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Research Article

Investigation of Metabolomic Blood Biomarkers
for Detection of Adenocarcinoma Lung Cancer
Johannes F. Fahrmann1, Kyoungmi Kim2, Brian C. DeFelice1, Sandra L. Taylor2,
David R. Gandara3, Ken Y. Yoneda4, David T. Cooke5, Oliver Fiehn1,6, Karen Kelly3, and
Suzanne Miyamoto3

Abstract

Background: Untargeted metabolomics was used in case–con-
trol studies of adenocarcinoma (ADC) lung cancer to develop and
test metabolite classifiers in serum and plasma as potential
biomarkers for diagnosing lung cancer.

Methods: Serum and plasma were collected and used in two
independent case–control studies (ADC1 and ADC2). Controls
were frequency matched for gender, age, and smoking history.
There were 52 adenocarcinoma cases and 31 controls in ADC1
and 43 adenocarcinoma cases and 43 controls in ADC2. Meta-
bolomicswas conducted using gas chromatography time-of-flight
mass spectrometry. Differential analysis was performed on ADC1
and the top candidates (FDR<0.05) for serumandplasmaused to
develop individual and multiplex classifiers that were then tested
on an independent set of serum and plasma samples (ADC2).

Results: Aspartate provided the best accuracy (81.4%) for an
individual metabolite classifier in serum, whereas pyrophos-

phate had the best accuracy (77.9%) in plasma when indepen-
dently tested. Multiplex classifiers of either 2 or 4 serum
metabolites had an accuracy of 72.7% when independently
tested. For plasma, a multimetabolite classifier consisting of 8
metabolites gave an accuracy of 77.3% when independently
tested. Comparison of overall diagnostic performance between
the two blood matrices yielded similar performances. However,
serum is most ideal given higher sensitivity for low-abundant
metabolites.

Conclusion: This study shows the potential of metabo-
lite-based diagnostic tests for detection of lung adenocarci-
noma. Further validation in a larger pool of samples is
warranted.

Impact: These biomarkers could improve early detection and
diagnosis of lung cancer. Cancer Epidemiol Biomarkers Prev; 24(11);
1716–23. �2015 AACR.

Introduction
Lung cancer continues to be a leading cause of cancer mortality

in both men and women in the United States (1, 2). Among the
different lung cancer types, non–small cell lung cancer (NSCLC)
accounts for approximately 85% of all lung cancer cases, with
adenocarcinoma being the most common histologic type (3).

Recently, the National Lung Cancer Screen Trial (NLST) dem-
onstrated that low-dose CT (LDCT) screening could reduce mor-
tality due to lung cancer by 20%. However, LDCT screening is
largely hindered by high false-positive rates (96%), particularly in

high-risk populations (heavy smokers), due to the low prevalence
rates (less than 2%) of malignant tumors and high incidence of
benign lung nodules. Consequently, complementary biomarkers
that can be used in conjunction with LDCT screening to improve
diagnostic capacities and reduce false-positive rates are highly
desirable (4, 5). Preferably, such complementary tools should be
noninvasive and exhibit high sensitivity and specificity. The
application of "-omic" sciences (genomics, transcriptomics, pro-
teomics, and metabolomics) represents valuable tools for the
discovery and validation of potential biomarkers that can be used
for detection of NSCLC. Of these omic sciences, metabolomics
has received considerable attention for its application in cancer
(6). Metabolomics is the assessment of small molecules and
biochemical intermediates (metabolites) using analytic instru-
mentation. Metabolites in blood are the product of all cellular
processes, which are highly responsive to conditions of disease
and environment, and represent the final output products of all
organs forming a detailed systemic representation of an indivi-
dual's current physiologic state (7).

Metabolomics has been applied to gain new insights into the
pathology of cancer, developmethods predictive of disease onset,
and reveal new biomarkers associated with diagnosis and prog-
nosis (6, 8, 9). As such, the application of metabolomics in
NSCLC adenocarcinoma represents a promising avenue of new
research for the identification and validation of potential bio-
markers associated with diagnosis and prognosis.

In this study, we used an untargeted metabolomics approach
using gas chromatography time-of-flight mass spectrometry
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(GCTOFMS) to analyze the metabolome of serum and plasma
samples both collected from the same patients that were orga-
nized into two independent case–control studies (ADC1 and
ADC2). In both studies, only NSCLC adenocarcinoma was inves-
tigated. The overall objectives were to (i) determine whether
individual or combinations of metabolites could be used as a
diagnostic test to distinguish NSCLC adenocarcinoma from con-
trols and (ii) to determinewhich, plasmaor serum, providesmore
accurate classifiers for the detection of lung cancer. We developed
individual and multimetabolite classifiers using a training test
from the ADC1 study and evaluated the performance of the
constructed classifiers, individually or in combination, in an
independent test/validation study (ADC2).

Materials and Methods
Patient population and collection of patient samples

Subjects were recruited over a 4-year period (2010–2014) from
the UC Davis Medical Center and Cancer Center Clinics. All
subjects were diagnosed with NSCLC adenocarcinoma before
specimen collection. Blood samples (serum and plasma) were
collected fromNSCLC adenocarcinoma and control subjects with
patient consent using approved IRB protocols (LC001 for cancer
cases and LC002 for control cases). The control population was
heavily recruited from spouses and family members accompa-
nying a lung cancer patient to their clinic tomaintain asmuch of a
similar environment and life styles, especially diet and smoking
history, as possible. Cases were frequency matched with controls
for gender, age, and smoking history. Only cases diagnosed with
NSCLC adenocarcinomawere used in these studies. Fasting status
was not controlled for as individuals were recruited upon their
arrival to the clinic.

Patient characteristics are described in Table 1. Detailed infor-
mation on blood sample collection protocols is provided in
Supplementary Methods.

Metabolomic profiling
TheMiniX database (10) was used as a Laboratory Information

Management System (LIMS) and for sample randomization
before all analytic procedures. Sample identifications were kept
blinded during the entire metabolomics analysis to minimize

potential bias. Serum and plasma samples were equally distrib-
uted for analysis so they could be compared directly.

Plasma and serum sample preparation. Detailed information on
sample preparation, instrument parameters, and data acquisition
is provided in Supplementary Methods.

Samples (30 mL; serum or plasma) were thawed, extracted, and
derivatized as previously described (11). Mass spectrometry anal-
ysis and data acquisition were performed using an Agilent 7890A
gas chromatograph coupled to a Leco Pegasus IV time-of-flight
(TOF) spectrometer. Acquired spectra were further processed
using the BinBase database (10, 12).

Data analysis
Before statistical analysis,metabolite intensity valueswere total

quantity normalized and log2 transformed. Missing intensity
valueswere imputedwith one-half theminimumobservedmatrix
and metabolite specific value. Differential analysis was imple-
mented to identify significant metabolomic differences between
cancer and control samples in serum and plasma separately for
both the training (ADC1) and test (ADC2) set. For each matrix,
intensity values were regressed on the covariates [age, gender, and
smoking history (packs per year)] and the residuals used to
calculate t statistics for the difference between cancer and control
groups adjusting for the covariates. Significance between cancer
and control groups was determined on the basis of a permutation
null distribution consisting of 100,000 permutations. FDRs were
calculated to account for multiple testing and FDR < 0.05 was
considered as significant.

Development of classifiers was carried out on the training set
(ADC1). Classifiers consisted of individual metabolites and as a
multiplex panel, for classifying samples as cancer or control (13).
Only metabolites with a significant FDR (<0.05) were used in
constructing classifiers. Furthermore, in developing classifiers, we
used residuals from adjusting for age, gender, and smoking
history and scaled the residuals to a variance of 1 for compara-
bility between datasets.

Development of classifiers. Classifiers were developed using a
strategy based on the use of "voting classifiers" as previously

Table 1. Patient characteristics

ADC1 (training set)a for development ADC2 (test set)a for validation
Variable Plasma Serum Plasma/serum

Total sample size, N 83 80 86
Healthy controls, N (%) 31 (37.3%) 31 (38.8%) 43 (50%)
Cancer cases, N (%) 52 (62.7%) 49 (61.2%) 43 (50%)
By stage, N (%)

I 21 (40.38) 19 (36.54) 18 (41.86)
II 7 (13.46) 7 (13.46) 3 (6.98)
III 14 (26.92) 14 (26.92) 7 (16.28)
IV 10 (19.23) 9 (17.31) 15 (34.88)

Gender, N (males/females)
Controls 11/20 11/20 21/22
Cancer cases 17/35 17/32 21/22

Age (y), mean � SD
Controls 64.1 � 8.97 64.1 � 8.97 65.9 � 8.05
Cancer cases 65.9 � 9.66 65.9 � 9.87 67.3 � 10.10

Packs per year, mean � SD
Controls 29.8 � 19.54 29.8 � 19.54 38.6 � 26.46
Cancer cases 34.6 � 19.33 33.9 � 20.06 39.5 � 27.23

aNo statistical differences in variables between cases and controlswithin each set and between the training set and test set. Control group for serumADC1 is same as
for plasma ADC1.
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described (13). Detailed information regarding classifier devel-
opment is provided in the Supplementary Methods.

Results
Subject characteristics

Patient characteristics for the two independent studies are
provided in Table 1. The first set (ADC1) used for biomarker
development consisted of serum and plasma samples obtained
from 52 stages I–IV NSCLC adenocarcinoma patients (52 plasma
and 49 serum), and 31 healthy controls (31 pairs of serum and
plasma) for a total of 163 samples. Thirty-one control patients
were enrolled as individual control subjects matched multiple
cancer samples. This set was regarded as the training set for
biomarker discovery and classifier development. A second, inde-
pendent case–control study (ADC2) consisting of serum and
plasma samples collected from 43 stage I–IV NSCLC adenocar-
cinoma patients and 43 healthy controls (total 172 samples) was
used as an independent test set for biomarker evaluation. Samples
for ADC2were collected and analyzed at a different time from the
ADC1. There were no significant differences between the match-
ing variables of age, gender, and smoking history (packs per year)
for the cases and control cohorts in the two separate case–control
studies (ADC1 and ADC2).

Identification of metabolites discriminatory of NSCLC
adenocarcinoma in serum

Untargeted GCTOF–based metabolomics was conducted on
each sample in the ADC1 and then ADC2 set. A total of 511
metabolites were detected in ADC1, of which 181 had known
annotated structures, whereas in ADC2 413metabolites, of which
152 were known (Supplementary Tables S1 and S2). Of all
metabolites detected between the two studies, 296 were repeat-
edly measured in serum and plasma (Supplementary Tables S1
and S2). Notably, many of the metabolites that were unique to
either ADC1 or ADC2 were unknowns. These unknowns may
represent artifacts, low-abundant compounds or xenobiotic com-
pounds that were removed during the data-filtering process (see
Supplementary Methods). Pearson correlation coefficients illus-
trating the association between measured metabolites are pro-
vided in Supplementary Table S3. Differential analysis (cancer vs.
control) on the ADC1 training set identified 80 differential
metabolites in the serum with a raw P value of <0.05 (Supple-
mentary Table S1). Only four metabolites (xylose, glutamate,
aspartate, and Bin_225393) remained significant after FDR

adjustment (FDR < 0.05) in ADC1 (Supplementary Table S4).
Three of the four significant metabolites (glutamate, aspartate,
and Bin_225393) were found to be elevated in cancer relative to
control inADC1,whereas xylosewasdecreased (boxplots for each
metabolite are provided in Supplementary Fig. S1). Using the
independent test set (ADC2), we conducted a separate differential
analysis to confirm whether the metabolites identified in the first
study (ADC1) were significantly and consistently differential in a
different cohort of samples. Out of the 80 metabolites with a raw
P value of <0.05 in ADC1, 15 (18.8%) were also found to be
significant (raw P value < 0.05) in ADC2 (Supplementary Table
S4). More importantly, all 15metabolites indicated a similar fold
change (increased or decreased) in both studies (Supplementary
Table S4). When comparing only those metabolites that were
significantly different following FDR adjustment in ADC1, 3 of
the 4 metabolites (aspartate, glutamate, and Bin_225393) were
also found to be significantly (FDR-adjusted P < 0.05) elevated in
adenocarcinoma in ADC2 (Supplementary Fig. S1).

Developing serum metabolite classifiers using the ADC1
training set

Serum classifiers were developed using the metabolites whose
peak intensity were significantly differential in relation to the
cancer presence in ADC1 after FDR adjustment. Determination of
classification thresholds and rules, construction of classifiers and
cross-validation of classifier performance for both individual
metabolites and panel ofmetabolites was performed as described
in Materials and Methods. Performances of the developed classi-
fiers for each individual metabolite in ADC1 are provided
in Table 2. Individually, Bin_225393 displayed the highest indi-
vidual accuracy of 72.5% (AUC¼ 0.766; Table 2 and Fig. 1A). An
ROC curve plus the confidence interval for Bin_225393 is
provided in Fig. 1A and Supplementary Table S5, respectively.
The mass spectrum for Bin_225393 is provided in Supplemen-
tary Fig. S2. We next evaluated whether combining multiple
metabolites in ADC1 could yield improved classifications. The
order that each metabolite entered the multiplex classifier is
provided in Table 2. Overall, the highest accuracies achieved
were 72.5% and 68.8% consisting of Bin_225393 alone and the
first three metabolites (Bin_225393, aspartate, and xylose),
respectively (Table 2). An ROC curve plus the confidence
interval for the three metabolite classifiers (Bin_225393, aspar-
tate, and xylose) is provided in Fig. 1B and Supplementary
Table S5, respectively.

Table 2. Performances of developed individual- and multimetabolite serum classifiers in ADC1 (training) and ADC2 (test) sets

Individual metabolite classifiers
ADC1 (training) ADC2 (test)

Metabolite Accuracya Accuracyb Sensitivity Specificity

Xylose 53.8 50.0 76.7 23.3
Glutamate 61.3 74.4 65.1 83.7
Aspartate 63.8 81.4 67.4 95.4
Bin_225393 72.5 64.0 74.4 53.5

Multimetabolite classifiers
Metabolite Accumulated accuracya Accumulated accuracyb Sensitivity Specificity
Bin_2253931 72.5 64.0 74.4 53.5
Asparate2 68.1 72.7 70.9 74.4
Xylose3 68.8 67.4 74.4 60.5
Glutamate4 66.9 72.7 70.9 74.4

NOTE: 1–4, denotes entry into classifier.
aADC1 (training set).
bADC2 (test set).
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Testing/validation of serum classifiers developed with ADC1
training set in an independent ADC2 test set

We next evaluated the performance of the serum metabolite
classifiers developed using the ADC1 training set on the indepen-
dent ADC2 test set. Individually, aspartate yielded the best per-
formance with a classification accuracy of 81.4% (AUC ¼ 0.855)
when tested in ADC2 (Table 2). An ROCcurve plus the confidence
interval for aspartate is provided in Fig. 1A and Supplementary
Table S5, respectively. Then we tested the multimetabolite classi-
fiers consisting of up to 4 metabolites developed with the ADC
training set in the test set for assessment of performance accuracy.
Thehighest performancewas achievedwith all fourmetabolites in
the classifier yielding an accuracy of 72.7% (Table 2). An ROC
curve plus the confidence interval for the 4 metabolite classifiers
(Bin_225393, aspartate, and xylose) is shown in Fig. 1B and
Supplementary Table S5, respectively.

Identification of metabolites discriminatory of NSCLC
adenocarcinoma in plasma

In addition to serum, we examined the performance of plasma-
derived metabolite classifiers as potential biomarkers for NSCLC
adenocarcinoma. Differential analysis identified 68 differential
metabolites in plasma samples with a raw P value of <0.05
(Supplementary Table S2) in the ADC1 set. Only 14 (21%) of
the 68 metabolites remained significant following FDR adjust-
ment (Supplementary Table S2). Of these 68 metabolites, 18
(26.5%) were also found to be significantly different in the ADC2
test set (Supplementary Table S6).When comparing only those 14
metabolites that remained significant after FDR-adjustment in the
ADC1 set, 6 (pyrophosphate,maltotriose, citrulline, adenosine-5-
phosphate, Bin_226841, and Bin_36799) were also found to
remain significant following FDR adjustment (FDR P value
<0.05) in the ADC2 set (Supplementary Table S2). All 6 of these

metabolites displayed the same direction of change in ADC2
(increased or decreased) as observed in ADC1 (Supplementary
Fig. S1).

Developing plasma metabolite classifiers using the ADC1
training set

Plasma classifiers were developed from the 13 (Supplementary
Table S2) discriminating metabolites that remained significant
following FDR adjustment. Performances of the developed clas-
sifiers for each individualmetabolite are provided in Table 3. Four
metabolites (maltotriose, maltose, cellobiotol, and Bin_715929)
had individual accuracy scores above 70% (Table 3). However,
three metabolites (cellobiotol, Bin_715929, and Bin_299216)
were not detected in the ADC2 test set and consequently excluded
whendeveloping classifiers to apply to the test set for performance
evaluation. The nondetection of cellobiotol and unknown com-
pounds (Bin_715929 and Bin_299216) is suspected to be the
consequence of low spectral abundance or only being detected in
few patients, thus resulting in removal of these compounds
during the data-filtering processes (see Supplementary Methods).
Overall, maltose performed the best with an accuracy of 72.3%
(Table 3 and Fig. 2A). An ROC curve plus the confidence interval
for maltose is provided in Fig. 2A and Supplementary Table S5,
respectively.We subsequently evaluatedwhether combiningmul-
tiple plasma metabolites could serve a better classification test.
The order that each metabolite entered the classifier is provided
in Table 3. Overall, the highest accuracy achieved for the plasma
classifiers was 79.5% using a panel of five metabolites (Table 3
and Fig. 2B), suggesting that several metabolites in the classifier
can improve classification relative to individual metabolite clas-
sifiers. An ROC curve plus confidence intervals for the 5-metab-
olite classifier is provided in Fig. 2B and Supplementary Table S5,
respectively.

Figure 1.
ROC curves for individual- and multimetabolite classifiers in serum. A, ROC curves for aspartate and Bin_225393 in serum. B, ROC curves for two multimetabolite
classifiers in serum. The four-metabolite classifier contains all the metabolites included in the classifier (Table 2). The three-metabolite classifier includes
Bin_225393, aspartate and xylose. Confidence intervals for AUCs are provided in Supplementary Table S5.
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Testing/validation of plasma classifiers developed with ADC1
training set in an independent ADC2 test set

We next evaluated the performance of the plasma metabolite
classifiers developed using the training set (ADC1) in the discov-
ery phase on the independent ADC2 test set. Individually, plasma

metabolites indicated modest performances in classifying
ADC2 samples with pyrophosphate achieving the highest accu-
racy (77.9%) and specificity (95.4%) but low sensitivity
(60.5%; Table 3). An ROC curve plus confidence intervals for
pyrophosphate is shown in Fig. 2A and Supplementary Table S5,

Table 3. Performances of developed individual- and multimetabolite plasma classifiers in ADC1 (training) and ADC2 (test) sets

Individual metabolite classifier
ADC1 (training) ADC2 (test)

Metabolite Accuracya Accuracyb Sensitivity Specificity

Tryptophan 50.6 52.3 39.5 65.1
Pyrophophosphate 66.3 77.9 60.5 95.4
Maltotriose 71.1 64.0 79.1 48.8
Maltose 72.3 62.8 55.8 69.8
Cystine 66.3 68.6 58.1 79.1
Citrulline 67.5 66.3 55.8 76.7
Cellobiotold 71.1 NDc ND ND
Adenosine-5-phosphate 68.7 72.1 67.4 76.7
3-Phosphoglycerate 69.9 51.2 30.2 72.1
Bin_226841 60.2 64.0 37.2 90.7
Bin_715929d 72.3 ND ND ND
Bin_367991 59.0 65.1 39.5 90.7
Bin_299216d 60.2 ND ND ND

Multimetabolite classifier
Metabolite Accumulated accuracya Accumulated accuracyb Sensitivity Specificity
Maltose1 72.3 62.8 55.8 69.8
Maltotriose2 71.7 63.4 67.4 59.3
Cystine3 75.9 69.8 69.8 69.8
3-Phosphoglycerate4 76.5 69.2 61.6 76.7
Citrulline5 79.5 73.3 65.1 81.4
Pyrophosphate6 77.1 75.6 64.0 87.2
Tryptophan7 77.1 76.7 60.5 93.0
Adenosine-5-Phosphate8 75.3 77.3 64.0 90.7
Bin_2268419 77.1 76.7 60.5 93.0
Bin_36799110 73.5 75.0 55.8 94.2

NOTE: Superscript numbers 1 to 10 denote entry into the classifier.
aADC1 (training set).
bADC2 (test set).
cNot detected.
dMetabolite not included in the multimetabolite classifier.

Figure 2.
ROC curves for individual- and multimetabolite classifiers in plasma. A, ROC curves for maltose and pyrophosphate in plasma. B, ROC curves for the best
multimetabolite ADC1 classifier for plasma consisting of fivemetabolites (blue line) and the classifier consisting of eight (black line)when applied to ADC2 are shown
(Table 3). Confidence intervals for AUCs are provided in Supplementary Table S5.
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respectively. We afterwards evaluated the developed multiplex
classifiers in the independent test set using the refined 10 meta-
bolites classifiers developed in the training set. Collectively, the
best performance was achieved when using a combination of 8
metabolites in the plasma classifier resulting in an accuracy of
77.3% (Table 3). An ROC curve plus confidence intervals for the
8-metabolite classifier is shown in Fig. 2A and Supplementary
Table S5, respectively.

Comparison of classifier performances between plasma and
serum samples

It is of particular interest for clinical utility to determine which
type of blood specimen (serum or plasma) is best suited for
obtaining optimal classifiers for the detection of lung cancer. For
this reason, we collected both serum and plasma from the same
individuals and developed the classifiers from these two biofluids
independently. Collectively, three metabolites (maltotriose, glu-
tamate, and Bin_223618) were found to be consistently differ-
ential between ADC and control (Supplementary Tables S1 and
S2) in both serum and plasma.

Comparison of individual metabolite classifier performances
in either serum or plasma yielded comparable results although
classifier accuracies were slightly better in serum (ranging from
50%–81% accuracy) than plasma (ranging from 51%–78%
accuracy; Tables 2 and 3). However, plasma provided slightly
better performance metrics using a multimetabolite classifier
compared with serum (77.3% versus 72.7% accuracy in ADC2,
respectively; Tables 2 and 3), indicating that serummay be better
suited for individual-metabolite classifiers; whereas plasma may
be more suited for multimetabolite classifiers.

Discussion
In the present study, we identified multiple circulating meta-

bolites (annotated and unknown) that are significantly elevated
or reduced in patients with NSCLC adenocarcinoma compared
with healthy controls. In the discovery phase of our experimental
design,we identified anddeveloped classifiers in a training set that
were then applied to an independent test set for testing/valida-
tion. This approach is consistent with the guidelines set forth by
the U.S. National Cancer Institute for evaluating potential diag-
nostic cancer biomarkers (14). Within each study, sample sets
were matched by age, gender, and smoking history, and rigorous
statistical evaluations were implemented to analyze the test
performance of the metabolite compositions.

Overall, the individual-metabolite classifier aspartate showed
the best accuracy (81.4%) in serum, whereas pyrophosphate
provided the best accuracy (77.9%) in plasma when tested in
the independent ADC2 test/validation study. A combination of
either 2 or 4 metabolites (Table 2) in the serum classifier gave the
best performance with an accuracy of 72.7% when applied to the
ADC2 test set. For plasma, a multipanel classifier consisting of 8
metabolites (Table 3) provided the best performance with an
accuracy of 77.3% in the ADC2 test set. Although the ideal (but
unrealistic) situation is for 100% sensitivity and specificity, in this
studywe focused on building amultiplex test with high specificity
and less emphasis on sensitivity. In this way, nearly all of the
true negative and false positives could be correctly identified as
cancer free.

Theperformanceof thedeveloped classifiers inour study for the
identification of NSCLC adenocarcinoma is comparable with that

of others (15–17). Patz and colleagues (15) illustrated that a panel
of four serum proteins (CEA, retinol binding protein, a1-anti-
trypsin, and squamous cell carcinoma antigen) was found to have
a sensitivity of 89.3% and a specificity of 84.7% in a case–control
training set for lung cancer that in a validation study yielded a
sensitivity of 77.8% and a specificity of 75.4%. Li and colleagues
(16) developed a 13-protein classifier from a panel of 371 protein
candidates, previously identified in 143 plasma samples obtained
from patients with benign and malignant lung nodules. This
13-protein classifier was validated on an independent set of
plasma samples (n ¼ 104) yielding a negative predictive value
(NPV) of 90% and a specificity of 44% � 13%. Results from the
analysis of a third independent study showed anNPV of 94% and
a specificity of 56% (16). AUCs of 0.82, 0.60, and 0.74 were
obtained for discovery, validation study 1, and validation study 2,
respectively (16). As in our study, they also determined that their
classifier score was independent of smoking history and age (16).

Recently, Sozzi and colleagues (17) demonstrated the effec-
tiveness of a plasma miRNA signature classifier using samples
collected from smokers within the randomized Multicenter Ital-
ian Lung Detection trial, both individual and in conjunction with
LDCT. Using this miRNA classifier, a sensitivity of 87% and a
specificity of 81% were achieved for all case–control samples,
whereas 88% sensitivity and 80% specificity were achieved for
cases from the low-dose CT arm (17).

Taken together,bothmethods (miRNAandmetabolomics)orall
methods (miRNAs, proteomics, and metabolomics) might even-
tually be combined to produce a test with even better performance
than each individual test for early detection of all types of lung
cancer.Despite thepotentialprospectsof combinedmethodologies
(such as miRNA and metabolomics), our results highlight the
application of metabolomics in the discovery phase of potential
biomarkers and yield candidate classifiers that will be expanded
upon in future studies. Moreover, we have tested both plasma and
serum from the same individuals to determinewhich typeof blood
specimen would be more suitable for metabolomics-derived clas-
sifiers. Specifically, we aimed to determine which biofluid would
provide the most reliable classifiers with the potential for general
utility as this is a clinically relevant question.Overall, there were no
major advantages by using either serum or plasma as both blood-
specimen types yieldedcomparable results inoverall performances;
although serum-based classifiers performed slightly better for indi-
vidual-metabolite classifiers, plasma performed slightly better for
multimetabolite classifiers. These findings are in agreement with
thosebyWedge and colleagues andYuand colleagues (18, 19)who
similarly stated that the twobiofluidswere comparable,althoughin
both studies plasma provided slightly better results. However,
despite their findings, Yu and colleagues (19) also found that
metabolite concentrationswere higher in serum, allowing formore
sensitive results in biomarker detection. We suggest that serum is
most ideal, givenhigher sensitivity for low-abundantmetabolites as
the low-abundantmetabolites/compounds could potentially be of
most biologically relevant.

Although the application of metabolomics in the identification
ofpotentialbiomarkers is of immense value, it alsoprovidesuseful
information about the pathophysiology of the disease. Recently,
we distinguished metabolic differences between matched malig-
nant and nonmalignant lung tissue from subjects with early-
stage (stage IA–B) NSCLC adenocarcinoma (20). Particularly, we
identified that glutamate, malate, adenosine-5-phosphate, and
xanthine were significantly increased, whereas glutamine was
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reduced in malignant tissue compared with nonmalignant
tissue (20). In the current investigation, we also found that
glutamate, malate, adenosine-5-phosphate, and xanthine were
consistently elevated in NSCLC, whereas glutamine was con-
sistently reduced. However, only glutamate was found to be
reliably significant. The elevation in glutamate and reduction in
glutamine is particularly noteworthy, given the recently recog-
nized importance of glutamate and glutamine in energy metab-
olism andmacromolecule biosynthesis in lung cancer (21). The
abundances of these metabolites and others mentioned above
in serum or plasma may, therefore, be a reflection of tumor-
igenesis and cumulatively point toward alterations in nucleo-
tide and energy metabolism.

Finally, it is important to recognize both the strengths and
limitations of this study. A strength of this study is that our
analysis examined only adenocarcinoma NSCLC. By evaluating
only adenocarcinoma, we exclude any potential biases from
mixed pathologies during the classifier construction allowing for
the identification of adenocarcinoma-specific biomarkers. This is
particularly important for diagnosis and treatment options.
Unlike many biomarkers studies, candidate biomarkers were
selected on the basis of their FDRs and not on raw P values,
leading to less false-positive rates of developing biomarkers. A
limitation of this study is the relatively small sample size for each
cohort (52 cases, 31 controls for ADC1, and 43 cases and 43
controls for ADC2) because patient variability can be a big factor
in smaller studies (22). However, this study is still part of the
discovery phase and, as such, will require further validation in a
larger population. In addition, values of detected metabolites are
based on qualitative peak heights rather than absolute concentra-
tions. The intent of this study was to obtain maximal coverage of
themetabolome for the identification, generation, and evaluation
of classifiers that could be used as potential diagnosticmarkers for
NSCLC adenocarcinoma. However, it will be important to verify
and quantitate absolute concentrations in future studies. The
inclusion of both early- and late-stage adenocarcinoma may also
lead tomasking of potential biomarkers, given that heterogeneity
exists among tumor stage. Finally, although collection of samples
from a single institution can be a strength due to consistency in
protocols, it also poses as a limitation as there is potential bias of
site-specific confounding effects attributed to differences in sam-
ple collection and sample handling. Therefore, larger studies are
warranted on only early-stage NSCLC adenocarcinoma and also

include samples from multiple institutions to evaluate reproduc-
ibility and performance independent of the collection site.

In conclusion, our results highlight the application and validity
of metabolomics in the discovery and validation of candidate
biomarkers for diagnosing NSCLC adenocarcinoma. More spe-
cifically, we have identified individual metabolites and multi-
metabolite panels as part of the discovery phase, which will serve
as the basis for classifiers used in future studies.
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