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Abstract 

A new approach to game theory based on quantum strategies 
is used to explain some paradoxical phenomena of human 
choice behavior. Quantum strategies were originally used to 
explain the fact that humans prefer to cooperate rather than 
defect in a Prisoner’s Dilemma (PD) game. Here we develop 
a quantum model for the disjunction effect. This refers to a 
paradox in which (a) a player prefers to defect when the 
player knows that an opponent will defect, and (b) the player 
also prefers to defect when the player knows that an opponent 
will cooperate, but (c) the player reverses preference and 
cooperates when the opponent’s action is unknown.  New 
experimental findings on the disjunction effect are reported, 
and a quantum explanation for the findings is presented. The 
quantum model is also compared to traditional information 
processing models.  
 

Keywords: quantum model; disjunction effect; Prisoner’s 
Dilemma 

Quantum Information Processing 
Human reasoning and decision making involves a great deal 
of vagueness, uncertainty, and conflict. How best to model 
these characteristics is a fundamental question for 
information processing theories of cognition. In this paper, 
we examine a quantum computing approach to this problem 
(see Nielsen & Chuang, 2000).  
   Consider for example, the decision whether to cooperate 
or compete with another business on some high tech 
venture. For example, this other business may have some 
technical skills that are needed for success. Suppose this 
decision also depends on whether the other business is 
trustworthy or untrustworthy. According to a quantum 
approach, prior to expressing a decision, the decision maker 
is in a superposition state in which all of the combinations 
of beliefs about trustworthiness and preferences about 
cooperation have some potential to be observed. This idea 
alone is not terribly interesting because any classic 
information processing theory could also adopt a similar 
representation. What is interesting is the uniquely quantum 
idea that possibilities can interfere with each other as if they 
exist simultaneously in the mental state. In particular, 
according to quantum theory, the joint probability of 
believing the other business is trustworthy and deciding to 
cooperate can be greater than the marginal probability of 

deciding to cooperate (which is actually the union of the 
trustworthy and untrustworthy possibilities). In other words, 
the probability of the disjunction can fall below the 
probability of a component event, which is a violation of the 
OR rule within classic probability theory.  Has such a 
violation ever been empirically observed?  

Disjunction Effects 
Consider a PD game in which there are two players, you 

versus other, and each player has two actions: cooperate or 
compete. An example payoff matrix for each player, 
conditioned on each pair of actions, is shown in Table 1.  

 
Table 1:  Example PD Game. 

 
 You Compete You Cooperate 

Other Competes You: 10 You: 5 
 Other: 10 Other: 25 

Other Cooperates You: 25 You: 20 
 Other: 5 Other: 20 

 
In the standard version of the game, hereafter referred to 

as the unknown condition, the players simultaneously select 
an action without knowledge of the opponent’s selection. 
Two new manipulations are used to examine the disjunction 
effect: In one case, you are initially informed that the other 
player has chosen to compete; and in another case, you are 
initially informed that the other player has chosen to 
cooperate.  This manipulation is designed to test the ‘sure 
thing’ principle that lies at the foundation of utility theory 
(Savage, 1954): If you prefer to compete knowing that your 
opponent will compete and you prefer to compete knowing 
that your opponent will cooperate, then you should prefer to 
compete even when you do not know your opponents 
choice.  

Shafir and Tversky (1992) found that players frequently 
violated the sure thing principle – many players chose to 
compete knowing that the other player competed, and they 
also chose to compete knowing that the other player chose 
to cooperate, but they cooperated when they did not know 
the choice of the other player.  See Croson (1999) and Li 
and Taplan (2002) for replications and extensions. 

The disjunction effect also rules out a simple yet 
important information processing model for this task. 
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Suppose that during the unknown condition, there are two 
possible states of thought that you can entertain about your 
opponent. There is some probability p of thinking ‘the other 
will compete’ and there is some complementary probability 
(1−p) of thinking ‘the other will cooperate.’ There are also 
two actions that you can take, compete or cooperate, 
conditioned on your state of belief. Accordingly, the 
probability that you choose to compete should equal the 
weighted average: p·Pr[you compete | other competes] + 
(1−p)·Pr[you compete | other cooperates]. This average can 
never fall outside the range defined by the two extreme 
probabilities of Pr[you compete | other competes] and 
Pr[you compete | other cooperates]. However, Shafir and 
Tversky (1992) reported a competition rate equal to 63% for 
the unknown state, which fell below the range defined by 
the two known states: 97% when the other player was 
known to compete, and 84% when the other player was 
known to cooperate. This finding contradicts the ‘two state’ 
information processing model.  

One can save the information processing model by 
assuming the existence of three mental states: one is a 
‘known to compete’ state, another is a ‘known to cooperate’ 
state, and a third is a ‘confused’ state that is entered when 
the opponent’s action is unknown.  Perhaps you tend to 
randomly guess more whenever you enter the ‘confused’ 
state. This could lower the probability of competing during 
the unknown condition down toward chance (50%), falling 
below either of the known conditions.  

Although the ‘three state’ model can lower the rate under 
the ‘confused’ state toward chance, it cannot lower the rate 
systematically below chance. Contrary to this prediction, 
Tversky and Shafir (1992) found a systematic reduction far 
below chance using a gambling paradigm to study the 
disjunction effect. In this experiment, you are presented 
with two possible plays of a gamble that is equally likely to 
win $200 or lose $100. You are instructed that the first play 
has completed, and now you are faced with the possibility 
of another play. Tversky and Shafir (1992) found that 69% 
chose to play again after a known win, 59% chose to play 
again after a known loss, but only 36% chose to play when 
the outcome of the first play was unknown. The ‘three state’ 
model cannot explain the fact that gambling rate dropped far 
below the chance rate of 50% during the unknown 
condition.   

New Experiment 
To our knowledge, there have been only two replications 
and extensions of the disjunction effect, and both used the 
PD game (Croson, 1999; Li & Taplan, 2002). The original 
study by Tversky and Shafir (1992) and the replication by 
Li and Taplan (2002) involved deception -- each human 
actually played against a computer agent. The replication by 
Croson (1999) used humans playing against humans. The 
results from the original study and the two replications are 
compared in Table 2 below.1 As can be seen, the results 
                                                           
1 The results for Croson were averaged across the symmetric and 
asymmetric PD game conditions.  

from these replications are not as convincing as the original 
results, as they reveal only minor violations of the 
predictions of the simple ‘two state’ model.   
 

Table 2:  Summary of Original and Replicated Findings. 
 
 

Study Compete Cooperate Unknown 

Shafir  97 84 63 

Croson  67 32 30 

Li- Taplan 83 66 60 

Matthew 91 84 66 

Model 88 81 69 

 
Therefore we decided to conduct another replication. But 

this time, we conducted a new extension in which humans 
played against computer agents and the humans were 
truthfully informed. The instructions were almost identical 
to those used by Shafir and Tversky (1992), except that 
participants (Ps) were informed that they would be playing 
against computer agents on a computer network instead of 
against other humans.  Ps were simply told that they would 
occasionally see bonus trials that would inform them of the 
agent’s decision prior to making their own.  

Our Ps were 88 graduate and undergraduate students at 
Indiana University who participated for monetary rewards; 
eligible students also received one credit toward their 
introductory psychology experimental requirement.  We 
offered a minimum of five dollars, but Ps could earn up to 
twenty dollars depending on the outcome of their decisions.  
Our sample consisted of an approximately equal number of 
males and females (42 and 46, respectively).  All Ps were 
recruited via e-mail from a database of students who had 
indicated that they would like to be involved in paid 
experiments.   

Each P played 40 games on a computer, 18 of which were 
PD games similar to that shown in Table 1, and the other 
games were fillers (not analyzed). All Ps saw PD games on 
the same trial numbers.  Six different PD matrices were 
used, and each PD matrix was only allowed three 
presentations.  In this manner, all Ps were assured of seeing 
each of the six PD matrices once in each condition. The 
exact orders of the PD matrices, however, were determined 
in a quasi-random fashion.  The program always showed the 
standard form of a matrix the first time that matrix appeared, 
and then it randomly chose between cooperating and 
competing the second time (while displaying, of course, the 
corresponding notification).  The third time a matrix was 
presented, the program chose to compete if it had 
cooperated the second time or to cooperate if it had 
competed the second time. In sum, there were six PD 
matrices and each appeared three times for each of the 
eighty-eight Ps; we therefore had 528 triads on which to run 
analyses (a triad consisted of the three cases of each matrix).  
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Our results are posted in Table 2 in the row labeled 
Matthew.  

The effect of each condition on individual competition 
rates was first analyzed using a repeated measures ANOVA.  
Gender was also analyzed, but there was no significant 
effect.  Even after correcting for a slight violation of 
sphericity, it was clear that the conditions led to significant 
differences between the rates, F(1.761, 153.223) = 50.070, 
p<0.001.  This provided the clearance to perform protected 
paired t-tests.  The first such t-test, between the unknown 
condition and the known-competition condition, produced a 
significant result, t(87) = -9.082, p<0.001.  Next, we 
compared the unknown condition to the known-cooperation 
condition and again found significance, t(87) = -6.278, 
p<0.001.  Finally, the known-competition and known-
cooperation conditions were compared, and significance 
was again observed, t(87) = 3.485, p<0.001. 

Quantum Strategies 
To construct a quantum model for this task, we postulate 
that there are two states of beliefs about your opponents 
action, defect versus cooperate. Additionally, there are two 
states of action for you to take, again defect (which 
corresponds to competing but allows clearer notation in the 
coming equations) versus cooperate. We assume that a 
person can simultaneously consider beliefs and actions 
which then produces four basis states denoted {|DD〉, |DC〉, 
|CD〉, |CC〉}. For example, |DC〉 represents the case where 
you simultaneously believe that the opponent will defect but 
you intend to act cooperatively.  
   The state of the cognitive system (that is, the part needed 
for modeling this task) is represented by a quantum state 
vector. In this case, the state is represented by a 4 × 1 
column vector ψ = [ψDD, ψDC, ψCD, ψCC]. According to 
quantum theory, the state vector is a probability amplitude 
distribution across the basis states. For example, ψDC 
represents the probability amplitude of the quantum system 
being observed in state |DC〉. The probability of observing 
this state is |ψDC|2.  The state vector must be unit length to 
guarantee that the state probabilities sum to unity. 2 
   The state of the cognitive system is changed by thoughts 
generated from information in the environment. In terms of 
the quantum model, a thought is represented by a quantum 
operator, denoted U, which changes the state from one 
vector ψ to another ϕ = U⋅ψ. For this application, the 
quantum operator is represented by a 4 × 4 unitary matrix U 
with the property U†U = I, where I is the identity matrix. 
The matrix U must be unitary in order to preserve the unit 
length property of the state vector.  
   The initial state vector represents the state of the cognitive 
system at the beginning of each trial. This initial state is 
changed by information given to the P. If the player is 
informed that the opponent will defect, then an operator is 
applied to transform the initial state into one that has ψCD = 
ψCC = 0 producing ψD = [αD,βD,0,0], where βD

2 = 1 − αD
2. If 

the player is informed that the opponent will cooperate, then 

                                                           
2 See Neilsen and Chuang (2000) for a review of quantum 
computing principles. 

another operator is applied that transforms the initial state 
into one that has ψDD = ψDC = 0 to produce ψC = 
[0,0,αC,βC], where βC

2 = 1 − αC
2. In the unknown case, an 

operator is applied which produces a superposition state ψU 
= √½ · ψD + √½ · ψC. The interpretation of this state will be 
treated in the discussion. 
   To select a strategy, the player must evaluate the payoffs 
of the actions. Thus the state ψ is processed by a quantum 
operator Ut for some period of time t which transforms the 
previous state into a final state ϕ = Ut · ψ = [ϕDD, ϕDC, ϕCD, 
ϕCC]. Finally, the observed probability of choosing to defect 
is given by |ϕDD|2 +|ϕCD|2.   
   The quantum strategy Ut can be constructed from a 
Hamiltonian matrix H as follows: Ut = exp(−i·t·H). (This 
uses a complex matrix exponential function, which is 
available in MatLab or Mathematica). Here i = √-1 and this 
factor is required to guarantee that Ut is unitary. The 
processing time parameter, t, is a free parameter in the 
model, but it can be manipulated by deadline pressure. 
   In general, the Hamiltonian H must be Hermitian (H = H†) 
to guarantee that Ut is unitary. For this application, the 
Hamiltonian is a 4 × 4 matrix with elements hij  = hji*. 
   We use the simplest possible Hamiltonian that can explain 
the results: h11 = h33 = µ, and h41 = h14 = -1, where µ is a free 
parameter. The parameter µ depends on the payoff 
advantages for defecting as compared to cooperating. This is 
designed to build up probability amplitude for the defect 
actions, |DD〉 and |CD〉. Setting h41 = h14 = -1 allows transfer 
of probability amplitude between the correlated states |DD〉 
and |CC〉. This is designed to coordinate beliefs and actions.  
   In sum, the model has 4 parameters: αD and αC are used to 
determine the initial states depending on knowledge of the 
opponents play, and t and µ are used to construct the 
quantum strategy for taking action. For example, if we set 
αD = 1, αC = .7853, t = .5291, µ = 5.3060, then the model 
produces the probabilities shown in the bottom row of Table 
2, which accurately reproduces the findings of the present 
study (compare to the row labeled Matthew in Table 2).  
Alternatively, if we set αD = 1, αC = .4061, t = .8614, µ = 
2.3479, then the model predicts .69, .59, .36, which 
perfectly reproduces the Tversky and Shafir (1992) 
gambling results (here we associate the defect strategy with 
choosing to play the gamble).  

Interference Effects 
So, how does the quantum model produce this disjunction 
effect?   Recall that the ‘two state’ information processing 
model fails because it must predict that the defection rate for 
the unknown condition is an average of the rates for the two 
known conditions. The quantum model violates this 
property because interference effects occur under the 
unknown condition.  
   Define M as a matrix with the first row equal to [1 0 0 0] 
and the second row equal to [0 0 1 0]. The product φ = M ⋅ ϕ 
produces a 2 × 1 vector that represents the projection of the 
quantum state onto the bases that lead one to choose to 
defect. The squared length, |φ|2 = φ†φ = |ϕDD|2 +|ϕCD|2, gives 
the probability of defection.  
   If the opponent is known to defect, then we obtain φD

†φD = 
(MϕD)†(MϕD) = (MUtψD)†(MUtψD), and if the opponent is 
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known to cooperate, then we obtain φC
†φC = (MϕC)†(MϕC) = 

(MUtψC)†(MUtψC). During the unknown condition, we 
obtain φU

†φU = (MϕU)†(MϕU) = (MUtψU)†(MUtψU) = 
[MUt(ψD+ψC)]†[MUt(ψD+ψC)] /2 = (φD + φC)†(φD + φC)/2  = 
(φD

†φD + φC
†φC)/2 + φD

†φC.  
   The latter term φD

†φC is called the interference term. If it is 
zero, then the quantum model reduces to the traditional ‘two 
state’ information processing model, and consequently it 
fails to account for the disjunction effect. However, if the 
interference term is negative, then it can reduce the 
defection rate during the unknown condition below the rates 
for the known condition. In sum, the superposition state that 
is generated by the unknown information condition is 
required to produce the interference effect. But it is not 
sufficient. 
   Why is the interference term negative for this quantum 
model? This is generated by the coordinating link h14 = h41 = 
−1 in the Hamiltonian, which is used to generate the 
quantum strategy Ut. This causes the states of the quantum 
system to become entangled. If this link was turned off, by 
setting h14 = h41 = 0, then the interference effect disappears. 
This is true even when the unknown condition produces a 
superposition state. In conclusion, the combination of 
superposition and entanglement are required to explain the 
disjunction effect.  

Quantum States and Quantum Strategies 
This paper accomplishes two goals. One is to report the 
results for a new experiment that successfully replicated and 
extended previous empirical findings concerning the 
disjunction effect using a PD game. The second is to 
provide an explanation for the disjunction effect derived 
from quantum game theory. Our theoretical analyses 
demonstrate the sufficiency of the quantum model for 
reproducing the disjunction effect. The ‘two state’ and 
‘three state’ information processing models fail to do this. 
We do not have enough data to test the quantum model 
rigorously at this point.  New experiments that include new 
conditions are being designed for this purpose.  
   What else can the quantum model predict about the 
disjunction effect? There are three factors that we can 
manipulate and use to generate new predictions from the 
quantum model. One is information about the likelihoods of 
the opponent’s actions, which should affect the 
superposition state. A second is the payoff matrix of the 
game, which should affect the Hamiltonian. The third is 
deadline time pressure, which should affect the processing 
time parameter. These new manipulations can be used to 
provide more stringent tests of the model. 
   What does it mean to be in a superposition state? 
Consider, for example, belief states. According to a 
traditional information processing account, the cognitive 
system may jump from one belief state to another (e.g., 
jump from one subjective probability to another), but at any 
given moment, the system is definitely in one particular 
state of belief. In other words, if we observe the state at 
some particular moment and find it to be equal to state X, 
then the system must have been in state X, immediately 
before we took this measurement. According to quantum 
theory, this concept of state is entirely wrong!  Immediately 

before the measurement of state X, the system was not 
exactly located at any particular belief state; instead all 
belief states coexisted in parallel. For example, a person 
may have a tendency to believe simultaneously that a 
defendant is surely guilty and surely not guilty, and this is 
not the same as believing the defendant is moderately guilty. 
   How can the quantum model account for the disjunction 
effect?  Shafir and Tversky (1992) offered a possible 
explanation that may be analogous to entanglement: quasi-
magical thinking.  Suppose Ps consider that their opponent 
is engaged in a thought process much like their own (this 
may apply to the computer agents, also -  see Nass & Moon, 
2000).  No matter what option the Ps consider, they may 
feel that their like-minded opponents will also consider the 
same.  Because mutual cooperation is more rewarding than 
mutual competition, Ps are motivated to cooperate so long 
as they can also reason that their opponents will do the 
same.  Cooperation is only to be preferred however, when 
mutual cooperation is compared to mutual competition, and 
Shafir and Tversky point out that the tendency to cooperate 
should decline when this comparison is no longer relevant 
(e.g., when mutual competition is impossible because the 
opponent has already cooperated). 
   The superposition native to the quantum model is due to 
the uncertainty over which state is actually relevant during 
deliberations.  Shafir and Tversky state that people may be 
reluctant to regard probabilistic events as fact and therefore 
do not explore the resulting paths sufficiently.  We offer the 
view that people have no problem considering probabilistic 
events as fact but do hesitate to discard their logical 
opposites under conditions of uncertainty.  That is, our Ps 
may have been perfectly fine believing that their opponents 
would compete but did not see this as inconsistent with the 
belief that the opponent would cooperate.  We liken this to 
the familiar state of dreaming in that what goes by 
unquestioned in our dreams (when everything, so to speak, 
is superposed) may often present as markedly impossible 
upon conscious contemplation. 
   How does processing in quantum systems relate to 
processing in production rule models or connectionist 
networks? Similar to production rule models, quantum 
operators can be programmed to perform sequences of 
transformations of if-then type using what are called 
controlled U gates (see Nielsen & Chuang, 2000). Similar to 
connectionist networks, quantum operators function as 
content addressable parallel processors that map fuzzy 
distributed inputs into fuzzy distributed outputs.  
   What is the neural basis for quantum states and quantum 
operations? Quantum dynamics are based on wave 
equations that may provide a good mathematical foundation 
for modeling brain waves (see Pribram, 1993). Interference 
effects may be produced by interactions among brain waves.  
   Finally, are there any other applications of quantum 
models in cognitive science? Eisert, Wilkens, and 
Lewenstein (1999, see also Piotrowski & Sladkowski, 2003) 
opened up a new approach to game theory by introducing 
quantum principles for selecting mixed or probabilistic 
strategies. When quantum strategies are permitted, the 
paradox of the PD game disappears, and cooperation rather 
than defection emerges as an equilibrium strategy.  Bordely 
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(1998) used quantum probability rules to explain paradoxes 
in human probability judgments. Mogiliansky, Zamir, and 
Zwirn (2004) used non commutative measurement operators 
to explain order effects on human judgments. Gabora and 
Aerts (2002) developed a quantum theory of concepts. 
Finally, Busemeyer, Wang, and Townsend (in press) 
provide a quantum approach to dynamic decisions.  
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