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ABSTRACT 

Integrated management of travel corridors comprising of freeways and adjacent arterial streets 
can potentially improve the performance of the highway facilities. However, several research 
gaps exist in data collection and performance measurement, analysis tools and control 
strategies. In this project first we analyzed high resolution data consisting of time-stamped 
records of every event involving vehicles, together with the signal phase at real-world 
signalized intersections and developed procedures for estimating performance measures. Next, 
we assessed the performance of a new microscopic simulator for signalized arterials. The 
model predictions were in close agreement with the predictions from widely used models in 
practice.  We also developed and applied control strategies for freeway-arterial coordinated 
control to avoid queue override and developed a methodology to provide estimates of the 
amount and impacts of freeway diverted traffic in case of no-recurrent (incident related) 
congestion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement  

Considerable attention has been given to new approaches for improving the transportation 
system because of limited funding and environmental concerns for constructing new highway 
facilities.  One promising approach is implementation of advanced signal control strategies 
along arterials. This would reduce unnecessary delays and stops at traffic signals, improve 
travel times and cut fuel consumption and emissions.  In many instances these arterial facilities 
also serve as reliever routes for congested freeways especially under incident conditions. Thus 
their efficient operation could be significant for the traffic performance along the entire travel 
corridors.   
 
Recent assessment of the state of practice in signal management on urban networks indicates 
that on average our intersections are poorly managed, according to the National Transportation 
Operations Coalition (NTOC) 2012 signal systems report card [1].  The main reason for the 
poor performance is the lack of systematic data collection to estimate performance measures 
and the development and implementation of control strategies that are responsive to real-time 
changes to traffic patterns and at the same time are simple and effective.  Several adaptive 
control strategies have been developed but their implementation is limited because of the 
complexity and the extensive and costly data requirements [2]. Freeway-arterial coordination 
concepts have also been proposed but their practical implementation is quite limited because 
of data limitations, modeling challenges and institutional issues.  
 
Recent advances in technology are making high resolution (HR) data collection at traffic 
signals economical [3,4]. Furthermore, these data can be complemented by measurements of 
aggregate performance, such as travel times and origin-destination patterns, derived from 
vehicle-based records of GPS traces or Bluetooth and WiFi addresses [5]. Together, these data 
present a game-changing opportunity in traffic management. 
 
1.2 Project Objectives 

The research described in this report is concerned with the analysis of HR data to calculate 
performance measures at traffic signals, and use these data to develop improved control 
algorithms and improved freeway-arterial coordination strategies. The methodology consists 
of empirical data collection and analysis, analytical modeling, and simulation testing.  It builds 
on recent and ongoing work by the research team on algorithms for estimating performance 
measures based on HR and emerging data sources development of testing of strategies for 
traffic signal control and freeway-arterial coordination [5,6,7,8].  The objectives of the research 
project are: 

 Collect and analyze high-resolution (HR) data at signalized intersections. Develop and 
apply procedures for calculating performance measures, and developing improved 
signal plans. 

 Application and evaluation of emerging analysis tools for signalized arterials.  
 Propose and test freeway-arterial coordination strategies for preventing queue override 

on metered ramps, and accommodating freeway diverted traffic on arterials under 
incident conditions. 
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1.3 Organization of the Report  

This document is the final report for the project.  It describes in detail the work performed and 
presents the study findings. Chapter 2 describes the test site for collecting and processing HR 
data, and the estimation of the performance measures. The evaluation of the PointQ simulation 
model is Chapter 3. The development and simulation testing of freeway-arterial coordination 
strategies are presented in Chapter 4.  Chapter 5 summarizes the study findings and outlines 
future research directions.  Appendix A includes the study database. Appendix B includes a 
research paper produced from the project, on queue length estimation at signalized intersections 
based on HR data.   
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CHAPTER 2 

PERFORMANCE MEASURES BASED ON HIGH RESOLUTION (HR) DATA 
 

2.1 Performance Measures at Traffic Signals  

The purpose of this Chapter is to present the acquisition and analysis of HR data to obtain 
measures of effectiveness (MOEs) for the development and evaluation of connected vehicle 
based traffic signal control strategies.  
 
Several MOEs have been proposed and used for evaluating traffic operations at highway 
facilities controlled by traffic signals. Table 2.1 displays MOEs most commonly proposed for 
the development and evaluation of traffic signal control algorithms. These MOEs vary 
depending on the operating environments (isolated intersections, arterials, grid networks), 
traffic conditions and patterns (e.g., congested-undersaturated vs. oversaturated conditions) 
and objectives/constraints (mobility, safety, environment).  Field data collection of most of 
these MOEs with conventional approaches is expensive and time consuming, which limits the 
collection of data only when major design or control improvements are implemented, and does 
not allow for systematic monitoring of traffic performance.    
 
In addition to the MOEs in Table 2.1, the following indicators of performance are commonly 
used to assess the quality of traffic operations at highway facilities:  

 Level of Service (LOS) per the Highway Capacity Manual (HCM) [10] 
 Volume/Capacity ratio (v/c)  

 
Level of service (LOS) is a quality measure describing operational conditions within a traffic 
stream, generally in terms of such service measures as delay, freedom to maneuver, traffic 
interruptions, and comfort & convenience. Six LOS are defined for each type of facility that 
has analysis procedures available; LOS A represents the best operating conditions, and LOS F 
the worst. The average delay (sec/veh) is used to characterize the LOS at signalized 
intersections. Table 2.2 shows the relationship between the average delay per vehicle and the 
LOS.   
 

Table 2.2 LOS table from Highway Capacity Manual [10] 

 

 

 

 

 

 

 

The (v/c) ratio indicates the level of congestion at an intersection approach or the entire 
intersection; v/c ratios greater than 1.00 indicate that the traffic demand is higher than capacity 
which results in oversaturated conditions with long delays, and excessive queue lengths, and 
cycle failures. 
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Table 2.1 Performance Measures for Signal Systems [9] 

 
 
 
2.2 HR System 

High resolution (HR) data at signalized intersections refers to the continuous acquisition of 
detector data that provide information on the vehicles approaching and leaving the intersection 
plus simultaneous information on the signal status (signal display).  In this research we are 
utilizing the SAMS (Safety and Mobility System) originally developed and field implemented 
by Sensys Networks Inc. [6]. 

Figure 2.1 shows the schematic of the detector layout for a signalized intersection in the city 
of Danville, CA, equipped with SAMS. Each approach has stop bar detectors denoted by grey 
circles, and an advance detector (not shown). In addition there is a detector in each departure 
lane, denoted by red circles, which permits measurement of turn movements.  There is a 

I. MOBILITY

Operating 
Environment 

Operating 
Conditions Performance Measure Units Comments

Intersection Undersaturated Average control delay sec/veh Difference free-flow travel time and actual travel time

Max back of queue #veh (ft/l)
Average and 95th % of the max extend of queue 
throughout the cycle 

Cycle failure %
Proportion of cycles that queue failed to clear during 
green

Green time utilization %
Proportion of green utilized by traffic demand served by 
the phase

Oversaturated Throughput # # vehicles served at the intersection per time interval

Arterial/ Undersaturated Average travel time (min)
Average travel time for movements served by 
coordinated signal phases

Grid Network Average travel speed (mph)
Average travel speed for movements served by 
coordinated signal phases

Travel time variability (min)
st deviation, 80th or 95th percentile of travel times served 
by coordinated phases

# of stops/stop rate #/(%)
Average # of stops (fraction of veh stopped) for 
movements served by coordinated phases

Total delay veh-hr Delay of all vehicles served in the system 

% vehicles in the green %
Proportion of platoon arriving during the green time per 
signal cycle 

Bandwidth efficiency %
Proportion of the green through bandwidth to the signal 
cycle 

Attainability %
Proportion of green bandwith to the min green time for 
the through phase

Transit delay1 sec/bus average delay to transit vehicles at traffic signals
Acceleration noise ft/sec2 Standard deviation of veh accelerations

Oversaturated Throughput # # veh served 

Extend of queue #/mi Distance or # of street segments with queue spillback
Congestion duration hr Duration of oversaturated conditions

II. SAFETY 

Intersection/ Undersaturated/ # accidents per type #/yr
# of accidents by severity and/or traffic movement (e.g., 
# left turn related accidents)

Encroachment time (ET) # conflicts Surrogate conflict measure 

Arterial/ Oversaturated # RLR # # of red light running violators

Grid Network # vehicles in yellow #/cycle
# vehicles in platoon arrive in the yellow clearance 
interval per signal cycle 

III.  ENVIRONMENTAL

Intersection/ Undersaturated/ Fuel Consumption gal Excess fuel consumption due to delay & stops

Arterial/ Oversaturated HC/CO/NOx/CO2/PM 
g ,
/gr/m, Air pollutant emissions / concentrations

Grid Network Noise [db] Inceased noise level due to congestion
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network monitoring card that provides the signal phase.  The vehicle detectors are 
magnetometers that send the detection events wirelessly to the Access Point (AP).  The AP 
also receives the signal phase events.  The AP time stamps all events with an accuracy of 10ms.  
The event stream is sent via a cellular modem to a server. The intersection is also equipped 
with a PTZ camera, which allows to verify the accuracy of the data collection process. 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 2.1 Sample SAMS Instrumented Intersection, Danville CA 

 
 
 
2.3 The Selected Test Site and HR Database 

The selected test site is a signalized intersection in Beaufort, SC (Figure 2.2). The Intersection 
has four approaches (legs) and there are three movements per approach. As is shown in Figure 
2.2, the sensor instrumentation includes upstream detectors on each travel lane located 
approximately 200 to 300 ft upstream from the stop-line, stop bar detectors. Also, departure 
lane detectors are located on each lane downstream of the stop-line.  The signal phasing and 
timing information are shown in Figure 2.2(b). There are leading left-turn phases on the main 
road (legs 1&3) and split phasing on the cross streets. The signal operates as coordinated traffic 
actuated with fixed-time of day timing plans. There are a total of nine fixed-time timing plans 
for AM, midday and PM peak on weekdays plus weekends, light traffic and saturated 
conditions.    
 
The HR data available consist of detector recordings at each detector as each vehicle enters and 
leaves the intersection along with signal phase and timing information. The data are processed 
and stored into different sets on a server at various time resolutions (Appendix A includes a list 
of the data): 

 Data set 1: turning movement counts, delay, signal phase duration  
 Data set 2: Saturation flows for each lane  
 Data set 3: signal settings per cycle (green time, wasted green time, cycle length) 
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(a) Intersection Geometrics  

 
 
 
 
 

Time Period/Phase 1 2 3 4 5 6 7 8 Cycle Length

AM Peak (6AM-9AM) 15 40 N/A 39 15 40 N/A 16 110 

Mid Day (9AM-2PM) 17 53 N/A 33 25 45 N/A 17 120 

PM Peak (2PM-7PM) 15 62 N/A 33 37 40 N/A 20 130 

(b) Signal Phase and Timing  

Figure 2.2 Test Intersection-Ribaurt Rd@Lady’s Island Drive, Beaufort, SC 

 
2.4 Estimation of Performance Measures Using the HR Data 

The following sections describe the processing and analysis of the HR data for a typical 
weekday, Wednesday February 18, 2015 from 6:00 am to 7:00 pm.  
 
2.4.1 Vehicle Counts  

The processing of sensor data provides flow rates at user selected time resolution for each 
movement, approach and the entire intersection. Figure 2.3 shows the total number of vehicles 
per hour that entered the test intersection. Note that, each bar presents the traffic volume in the 
past 1 hour, i.e., the value at 7AM bar shows the total traffic volume from 6AM to 7AM. The 
average total flow is 2,810 vph, and the standard deviation is 594 vph.  The maximum number 
of vehicles that entered the intersection per hour is 3,640 vph at 6:00 PM and the minimum is 
1,371 vph, at 6:00 AM. The traffic volume is fairly constant in the AM peak (8-9) and PM peak 
(4-6), indicating that adaptive control in these time periods may not produce significant benefits 
compared to fixed time of day plans. 

 

Leg 1 

Leg 2 

Leg 3 

Leg 4 
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Figure 2.3 Total Intersection Traffic Volume  

 
The vehicle counts per movement are calculated by matching the stop-bar and departure lane 
detections to determine the turn movement of each vehicle.  Figure 2.4 shows the turning 
movement counts (#veh/15 minutes) for leg 1.   

 

 
Figure 2.4 Turning Movement Counts--Leg 1 (veh/15min) 

 
 

2.4.2 Signal timing data 

The processing of signal timing data provides the green time per phase and the cycle length. 
Figure 2.5 shows the cycle length and the green time for the phases serving the left turns and 
through movements on legs 1 and 2.  Phase 2, which serves the through movement in leg 1, 
has the longest green time.  As shown in the Figure, the green time for Phase 6 which serves  
the through movement in leg 2, is very close to phase 1.  
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Figure 2.5 Cycle length and Green Times   

 
 
The signal timing data also provide information about the wasted green time per phase. Wasted 
green time is the time interval that a particular phase remains green but no vehicles enter the 
intersection from that movement and there is an active call (request for service) by other 
phase(s).   
 
Figure 2.6 shows the frequency of the wasted green time for phase 4 (leg 3) during the analysis 
period (6am-7pm).  It can be seen that in over 56% of the signal cycles there is a wasted green 
time of longer than 4 sec., indicating the need for adjusting the existing signal settings.  
 

 
Figure 2.6 Wasted Green Time, Phase 4 

6am 7am 8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm
0

20

40

60

80

100

120

140

160

180

Time (hr)

D
u
ra

ti
o
n
 (
se

c)

 

 
phase1

phase2

phase5

phase6

cycle length

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

100

Wasted green time(sec)

N
um

be
r 

of
 c

yc
le

s



 9

Figure 2.7 shows the percentage of vehicles arrived on green for through movement of leg 2 
(phase 6). These values are calculated by dividing the number of vehicles arrived during the 
green interval over the total number of vehicles that arrived per cycle. The proportion of arrivals 
of green is used to assess the quality of signal progression along arterials. The higher percentage 
of arrivals on green the less number of stops and delay at the intersection approach.  A similar 
widely measure is the Purdue Coordination Diagram (PCD) [3] which shows the vehicle 
arrivals per cycle relative to the start of the green in the same diagram for a chosen time period.  
Arrival on green values also can be used to determine the arrival type and the platoon 
progression factor for estimating signalized intersection delay per the Highway Capacity 
Manual procedures [10]. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure 2.7 Proportion of Vehicles Arriving on Green (%)—Phase 6  
 
2.4.3 Saturation flow, Start-up lost time and Volume/Capacity (v/c) ratio 

Saturation flow is the maximum flow rate that can be sustained during the green signal phase, 
assuming there is a continuous queue present, expressed in vehicles/hour of green (vphg).  It is 
estimated by measuring the time of discharge (i.e. the event-time) between the fourth and 
eighth queued vehicles at the signalized intersection approach.  The first three vehicles in the 
queue are not used because of the start up lost times. Table 2.3 shows the measured average 
saturation flow rate for selected intersection approaches. 
 
Table 2.3 Saturation Flow Rates 

 

APPROACH MOVEMENT SATURATION FLOW
(veh/hr/l/g)

1 THROUGH 1727
LEFT 1798

2 THROUGH 1728

3 THROUGH 1723
LEFT 1828

4 THROUGH 2219
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The start-up lost time is calculated from the discharge time of the first four vehicles in the 
queue and the saturation flow as follows: 
 

 
(2-1) 

 
 
Where:  
ls: start time lost time (seconds)  
t4: discharge time of the first four vehicles in the queue (seconds)  
S: saturation flow (vphg)  

 
The calculated saturation flow is used with the signal timing data to obtain the volume to 
capacity (v/c) ratio for an intersection approach, and delay.  The v/c ratio is calculated as 
follows: 
 
 

ܿ/ݒ  ൌ 	 ௩ൈ஼
௚ൈ௦

   (2-2) 

Where:  
C: cycle length (seconds)  
g: the effective green time (actual green time –start-up lost time (seconds)  
v: traffic volume (vph)  
 
The v/c ratio is a measure of the level of congestion for a particular movement or approach.  
(v/c) ratio greater than 1 indicates that the approach is oversaturated, i.e., queues do not clear 
at the end of the green period. Figure 2.8 shows the estimated v/c ratio for through movement 
of leg 2, throughout the analysis period based on the vehicle count and signal timing data.  As 
is shown in Figure 2.8 the v/c ratio is less than 0.6 for most of the analysis period, except short 
times during the peak periods. 
 

 
Figure 2.8 Volume/Capacity (v/c) Ratio for Through Movement--Leg 2 
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Figure 2.9 shows the v/c ratios for all six phases over one day in 15 min intervals for the 
Danville sample intersection (Figure 2.1). Also shown is the level of service (LOS) based on 
(v/c) ratio. These plots suggest possible tradeoffs among the green splits between signal phases 
in order to improve the worst LOS.   
 

 

Figure 2.9 V/C and Level of service (LOS)—Danville Intersection 

 
2.4.4 Delay 

The delay (waiting time) is calculated as follows: each time a vehicle crosses the  advanced 
detector, its time to join the queue is computed by calculating when the car would get to the 
stop-bar, traveling at its free-flow speed (assumed as the speed limit). This is done for each car 
that arrives during a red interval. Once the signal turns green, the queue is assumed to 
immediately discharge. Thus, the average delay is computed using the time of arrivals of each 
vehicle to the queue, and the time when the signal turns green. Figure 2.10 shows the average 
delay per vehicle per cycle for leg 2 through movement.   
 
Figure 2.10 also shows the average delays for the same movement calculated using the 
analytical formula (2-3) below based on deterministic queuing (first term in the HCM delay 
estimation equation [10]): 

݀ ൌ
ܥ ቀ1 െ

݃
ቁܥ

ଶ

2ሺ1 െ
݃
ܥ ൈ

ݒ
ܿሻ

 

(2-3) 
                             

The HR data derived and the analytically determined delays are in reasonably close agreement. 
The HR data based delays are longer than the analytically estimated values, because the 
analytical method does not take into consideration the random delays (second term in the HCM 
signalized intersections delay equation).   
 
Figure 2.11 shows the average delays per phase and the associated LOS according to HCM 
(Table 2.2).  Most of the movements at the intersection have acceptable performance (LOS D 
or better). However, in phase 8 (leg 4 all the movements) high delay and LOS F occur in several 
time intervals.  
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Figure 2.10 Measured vs. Calculated Delay for Through Movement--Leg 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.11 Average Delay per Phase with Level of service (LOS)  
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2.4.5 Queue length  

The queue length per lane on each intersection approach is calculated from the HR data from 
vehicle arrivals at the upstream (advanced) and the downstream (stop-line) sensors. We 
developed a real-time estimation algorithm based on stochastic gradient descent that accounts 
for sensor measurement biases. Detailed description of the algorithm is described in a research 
paper attached as Appendix B.  The general formulation is as follows: 

 
ሻݐሚሺܣ െ ሻݐ෩ሺܦ ൌ ሻݐሺܣ െ ሻݐሺܦ ൅  (4-2)                   ݐ߳

 
Where: 
 Ã:  the detected arrival counts over time t from the advanced sensor  
  ෩ : the departure counts over time t from the stop-bar sensorܦ
A,D:  actual arrival and departure counts 
 ߳the time dependent bias term  
 
Figure 2.12 illustrates the difference between the actual and estimated queue length.  Every 
busy period (time with a queue present) the algorithm updates the bias term value ߳for the next 
busy period based on the previous bias term:  
 
෠ܳሺݐሻ ൌ ሻݐመሺܣൣ െ ሻݐ෡ሺܦ െ ߳௡ ∗ ൧ݐ

ା
                                                                      (2-5) 

߳௡ାଵ ൌ ߳௡ ൅ ௡ߙ ∗ ∆௡                                                                                    (2-6) 
 
Where: 
߳௡ାଵ: the bias term for the next busy period, calculated from ߳௡, the bias from previous busy 
period, 
 ∆௡: the difference between actual and estimated queue length at the end of the previous busy 
period  
 ௡: is the time step (predetermined value 3-5 sec)ߙ
 

 
 
 
 
 
 
 

 
 
           Figure 2.12 Actual versus estimated queue length 
Figure 2.12 Queue Length Estimation 
 
The algorithm was tested through simulation. Consider a single discrete-time queue that has 
Poisson arrivals with rate λ vehicles per 5 seconds time step. We set λ= 1.4 veh/ (5 sec) or 
1,008 veh/hr. We consider a cycle time of 12 time steps (60 seconds) with 6 time steps of green 
and red time (30 seconds). The service time distribution is deterministic with service rate 
(saturation flow) μ = 0.6 veh/sec = 2,160 veh/hr when the signal is green and μ = 0 when the 
signal is red. Thus, the stability region of the queue is λ < 1.5.  
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Figure 2.13 Detector’s layout for Simulation 

 
Figure 2.13 shows the assumed layout of three sensors for the “ideal” estimation of queue 
length. Sensor A counts the number of vehicles that enter the queue, sensor B counts the 
number of vehicles that exit the queue, and sensor C status indicates whether the queue is empty 
or not. We evaluate the performance of the proposed algorithm in two cases. First, we assume 
that sensor C is noiseless, sensor A counts each arriving vehicle with probability 0.95 
independently, and sensor B counts each departing vehicle with probability 0.85 independently. 
Note that with the chosen parameters, we expect to see a bias = (0.95 - 0.85) λ = 0.14 vehicles 
per time slot.  In the second case, we consider 2 modes of operation: (i) the first mode is the 
one explained before; (ii) the arrival rate is decreased to λ= 1 veh/ (5 sec) = 720 veh/hr. We 
assume that the system switches between these two modes every 2 hours or 1440 time slots. In 
this case, we choose a constant step size of α = 0.004 so that the algorithm can adapt to the 
changes in the system. Note that the decaying step size enables us to prove the convergence of 
the correction term when  is fixed. However, when  (t) is time-varying, the step size should 
be non-decaying so that learning does not stop. Recall that the step size is the learning rate of 
the algorithm. Thus, larger step size speeds up the learning. However, if the step size is chosen 
to be too large, the gradient-descent-based algorithm does not converge. 
 
We now evaluate the performance of the proposed algorithm in the first case. We choose the 
step size αn= 0.02/n0.6. Figure 2.14 shows how the correction term εn converges to the bias  = 
0.14. One observes that after only around 30 busy periods the algorithm learns the bias and 
gets close to 0.14. The estimated queue-length for a period of 5000 seconds is shown in Figure 
2.15. 
 

 

     Figure 2.14 Error Convergence  
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At our real world test intersection, sensor C is not available to provide the exact time that queue 
is empty.  We assume that if the signal is green by more than one time step (3 seconds) and no 
vehicle passes the stop-bar sensor then the queue is empty.  Also, as soon as a vehicle passes 
the advanced sensor during the red interval, a queue starts to form. Figure 2.16 shows the 
estimated queue length for leg 1 through movement.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
 
 
 
  Figure 2.15 Actual vs. Estimated Queue Length  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 2.16 Queue Profile Leg 1 Through Movement 
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2.5 Application of HR data: Improving Signal Timing Plans  

The typical approach for developing fixed time of day plans is to collect turning movement 
counts for certain times of the day (typically AM, midday and PM peak) and determine the 
signal settings (cycle length and green times) to minimize delay, stops or other chosen 
performance measures.  These timing plans may not be optimal for other time periods or other 
days, because they don’t account for the variability of traffic demand.  Procedures have been 
proposed to develop  robust timing plan to account for demand as well as supply variability but 
the high costs of collecting the required field data on turning movement counts makes most 
proposed approaches not practical [12]. The availability of continuous HR resolution data 
provides the opportunity to develop robust timing plans without additional costs. 
 
Figure 2.17 shows the 5 min traffic volumes at the test intersection over the 12 hour analysis 
period. This information allows us to group (cluster) the data into periods of similar conditions 
to develop signal settings instead of predetermined time periods.    
 

 
Figure 2.17 Total Volume at Test Intersection (#veh/5-min) 

 
We used a K-means clustering method which partitions n observations (traffic volumes) in to 
k clusters in which observation belongs to the cluster with nearest mean. The objective is to 
minimize the distance of every item in each cluster from the center of the cluster, as it is shown 
in the following equation: 
 

                                      (2-7) 
 
 
Where, x presents each point from group Si.  
 
In our case we have K=3 clusters because we have three timing plans. The process consist of 
the following steps: a) estimate the center of each group, b) calculate the distance of each point 
from the center points, c) put each point in the group with the least distance from the center, d) 
go back to step (b) and continue this process until no point leaves its group in step (c).  Figure 
2.18 shows the points in each cluster obtained from the application of the method.  
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Figure 2.18 Clustering of Volume Data, February 18, 2015  

 
 
 
We developed three signal timing plans using the clustered volumes, using the SYNCHRO 
widely used signal optimization software [11].  Figure 2.19 shows a comparison of existing 
and new timing plans.  It can be seen that the proposed timing plans improved the intersection 
delay by 10% on the average over the existing signal timing plans.  As it was expected the 
higher benefits obtained over the time periods of beginning or dissipation of designated peak 
periods (e.g., 9 AM and 4 PM).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

        
      Figure 2.19 Existing vs. Proposed Timing Plans 
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CHAPTER 3 

THE PointQ SIMULATION MODEL 

This Chapter describes the application and findings of the PointQ model under development at 
UC Berkeley [13] on real-world study sites. 
 
3.1 PointQ model Description   

PointQ is a microscopic (vehicle-by-vehicle) simulator which models a network of signalized 
intersections as a network of controlled queues, with one queue per movement or phase, similar 
to a store-and-forward communication network. Vehicles enter the network at the entry links 
according to a deterministic or random (poison) process. They travel along a link in a fixed or 
random travel time. At the end of the link they join a queue. Vehicles make turns at 
intersections either in fixed proportions or according to a randomly selected origin-destination 
(O-D) route and leave the network when reach an exit link.  
 
PointQ combines the advantages of microsimulation, it tracks individual vehicles, so it can 
model O-D demands and calculate individual vehicle travel times and delay, with those of 
macrosimulation, i.e., it does not model individual car-following/lane changing dynamics.    
The model has been validated based on the detailed trajectory data from the FHWA’s Next 
Generation Simulation (NGSIM) database [14].  It can be interconnected with macroscopic 
freeway simulators to model integrated freeway-arterial traffic networks. Also, it has been 
interfaced with the Maximum Pressure signal control algorithm to determine signal settings 
[15]. 
 
PointQ is a discrete event simulator.  Events are related to the system entities: vehicles, traffic 
controls, and the physical network (comprised of signalized and non-signalized intersection 
nodes, their corresponding input and output links and the vehicle queues modeled according to 
the related phases to each link). The occurrence of an event modifies the system state according 
to the related procedure and may also create new events of any type and nature. In Figure 3.1 
the nodes shown represent the different event types and edges indicate the generation of an 
event.  The following events are generated in the simulation: 

Type 1: appearance of a new vehicle in a signalized network node 
Type 2: decision for the next intersection control 
Type 3: a new stage is applied to the intersection 
Type 4: vehicle leaves a signalized queue 
Type 5: vehicle arrives at a signalized queue 
Type 6: vehicle achieves its hold constraint imposed by a store and forward model (case 
of a signalized intersection) 
Type 7: flow variations 
Type 8: vehicle appears at a non-signalized intersection 
Type 9: vehicle ceases its store and forward hold time in a non-signalized queue 
Type 10: vehicle departs from a non-signalized intersection. 
Type 11: vehicle joins a non-signalized intersection queue 

 
The vehicle departure events concern one or more vehicles according to the number of the 
vehicles which can leave the queue simultaneously. This number depends upon the input 
saturation flow rate. 
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Events of types 6, 11 correspond to a store and forward model, and impose a minimum hold 
time in the queue. Events related to non-signalized intersections need to be updated to the 
current version of the PointQ handling control requiring sensor information. 
 
 
 

 
 
Figure 3.1 Sequence of the PointQ Model Events 
 
 
The PointQ model requires the following input data: 

1. Network characteristics: allowable movements, saturation flow for each movement (i.e., 
number of lanes), link storage capacity (number of vehicles, including turn pockets), link 
travel time (i.e., speed, constant or stochastic).  Because the model does not explicitly 
consider the lane configuration at the intersection approaches, only saturation flows per 
movement, the saturation flows for shared lanes (e.g., through and right turn movements) 
are input proportional to the movement volumes. 

2. Traffic demand: flows at each entry link, turn ratios for each movement at every 
intersection and/or origin-destination (O-D) flows. 

3. Signal timing data: Specification of timing plan at each intersection (phase green times, 
cycle length, and offsets).  

 
The output of PointQ model consists of a record of all the events in the simulation run, 
including both vehicle events and intersection traffic control events.  The processing of the 
model output by the model user, produces several network performance measures including 
link and route travel times, vehicle-miles traveled (VMT), and intersection/link  performance 
measures (queues, delays). For example, the simulation output lists for each vehicle the time 
when it joined the queue and the time when it left the queue. The difference provides the time 
that each vehicle spent in the queue. 
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3.2 Application on Real-World Test Sites  

3.2.1 Isolated Intersection: Ribaut Rd @ Lady’s Island Drive, Beaufort, SC 

The pointQ model was applied to evaluate the performance of the Ribaut Rd/Lady’s Island 
Drive intersection in Beaufort, SC, which was used in the collection and analysis of HR data, 
described in Chapter 2. Figure 3.2 shows the layout of the intersection and the link designation 
for the pointQ model.  Also shown are the green times per phase with a fixed cycle length of 
110 seconds.  We simulated two hours of operation (6 to 8 am) when conflicting legs 2 and 3 
have the highest traffic demand. Saturation flow rates were set as 1,800 vphg/lane.  
 

 

Figure 3.2 Test Intersection Layout and Signal Settings  
 
 
 

 The data output for the queue length from the pointQ model is in the form of a graph of queue 
length in number of vehicles vs. time of simulation (Figure 3.3).  The average queue is 
calculated from the total output area  below the blue line shown in Figure 3.3 and divided by 
the entire time period (In this case is 1 hour, 6-7 AM). The maximum queue length is the 
highest point in the graph.  
 

 

Figure 3.3 PointQ Predicted Queue Link1 to Link 8  
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We also modeled the test arterial using the widely used SYNCHRO traffic analysis and 
optimization software [11], and compared the SYNCHRO measures against the pointQ 
predictions. Table 3.1 shows the estimated maximum queue lengths from the two models.  
 

The SYNCHRO model calcuates queue lengths based on the HCM procedures as shown in 
Figure 3.4.  A single signal cycle is modeled and the average end of queue (in ft) is computed 
from the input flows, saturation flows and signal settings.  Also SYNCHRO does not report 
the maximum queue length; it reports the 95th queue length,  which is calculated as twice the 
average queue length. Because the predicted queue length from PointQ is in number of 
vehicles, we assumed an average vehicle length is 25 feet to convert the queue estimates in feet 
by SYNCHRO into number of vehicles to compare with pointQ. 

 

 
 

 

 

 

 

 

 

       Figure 3.4 SYNCHRO Queue Length Estimation 

 
 
Table 3.1 shows that the predicted maximum queues from the two models are in reasonably 
close agreement, given the differences of estimating the queue lengths among the two models. 
The differences are within one or two vehicles for most of the intersection movements.  
Significant differences are found on through and right turn movements on Leg 2.  In this leg, 
the right turn movement has an exclusive lane that allows traffic to move during the red time 
during non cnflicting phases.  However, right turn on red and overlaps are not modeled  in 
pointQ.    
 
Table 3.1 Maximum Queue Lengths: PointQ vs. SYNCHRO (# veh) 

 
 
 

MODEL/ LEG 1 (SB) LEG 2 (NB) LEG 3 (WB) LEG 4 (EB)
TIME PERIOD LT THR LT TH RT LT THR LT THR
6:00-7:00 AM

.Q 12 7 2 11 9 18 7 3 3
SYNCHRO 15 6 2 6 3 14 9 2 4
7:00-8:00 AM

.Q 7 7 2 14 10 14 6 2 2
SYNCHRO 7 7 2 8 3 12 8 2 2
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3.2.2 Arterial: San Pablo Avenue, Berkeley, CA  

The PointQ model was applied to assess the traffic performance of a section of San Pablo arterial 
in the city of Berkeley, California. The study section includes ten signalized intersections along 
San Pablo Avenue, from Ashby Avenue to Gilman Street (Figure 3.5). The distance between 
intersections ranges from 450 to 1983 ft, for a total length of 2.02 miles. The posted speed limit 
is 35 mph. Traffic demand data consist of turning movement counts for the PM peak hour (4-5 
pm).  All signals operate as fixed-time coordinated with a common cycle length of 80 seconds.  

Figure 3.6 shows the link-node numbering scheme for the PointQ model application. There are 
a total of 10 nodes and 52 links.    

 

 
 
Figure 3.5 Map of San Pablo Test Arterial 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 PointQ Model Link & Node ID for Test Arterial 
 
We performed a one hour simulation with the PointQ model and processed the output to obtain 
performance measures namely travel times on the arterial, and queue lengths at intersection 
approaches of critical intersections.  We also modeled the test arterial using the SYNCHRO 
software, and compared the SYNCHRO predicted performance measures against the pointQ 
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predictions. We performed two series of simulation experiments: a) existing signal settings, 
and b) SYNCHRO optimized signal settings (green times and offsets).  The findings are 
presented below:  
 
Arterial Travel Time:   

Table 3.2 shows the average travel times along the arterial per travel direction for each signal 
control scenario. The predicted travel times are in close agreement especially under the 
optimized signal settings. There is a 16% difference in travel times between SYNCHRO and 
pointQ in the NB direction of the arterial under the existing signal settings. To better understand 
the travel time predictions we compared the link travel times on each segment (link) as shown 
in Figure 3.7.  It can be seen that the link travel times are very close except on Link 15 
(northbound approach on San Pablo and Dwight Way) which also explains the 16% difference 
on the arterial travel time (Table 3.2).   This is because SYNCHRO over-predicts the delays at 
intersection approaches such as northbound Dwight Way that is close to saturation. This results 
in long travel times for the particular link.  
 
Table 3.2 Arterial Travel Times: PointQ vs. SYNCHRO (minutes) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3.7 Link Travel Times – Existing Signal Settings 

ARTERIAL EXISTING SIGNAL TIMINGS OPTIMIZED SIGNAL TIMINGS
DIRECTION .Q SYNCHRO DIFF .Q SYNCHRO DIFF

Northbound 4.95 5.90 16.10% 4.53 4.57 0.73%

Southbound 4.23 4.63 8.63% 4.55 4.73 3.87%
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Figure 3.8 shows the travel time by link for two models after the optimization of signal settings. 
The travel times from the two models are very close at all links.  The signal optimization 
provided additional green time on link 15 which eliminated the oversaturation and high delays 
predicted by the SYNCHRO model in the case of existing signal settings (Figure 3.7).   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 3.8 Link Travel Times – Optimized Signal Settings   
 
 
Queue Length: 

Figure 3.9 shows a comparison of maximum queue lengths under optimized signal control for 
three intersections on the arterial: San Pablo & Dwight, San Pablo & University and San Pablo 
& Gilman. The queue lengths are similar except on the San Pablo & Dwight  and San Pablo & 
Gilman intersections where there are shared lanes (through and right turns) with significant 
right turning traffic.  
 

 
 
 

 
 
 
 
 
 
 
 
   Figure 3.9 Maximum Queue Length  
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CHAPTER 4 

FREEWAY-ARTERIAL COORDINATION STRATEGIES 
 
Several efforts are underway for integrated corridor management (ICM) of facilities comprised of 
freeways and adjacent arterial streets [16]. One of the main obstacles toward an efficient 
management of a travel corridor is the coordination of the various subsystems that it comprises. 
The divisions between these subsystems are drawn along jurisdictional boundaries which often 
have little to do with travel patterns.  
 
A guide published by FHWA [17] describes the challenges for arterial–freeway coordination and 
suggests procedures to facilitate integration. The document focuses mainly on planning, 
institutional issues and data dissemination, and less on the development of control strategies that 
can be implemented in real time.  Existing research has focused on development of optimization 
algorithms and routing models for integrated control of freeway-arterial corridor system 
[18,19,20,21] with emphasis on non recurring congestion. Other approaches focus on control 
strategies for freeway interchanges [22,23,24].  In this research we focus on a) control strategies 
that prevent overflow on metered ramps that adversely affect arterial operations under recurrent 
congestion, and b) guidance on traffic diversion from freeway to arterials in the case of non 
recurrent (incident related) congestion.  
 
4.1 Recurrent Congestion—Queue Overflow at Metered Freeway On-Ramps 

The objective of freeway on-ramp metering is to regulate the entry of vehicles to prevent 
congestion on the freeway mainline. Several ramp metering algorithms have been developed and 
implemented worldwide [25].  Most of the operational ramp metering systems employ a “queue 
override” feature that is intended to prevent the on-ramp queue from obstructing traffic conditions 
along the adjacent surface streets. The override is triggered whenever a sensor placed at the 
entrance of the on-ramp detects a waiting queue of the on-ramp vehicles, and increases the 
metering rate to its maximum value, to empty the queue into the freeway.  
 
The queue override reduces the effectiveness of employed ramp metering systems during the time 
of highest traffic demand, when the ramp metering is most needed. Significant benefits can be 
realized by preventing the queue override. This can be accomplished by i) developing ramp 
metering strategies that take into account the on-ramp queues, ii) managing the on-ramp demands 
from the adjacent surface street with signal control strategies. 
 
Earlier research at the PATH program developed an on-line ramp metering strategy that considered 
the on-ramp queue lengths in the determination of ramp metering rates [26].  Figure 4.1 illustrates 
the approach. The top of Figure 4.1 shows that under the conventional ramp metering algorithm 
the queue exceeds the on-ramp queue threshold shown by the red line, triggering queue override. 
The bottom of 4.1 shows the queues under the new ramp metering strategy.  The algorithm keeps 
the ramp queues under the threshold avoiding the queue override.   
This strategy requires the measurement of the on-ramp queue which is difficult in practice. 
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       Figure 4.1 Queue Regulator Ramp Metering Strategy [25] 
 
In this research project we developed a control algorithm to manage the entry of vehicles on the 
on-ramp through signal control changes at the adjacent intersection(s).  The algorithm is an 
extension of a control algorithm that was originally developed for coordination of a single freeway 
metered on-ramp with an adjacent isolated signalized intersection [8]. The algorithm considers 
several signalized intersections along the parallel arterial and assumes that the metering rates and 
algorithms are fixed, i.e., the focus is on the adjustment of signal settings at the neighboring 
signals.   
 
The proposed strategy adjusts the green times and offsets on the arterial traffic signals with the 
objective that on-ramp queues do not exceed the on-ramp queue storage (Figure 4.2).  The 
following objectives must be satisfied: i) minimum green times at each signal phase, ii) fixed cycle 
time, and iii)  available storage on the arterial links as shown in Figure 4.2.   

 
 

 
 

 
 
 
 
 
 
 

Figure 4.2 Freeway-Arterial Control Strategy  
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We tested the proposed strategy on a real-world freeway segment and parallel arterial. The test site 
is a 4 mile section of I-680 in the northbound direction, and a parallel arterial Capitol Avenue with 
three signalized intersections in the city of San Jose, California (Figure 4.3). The selected freeway 
section has four lanes in each direction, whereas the parallel arterial Capitol Ave., as well as Alum 
Rock Ave. and Berryessa Rd. all have two lanes in each direction. McKee Rd. has three lanes in 
each direction. The on-ramp meters operate under the local responsive demand-capacity strategy, 
and the arterial traffic signals operate with time of day (TOD) coordinated actuated timing plans. 
 
There are three recurrent bottlenecks in this freeway section, located near the on-ramps from 
Berryessa Rd., McKee Rd., and Alum Rock Ave.  These bottlenecks are caused by the  high on-
ramp merging traffic entering the freeway mainline from of the westbound direction of Berryessa 
Rd., McKee Rd., or Alum Rock Ave., along with high on-ramp demand from both directions of 
Capitol Ave., during the morning peak period (7:30-9:30 AM).  Figure 4.4 is a contour plot of 
average speeds of the selected freeway segment during a typical morning peak period.  Figure 4.5 
shows the flow and speed at the bottleneck near Alum Rock Avenue. 
 
 

 

Figure 4.3 Study site: I-680-Capitol Ave and Detector Locations 

 
The selected site was coded into the AIMSUN [27] microscopic simulation model.  Freeway input 
demands and performance data were obtained from the PeMS system [28], which stores detector 
data (flow, speed, occupancy) aggregated over 5 minutes.  For the arterial intersections, 5-minute 
turning moment traffic counts were collected. Ramp metering rates and signal timing plans were 
obtained from Caltrans and the city of San Jose.   
 
The model was calibrated to existing traffic conditions by adjusting input data and model 
parameters. The predicted flows and speeds at selected locations on the freeway mainline were 
compared with real traffic measurements in every 5 minutes to assess the accuracy of the 
simulation model in representing observed conditions.  The GEH criterion was used to assess the 
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agreement of simulated predictions and field measured flows [28]. According to this criterion, 
simulated flow quantity is said to be acceptable if it satisfies the following requirements. 

Link flow quantity  
 If 700vph < real flow < 2700vph, simulated flow has an error within 15%; 
 If real flow < 700vph, simulated flow has an error within 100vph; 
 If real flow > 2700vph, simulated flow has an error within 400vph. 

The GEH statistic is computed as:   

 
 
 
 
 

  
 

                      Figure 4.4 Speed Contour plot of NB I-680 Test Section   
 
 

 
Figure 4.5 NB I-680 Flow and speed at Alum Rock Ave. on-ramp 
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A satisfactory calibration requires that the predicted freeway flow satisfies the condition GEH < 5 
for at least 85% of all 5-minute time intervals. For speed, the relative root mean squared error 
(RRMSE) of the simulated speed values is required to be 15% or lower, on average of all detectors. 
For arterial flows, the GEH < 5 criterion must be satisfied for at least 85% of all 5-minute time 
intervals, for each turning movement of the major intersections.  The results from the model 
calibration show that he model satisfies the simulation acceptance criteria.  On the arterial links, 
the above mentioned flow criteria were satisfied 95% of the time. Figure 4.6 shows that the field 
measured and simulated freeway speeds are in close agreement. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 4.6 Observed vs. simulated speeds on NB I-680 at Alum Rock Ave. on-Ramp  
 
The proposed freeway-arterial coordination strategy was tested using the calibrated simulation 
model.  The results were analyzed separately for a) freeway traffic, b) arterial through traffic, c) 
arterial on-ramp traffic, and d) total system. The results are shown in Figure 4.7 in terms of percent 
improvements in delay due to the proposed strategy compared to the existing operations.  
 
The proposed coordination strategy improved the performance of the freeway as expected.  The 
delay was reduced by 15%, and the throughput was increased by 3%.  Figure 4.8 shows the 
proposed strategy improves the bottleneck discharge flow. 
 
On the arterial the strategy produced mixed results. The delay was reduced on travel 
directions/movements that do not intend to access the freeway on-ramp on both Capitol Ave. and 
McKee Rd arterials, and the delay increased on the approaches serving the on-ramp traffic.  This 
is because these movements received additional green time when the green times on the phases 
serving the on-ramp traffic were reduced to prevent the queue overflow on the on-ramp.  However, 
the delay increase did not create operational issues on those links. On the average, the delay on 
arterial through traffic was reduced by 15%, and the delay for the on-ramp serving traffic 
originating from northbound Capitol Ave. and westbound McKee Rd was increased by 5%. 
  
 
 
 



 
 
 

30

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

          Figure 4.7 Delay Impacts of Freeway-Arterial Coordination Strategy  
 

 

 

 

 

 

 

 

 

 

Figure 4.8 Impacts of Freeway-Arterial Coordination: Freeway Bottleneck Flow 

 
4.2 Non-Recurrent Congestion –Incident on Freeway 

A commonly recommended strategy for freeway/arterial coordination in ICM projects [16] is the 
use of parallel arterial(s) as reliever route(s) to the freeway travelers whenever there is a capacity 
reducing incident on the freeway. In this situation, drivers may be instructed to divert on the 
parallel arterial(s) and return to the freeway past the incident location.  The signal settings on the 
arterial are set to facilitate the movement of the diverted freeway travelers (“flush plans”).  As we 
discussed several models have been developed to provide alternative routes and estimate the 
benefits of diversion [20,21].  However, there is no empirical evidence yet on the effectiveness of 
such strategies, and there is no clear understanding of the issues involved in the development and 
implementation of these strategies. The Freeway-Arterial coordination handbook [17] provides 
mostly information on interagency coordination but not technical guidance on estimating 
allowable diversion volumes and associated impact. 
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The effectiveness of diversion strategies largely depends on accurate prediction of the diverted 
volume on the parallel arterial and deployment of signal settings on the arterial to accommodate 
the diverted traffic.  Critical considerations for diversion strategies include but are not limited to: 

 Freeway operating conditions: level of congestion, bottleneck presence and causes and 
impacts, origin-destination patterns  

 Incident location, severity and duration: lane-blocking incidents located at or close to 
existing recurrent bottlenecks create significantly higher adverse impacts as opposed to 
short duration incidents upstream of bottlenecks 

 Characteristics of the traveler information system:  Drivers consider diversion to parallel 
arterials based on travel information (e.g., changeable message signs, in-vehicle 
information systems), and their compliance rate depends on the characteristics of travel 
information (type, accuracy and timelines) and the perceived congestion level. 

 Surveillance and control system in place: location and type of sensors along the freeway 
and the parallel arterial(s) that provide real-time data, ramp metering and arterial control 
system features 

 Characteristics of the parallel arterial: Amount of the spare capacity at the critical 
intersection along the parallel arterial.  Trade-offs between the delay on the background 
arterial traffic with the existing settings and the capacity maximizing settings to facilitate 
the freeway diverted traffic. 

The amount of diverted traffic to the parallel arterial depends on the available capacity at the 
critical intersection along the arterial.  It can be estimated as follows: 

 

 ܸ݀݅ ൌ 	 ோ஼௜
௑௜
100   (4-2) 

 
Where: 
dVi  : additional traffic volume on approach i (%) 
Xi  :  degree of saturation (volume/capacity) on approach i (%) 
RCi  : reserve capacity on approach i = 1- Xi  
 
The formula (4-2) assumes that the critical intersection (and arterial) operate under capacity 
maximization settings, i.e., the cycle length and green times are optimize to maximize the reserve 
capacity at the critical intersection approaches.  Figure 4.9 shows the amount of additional volume 
in (%) as a function of the volume/capacity ratio at the critical intersection approach.   For example, 
assuming a two lane through movement at a traffic signal operating under 80% degree of saturation 
and green ratio of 50% it can accommodate 360 diverted vehicles. 
 
The diverted volume can be thought as a gain in the reduced capacity of the freeway due to the 
incident, i.e., less reduction in remaining freeway capacity.  Figure 4.10 shows the estimated loss 
of freeway capacity in the case of an incident blocking one lane.   In the case of no diversion or no 
available capacity on the arterial, the capacity loss ranges from 42 to 29% depending on the number 
of freeway lanes [10].  Traffic diversion on the arterial facilities is equivalent of capacity gain on 
the freeway, i.e., the incident related capacity loss is reduced.  As shown in Figure 4.8 if the 
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available spare capacity at the critical intersection is 0.40, there is essentially no capacity loss due 
to the incident.   
  
The above estimates are based on several assumptions related to the traffic characteristics and 
operations.  It is assumed that all drivers will divert and the signal operations will operate at 
capacity. At the same time they provide a planning level methodology on the potential of diversion 
at selected corridors given the characteristics of parallel arterials before investing in detailed 
simulation analyses and implementation scenarios.  The approach can be extended and generalized 
to cover different incident characteristics (multilane blockages), freeway characteristics and 
arterial system (e.g., multiple alternate routes). 
 
 
    
 
 
 
 
 
 
 
  
 
 
 
Figure 4.9 Maximum Diverted Volume vs. Critical Intersection V/c Ratio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 
*N: number of freeway travel lanes per direction 

Figure 4.10 Freeway Lost capacity vs. Critical Intersection Remaining Capacity 
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CHAPTER 5 
CONCLUSIONS 

 
Lessons learned from the application of analysis tools and strategies for management of travel 
corridors indicate that gaps exist in the areas of data and performance measurement, analysis tools 
and control strategies. This final report describes research performed on i) collection and 
processing of high resolution (HR) data and estimation of performance measures at signalized 
intersections, ii) application of analysis tools, and iii) the development and evaluation of freeway-
arterial coordination strategies. 
 
5.1 Summary of the Study Findings  

HR data: We collected data on vehicle arrivals and departures plus the signal status at a real-world 
intersection.  The processing of the data provides an extensive set of metrics that can be used for 
the development and assessment of signal settings at signalized intersections.  The data include 
turning movement counts at various time resolutions, saturation flows and lost times, wasted green 
times, proportion of vehicles arriving on green, and delays.  An algorithm was developed to 
estimate queue lengths from the field data.   

 
A clustering algorithm was applied to determine the traffic demands input for developing time of 
day signal timing plans. The new timing plans based on the measured demands and their variations 
outperformed the conventional time-of-day plans based on predetermined time periods.  
 
Application of analysis tools: a microscopic simulation model pointQ under development at UC 
Berkeley was independently applied and evaluated on two sites: an isolated signalized intersection 
and a ten intersection signalized arterial.  The model predictions were compared with the output 
of the widely used SYNCHRO signal timing analysis and optimization software.  The results 
indicate that the two models are in reasonably close agreement based on travel times and queue 
lengths. PointQ at its current state of development requires significant effort in application and 
cannot directly model certain operating conditions.  However, it is microscopic and can be used to 
track individual vehicles with different O-D patterns which is a desirable feature in modeling 
traveler information systems. 
 
Freeway-arterial coordination: an algorithm was developed to adjust the signal settings at 
intersections adjacent to freeway onramps to avoid overflow on metered on-ramps that may 
override the ramp metering rates.  The algorithm was tested with a microscopic simulation model 
on a section of the I-680 freeway in the San Francisco Bay Area.  The results indicate that at this 
particular site, the algorithm was effective in eliminating the override with significant freeway 
benefits and modest dis-benefits to the on-ramp traffic. 
 
An analysis framework was developed to provide planning level estimates of the freeway volumes 
that can be diverted to adjacent arterial facilities given the available capacity at the critical 
intersection on the arterial, and how this affects the reduced freeway capacity due to an incident. 
This approach provides guidance for selecting candidate facilities for possible diversions and 
estimates of associated impacts.  
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5.2 Future Research  

HR data: The availability of HR data at signalized intersections provides the opportunity to 
develop performance based signal timing plans.  Instead of the traditional approach of collecting 
turning movement counts and use a signal optimization software to improve timing plans every 
few years (Figure 5.1 (a)), the performance of the intersection is continually assessed and signal 
control improvements can be made in a timely and effective way (Figure 5.1 (b)).   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Process for Improving Signal Timing Plans 
 
There is a need to develop systematic guidelines and analysis/optimization tools that take 
advantage of the availability of HR detector data. These may include flow prediction and clustering 
algorithms for determining timing plans, and optimal times to switch time of day plans. Also, new 
algorithms are needed for optimizing signal offsets based on the available data on vehicle arrivals 
on green.    
 
Regarding the estimation of performance measures, there is a need to validate the queue estimation 
algorithm with field data (e.g., video recordings).  Also, it would be of interest to compare the 
algorithm predictions with estimates based on emerging data sources such as connected vehicles 
(CV) [7,9].  
 
Arterial analysis tools: a number of possible enhancements were identified during the application 
of the pointQ simulation model on real world data sets. Examples include improved modeling of 
traffic on intersection approaches with shared lanes and moving in several non- consecutive 
phases.  Also it is suggested to perform a field validation of the model using readily available field 
data such us travel times from commercial sources and Bluetooth readers.  It is also recommended 
a direct interface with a signal optimization tool; the existing interface with the max pressure 
algorithm requires improvements for user application. 
 
Freeway-arterial coordination: the algorithm for preventing queue override needs to be field 
tested.  Also, there is a need to investigate based on field measurements, the possible relationship 
between queue override and capacity drop at the freeway merge bottlenecks.   
 
Additional theoretical development supplemented with simulation verification is needed for 
determining diversion rates in case of incidents and possible mitigation of adverse impacts on the 
adjacent surface street network.  
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Field Implementation
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APPENDIX A. 
Data set 1: 
< 
AggPerf time="1440115200" health="1"> 
 <Leg no="1"> 
  <LaneCounts laneNo="1" laneType="IB" counts="14"> 
   <PhaseCounts no="2" counts="9"/> 
   <PhaseCounts no="5" counts="5"/> 
  </LaneCounts> 
  <LaneCounts laneNo="1" laneType="OB" counts="8"> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="IB" counts="3"> 
   <PhaseCounts no="2" counts="3"/> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="OB" counts="21"> 
  </LaneCounts> 
  <LaneCounts laneNo="3" laneType="IB" counts="12"> 
   <PhaseCounts no="2" counts="11"/> 
  </LaneCounts> 
  <DelayMeasures counts="35" arriveOnGreen="15" avgDelay="6.23"/> 
  <TMcounts LT="14" RT="4" T="11"/> 
 </Leg> 
 <Leg no="2"> 
  <LaneCounts laneNo="1" laneType="IB" counts="2"> 
   <PhaseCounts no="1" counts="0"/> 
   <PhaseCounts no="6" counts="2"/> 
  </LaneCounts> 
  <LaneCounts laneNo="1" laneType="OB" counts="18"> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="IB" counts="6"> 
   <PhaseCounts no="6" counts="6"/> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="OB" counts="21"> 
  </LaneCounts> 
  <LaneCounts laneNo="3" laneType="IB" counts="11"> 
   <PhaseCounts no="6" counts="11"/> 
  </LaneCounts> 
  <LaneCounts laneNo="4" laneType="IB" counts="33"> 
   <PhaseCounts no="6" counts="18"/> 
   <PhaseCounts no="4" counts="7"/> 
  </LaneCounts> 
  <DelayMeasures counts="54" arriveOnGreen="33" avgDelay="6.71"/> 
  <TMcounts LT="1" RT="34" T="17"/> 
 </Leg> 
 <Leg no="3"> 
  <LaneCounts laneNo="1" laneType="IB" counts="14"> 
   <PhaseCounts no="4" counts="13"/> 
  </LaneCounts> 
  <LaneCounts laneNo="1" laneType="OB" counts="14"> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="IB" counts="12"> 
   <PhaseCounts no="4" counts="12"/> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="OB" counts="31"> 
  </LaneCounts> 
  <LaneCounts laneNo="3" laneType="IB" counts="16"> 
   <PhaseCounts no="4" counts="7"/> 
  </LaneCounts> 
  <DelayMeasures counts="31" arriveOnGreen="2" avgDelay="36.08"/> 
  <TMcounts LT="25" RT="13" T="3"/> 
 </Leg> 
 <Leg no="4"> 
  <LaneCounts laneNo="1" laneType="IB" counts="3"> 
   <PhaseCounts no="8" counts="3"/> 
  </LaneCounts> 
  <LaneCounts laneNo="1" laneType="OB" counts="9"> 
  </LaneCounts> 
  <LaneCounts laneNo="2" laneType="IB" counts="4"> 
   <PhaseCounts no="8" counts="2"/> 
  </LaneCounts> 
  <DelayMeasures counts="6" arriveOnGreen="1" avgDelay="36.76"/> 
  <TMcounts LT="4" RT="2" T="1"/> 
 </Leg> 
 <PhaseTimes> 
  <PhaseTime no="1" greenSec="0.00" yellowSec="0.00"/> 
  <PhaseTime no="2" greenSec="160.05" yellowSec="13.91"/> 
  <PhaseTime no="5" greenSec="17.21" yellowSec="6.10"/> 
  <PhaseTime no="6" greenSec="131.18" yellowSec="13.91"/> 
  <PhaseTime no="4" greenSec="45.39" yellowSec="17.29"/> 
  <PhaseTime no="8" greenSec="29.33" yellowSec="9.61"/> 
 </PhaseTimes> 
</AggPerf> 

 
Data Set 2: 
<SatFlow time="1439291365.900" legno="3" laneno="1" lanetype="IB" satflow="2109.67" startupLT="3.97" queueEst="7" /> 
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Data Set 3: 
 
<CycleMeas time="1419984090.418" cycleTime="106.24" health="1"> 
 <Phases> 
  <Phase no="1" maxWT="0.00" wastedGreen="0.00" greenSec="0.00" yellowSec="0.00"/> 
  <Phase no="2" maxWT="0.00" wastedGreen="10.36" greenSec="78.50" yellowSec="3.95"/> 
  <Phase no="5" maxWT="16.53" wastedGreen="4.06" greenSec="9.00" yellowSec="3.03"/> 
  <Phase no="6" maxWT="26.88" wastedGreen="2.83" greenSec="63.79" yellowSec="3.95"/> 
  <Phase no="4" maxWT="248.05" wastedGreen="1.51" greenSec="15.18" yellowSec="4.30"/> 
  <Phase no="8" maxWT="0.00" wastedGreen="0.00" greenSec="0.00" yellowSec="0.00"/> 
 </Phases> 
 <Leg no="1"> 
  <LaneMeas laneNo="1" laneType="IB" counts="7" redOccTime="19.57" greenOccTime="18.25" advCounts="2" 
arrOnGreen="2" avgDelay="0.00"> 
   <PhaseCounts no="2" counts="4"/> 
   <PhaseCounts no="5" counts="3"/> 
  </LaneMeas> 
  <LaneMeas laneNo="1" laneType="OB" counts="3" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="IB" counts="5" redOccTime="0.00" greenOccTime="1.79" advCounts="7" 
arrOnGreen="7" avgDelay="0.00"> 
   <PhaseCounts no="2" counts="5"/> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="OB" counts="11" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="3" laneType="IB" counts="5" redOccTime="15.55" greenOccTime="1.89" advCounts="5" 
arrOnGreen="4" avgDelay="2.11"> 
   <PhaseCounts no="2" counts="4"/> 
  </LaneMeas> 
 </Leg> 
 <Leg no="2"> 
  <LaneMeas laneNo="1" laneType="IB" counts="1" redOccTime="29.81" greenOccTime="1.27" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
   <PhaseCounts no="1" counts="0"/> 
   <PhaseCounts no="6" counts="1"/> 
  </LaneMeas> 
  <LaneMeas laneNo="1" laneType="OB" counts="9" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="IB" counts="3" redOccTime="4.09" greenOccTime="3.92" advCounts="4" 
arrOnGreen="4" avgDelay="0.00"> 
   <PhaseCounts no="6" counts="3"/> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="OB" counts="6" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="3" laneType="IB" counts="4" redOccTime="23.66" greenOccTime="4.90" advCounts="6" 
arrOnGreen="3" avgDelay="5.98"> 
   <PhaseCounts no="6" counts="4"/> 
  </LaneMeas> 
  <LaneMeas laneNo="4" laneType="IB" counts="5" redOccTime="2.80" greenOccTime="11.37" advCounts="5" 
arrOnGreen="4" avgDelay="0.62"> 
   <PhaseCounts no="6" counts="3"/> 
   <PhaseCounts no="4" counts="1"/> 
  </LaneMeas> 
 </Leg> 
 <Leg no="3"> 
  <LaneMeas laneNo="1" laneType="IB" counts="0" redOccTime="130.29" greenOccTime="93.49" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
   <PhaseCounts no="4" counts="0"/> 
  </LaneMeas> 
  <LaneMeas laneNo="1" laneType="OB" counts="7" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="IB" counts="1" redOccTime="0.00" greenOccTime="1.53" advCounts="4" 
arrOnGreen="1" avgDelay="29.47"> 
   <PhaseCounts no="4" counts="1"/> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="OB" counts="6" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="3" laneType="IB" counts="8" redOccTime="20.43" greenOccTime="3.79" advCounts="8" 
arrOnGreen="1" avgDelay="36.38"> 
   <PhaseCounts no="4" counts="3"/> 
  </LaneMeas> 
 </Leg> 
 <Leg no="4"> 
  <LaneMeas laneNo="1" laneType="IB" counts="0" redOccTime="17.05" greenOccTime="0.00" advCounts="1" 
arrOnGreen="0" avgDelay="98.71"> 
   <PhaseCounts no="8" counts="0"/> 
  </LaneMeas> 
  <LaneMeas laneNo="1" laneType="OB" counts="5" redOccTime="0.00" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
  </LaneMeas> 
  <LaneMeas laneNo="2" laneType="IB" counts="2" redOccTime="84.32" greenOccTime="0.00" advCounts="0" 
arrOnGreen="0" avgDelay="0.00"> 
   <PhaseCounts no="8" counts="0"/> 
  </LaneMeas> 
 </Leg> 
</CycleMeas> 



Queue-Length Estimation Using Real-Time Traffic Data
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Abstract—We consider the problem of estimating queue-
lengths at an intersection from a pair of advance and stop bar
detectors that count vehicles, when these measurements are noisy
and biased. The key assumption is that the stop bar measurement
reveals whether the queue is empty or not. We propose a real-
time queue estimation algorithm based on stochastic gradient
descent. The algorithm provably learns the detector bias, and
efficiently estimates the queue-length with theoretical guarantee.
The algorithm is tested in a simulation and in a case study using
traffic data from an intersection in Beaufort, North Carolina.

I. INTRODUCTION

Knowledge of the queue lengths at signalized intersections
is used in performance evaluation and for feedback signal
control. Evaluation of performance measures such as inter-
section delay, travel time and spillback usually requires the
queue length probability distribution, which can be derived
from the statistics of demand and the signal control laws. For
isolated intersections the distribution may be revealed through
probabilistic analysis or through simulation, see, e.g. [1], [2],
[3], [4], [5], [6]. For a network of intersections one must
resort to simulation to estimate the joint distribution of queue
lengths. But the number of simulations needed to estimate a
multi-variate queue length distribution is so large that such
procedures have not been reported in the literature. Instead
simulations are used to estimate measures such as average
delay and travel time.

Queue-based feedback control methods are proposed for
example in [7], [8], [9], [10], [11]. These methods require
knowledge of queue lengths in real time. Since they cannot
be measured directly by current detection technology, one
must estimate the queue lengths based on other measurements.
A simple approach is to use detector vehicle counts at the
entrance to the queue (e.g. from an advance detector) and at
the exit of the queue (from a stop bar detector) to construct a
naive queue estimate as the cumulative difference between the
flows of vehicles at the entrance and the exit. But unknown
biases in detector counts and random errors make this naive
estimate useless, so estimation algorithms propose alternatives.
For example, [12] uses time-occupancy to estimate queues,
following a relationship between occupancy and counts in-
vestigated in [13]; and [14] uses high-resolution detector
measurements to estimate queue lengths by first identifying
‘break points’ in shockwaves predicted by the LWR theory.
Future availability of accurate vehicle GPS position in real
time may also be exploited for queue length estimation as
suggested in [15], [16], [17]. Real time estimation of queues
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is also needed for ramp control and poses similar problems as
intersection queues. [18] compares four alternative ramp queue
estimation methods based on occupancy measurements at the
ramp entrance, vehicle counts at the on-ramp entrance and
exit, speed measurements at the ramp entrance, and vehicle
reidentification based on magnetic “signatures”. A unique
attribute of [18] is that the estimates are compared with video-
based ground truth; most algorithms are tested via simulation.

The approach described here is close to the naive estimator,
corrected by compensation for the errors from biased and noisy
advance and stop bar detector counts. The bias is discovered
by an online learning algorithm based on stochastic gradient
descent. The method provably learns the bias, and efficiently
estimates the queue length with a theoretical guarantee under a
certain condition on the detectors, namely, the stop bar detector
reliably indicates when there is no queue in front of it.

The rest of the paper is organized as follows. In §II the
queue-length estimation problem is formulated. In §III the
online algorithm is described. In §IV it is proved that the
algorithm learns the detector bias. The temporal convergence
of the algorithm is explored through simulation and in a case
study in §V and VI. Concluding remarks are collected in §VII.

II. PROBLEM FORMULATION

Time is continuous. Let Q(t), t ≥ 0 be the queue length
i.e. the number of vehicles beyond the advance detector that
are stopped at the stop bar at time t. The set {t | Q(t)> 0} is
a union of intervals called busy periods (τi, τ̄i), i≥ 1; τi is the
beginning, τ̄i = τi +Ti is the end, and Ti is the length of busy
period i. More precisely, Q(t)> 0 if t ∈∪i(τi, τ̄i) and Q(t) = 0
if t /∈ ∪i(τi, τ̄i). We assume that the stop bar detector indicates
when Q(t) = 0, i.e. when t /∈ ∪i(τi, τ̄i). Q(t) evolves as

Q(t) =
{

An(t)−Dn(t) t ∈ (τn, τ̄n), for some n
0 t /∈ ∪n(τn, τ̄n)

, (1)

in which An(t), t ∈ [τn, τ̄n] and Dn(t) ∈ [τn, τ̄n] are the cu-
mulative arrival and departure processes of the queue in the
n-th busy period. That is, An(t) vehicles entered the queue
and Dn(t) vehicles departed the queue during [τn, t]. Note that
arrivals during a non-busy period are immediately served, so
a vehicle arriving during t /∈ ∪n(τn, τ̄n) does not face a queue.
Advance detectors at the entrance and stop bar detectors at the
exit of the queue measure An(t) and Dn(t), possibly with some
bias or independent noise. Denote by Ân(t), t ∈ [τn, τ̄n] the
cumulative counts of the entrance detector, and by D̂n(t), t ∈
[τn, τ̄n] the cumulative counts of the exit detector. Because of
detector noise and bias Ân(t) may not equal An(t) and D̂n(t)
may not equal Dn(t) . Since the stop bar detector indicates
when Q(t) = 0, a naive queue length estimator is

Q̂naive(t) =
{

Ân(t)− D̂n(t) t ∈ (τn, τ̄n), for some n
0 t /∈ ∪n(τn, τ̄n).

(2)
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This naive estimator uses the information about when the
queue becomes empty only to reset its estimate to zero, and
does not attempt to estimate any systematic counting error.
Further, it may lead to negative estimates of the queue length.

The proposed estimation algorithm and its theoretical prop-
erties are based on the following model the detector counting
processes.

Ân(t)− D̂n(t)

= An(t)−Dn(t)+
∫ t

τn

b(t)dt +Zn(t− τn), t ∈ [τn, τ̄n].

(3)

Here b(t) is the (possibly time-varying) systematic error or bias
of the detectors’ counting processes, and Zn(t) is a sequence
of independent cumulative zero-mean noise random variables
with Zn(0) = 0. We assume that E[Z2

n(t)] ≤ c1t for some
positive constant c1 > 0 for all n. To prove convergence of our
proposed algorithm, it is assumed that b(t) = b is fixed, but
in practice b(t) may change with time, and simulation results
show that the proposed algorithm can track the variability of
b(t).

III. QUEUE-LENGTH ESTIMATION ALGORITHM

The estimation algorithm is based on stochastic gradient
descent. We assume that b(t) = b. Let αn, n≥ 1 be the step-
size (learning rate) of algorithm that is a positive decreasing
sequence with the following properties:

lim
n→∞

αn = 0 (4)
∞

∑
n=1

αn = ∞ (5)

∞

∑
n=1

α
2
n < ∞ (6)

lim
n→∞

1
nαn

< ∞. (7)

For example, αn =
1
n satisfies the above properties. The proper-

ties for the step size are standard for stochastic approximation
[19]. The intuition is that the sum of the step sizes should
be unbounded so that learning does not stop, and sum of the
squares of step sizes should be finite so that the cumulative
error of estimation remains bounded.

The estimate is designed to be

Q̂(t) = [Â(t)− D̂(t)− εnt]+,

wherein εn is the correction term for busy period n, and [x]+ =
max(x,0). εn is updated to learn the bias term b. Formally, the
algorithm proceeds as follows.

1) Initialize ε0 = 0 and n = 0.
2) If t /∈ ∪n(τn, τ̄n), then Q̂(t) = 0.
3) If t ∈ (τn, τ̄n) for some n, then Q̂(t) = [Â(t)− D̂(t)−

εn(t− τn)]
+.

4) Update the correction term at the end of the busy
period: εn+1← εn +αn(Â(τ̄n)− D̂(τ̄n)− εnTn).

5) n← n+1. Repeat steps 2–5.

We now provide some intuition for the algorithm, which
tries to learn the bias b of the naive estimator in (3). To find this

bias adaptively, we consider a correction term εn, n ≥ 1 that
should ideally be close to b. We update εn based on stochastic
gradient descent that tries to solve the following offline opti-
mization problem: minε f (ε) = 1

2 (b− ε)2. The solution to the
optimization problem is obviously ε∗ = b. If the optimization
problem is solved by gradient descent, the update rule for ε

would be

εn+1 = εn−α
∂

∂ε
f (ε) = εn +α(b− ε),

in which α is the step size. To find an algorithm based
on knowing when the queue is empty, we replace b− ε by
its (scaled) unbiased estimator Â(τ̄n)− D̂(τ̄n)− εnTn. Lastly,
stochastic approximation theory suggests a step-size αn that
satisfies (4)–(7). Note that

E[Â(τ̄n)− D̂(τ̄n)− εnTn|Tn] = E[bTn− εnTn +Zn(Tn)|Tn]

= Tn(b− εn).

The simulations and the case study presented in §V and VI
are based on the described algorithm. However, for the proof
of convergence, we consider a slightly modified version of
the algorithm. First, we make the trivial assumption that b is
bounded; that is |b|<C for some constant C. Let C = [−C,C].
We define the euclidean projection operator on set C as [.]C .
Second, consider a large positive constant 0 < K < ∞ and two
constants 0 <K1�K2 <∞. Define the noisy negative gradient
term

gn , Â(τ̄n)− D̂(τ̄n)− εnTn = bTn− εTn +ZnTn. (8)

We update the correction term εn, only when |gn|<K and Tn ∈
[K1,K2]. The intuitive reasons behind these merely technical
assumptions are as follows. First, we update the correction
term only if the busy period length is bounded so that E[Z2

nTn]
is bounded. Second, we update the correction term only if
the busy period is lower bounded by an arbitrarily small but
positive constant so that learning happens after each update.
Thus, the fourth step of the algorithm is modified to

εn+1← [εn +αngn1{|gn|<K,Tn∈[K1,K2]}]C , (9)

where 1A is the indicator of event A. The modification is done
to prove that εn→ b as n→∞ almost surely. We will later see
that the constant K can be chosen essentially arbitrarily but
independent of n.

IV. MAIN THEORETICAL RESULT

In this section, we state the main theoretical result of this
paper. We first state the following assumption.

Assumption 1. Constants K, K1 and K2 are chosen such that
Pr(|gn| < K,Tn ∈ [K1,K2]) ≥ δ > 0 for some positive constant
δ.

Assumption 1 holds when the queue is stable and visits the
empty state infinitely often, since the length of the busy period
has bounded mean and variance. Further, b is bounded and the
noise term B(τ̄n)−B(τn) is bounded with high probability. So
Assumption 1 holds if the queue clears infinitely often.

For ease of notation define the event En , {|gn|< K,Tn ∈
[K1,K2]}. The main theoretical result is Theorem 1.



Theorem 1. Under Assumption 1, the correction term εn
updated according to Equation (9) converges to b almost
surely.

The rest of this section is dedicated to the proof of Theorem
1. There are two key steps. We first show that the algorithm
updates often enough to be able to converge. Next we show that
the cumulative stochastic estimation error present in the update
is an L2-bounded martingale. So by the martingale convergence
theorem the cumulative estimation error converges and has
a vanishing tail, and after some time the estimation error
becomes negligible. The proof technique is similar to the one
in [20], [21].

Lemma 1. The following equality holds.

lim
n→∞

n

∑
i=1

αi1Ei = ∞, (10)

almost surely.

Proof: Consider a sample path, and let xi , αi1Ei . Since
xi≥ 0, by the monotone convergence theorem the series ∑

n
i=1 xi

either converges or approaches infinity. We prove the lemma
by contradiction. Suppose that

lim
n→∞

n

∑
i=1

xi = c,

for some finite c> 0. Define the sequence yn =
1

αn
. Then, since

the sequence yn is increasing and yn→∞ as n→∞ due to (4),
by Kronecker’s lemma,

lim
n→∞

1
yn

n

∑
i=1

xiyi = 0.

Thus,

lim
n→∞

1
yn

n

∑
i=1

1Ei = 0.

Note that by (7), limn→∞
n
yn

> 0. Moreover, by Assumption 1,
Pr(Ei)≥ δ > 0. Thus,

lim inf
n→∞

n

∑
i=1

1Ei ≥ δ.

This leads to a contradiction, which completes the proof of
Lemma 1.

From now on we work with the probability-1 event defined
in Lemma 1. Define dn =

1
2 (εn−b)2. Fix some ε′> 0. We show

that there exists some n0(ε
′) such that for all n ≥ n0(ε

′), we
have

(i) If dn < ε′, then dn+1 < 3ε′.

(ii) If dn ≥ ε′, then dn+1 ≤ dn − βn for some positive
sequence βn, where ∑

∞
n=1 βn =∞ and βn→ 0 as n→∞.

Note that property (ii) shows that for some large enough
n1 > n0(ε

′), dn < ε′ since ∑
∞
n=1 βn = ∞. Further, property (i)

shows that dn remains small for n≥ n1. More precisely, dn ≤
3ε′ if n≥ n1. Since, this is true for all ε′ > 0, it is shown that
dn converges to 0 almost surely.

First, we upper bound dn+1 as follows.

dn+1 =
1
2
(εn+1−b)2

=
1
2
([εn +αngn1An ]C −b)2

≤ 1
2
(εn−b)2 +

1
2

α
2
nK2 +αngn(εn−b)1An

= dn−βn,

where βn , −αngn(εn− b)1En − 1
2 α2

nK2. We now show prop-
erty (ii). First note that 1

2 α2
nK2 < ∞ by (6). Thus, we need

to show that ∑
∞
n=1 αngn(b− εn)1En = ∞ almost surely. We

simplify the expression as follows.

αngn(b− εn)1{|gn|<K}
= αn(bTn +Zn(Tn)− εnTn))(b− εn)1En

= αn[(b− εn)
2Tn + vn(b− εn)]1En ,

where vn , Zn(Tn). Note that E[vn+1|v1,v2, . . . ,vn] = 0. Thus,
wn , ∑

n
m=0 αnvn is an L2-bounded martingale that is E(w2

n)<
∞, since Tn < K2. Thus, by the martingale convergence the-
orem, vn converges to a finite random variable. Furthermore,
|b−εn|< 2C is bounded. Thus, ∑

∞
n=1 αnvn(b−εn)< ∞ almost

surely. Now by assumption in the statement of property (ii),
dn = 1

2 (b− εn)
2 > ε′. Thus, Lemma 1, (5), and the fact that

Tn > K1 show that ∑
∞
n=1 αn(b− εn)

2Tn = ∞. This proves that
∑

∞
n=1 βn = ∞; thus, property (ii) is proved.

Proving property (i) can be shown as follows.

dn+1 =
1
2
([εn +αngn1En ]C −b)2 (11)

≤ 1
2
(εn +αngn1En −b)2 (12)

≤ 2dn +α
2
nK2, (13)

where (12) is due to the fact that projection is non-expansive,
and (13) is due to the following inequality: (a+ b)2 ≤ 2a2 +
2b2. Thus, if dn ≤ ε′, for large enough n, one has α2

nK2 < ε′

by (4). This proves property (i), and completes the proof of
Theorem 1. �

V. SIMULATION RESULTS

We now present simulation results to demonstrate the
efficacy of our algorithm. Consider a single discrete-time
queue that has Poisson arrivals with rate λ vehicles per time
slot. One may suppose that each time slot is 5 seconds. We
set λ = 1.4 veh/(5 sec) = 1008 veh/hr. We consider a cycle
time of 12 time slots or 60 seconds with 6 time slots of green
signal (30 seconds), and 6 time slots of red signal. We assume
that the yellow signal interval is negligible. The service time
distribution in our simulation is deterministic with service rate
µ = 0.6 veh/sec = 2160 veh/hr if the signal is green and µ = 0
if the signal is red. Thus, the stability region of the queue is
λ < 1.5.

There are 3 detectors at the queue as shown in Figure
1. Detector A counts the number of vehicles that enter the
queue. Detector B counts the number of vehicles that exit
the queue, and detector C observes whether the queue is
empty or not. We evaluate the performance of the proposed
algorithm in two cases. In the first case, we assume that
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Fig. 1: A single queue equipped with 3 detectors.

detector C is noiseless, detector A counts each arriving vehicle
with probability 0.95 independently, and detector B counts
each departing vehicle with probability 0.85 independently.
We remark that this discrete-time model is slightly different
from the continuous-time model in (3); however, it captures the
two important properties of the model: 1) random noise since
each vehicles is observed with some probability independently,
and 2) time-invariant bias since the observation probabilities of
detectors A and B are different but fixed, which creates a bias.
Observe that with the explained choices of the parameters, we
expect to see a bias b = (0.95− 0.85)λ = 0.14 vehicles per
time slot.

In the second case, we consider 2 modes of operation: (i)
the first mode is the one above; (ii) in the second mode, the
arrival rate is decreased to λ = 1 veh/(5 sec) = 720 veh/hr. We
assume that the system switches between these two modes
every 2 hours or 1440 time slots. In this case, we choose
a constant step size of α = 0.004 so that the algorithm can
adapt to the changes in the system. Note that the decaying
step size enables us to prove the convergence of the correction
term when b is fixed. However, when b(t) is time-varying,
the step size should be non-decaying so that learning does
not stop. Recall that the step size is the learning rate of the
algorithm. Thus, larger step size speeds up learning. However,
if the step size is chosen to be too large, the gradient-descent-
based algorithm may not converge.

We now evaluate the performance of the proposed algo-
rithm in the first case. We choose the step size αn =

0.02
n0.6 , which

satisfies (4)–(7). Figure 2 shows how the correction term εn
converges to the bias b= 0.14. One observes that after 30 busy
periods the algorithm learns the bias and gets close to 0.14.
The estimated queue-length for a period of 5000 seconds is
shown in Figure 3a.

We compare the performance of our estimator with the
naive estimator that does not learn the bias (though it uses
the observation ;of when the queue-length is 0). We plot the
cumulative distribution function (cdf) of the absolute error term
in estimation that is |Q(t)− Q̂(t)| for the two estimators in
Figure 3b. Our algorithm significantly reduces the absolute
error in estimation.

Next, we consider the case that the arrival rate (thus the
bias) is not constant, and it switches between two modes that
have biases b1 = 0.14 and b2 = 0.1. Figure 4 shows how
the correction term εn can track the changes in b(t). Note
that when the arrival rate is smaller, the queue empties more
frequently that results in more busy periods and more learning
opportunities for the algorithm.

Fig. 2: This figure illustrates how εn converges to b in a few
iterations.

Fig. 4: This figure illustrates how εn can track the changes in
the bias b(t).

VI. CASE STUDY

We present a case study of an intersection in Beaufort,
South Carolina. Figure 5 shows the layout of the intersection.
The intersection has 4 approaches, labeled legs 1 through
4. The road is equipped with magnetic detectors from Sen-
sys Networks, Inc (www.sensysnetorks.com). As shown in
Figure 5, there are 3 types of detectors (advance, stop bar,
and departure). Advance detectors are located 200-300 feet
upstream of the intersection in each lane. Stop bar detectors
are in front of the intersection, and detect a vehicle when it
enters the intersection. Further, we have signal phase data from
the controller conflict monitoring card. The measurements are
time synchronous to within 0.1 sec, so we know the phase
corresponding to every vehicle movement. Also available, but
not used, is the time-occupancy of the sensor by each vehicle
and the speed of each vehicle as it enters the intersection.

Note that the data does not include the queue length
of different lanes, so there is no ground truth to evaluate
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Fig. 3: Figure (a) shows the queue-length process and the estimated queue-length for 1000 time slots (5000 seconds). Figure (b)
compares the absolute error in estimation for our proposed algorithm with the error of the naive estimator.

the performance of our algorithm. However, we can still
investigate whether there is a bias in the detectors, and whether
our algorithm can learn this bias and converge. Moreover, there
is no detector that can directly measure whether the queue
length is zero or not. We use the following simple rule: If
the light is green and for more than 1 time slot, 3 seconds,
no vehicle crosses the stop bar detector the queue is declared
empty. Also, as soon as a vehicle crosses the advance detector
during the red interval, a queue starts to form. It is important
to mention that if a vehicle crosses both advance and stop bar
detectors when there is no queue and the light is green, we do
not consider that a queue of is formed. Of course, detecting
whether the queue is empty or not in this way is not exact,
and does not completely match the theoretical model.

We study all the legs and estimate the queue length based
on observations from their advance and stop bar sensors. The
time slots are of length 3 seconds. The data is for Monday May
4th, 2015, from 7:00 AM to 7:00 PM. To track the changes
in the bias, we use a constant learning for the algorithm α =
0.002.

In this period, we observe 351 busy periods spanning 354
cycles for the queue of leg 1, so the number of iterations of
the gradient algorithm is 351. Figure 6 shows the evolution
of the correction term εn. Observe that the average length of
busy periods is approximately 55 seconds or 18 time slots.
Figure 7 shows the queue length estimated for a 2-hour time
interval, from 12:00 PM to 2:00 PM, for all legs. The reason
for picking this time interval is because there are a hospital
and a school close to this intersection and during lunch time,
many vehicles enter the intersection resulting in large queues
for the through movement.

VII. CONCLUSION AND FUTURE WORK

We considered the problem of estimating the queue lengths
at an intersection from noisy and biased vehicle count observa-
tions. We developed a real-time estimation algorithm based on
stochastic gradient descent that provably learns detector bias,
and estimates the queue-length with theoretical guarantee. We
supported our theoretical contribution with simulations results
and a detailed case study.

Fig. 6: The evolution of εn for the case study.

There are two immediate directions for future research.

• We assumed that the algorithm perfectly observes
whether the queue is empty or not. It would be inter-
esting to investigate the performance of the algorithm
with noisy observation of whether the queue is empty,
both theoretically and experimentally.

• One reason for estimating queue lengths is to design
efficient feedback control policies for the network. For
example, the max-pressure algorithm [9] is known
to be throughput-optimal, but it requires knowledge
of the queue lengths. An interesting question is to
study the stability of the network with estimated queue
lengths that are asymptotically exact. How robust is a
queue based control scheme such as max-pressure to
approximate queue length estimates?
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