

(𝑼⊺d 𝑓 [𝑬𝑖 𝑗 ]𝑼)(𝑘,𝑘) = 𝑔′𝑘 (𝜆𝑘 ) (𝜙𝑖𝑘𝜓 𝑗 𝑘 − 𝜙 𝑗 𝑘𝜓𝑖𝑘 )


0 1

−1 0

 .(B.10)

By plugging (B.9) and (B.10) into 𝑆1 and 𝑆2, after some tedious calculation, we obtain

𝑆1 =
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛/2∑︁
𝑘=1

∑︁
𝑙≠𝑘

𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

(
𝜙𝑖𝑘𝜙 𝑗 𝑙 (𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙) + 𝜙𝑖𝑘𝜓 𝑗 𝑙 (𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙)

+ 𝜓𝑖𝑘𝜙 𝑗 𝑙 (𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙) + 𝜓𝑖𝑘𝜓 𝑗 𝑙 (𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙)
)

+ 𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

(
𝜙𝑖𝑘𝜙 𝑗 𝑙 (𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙) − 𝜙𝑖𝑘𝜓 𝑗 𝑙 (𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙)

− 𝜓𝑖𝑘𝜙 𝑗 𝑙 (𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙) + 𝜓𝑖𝑘𝜓 𝑗 𝑙 (𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙)
)

=
∑︁

1≤𝑖< 𝑗≤𝑛

∑︁
𝑘<𝑙

[
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

(
(𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙)2 + (𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙)2 + (𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙)2

+ (𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙)2
)
+ 2

𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

(
𝜙𝑖𝑘𝜙𝑖𝑙𝜓 𝑗 𝑘𝜓 𝑗 𝑙 + 𝜙 𝑗 𝑘𝜙 𝑗 𝑙𝜓𝑖𝑘𝜓𝑖𝑙

− 𝜙𝑖𝑘𝜓𝑖𝑙𝜙 𝑗 𝑙𝜓 𝑗 𝑘 − 𝜙 𝑗 𝑘𝜓 𝑗 𝑙𝜙𝑖𝑙𝜓𝑖𝑘
)]

=
∑︁
𝑘<𝑙

{
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

∑︁
𝑖< 𝑗

(
(𝜙𝑖𝑘𝜙 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜙𝑖𝑙)2 + (𝜙𝑖𝑘𝜓 𝑗 𝑙 − 𝜙 𝑗 𝑘𝜓𝑖𝑙)2 + (𝜓𝑖𝑘𝜙 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜙𝑖𝑙)2

+ (𝜓𝑖𝑘𝜓 𝑗 𝑙 − 𝜓 𝑗 𝑘𝜓𝑖𝑙)2
)
+ 2

𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

∑︁
𝑖< 𝑗

(
𝜙𝑖𝑘𝜙𝑖𝑙𝜓 𝑗 𝑘𝜓 𝑗 𝑙 + 𝜙 𝑗 𝑘𝜙 𝑗 𝑙𝜓𝑖𝑘𝜓𝑖𝑙

− 𝜙𝑖𝑘𝜓𝑖𝑙𝜙 𝑗 𝑙𝜓 𝑗 𝑘 − 𝜙 𝑗 𝑘𝜓 𝑗 𝑙𝜙𝑖𝑙𝜓𝑖𝑘
)}

93



(Continued from previous page)

𝑆1 =
∑︁
𝑘<𝑙

{
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

∑︁
𝑖≠ 𝑗

(
𝜙2𝑖𝑘𝜙

2
𝑗 𝑙 − 𝜙𝑖𝑘𝜙 𝑗 𝑙𝜙 𝑗 𝑘𝜙𝑖𝑙 + 𝜙

2
𝑖𝑘𝜓

2
𝑗 𝑙 − 𝜙𝑖𝑘𝜓 𝑗 𝑙𝜙 𝑗 𝑘𝜓𝑖𝑙 + 𝜓

2
𝑖𝑘𝜙

2
𝑗 𝑙 − 𝜓𝑖𝑘𝜙 𝑗 𝑙𝜓 𝑗 𝑘𝜙𝑖𝑙

+ 𝜓2
𝑖𝑘𝜓

2
𝑗 𝑙 − 𝜓𝑖𝑘𝜓 𝑗 𝑙𝜓 𝑗 𝑘𝜓𝑖𝑙

)
+ 2

𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

∑︁
𝑖≠ 𝑗

(
𝜙𝑖𝑘𝜙𝑖𝑙𝜓 𝑗 𝑘𝜓 𝑗 𝑙 − 𝜙𝑖𝑘𝜓𝑖𝑙𝜙 𝑗 𝑙𝜓 𝑗 𝑘

)}
=
∑︁
𝑘<𝑙

{
𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

𝑛∑︁
𝑖=1

(
𝜙2𝑖𝑘 (1 − 𝜙2𝑖𝑙) − 𝜙𝑖𝑘𝜙𝑖𝑙 (−𝜙𝑖𝑘𝜙𝑖𝑙) + 𝜙

2
𝑖𝑘 (1 − 𝜓2

𝑖𝑙) − 𝜙𝑖𝑘𝜓𝑖𝑙 (−𝜙𝑖𝑘𝜓𝑖𝑙)

+ 𝜓2
𝑖𝑘 (1 − 𝜙2𝑖𝑙) − 𝜓𝑖𝑘𝜙𝑖𝑙 (−𝜓𝑖𝑘𝜙𝑖𝑙) + 𝜓

2
𝑖𝑘 (1 − 𝜓2

𝑖𝑙) − 𝜓𝑖𝑘𝜓𝑖𝑙 (−𝜓𝑖𝑘𝜓𝑖𝑙)
)

+ 2
𝑞(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

𝑛∑︁
𝑖=1

𝜙𝑖𝑘𝜙𝑖𝑙 (−𝜓𝑖𝑘𝜓𝑖𝑙) − 𝜙𝑖𝑘𝜓𝑖𝑙 (−𝜙𝑖𝑙𝜓𝑖𝑘 )
}

=
∑︁
𝑘<𝑙

𝑝(𝜆𝑘 , 𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

𝑛∑︁
𝑖=1

(
𝜙2𝑖𝑘 + 𝜙

2
𝑖𝑘 + 𝜓

2
𝑖𝑘 + 𝜓

2
𝑖𝑘

)
=4

∑︁
1≤𝑘<𝑙≤ 𝑛

2

𝜆𝑘𝑔𝑘 (𝜆𝑘 ) − 𝜆𝑙𝑔𝑙 (𝜆𝑙)
𝜆2
𝑘
− 𝜆2

𝑙

,

and

𝑆2 =
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛/2∑︁
𝑘=1

⟨𝐿𝑖 𝑗(𝑘,𝑘) , (𝑼
⊤d 𝑓 [𝑬𝑖 𝑗 ]𝑼)(𝑘,𝑘)⟩

=
∑︁

1≤𝑖< 𝑗≤𝑛

𝑛/2∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 ) (𝜙𝑖𝑘𝜓 𝑗 𝑘 − 𝜙 𝑗 𝑘𝜓𝑖𝑘 )
2

=

𝑛/2∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
∑︁
𝑖≠ 𝑗

(
𝜙2𝑖𝑘𝜓

2
𝑗 𝑘 − 𝜙𝑖𝑘𝜙 𝑗 𝑘𝜓𝑖𝑘𝜓 𝑗 𝑘

)
=

𝑛/2∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 )
𝑛∑︁
𝑖=1

(
𝜙2𝑖𝑘 (1 − 𝜓2

𝑖𝑘 ) − 𝜙𝑖𝑘𝜓𝑖𝑘 (−𝜙𝑖𝑘𝜓𝑖𝑘 )
)

=

𝑛/2∑︁
𝑘=1

𝑔′𝑘 (𝜆𝑘 ).
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If the spectral estimation is the truncated Youla decomposition with rank 𝑟 such that

𝑴 =
∑𝑟/2
𝑘=1 𝜆𝑘

(
𝝓𝑘𝝍

⊤
𝑘
− 𝝍𝑘𝝓

⊤
𝑘

)
, the divergence will be

∑︁
1≤𝑖< 𝑗≤𝑛

𝜕𝑀𝑖 𝑗

𝜕𝐴𝑖 𝑗
=
𝑟2

2
− 𝑟

2
+ 4

𝑟/2∑︁
𝑘=1

𝑛/2∑︁
𝑙=𝑟/2+1

𝜆2
𝑘

𝜆2
𝑘
− 𝜆2

𝑙

=

(
𝑛 − 𝑟

2
− 1

2

)
𝑟 + 4

𝑟/2∑︁
𝑘=1

𝑛/2∑︁
𝑙=𝑟/2+1

𝜆2
𝑙

𝜆2
𝑘
− 𝜆2

𝑙

.
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