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Abstract

Systemic Risk Illustrated

by

Li-Hsien Sun

Due to the recent financial crisis, systemic risk is becoming a central research

topic. In this study, we propose a simple model of inter-bank borrowing and lending

where the evolution of the log-monetary reserves of N banks is described by a system

of diffusion processes coupled through their drifts in such a way that stability of

the system depends on the rate of inter-bank borrowing and lending. Systemic risk

is characterized by the non-negligible probability of a large number of defaults. In

order to study the behavior of this coupled system, we discuss the comparison of the

coupled diffusions not only coupled through the drift and non-drift but correlated

through Brownian motions. In addition, we introduce a game feature in the lending

and borrowing system where each bank controls its own rate of borrowing from or

lending to the central bank under a quadratic cost. The optimization reflects the

desire of each bank to borrow from the central bank when its monetary reserve falls

below a critical level or lend if it rises above this critical level which is chosen here

as the average monetary reserve. The equilibria with finitely many players are solved

explicitly and the financial implication is that the central bank acts as a clearing

house, adding liquidity to the system without affecting its systemic risk. We also

vii



study the corresponding Mean Field Game in the limit of large number of banks in the

presence of a common noise. Finally, we consider two inhomogeneous unsymmetrical

grouping problems where banks have strategies using heterogeneous parameters and

obtain that the central bank must provide extra cash into the system or keep deposits

for banks in order to stabilize this bank system using the heterogeneity framework.
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Chapter 1

Introduction

After the financial crisis of 2007-2008, the term “financial crisis” is becoming an

important and critical issue for researchers, policy makers, and governments. This

is due to the enormous cost that a financial system crisis way inflict, and 2007-2009

crisis exposed the inability of financial organizations and governments to prevent, and

detect such a crisis and minimize its impact. In general, this problem is difficult to

explain completely since causes are varied and complicated. In order to approach this

problem, we consider one imaginable factor contributing the financial crisis: systemic

risk. The temporary definition of systemic risk given by [10] is as follows:

Systemic Risk is the risk of disruption of the market’s abil-

ity to facilitate the flows of capital that results in the reduction

in the growth of the global GDP.
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Systemic risk is now a crucial research topic in financial markets recently. People

are seeking the terms to describe, explain, or even prevent probable systemic risk from

many points of view (Statistics, Finance, Mathematical Finance, Behavioral Finance,

Networks, Counterparty Risk, High Frequency Trading, ...) as seen in [10]. This re-

search tackles this problem by proposing a mathematical model of the economics and

financial dynamics of a financial system and demonstrates that complex interactions

in the system creates systemic risk in the form of large deviations from a stable state.

The evolution of the log-monetary reserves of N banks is described by a system of

diffusion processes coupled through their drifts. Note that the drift terms for the

log-monetary reserves are not necessarily the interest rate r because the reserves are

not tradable assets which gives the flexibility to create the dependence through the

drift terms. This type of interaction and the relation stability–systemic risk has been

recently studied in [11], [14], and [13]. In order to describe systemic risk, we consider

the probability of a large number of bank defaults in our coupled system where this

probability is non-negligible compared to the independent case. This probability can

not be computed explicitly. To find the asymptotic solution, we define “systemic

event” which is solved explicitly in our simple setting.

In addition, we introduce a game feature where each bank controls its rate of

borrowing/lending to a central bank. The control of each individual bank reflects the

desire to borrow from the central bank when its monetary reserve falls below a critical
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level or lend if it rises above this critical level which is chosen here as the average

monetary reserve. Borrowing from or lending to the central bank is also subject to a

quadratic cost at a rate which can be fixed by the regulator. As written, our model is

an example of a Linear-Quadratic Mean Field Game with finitely many players which

can be solved explicitly. We first solve for open-loop equilibria using the Pontrya-

gin stochastic maximum principle. We also solve for closed-loop equilibria using the

probabilistic approach based on the Pontryagin stochastic maximum principle lead-

ing to the solution of Forward-Backward Stochastic Differential Equations, and the

dynamic programming principle leading to the solution of Hamilton-Jacobi-Bellman

partial differential equations. We also study the corresponding Mean Field Game in

the limit of a large number of banks.

In the model discussed below, the diffusion processes X i
t for i = 1, . . . , N rep-

resent the log-monetary reserves of N banks lending to and borrowing from each

other. The system is driven by N (possibly correlated) standard Brownian motions

W̃ i
t , i = 1, · · · , N written as W̃ i

t = ρW 0
t +

√
1− ρ2W i

t where W j
t , j = 0, 1, · · · , N are

independent standard Brownian motions, W 0
t being the common noise, and |ρ| ≤ 1.

The system starts at time t = 0 from i.i.d. random variables X i
0 = ξi independent

of the Brownian motions and such that IE(ξi) = 0. We assume that the diffusion

coefficients are constant and identical, denoted by σ > 0. Our model of lending and

borrowing consists in introducing an interaction through drift terms representing the

rate at which bank i borrows from or lends to bank j. In this case, the rates are

4



proportional to the difference in log-monetary reserves, and our model is:

dX i
t =

a

N

N∑

j=1

(Xj
t −X i

t) dt+ αi
tdt+ σdW̃ i

t , i = 1, · · · , N, (1.1)

where the overall rate of “mean-reversion” a/N has been normalized by the number

of banks with a ≥ 0. Bank i controls its rate of borrowing/lending to a central bank

through the control rate αi
t. Using the notation

X t =
1

N

N∑

i=1

X i
t ,

for the empirical mean, the dynamics can be rewritten in the mean field form:

dX i
t =

[
a(Xt −X i

t) + αi
t

]
dt+ σdW̃ i

t , i = 1, · · · , N. (1.2)

Bank i ∈ {1, · · · , N} controls its rate of lending and borrowing at time t by choosing

the control αi
t in order to minimize

J i(α1, · · · , αN) = IE

{∫ T

0

fi(Xt, α
i
t)dt+ gi(X

i
T )

}
, (1.3)

where the running cost function fi is defined by

fi(x, α
i) =

[
1

2
(αi)2 − qαi(x− xi) +

ǫ

2
(x− xi)2

]
, (1.4)

and the terminal cost function gi by

gi(x) =
c

2

(
x− xi

)2
. (1.5)

Notice that the running quadratic cost 1
2
(αi)2 has been normalized and that the effect

of the parameter q > 0 is to control the incentive to borrowing or lending: the bank i
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will want to borrow (αi
t > 0) if X i

t is smaller than the empirical mean (Xt) and lend

(αi
t < 0) if X i

t is larger than Xt. Equivalently, after dividing by q > 0, this parameter

can be thought as a control by the regulator of the cost of borrowing or lending (with

q large meaning low fees).

The quadratic terms in (x− xi)
2
in the running cost (ǫ > 0) and in the terminal

cost (c > 0) penalize departure from the average. We assume that

q2 ≤ ǫ, (1.6)

so that fi(x, α) is convex in (x, α).

In the spirit of structural models of defaults, we introduce a default level D < 0

and say that bank i defaults by time T if its log-monetary reserve reached the level D

before time T . Note that in this simple model, even after reaching the default level,

bank i stays in the system until time T and continues to participate in inter-bank

and central bank borrowing and lending activities.

This dissertation is organized as follows. In Chapter 2, we comment on the differ-

ence between correlated Brownian motions used to model firms in order to analyze

credit risk and coupled diffusions considered as the lending and borrowing bank sys-

tem for systemic risk. The model for systemic risk is given by the coupled system

dX
(i)
t =

α

N

N∑

j=1

(X
(j)
t −X

(i)
t ) dt+ σdW

(i)
t , i = 1, · · · , N,

and the model for credit risk is written as

dX
(i)
t = σ

(
ρdW 0

t +
√
1− ρ2dW i

t

)
i = 1, · · · , N,

6



with the common noise (W 0
t ) and the independent Brownian motions (W i

t ), i =

1, · · · , N . The difference is shown through the loss distribution generated by both

cases. In Chapter 3, we derive the mean-field limit of system (1.1) as the number

of banks N becomes large. In this limit, banks become independent of each other

and their log-monetary reserves follow Ornstein-Unlenbeck processes. Interestingly,

before taking this limit, we observe that each component mean-reverts to a common

Brownian motion with a small diffusion of order 1/
√
N . We exploit this fact in Sec-

tion 3.3, to explain systemic risk as the small-probability event where this mean level

reaches the default barrier, with a typically large number of components “following”

the mean and defaulting. Moreover, this small probability of systemic risk is inde-

pendent of the mean-reversion rate α so that a large α corresponds to more stability

but at the same time of (or “at the price of”) a larger systemic event.

Chapter 4 is devoted to the analysis of the stochastic differential game (1.2-1.3).

We derive exact Nash equilibria for the open-loop as well as for the closed-loop Marko-

vian models, using both probabilistic and analytic approaches.

Note that stochastic differential games with a large number of players are usually

not tractable. But because of the very special nature of our model ( homogeneous

linear dynamics, homogeneous quadratic costs, and interactions through the empir-

ical mean), that we are able to construct explicitly Nash equilibria for both open

and closed loops. For generic models which are not amenable to explicit solutions,

Lasry and Lions [21, 22, 23] have recently provided an elegant way to tackle the con-
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struction of approximate Nash equilibria for large games with mean field interactions.

Their methodology, known as Mean Field Games (MFG), has been applied to a wide

variety of problems (see [15, 20] for some examples). A similar research program was

developed independently by Caines, Huang, and Malhamé with the name of Nash

Certainty Equivalent. See for example [17] and [18]. The approach of Lasry and

Lions (e.g. [23]) is based on the solution of a system of partial differential equations

(PDEs): a Hamilton-Jacobi-Bellman equation evolving backward in time, and a Kol-

mogorov equation evolving forward in time, these two PDEs being strongly coupled.

By its probabilistic nature, it is natural to recast the MFG strategy using appropriate

forms of the Pontryagin stochastic maximum principle, leading to the solution of new

models. See, for example, [8, 4, 7, 6] or [9] for a probabilistic approach based on the

weak formulation of stochastic control. We consider the MFG problem and discuss

the existence of approximate Nash equilibria in Chapter 5.

In Chapter 6, the financial implication in terms of liquidity and role of a central

bank is discussed through the simple symmetrical mean field type noncooperative

games.

Chapter 7 presents two extensions of our toy model. We tackle two heterogeneous

group cases. We first study the unsymmetrical groups system using heterogeneous

transaction rates aij from group i to j. Banks use their value functions to obtain the

best strategies only depending on the empirical mean of their own groups and their

own states. Secondly, we consider a more general extension of the first case. The

8



value function is the function of the empirical mean of all banks in the system with

heterogeneous parameters q(i) and ǫ(i) depending on the group index i. We comment

on the change of liquidity and also the role of a central bank. As we desired, the

heterogeneity is more realistic since a central bank is more involved in the second

case.

Finally, we discuss more possible extensions. One may extend the toy model

using varied volatilities and generalized parameters or functions. As credit risk, an

intensity based model is useful to describe the number of defaults. The rate using

coupled diffusions can create “flocking to default.” We also comment on the difficulties

of calibrating for systemic risk which may be solved in the near future.

9



Chapter 2

Systemic Risk and Credit Risk

Before discussing systemic risk, we first introduce another important risk in the

financial market called credit risk. It refers to risk of the default from the borrowers

who fail to pay the required payment. Since credit risk been studied in the field of

financial mathematics for many years, we first briefly discuss credit risk and then

systemic risk. The common property that credit risk and systemic risk share is that

people need to consider the risk of defaults for multiple firms or organizations. More

importantly, those objects are often correlated and established using deterministic or

stochastic processes in discrete or continuous time. In our approach, we use continu-

ous time stochastic processes to describe the behavior of each firm. Hence, in order

to analyze credit risk or systemic risk, in this framework, it is natural to consider a

system with correlated multi-dimensional diffusions.

10



First, one can consider a system of N diffusions

dX i
t = bitdt+ σi

tdW
i
t , (2.1)

driven by Brownian motions (W i
t ), i = 1, · · · , N . Next step, we show three ways to

correlate diffusions:

1. Correlated Brownian motion models (to correlate diffusions through Brownian

motions):

bit = bi(constant), for all i,

σi
t = σi(constant), i = 1, · · · , N,

d < W i
t ,W

j
t > = ρijdt, for all i 6= j.

2. Stochastic volatility models (to correlate diffusions through the volatility):

(W i
t ) : independent Brownian motions,

bit = αi(constant), for all i,

σi
t = σ(Zt),

where Zt is a diffusion driven by a Brownian motion Bt correlated to W i
t .

3. Coupled diffusions (to correlate diffusions through the drift term):

(W i
t ) : independent Brownian motions,

bit = f(X1
t , X

2
t , . . .X

N
t ), i = 1, · · · , N,

σi
t = σi(constant), i = 1, · · · , N.

11



In Section 2.1, we discuss credit risk and systemic risk using the structural model

framework. Credit risk is described using diffusions with drifts imposed by interest

rate r and correlated Browian motions. Systemic risk is modelled by coupled diffusions

using interacting in the drifts. In addition, Section 2.2 presents the loss distribution

which is the number of defaults before the maturity time T with shifting parameters

to show the differences between correlated Brownian motions and coupled diffusions

using Monte Carlo method.

2.1 From Credit Risk to Systemic Risk

In credit risk analysis, the first important problem is how to describe default

for each firm since credit risk is the risk of defaults of multiple firms. In financial

mathematics, literature, it appears that there are two popular approaches: structural

models and intensity based models. Using structural models to analyze credit risk

problems, one can describe firms using stochastic processes with Brownian motions

or other jumping processes and then correlate firms through volatilities, Brownian

motions, or both. The default is described as the trajectory of the firm passing the

default boundary. Therefore, it is also important to determine when the first time to

pass the boundary is the same as the first passenger problem.

In intensity based models, instead of modelling the firms directly, one can consider

the number of defaults characterized by Poisson processes. The flexibility in this

model is its use of an the intensity rate which is the expected defaults in the unit time.
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This rate for each firm can be a constant, a deterministic function, or a stochastic

process.

Now, for the structural model, we first note that because of discount or tradable

condition for tradable assets modelled by (2.1), the drift term bit is imposed by the

interest rate r for all i. Therefore, in order to create the correlation for those assets

using the no arbitrage condition, one only correlate the dynamics through the volatil-

ity σi
t or Brownian motions (W i

t ). For simplicity, we choose the interest rate r = 0,

and so the toy model for credit risk is given by

dX i
t = σdBi

t, i = 1, · · · , N, (2.2)

with the initial point xi
0 = 0, i = 1, · · · , N . The Bi’s are correlated Brownian motions

with common correlation ρ and the first default time is given by

τi = inf(t; X i
t ≤ D).

On the other hand, for systemic risk, we first assume that all the dynamics are

the log-monetary reserves of banks. The drift terms for log-monetary reserves are

necessarily the interest rate r since the reserves are not tradable. Using this flexibility

in the drift terms, we construct the interaction of the multi-dimensional coupled

diffusions through the drift terms. The toy coupled diffusion model for systemic risk

is written as

dX i
t =

a

N

N∑

i=1

(
Xj

t −X i
t

)
dt+ σdW i

t , i = 1, . . . , N (2.3)
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with the same initial value X i
0 = 0 for all i. The W i’s are independent Brownian

motions, and similarly, the first default time for player i is given by

τi = inf(t; X i
t ≤ D).

Using interaction through the drift terms describing lending and borrowing behavior,

we obtain that this coupled system with this lending and borrowing is more stable

than the independent case, but note that, in the meantime, this transaction also

creates systemic risk for the system because the higher possibility of a large amount

of defaults than the independent scenario is obtained. This phenomenon can be

observed in Section 2.2 and be explained in Chapter 3.

In order to study the difference between coupled diffusions and correlated Brow-

nian motions in the framework of structural models, we study the joint survival

probability

Sk = IP (τi > T, for all i = 1, · · · , k) , 1 ≤ k ≤ N,

where τi = inf(t;X i
t ≤ D) with the defaults barrier D and the loss distribution which

is the number of default before fixed maturity time T . Note that the solution of the

independent case (ρ = 0 or a = 0) can be solved explicitly. The number of defaults

follows a binomial distribution with two parameters: sample size N and probability

p given by

p = IP

(
min
0≤t≤T

(σWt) ≤ D

)

= 2Φ

(
D

σ
√
T

)
, (2.4)
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where Φ denotes the N(0, 1)-cdf, and we use the distribution of the minimum of a

Brownian motion (see [19] for instance). This gives the uni-modal density curve shown

in Figure 2.3 and 2.4. Surprisingly, however, it is difficult to solve the joint survival

probability for correlated Brownian motions even when N = 2. In systemic risk, the

difficulty is the high dimensional diffusions with complicated interacting drift terms.

Although we use Girsanov theorem to simply the drifts, the RadonNikodym derivative

still creates another obstruction for solving the survival probability. Hence, we first

obtain the joint survival probability and the loss distribution using simulations using

the Monte Carlo method. The result is shown in Section 2.2.

2.2 Simulation Results

In the following simulation, we simulate 104 trajectories to obtain the loss distri-

bution. As mentioned in Chapter 1, we assume that all trajectories keep lending to

or borrowing from each other in the game even if they arrive the default boundary.

We use the number of trajectory N = 5 , D = −1 and the common volatility σ = 1.

Figure 2.1 shows one realization for different correlation ρ. When ρ = 1, it gives

the trajectory of the common noise passing the default bond D = −1. Hence, as ρ is

large, we obtain that the system is roughly driven by the common noise which forces

more defaults. In Figure 2.3, we show the loss distribution with the shifting correlation

ρ. When ρ is larger, the possibility of a large number of defaults is increasing. As

ρ = 1, since the system becomes only one Brownian motion, there are only two peaks

15



in the loss distribution corresponding to either no default, or all defaults and the

corresponding probabilities are

IP (no default) = IP
(
τ i > T

)
= 1− 2Φ

(
D

σ
√
T

)
,

and

IP (all defaults) = IP
(
τ i < T

)
= 2Φ

(
D

σ
√
T

)
.

Note that the shape of the density curve intends to be bi-modal when ρ is increasing.

That is, the probability of no default and the probability of a large amount of defaults

become more significant as correlation ρ increases.

On the other hand, using the coupled diffusions (2.3), in Figure 2.2, we observe

that when the mean-reverting rate a increases, the trajectories are flocking together.

Compared to smaller a = 0 and a = 2, larger a creates stability by imposing flocking

trajectories. In Figure 2.4, the probability of no default and the probability of a large

amount of defaults are both increasing as a gets larger. The shape of the density

curve in (2.3) is similar to (2.2). However, it is important to remark that in the same

volatility scale σ, the right-tail generated by (2.3) gives a much smaller probability

of all defaults than (2.2), and the left-tail gives the huge probability of no default.

The reason is that if the mean-reverting rate a is large, similarly, the system roughly

is governed by the ensemble average which has the same distribution as the re-scaled

Brownian motion with scaler 1√
N
, shown in Chapter 3. This scaler, depending on

N , does not appear in the model (2.2). Since this leading stochastic process (the

ensemble average) is scaled by 1√
N
, which gives the a smaller variation for large N ,
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this smaller variation leads to a significantly large probability of no default and a

much smaller (but still much larger than the independent case) probability of all

defaults considered as a rare event in the systemic risk perspective.

To summarize, through this analysis of correlated Brownian motions (2.2) and

coupled diffusions (2.3), we shown that they behave in the same manner in the case

of large correlation parameter ρ and large mean reverting rate a. Also, they both

yield the bi-modal density curves for the loss distributions. However, the coupled

diffusions produce much a smaller probability in the large number of defaults than

correlated Browian motions, which is one specific method to describe systemic risk.

This interaction considered as borrowing and lending behavior within the drift terms

creates the stability of the system by increasing the probability of no default; however

the trade-off of this stability is that the interaction also increases the probability of

a large amount of defaults compared to the independent case (a = 0). Chapter 3

presents the computational details for coupled diffusions (2.3).
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Figure 2.1: One realization of the trajectories of the correlated Brownian motions
(2.2) (the first plot on the left column) with ρ = 0; one realization of the trajectories
of the correlated Brownian motions (2.2) (the first plot on the right column) with
ρ = 0.2; one realization of the trajectories of the correlated Brownian motions (2.2)
(the second plot on the left column) with ρ = 0.4; one realization of the trajectories
of the correlated Brownian motions (2.2) (the second plot on the right column) with
ρ = 0.6; one realization of the trajectories of the correlated Brownian motions (2.2)
(the third plot on the left column) with ρ = 0.8; one realization of the trajectories
of the correlated Brownian motions (2.2) (the third plot on the right column) with
ρ = 1.
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Figure 2.2: One realization of the trajectories of the coupled diffusions (2.3) (the first
plot on the left column) with a = 0; one realization of the trajectories of the coupled
diffusions (2.3) (the first plot on the right column) with a = 2; one realization of the
trajectories of the coupled diffusions (2.3) (the second plot on the left column) with
a = 4; one realization of the trajectories of the coupled diffusions (2.3) (the second
plot on the right column) with a = 6; one realization of the trajectories of the coupled
diffusions (2.3) (the third plot on the left column) with a = 8; one realization of the
trajectories of the coupled diffusions (2.3) (the third plot on the right column) with
a = 10.
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Figure 2.3: The loss distribution of the correlated Brownian motions with shifting
correlation ρ.
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Figure 2.4: The loss distribution of the coupled diffusions with shifting mean-reverting
rate a.
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Chapter 3

Systemic Risk and Coupled

Diffusions

The results to be described in this chapter are related to [12] and [25]. Following

Chapter 2, we now focus on systemic risk and the corresponding coupled diffusions

(1.1). As previously noted, since we are interested in systemic risk affected by lending

and borrowing behavior, we consider this lending and borrowing interaction through

the drifts. Systemic risk is described as the possibility of the large amount of defaults

before the maturity T .

For simplicity, we first consider a system of N banks without the possibility of

borrowing or lending to the central bank; that is (1.1) with αi
t = 0:

dX i
t =

a

N

N∑

j=1

(Xj
t −X i

t) dt+ σdW̃ i
t

= a(X t −X i
t)dt+ σdW̃ i

t , i = 1, · · · , N. (3.1)
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To start with, we assume that the Brownian motions W̃ i are independent, that is

ρ = 0 and W̃ i = W i. We also assume the initial value X i
0 = ξi = 0. In order to see

how this lending and borrowing behavior affects the system, Section 3.1 will show the

loss distribution of independent Brownian motions given the lending and borrowing

rate a = 0. Section 3.2 and Section 3.3 provide the computational details to explain

the difference between the two models and the asymptotic solution for the possibility

of all defaults seen as the systemic risk using the large deviation principle. In Section

3.4, we will consider the correlated (or common noise) case.

3.1 Stability and Systemic Risk

We compare the coupled diffusions (3.1) to an independent case which is a system

without borrowing from and lending to each other and simply given by driftless

Brownian motions:

dY i
t = σdW i

t i = 1, . . . , N. (3.2)

Notice that in the case a = 0, the system (3.1) reduces to the independent system

(3.2). We first compare the coupled system (3.1) to the independent system (3.2) by

looking at their trajectories. In our simulation, we choose the initial value Y i
0 = yi0 =

0, i = 1, . . . , N and the common parameters σ = 1, D = −0.7, and N = 10, and

use the Euler scheme with a time-step ∆ = 10−4, up to time T = 1. In Figures 3.1,

3.2 and 3.3, we show one typical realization in each figure with a = 1, a = 10 and
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a = 100, respectively. As we increase the rate a in the case of increasing frequency

of borrowing and lending, we can roughly collect all trajectories together, and less

trajectories arrive at boundary D. This shows that to avoid bankruptcy, compared to

working independently, each bank has to do borrowing and lending more frequently.

This is a good sign for this model because it shows that we can create the stability

of the system by coupling with each other.

Next, as in Chapter 2, we show the loss distributions of the coupled diffusions

(3.1) and the independent system (3.2) in Figures 3.4, 3.5, and 3.6. We compute

these loss distributions via the Monte Carlo method using 104 simulations with the

same parameters. Again, the loss distribution of the dependent case can be computed

by a binomial distribution with parameters N and p where p is given by (2.4).

As expected, compared to the independent case (3.2), the coupled system (3.1)

gives a much larger probability of all surviving (no default), and a smaller probability

of individual default appears by increasing the borrowing and lending rate a. Specif-

ically, when a = 100, the probability of all surviving is close to 1. It shows the same

information as previous typical trajectories. Coupled and forced lending and bor-

rowing help the system become more stable and durable. However, there is trade-off

in the coupled system. in Figures 3.4, 3.5, and 3.6, we obtain that the possibility of

large defaults is larger than the independent one. This is one specific term to describe

systemic risk. In other words, this lending and borrowing improves the stability of

the system by keeping the diffusions near zero (away from default level) most of the
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Figure 3.1: One realization of the trajectories of the coupled diffusions (1.1) with
a = 1 (left plot) and trajectories of the independent Brownian motions (3.2) (right
plot) using the same Gaussian increments. The solid horizontal line represents the
“default” level D = −0.7.

time. However, we also see that there is small but non-negligible probability, that al-

most all diffusions reach the default level. To summarize, this lending and borrowing

system (3.1) not only creates the stability but also systemic risk. In next section, we

explain the conclusion by exact computation and show the approximated solution of

all defaults by the large deviation principle.

24



Figure 3.2: One realization of the trajectories of the coupled diffusions (1.1) (left
plot) with a = 10 and trajectories of the independent Brownian motions (3.2) (right
plot) using the same Gaussian increments. The solid horizontal line represents the
“default” level D = −0.7.

Figure 3.3: One realization of the trajectories of the coupled diffusions (1.1) (left
plot) with a = 100 and trajectories of the independent Brownian motions (3.2) (right
plot) using the same Gaussian increments. The solid horizontal line represents the
“default” level D = −0.7.
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Figure 3.4: On the left, we show plots of the loss distribution for the coupled diffusions
with a = 1 (solid line) and for the independent Brownian motions (dashed line). The
plots on the right show the corresponding tail probabilities.
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Figure 3.5: On the left, we show plots of the loss distribution for the coupled diffusions
with a = 10 (solid line) and for the independent Brownian motions (dashed line). The
plots on the right show the corresponding tail probabilities.
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Figure 3.6: On the left, we show plots of the loss distribution for the coupled diffusions
with a = 100 (solid line) and for the independent Brownian motions (dashed line).
The plots on the right show the corresponding tail probabilities.

3.2 Mean-Field Limit

In order to understand the coupled system (3.1) and answer the question in Chap-

ter 2 and Section 3.1, we rewrite the dynamics as

dX i
t =

a

N

N∑

j=1

(X
(j)
t −X

(i)
t ) dt+ σdW i

t

= a

[(
1

N

N∑

j=1

Xj
t

)
−X

(i)
t

]
dt+ σdW i

t . (3.3)

We observe that the diffusions are an OU-type with mean-reverting at their ensemble

mean. In other words, the ensemble average roughly leads the whole system. To

understand the system, it is important to know the dynamics of ensemble average.

By simple algebra, the ensemble average satisfies

d

(
1

N

N∑

i=1

X i
t

)
= d

(
σ

N

N∑

i=1

W i
t

)
,
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For simplicity, assuming the initial value X i
0 = xi

0 = 0 for all i, we obtain

1

N

N∑

i=1

X
(i)
t =

σ

N

N∑

i=1

W i
t , (3.4)

and the coupled system

dX i
t = a

[(
σ

N

N∑

j=1

W
(j)
t

)
−X i

t

]
dt+ σdW i

t . (3.5)

The exact solution of X i
t is

X i
t =

σ

N

N∑

j=1

W j
t + σe−at

∫ t

0

easdW i
s −

σ

N

N∑

j=1

(
e−at

∫ t

0

eαsdW (j)
s

)
. (3.6)

In fact, note that the ensemble average is distributed as a Brownian motion with

diffusion coefficient σ/
√
N .

In the limit N → ∞, the strong law of large numbers gives

1

N

N∑

j=1

W j
t → 0 a.s. ,

and, more generally, the processes X i
t (3.6) converges to the independent OU processes

σe−at

∫ t

0

easdW i
s

with long-run mean zero. This is in fact a simple example of a mean-field limit and

propagation of chaos studied in general in [26].

Note that the distributions of hitting times for OU processes have been studied

in [1]. Let us denote

p′ = IP (τ ≤ T ) ,
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τ being the hitting time of the default level for an OU process with long-run mean

zero, given by

dXt = −aXtdt+ σdWt .

In the interesting regime where p′N → λ > 0, obtained as N → ∞ and D → −∞

appropriately, the loss distribution converges to a Poisson distribution with parameter

λ. In this stable regime, the mass is mainly concentrated on a small number of

defaults.

3.3 Systemic Risk and Large deviations

In the Section 3.1, our simple toy model (3.1) can be written as OU processes with

the mean reverting at the ensemble average and this shows that the coupled system

roughly follows the ensemble average. Consequently, the diffusions intend flocking to

default if the ensemble average arrives at default level D. Therefore, we identify the

event {
min
0≤t≤T

(
σ

N

N∑

i=1

X i
t

)
≤ D

}

as a systemic event. In our simple example, this probability can be computed explic-

itly as follows:

IP

(
min
0≤t≤T

(
σ

N

N∑

i=1

W i
t

)
≤ D

)
= IP

(
min
0≤t≤T

W̃t ≤
D
√
N

σ

)

= 2Φ

(
D
√
N

σ
√
T

)
, (3.7)
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where W̃ is a standard Brownian motion. From (3.7), we observe that probability of

this event is small (when N becomes large), and is given by the theory of large devia-

tions. Therefore, using a classical equivalent for the Gaussian cumulative distribution

function, we obtain

lim
N→∞

− 1

N
log IP

(
min
0≤t≤T

(
σ

N

N∑

i=1

W i
t

)
≤ D

)
=

η2

2σ2T
. (3.8)

In other words, for a large number of banks, the probability that the ensemble average

reaches the default barrier is of order exp(−D2N/(2σ2T )). Observe that this event

does not depend on a > 0. In Figure 3.6, in the case of a = 100, the probability

of systemic risk is roughly 3% which can be obtained by using (3.7). We can not

prevent systemic risk from increasing α but the individual default can be avoided,

and consequently, the probability of a safe system is increased by large α.

To summarize, the simple coupled system (3.1) proves stability but also con-

tributes systemic risk. We identified that this lending and borrowing behavior plays

a crucial role and affects the system significantly.

3.4 Systemic Risk and Common Noise

We now consider the coupled diffusions driven by correlated Brownian motions

(W̃ i
t ) and without control (αi = 0). That is, banks not only have the lending and

borrowing behavior but have other unexpected correlated noises. For example, banks

may invest their money in the same underlying assets. These correlated noises are
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considered as correlated Brownian motions. We are interested in this common noise

creating either a better system (lower probability of a large number of defaults) or a

worse system (higher probability of a large number of defaults). The dynamics (1.1)

or (3.3) become:

dX i
t = a

(
1

N

N∑

j=1

Xj
t −X i

t

)
dt+ σ

(
ρdW 0

t +
√
1− ρ2dW i

t

)
, i = 1, · · · , N, (3.9)

where (W 0
t ,W

i
t , i = 1, · · · , N) are independent standard Brownian motions and W 0

t

is a common noise. As before, we calculate the ensemble average

1

N

N∑

i=1

X i
t =

σ

N

N∑

i=1

W̃ i
t = σ

(
ρW 0

t +

√
1− ρ2

N

N∑

i=1

W i
t

)

D
= σ

√
ρ2 +

(1− ρ2)

N
Bt,

where Bt is a standard Brownian motion. Moreover, the explicit solution for X i
t is

X i
t = σρW 0

t + σ
√

1− ρ2

(
1

N

N∑

j=1

W j
t +

∫ t

0

ea(s−t)dW i
s −

1

N

N∑

j=1

∫ t

0

ea(s−t)dW j
s

)
.

The probability of the systemic event (3.7) becomes

IP

(
min
0≤s≤T

1

N

N∑

i=1

X i
s < D

)
= IP

(
min
0≤s≤T

Bs <
D

σ

√
N

Nρ2 + (1− ρ2)

)

= 2Φ

(
D

σ
√
T

√
N

Nρ2 + (1− ρ2)

)
.

From the formula above, we observe that in the correlated case (ρ 6= 0), the

probability of systemic risk does not vanish as N becomes large, instead it converges

to 2Φ
(

D

σ|ρ|
√
T

)
. This is in dramatic contrast with the independent case (ρ = 0)

where the probability of systemic risk is exponentially small in N . We illustrate this
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Figure 3.7: One realization of N = 10 trajectories of the coupled diffusions with inde-
pendent Brownian motions (3.1) (left plot) and trajectories of the coupled diffusions
with correlated Brownian motions with ρ = 0.2 (3.9) (right plot) using the common
a = 10. The solid horizontal line represents the “default” level D = −0.7.

instability created by the common noise in Figures 3.7, 3.8, and 3.9. Furthermore, in

Figures 3.10, 3.11, 3.12, compared to independent noises, the much larger probability

of all defaults is obtained in the correlated case. This exactly illustrates reality. If

banks want to consider risky strategies with higher correlation, they might have a large

number of returns together. However, for example, if few banks invest in Lehman

bonds, they will crash and consequently contribute systemic risk to the whole banking

system through lending and borrowing. Hence, we conclude that in order to help keep

the system stable, banks have to reduce the correlation of uncertainty using diverse

investments.
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Figure 3.8: One realization of N = 10 trajectories of the coupled diffusions with inde-
pendent Brownian motions (3.1) (left plot) and trajectories of the coupled diffusions
with correlated Brownian motions with ρ = 0.5 (3.9) (right plot) using the common
a = 10. The solid horizontal line represents the “default” level D = −0.7.

Figure 3.9: One realization of N = 10 trajectories of the coupled diffusions with inde-
pendent Brownian motions (3.1) (left plot) and trajectories of the coupled diffusions
with correlated Brownian motions with ρ = 0.8 (3.9) (right plot) using the common
a = 10. The solid horizontal line represents the “default” level D = −0.7.
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Figure 3.10: On the left, we show plots of the loss distribution for the coupled diffu-
sions with independent Brownian motions (solid line) and with correlated Brownian
motions with ρ = 0.2(dashed line) with a = 10 . The plots on the right show the
corresponding tail probabilities.
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Figure 3.11: On the left, we show plots of the loss distribution for the coupled diffu-
sions with independent Brownian motions (solid line) and with correlated Brownian
motions with ρ = 0.5(dashed line) with a = 10 . The plots on the right show the
corresponding tail probabilities.
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Figure 3.12: On the left, we show plots of the loss distribution for the coupled diffu-
sions with independent Brownian motions (solid line) and with correlated Brownian
motions with ρ = 0.8(dashed line) with a = 10 . The plots on the right show the
corresponding tail probabilities.
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Part II

Systemic Risk and Dynamic

Noncooperative Games
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Chapter 4

Systemic Risk and Dynamic

Noncooperative Games (Mean

Field Type)

The noncooperative games analysis in Chapters 4, 5, and 6 is studied in [25]. We

return to the original model (1.1). All banks not only make bank-to-bank transactions

but also control their rates of borrowing from and lending to the central bank. That

is, if banks are under the average, they need to request money from the central bank

as much as possible in order to help themselves. Oppositely, if banks are above the

average, they consider lending money to the central bank as much as possible for

earing interest. However, meanwhile, banks have to pay the corresponding fee for

performing these transactions. Therefore, they must find the optimal strategies in
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order to minimize their own cost functions according to the distance between their

states and the ensemble average. We are interested in the influence of this game on

systemic risk. Through the optimal strategies, is it possible to reduce systemic risk

for this bank system or make this system in danger?

In this chapter, we focus on N player games where N is finite. Unlike optimal

portfolio problems for only one player, we need to consider N controls for N players

and in fact, each optimal strategy depends on all the other optimal strategies. In other

words, we are seeking the equilibria in this game. We discuss two kinds of Nash equi-

libria: (i) open-loop equilibria and (ii) memoryless closed-loop (feedback) equilibria.

We first construct open-loop equilibria using Forward-Backward Stochastic Differen-

tial Equations (FBSDE) given by Pontryagin’s stochastic minimum principle. Next,

we construct memoryless closed-loop (feedback) equilibria using two approaches. The

first one is based on the modified version of the Pontryagin principle and FBSDE

used in the open-loop case. Another one is based on Hamilton-Jacobi-Bellman (HJB)

partial differential equations following from the dynamic programming principle. A

comparison of the open-loop and closed-loop equilibria is discussed in the final section.

Recall that the log monetary reserves X i
t for i = 1, · · · , N are given by

dX i
t =

[
a(X t −X i

t) + αi
t

]
dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (4.1)

where W i
t , i = 0, 1, . . . , N are independent Brownian motions, σ > 0 and a ≥ 0.

Bank i ∈ {1, · · · , N} is trying to control its rate of lending and borrowing (to a
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central bank) at time t by choosing the control αi
t in order to minimize the cost

J i(α1, · · · , αN) = IE

{∫ T

0

fi(Xt, α
i
t)dt+ gi(X

i
T )

}
, (4.2)

with

fi(x, α
i) =

[
1

2
(αi)2 − qαi(x− xi) +

ǫ

2
(x− xi)2

]
, (4.3)

gi(x) =
c

2

(
x− xi

)2
, (4.4)

and where fi(x, α) is convex in (x, α) under the assumption q2 ≤ ǫ. This model is one

specific case in the class of Linear-Quadratic (LQ) noncooperative games with mean

field type as discussed in [2] and [5] for instance.

4.1 Open-Loop Equilibria

To construct open-loop equilibria, this problem consists in searching for an equi-

librium among strategies. In the deterministic case (σ = 0), without any information

regarding equilibria, we search for an equilibrium among strategies which are (deter-

ministic) functions {αi
t, i = 1, · · · , N} given at the initial time t = 0 and from which

{(X i
t), i = 1, · · · , N} are deduced by (4.1). See [2] for example. In the stochastic

case (σ > 0), the open-loop problem consists in searching for an equilibrium among

strategies {αi
t, i = 1, · · · , N} which are adapted processes satisfying some integrability

property such as IE
(∫ T

0
|αi

t|dt
)
< ∞, and most importantly. See [5] for example.

Using the Pontryagin principle to obtain open-loop equilibria, the Hamiltonian
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for bank i is written as

H i(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN) (4.5)

=
N∑

k=1

[
a(x− xk) + αk

]
yi,k +

1

2
(αi)2 − qαi(x− xi) +

ǫ

2
(x− xi)2.

For a given α = (αi)i=1,··· ,n, the controlled forward dynamics of the states X i
t are

given by (4.1) with initial conditions X i
0 = xi, and based on the Pontryagin principle,

the adjoint processes Y i
t = (Y i,j

t ; j = 1, · · · , N) and Z i
t = (Z i,j,k

t ; j = 1, · · · , N, k =

0, 1, · · · , N) for i = 1, · · · , N are defined as the solutions to the backward stochastic

differential equations (BSDEs):

dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

N∑

k=0

Z i,j,k
t dW k

t , (4.6)

with terminal conditions Y i,j
T = ∂xjgi(XT ). For each admissible (i.e. satisfying the

above integrability condition) strategy profile α = (αi)i=1,··· ,n, standard existence

and uniqueness results for BSDEs apply, and the existence of the adjoint processes

is guaranteed. Without plugging any information regarding the strategies αi, i =

1, · · · , N , the partial derivative Hamiltonian H i is given by

∂xjH i =
a

N

N∑

k=1

(yi,k − yi,j)− qαi(
1

N
− δi,j) + ǫ(x− xi)(

1

N
− δi,j). (4.7)

To satisfy the necessary condition of the Pontryagin principle, one has to minimize

the Hamiltonian with respect to αi. See, for example, the discussion of the Isaacs

conditions in [5]. This leads to the choice of bank i

α̂i = −yi,i + q(x− xi). (4.8)
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Next step, we assume that all the players are making that choice so as to prove

that this choice is a Nash equilibrium. With this choice of control αi, the forward

equations (4.1) become coupled with the backward equation (4.6). Then, by obtaining

the solution of (4.6) and identifying each player’s own adjoint equation, player i finds

the best response. In general, this forward-backward system is difficult to find the

solution. In our linear case, we make the ansatz

Y i,j
t = φt(

1

N
− δi,j)(X t −X i

t), (4.9)

where φt is a deterministic function satisfying the terminal condition φT = c. We

now plug the ansatz into the backward equation (4.6); a careful computation gives

the backward equation

dY i,j
t = (

1

N
−δi,j)(X t−X i

t)

[
(a + (1− 1

N
)q)φt − (ǫ− q2)

]
dt+

N∑

k=0

Z i,j,k
t dW k

t . (4.10)

On the other hand, by differentiating the ansatz (4.9), the processes Y i,j
t becomes

dY i,j
t = φ̇t(

1

N
− δi,j)(Xt −X i

t)dt+ φ(
1

N
− δi,j)d(Xt −X i

t). (4.11)

where φ̇t denotes the time-derivative of φt. In order to find the dynamics Y i,j
t , it is

necessary to show the derivation of d(X t − X i
t). Using (4.8) and (4.9), the forward

equation (4.1) becomes

dX i
t =

[
a+ q + (1− 1

N
)φt

]
(Xt −X i

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (4.12)

which by summation gives

dXt = σρdW 0
t + σ

√
1− ρ2

(
1

N

N∑

i=1

dW i
t

)
. (4.13)
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Consequently, one obtains

d(Xt−X i
t ) = −

[
a+ q + (1− 1

N
)φt

]
(X t−X i

t)dt+σ
√

1− ρ2

(
1

N

N∑

k=1

dW k
t − dW i

t

)
.

(4.14)

Using (4.14), the dynamics of Y i,j
t can be written as

dY i,j
t = (

1

N
− δi,j)(X t −X i

t)

[
φ̇t − φt

(
a+ q + (1− 1

N
)φt

)]
dt

+φt(
1

N
− δi,j)σ

√
1− ρ2

(
1

N

N∑

k=1

dW k
t − dW i

t

)
. (4.15)

We now compare the two Itô decompositions (4.10) and (4.15). The martingale terms

give the processes Z i,j,k
t ,

Z i,j,0
t = 0, Z i,j,k

t = φtσ
√
1− ρ2(

1

N
− δi,j)(

1

N
− δi,k) for k = 1, · · · , N,

which turn out to be determistic in our case and hence adapted. Identifying the drift

terms show that the function φt must satisfy the scalar Riccati equation

φ̇t = 2(a+ (1− 1

2N
)q)φt + (1− 1

N
)φ2

t − (ǫ− q2), (4.16)

with the terminal condition φT = c. The Riccati equation can be explicitly solved by

φt =
−(ǫ− q2)

(
e(δ

+−δ−)(T−t) − 1
)
− c

(
δ+e(δ

+−δ−)(T−t) − δ−
)

(δ−e(δ+−δ−)(T−t) − δ+)− c(1− 1
N
) (e(δ+−δ−)(T−t) − 1)

, (4.17)

where

δ± = −(a+ (1− 1

2N
)q)±

√
R,

with

R := (a+ (1− 1

2N
)q)2 +

(
1− 1

N

)
(ǫ− q2) > 0.
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In order to check that the solution is well defined, we rewrite the denominator as

follows:

−
(
e(δ

+−δ−)(T−t) + 1
)√

R−
(
a+ q + c

(
1− 1

N

))(
e(δ

+−δ−)(T−t) − 1
)
.

This stays negative for all t < T because δ+ − δ− = 2
√
R > 0. Furthermore, since

q2 ≤ ǫ, we observe that φt for all t < T is positive with φT = c as shown in the Figure

4.1.

Note that in this open-loop equilibrium, each bank i can implement its own strat-

egy by only knowing X t − X i
t instead of (Xt)0≤t≤T which is, in fact, in closed-loop

feedback form. The further comparison will be discussed in Section 4.4. It is now

natural to search for closed-loop feedback equilibria with the Markovian property as

we will discuss in Section 4.2.

4.2 Closed-Loop Equilibria: FBSDE Approach

We now solve for an exact closed-loop Nash equilibrium when players/banks at

time t have complete information of states (perfect states) of all other players at time

t and use Markovian strategies.

In this context, when all the other players k 6= i have chosen strategies in feedback

form given by deterministic functions αk(t, x) of time and state, player i needs to

solve a Markovian control problem to find his best response to these choices, and the
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Hamiltonian of his control problem is given by (see [5]):

H i(x, yi,1, · · · , yi,N , α1(t, x), · · · , αi
t, · · · , αN(t, x)) (4.18)

=
∑

k 6=i

[
a(x− xk) + αk(t, x)

]
yi,k +

[
a(x− xi) + αi

]
yi,i

+
1

2
(αi)2 − qαi(x− xi) +

ǫ

2
(x− xi)2.

The dynamics of the state Xt = (X i
t)i=1,··· ,N are again given by (4.1) with ini-

tial conditions X i
0 = xi, and the adjoint processes Y i = (Y i,j)j=1,··· ,N and Z i =

(Z i,j,k)j=1,··· ,N, k=0,1,··· ,N of player i are the solutions of the same BSDE (4.6) with H i

given in (4.18). Consequently, ∂xjH i is computed from (4.18), giving:

∂xjH i = a
N∑

k=1

(
1

N
− δk,j)y

i,k +
∑

k 6=i

(∂xj
αk(t, x))yi,k (4.19)

−qαi(
1

N
− δi,j) + ǫ(x− xi)(

1

N
− δi,j).

Again, the necessary part of the stochastic maximum principle suggests that one

minimizes H i with respect to αi, leading again to the choice

α̂i = −yi,i + q(x− xi),

which has the same form as (4.8). Again, using Pontryagin’s minimum principle and

injecting X i
t and Y i,j

t into the state equations and the adjoint equations, we obtain

a large system of forward backward stochastic equations which, if solved, provides a

Markovian Nash equilibrium. Similar to the open-loop problem, we make an ansatz

of the same form as in

Y i,j
t = ηt(

1

N
− δi,j)(X t −X i

t), (4.20)
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for some deterministic scalar function ηt satisfying the terminal condition ηT = c.

With this choice of optimal controls and ansatz (4.20) which ensures that the control

αi is a feedback control , we get

αk(t, x) =

[
q + (1− 1

N
)ηt

]
(x− xk),

∂xjαk(t, x) =

[
q + (1− 1

N
)ηt

]
(
1

N
− δk,j),

and the derivation of ∂xjH i is written as

∂xjH i = a
N∑

k=1

(
1

N
− δk,j)ηt(

1

N
− δi,k)(xt − xi

t)

+
∑

k 6=i

[q + ηt(1−
1

N
](
1

N
− δk,j)ηt(

1

N
− δi,k(xt − xi

t)

−q[q + ηt(1−
1

N
](xt − xi

t)(
1

N
− δi,j) + ǫ(x− xi)(

1

N
− δi,j)

= aηt(xt − xi
t)

N∑

k=1

(
1

N
− δk,j)(

1

N
− δi,k)

+[q + ηt(1−
1

N
)]ηt(xt − xi

t)
1

N

∑

k 6=i

(
1

N
− δk,j)

−(q2 − ǫ)(x− xi)(
1

N
− δi,j)− qηt(1−

1

N
)(x− xi)(

1

N
− δi,j)

= (x− xi)(
1

N
− δi,j)

[
−(a + q)ηt +

1

N
(
1

N
− 1)η2t − (q2 − ǫ)

]

by using

N∑

k=1

(
1

N
− δk,j)(

1

N
− δi,k) = −(

1

N
− δi,j),

∑

k 6=i

(
1

N
− δk,j) = −(

1

N
− δi,j).
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Therefore, (4.19) reduces the backward equations to

dY i,j
t = −∂xjH idt+

N∑

k=0

Z i,j,k
t dW k

t

= (
1

N
− δi,j)(X t −X i

t)

[
(a+ q)ηt −

1

N
(
1

N
− 1)η2t + q2 − ǫ

]
dt

+

N∑

k=0

Z i,j,k
t dW k

t , (4.21)

with terminal conditions Y i,j
T = c( 1

N
− δi,j)(XT − X i

T ). Using (4.8) and (4.20), the

forward equations become

dX i
t =

[
a+ q + (1− 1

N
)ηt

]
(X t −X i

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
,(4.22)

and by summation we deduce that X t satisfies again (4.13). Differentiating the ansatz

(4.20), using (4.13) and (4.22) for the forward dynamics and following the same

computation in Section 4.1, we obtain that Y i,j
t satisfies equation (4.15) with φt

replaced with ηt:

dY i,j
t =

(
1

N
− δi,j

)
(X t −X i

t)

[
η̇t −

(
a+ q + (1− 1

N
)ηt

)
ηt

]
dt

+(
1

N
− δi,j)ηtσ

√
1− ρ2

N∑

k=1

(
1

N
− δi,k)dW

k
t . (4.23)

Again, identifying the martingale terms in the two Itô decompositions (4.21) and

(4.23), we get

Z i,j,0
t = 0, and Z i,j,k

t = ηtσ
√

1− ρ2(
1

N
− δi,j)(

1

N
− δi,k), for k = 1, · · · , N,

which satisfy the adapted and square integrable condition. Also by checking the drift

terms, we obtain
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η̇t −
(
a+ q + (1− 1

N
)ηt

)
ηt = (a+ q)ηt −

1

N
(
1

N
− 1)η2t + q2 − ǫ.

Therefore, ηt must satisfy the scalar Riccati equation

η̇t = 2(a+ q)ηt + (1− 1

N2
)η2t − (ǫ− q2), (4.24)

with the terminal condition ηT = c. Equation (4.24) admits the solution

ηt =
−(ǫ− q2)

(
e(δ

+−δ−)(T−t) − 1
)
− c

(
δ+e(δ

+−δ−)(T−t) − δ−
)

(δ−e(δ+−δ−)(T−t) − δ+)− c(1− 1
N2 ) (e(δ

+−δ−)(T−t) − 1)
, (4.25)

where we used the notation

δ± = −(a + q)±
√
R, (4.26)

with

R := (a+ q)2 +

(
1− 1

N2

)
(ǫ− q2) > 0. (4.27)

Observe that ηt is well defined for any t ≤ T since the denominator in (4.25) can be

written as

−
(
e(δ

+−δ−)(T−t) + 1
)√

R−
(
a + q + c

(
1− 1

N2

))(
e(δ

+−δ−)(T−t) − 1
)
,

which stays negative because δ+ − δ− = 2
√
R > 0. In fact, using q2 ≤ ǫ, we see that

ηt is positive with ηT = c as required and illustrated in Figure 4.1. In Section 4.3,

we search for a feedback Nash equlibrium of our N differential games using the HJB

approach. In addition, we can verify that the close-loop equilibrium computed by the

FBSDE approach is also a feedback Nash equilibrium with strong time consistency.
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4.3 Closed-Loop Equilibria: HJB Approach

This section provides an exact feedback Nash equilibrium via HJB approach. Un-

der the Markovian setting, the value function of player i is given by

V i(t, x) = inf
α
IEt,x

{∫ T

t

fi(Xs, α
i
s)ds+ gi(X

i
T )

}
,

with the cost functions fi and gi given in (4.3) and (4.4), and where the dynamics of

Xt is given as before by

dX i
t =

[
a(X t −X i

t) + αi
t

]
dt + σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, i = 1, · · · , N.

The dynamic programming principle in search for a closed-loop equilibrium suggests

the corresponding HJB equations written as

∂tV
i + inf

αi

{∑

j 6=i

[
a
(
x− xj

)
+ αj(t, x)

]
∂xjV i +

[
a
(
x− xi

)
+ αi

]
∂xiV i

+
σ2

2

N∑

j=1

N∑

k=1

(
ρ2 + δj,k(1− ρ2)

)
∂xjxkV i

+
(αi)2

2
− qαi

(
x− xi

)
+

ǫ

2
(x− xi)2

}
= 0, (4.28)

with terminal conditions V i(T, x) = c
2
(x − xi)2. Assuming that αj(t, x) for j 6= i is

chosen, and minimizing (4.28) with respect to αi, the control for player i is given by

α̂i = q(x− xi)− ∂xiV i, (4.29)

where V i is still unknown. Similarly, in order to verify that this αi is again a feedback

Nash equilibrium, one needs to assume that all players follow this choice α̂i = q(x−
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xi)− ∂xiV i. Consequently, the HJB equations (4.28) become

∂tV
i +

N∑

j=1

[
(a+ q)

(
x− xj

)
− ∂xjV j

]
∂xjV i

+
σ2

2

N∑

j=1

N∑

k=1

(
ρ2 + δj,k(1− ρ2)

)
∂xjxkV i

+
1

2
(ǫ− q2)

(
x− xi

)2
+

1

2
(∂xiV i)2 = 0. (4.30)

We then make the ansatz for the unknown value function V i:

V i(t, x) =
η̃t
2
(x− xi)2 + µt, (4.31)

where η̃t and µt are deterministic functions satisfying η̃T = c and µT = 0 in order

to match the terminal conditions for V i. It is important to remark that the adjoint

variables yi,j introduced in the FBSDE approach correspond to ∂xjV i, and the ansatz

(4.31) corresponds to the ansatz (4.20). The optimal strategies will be

α̂i = q(Xt −X i
t)− ∂xiV i =

(
q + (1− 1

N
)η̃t

)
(X t −X i

t), (4.32)

and the controlled dynamics will become

dX i
t =

(
a+ q + (1− 1

N
)η̃t

)
(Xt −X i

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
. (4.33)

Next, computing

∂xjV i = (
1

N
− δi,j)

(
x− xi

)
η̃t, and ∂xjxkV i = (

1

N
− δi,j)(

1

N
− δi,k)η̃t,
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plugging both into (4.30), and matching the terms in (x− xi)
2
and the state-independent

terms from both sides, we obtain

˙̃ηt = 2(a+ q)η̃t + (1− 1

N2
)η̃2t − (ǫ− q2), (4.34)

µ̇t = −1

2
σ2(1− ρ2)

(
1− 1

N

)
η̃t, (4.35)

with the terminal conditions η̃T = c and µT = 0. Obviously, η̃t must satisfy the same

Riccati equation as (4.24) and the same terminal condition satisfied by ηt. Therefore,

by unicity of the solution for this equation, we deduce that η̃t = ηt for all t ≤ T .

Consequently, we verify that the closed-loop equilibrium obtained in Section 4.2 is

a feedback Nash equilibrium. The explicit solution for ηt is given by (4.25) and,

furthermore, the solution µt of (4.35) with the terminal condition µT = 0 is given by

µt =
1

2
σ2(1− ρ2)

(
1− 1

N

)∫ T

t

η̃s ds, (4.36)

and the value functions V i using this exact Nash equilibrium are given by (4.31). It

is also interesting to note that the correlation, determined by the parameter ρ does

not appear in the control αi given by (4.32) but in the value function V i. Namely, the

correlation parameter ρ only affects the control αi through the dynamics of X t −X i
t

since ηt does not depend on ρ. However, it affects the value function V i given by

(4.31) also through the state-independent term µt. From (4.36), observing that µt

is decreasing in ρ, for the fixed initial value, the value function V i is consequently

decreasing in ρ.
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4.4 Comparison of the Open-loop and Closed-loop

equilibria

Our analysis in Sections 4.1 and 4.2 shows that the two equilibria we obtained are

very similar. In fact, the only difference is that in the open-loop case we obtained the

Riccati equation (4.16) for the function φt (with a factor (1 − 1
N
) in front of φ2

t and

a factor (1 − 1
2N

) in front of q), and in the closed-loop case we obtained the Riccati

equation (4.24) for the function ηt (with a factor (1− 1
N2 ) in front of η2t and a factor

1 in front of q).

In the closed-loop case we saw that the optimal strategy is given by

αi
t =

[
q + (1− 1

N
)ηt

]
(X t −X i

t),

and the forward dynamics are

dX i
t =

[
a + q + (1− 1

N
)ηt

]
(Xt −X i

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
,

with

dX t = σ

(
ρdW 0

t +
√

1− ρ2
1

N

N∑

k=1

dW k
t

)
.

These equations are identical in the open-loop case with ηt replaced by φt. Note that

ηt is given explicitly by formula (4.25) and φt can be obtained similarly by replacing

the factor (1− 1
N2 ) with (1− 1

N
) and using

δ± = −(a+ (1− 1

2N
)q)±

√
R,
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with

R := (a+ (1− 1

2N
)q)2 +

(
1− 1

N

)
(ǫ− q2) > 0.

In Figure 4.1, we show the functions φt and ηt involved respectively in the open-

loop and closed-loop strategies. As expected, the difference is relatively small for

N = 10. However, it is enhanced by our choice of ǫ = 10 giving a rather large factor

ǫ−q2 in front of (1− 1
N
) in the open-loop case or in front of (1− 1

N2 ) in the closed-loop

case. Note that the presence of a terminal cost c = 1 in the right panel produces a

significant difference.

The individual value functions can be calculated as follows. Considering, for

instance, the closed-loop case, we want to calculate

V i(x) = IE

{∫ T

0

[
1

2
(αi)2 − qαi(X t −X i

t) +
ǫ

2
(X t −X i

t)
2

]
dt +

c

2
(XT −X i

T )
2

}
,

where x is the initial position of the system and (αi
t, X

i
t , Xt) are given by the equations

above. Then, one easily obtains by direct computation

V i(x) =
1

2

∫ T

0

[
ǫ− q2 + (1− 1

N
)2η2t

]
IE
{
(X t −X i

t)
2
}
dt+

c

2
IE
{
(XT −X i

T )
2
}
,

with

IE
{
(Xt −X i

t)
2
}

= (x− xi)2e−2
∫ t

0 (a+q+(1− 1
N
)ηs)ds

+(1− 1

N
)σ2(1− ρ2)

∫ t

0

e−2
∫ t

s
(a+q+(1− 1

N
)ηu)duds.

The formula in the open-loop case is simply obtained by replacing ηt by φt.

In Figure 4.2, we compare the value functions V i in the open-loop and closed-loop

equilibria for a particular choice of parameters and as N → ∞.
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Figure 4.1: Plots of φt (solid line) and ηt (dashed line) with N = 10, a = 1, q = 1,
ǫ = 10, T = 1, and c = 0 on the left, c = 1 on the right.
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Figure 4.2: Plots of the value function V i at t = 0 and xi = 0 for i = 1, · · · , N , as
N increases: open loop (solid line), closed loop (dashed line), and common limit as
N → ∞ (dotted line) with a = 1, q = 1, ǫ = 10, ρ = 0.2, T = 1, and c = 10.
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Chapter 5

Systemic Risk and Mean Field

Games

This chapter discusses the derivation of an approximate equilibrium in the limit

(N → ∞). First of all, one may ask:

Why would we want an approximate equilibrium when we can compute an exact one?

The game presented in the previous chapter was essentially designed to provide

explicit Nash equilibrium, and the fact that it does is already remarkable! However,

slight modifications, even minor, dramatically change the equilibrium structures. For

instance, the presence in the dynamics of the X i
t or a nonlinear term in X t in the

objective functions J i renders the computation of exact Nash equilibria hopeless. In

the quadratic case, the closed loop equilibrium is expressible in closed form by solving

the coupled matrix Riccati equations, and the open loop equilibrium is obtained using
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matrix differential equations or the coupled matrix Riccati equations as studied in

[2] and [16]. In general, it is difficult to find explicit solution in both methods. In

our specific homogeneous and symmetrical case, the coupled matrix Riccati equations

can be simplified to Riccati equations which can be solved explicitly.

The Mean Field Game strategy is based on the solution of effective equations in

the limit as N → ∞, using the theory of the propagation of chaos. We review this

strategy in the context of the model presented in the previous section, and compare

its output to the exact solutions derived earlier. Furthermore, in the Section 7.2, in

order to solve the heterogeneous grouping case, we show the simplification from this

mean field strategy and also find the corresponding approximate Nash equilibria.

5.1 The Mean Field Games / FBSDE Approach

If it was not for the presence of a common noise, we could apply the results of

[7] to obtain approximate Nash equilibria from the solution of the Mean Field Game

(MFG). Notice that linear quadratic MFGs are studied in [4] and [8]. While the latter

does not include the cross term −qα(x−xi) in the running cost of player i, the proofs

of [8] apply mutatis mutandis to the model of the present paper when ρ = 0. We

review the MFG strategy. It is based on the following three steps:

1. Fix (mt)t≥0, which should be thought of as a candidate for the limit of X t as
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N → ∞:

mt = lim
N→∞

Xt.

Because of the presence of the common noise, (mt)t≥0 is a process adapted to

the filtration generated by W 0 and one should think of mt as a function of

(W 0
s )s≤t.

2. Solve the one-player standard control problem

inf
α=(αt)∈A

IE

{∫ T

0

[
α2
t

2
− qαt(mt −Xt) +

ǫ

2
(mt −Xt)

2

]
dt+

c

2
(mT −XT )

2

}
,

subject to the dynamics

dXt = [a(mt −Xt) + αt] dt+ σ
(
ρdW 0

t +
√
1− ρ2dWt

)
,

where W 0
t and Wt are independent Brownian motions, independent of the initial

value X0 which may be a square integrable random variable ξ.

3. Solve the fixed point problem: Find mt so that mt = IE[Xt | (W 0
s )s≤t] for all t.

We treat the above stochastic control problem as a problem of control of non-

Markovian dynamics with random coefficients. Note that our control problem is

reduced to an one-player problem. The Hamiltonian of the system is given by

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x) +

ǫ

2
(mt − x)2,

which is strictly convex in (x, α) under the condition q2 ≤ ǫ and attains its minimum

at

∂H

∂α
= 0 −→ α̂ = q(mt − x)− y,
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where α̂ is the optimal strategy suggested by the Pontryagin principle. The corre-

sponding adjoint forward-backward equations are given by

dXt = [(a + q)(mt −Xt)− Yt] dt+ σ
(
ρdW 0

t +
√
1− ρ2dWt

)
, X0 = ξ (5.1)

dYt = −∂H

∂x
(α̂)dt+ Z0

t dW
0
t + ZtdWt (5.2)

=
[
(a+ q)Yt + (ǫ− q2)(mt −Xt)

]
dt+ Z0

t dW
0
t + ZtdWt,

YT = c(XT −mT ),

for some adapted square integrable processes (Z0
t , Zt). Beware that such linear sys-

tems do not always have solutions despite its simple looking structure. The existence

of a solution in the present situation is argued in [8] where a solution is shown to

exist.

To identify it in the present situation, we first use the notation mX
t = IE[Xt |

(W 0
s )s≤t] and mY

t = IE[Yt | (W 0
s )s≤t]. In order to solve (5.1 and (5.2), we first take

the conditional expectation given (W 0
s )s≤t in both sides of (5.2) and (5.2) which gives

the dynamics of mX
t and mX

t

dmX
t =

[
(a+ q)(mt −mX

t )−mY
t

]
dt+ σρdW 0

t , m
X
0 = IE[ξ | (W 0

s )s≤t] (5.3)

dmY
t =

[
(a+ q)mY

t + (ǫ− q2)(mt −mX
t )
]
dt+ Z0

t dW
0
t (5.4)

mY
t = c(mY

t −mT ).

Using the fact that in equilibrium (i.e. after solving for the fixed point), we have

mt = mX
t for all t ≤ T which in turn implies mY

T = c(mX
T −mT ) = 0 and

dmY
t = (a+ q)mY

t dt+ Z0
t dW

0
t .
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Consequently, we obtain

mY
t = −

∫ T

t

e(a+q)(s−t)Z0
sdW

0
s . (5.5)

We deduce that, in equilibrium, we have

dmX
t = −mY

t dt+ ρσdW 0
t , mX

0 = IE[ξ | (W 0
s )s≤t]. (5.6)

Now, we make the (educated) ansatz

Yt = −ηt(mt −Xt), (5.7)

for some deterministic function t →֒ ηt to be determined. Differentiating this ansatz

and using (5.1) and (5.6) leads to

dYt = −η̇t(mt −Xt)dt− ηtd(mt −Xt) (5.8)

=
[
(−η̇t + ηt(a + q + ηt)) (mt −Xt) + ηtm

Y
t

]
dt+ ηtσ

√
1− ρ2dWt.

Plugging the ansatz (5.7) into (5.2) gives

dYt =
[
−(a + q)ηt + (ǫ− q2)

]
(mt −Xt)dt+ Z0

t dW
0
t + ZtdWt. (5.9)

Identifying the two Itô decompositions (5.8) and (5.9), we deduce first from the mar-

tingale terms that Z0
t ≡ 0 and Zt = ηtσ

√
1− ρ2 satisfy the adapted condition because

they are deterministic. Equating the drift terms, we see that ηt must be a solution

to the Riccati equation

η̇t = 2(a + q)ηt + η2t − (ǫ− q2), (5.10)
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with terminal condition ηT = c. As expected, the solution for ηt is given explicitly in

(4.25) after taking the limit as N → ∞. Next, using Z0
t ≡ 0 and plugging into (5.5),

we deduce that mY
t = 0 and consequently mX

t = IE[ξ | (W 0
s )s≤t] + ρσW 0

t from (5.6)

which will plug into the optimal control (q + ηt)(m
X
t −Xt).

An important result of the theory of MFGs (see for example [7]) is the fact that,

once a solution to the MFG is found, one can use it to construct approximate Nash

equilibria for the finitely many players games. Here, if one assumes that each player

is given the information X t, and if player i uses the strategy

αi
t = (q + ηt)(Xt −X i

t),

which is the limit as N → ∞ of the strategy used in the finite players game, one

sees how solving the limiting MFG problem can provide approximate Nash equilibria.

It is interesting to remark that recognizing the strategy αi in the MFG is similar

as the exact Nash equilibria studied in Chapter 4, we can expect that the financial

implication are identical. This result is described in Chapter 6.

5.2 The Mean Field Games / HJB Approach

It is interesting to go through the derivation of the MFG solution using the HJB

approach since it involves additional difficulties due to the presence of the common

noise. In our toy model, it can be handled explicitly through stochastic partial dif-

ferential equations (SPDE). We will show the full derivation in this section.
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For Markovian strategies of the form α(t, x), the dynamics are given, as previously

noted, by

dXt = [a(mt −Xt) + α(t, Xt)] dt + σ
(
ρdW 0

t +
√

1− ρ2dWt

)
.

As in Section 5.1, we should think as (W 0
t ) as given, so that the Kolmogorov forward

equation for the conditional density of Xt becomes a SPDE which can be written as

dpt =

{
−∂x [(a(mt − x) + α(t, x)) pt] +

1

2
σ2∂xxpt

}
dt− ρσ(∂xpt)dW

0
t , (5.11)

with the initial density p0 being the density of ξ. The full derivation of the infinitesimal

generator for the given common noise (W 0
t ) is discussed in Appendix A. Here α(t, x)

is given and mt =
∫
xpt(x)dx. Consequently, mt, the conditional mean of Xt given

W 0, is a stochastic process which will turn out to be Markovian with its infinitesimal

generator denoted by Lm. The HJB equation for the value function V (t, x,m) can be

written as

dV +

[
1

2
σ2∂xxV + LmV + (∂xmV )

d〈m,X〉
dt

]
(5.12)

+ inf
α

{
[a(m− x) + α] ∂xV +

α2

2
− qα(m− x) +

ǫ

2
(m− x)2

}
dt = 0.

Next, we minimize with respect to α to get α̂ = q(m − x) − ∂xV , and we make the

ansatz V (t, x,m) = ηt
2
(m − x)2 + µt. In order to solve the HJB equation (5.12), we

must find the dynamics of the conditonal expectation mt. Plugging α̂ into the forward

equation for pt, the conditional density of Xt becomes

dpt =

{
−∂x [(a+ q + ηt)(mt − x)pt] +

1

2
σ2(1− ρ2)∂xxpt

}
dt− ρσ(∂xpt)dW

0
t ,
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multiplying by x, and integrating with respect to x gives

dmt = ρσdW 0
t ,

using
∫ ∞

−∞
x∂xpt = −1,

∫ ∞

−∞
x∂xxpt = −mt,

∫ ∞

−∞
x∂xxxpt = 0,

where we assume that pt decay rapidly in x. Therefore, conditional on W 0,

LmV =
1

2
ρ2σ2∂mmV =

1

2
ρ2σ2ηt,

and d〈m,X〉 = ρ2σ2dt. Then, verifying that the ansatz satisfies the HJB equation, by

canceling terms in (m−x)2 we obtain that ηt must satisfy the Riccati equation (5.10),

and canceling state-independent terms leads to µ̇t = −1
2
σ2(1− ρ2)ηt and therefore

µt =
1

2
σ2(1− ρ2)

∫ T

t

ηsds.

We observe that the value function V (t, x,m) is the limit as N → ∞ of the value

function obtained in the finite players game shown in the conclusion of Section 5.1.
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Chapter 6

Financial Implication

In Chapter 4 and Chapter 5, we discussed the derivation of three different strate-

gies: open-loop, closed-loop, and MFG equilibria. Now, it is interesting to explain

the financial implication of these strategies. That is, when banks have the ability

to control their rate of borrowing from or lending to the central bank, could they

reduce possibility of a large number of defaults? Since our toy model is symmetri-

cal and quadratic, the strategies in these cases can be solved explicitly and formed

very similarly. The comments below made in the case of the closed-loop equilibrium

with the function ηt would be identical in the case of the open-loop equilibrium with

ηt replaced by φt and in the case of the MFG equilibrium by considering the limit

N → ∞.

1. Once the function ηt has been obtained in (4.25), bank i implements its strategy

by using its control α̂i given by (4.32). It requires its own log-reserve X i
t but

62



also the average reserve X t which may or may not be known to the individual

bank i. Here, we assume that the central bank/regulator observes the mone-

tary reserves of all banks and therefore X t, and that it gives this aggregated

information to each individual banks. Consequently, even though X t is given

by (4.13), the banks do not need to know the two parameters σ and ρ in order

to implement their optimal strategies. Observe also that the average X t is iden-

tical to the average found in Section 3.4. Therefore, systemic risk occurs in the

same manner as in the case of uncontrolled dynamics with or without common

noise as presented, respectively, in Sections 3.4 and 3.3.

2. However, (4.33) shows that the control affects the rate of borrowing and lending

by adding the time-varying component q+(1− 1
N
)ηt to the uncontrolled rate a.

3. In fact, from (4.33) rewritten as

dX i
t =

(
a+ q + (1− 1

N
)ηt

)
1

N

N∑

j=1

(Xj
t −X i

t)dt (6.1)

+σ

(√
1− ρ2dW i

t + ρdW 0
t

)
,

we see that the effect of the banks using their optimal strategies corresponds to

inter-bank borrowing and lending at the increased effective rate

At := a+ q + (1− 1

N
)ηt

with no central bank (or a central bank acting as an instantaneous clearing

house). As a consequence, using this equilibrium, the system is operating as if
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banks were borrowing from and lending to each other at the rate At, and the

net effect is additional liquidity quantified by the rate of lending/borrowing.

Note that the comments above are valid not only if a > 0, in which case the effect

of the game is to increase the rate of interbank lending and borrowing, but also

if a = 0, in which case the effect of the game is to “create” an interbank lending

and borrowing activity. In both cases, the central bank acts as a clearing house

but needs to provide the informationX t so that individual banks can implement

their strategies.

4. Observe that the presence of a common noise (quantified by ρ) does not affect

the form of the optimal strategies (the function ηt does not depend on ρ).

However it affects the value function V i(t, x) and the dynamics X i
t , and, as we

have seen in Section 3.4, it has a drastic effect on systemic risk.

5. It is also interesting to note that for T large, most of the time (T − t large), ηt

is mainly constant. For instance, with c = 0,

lim
T→∞

ηt =
ǫ− q2

−δ−
:= η,

as illustrated on right panel of Figure 6.1. Therefore, in this infinite-horizon

equilibrium, banks are borrowing and lending to each other at the constant rate

A := a+ q + (1− 1

N
)η. (6.2)

In Figure 6.2 we show the constant effective rates A (for infinite horizon) for

the open-loop and closed-loop equilibria as N increases. Note that liquidity
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Figure 6.1: Plots of ηt with c = 0, a = 1, q = 1, ǫ = 2 and T = 1 on the left, T = 100
on the right with η ∼ 0.24 (here we used 1/N ≡ 0).

(quantified by the effective rate of lending/borrowing A) is higher in case of the

open-loop equilibrium and increases with N .
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Figure 6.2: Plots of the effective rate A (6.2) for the open-loop equilibrium (solid line)
and for the closed-loop equilibrium (dashed line) with a = 1, q = 1, ǫ = 10, T = 1,
and as N increases. The dotted line shows the common limit as N → ∞
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Chapter 7

Extension: Heterogeneous

Grouping

In Chapter 4 and Chapter 5, we obtained that the optimal strategies for banks in

the homogeneous system only improve the stability by adding the liquidity rate but do

not prevent the system from systemic risk because systemic risk happens in the same

manner. Also, surprisingly, the central bank cooperates with other banks as a clearing

house. It is natural to break the homogeneity to observe systemic risk being affected

by the heterogeneous parameters and the correspoinding diverse optimal strategies.

Instead of individuals, we now search the equilibria for d (d ≥ 1) heterogeneous

groups. That is, banks within the same groups consider identical parameters for their

object or value functions and dynamics or constraints. The numbers of banks in each

group are N1, · · · , Nd and
∑d

k=1Nk = N . We use the index (k)i to indicate the i-th
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player in the group k and i = 1, · · · , Nk, k = 1, · · · , d. For simplicity, we assume that

the Brownian motions (W
(k)i
t ), i = 1, · · · , Nk, k = 1, · · · , d are all independent. In

other words, there is no common noise in our model. Note that the value functions

and dynamics are homogeneous within groups with parameters only depending on

the group index k.

We propose two different heterogeneous systems. Section 7.1 shows that banks

are assumed to use different transaction rates from one group to another group and

control their own rates to request money from or send money to the central bank in

order to minimize their cost functions only relying on their own group average

X
(k)

t =
1

Nk

Nk∑

i=1

X
(k)i
t .

Section 7.2 shows that banks are not necessarily imposed to do any transaction but

they have to find the optimal strategies to approach the system average

X t =
1

N

d∑

k=1

Nk∑

i=1

X
(k)i
t .

The purpose for considering this type of object function is to show that either banks

lend more money to get better interests or borrow money to keep themselves more

stable by being close to the average.

7.1 Case I

In this section, we break the symmetry using different initial heterogeneous trans-

action rates akh. All banks try to minimize their own cost which gives the value
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functions

V (k)i(t, x) = inf
(αt)

IE

{∫ T

0

[
(α

(k)i
t )2

2
− qα

(k)i
t

(
X

(k)

t −X
(k)i
t

)
+

ǫ

2

(
X

(k)

t −X
(k)i
t

)2
]
dt

+
c

2

(
X

(k)

T −X
(k)i
T

)2}
, (7.1)

under the constraint

dX
(k)i
t =

{
akk(X

(k)

t −X
(k)i
t ) +

∑

l 6=k

akl

(
X

(l)

t −X
(k)i
t

)
+ α

(k)i
t

}
dt+ σdW

(k)i
t

=

{
d∑

l=1

aklX
(l)

t − ã(k)X
(k)i
t + α

(k)i
t

}
+ σdW

(k)i
t (7.2)

where ã(k) =
∑d

l=1 akl and X
(k)

t = 1
Nk

∑Nk

i=1X
(k)i. The initial value X

(k)i
0 may also be

a squared integrable random variable ξ(k). Banks are supposed to do the transaction

using different rates akh from group k to group h. In addition, banks have the ability

to choose their own rates to borrow money from or lend money to the central bank.

From the banks’ point of view, they want to be close to the group average X
(k)

t in

order to survive in the group as long as possible. This inclination can be seen in the

value function depending on only the group average X
(k)

T . Again, we are interested in

differences from the previous homogeneous case discussed in chapters 4 and 5. The

following sections provide the explicit solutions for open-loop equilibria and closed-

loop equilibria. Finally, Section 7.1.4 gives the discussion for this heterogeneous bank

system.
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7.1.1 Open-Loop Equilibria: FBSDE Approach

Using Pontryagin’s principle to obtain open-loop equilibria, the Hamiltonian for

bank (k)i is written as

H(k)i =
d∑

p=1

Np∑

r=1

{(
d∑

l=1

aplx
(l) − ã(p)x(p)r

)
+ α(p)r

}
y(k)i,(p)r

+
(α

(k)i
t )2

2
− qα

(k)i
t

(
x(k) − x(k)i

)
+

ǫ

2

(
x(k) − x(k)i

)2
.

Consequently, the derivative of Hamiltonian H(k)i with respect to x(h)j is given by

∂x(h)jH(k)i =
1

Nh

d∑

p=1

Np∑

r=1

aphy
(k)i,(p)r − ã(h)y(k)i,(h)j

−qα(k)i(
1

Nk

− δi,j)δk,h + ǫ
(
x
(k)
t − x

(k)i
t

)
(
1

Nk

− δi,j)δk,h,

and in order to satisfy the necessary condition of the Pontryagin principle, bank (k)i

chooses its strategy as follows:

α̂(k)i = q(x(k) − x(k)i)− y(k)i,(k)i.

We then make the ansatz for Y
(k)i,(h)j
t

Y
(k)i,(h)j
t = η

(k)
t

(
X

(k)

t −X
(k)i
t

)( 1

Nk

− δi,j

)
δk,h. (7.3)

Similarly, using the Pontryagin principle and ansatz (7.3), the backward equation is

given by

dY
(k)i,(h)j
t = (X

(k)

t −X
(k)i
t )(

1

Nk

− δi,j)δk,h

[
(ã(h) + (1− 1

N
)q)η

(k)
t − (ǫ− q2)

]
dt

+
d∑

p=1

Np∑

r=1

Z(k)i,(h)j,(p)rdW
(p)r
t , (7.4)
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where (Z
(k)i,(h)j,(p)r
t ) are adapted processes. Differentiating the ansatz (7.3), we obtain

dY
(k)i,(h)j
t

=
(
X

(k)

t −X
(k)i
t

)( 1

Nk

− δi,j

)
δk,h

(
η̇
(k)
t − η

(k)
t

(
ã(k) + q + (1− 1

Nk

)η
(k)
t

))
dt

+η(k)(
1

Nk

− δi,j)δk,hσ

(
1

Nk

Nk∑

r=1

dW
(k),r
t − dW

(k)i
t

)
. (7.5)

Comparing (7.4) and (7.5), we observe that if k 6= h, Y
(k)i,(h)j
t = 0. Identifying the

drift terms and martingale terms only when k = h, we obtain

Z
(k)i,(h)j,(p)r
t = ση

(k)
t (

1

Nk

− δi,j)δk,h(
1

Nk

− δi,r)δk,p

which is a deterministic function satisfying the adapted condition, and η
(k)
t is the

solution of the scaled Riccati equation

η̇
(k)
t = 2(ã(k) + (1− 1

2Nk

)q)η
(k)
t + (1− 1

Nk

)(η
(k)
t )2 − (ǫ− q2), (7.6)

with the terminal condition η
(k)
T = c.

7.1.2 Closed-Loop Equilibria: FBSDE Approach

As we discussed in Section 4.2, in order to find the closed-loop equilibria, the

modified Hamiltonian for bank (k)i is given by

H(k)i =
d∑

p=1

Np∑

r 6=i

{(
d∑

l=1

aplx
(l) − ã(p)x(p)r

)
+ α(p)r(t, x)

}
y(k)i,(p)r

+

{
d∑

l=1

aklx
(l)
t − ã(k)x

(k)i
t + α

(k)i
t

}
y(k)i,(k)i

+
(α

(k)i
t )2

2
− qα

(k)i
t

(
x(k) − x(k)i

)
+

ǫ

2

(
x(k) − x(k)i

)2
.
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With the choice of the ansatz

Y
(k)i,(h)j
t = η

(k)
t

(
X

(k)

t −X
(k)i
t

)( 1

Nk

− δi,j

)
δk,h, (7.7)

we get

α(k)i =

(
q + η

(k)
t (1− 1

Nk

)δk,h

)(
X

(k)

t −X
(k)i
t

)

∂x(h)jα(k)i =

(
q + η

(k)
t (1− 1

Nk

)δk,h

)(
1

Nk

− δi,j

)
δk,h.

In order to satisfy the Pontryagin principle, the backward dynamics Y
(k)i,(h)j
t is written

as

dY
(k)i,(h)j
t

=
(
X

(k)
t −X

(k)i
t

)( 1

Nk
− δi,j

)
δk,h

(
(ã(h) + q)η

(k)
t − 1

Nk
(
1

Nk
− 1)(η

(k)
t )2 − (ǫ− q2)

)
dt

+
d∑

p=1

Np∑

r=1

Z(k)i,(h)j,(p)rdW
(p)r
t (7.8)

where (Z
(k)i,(h)j,(p)r
t ) are adapted processes. Similarly, differentiating (7.7), we get

dY
(k)i,(h)j
t

=
(
X

(k)

t −X
(k)i
t

)( 1

Nk

− δi,j

)
δk,h

(
η̇
(k)
t − η

(k)
t

(
ã(k) + q + (1− 1

Nk

)η
(k)
t

))
dt

+η(k)(
1

Nk

− δi,j)δk,hσ

(
1

Nk

Nk∑

r=1

dW
(k),r
t − dW

(k)i
t

)
. (7.9)

Now, comparing (7.8) and (7.9), again, we observe that if k 6= h, Y
(k)i,(h)j
t = 0.

Identifying the martingale terms, we obtain

Z
(k)i,(h)j,(p)r
t = ση(k)(

1

Nk

− δi,j)δk,h(
1

Nk

− δi,r)δk,p,
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which is a deterministic function satisfying the adapted condition. When k = h,

identifying the drift terms gives that η
(k)
t must satisfy

η̇
(k)
t − η

(k)
t

(
ã(k) + q + (1− 1

Nk

)η
(k)
t

)
= (ã(k) + q)η

(k)
t − 1

Nk

(
1

Nk

− 1)(η
(k)
t )2 − (ǫ− q2),

(7.10)

which is the scalar Riccati equation

η̇
(k)
t = 2(ã(k) + q)η(k) + (1− 1

N2
k

)(η
(k)
t )2 − (ǫ− q2), (7.11)

with the terminal condition η
(k)
T = c.

7.1.3 Closed-Loop Equilibria: HJB Approach

In the Markovian setting, we can solve the value function V (k)i(t, x) and find the

closed loop optimal control α(k)i using the HJB approach. The HJB equation for

V (k)i(t, x) is written as

∂tV
(k)i + inf

α

{ d∑

p=1

Np∑

r=1

{(
d∑

l=1

aplx
(l) − ã(p)x(p)r

)
+ α(p)r

}
∂x(h)jV (k)i

+
(α

(k)i
t )2

2
− qα

(k)i
t

(
x(k) − x(k)i

)
+

ǫ

2

(
x(k) − x(k)i

)2
}

+
σ2

2

d∑

h=1

Nh∑

j=1

d∑

p=1

Np∑

r=1

∂x(h)jx(p)rV (k)i = 0 (7.12)

with terminal condition V (k)i(T, x) = c
2

(
x(k) − x(k)i

)
. Again, as in the one group case

in Section 4.3, assuming the player (k)i chooses the optimal control q
(
x
(k)
t − x

(k)i
t

)
−
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∂x(k)iV (k)i when all other controls are chosen, the HJB (7.12) becomes

∂tV
(k)i +

σ2

2

d∑

h=1

Nh∑

j=1

d∑

p=1

Np∑

r=1

∂x(h)jx(p)rV (k)i

+ inf
α

{ d∑

p=1

Np∑

r=1

{(
d∑

l=1

aplx
(l) − ã(p)x(p)r

)
+ q

(
x− x(p)r

)
− ∂x(p)rV (p)r

}
∂x(h)jV (k)i

+
ǫ− q2

2

(
x(k) − x(k)i

)2 −
(
∂x(k)iV (k)i

)2
}

= 0, (7.13)

where V (k)i(t, x) is still unknown. Then, we make the ansatz

V (k)i(t, x) =
η
(k)
t

2

(
x(k) − x(k)i

)2
+ µ

(k)
t . (7.14)

Consequently, we obtain

∂x(h)jV (k)i = η
(k)
t

(
x(k) − x(k)i

)( 1

Nk

− δi,j

)
δk,h, (7.15)

and

∂x(h)jx(p)rV (k)i = η
(k)
t

(
1

Nk

− δi,j

)
δk,h

(
1

Nk

− δi,r

)
δk,p (7.16)

where η
(k)
t and µ

(k)
t are deterministic functions satisfying the terminal values η

(k)
T = c

and µ
(k)
T = 0. Plugging (7.14), (7.15) and (7.16) into (7.13), we observe that η

(k)
t has

to satisfy the scalar Riccati equation

η̇
(k)
t = 2(ã(k) + q)η(k) + (1− 1

N2
k

)(η
(k)
t )2 − (ǫ− q2), (7.17)

which is the same equation as (7.11), and µ
(k)
t satisfies

µ̇
(k)
t = −σ2

2
(1− 1

Nk

)η(k).
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7.1.4 Financial Implications

The results for this model are very similar as the one group case. Bank (k)i only

needs to replace a and N with ã and Nk, respectively, to obtain the optimal strategy

α(k)i = (q + (1− 1

Nk

)η(k))
(
x(k) − x(k)i

)
,

and the log-monetary reserve of bank (k)i becomes

dX
(k)i
t

=

{(
akk + (q + (1− 1

Nk

)η(k))

)
(X

(k)

t −X
(k)i
t ) +

∑

l 6=k

akl

(
X

(l)

t −X
(k)i
t

)}
dt

+σdW
(k)i
t .

Bank (k)i only adds liquidity within its own group k. The transaction rates for

the other groups are all identical and the central bank acts as a clearing house.

We conclude that the system becomes more stable using larger liquidity by adding

groups. This result is predictable in this model since the objective functions for all

banks in group k are uncorrelated to other groups. In the next section, we assume all

banks must consider the system average X t instead of the group average X
(k)

t in their

objective functions. Section 7.2 shows how this heterogeneity affects the strategies

for banks and the behavior for the central bank.
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7.2 Case II

The second grouping model is as follows: all banks try to minimize their own cost

which again gives the value functions

V (k)i(t, x) = inf
(αt)

IE

{∫ T

0

[
(α

(k)i
t )2

2
− qkα

(k)i
t

(
X t −X

(k)i
t

)
+

ǫk
2

(
X t −X

(k)i
t

)2
]
dt

+
ck
2

(
XT −X

(k)i
T

)2}
, (7.18)

under the constraint

dX
(k)i
t = α

(k)i
t dt+ σdW

(k)i
t , (7.19)

with the initial value X
(k)i
0 which may also be a squared integrable random variable

ξ(k) and

X t =
1

N

d∑

k=1

Nk∑

i=1

X
(k)i
t , X

(k)

t =
1

Nk

Nk∑

i=1

X
(k)i
t .

Note that in this case, due to the ensemble average of all players X t appearing in the

value function V (k)i, the strategy must include this information from other groups

which implies that this heterogeneous problem is much more difficult than the one we

discussed in Section 7.1. This multi-dimensional control problem can be represented

by the matrix form studied by [2]:

dXt =
d∑

j=1

bjαjdt,

and the value function for player i

V i = inf
α1,··· ,αN

IE

{∫ T

t

(
X ′

sQ
iXs

2
+

αi
sα

i
s

2
+X ′

sS
iαi

)
ds+

X ′
TR

iXT

2

}
.

76



where Xt is a vector and Qi, Ri are both symmetrical matrices. The control problem

is solved by coupled matrix Riccati equations discussed in [3]. In general, it is difficult

to find an explicit solution, especially for closed-loop Nash equilibria. Therefore, we

discuss the derivation of approximate equilibria using mean field games in case when

N → ∞ and Nk

N
→ βk for all k.

7.2.1 Mean Field Games / FBSDE Approach

This section presents the derivation of the approximate Nash equilibria using a

mean field game approach. As in the one group case, the strategy is as follows:

1. Fix (m
(k)
t )t≥0, which is a candidate for the limit of X

(k)

t as Nk → ∞:

m
(k)
t = lim

Ik→∞
X

(k)

t ,

for all k, and

Mt = lim
N,N1...,Nk→∞

d∑

k=1

Nk

N
X

(k)

t =
d∑

k=1

βkm
(k)
t .

2. Solve the d-players control problem

inf
α=(αt)∈A

IE

{∫ T

0

[
(α

(k)
t )2

2
− qkα

(k)
t

(
Mt −X

(k)
t

)
+

ǫk
2

(
Mt −X

(k)
t

)2
]
dt

+
ck
2

(
MT −X

(k)
T

)2}
, (7.20)

subject to the dynamics

dX
(k)
t = α

(k)
t dt+ σdW

(k)
t .
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3. Like the one-player case, solve the fixed point problem: find m
(k)
t = IE[X

(k)
t ] for

all t.

The Hamiltonian for the above system is given by

H(k) =

d∑

j=1

α(j)Y (k),j +
(α(k))2

2
− qkα

(k)
(
M − x(k)

)
+

ǫk
2

(
M − x(k)

)2
,

which is strictly convex in (x(k), α(k)) under the condition q2k < ǫk for all k and, again,

attains its minimum at

∂H(k)

∂α(k)
= 0 → α(k) = qk

(
M − x(k)

)
− y(k),k.

The adjoint forward-backward equations are given by

dX
(k)
t =

(
qk

(
Mt −X

(k)
t

)
− y(k),k

)
dt+ σdW

(k)
t , (7.21)

X
(k)
0 = ξ(k);

dY
(k),j
t = −∂H(k)

∂x(j)
dt+

d∑

h=1

Z
(k),j,h
t dW h

t (7.22)

=
(
qkY

(k),k + (ǫk − q2k)
(
Mt −X

(k)
t

))
δk,j +

d∑

h=1

Z
(k),j,h
t dW h

t ,

Y
(k),j
T = ck

(
X

(k)
T −MT

)
δk,j.

Taking the expectation for both forward and backward equations give

dm
(k)
t =

(
qk

(
Mt −m

(k)
t

)
−mY (k)

t

)
dt, m

(k)
0 = IE(ξ(K))

dmY (k),k

t =
(
qkm

Y (k),k

t + (ǫk − q2k)
(
Mt −mX(k)

t

))
dt, (7.23)

mY (k),k

T = ck(m
X(k)

T −MT ).
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The dynamics of Mt =
∑d

k=1 βkm
(k)
t becomes

dMt =

(
d∑

k=1

βkqk(Mt −m
(k)
t )−

d∑

k=1

βkm
Y (k),k

t

)
dt, M0 =

d∑

j=1

βjm
(j)
0 (7.24)

Now, we make the ansatz

Y
(k),j
t = −

(
η
(k)
t (Mt −X

(k)
t ) + φ

(k)
t

)
δk,j, (7.25)

and consequently,

mY (k),j

t = −
(
η
(k)
t (Mt −m

(k)
t ) + φ

(k)
t

)
δk,j (7.26)

where η
(k)
t and φ

(k)
t are both deterministic functions. Again, differentiating (7.25), we

obtain

dY
(k),j
t =

{(
−η̇

(k)
t + η

(k)
t (qk + η

(k)
t )
)
(Mt −X

(k)
t )

−η
(k)
t

(
d∑

h=1

βh(qh + η
(h)
t )(Mt −m

(h)
t ) +

d∑

h=1

βkφ
(h)
t

)

+η
(k)
t φ

(k)
t − φ̇

(k)
t

}
δk,jdt+ η

(k)
t σδk,jdW

k
t . (7.27)

Plugging (7.25) into (7.23), the backward equation becomes

dY
(k),j
t =

(
qkY

(k),k
t + (ǫk − q2k)(Mt −X

(k)
t )
)
δk,jdt+

d∑

h=1

Z
(k),j,h
t dW h

t

=
{(

−qkη
((k)
t + ǫk − q2k

)
(Mt −X

(k)
t )− qkφ

(k)
t

}
δk,jdt+

d∑

h=1

Z
(k),j,h
t dW h

t .

(7.28)

Identifying the martingale and drift terms in (7.27) and (7.28), we get Z
(k),j,k
t =

η
(k)
t σδk,j, and Z(k),j,d = 0 if d 6= k, and η

(k)
t and φ

(k)
t must satisfy

η̇
(k)
t = 2qkη

(k)
t + (η

(k)
t )2 − (ǫk − q2k), (7.29)
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φ̇
(k)
t = (qk + η

(k)
t )φ

(k)
t + η(k)s

(
d∑

h=1

βh(qh + η
(h)
t )(Mt −m

(h)
t )−

d∑

h=1

βkφ
Y (h),h

t

)
, (7.30)

with terminal condition η
(k)
T = ck and φ

(k)
T = 0. Next, in order to find the solution for

control α(k), we need to solve the system φ
(k)
t and (Mt − m

(k)
t ) for all k and t. The

dynamics of (Mt −m
(k)
t ) is written as

d(Mt −m
(k)
t ) =

{( d∑

h=1

βh(qh + η
(h)
t )(Mt −m

(h)
t ) +

d∑

h=1

βkφ
(h)
t

)

−
(
(qh + η

(k)
t )(Mt −m

(k)
t )− φ

(k)
t

)}
dt,

M0 −m
(k)
0 =

d∑

h=1

βhm
(h)
0 −m

(k)
0 ,(7.31)

dφ
(k)
t =

{
(qk + η

(k)
t )φ

(k)
t + η(k)s

(
d∑

h=1

βh(qh + η
(h)
t )(Mt −m

(h)
t )−

d∑

h=1

βhφ
(h)
t

)}
dt,

φ
(k)
T = 0. (7.32)

In fact, the system (7.31) and (7.32) can be written as the linear differential equation

using the matrix form. We first introduce the vector

Φt =
(
Mt −m

(1)
t , · · · ,Mt −m

(d)
t , φ

(1)
t , · · · , φ(d)

t

)′

satisfying the system of linear differential equation with the time dependent coeffi-

cients

Φ̇t = GtΦt,

and

PΦ0 +QΦT = (M0 −m
(1)
0 , · · · ,M0 −m

(d)
0 , 0, · · · , 0)′, (7.33)
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with matricesGt, P , andQ. From (7.33), the initial condition Φ0 satisfies the equation

(Pe
∫ T

0
Gsds +Q)e−

∫ T

0
GsdsΦ0 = (M0 −m

(1)
0 , · · · ,M0 −m

(d)
0 , 0, · · · , 0)′,

where
∫ T

0
Gsds can be approximated using Magnus expansion [24]. The solution of

Φt is given by

Φt = Φ0e
∫ t

0 Gsds

which gives the solution of φ
(k)
t .

7.2.2 Mean Field Games / HJB Approach

It is also interesting to go through the derivation of the MFG solution using the

HJB approach. For Markovian strategies of the form α(k)(t, x(k)), the dynamics are

given by

dX
(k)
t = α(k)(t, X(k))dt+ σdW

(k)
t .

The Kolmogorov forward equation for the density of X
(k)
t can be written as

dp
(k)
t =

{
−∂(k)

x

[
α(k)(t, x(k))p

(k)
t

]
+

1

2
σ2∂x(k)x(k)p

(k)
t

}
dt, (7.34)

with the initial density p
(k)
0 being the density of ξ(k). Here α(k)(t, x) is given and

m
(k)
t =

∫
xp

(k)
t (x)dx. The infinitesimal generator of m

(k)
t is denoted by Lm(k)

. The
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HJB equation for the value function V (k)(t, x,m(1), · · · , m(d)) can be written as

∂tV
(k) + inf

α(k)

{∑

j 6=k

α(j)(t, x)∂x(j)V (k) + α(k)∂x(k)V (k) +

d∑

j=1

Lm(j)

V (k)

+
σ2

2

d∑

j=1

d∑

h=1

∂x(j)x(h)V (k) +

d∑

j=1

d∑

h=1

(∂x(j)m(h)V (k))
d〈m(h), X(j)〉

dt

+
(α(k))2

2
− qkα

(k)(M − x(k)) +
ǫk
2
(M − x(k))2

}
= 0, (7.35)

Next, we minimize with respect to α(k) to get α̂(k) = qk(M − x(k))− ∂x(k)V (k), and we

make the ansatz

V (k)(t, x,m(1), · · · , m(d)) =
η
(k)
t

2
(M − x(k))2 + φ

(k)
t (M − x(k)) + µ

(k)
t ,

and consequently

α̂t = (qk + η
(k)
t )(Mt − x

(k)
t ) + φ

(k)
t .

Plugging α̂ into the forward equation for p
(k)
t , the density of X

(k)
t becomes

dp
(k)
t =

{
−∂x(k)

[(
(qk + η

(k)
t )(Mt − x(k)) + φ

(k)
t

)
p
(k)
t

]
+

1

2
σ2∂x(k)x(k)p

(k)
t

}
dt,

multiplying by x(k), and integrating with respect to x(k) gives

dm
(k)
t =

(
(qk + η

(k)
t )(Mt −m

(k)
t ) + φ

(k)
t

)
dt.

Therefore, the infinitesimal generator Lm(j)
V (k) is given by

Lm(j)

V (k) =
(
(qj + η

(j)
t )(Mt −m

(j)
t ) + φ

(j)
t

)
∂m(j)V (k),

and d〈m(h), X(j)〉 = 0 for all h = 1, · · · , d and j = 1, · · · , d. Then, verifying that

the ansatz satisfies the HJB equation, by canceling terms in (M − x(k))2 and (M −
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x(k)), we obtain that η
(k)
t and φ

(k)
t must satisfy the Riccati equation (7.29) and (7.30)

respectively. Canceling state-independent terms leads to

µ̇
(k)
t = −1

2
σ2η

(k)
t − (φ

(k)
t )2 + φ

(k)
t

d∑

j=1

βjφ
(j)
t ,

and therefore

µt =

∫ T

t

(
1

2
σ2η(k)s + (φ(k)

s )2 − φ(k)
s

d∑

j=1

βjφ
(j)
s

)
ds.

The financial implications for this heterogeneous grouping model is discussed in Sec-

tion 7.2.3.

7.2.3 Financial Implications

The equilibrium in the mean field limit can be written as

α
(k)
t =

(
qk + η

(k)
t

)(
Mt −X

(k)
t

)
+ φ

(k)
t .

Hence the approximate Nash equilibrium of player i in group k in the finite player

game is given by

α(k)i =
(
qk + η

(k)
t

)(
Xt −X

(k)i
t

)
+ φ

(k)
t ,

where

X t =
1

N

d∑

h=1

Nh∑

j=1

X
(h)j
t ,

Plugging α(k)i into the system, the forward equation X(k)i can be rewritten as

dX
(k)i
t =

{
qk + η

(k)
t

N

d∑

h=1

Nh∑

j=1

(
X

(h)j
t −X

(k)i
t

)
+ φ

(k)
t

}
dt+ σdW

(k)i
t .
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Notice that in this specific heterogeneous case, using the MFG approach, we ob-

serve the adjustment term φ
(k)
t containing all heterogeneous parameters. In order to

obtain the optimal strategies, banks need all parameters in all heterogeneous object

functions and initial mean values. However, in reality, banks do not have access to

obtain initial mean values from their competitors. Hence, for simplicity, we assume

that all parameters and initial means are all given by the regulator. It is also im-

portant to remark that as we desired, the adjusted rate function φ
(k)
t , k = 1, · · · , d

forces the central bank to provide extra cash flows into the system or keep deposits

for banks instead of acting as a clearing house.

In particular, if m
(k)
0 = IE(ξ(k)) are identical in group index k, then φ

(k)
t = 0

for all k. Therefore, the control α(k)i degenerates into
(
qk + η

(k)
t

)(
X t −X

(k)i
t

)
. It

shows that players in the other groups only affect the control α(k)i through Xt. The

parameters and deterministic functions in control α(k)i are determined only by its

own group.
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Chapter 8

Conclusion

Finding and understanding why the financial crisis happened is becoming a critical

research topic. In this article, we study one possible factor: systemic risk. Here, in

order to describe systemic risk properly, we propose a simple toy model established

from coupled diffusions and homogeneous dynamics noncooperative games. We also

introduce a mean field games approach which gives an easier way to find approximate

Nash equilibria. The most important message from this simple model is that this

lending and borrowing behavior creates stability but also systemic risk. In addition,

regarding the role of the central bank, if banks use the homogeneous value functions

to create their strategies, the central bank works as clearing house. However, if banks

consider heterogeneous value functions, the central bank must provide additional cash

flows to the system or accept deposits from other banks in order to stabilize this bank

system.
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For the time being, our analysis relies heavily on the symmetry of dynamics and

cost functions. It is interesting to consider a few extension of this toy model. In

fact, the results can be generalized to the case where each bank has its own constant

volatility σi. In Chapter 3 with a finite number N of banks there is no restriction on

these σi which will simply enter in the averaging of the Brownian motions in (4.13).

In the analysis when N → ∞, one needs to impose a condition of the form

lim
N→∞

1

N

N∑

i=1

σ2
i = σ2,

with 0 < σ < ∞, and that is the effective volatility which will appear in the limiting

formulas. Treating the case of non constant volatilities such as σi(t, X
i
t) is much more

involved and no explicit solution can be expected in general. In addition, in order to

stabilize the bank system, banks may want to not only control their own drifts but

volatilities affected by their optimal strategies. It is interesting to observe whether

this modification reduces the probability of a large number of defaults.

One way to depart from symmetry is that we can consider homogeneity in the

same group but heterogeneity between groups. Here, one would have to deal with

coupled matrix Riccati equations. In Chapter 7, we tackled this problem and provided

the approximate Nash equilibria using the MFG approach. The explicit solution for

this problem is a work in progress. In addition, in the case of our model, one may

question whether this model is too simple to describe a realistic situation. One

possible extension could be adding more constraints in this borrowing and lending

system. For instance, the borrower may need to pay some money back to the central
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bank before some fixed maturity time T or pay money back in installments. The

delayed stochastic processes could be applied for this case.

Since we explained systemic risk using the survival probability and the loss dis-

tribution, it is straightforward to consider intensity based models. In order to create

the contagion in the system, one may use the coupled diffusions for the intensity rate.

Note that we need to create few contagious factors in the model. That is, one default

will force more defaults. The benefit for this model is to compute the loss distribution

more efficiently; however, it is not straightforward to explain systemic risk through

this model because the interaction is in the rate function. This explanation needs to

be considered carefully.

In this discussion, we only consider describing or explaining the lending and bor-

rowing behavior as causes for systemic risk using a toy model. However, the verifica-

tion or calibration of our model is questionable. First, what kind of data is appropriate

for calibration or verification? Second, useful data for the analysis may be difficult

to obtain because it is very confidential. These problems have been studied in [10].

Through this study, we expect to learn the connection between models and data and

consequently to analyze systemic risk efficiently.
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Appendix A

Infinitesimal Generator for

Common Noise

We discuss the derivation of the infinitesimal generator for the given common

noise (W 0
t ). For simplicity, we define

dXt = dW 0
t ,

and the condition probability density

pt = P(Xt|(W 0
s )s≤t

(x) = δ{W 0
t }(x).

Define a test function φ and < pt, φ >=
∫
ptφ = φ(W 0

t ). Consequently,

d < pt, φ > =
1

2
∂xxφ(W

0
t )dt+ ∂xφ(W

0
t )dW

0
t ,

= <
1

2
∂xxptdt− ∂xptdW

0
t , φ > .

92



Since d < pt, φ >=< dpt, φ >, we obtain

dpt =
1

2
∂xxptdt− ∂xptdW

0
t .
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