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Abstract

Random Matrices and Provable Algorithms for Approximate Diagonalization

by

Jesse M. Banks

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nikhil Srivastava, Chair

In this thesis we study the computational problem of approximately diagonalizing an arbitrary
complex, 𝑛 × 𝑛 matrix 𝐴 in floating point arithmetic — that is, finding 𝑉 invertible and 𝐷 diagonal
with ‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿‖𝐴‖ for some desired accuracy 𝛿 > 0. Our major contributions are the
following.

• We prove that a randomized variant of the Spectral Bisection algorithm [30] can approxi-
mately diagonalize any 𝑛 ×𝑛 matrix using 𝑂(𝑇MM(𝑛) log(𝑛/𝛿) log 𝑛) arithmetic operations, on
a floating point machine with𝑂(log4(𝑛/𝛿) log(𝑛)) bits of precision, with probability 1−𝑂(1/𝑛)
— where 𝑇MM(𝑛) is the arithmetic cost of numerically stable 𝑛 × 𝑛 matrix multiplication.

• We prove that for every 𝑘 = 2, 4, 8, ... and 𝐵 ≥ 1 there is a shifting strategy for the Shifted
QR algorithm, Sh𝑘,𝐵, which converges rapidly in exact arithmetic on every Hessenberg
matrix 𝐻0 with eigenvector condition number less than 𝐵 (e.g. of the form 𝐻0 = 𝑉𝐷𝑉 −1

with 𝐷 diagonal and ‖𝑉 ‖‖𝑉 −1‖ ≤ 𝐵). The resulting algorithm gives a sequence 𝐻0, 𝐻1, 𝐻2, ... of
Hesssenberg matrices unitarily similar to 𝐻0, and rapid convergence means: each iteration
costs 𝑂(𝑛2 ⋅𝑘(log 𝑘 +𝐵16𝑘−1 log 𝑘)) arithmetic operations, and for any 𝜔 > 0, it takes 𝑂(log(1/𝜔))
iterations to drive the smallest subdiagonal entry below 𝜔‖𝐻0‖.

• We prove that the shifting strategy Sh𝑘,𝐵 can be implemented in floating point as a randomized
algorithm, using 𝑂(𝑘 log 𝑛𝐵‖𝐻0‖

𝜔 gap(𝐻0)
) bits of precision (where gap(𝐻) is the minimum eigenvalue

gap, or the smallest distance between two eigenvalues of𝐻 ), and succeeding with probability
1 − 𝑂(1/𝑛). For any 𝑛 × 𝑛 matrix 𝐴, this can be used to give a randomized algorithm for
computing the matrix 𝐷 in the notion of approximate diagonalization above (e.g., the
eigenvalues of a matrix 𝛿‖𝐴‖-close to 𝐴), using 𝑂(𝑛3 ⋅ log2(𝑛/𝛿) poly(log log(𝑛/𝛿))) arithmetic
operations, on a floating point machine with𝑂(log2(𝑛/𝛿) log log(𝑛/𝛿)) bits of precision, again
succeeding with probability 1 − 𝑂(1/𝑛).
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A crucial step along the way is a new result in random matrix theory: for any 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0, if
𝑮𝑛 is an 𝑛×𝑛 matrix with independent, standard complex Gaussian entries, then with probability at
least 1 −𝑂(1/𝑛), 𝐴+ 𝛿𝐺𝑛 has eigenvector condition number at most 𝑛2/𝛿 and minimum eigenvalue
gap at least 𝛿/𝑛2. We show similar results for random real perturbations of real matrices as well.
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Chapter 1

Introduction

Eigenvectors and eigenvalues of matrices are central objects of study throughout pure and applied
mathematics, and their computation is of practical importance across all stripes of quantitative sci-
entific research. At this very minute, countless practitioners are calling a function like MATLAB’s
eig, to cluster or compress data; probe the structure of graphs and networks; solve a differential
equation; or any of countless other applications. Modern algorithms for this problem are some
of the crown jewels of numerical linear algebra and applied computer science, and in practice
they are observed to be fast and accurate on virtually every input. And yet, despite this problem’s
ubiquity and decades of rich and detailed study, critical theoretical questions remain open, perhaps
most notably being that there is to date no rigorously proven guarantee that the algorithm employed
by MATLAB’s eig quickly and accurately approximates the eigenvectors and eigenvalues of every
matrix.

The purpose of this thesis is to present three main theoretical contributions to this area.
Chapter 5 contains a rigorous, front-to-end finite precision analysis of a randomized variant of
the well-known Spectral Bisection algorithm [30] for rapidly approximating the eigenvectors and
eigenvalues of every matrix. The crucial use of randomness is in an initial step regularizing the
input matrix with a small Gaussian perturbation, which we will show in Chapters 3-4 results
in well-spaced eigenvalues and an eigenvector matrix with moderate condition number; the
proofs require several tools from random matrix theory, some classic and others novel. Finally,
in Chapters 6-7, we turn to the Shifted QR algorithm, whose ubiquity and observed practical
efficacy in solving eigenvalue problems as yet lacks theoretical explanation. Bridging this gap
in theory, we introduce a new ‘shifting strategy’ for the Shifted QR algorithm, and show that it
can be implemented in floating point arithmetic to approximate the eigenvalues of any matrix.
The results in Chapters 5 and 7 are the among the first provable algorithms for the eigenvalue
problem on non-normal matrices.
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1.1 Approximate Diagonalization
A matrix 𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable if it can be written as

𝐴 = 𝑉𝐷𝑉 −1 (1.1)

for some invertible 𝑉 and diagonal 𝐷. The matrix 𝐷 contains as its diagonal elements the eigen-
values of 𝐴, which we will denote as Spec𝐴 = {𝜆1, ..., 𝜆𝑛} throughout this work; the columns
𝑣1, ..., 𝑣𝑛 of 𝑉 and rows 𝑤∗

1, ..., 𝑤∗
𝑛 of 𝑉 −1 are the right and left eigenvectors of 𝐴, respectively, and

invertibility of 𝑉 means that the right and left eigenvectors constitute a pair of dual bases for
ℂ𝑛. Note that 𝑉 and 𝑉 −1 are not uniquely defined, as one can freely rescale the columns of the
former and adjust accordingly the rows of the latter. If 𝐴 is Hermitian (or, more generally, normal,
meaning that it satisfies 𝐴𝐴∗ = 𝐴∗𝐴), then it is well-known to be diagonalizable by a unitary matrix,
meaning that we can scale 𝑉 to have orthonormal columns. Conversely, there exist non-normal
matrices which are not diagonalizable at all, although fortunately these constitute a set of Lebesgue
measure zero in ℂ𝑛×𝑛.

Example 1.1 (Non-diagonalizable Matrix). Consider the 𝑛 × 𝑛 Jordan block

𝐽𝑛 ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
1

⋱
1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

which has ones on its superdiagonal and zeros elsewhere. One can quickly verify that Spec 𝐽𝑛 =
{0}, but that that the standard basis vectors 𝑒𝑛 and 𝑒∗1 are the only right and left eigenvectors
(respectively) of 𝐽 , each with eigenvalue 0.

Definition of diagonalizability in hand, it is natural to ask a corresponding algorithmic question:
given 𝐴, can 𝑉 and 𝐷 be computed or approximated? Since the eigenvalues of 𝐴 are the roots of
its characteristic polynomial, when 𝑛 ≥ 5 we cannot expect a closed form expression for 𝑉 and 𝐷.
The following computational task will therefore be the focus of this thesis.

Problem 1.2 (Approximate Diagonalization). Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0; find 𝑉 invertible and 𝐷
diagonal so that

‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿‖𝐴‖.

Problem 1.2 asks for approximate diagonalization in the sense of backward approximation, i.e. that
we exactly diagonalize a matrix close to 𝐴. This is a natural notion of approximation in scientific
applications, when 𝐴 is a data matrix measured with finite resolution and stored to some finite
precision. Contrast this with forward approximate diagonalization, where one tries to approximate
the exact eigenvectors and eigenvalues of 𝐴.
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Problem 1.3 (Forward Approximate Diagonalization). Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0. Find 𝑉 invertible
and 𝐷 diagonal so that, for some 𝑉 and 𝐷 for which 𝐴 = 𝑉𝐷𝑉 −1,

‖𝐷 − 𝐷‖ ≤ 𝛿‖𝐷‖
‖𝑉 − 𝑉 ‖ ≤ 𝛿‖𝑉 ‖.

Practical scientific settings require that we solve Problem 1.2 in floating point arithmetic,
meaning that our algorithms store and manipulate numbers using lg(1/𝐮) bits of precision for
some 𝐮 > 0. This means we can assume, as is customary, that our algorithms can add, subtract,
multiply, and divide scalars with relative error at most the machine precision 𝐮. This computational
setting further necessitates the backward approximate formulation of Problem 1.2: since every
arithmetic operation introduces small and possibly adversarial errors, our ability to compute
forward approximations to the eigenvalues and eigenvectors of a matrix is constrained by the
sensitivity of these quantities under small perturbations. The following example shows that the
precision necessary to solve Problem 1.3 can depend exponentially on the accuracy 𝛿 .

Example 1.4. Consider the family of matrices

𝐽𝑛(𝜖) ≜

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
1

⋱
1

𝜖

⎞
⎟
⎟
⎟
⎟
⎟
⎠

obtained by adding an 𝜖-perturbation to the lower left corner of an 𝑛 × 𝑛 Jordan block. The
characteristic polynomial of 𝐽𝑛(𝜖) is 𝑧𝑛 − 𝜖, meaning that its eigenvalues are the 𝑛th roots of
𝜖, and are thus depart the origin at infinite velocity. For instance, ‖𝐽10(10−10) − 𝐽10(0)‖ = 10−10
but the eigenvalues have moved by 0.1, meaning that miniscule backward error has produced a
macroscopic change in the spectrum. It is the content of Theorem 2.6 that this Ω(𝜖1/𝑛) behavior is
the worst possible for an 𝑛 × 𝑛 matrix.

We will see in Chapter 2 that the cost of passing between forward and backward approximate
diagonalization for a matrix 𝐴 = 𝑉𝐷𝑉 −1 is controlled by the eigenvector condition number

𝜅𝑉 (𝐴) ≜ min
𝑉∶𝐴=𝑉𝐷𝑉 −1

‖𝑉 ‖‖𝑉 −1‖ (1.2)

and minimum eigenvalue gap
gap(𝐴) ≜ min

𝑖≠𝑗
|𝜆𝑖 − 𝜆𝑗 |; (1.3)

both of these measure the non-normality of𝐴, since as one approaches the set of non-diagonalizable
matrices, former tends to infinity and the latter to zero. Let us define the condition number of the
eigenproblem as

𝜅eig(𝐴) ≜
2𝜅𝑉 (𝐴)
gap(𝐴)

;
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the proposition below follows from Theorem 1.8 and Lemma 2.9.

Proposition 1.5. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 ≤ 1
2𝜅eig(𝐴)

. If 𝑉𝐷𝑉 −1 is a 𝛿-backward approximate diagonaliza-
tion of 𝐴 in the sense of Problem 1.2, then

‖𝐷 − 𝐷‖ ≤ 𝜅eig(𝐴)𝛿‖𝐷‖ ‖𝑉 − 𝑉 ‖ ≤ 2𝑛2𝜅eig(𝐴)𝛿‖𝑉 ‖.

It is known that the best constant for which conclusion of Proposition 1.5 holds for all small
enough 𝛿 is 𝜅eig(𝐴) times some polynomial in 𝑛. Since 𝜅eig(𝐴) is unbounded over ℂ𝑛×𝑛, we have no
choice but to settle for backward approximation if we seek an an approximate diagonalization
algorithm that works on every input. The fundamental question of this thesis is therefore:

Question 1.6. How many arithmetic operations and bits of precision are required to solve Problem
1.2 on a floating point machine, as a function of the accuracy 𝛿 and dimension 𝑛?

For Hermitian matrices, Question 1.6 is widely considered settled by the work of Wilkinsin
[164], Dekker and Traub [60], and Hoffman and Parlett [96] on the Shifted QR algorithm. However,
their results are in exact arithmetic only, and as we will discuss in Section 1.3, there is to our
knowledge no published rigorous analysis of the finite arithmetic case. Ben-Or and Eldar in [31] give
an algorithm requiring 𝑂(𝑛𝑇MM(𝑛) poly log(𝑛)) bit operations (where 𝑇MM(𝑛) gives the arithmetic
operations required to numerically stably multiply two 𝑛 × 𝑛 matrices) which solves Problem 1.2
for ‖𝐴‖ ≤ 1 and 𝛿 = 𝑂(1/ poly(𝑛)). On the other hand, for non-Hermitian matrices Question 1.6
remained wide open until the recent work of Armentano et al., who in [4] gave an algorithm
which, in 𝑂(𝑛10/𝛿2) arithmetic operations, produces an approximate diagonalization of 𝐴 + 𝛿𝐺𝑛,
where 𝐺𝑛 is a complex Ginibre matrix, whose entries are independent centered complex Gaussians
of variance 1/𝑛.

In Chapter 5, we will present the following answer to Question 1.6 which, as this thesis goes to
press, stands as the (asymptotically) fastest provable approximate diagonalization algorithm in the
case of non-Hermitian matrices. The algorithm in question is a variant of the Spectral Bisection
algorithm of [30], and for simplicity we state it for matrices of norm at most one.1

Theorem 1.7. There is a randomized algorithm, EIG, which on input an 𝑛 × 𝑛 complex matrix 𝐴
with ‖𝐴‖ ≤ 1, and an accuracy parameter 𝛿 , outputs 𝑉 invertible and 𝐷 diagonal such that

‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿 ‖𝑉 ‖‖𝑉 −1‖ ≤ 32𝑛2.5/𝛿, (1.4)

in 𝑂(𝑇MM(𝑛) log2(𝑛/𝛿)) arithmetic operations, on a floating point machine with 𝑂(log4(𝑛/𝛿) log 𝑛)
bits of precision, with probability 1 − 𝑂(1/𝑛)

At a high level, the Spectral Bisection algorithm first splits Spec𝐴 into two roughly equal parts,
Λ±, and then computes matrices 𝑄± whose orthogonal columns span the subspaces spanned by

1A solution to Problem 1.2 can be found by computing upper and lower bounds on ‖𝐴‖ and rescaling appropriately.
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the right eigenvectors associated to each of Λ±. It is not hard to see that 𝑄± can be used to reduce
to two subproblems of a smaller size: defining 𝐴± = 𝑄∗

±𝐴𝑄±, we have Spec𝐴 = Spec𝐴+ ⊔ Spec𝐴−,
and moreover every eigenvalue of 𝐴 is of the form 𝑄∗

±𝑣±, where 𝑣± is an eigenvector of 𝐴±. Of
course, without prior knowledge of the spectrum or eigenvectors, it remains mysterious how one
could bisect the former or reason about subspaces spanned by the latter.

The key ingredient for both of these tasks is the matrix sign function, usually attributed to
Zolotarev and dating back to the late nineteenth century. Recall that for 𝑧 ∈ ℂ, sgn(𝑧) = ±1
according to whether ℜ𝑧 is positive or negative, and is undefined for 𝑧 on the imaginary axis.
Analogously, if 𝐴 = 𝑉𝐷𝑉 −1 is diagonalizable and has no eigenvalues on the imaginary axis, then

sgn(𝐴) ≜ 𝑉 sgn(𝐷)𝑉 −1,

where the middle term indicates that we are to apply sgn to each of the diagonal elements of 𝐷.
Pleasantly, tr sgn(𝐴) encodes the number of eigenvalues in the right vs. left halfplane of ℂ, and
the column spaces of the matrices sgn(𝐴) ± 1 are equal to the spans of the eigenvectors in each of
these halfplanes. We can therefore use it to split the spectrum (e.g. by computing tr sgn(𝑧 − 𝑤𝐴)
for several 𝑧, 𝑤 ∈ 𝐶 until a suitable bisection is found) and compute the requisite projections 𝑄±
(e.g. by running Gram-Schmidt on 1 ± sgn(𝑧 − 𝑤𝐴)).

This discussion perhaps raises more questions than it answers — after all, how does one
compute sgn(𝐴) without 𝑉 or 𝐷? Finding a stable and provable method in finite arithmetic has
been a long-standing open problem, but in exact arithmetic there is a simple iterative method due
to Roberts [133]:

𝐴0 = 𝐴
𝐴𝑡+1 = 1

2 (𝐴𝑡 + 𝐴−1
𝑡 ).

(The reader may recognize the above as the Newton iteration for computing roots of 𝑧2 − 1). In
Theorem 5.1 we will show that Roberts’ iteration converges in finite arithmetic after 𝑂(log(1/𝜖))
iterations, so long as 𝐴0 is 𝜖-far from every matrix with a purely imaginary eigenvalue. This
criterion was identified as a natural measure of conditioning for sgn in [10].

Chapter 5 checks the many remaining details, and on the whole our strategy is to show that
the Spectral Bisection algorithm is convergent and numerically stable on matrices for which 𝜅eig
is a modest polynomial in 𝑛. To upgrade this fact to an algorithm for approximately diagonalizing
every matrix 𝐴, we proceed in the footsteps of [6, 31] and preprocess 𝐴 with a small amount
of additive Gaussian noise (say, (𝛿/8)𝐺𝑛 if we are hoping for accuracy 𝛿), whose purpose is to
effectuate any needed reduction in 𝜅eig(𝐴). This smoothed analysis approach — where we study the
performance of algorithms on inputs that are adversarially chosen and then randomly perturbed
— was pioneered in [143] in the context of linear programming, building off of earlier work
by Demmel and Edelman on the condition number of Gaussian matrices [63, 70], and used to
great effect in [136] to study linear system solvers. The hypothesis of bounded 𝜅eig is critical to
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our analysis of the Spectral Bisection algorithm, and since we are in the business of backward
approximation in the first place, it is well worth spending some of our ‘budget’ of accuracy passing
to a well-conditioned matrix.

1.2 Gaussian Regularization
A critical tool in the study of eigenvalue perturbation theory generally, and in this thesis specifically,
is the 𝜖-pseudospectrum, a subset of the complex plane parametrized by 𝜖 ≥ 0 which contains the
eigenvalues of all 𝜖-close matrices:

Λ𝜖(𝐴) = ⋃
𝐴∶‖𝐴−𝐴‖≤𝜖

Spec𝐴 (1.5)

=
{
𝑧 ∈ ℂ ∶ ‖(𝑧 − 𝐴)−1‖ ≥ 1/𝜖

}
(1.6)

The proof of the equivalent definition in (1.6), along with countless other results, can be found in
the essential book [153]. By definition, pseudospectrum is stable under small perturbations — in
the sense that if ‖𝐴 − 𝐴‖ ≤ 𝜖, then Λ𝜖−‖𝐴−𝐴‖(𝐴) ⊂ Λ𝜖(𝐴) ⊂ Λ𝜖+‖𝐴−𝐴‖(𝐴) — and is thus particularly well-
suited to the study of backward approximate diagonalization. On the other hand, Λ𝜖(𝐴) always
contains a disk of radius 𝜖 about every eigenvalue (by considering the perturbation 𝐴 = 𝐴 + 𝜁 for
some |𝜁 | ≤ 𝜖 in ℂ), and its size and shape in excess of these disks captures geometrically the cost
when translating from backward to forward approximation. The Bauer-Fike theorem [28, Theorem
III] is a classic result bounding the pseudospectrum in terms of the eigenvector condition number.

Theorem 1.8 (Bauer-Fike). If 𝐴 ∈ ℂ𝑛×𝑛 is any matrix, then

⋃
𝜆∈Spec𝐴

𝔻(𝜆, 𝜖) ⊂ Λ𝜖(𝐴) ⊂ ⋃
𝜆∈Spec𝐴

𝔻(𝜆, 𝜅𝑉 (𝐴) ⋅ 𝜖).

When 𝐴 is normal, 𝜅𝑉 (𝐴) = 1, so the containments above become equalities; at the other extreme,
Example 1.4 can be adapted to give an example where Λ𝜖(𝐴) contains a ball of radius 𝜖1/𝑛 about
each eigenvalue. The virtue of Theorem 1.8 is that it bounds the displacement of each eigenvalue
non-asymptotically; but it is not always tight. When 𝐴 has distinct eigenvalues 𝜆1, ..., 𝜆𝑛, each with
left and right eigenvectors 𝑤∗

𝑖 and 𝑣𝑖 , the instantaneous rate of change of 𝜆𝑖 upon perturbation is
at most the the eigenvalue condition number

𝜅𝑖(𝐴) ≜
‖𝑤𝑖‖‖𝑣𝑖‖
|𝑤∗

𝑖𝑣𝑖 |
. (1.7)

The perturbation theory for eigenvectors is somewhat more delicate, since small perturbations
of a matrix with eigenvalue multiplicity can generate severely ill-conditioned eigenvectors, as the
following example illustrates.
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Example 1.9. Consider the matrices 1 + 𝜖𝐽𝑛. When 𝜖 = 0, we have the 𝑛 × 𝑛 identity matrix,
with eigenvector condition number 𝜅𝑉 (1) = 1. On the other hand, for any 𝜖 > 0, 1 + 𝜖𝐽𝑛 is
non-diagonalizable!

If 𝐴 has distinct eigenvalues 𝜆1, ..., 𝜆𝑛, Theorem 1.8 ensures the eigenvalues will remain distinct
after perturbations of scale 𝜅eig(𝐴).

A critical step in Theorem 1.7 is to show that one can tame the pseudospectrum, gap, and
eigenvector and eigenvalue condition numbers of any matrix by adding a small, complex Gaussian
perturbation. The following result is proved in Chapter 3.

Theorem 1.10. Let 𝐴 be any 𝑛 × 𝑛 matrix with ‖𝐴‖ ≤ 1, 𝐺𝑛 a complex Ginibre matrix, and 𝛿 ≤ 1/2.
Then, with probability at least 1 − 10/𝑛,

∑
𝑖
𝜅2𝑖 (𝐴 + 𝛿𝐺𝑛) ≤ 𝑛3/𝛿2

𝜅𝑉 (𝐴 + 𝛿𝐺𝑛) ≤ 𝑛2/𝛿
gap(𝐴 + 𝛿𝐺𝑛) ≥ 𝛿/𝑛2

and Λ𝜖(𝐴 + 𝛿𝐺𝑛) has 𝑛 disjoint connected components for every 𝜖 ≤ 𝛿2/2𝑛4.

The above additionally resolves a conjecture of E. B. Davies [54]: every 𝑛 × 𝑛 matrix is 𝛿-close
to a marix with eigenvector condition number 𝑂(poly(𝑛)/𝛿). Theorem 1.10 is illustrated in Figure
1.2, which depicts the pesudospectrum of a non-diagonalizable matrix before and after a random
Gaussian perturbation.

In Chapter 4, we show that an anologue of Theorem 1.10 holds in the case when 𝐴 ∈ ℝ𝑛×𝑛 is an
arbitrary real (but still not necessarily symmetric) matrix, and the complex Ginibre perturbation
𝐺𝑛 is replaced by a real Ginibre matrix 𝐻𝑛, whose entries are independent, centered real Gaussians
of variance 1/𝑛. This sort of result is desirable, for instance, in practical settings where one seeks
to regularize a real matrix without resorting to complex arithmetic.

Theorem 1.11. Let 𝑛 ≥ 7, 𝐴 ∈ ℝ𝑛×𝑛 be a matrix with ‖𝐴‖ ≤ 1, 𝐻𝑛 a real Ginibre matrix, and 𝛿 ≤ 1.
Then, with probability at least 1 − 𝑂(1/𝑛),

∑
𝑖∶𝜆𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝐻𝑛) = 𝑂(𝑛2/𝛿)

∑
𝑖∶𝜆𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝐻𝑛) = 𝑂(𝑛6/𝛿3 ⋅ log(𝑛/𝛿))

𝜅𝑉 (𝐴 + 𝛿𝐻𝑛) = 𝑂(𝑛4/𝛿3/2
√
log(𝑛/𝛿))

gap(𝐴 + 𝛿𝐻𝑛) = Ω(𝛿9/𝑛14).
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Figure 1.1: 𝑇 is a sample of an upper triangular 10 × 10 Toeplitz matrix with zeros on the diagonal
and independent (modulo the Toeplitz structure) standard real Gaussian entries above the diagonal.
Pictured is the boundary of the 𝜖-pseudospectrum of 𝑇 (left) and 𝑇 + 10−6𝐺𝑛 (right) for 𝜖 = 10−5,
𝜖 = 10−5.5, and 𝜖 = 10−6, along with the spectra. These plots were generated with the MATLAB
package EigTool [165].

In fact, Theorem 1.11 extends even to non-Gaussian perturbations whose entries are independent
(but not necessarily distributed) real random variables whose densities are absolutely continuous
with respect to the Lebesgue measure. The corresponding statements may be found in Chapter 4.

The key ingredient to prove Theorem 1.10 is to furnish appropriate singular value tail bounds
for the matrices 𝑧 − 𝐴 − 𝛿𝐺𝑛, for 𝑧 ∈ ℂ. Since 𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝐺𝑛) if and only if 𝜎𝑛(𝑧 − 𝐴 − 𝛿𝐺𝑛) ≤ 𝜖,
by applying Fubini one can for instance compute that, for any Lebesgue measurable set Ω ⊂ ℂ,

𝔼LebΛ𝜖(𝐴 + 𝛿𝐺𝑛) ∩ Ω = 𝔼 ∫
Ω
𝟏{𝜎𝑛(𝑧 − 𝐴 − 𝛿𝐺𝑛) ≤ 𝜖} d𝑧 = ∫

Ω
ℙ[𝜎𝑛(𝐴 + 𝛿𝐺𝑛) ≤ 𝜖] d𝑧,

where Leb denotes the Lebesgue measure on ℂ, and 𝟏{⋅} is the indicator function. In Chapter 3
below, we will see that the volume of the 𝜖-pseudospectrum scales like 𝜋𝜖2 ∑𝑖 𝜅2𝑖 as 𝜖 → 0, so an
𝑂(𝜖2) bound for the singular value tail event in the integrand gives us control over the eigenvalue
condition numbers, which can in turn be used to control 𝜅𝑉 (𝐴 + 𝛿𝐺𝑛).

On the other hand, by the log-majorization property of singular values and eigenvalues, if
𝜆1, ..., 𝜆𝑛 are the (random) eigenvalues of 𝐴 + 𝛿𝐺𝑛, then 𝜎𝑛(𝑧 − 𝐴 − 𝛿𝐺𝑛)𝜎𝑛−1(𝑧 − 𝐴 − 𝛿𝐺𝑛) ≤ 𝑟2 if
and only if two eigenvalues of 𝐴 + 𝛿𝐺𝑛 lie in 𝔻(𝑧, 𝑟). By taking an appropriate net of 𝑧, one can
thus once again control the probability that gap(𝐴 + 𝛿𝐺𝑛) is small by way of tail bounds on the
smallest two singular values of 𝐴 + 𝛿𝐺𝑛. This approach gives a quick bound with a simple proof;
the improved gap bound in Theorem 1.10 comes via an alternate approach using a result in [6].

The tail bounds themselves are proved via a comparison result of P. Śniady from the context
of free probability, which allows one to transfer classical tail bounds on 𝜎𝑖(𝐺𝑛) [70] to ones on
𝜎𝑖(𝐴 + 𝐺𝑛) for an arbitrary matrix 𝐴.
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The real Ginibre result in Theorem 1.11 requires several additional innovations. In Chapter 4
we will prove an analogue of Śniady’s result for real Ginibre matrices, but this allows us only to
obtain shifted singular value tail bounds for real 𝑧, with 𝑂(𝜖) as opposed to 𝑂(𝜖2) behavior. Luckily,
a variant of the limiting area formula discussed above maybe used to relate the limiting length of
the pseudospectrum on the real line with the eigenvalue condition numbers of the real eigenvalues.
For nonreal 𝑧, we are forced to produce the tail bounds by other means, and find behavior of
type 𝑂(𝜖2/|ℑ𝑧|). The complex Ginibre argument can thus be repeated — so long as we verify that
there are only rarely eigevalues with small imaginary part. Since the complex eigenvalues of
real matrices come in complex conjugate pairs, such a result follows from a lower bound on the
minimum eigenvalue gap, which we obtain similarly to the complex Ginibre case. Finally, in the
case of generic absolutely continuous real perturbations we lose Śniady-type theorem’s entirely,
and must develop further machinery.

1.3 The Shifted QR Algorithm
Much of the practical and theoretical study of approximate diagonalization has centered on the
shifted QR algorithm, which was introduced independently by Francis and Kublanovskaya [78, 106]
in the 1950s and remains the state of the art for solving Problem 1.2 in floating point arithmetic on
dense matrices. Recalling that each (nonsingular) matrix 𝐴 ∈ ℂ𝑛×𝑛 has a unique QR decomposition

𝐴 = 𝑄𝑅

where 𝑄 ∈ ℂ𝑛×𝑛 is unitary and 𝑅 ∈ ℂ𝑛×𝑛 is upper triangular with nonnegative diagonal, the
elementary QR algorithm is the iterative procedure

𝐴0 = 𝐴
𝐴𝑡+1 = 𝑅𝑡𝑄𝑡 , where 𝐴𝑡 = 𝑄𝑡𝑅𝑡 is (of course) the QR decomposition.

As 𝐴𝑡+1 = 𝑅𝑡𝑄𝑡 = 𝑄∗
𝑡𝑄𝑡𝑅𝑡𝑄𝑡 = 𝑄∗

𝑡𝐴𝑡𝑄𝑡 , this procedure produces a sequence 𝐴 = 𝐴0, 𝐴1, ... of
matrices unitarily similar to 𝐴, and generically the sequence (𝐴𝑡) converges to an upper triangular
matrix containing Spec𝐴 on its diagonal [78, 106]. However, each iteration is expensive (as QR
decomposition is as hard as matrix multiplication), and the 𝑘th subdiagonal entry tends to zero
with rate depending on |𝜆𝑘+1(𝐴)/𝜆𝑘(𝐴)| — meaning that the convergence can be arbitrarily slow.

To address these limitations, the modern QR algorithm contains three key innovations. The
first is the observation that, at a cost of 𝑂(𝑛3) arithmetic operations, every matrix can be converted
to a unitarily equivalent upper Hessenberg matrix, namely an “almost-triangular” matrix 𝐻 ∈ ℂ𝑛×𝑛

with 𝐻𝑖,𝑗 = 0 for all 𝑖 > 𝑗. This is significant in that each QR iteration can be executed numerically
stably on Hessenberg matrices in time 𝑂(𝑛2), and moreover preserves the Hessenberg structure.
The second innovation is the use of a shifting strategy to speed convergence. In Chapters 6-7 we
will use the following notation. Let

Sh ∶ ℍ𝑛×𝑛 → 𝑘
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be a function which assigns to each Hessenberg matrix a polynomial 𝑝 of degree at most 𝑘, and
iterate as

𝐻0 = Hessenberg(𝐴)
𝐻𝑡+1 = 𝑄∗

𝑡𝐻𝑡𝑄𝑡 , where 𝑝𝑡(𝐻𝑡) = 𝑄𝑡𝑅𝑡 is the QR decomposition, and 𝑝𝑡 = Sh(𝐻𝑡).

The role of the shifting polynomial can be interpreted as accentuating the ratios between eigen-
values of 𝑝𝑡(𝐻𝑡), thus skirting the source of slow convergence in the elementary algorithm.

The final modern innovation is to further exploit the Hessenberg structure by way of decoupling
and deflation. Specifically, we say that an iterate 𝐻𝑡 is 𝜔-decoupled if one of its subdiagonal
elements is smaller than 𝜔‖𝐻‖. Equivalently, this means 𝐻𝑡 is 𝜔‖𝐻𝑡‖-close in operator norm to a
block upper triangular matrix. Since we are in the business of backward approximation, one can
now approximate Spec𝐻𝑡 = Spec𝐻 by finding the eigenvalues of the resulting diagonal blocks.
Crucially, these blocks are themselves upper Hessenberg, and we can recursively apply the same
Shifted QR iteration; taking 𝜔 = 𝑂(𝛿/𝑛) will result a 𝛿-backward approximation of all eigenvalues
of 𝐻0. This passage to a nearby block upper triangular matrix is known as deflation.

Thus the following question is natural; it has been the subject of numerous papers in linear
algebra and dynamical systems over the past half century, and is our focus in Chapters 6-7.

Question 1.12. Is there an efficiently computable shifting strategy Sh which provably

(i) achieves rapid decoupling on non-Hermitian Hessenberg matrices, and

(ii) can be implemented numerically stably in finite arithmetic?

Exact Arithmetic
In the Hermitian case, it is Question 1.12(i) which was solved by the aforementioned work of
Wilkinson, Dekker-Traub and Hoffman-Parlett [164, 60, 96]. The Wilkinson shift considered there
is the linear shift 𝑧 − 𝑟𝑊 , where 𝑟𝑊 is whichever eigenvalue of 𝐻𝑡 ’s lower right 2 × 2 corner is closer
to the entry (𝐻𝑡)𝑛,𝑛. Dekker-Traub and Hoffman-Parlett show, amazingly, that Wilkinson’s shift
achieves𝜔-decoupling in𝑂(log(1/𝜔)) iterations on Hermitian matrices in exact arithmetic, building
on Wilkinson’s initial proof of global convergence (without a rate). In the non-Hermitian case, a
shifting strategy with global convergence on unitary Hessenberg matrices is evinced by Wang and
Gragg in [157, 158], and otherwise no strategy was known to converge globally (let alone quickly)
on any appreciable category of non-Hermitian matrices. Moreover, to our knowledge Question
1.12(ii) has remained entirely unanswered: it has not previously been proven that Wilkinson’s (or,
indeed, any other) shift converges rapidly when implemented in finite arithmetic, even in the case
of real symmetric matrices.

The final contribution of this thesis is to answer both parts of Question 1.12 by producing a
rapidly decoupling and stably implementable shifting strategy for matrices with bounded 𝜅eig.



CHAPTER 1. INTRODUCTION 11

Like Wilkinson’s shift and many that have been invented since, our strategy uses the Ritz values
of 𝐻𝑡 (in other words the eigenvalues of the lower right hand 𝑘 × 𝑘 corner of 𝐻𝑡 ) to produce the
shift polynomial 𝑝𝑡 . Ritz values (being eigenvalues) cannot in general be computed exactly, and
the shifting strategy below asks only that we approximate them in a certain sense to be made
specific in the sequel (see Definition 6.3). For now let us call an algorithm which executes this
approximation a Ritz value finder. In Chapter 6, we will prove the following exact arithmetic
guarantee for our strategy.

Theorem 1.13. Let ℍ𝑛×𝑛
𝐵 denote the set of 𝑛 × 𝑛 Hessenberg matrices with eigenvector condition

number at most 𝐵. For each 𝑘 = 2, 4, 8, ... and 𝐵 ≥ 1, there is a shifting strategy Sh𝑘,𝐵 ∶ ℍ𝑛×𝑛
𝐵 → 𝑘

which, in exact arithmetic,

(i) achieves 𝜔-decoupling in 4 log2(1/𝜔) iterations for every matrix in ℍ𝑛×𝑛
𝐵 , and

(ii) costs 𝑂((log 𝑘 + 𝐵
16 log 𝑘

𝑘 )𝑛2 + poly(𝑘) log(1/𝜔)) arithmetic operations, plus one call to a Ritz value
finder, per iteration.

A few comments are in order. Given the presence of the term 𝐵𝑂(log 𝑘/𝑘) in the runtime, we will
need to take 𝑘 = 𝑂(log 𝐵 log log 𝐵) to obtain a reasonably efficient algorithm. One should therefore
regard our result as a reduction: given an order-𝑘 Ritz value finder, we can decouple arbitrarily
large matrices with condition number nearly exponential in 𝑘. Moreover, by Theorem 1.10, every
𝐻 ∈ ℍ𝑛×𝑛 is 𝛿‖𝐻‖-close to a matrix in ℍ𝑛×𝑛

𝑛2/𝛿 , so Theorem 1.13 asserts that most Hessenberg matrices
can be 𝜔-decoupled in 𝑂(log 𝑛 log log 𝑛 ⋅ 𝑛2 ⋅ log(1/𝜔)) arithmetic operations.

Much of the intuition for our shifting strategy is captured by Sh2,1 which, as we will now
sketch, gives a globally and rapidly convergent shifting strategy for normal matrices — itself an
open problem. We will use, without proof, a few standard facts about QR iteration, developed
fully in Chapter 6. At a high level Sh2,1 first tries a main shift defined, like Wilkinson’s, in terms of
the order-2 Ritz values  = Spec(𝐻𝑡)(2), this time taking the shifting polynomial to be

(𝑧 − 𝑟∗)2, where 𝑟∗ = argmax
𝑟∈

‖𝑒∗𝑛(𝐻𝑡 − 𝑟)−2‖.

In the event that the main shift fails to make progress towards convergence, Sh2,1 uses this
information to quickly produce an exceptional shift which succeeds. Such an approach was used
in [69, 157] in the case of unitary Hessenberg matrices.

It is standard and sensible to measure the progress of Shifted QR step by way of the potential
function 𝜓(𝐻) = (𝐻𝑛−1,𝑛−2𝐻𝑛,𝑛−1)1/2, since we can guarantee 𝜔-decoupling by driving down 𝜓 . The
motivation for our main shift is that, if 𝑝 is a monic polynomial and 𝐻 is the result of one QR step
with shift 𝑝, the potential of 𝐻 may be bounded as

𝜓(𝐻) ≤ ‖𝑒∗𝑛𝑝(𝐻)−1‖−1/ deg 𝑝 . (1.8)
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In other words, we are choosing the Ritz value for which this upper bound is minimal. One can
show that this shift always causes the potential to decrase or remain fixed, by reasoning in terms
of a certain spectral measure.

Proof Sketch of Monotonicity. Let 𝐻 be a normal Hessenberg matrix, with unitary diagonalization
𝐻 = 𝑈𝐷𝑈 ∗. Since 𝑒∗𝑛𝑈 is a unit vector, define 𝑍𝐻 to be a random variable supported on Spec𝐻 ,
with distribution ℙ[𝑍𝐻 = 𝜆𝑖] = |𝑈𝑛,𝑖 |2; then for any function 𝑓 ∶ Spec𝐻 → ℂ we can write

‖𝑒∗𝑛𝑓 (𝐻 )‖2 = 𝑒∗𝑛𝑈 𝑓 (𝐷)𝑓 (𝐷)
∗𝑈 ∗𝑒𝑛 = ∑

𝑖
|𝑈𝑛,𝑖 |2|𝑓 (𝜆𝑖)|2 = 𝔼|𝑓 (𝑍𝐻 )|2. (1.9)

The potential 𝜓(𝐻) has an equivalent variational definition via 𝑍𝐻 . Write 𝜒2(𝑧) for the characteristic
polynomial of 𝐻(2); then

𝜓(𝐻) = (𝔼|𝜒2(𝑍𝐻 )|)
1/4 = min

𝑝∈2
(𝔼|𝑝(𝑍𝐻 )|2)

1/4. (1.10)

By the definition of 𝑟∗ above as the maximizer of ‖𝑒∗𝑛(𝐻 − 𝑟)−1‖ = 𝔼|𝑍𝐻 − 𝑟|−2 over the two roots
𝑟1, 𝑟2 of 𝜒2, the inequality of arithmetic and geometric means gives

𝔼|𝑍𝐻 − 𝑟∗|−2 ≥ 𝔼
1
2 (

|𝑍𝐻 − 𝑟1|−2 + |𝑍𝐻 − 𝑟2|−2) ≥ 𝔼|𝜒2(𝑍𝐻 )|−1. (1.11)

Finally, let 𝐻 be the result of a QR step with the shift (𝑧 − 𝑟∗)2. Combining the preceding discussion
with two applications of Jensen’s inequality, we have

𝜓𝑘(𝐻 ) ≤ (𝔼|𝑍𝐻 − 𝑟∗|−4)
−1/4 (1.8)-(1.9)

≤ (𝔼|𝑍𝐻 − 𝑟∗|−2)
−1/2 Jensen

≤ (𝔼|𝜒2(𝑍𝐻 )|−1)
−1/2 (1.11)

≤ (𝔼|𝜒2(𝑍𝐻 )|)1/4 Jensen
= 𝜓𝑘(𝐻 ) (1.10).

The above is not sufficient to give global convergence of the shift (𝑧 − 𝑟∗)2, and indeed it can
happen that this shift fails to reduce the potential. However, this stagnation can only occur for
matrices with a particular structure: in the event that 𝜓𝑘(𝐻 ) = 𝜓𝑘(𝐻 ), the first application of
Jensen’s inequality holds with equality, which means that |𝑍𝐻 − 𝑟∗| is identically equal to 𝜓(𝐻),
or in other words that 𝑍𝐻 — and thus Spec𝐻 — is supported on a circle of radius 𝜓(𝐻) about 𝑟∗!2

This can be made quantitative, in the sense that in the sense that if 𝜓(𝐻) ≈ 𝜓(𝐻), then the mass
2Compare to Parlett’s result in [125] scale multiples of unitaries are the only Hessenberg matrices fixed under an

unshifted QR step.
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of 𝑍𝐻 is concentrated on a disk Ω of radius roughly 𝜓(𝐻) centered at the stagnated shift 𝑟∗. It is
this concentration that facilitates the computation of an exceptional shift: by searching over a
deterministic lattice of points in Ω, one can quickly find a point 𝑠 close enough to Spec𝐻 to ensure
potential reduction with the shift (𝑧 − 𝑠)2. The crucial feature here is that failure of the main shift
to make progress tells you the correct scale to on which to search for an exceptional one.

Boosting this argument to matrices with bounded eigenvalue condition number requires a
few further ideas, which are the subject of Chapter 6. Specifically, we lose in the non-normal case
the ability to express quantities like ‖𝑒∗𝑛𝑓 (𝐻 )‖ in terms of a spectral measure 𝑍𝐻 as in (1.9), since
𝐻 is no longer unitarily diagonalizable. Instead, we will design an analogue of 𝑍𝐻 for which the
equalities in (1.9) hold only up to a factor of 𝜅𝑉 (𝐻 ), which in turn necessitates using higher-degree
shifts and higher-order Ritz values.

Floating Point Arithmetic
In the final Chapter 7, we will show that if 𝑘 is suitably chosen, the strategy Sh𝑘,𝐵 can be imple-
mented in finite arithmetic, along with a suitable protocol for deflation and recursion, to find every
eigenvalue of a Hessenberg matrix with bounded eigenvector condition number and minimum
eigenvalue gap. As in Theorem 1.13, the result below is a reduction: we show that the strategy
can be implemented with polynomially many calls to a forward approximate diagonalization
algorithm that works on 𝑘 × 𝑘 or smaller matrices. Specifically, assume that we have access to an
algorithm, SmallEig(𝐴, 𝛿, 𝜙) on input a matrix 𝐴 of dimension at most 𝑘, with probability at least
1 − 𝜙 approximates each eigenvalue of 𝐴 with additive error 𝛿 .3 The role of SmallEig is twofold:
we use it (i) produce the approximate Ritz values used by Sh𝑘,𝐵; and (ii) as a ‘base case’ once we
have decoupled to matrices of size at most 𝑘 × 𝑘.

Theorem 1.14. Let 𝐻 ∈ ℍ𝑛×𝑛
𝐵/2 , and assume further that ‖𝐻 ‖ ≤ 1 and gap(𝐻)/2 ≤ Γ. For some

𝑘 = 𝑂(log 𝐵 log log 𝐵), the shifting strategy Sh𝑘,𝐵 can be implemented in finite arithmetic to give
a randomized shifted QR algorithm, ShiftedQR, with the following guarantee: for any 𝛿 > 0
ShiftedQR(𝐻 , 𝛿, 𝜙) produces the eigenvalues of a matrix 𝐻 with ‖𝐻 − 𝐻‖ ≤ 𝛿 , with probability
at least 1 − 𝜙, using

(i) 𝑂 ((log 𝑛𝐵
𝛿Γ 𝑘 log 𝑘 + 𝑘

2)𝑛3) arithmetic operations on a floating point machine with 𝑂(𝑘 log 𝑛𝐵
𝛿Γ𝜙 )

bits of precision; and

(ii) 𝑂(𝑛 log 𝑛𝐵
𝛿Γ ) calls to SmallEig with accuracy Ω( 𝛿2Γ2𝑛3𝐵4 ) and failure probability tolerance Ω( 𝜙

𝑛2 log 𝑛𝐵
𝛿Γ
).

Remark 1.15. Theorem 1.14 can easily be adapted to find backward approximations to the
eigenvalues of any matrix 𝐴 ∈ ℂ𝑛×𝑛. First, pass to 𝐴 = 𝐴 + (𝛿/8)𝐺𝑛, which with probability
1 − 𝑂(1/𝑛) has 𝜅𝑉 (𝐴) = 𝑂(𝑛2/𝛿), gap(𝐴) = Ω(𝛿/𝑛2), and ‖𝐴 − 𝐴‖ ≤ 𝛿 . Second, compute 𝐻 =

3In practice it is common to solve these smaller eigenvalue problems recursively, but such an approach is
suboptimal in this context.
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Hessenberg(𝐴) and renormalize so that ‖𝐻 ‖ ≤ 1. Finally, run ShiftedQR(𝐻 , 𝛿/2, Θ(1/𝑛)) with 𝑘 =
𝑂(log(𝑛/𝛿) log log(𝑛/𝛿)), giving

𝑂 (log2(𝑛/𝛿) poly(log log(𝑛/𝛿)) ⋅ 𝑛3) arithmetic operations, and
𝑂 (log2(𝑛/𝛿) log log(𝑛/𝛿)) bits of precision,

plus the 𝑂(𝑛 log(𝑛/𝛿)) calls to SmallEig. Implementing SmallEig by calling EIG with accuracy
Ω((𝛿/ poly(𝑛))𝑘) uses 𝑛 poly(log(𝑛/𝛿)) bit operations, for a large but not preposterous polynomial.
Compared to Theorem 1.7, this approach has improved precision when 𝛿 = Ω(𝑛𝑒−𝑛), but suffers on
the other hand from inflated arithmetic (and boolean) operations.

Remark 1.16. Omitted from Theorem 1.14 is any discussion of the eigenvectors, but these can
be found in a variety of ways. One option is to use shifted inverse iteration with the computed
eigenvalues guiding the choice of shifts.

One major obstacle to proving Theorem 1.14 — and indeed to proving rapid convergence of
Shifted QR in finite arithmetic for any shifting scheme — is shift instability. To be precise, even
though QR iteration steps are backward stable (meaning that the computed 𝐻𝑡+1 is a unitary
conjugate of 𝐻𝑡 by some 𝑄𝑡 appearing in the QR decomposition of a Hessenberg matrix close to
𝐻𝑡 ), they are only forward stable when 𝑝𝑡(𝐻𝑡) is far from singular. On the other hand, the roots of
𝑝𝑡 are meant to approximate eigenvalues of 𝐻𝑡 in order to speed convergence, so we should not
expect 𝑝𝑡(𝐻𝑡) to remain far from singular! And without forward stability, it is not clear how to
translate a proof of rapid convergence in exact arithmetic to the finite arithmetic case.

In particular, one can show (see Lemma 7.12) that the computed 𝐻𝑡+1 has absolute entrywise
error of

𝑂
(
𝜅𝑉 (𝐻𝑡) (

‖𝐻𝑡‖
dist(Roots 𝑝𝑡 , Spec 𝐻))

𝑘

𝐮
)
.

Since we are hoping to prove 𝜔-decoupling for 𝜔 = 𝑂(𝛿/𝑛), we need to reason about changes
in the subdiagonal entries of the iterates, which seems to require forward stability of the shifts.
Thus we are forced to set the machine precision 𝐮 on the order of dist(Roots 𝑝𝑡 , Spec 𝐻)𝑘 . We
address this by randomly perturbing each shift at scale Ω(𝛿2), where 𝛿 is the desired accuracy.
For gap(𝐻) suitably large, such a perturbation with constant probability is at least Ω(𝛿2)-far from
Spec𝐻 , so we are able to get a away with 𝑂(𝑘 log 1/𝛿) bits of precision (hiding the dependence on
other variables). Reducing this would require a fundamentally new approach, and one intriguing
starting point is the unproven observation in [159] that QR steps with ill-conditioned shifts often
induce immediate decoupling.

The other obstacle is one that is rarely remarked on in the Shifted QR literature: how to
compute or approximate the Ritz values of each iterate that are used to produce the shift, and,
given the discussion above, what to do in the event a Ritz value lands too close to an eigenvalue.
We will show that after computing Ω(𝛿2)-forward approximations to the Ritz values and randomly
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perturbing at scale Ω(𝛿2), the resulting points are either (i) a set of approximate Ritz values in the
sense required for Sh𝑘,𝐵 and or (ii) can be used to rapidly decouple the current matrix — and in
either case are Ω(𝛿2) separated from the eigenvalues, to ensure forward stability when they used
as shifts. This is similar in spirit to the phenomenon of ‘premature deflation’ discussed in [130].

1.4 Bibliographic Note
The main results in this thesis are all joint work with various of J. Garza-Vargas, A. Kulkarni, S.
Mukherjee, and N. Srivatava, and have either appeared already in print, are currently in review, or
are in preparation. Chapter 2 contains standard preliminary material; some of the presentation is
drawn from [19, 15]. Chapters 3-4 are adapted from [19], [15, Section 3 and Appendix D], and [16]
in order to unify the presentation and reduce redundancies. Chapter 5 contains the remainder of
[15], Chapters 6 and 7 contain [17] and [18], respectively, and all three have been lightly edited
and rearranged to suit this setting. Finally, Figure 1.2 from the current chapter appeared originally
in [15]
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Chapter 2

Preliminary Material

Vectors, Matrices, and Norms
We will work with finite dimensional complex matrices and vectors throughout this thesis. Let
𝐴 ∈ ℂ𝑛×𝑛 denote a matrix and 𝑣 ∈ ℂ𝑛 a vector; we will denote by 𝐴∗ and 𝑣∗ the conjugate transpose
and 𝐴⊺ and 𝑣⊺ the transpose of 𝐴 and 𝑣, respectively, so that 𝑤∗𝑣 gives the usual inner product
between 𝑣, 𝑤 ∈ ℂ𝑛. Unless otherwise specified, ‖𝑣‖ =

√
𝑣∗𝑣 will denote the 𝓁 2 vector norm, and

‖𝐴‖ ≜ sup
𝑣∈ℂ𝑛

‖𝐴𝑣‖
‖𝑣‖

the induced operator norm. We will write range𝐴 for the span of the columns of 𝐴, tr 𝐴 for its
trace, and det 𝐴 for its determinant, as usual. Because there is rarely chance of confusion, we will
write the identity matrix as 1, and shorten 𝑧 ≜ 𝑧1 for scalars 𝑧 ∈ ℂ.

Eigenvalues, Eigenvectors, and Singular Values
It is standard that every 𝑛 × 𝑛 complex matrix 𝐴 has a spectrum Spec𝐴 consisting of 𝑛 eigenvalues
𝜆1(𝐴), ..., 𝜆𝑛(𝐴) (possibly with multiplicity), equal to the roots of its characteristic polynomial
𝜒𝐴(𝑧) ≜ det(𝑧 − 𝐴); we will usually drop from the notation the dependence of the eigenvalues on
the matrix. The singular values of 𝐴 are the square roots of the 𝑛 nonnegative eigenvalues of 𝐴𝐴∗,
which we will write as

‖𝐴−1‖−1 = 𝜎𝑛(𝐴) ≤ ⋯ ≤ 𝜎1(𝐴) = ‖𝐴‖.

Finally, we will denote the Frobenius (or entrywise 𝓁 2) norm by

‖𝐴‖𝐹 =
√
∑
𝑖,𝑗

|𝐴𝑖,𝑗 |2 =
√
tr 𝐴𝐴∗ =

√
∑
𝑖
𝜎 2
𝑖 (𝐴).

Vectors 𝑣𝑖 and𝑤∗
𝑖 are right and eigenvectors associated to an eigenvalue 𝜆𝑖 ∈ Spec𝐴 if𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖

and 𝑤∗
𝑖𝐴 = 𝜆𝑖𝑤∗

𝑖 , respectively. Additionally a subspace  ⊂ ℂ𝑛 is an invariant subspace of 𝐴 if
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𝐴𝑣 ∈  for every 𝑣 ∈  . We say that 𝐴 is normal if 𝐴𝐴∗ = 𝐴∗𝐴 (in which it has an orthonormal
basis of right eigenvectors that are additionally left eigenvectors), Hermitian if moreover 𝐴 = 𝐴∗

(in which case Spec𝐴 ⊂ ℝ), and unitary if 𝐴𝐴∗ = 1.
Recall from the introduction that 𝐴 is diagonalizable if for some invertible 𝑉 ∈ ℂ𝑛×𝑛 it can

be written as 𝑉𝐷𝑉 −1. We will write 𝑣1, ..., 𝑣𝑛 for the columns of 𝑉 and 𝑤∗
1, ..., 𝑤∗

𝑛 for the rows of
𝑉 −1, which constitute a pair of biorthogonal bases of right and left eigenvectors for 𝐴. Unless
we specify otherwise, we will always assume the normalization 𝑤∗

𝑖𝑣𝑖 = 1. In this case we can
alternatively write 𝐴 in terms of its spectral expansion

𝐴 = ∑
𝑖
𝜆𝑖𝑃𝑖 ≜ ∑

𝑖
𝜆𝑖𝑣𝑖𝑤∗

𝑖 .

Spectral Projectors, Resolvent, and Holomorphic Functional Calculus
A projector is a matrix 𝑃 ∈ ℂ𝑛×𝑛 satisfying 𝑃 2 = 𝑃 ; true to its name, for any vector 𝑣, 𝑃𝑣 is the
projection of 𝑣 to range 𝑃 . A projector is orthogonal if 𝑃 ∗𝑃 = 1. The rank-one matrices 𝑃𝑖 ≜ 𝑣𝑖𝑤∗

𝑖
appearing in the sum above are examples of spectral projectors for 𝐴, meaning that they are
projectors that furthermore satisfy 𝐴𝑃 = 𝑃𝐴. (They need not be orthogonal projectors.) Each
spectral projector for 𝐴 is a projection onto a invariant subspace of 𝐴, and in fact the two are in
one-to-one correspondence. These projectors — and many other properties of 𝐴 — can be studied
by way of the resolvent (𝑧 − 𝐴)−1 of 𝐴, a matrix-valued function of the complex variable 𝑧 which is
holomorphic on ℂ ⧵ Spec𝐴. The following resolvent identity is standard

(𝑧 − 𝐴)−1 − (𝑧 − 𝐴′)−1 = (𝑧 − 𝐴)−1(𝐴 − 𝐴′)(𝑧 − 𝐴′)−1.

If Spec𝐴 is contained in a regionΩ ⊂ ℂwhose simply connected componentsΩ𝑖 have rectifiable
boundary, and 𝑓 ∶ Ω → ℂ is a holomorphic function, one can use the resolvent to define

𝑓 (𝐴) ≜
1
2𝜋𝑖

∑
𝑖
∮
𝜕Ω𝑖

(𝑧 − 𝐴)−1𝑓 (𝑧) d𝑧,

where the above indicates a sum of positively oriented contour integrals about the boundaries
of the Ω𝑖 This definition is known as the holomorphic functional calculus, and it gives an algebra
homomorphism from the space of holomorphic functions on Ω to the algebra of matrices com-
muting with 𝐴, in the sense that when 𝑓 and 𝑔 are two such functions, (𝑓 𝑔)(𝐴) = 𝑓 (𝐴)𝑔(𝐴). We
moreover have the spectral mapping property: Spec 𝑓 (𝐴) = 𝑓 (Spec 𝐴).

For each simply connected Ω ⊂ ℂ, there is a spectral projector for 𝐴 corresponding to the
invariant subspace spanned by all eigenvectors with eigenvalues in Ω, and one can compute this
projector by integrating (𝑧 − 𝐴)−1 about the boundary of Ω. One special case will be particularly
useful: if such an Ω contains exactly one eigenvalue 𝜆𝑖 of 𝐴, then

𝑃𝑖 = 𝑣𝑖𝑤∗
𝑖 =

1
2𝜋𝑖 ∮𝜕Ω

(𝑧 − 𝐴)−1 d𝑧.
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Pseudospectrum, Eigenvector and Eigenvalue Condition Numbers
In this subsection we record some important results relating the pseudospectrum, minimum
eigenvalue gap and eigenvector/eigenvalue condition numbers, defined already in Chapter 1. First,
since Spec𝐴 is exactly the set of poles of the resolvent, the following elementary result follows
from the level set definition in (1.5).

Lemma 2.1. Each connected component of Λ𝜖(𝐴) contains at least one eigenvalue of 𝐴.

Note that the eigenvalue condition numbers are exactly the norms of the spectral projectors
for each eigenvalue, since

𝜅𝑖(𝐴) = ‖𝑣𝑖‖‖𝑤∗
𝑖 ‖ = ‖𝑃𝑖‖.

Upper bounds on 𝜅𝑉 (𝐴) are hard to come by, but we can compare it to the eigenvalue condition
numbers as follows.

Lemma 2.2. Let 𝐴 ∈ ℂ𝑛×𝑛 be any diagonalizable matrix with distinct eigenvalues. Then

max
𝑖
𝜅𝑖(𝐴) ≤ 𝜅𝑉 (𝐴) ≤ ∑

𝑖
𝜅𝑖(𝐴).

Proof. Let us first choose𝑉 diagonalizing𝐴 so that ‖𝑉 ‖‖𝑉 −1‖ = 𝜅𝑉 (𝐴). Then if 𝑣1, ..., 𝑣𝑛 and𝑤∗
1, ..., 𝑤∗

𝑛
are the columns and rows 𝑉 and 𝑉 −1, respectively, for each 𝑖 ∈ [𝑛]

𝜅𝑖(𝐴) = ‖𝑣𝑖‖‖𝑤𝑖‖ ≤ ‖𝑉 ‖‖𝑉 −1‖ = 𝜅𝑉 (𝐴).

For the upper bound, instead normalize 𝑉 so that ‖𝑣𝑖‖2 = ‖𝑤∗
𝑖 ‖2 = 𝜅𝑖(𝐴) for every 𝑖. Then

𝜅𝑉 (𝐴) ≤ ‖𝑉 ‖‖𝑉 −1‖ ≤ ‖𝑉 ‖𝐹 ‖𝑉 −1‖𝐹 = ∑
𝑖
𝜅𝑖(𝐴).

By the standard comparison of 𝓁 2 an 𝓁 1 norms, Lemma 2.2 easily implies

𝜅𝑉 (𝐴) ≤
√
𝑛∑

𝑖
𝜅2𝑖 (𝐴). (2.1)

When the 𝐴 approaches a normal matrix, 𝜅𝑉 (𝐴) and every 𝜅𝑖(𝐴) approach 1, which means that
the upper bound in Lemma 2.2 is loose by a factor of 𝑛. The following alternate bound, which we
have not seen in the literature, is an improvement in the regime where every 𝜅𝑖(𝐴) = 𝑂(1 + 1/𝑛).

Lemma 2.3. For every diagonalizable 𝐴 with distinct eigenvalues,

𝜅𝑉 (𝐴) ≤ 1 +∑
𝑖
𝜅𝑖(𝐴) − 𝑛 +

√

(
∑
𝑖
𝜅𝑖(𝐴) − 𝑛)(

∑
𝑖
𝜅𝑖(𝐴) − 𝑛 + 2

)
.
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Proof. Again scale so that ‖𝑤∗
𝑖 ‖ = ‖𝑣𝑖‖ =

√
𝜅𝑖(𝐴). This gives ‖𝑤𝑖 − 𝑣𝑖‖2 = 2𝜅𝑖(𝐴) − 2, so that

‖𝑉 − 𝑉 −∗‖ ≤
√
2∑𝑖(𝜅𝑖(𝐴) − 1), and

‖𝑉 ‖2 = ‖𝑉 ∗𝑉 ‖
= ‖1 + 𝑉 ∗(𝑉 − 𝑉 −∗)‖

≤ 1 + ‖𝑉 ‖
√
2∑

𝑖
𝜅𝑖(𝐴) − 2𝑛,

or ‖𝑉 ‖ ≤ 1√
2 (

√
∑𝑖 𝜅𝑖(𝐴) − 𝑛 +

√
∑𝑖 𝜅𝑖(𝐴) − 𝑛 + 2). Multiplying by the corresponding bound for

‖𝑉 −1‖ gives the result.

We have already seen in the Bauer-Fike Theorem 1.8 that 𝜅𝑉 (𝐴) can be used to control the size
of the pseudospectrum. On the other hand, we can bound the eigenvalue condition numbers in
terms of a certain scaling limit of the area of Λ𝜖(𝐴) as 𝜖 → 0, a relationship that will be crucial in
Chapter 3. The following can be extracted from [36].

Lemma 2.4. If 𝐴 ∈ ℂ𝑛×𝑛 has distinct eigenvalues, and Ω ⊂ ℂ is a measurable open set, then

∑
𝜆𝑖∈Ω

𝜅2𝑖 (𝐴) = lim
𝜖→0

Lebℂ Λ𝜖(𝐴)
𝜋𝜖2

.

Proof. Since Ω is open, 𝐴 has distinct eigenvalues, and Λ𝜖(𝐴) is contained in a union of disks of
radius 𝜖𝜅𝑉 (𝐴) about Spec𝐴, for 𝜖 ≪ gap(𝐴)

2𝜅𝑉 (𝐴)
. Thus (i) each eigenvalue of 𝐴 inside Ω lies in a unique

connected component of Λ𝜖(𝐴) completely contained in Ω, and (ii) for any eigenvalue outside Ω,
its connected component is outside as well. Now choose some 𝑧 ∈ 𝜕Λ𝜖(𝐴) on the boundary of the
component containing an eigenvalue 𝜆𝑖 . We have

|𝑧 − 𝜆𝑖 |
𝜖

≤
𝜅𝑖(𝐴)

1 − 𝜖 ∑𝑖≠𝑗
𝜅𝑗 (𝐴)
|𝑧−𝜆𝑗 |

≤
𝜅𝑖(𝐴)

1 − 𝜖 ∑𝑗≠𝑖
𝜅𝑗 (𝐴)

gap(𝐴)−𝜖𝜅𝑉 (𝐴)

≤
𝜅𝑖(𝐴)

1 − 𝜖 ∑𝑗≠𝑖
2𝜅𝑗 (𝐴)
gap(𝐴)

,

along with an analogous lower bound. Since these bounds are uniform over 𝑧 on the boundary of
the given component, we find that the area of the component shrinks as 𝜋𝜖2𝜅2𝑖 (𝐴), and repeating
this argument for each component in turn finishes the proof.

PerturbationTheory
In the course of this thesis, we will repeatedly need to understand how the various aspects and
attributes of a matrix change after a small perturbation. It is routine that the eigenvalues of
a matrix are continuous functions of its entries (for instance by the result that the roots of a
polynomial are continuous in its coefficients), and we begin this section by briefly stating some
quantitative results on the first order perturbation theory of both eigenvalues and eigenvectors.
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The following facts are verified carefully in [88, Theorems 1-2] and the surrounding discussion,
and we refer the reader there for more detail and a thorough survey of the literature.

Assume that 𝐴(𝑡) is a smooth curve in ℂ𝑛×𝑛, passing through a diagonalizable matrix 𝐴(0) =
𝐴 = 𝑉𝐷𝑉 −1. Then for 𝑡 on some neighborhood of zero there are known to exist smooth curves
𝑉 (𝑡) invertible and 𝐷(𝑡) diagonal, so that 𝑉 (0) = 𝑉 , 𝐷(0) = 𝐷, and 𝐴(𝑡) = 𝑉 (𝑡)𝐷(𝑡)𝑉 (𝑡)−1. In this
setup, the derivative of each eigenvalue is well-understood. Denote as usual 𝜆𝑖 for the eigenvalues
of 𝐴, and 𝑣𝑖 and 𝑤∗

𝑖 for the columns of 𝑉 and the rows of 𝑉 −1; let us write as well 𝐴̇(𝑡) for the
derivative of 𝐴, and similarly for 𝜆̇𝑖 and 𝑣̇𝑖 . Then

𝜆̇𝑖(𝑡) = 𝑤∗
𝑖 (𝑡)𝐴̇(𝑡)𝑣𝑖(𝑡),

which implies that the magnitude of ̇𝑙𝑎𝑚𝑏𝑑𝑎𝑖(𝑡) can be bounded in terms of its eigenvalue condition
number:

|𝜆̇𝑖(𝑡)| ≤ 𝜅𝑖(𝐴(𝑡))‖𝐴̇(𝑡)‖.
In fact, 𝜅𝑖 is exactly the maximal derivative of the eigenvalue 𝜆𝑖 along any smooth curve passing
through 𝐴, which we can see by considering a curve with 𝐴̇(0) = 𝑣𝑖𝑤∗

𝑖 . A bound on the derivatives
of the right eigenvectors is also known [88, p. 468], and will be useful to us in the sequel. It reads

‖𝑣̇𝑖(𝑡)‖ ≤
𝜅𝑉 (𝐴(𝑡))
gap(𝐴(𝑡))

‖𝐴̇(𝑡)‖‖𝑣𝑖(𝑡)‖. (2.2)

Such first order perturbation results are a useful starting point, but we shall ultimately require
non-asymptotic counterparts which control the spectral properties of a matrix after a macroscopic
perturbation. A simple result, which follows from the fact that 𝜎𝑛−𝑗+1(𝐴) is the distance from
𝐴 ∈ ℂ𝑛×𝑛 in operator norm to the set of rank-𝑗 matrices, is that for any matrix 𝐴 ∈ ℂ𝑛×𝑛

|𝜎𝑖(𝐴) − 𝜎𝑖(𝐴)| ≤ ‖𝐴 − 𝐴‖ ∀𝑖 ∈ [𝑛].

As a consequence, we can easily control the pseudospectrum after a perturbation, as mentioned in
the introductory material already: for any 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 and 𝜖 ≥ ‖𝐴 − 𝐴‖,

Λ𝜖−‖𝐴−𝐴‖(𝐴) ⊂ Λ𝜖(𝐴).

For eigenvalues, the Bauer-Fike Theorem and the definition of pseudospectrum imply that if
𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable and 𝐴 ∈ ℂ𝑛×𝑛 is any matrix, then

dist(𝜆̃𝑖 , Spec 𝐴) ≤ 𝜅𝑉 (𝐴)‖𝐴 − 𝐴‖

for every 𝜆̃𝑖 ∈ Spec𝐴. More granular study of the eigenvalues is possible as well, such as the
following theorem collating two corollaries of Theorem 1.8 (see [33, Exercise VIII.3.2]). Recall
from the introduction the condition number of the eigenproblem, which we defined as

𝜅eig(𝐴) ≜
2𝜅𝑉 (𝐴)
gap(𝐴)

,

and which will appear throughout this section.
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Theorem 2.5. Let 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be diagonalizable. Then the eigenvalues of 𝐴 and 𝐴 may be matched
so that

|𝜆𝑖 − 𝜆̃𝑖 | ≤ (2𝑛 − 1)𝜅𝑉 (𝐴)‖𝐴 − 𝐴‖ ∀𝑖 ∈ [𝑛].

If furthermore ‖𝐴 − 𝐴‖ ≤ 𝛿 ≤ 𝜅−1eig(𝐴), then the eigenvalues of 𝐴 and 𝐴 may be matched so that

|𝜆𝑖 − 𝜆̃𝑖 | ≤ 𝜅𝑉 (𝐴)‖𝐴 − 𝐴‖ ∀𝑖 ∈ [𝑛].

We also have the following bound independent of 𝜅𝑉 (𝐴), [33, Theorem VIII.1.5], which will be
useful in Chapter 7

Theorem 2.6. Let 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be any matrices. Then the eigenvalues of 𝐴 and 𝐴 may be matched so
that

|𝜆𝑖 − 𝜆̃𝑖 | ≤ 2(‖𝐴‖ + ‖𝐴‖)1−1/𝑛‖𝐴 − 𝐴‖1/𝑛 ∀𝑖 ∈ [𝑛].

The contour integral formulae discussed earlier for the spectral projectors of 𝐴 above allow
us to easily bound their sensitivity to perturbation — a technique which will be of repeated use
throughout this thesis.

Lemma 2.7. Let 𝐴 ∈ ℂ𝑛×𝑛 have distinct eigenvalues and spectral projectors 𝑃1, ..., 𝑃𝑛, and assume
that ‖𝐴 − 𝐴‖ ≤ 1

2𝜅eig(𝐴)
. Then 𝐴 has distinct eigenvalues as well, and its spectral projectors 𝑃1, ..., 𝑃𝑛

may be matched with those of 𝐴 so as to satisfy

‖𝑃𝑖 − 𝑃𝑖‖ ≤ 2𝜅𝑉 (𝐴)𝜅eig(𝐴)‖𝐴 − 𝐴‖

Proof. From the Bauer-Fike theorem, if we set 𝜖 = 𝜅−1eig(𝐴) =
gap(𝐴)
2𝜅𝑉 (𝐴)

, then Λ𝜖(𝐴) has 𝑛 connected
components, each contained in a disk of radius gap(𝐴)/2 about some eigenvalue of 𝐴. The eigen-
values of 𝐴 lie in these components and are thus distinct as well, meaning that we can compute
both 𝑃𝑖 and 𝑃𝑖 by integrating the resolvent around the boundary of some such disk 𝐷𝑖 . Thus using
the resolvent identity and the triangle inequality

‖𝑃𝑖 − 𝑃𝑖‖ ≤
‖‖‖‖‖

1
2𝜋𝑖 ∮𝜕𝐷𝑖

(𝑧 − 𝐴)−1 − (𝑧 − 𝐴)−1 d𝑧
‖‖‖‖‖

≤
1
2𝜋 ∮

𝜕𝐷𝑖
‖(𝑧 − 𝐴)−1‖‖𝐴 − 𝐴‖‖(𝑧 − 𝐴)−1‖ d𝑧,

and the result follows if we use the definition of Λ𝜖(𝐴) and the singular value perturbation bounds
above to control the two resolvent norms on the boundary of the disk.

More generally, given any simple, closed, rectifiable contour encircling a connected component
of Λ𝜖(𝐴) with a single eigenvalue 𝜆𝑖 , if ‖𝐴 − 𝐴‖ ≤ 𝜖 then we can control ‖𝑃𝑖 − 𝑃𝑖‖ in terms of 𝜖,
‖𝐴 − 𝐴‖, and the length of the contour. This observation will be useful in Chapter 5. In the course
of the proof above, we have also furnished a perturbation bound for gap(𝐴).
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Lemma 2.8. Let 𝐴 ∈ ℂ𝑛×𝑛 have distinct eigenvalues, and assume that ‖𝐴 − 𝐴‖ ≤ 𝜅−1eig(𝐴). Then

gap(𝐴) ≥ gap(𝐴) − 2𝜅𝑉 (𝐴)‖𝐴 − 𝐴‖.

A further corollary of Lemma 2.7 controls the sensitivity of right eigenvectors themselves to
perturbation, and thus on the sensitivity of 𝜅𝑉 (𝐴) itself.

Lemma 2.9. Let 𝐴 ∈ ℂ𝑛×𝑛 have distinct eigenvalues, and assume that 𝐴 = 𝑉𝐷𝑉 −1 for some matrix
𝑉 = [𝑣1, ..., 𝑣𝑛]. If ‖𝐴 − 𝐴‖ < 1

2𝜅eig(𝐴)
, then 𝐴 = 𝑉𝐷𝑉 −1 for some 𝑉 = [𝑣1, ..., 𝑣𝑛] satisfying

‖𝑣𝑖 − 𝑣𝑖‖ ≤ 2𝑛𝜅eig(𝐴)‖𝑣𝑖‖‖𝐴 − 𝐴‖ ∀𝑖 ∈ [𝑛],

which implies ‖𝑉 − 𝑉 ‖ ≤ 2𝑛2𝜅eig(𝐴)‖𝐴 − 𝐴‖‖𝑉 ‖.

Proof. Let us write 𝐴(𝑡) = (1 − 𝑡)𝐴 + 𝑡𝐴; for all 𝑡 ∈ (0, 1), Bauer-Fike implies that 𝐴(𝑡) has distinct
eigenvalues. From the earlier discussion of first order perturbation theory, there are smooth
curves 𝑣𝑖(𝑡) which are right eigenvectors of 𝐴(𝑡) for every 𝑡 and satisfy 𝑣𝑖(0) = 𝑣𝑖 . Let us write
𝑣̂𝑖(𝑡) = ‖𝑣𝑖(𝑡)‖−1𝑣𝑖(𝑡), and set 𝑣𝑖 = ‖𝑣𝑖‖𝑣̂𝑖(1). Writing ̇̂𝑣𝑖(𝑡) for the derivative of 𝑣̂𝑖(𝑡), the chain rule
gives us

̇̂𝑣𝑖(𝑡) = ‖𝑣𝑖(𝑡)‖−1 ̇𝑣′
𝑖 (𝑡) − ‖𝑣𝑖(𝑡)‖−2𝑣∗

𝑖 (𝑡)𝑣̇𝑖(𝑡) 𝑣𝑖(𝑡).

Since
‖ ̇̂𝑣𝑖(𝑡)‖2 ≤ ‖𝑣𝑖(𝑡)‖−2 (‖𝑣̇𝑖(𝑡)‖ −

|𝑣∗
𝑖 (𝑡)𝑣̇𝑖(𝑡)|2

‖𝑣𝑖(𝑡)‖ ) ≤ ‖𝑣̇𝑖(𝑡)‖2,

the bound (2.2) implies

‖ ̇̂𝑣𝑖(𝑡)‖ ≤
‖𝑣̇𝑖(𝑡)‖
‖𝑣𝑖(𝑡)‖

≤
𝜅𝑉 (𝐴(𝑡))
gap(𝐴(𝑡))

‖𝐴̇(𝑡)‖ =
𝜅𝑉 (𝐴(𝑡))
gap(𝐴(𝑡))

‖𝐴 − 𝐴‖.

On the other hand, gap(𝐴(𝑡)) ≥ gap(𝐴) − 2𝜅𝑉 (𝐴)‖𝐴 − 𝐴‖ ≥ gap(𝐴)/2 and

𝜅𝑉 (𝐴(𝑡)) ≤ ∑
𝑖
𝜅𝑖(𝐴(𝑡)) ≤ ∑

𝑖
(𝜅𝑖(𝐴) + ‖𝑃𝑖 − 𝑃𝑖‖) ≤ 2𝑛𝜅𝑉 (𝐴)

by Lemma 2.7. Thus

‖𝑣̂𝑖(𝑡) − 𝑣̂𝑖(0)‖ ≤ ∫
1

0
‖ ̇̂𝑣𝑖(𝑡)‖ d𝑡 ≤ 4𝑛

𝜅𝑉 (𝐴)
gap(𝐴)

‖𝐴 − 𝐴‖ = 2𝑛𝜅eig(𝐴)‖𝐴 − 𝐴‖,

and the promised bound follows by scaling up 𝑣̂𝑖(𝑡) and 𝑣̂𝑖(0) accordingly.

In the course of the proof above we have given the loose bound 𝜅𝑉 (𝐴) ≤ 2𝑛𝜅𝑉 (𝐴), but we will
see that this can be boosted to a stronger result.
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Lemma 2.10. Let 𝐴 ∈ ℂ𝑛×𝑛 have distinct eigenvalues, and ‖𝐴 − 𝐴‖ ≤ 1
4𝑛2𝜅𝑉 (𝐴)𝜅eig(𝐴)

. Then

𝜅𝑉 (𝐴) ≤ 𝜅𝑉 (𝐴) + 8𝑛2𝜅𝑉 (𝐴)𝜅eig(𝐴)‖𝐴 − 𝐴‖.

Proof. Let 𝑉 diagonalize 𝐴 and be scaled so that ‖𝑉 ‖ = ‖𝑉 −1‖ = 𝜅𝑉 (𝐴). Using lemma 2.9, 𝐴 may be
diagonalized by 𝑉 satisfying

‖𝑉 − 𝑉 ‖ ≤ ‖𝑉 − 𝑉 ‖𝐹 ≤ 4𝑛2𝜅eig(𝐴)‖𝐴 − 𝐴‖‖𝑉 ‖

Using stability of singular values, we then have

𝜅𝑉 (𝐴) ≤ ‖𝑉 ‖‖𝑉 −1‖ ≤
‖𝑉 ‖ + ‖𝑉 − 𝑉 ‖

‖𝑉 −1‖−1 − ‖𝑉 − 𝑉 ‖
≤ 𝜅𝑉 (𝐴)

1 + 2𝑛2𝜅eig(𝐴)‖𝐴 − 𝐴‖
1 − 2𝑛2𝜅𝑉 (𝐴)𝜅eig(𝐴)‖𝐴 − 𝐴‖

.

Since ‖𝐴 − 𝐴‖ ≤ 1
4𝑛2𝜅𝑉 (𝐴)𝜅eig(𝐴)

, we can use convexity of the function 𝑓 (𝑥) = 1−𝑥/𝜅𝑉 (𝐴)
1−𝑥 to bound it by

the line interpolating between 𝑓 (0) = 1 and 𝑓 (1/2) = 4 + 2𝜅−1𝑉 (𝐴). This gives

𝜅𝑉 (𝐴) ≤ 𝜅𝑉 (𝐴) (1 + 8𝑛2𝜅𝑉 (𝐴)𝜅eig(𝐴)‖𝐴 − 𝐴‖) .

It will also be useful in Chapters 5 and 7 to understand how 𝜅𝑉 and gap change when passing
to a submatrix.

Lemma 2.11. If 𝐴 is block upper triangular and 𝐴′ is a diagonal block, then 𝜅𝑉 (𝐴′) ≤ 𝜅𝑉 (𝐴) and
gap(𝐴′) ≥ gap(𝐴).

Proof. The gap assertion is immediate since Spec𝐴′ ⊂ Spec𝐴. For 𝜅𝑉 , assume without loss of
generality that 𝐴 is diagonalizable (otherwise the inequality is trivial) and

𝐴 = (
𝐴′ ∗
0 ∗) .

We claim that every 𝑉 diagonalizing 𝐴 is of the form

𝑉 = (
𝑉 ′ ∗
0 ∗) ,

where 𝑉 ′ diagonalizes 𝐴′. To see this, if 𝐴𝑉 = 𝑉𝐷, then block upper triangularity gives 𝐴′𝑉 ′ =
𝑉 ′𝐷′ for𝐷′ the upper left block of𝐷. Aoreover, 𝑉 invertible implies 𝑉 ′ is as well, and quantitatively
‖𝑉 ′‖‖(𝑉 ′)−1‖ ≤ ‖𝑉 ‖‖𝑉 −1‖. Choosing 𝑉 so that 𝜅𝑉 (𝐴) = ‖𝑉 ‖‖𝑉 −1‖, we have

𝜅𝑉 (𝐴′) ≤ ‖(𝑉 ′)‖‖(𝑉 ′)−1‖ ≤ ‖𝑉 ‖‖𝑉 −1‖ = 𝜅𝑉 (𝐴).
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The QR Decomposition
Every nonsingular matrix 𝐴 ∈ ℂ𝑛×𝑛 has a unique QR decomposition 𝐴 = 𝑄𝑅, where 𝑄 is unitary, an
𝑅 is upper triangular with nonnegative entries. We will write

[𝑄, 𝑅] = qr(𝐴)

to denote that 𝑄 and 𝑅 are the promised factorizing matrices. It is easy to check that 𝑄 can be
obtained by running Gram-Schmidt to orthonormalize the columns of 𝐴, left to right. In Chapters 5
and 7 we will need the following result of J. Sun on the condition number of the QR decomposition
[145, Theorem 1.6].

Lemma 2.12 (Condition Number of the QR Decomposition). Let 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 with 𝐴 invertible and
‖𝐴 − 𝐴‖‖𝐴−1‖ ≤ 1/2. Then If [𝑄, 𝑅] = qr(𝐴) and [𝑄, 𝑅] = qr(𝐴), then

‖𝑄 − 𝑄‖𝐹 ≤ 4‖𝐴−1‖‖𝐴 − 𝐴‖𝐹 and ‖𝑅 − 𝑅‖ ≤ 3‖𝐴−1‖‖𝑅‖‖𝐴 − 𝐴‖.

Finite Precision Arithmetic
As discussed in the introductory material, the algorithms in Chapters 5 and 7 are analyzed in the
computational model of floating point arithmetic with machine precision (sometimes called unit
roundoff ) 𝐮. This model is axiomatized as follows [94]. Whenever our algorithm performs an
operation □ ∈ {+, −, ×, ÷} on two complex numbers 𝑥 and 𝑦, we assume

fl(𝑥□𝑦) = (𝑥□𝑦)(1 + Δ) |Δ| ≤ 𝐮,

where fl(𝑥□𝑦) denotes the outcome of the operation when performed in floating point arithmetic,
and Δ is an adversarially chosen complex number. We assume that the same guarantee holds
when computing the square root of a positive real number. A number of further assumptions and
results regarding finite precision arithmetic — including matrix multiplication and inversion, QR
decomposition, random sampling, and QR iteration — are remanded to Chapters 5 and 7.

As discussed at length in [94] and elsewhere, such a system can be implemented by allowing
our machine to access complex numbers whose real and imaginary parts are of the form

±𝑠 ⋅ 2log 1/𝐮±𝑒 ,

where the significand 𝑠 lies in the range 0 ≤ 𝑠 ≤ 1/𝐮, and the exponent lies in some range 0 ≤ 𝑒 ≤ 𝑒max.
This corresponds allocating log 1/𝐮 bits of precision to store the significand and another log 𝑒max
for the exponent. For point of reference, IEEE extended precision (real) arithmetic uses 64 bits of
precision, plus 8 for the exponent, giving 𝐮 = 2−64. The implementation of floating point arithmetic
has numerous subtleties, some of which which (as is customary in the literature) we will elect to
ignore. One such issue is that of overflow and underflow when we encounter a number whose
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exponent is too small, or too large. The tenacious reader could verify that none of the numbers
encountered in the course of our algorithms are problematic in this regard.

Over the course of this thesis and depending on the context, we use a few different ways to
distinguish between exact arithmetic algorithms and finite arithmetic implementations. Sometimes
we will write, e.g., alg( ) for the former and ALG( ) for the latter. Other times we will write the
outcome of a finite arithmetic calculation as alg( ) + 𝐸, where 𝐸 is some adversarial error, or
alternatively as ̃alg( ).

Bibliographic Note
The proof of Lemma 2.9 is adapted from [15, Proposition 1.1]; similarly with Lemma 2.10 and [18,
Lemma 6.1].
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Chapter 3

Regularization by Complex Gaussian
Perturbations

We will write 𝑮𝑛 for the 𝑛 × 𝑛 complex Ginibre matrix, a random matrix whose entries are
independent and distributed according to the complex Gaussian distribution of variance 1/𝑛; in
other words each entry 𝑮 𝑖,𝑗 satisfies 𝔼𝑮 𝑖,𝑗 = 0 and 𝔼|𝑮 𝑖,𝑗 |2 = 1/𝑛. (For the probibalistic Chapters
3-4 only, we will write all random variables in bold face font.) In this chapter we will study the
eigenvector and eigenvalue condition numbers, minimum eigenvalue gap, and pseudospectrum of
random matrices of the form

𝐴 + 𝛿𝑮𝑛,

where 𝐴 ∈ ℂ𝑛×𝑛 is arbitrary and deterministic, and 𝛿 is a small parameter controlling the size of
the random perturbation. Our goal is to prove Theorem 1.10, which we restate here.

Restatement of Theorem 1.10. Let 𝐴 be any 𝑛 × 𝑛 matrix with ‖𝐴‖ ≤ 1, 𝑮𝑛 a complex Ginibre
matrix, and 𝛿 ≤ 1/2. Then, with probability at least 1 − 10/𝑛,

∑
𝑖
𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≤ 𝑛3/𝛿2

𝜅𝑉 (𝐴 + 𝛿𝑮𝑛) ≤ 𝑛2/𝛿
gap(𝐴 + 𝛿𝑮𝑛) ≥ 𝛿/𝑛2

and Λ𝜖(𝐴 + 𝛿𝑮𝑛) has 𝑛 disjoint connected components for every 𝜖 ≤ 𝛿2/2𝑛4.

3.1 Shifted Singular Value Bounds
As discussed in Chapter 1, our approach in studying the aforementioned properties of 𝐴 + 𝛿𝑮𝑛
will be to prove tail bounds on the singular values of the scalar shifts 𝑧 − 𝐴 − 𝛿𝑮𝑛, for 𝑧 ∈ ℂ. The
distribution of the smallest singular value of 𝑮𝑛 itself was computed by Edelman in [70, Chapter
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5] as
ℙ[𝜎𝑛(𝑮𝑛) < 𝑡] = 1 − 𝑒−𝑡

2𝑛2 ≤ 𝜖2𝑛2. (3.1)
and the resulting bound was generalized to the remaining singular values by Szarek [146, Theorem
1.2].

Theorem 3.1. For 𝑮𝑛 an 𝑛 × 𝑛 complex Ginibre matrix and for any 𝑡 ≥ 0 it holds that

ℙ [𝜎𝑗(𝑮𝑛) < 𝑡] ≤ (
√
2𝑒 𝑡

𝑛
𝑛 − 𝑗 + 1)

2(𝑛−𝑗+1)2

.

In order to translate Edelman and Szarek’s bounds to the shifted case, we will import a powerful
comparison result of Śniady from the context of free probability [142]. The proof is quite beautiful,
and we include a sketch for the readers edification.

Theorem 3.2 (Śniady’s Comparison Theorem). Let 𝐴(1) and 𝐴(2) be 𝑛 × 𝑛 complex matrices such
that 𝜎𝑖(𝐴(1)) ≤ 𝜎𝑖(𝐴(2)) for all 1 ≤ 𝑖 ≤ 𝑛. Assume further that 𝜎𝑖(𝐴(1)) ≠ 𝜎𝑗(𝐴(1)) and 𝜎𝑖(𝐴(2)) ≠ 𝜎𝑗(𝐴(2))
for all 𝑖 ≠ 𝑗. Then for every 𝑡 ≥ 0, there exists a joint distribution on pairs of 𝑛 × 𝑛 complex matrices
(𝑮(1), 𝑮(2)) such that

(i) the marginals 𝑮(1) and 𝑮(2) are distributed as complex Ginibre matrices, and

(ii) almost surely 𝜎𝑖(𝐴(1) + 𝑡𝑮(1)) ≤ 𝜎𝑖(𝐴(2) + 𝑡𝑮(2)) for every 𝑖.

Sketch of proof. The key insight of the proof is that it is possible to couple the distributions of 𝑮(1)

and 𝑮(2) through their singular values. To do so, one first derives a stochastic differential equation
satisfied by the singular values 𝒔1, ..., 𝒔𝑛 of a matrix Brownian motion (i.e., a matrix whose entries
are independent complex Brownian motions): for all 𝑖 ∈ [𝑛],

d𝒔𝑖 =
1

√
2𝑛

d𝑩𝑖 +
d𝑡
2𝒔𝑖 (

1 −
1
2𝑛

+∑
𝑗≠𝑖

𝒔2𝑖 + 𝒔2𝑗
𝑛(𝒔2𝑖 − 𝒔2𝑗 ))

, (3.2)

where the 𝑩𝑖 are independent standard real Brownian motions. Next, one uses a single 𝑛-tuple of
real Brownian motions 𝑩1, ..., 𝑩𝑛 to drive two processes (𝒔(1)1 , … , 𝒔(1)𝑛 ) and (𝒔(2)1 , … , 𝒔(2)𝑛 ) according to
(3.2), with initial conditions 𝒔(1)𝑖 (0) = 𝜎𝑖(𝐴(1)) and 𝒔(2)𝑖 (0) = 𝜎𝑖(𝐴(2)) for all 𝑖. (To do this rigorously,
one needs existence and uniqueness of strong solutions to the above SDE; this is shown in [101]
under the hypothesis 𝒔𝑖(0) ≠ 𝒔𝑗(0) for all 𝑖 ≠ 𝑗.)

Things have been arranged so that the joint distribution of (𝒔(𝑗)1 , … , 𝒔(𝑗)𝑛 ) at time 𝑡2 matches
the joint distribution of the singular values of 𝐴(𝑗) + 𝑡𝑮(𝑗) for each 𝑗 = 1, 2. One can then sample
unitaries 𝑼 (𝑗) and 𝑽 (𝑗) from the distribution arising from the singular value decomposition 𝐴(𝑗) +
𝑡𝑮(𝑗) = 𝑼 (𝑗)𝑫(𝑗)(𝑽 (𝑗))∗, conditioned on 𝑫(𝑗) = diag(𝒔(𝑗)1 , … , 𝒔(𝑗)𝑛 ). Thus each 𝑮(𝑗) is separately Ginibre-
distributed. However, 𝐴(1) + 𝑡𝑮(1) and 𝐴(2) + 𝑡𝑮(2) are coupled through the shared randomness
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driving the evolution of their singular values. In particular, since the same 𝑩𝑖 were used for both
processes, from (3.2) one can verify that the 𝑛 differences 𝒔(2)𝑖 −𝒔(1)𝑖 are 𝐶1 in 𝑡 . By taking derivatives,
one can then show the desired monotonicity property: if 𝒔(2)𝑖 − 𝒔(1)𝑖 ≥ 0 holds for all 𝑖 at 𝑡 = 0, it
must hold for all 𝑡 ≥ 0.

From Theorem 3.2 immediately follows a stochastic dominance result relating the singular
values of pairs of matrices after a small, complex Ginibre perturbation. We will repeatedly apply
this corollary in combination with Edelman and Szarek’s results, in the case when 𝐴(1) = 0 and
𝐴(2) = 𝑧 − 𝐴 for some 𝐴 ∈ ℂ𝑛×𝑛 and 𝑧 ∈ ℂ.

Corollary 3.3. Let 𝐴(1) and 𝐴(2) be 𝑛 × 𝑛 complex matrices such that 𝜎𝑖(𝐴(1)) ≤ 𝜎𝑖(𝐴(2)) for all
1 ≤ 𝑖 ≤ 𝑛. Then for any 0 ≤ 𝑡, 𝑠1, ..., 𝑠𝑛 ∈ ℝ,

ℙ[𝜎𝑖(𝐴(1) + 𝑡𝑮𝑛) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]] ≥ ℙ[𝜎𝑖(𝐴(2) + 𝑡𝑮𝑛) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]].

Proof. When 𝐴(1) and 𝐴(2) both have distinct singular values, let 𝑮(1) and 𝑮(2) be the coupled
matrices promised by 3.2. Then we have

ℙ [𝜎𝑖(𝐴(1) + 𝑡𝑮𝑛) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]] = ℙ [𝜎𝑖(𝐴(1) + 𝑡𝑮(1)) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]]
≥ ℙ [𝜎𝑖(𝐴(2) + 𝑡𝑮(2)) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]]
= ℙ [𝜎𝑖(𝐴(2) + 𝑡𝑮𝑛) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑛]] .

The result for general 𝐴(1) and 𝐴(2) follows if we approach each by matrices with distinct singular
values.

3.2 Eigenvector and Eigenvalue Condition Numbers
Our first regularization result concerns the eigenvalue condition numbers of the perturbed matrix
𝐴 + 𝛿𝑮𝑛 corresponding to those eigenvalues of 𝐴 + 𝛿𝑮 in any deterministic region of ℂ. Interest-
ingly, we can control these condition numbers (or, rather, the sum of their squares) without any
knowledge of the locations of the eigenvalues.

Theorem 3.4. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0, and denote by 𝝀1, ..., 𝝀𝑛 ∈ ℂ the (random) eigenvalues of
𝐴 + 𝛿𝑮𝑛). Then for every measurable open set Ω ⊂ ℂ,

𝔼 ∑
𝑖∶𝝀𝑖∈Ω

𝜅𝑖(𝐴 + 𝛿𝑮𝑛) ≤
𝑛2

𝜋𝛿2
LebℂΩ.

Proof. For every 𝑧 ∈ ℂ we have the upper bound

ℙ[𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝑮𝑛)] = ℙ[𝜎𝑛(𝑧 − 𝐴 − 𝛿𝑮𝑛) < 𝜖] ≤ (𝑛𝜖/𝛿)2, (3.3)
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by combining Corollary 3.3 and Edelman’s singular value tail bound (3.1), and noting that 𝐺𝑛 and
−𝐺𝑛 have the same distribution. Now, fix a measurable open set Ω ⊂ ℂ. Then

𝔼 Lebℂ(Λ𝜖(𝐴 + 𝛿𝑮𝑛) ∩ Ω) = 𝔼 ∫
Ω
𝟏{𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝑮𝑛)} 𝑑𝑧

= ∫
Ω
𝔼𝟏{𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝑮𝑛)} 𝑑𝑧 by Fubini

≤ ∫
Ω
(𝑛𝜖/𝛿)2 𝑑𝑧 by (3.3)

= (𝑛𝜖/𝛿)2 Lebℂ(Ω) (3.4)

where the integrals are with respect to Lebesgue measure on ℂ.
Finally, using Lemma 2.4 and taking a limit as 𝜖 → 0 yields the desired bound:

𝔼 ∑
𝑖∶𝜆𝑖∈Ω

𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) = 𝔼 lim inf
𝜖→0

Lebℂ(Λ𝜖(𝐴 + 𝛿𝑮𝑛) ∩ Ω)
𝜋𝜖2

by Lemma 2.4

≤ lim inf
𝜖→0

𝔼
Lebℂ(Λ𝜖(𝐴 + 𝛿𝑮𝑛) ∩ Ω)

𝜋𝜖2
by Fatou’s Lemma

≤
𝑛2 Lebℂ(Ω)

𝜋𝛿2
by (3.4).

We can convert Theorem 3.4 into a tail bound for 𝜅𝑉 (𝐴 + 𝛿𝑮𝑛) by using the upper bound
𝜅𝑉 ≤

√
𝑛∑𝑖 𝜅2𝑖 from (2.1). Doing do requires that we control every eigenvalue condition number,

whereas Theorem 3.4 addresses only those 𝜅𝑖’s lying in some deterministic set. Fortunately, it is
the case with high probability that ‖𝑮𝑛‖ ≤ 4 (say), in which case every eigenvalue of 𝐴 + 𝛿𝑮𝑛 is
contained in a disk of radius ‖𝐴‖ + 4𝛿 , and we can proceed by truncating to this set. To make this
precise, recall the following coarse (but simple) tail bound for ‖𝑮𝑛‖.

Lemma 3.5. For a complex Ginibre matrix 𝐺𝑛,

ℙ[𝜎1(𝑮𝑛) > 2
√
2 + 𝑡] ≤ 2 exp(−𝑛𝑡2).

Proof. We can write 𝑮𝑛 = 1√
2 (𝑿 + 𝑖𝒀 ) where 𝑿 and 𝒀 are independent with i.i.d. real  (0, 1/𝑛)

entries. It is well-known that
𝔼𝜎1(𝑮𝑛) ≤

√
2𝔼 ‖𝑿‖ ≤ 2

√
2;

see e.g. the argument by way of Slepian’s inequality in [52, Theorem II.11]. Lipschitz concentration
of functions of real Gaussian random variables yields the result.

Theorem 3.6. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0. Then

ℙ [𝜅𝑉 (𝐴 + 𝛿𝑮𝑛) ≥ 𝑡] ≤
𝑛3(‖𝐴‖ + 4𝛿)2

𝛿2𝑡2
+ 2𝑒−𝑛.
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Proof. Again write 𝝀1, ..., 𝝀𝑛 for the random eigenvalues of 𝐴 + 𝛿𝑮𝑛. The event ‖𝑮𝑛‖ ≤ 4 ensures
that 𝝀1, ..., 𝝀𝑛 ∈ Ω ≜ 𝔻(0, ‖𝐴‖ + 4𝛿). Using (2.1), Lemma 3.5, and Markov’s inequality, we have

ℙ [𝜅𝑉 (𝐴 + 𝛿𝑮𝑛) ≥ 𝑡] ≤ ℙ
[
∑
𝑖
𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≥

𝑡2

𝑛
, ‖𝑮𝑛‖ ≤ 4

]
+ ℙ [‖𝑮𝑛‖ > 4]

≤ ℙ
[
∑
𝑖∶𝝀𝑖∈Ω

𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≥
𝑡2

𝑛 ]
+ 2𝑒−𝑛

≤
𝑛3(‖𝐴‖ + 4𝛿)2

𝛿2𝑡2
+ 2𝑒−𝑛

as promised. Some improvement may be possible by instead considering the event ‖𝑮𝑛‖ ≥ 𝑢 for a
different 𝑢 > 2

√
2.

We pause to show that the dimension-dependence in Theorem 3.4 cannot be improved.

Proposition 3.7. There exists 𝑐 > 0 such that for all 𝑛,

𝔼∑
𝑖∈[𝑛]

𝜅2𝑖 (𝑮𝑛) ≥ 𝑐𝑛2.

Proof. Bourgade and Dubach [36, Theorem 1.1, Equation 1.8] show that eigenvalue condition
numbers in the bulk of the spectrum of complex Ginibre matrices are of order √𝑛. Precisely, if 𝑮𝑛
has eigenvalues 𝝀1, ...𝝀𝑛, then for any 𝑟 < 1,

lim
𝑛→∞

𝔼[𝜅2𝑖 (𝑮𝑛)|𝝀𝑖 = 𝑧]
𝑛

= 1 − |𝑧|2

uniformly for (say) 𝑧 ∈ 𝔻(0, 𝑟). The classical circular law for the limiting spectral distribution of
Ginibre matrices ensures that

lim
𝑛→∞

𝔼 | Spec𝑮𝑛 ∩ 𝔻(0, 𝑟)|
𝑛

=
Lebℂ 𝔻(0, 𝑟)
Lebℂ𝔻(0, 1)

= 𝑟2𝑚

meaning that

lim inf
𝑛→∞

𝔼∑𝑖∈[𝑛] 𝜅2𝑖 (𝑮𝑛)
𝑛2

≥ 𝑟2(1 − 𝑟2) > 0.

3.3 Davies’ Conjecture
In this section we will use Theorem 3.4 to study the following question posed by E. B. Davies in
[53]:
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How well can an arbitrary matrix be approximated by one with a small eigenvector
condition number?

Our main theorem is as follows.

Theorem 3.8. Suppose 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 ∈ (0, 1). Then there is a matrix 𝐴 ∈ ℂ𝑛×𝑛 such that
‖𝐴 − 𝐴‖ ≤ 𝛿‖𝐴‖ and

𝜅𝑉 (𝐴) ≤ 4𝑛3/2 (1 +
1
𝛿 )

.

In other words, every matrix is at most inverse polynomially close to a matrix whose eigenvectors
have condition number at most polynomial in the dimension. The previously best known general
bound in such a result was [53, Theorem 3.8]:

𝜅𝑉 (𝐴) ≤ (
𝑛
𝛿 )

(𝑛−1)/2
, (3.5)

so Theorem 3.8 constitutes an exponential improvement in the dependence on both 𝛿 and 𝑛. We
show in Proposition 3.10 that the 1/𝛿-dependence in Theorem 3.8 cannot be improved beyond
1/𝛿1−1/𝑛, so our bound is essentially optimal in 𝛿 for large 𝑛.

Theorem 3.8 implies a positive resolution to a conjecture of Davies [53].

Conjecture 3.9. For every positive integer 𝑛 there is a constant 𝑐𝑛 such that for every 𝐴 ∈ ℂ𝑛×𝑛 with
‖𝐴‖ ≤ 1 and any 𝐮 ∈ (0, 1):

inf
𝐴∈ℂ𝑛×𝑛

(𝜅𝑉 (𝐴)𝐮 + ‖𝐴‖) ≤ 𝑐𝑛
√
𝐮. (3.6)

Proof of Conjecture 3.9. Given 𝜖 > 0, set 𝛿 = 𝑑𝑛
√
𝐮 for some 𝑑𝑛 > 0 and apply Theorem 3.8. This

yields 𝑐𝑛 = 4𝑛3/2 + 4𝑛3/2/𝑑𝑛 + 𝑑𝑛. This is minimized at 𝑑𝑛 = 2𝑛3/4, which yields 𝑐𝑛 = 4𝑛3/2 + 4𝑛3/4 ≤
8𝑛3/2.

The phrasing of Conjecture 3.9 is motivated by a particular application in numerical analysis.
Suppose one wants to evaluate analytic functions 𝑓 (𝐴) of a given matrix 𝐴, which may be non-
normal. If 𝐴 is diagonalizable, one can use the formula 𝑓 (𝐴) = 𝑉 𝑓 (𝐷)𝑉 −1, where 𝑓 (𝐷) means the
function is applied to the scalar diagonal entries of 𝐷. However, this may be numerically infeasible
if 𝜅𝑉 (𝐴) is very large: if all computations are carried to precision 𝐮, the result may be off by an
error of 𝜅𝑉 (𝐴)𝐮. Davies’ idea was to replace 𝐴 by a perturbation 𝐴 with a much smaller 𝜅𝑉 (𝐴),
and compute 𝑓 (𝐴) instead. In [53, Theorem 2.4], he showed that the net error incurred by this
scheme for a given 𝐮 > 0 and sufficiently regular 𝑓 is controlled by:

𝜅𝑉 (𝐴)𝐮 + ‖𝐴 − 𝐴‖,

which is the quantity appearing in (3.6). The key desirable feature of (3.6) is the dimension-
independent fractional power of 𝐮 on the right-hand side, which shows that the total error scales
slowly.
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Davies proved his conjecture in the special case of upper triangular Toeplitz matrices, in
dimension 𝑛 = 3 with the constant 𝑐𝑛 = 2, as well as in the general case with the weaker
dimension-dependent and nonconstructive bound (𝑛 + 1)𝐮2/(𝑛+1). This last result corresponds to
(3.5) above. He also speculated that a random regularizing perturbation suffices to prove Conjecture
3.9, and presented empirical evidence to that effect. Our proof of Theorem 3.8 below indeed follows
this strategy, by way of Theorem 3.4.

Proof of Theorem 3.8. We proceed similarly to the proof of Theorem 3.6. Let 𝝀1, … , 𝝀𝑛 be the
eigenvalues of the random matrix 𝐴 + 𝛿𝑮𝑛, and 𝑡 > 2

√
2 and 𝑠 > 1 be parameters to be optimized

later. Davies’ original bound (3.5) implies our bound for 𝑛 ≤ 3, so assume 𝑛 ≥ 4. Then Lemma 3.5
tells us that

ℙ[|𝛿𝐺𝑛| ≥ 𝑡𝛿] ≤ 2𝑒−4(𝑡−2
√
2)2 .

Letting Ω = 𝔻(0, ‖𝐴‖ + 𝑡𝛿), we have

ℙ
[
∑
𝑖∶𝝀𝑖∈Ω

𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≠ ∑
𝑖
𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛)]

≤ ℙ[‖𝛿𝑮𝑛‖ ≥ 𝑡𝛿] ≤ 2 exp (−4(𝑡 − 2
√
2)2) . (3.7)

On the other hand, by Theorem 3.4 applied to Ω and Markov,

ℙ
[
∑
𝑖∶𝝀𝑖∈Ω

𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≥ 𝑠
𝑛2 Lebℂ Ω

𝛿2𝜋 ]
≤
1
𝑠
. (3.8)

By the union bound, if we choose 𝑠 and 𝑡 such that

2 exp (−4(𝑡 − 2
√
2)2) +

1
𝑠
< 1 (3.9)

then with nonzero probability over 𝑮𝑛, neither the events (3.7), (3.8) occurs, and thus there is
some matrix 𝐴 with ‖𝐴 − 𝐴‖ ≤ 𝑡𝛿 and eigenvalues 𝜆̃1, ..., 𝜆̃𝑛, for which

𝑛

∑
𝑖=1

𝜅2𝑖 (𝐴) = ∑
𝑖∶𝜆̃𝑖∈Ω

𝜅2𝑖 (𝐴) ≤ 𝑠
𝑛2 LebℂΩ

𝜋𝛿2
.

Taking a square root and applying (2.1), we have

𝜅𝑉 (𝐴) ≤
√
𝑠𝑛3/2

𝛿
(‖𝐴‖ + 𝑡𝛿) ≤

√
𝑠𝑛3/2‖𝐴‖
𝛿

+ 𝑡
√
𝑠𝑛3/2.

Because ‖𝐴 − 𝐴‖ ≤ 𝑡𝛿 and not 𝛿 , replacing 𝛿 by 𝛿/𝑡 yields the bound

𝜅𝑉 (𝐴) ≤
𝑡
√
𝑠𝑛3/2‖𝐴‖
𝛿

+ 𝑡
√
𝑠𝑛3/2.

To get the best bound, we must minimize 𝑡√𝑠 subject to the constraints (3.9), 𝑡 > 2
√
2 and 𝑠 > 1.

Solving for 𝑠 this becomes a univariate optimization problem, and one can check numerically that
the optimum is achieved at 𝑡 ≈ 3.7487 and 𝑡√𝑠 ≈ 3.8822 < 4, as advertised.
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We will close out this section by showing that 3.8 has essentially the optimal dependence on 𝛿 ,
at least when 𝑛 is large. The example which requires this dependence is simply a Jordan block 𝐽𝑛,
for which Davies [53] established the upper bound 𝜅𝑉 (𝐽𝑛 + 𝛿𝐸) ≤ 2/𝛿1−1/𝑛, for some 𝐸 with ||𝐸|| < 1.

Proposition 3.10. Fix 𝑛 > 0 and let 𝐽𝑛 ∈ ℂ𝑛×𝑛 be the upper triangular Jordan block with ones on the
superdiagonal and zeros everywhere else. Then there exist 𝑐𝑛 > 0 and 𝛿𝑛 > 0 such that for all 𝐸 ∈ ℂ𝑛×𝑛

with ‖𝐸‖ ≤ 1 and all 𝛿 < 𝛿𝑛, we have

𝜅𝑉 (𝐽𝑛 + 𝛿𝐸) ≥
𝑐𝑛

𝛿1−1/𝑛
.

Proof. As a warm-up, we’ll need the following bound on the pseudospectrum of 𝐽𝑛. Let 𝜆 be
an eigenvalue of 𝐽𝑛 + 𝛿𝐸, with 𝑣 its associated right eigenvector; then (𝐽𝑛 + 𝛿𝐸)𝑛𝑣 = 𝜆𝑛𝑣 and,
accordingly, |𝜆|𝑛 ≤ ‖(𝐽𝑛 + 𝛿𝐸)𝑛‖. Expanding, using nilpotence of 𝐽𝑛, ‖𝐽𝑛‖ = 1, and submultiplicativity
of the operator norm, we get

|𝜆|𝑛 ≤ ‖(𝐽𝑛 + 𝛿𝐸)𝑛‖ ≤ (1 + 𝛿)𝑛 − 1 = 𝑂(𝛿) (3.10)

where the big-𝑂 refers to the limit 𝛿 → 0 (recall 𝑛 is fixed).
Writing 𝐽𝑛 + 𝛿𝐸 = 𝑉 −1𝐷𝑉 , we want to lower bound the condition number of 𝑉 . As above, let 𝜆

be an eigenvalue of 𝐽𝑛 + 𝛿𝐸, now writing 𝑤∗ and 𝑣 for its left and right eigenvectors. We’ll use the
lower bound

𝜅(𝑉 ) = ‖𝑉 −1‖‖𝑉 ‖ ≥
‖𝑤∗‖‖𝑣‖
|𝑤∗𝑣|

.

Since the formula above is agnostic to the scaling of the left and right eigenvectors, we’ll assume
that both have unit length and show that |𝑤∗𝑣| is small.

Let 0 ≤ 𝑘 ≤ 𝑛. Then ‖(𝐽𝑛 + 𝛿𝐸)𝑘𝑣‖ = |𝜆|𝑘 , and analogously to (3.10),

‖(𝐽𝑛 + 𝛿𝐸)𝑘 − 𝐽 𝑘𝑛 ‖ ≤ (1 + 𝛿)𝑘 − 1 = 𝑂(𝛿).

Since 𝐽𝑛 acts on the left as a left shift,

(

𝑛

∑
𝑖=𝑘+1

|𝑣𝑖 |2)

1/2

= ‖𝐽 𝑘𝑛 𝑣‖

≤ ‖(𝐽𝑛 + 𝛿𝐸)𝑘𝑣‖ + ‖(𝐽 𝑘𝑛 − (𝐽𝑛 + 𝛿𝐸)𝑘)𝑣‖
≤ |𝜆|𝑘 + 𝑂(𝛿)
= 𝑂(𝛿𝑘/𝑛),

where the final line follows from (3.10). Similarly,

(

𝑛−𝑘

∑
𝑖=1

|𝑤𝑖 |2)

1/2

= ‖𝑤∗𝐽 𝑘𝑛 ‖ = 𝑂(𝛿
𝑘/𝑛).



CHAPTER 3. REGULARIZATION BY COMPLEX GAUSSIAN PERTURBATIONS 34

Finally, we have 𝜅(𝑉 )−1 = |𝑤∗𝑣| ≤
𝑛

∑
𝑗=1

|𝑤𝑗 ||𝑣𝑗 |, which in turn is at most

𝑛

∑
𝑗=1 (

𝑗

∑
𝑖=1

|𝑤𝑖 |2)

1/2

(

𝑛

∑
𝑖=𝑗

|𝑣𝑖 |2)

1/2

= 𝑂(𝛿 (𝑛−𝑗)/𝑛𝛿 (𝑗−1)/𝑛) = 𝑂(𝛿1−1/𝑛).

3.4 Minimum Eigenvalue Gap
We turn now to the minimum eigenvalue gap of 𝐴 + 𝛿𝑮𝑛. As discussed in Chapter 1, our initial
strategy for controlling this quantity will be to first study the probability that 𝐴 + 𝛿𝑮𝑛 has two
eigenvalues in an small disk 𝔻(𝑧, 𝑟) ⊂ ℂ, which can in turn be controlled by the two smallest
singular values of 𝑧 − (𝐴 + 𝛿𝑮𝑛). The necessary connection between eigenvalues and singular
values comes from the classical log-majorization property; see, for example, [97, Theorem 3.3.4].

Lemma 3.11. For any complex 𝑛 × 𝑛 matrix with eigenvalues labelled |𝜆𝑛| ≤ ⋯ ≤ |𝜆1| and singular
values 𝜎𝑛 ≤ ⋯ ≤ 𝜎1, and any 𝑘 ∈ [𝑛],

𝜎𝑛 ⋯𝜎𝑛−𝑘+1 ≤ |𝜆𝑛| ⋯ |𝜆𝑛−𝑘+1|.

As an immediate corollary of Lemma 3.11, if 𝐴 + 𝛿𝑮𝑛 has two eigenvalues in 𝔻(𝑧, 𝑟) then
𝜎𝑛(𝑧 − 𝐴 − 𝛿𝑮𝑛)𝜎𝑛−1(𝑧 − 𝐴 − 𝛿𝑮𝑛) ≤ 𝑟2. As in the preceding material, control on this event comes
via a tail bound on the product of 𝜎𝑛(𝑮𝑛)𝜎𝑛−1(𝑮𝑛) in the centered case; the following bound is
simple, but may not be optimal.

Lemma 3.12. The complex Ginibre matrix 𝑮𝑛 satisfies

ℙ [𝜎𝑛(𝑮𝑛)𝜎𝑛−1(𝑮𝑛) ≤ 𝑟2] ≤
4𝑒4/5

212/5
(𝑛𝑟)16/5 ≤ 2.2 ⋅ (𝑛𝑟)3.2.

Proof. Using Edelman’s bound (3.1) and Szarek’s Theorem 3.1, for any 𝑡 > 0 we have

ℙ [𝜎𝑛(𝑮𝑛)𝜎𝑛−1(𝑮𝑛) ≤ 𝑟2] ≤ ℙ [𝜎𝑛(𝑮𝑛) ≤ 𝑡𝑟] + ℙ [𝜎𝑛−1(𝑮𝑛) ≤ 𝑟/𝑡𝛿]
≤ (𝑡𝑟𝑛)2 + (𝑒/2)4(𝑟/𝑡)8.

Instantiating the optimal 𝑡 = (𝑒2/2)1/5(𝑛𝑟)3/5 and bounding the resulting constant gives the result.

We now combine Śniady and Szarek’s results with Lemma 3.12 to bound the the probability
that 𝐴 + 𝛿𝑮𝑛 has two eigenvaues in a disk.
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Corollary 3.13. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0. Then for any 𝑧 ∈ ℂ and 𝑟 > 0,

ℙ [| Spec(𝐴 + 𝛿𝑮𝑛) ∩ 𝔻(𝑧, 𝑟)| ≥ 2] ≤ 2.2(𝑛𝑟/𝛿)3.2

Finally, we can state and prove our main result.

Theorem 3.14. For any 𝐴 ∈ ℂ𝑛×𝑛, 𝛿 > 0, and 𝑡 ≤ 1,

ℙ[gap(𝐴 + 𝛿𝑮𝑛) ≤ 𝑡] ≤ 200(‖𝐴‖ + 4𝛿)2𝑡1.2(𝑛/𝛿)3/2.

Proof. We proceed in the same spirit as the proof of Theorem 3.6, by truncating to the event that
‖𝑮𝑛‖ ≤ 4. On this event, Spec(𝐴 + 𝛿𝑮𝑛) ⊂ 𝔻(0, ‖𝐴‖ + 4𝛿), and it is standard that this large disk by
smaller ones of radius 𝑡 , centered at fewer than

((‖𝐴‖ + 4𝛿)
2 + 𝑡
𝑡 )

2

points. If gap(𝐴 + 𝛿𝑮𝑛) ≤ 𝑡 , then there must be two eigenvalues in the disk of radius 2𝑡 centered
at some such point. Using Lemma 3.13 to bound the probability that this occurs at each point and
taking a union bound, we find that

ℙ [gap(𝐴 + 𝛿𝑮𝑛) ≤ 𝑡] ≤ ((‖𝐴‖ + 4𝛿)
2 + 𝑡
𝑡 )

2
⋅ 2.2(2𝑛𝑡/𝛿)3.2.

Using 𝑡 ≤ 1 to upper bound the constant finishes the proof.

Improving the Bound
Theorem 3.14 may be improved using an alternate and essentially different technique, via an
auxiliary result from [5]. We begin by recalling some notation from that paper. For any 𝑛 let
ℙℂ𝑛 denote the projective space associated to ℂ𝑛, and given 𝐴 ∈ ℂ𝑛×𝑛, 𝜆 ∈ ℂ and 𝑣 ∈ ℙℂ𝑛, define
𝐴𝜆,𝑣 ∶ 𝑣⟂ → 𝑣⟂ by

𝐴𝜆,𝑣 ≜ 𝑃⟂
𝑣 ◦ (𝐴 − 𝜆)‖𝑣⟂

where 𝑣⟂ = {𝑥 ∈ ℂ𝑛 ∣ 𝑥 ∗𝑣 = 0} and 𝑃𝑣⟂ ∶ ℂ𝑛 → 𝑣⟂ denotes the orthogonal projection. With this
in hand, [5] defines the condition number of a triple (𝐴, 𝜆, 𝑣) ∈ ℂ𝑛×𝑛 × ℂ × ℙℂ𝑛 as

𝜇(𝐴, 𝜆, 𝑣) ≜

{
‖𝐴‖𝐹 ‖𝐴−1

𝜆,𝑣‖ if 𝐴𝜆,𝑣 is invertible,
∞ otherwise.

They similarly define the mean square condition number of a matrix as

𝜇𝐹 ,av(𝐴) ≜ (
1
𝑛

𝑛

∑
𝑗=1

‖𝐴‖2𝐹 ‖‖𝐴
−1
𝜆𝑗 ,𝑣𝑗 ‖

2
𝐹)

1
2

,
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where (𝜆𝑗 , 𝑣𝑗) are the eigenpairs of 𝐴. In particular, note that 𝜇𝐹 ,av(𝐴) < ∞ only when 𝐴 has simple
eigenvalues, and therefore 𝜇𝐹 ,av(𝐴) < ∞ implies that 𝐴 is diagonalizable.

If 𝜆1, … , 𝜆𝑛 are the eigenvalues of a matrix 𝐴 ∈ ℂ𝑛×𝑛, we will denote

gap𝑖(𝐴) ≜ min
𝑗≠𝑖

|𝜆𝑖 − 𝜆𝑗 |,

and these quantities may be bounded in terms of the condition number of the corresponding triple.

Lemma 3.15. Let𝐴 be amatrix with distinct eigenvalues and spectral decomposition𝐴 = ∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑤∗

𝑖 .
Then, for every 𝑖 = 1, … , 𝑛 it holds that

𝜇(𝐴, 𝜆𝑖 , 𝑣𝑖)
‖𝐴‖𝐹

≥
1

gap𝑖(𝐴)
.

Proof. First we show that Spec𝐴𝜆𝑖 ,𝑣𝑖 = Spec(𝐴 − 𝜆𝑖) ⧵ {0}. To see this, take any 𝑗 ≠ 𝑖 and note that

𝑤∗
𝑗 𝑃𝑣⟂𝑖 ◦ (𝐴 − 𝜆𝑖)‖𝑣⟂𝑖 = (𝜆𝑗 − 𝜆𝑖)𝑤∗

𝑖 ,

and hence 𝜆𝑗 − 𝜆𝑖 is an eigenvalue of 𝐴𝜆𝑖 ,𝑣𝑖 . Now, using that the norm of a matrix is bigger than its
spectral radius we get

‖𝐴−1
𝜆𝑖 ,𝑣𝑖 ‖ ≥ sup

𝜆∈Λ(𝐴𝜆𝑖 ,𝑣𝑖 )

1
|𝜆|

=
1

gap𝑖(𝐴)
.

The claim then follows from the definition of 𝜇(𝐴, 𝜆𝑖 , 𝑣𝑖).

The key device needed to bound gap(𝐴 + 𝛿𝑮𝑛) is [5, Theorem 2.14]:

Theorem 3.16. For any 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 > 0, we have

𝔼 [
𝜇𝐹 ,av(𝐴 + 𝛿𝑮𝑛)2

‖𝐴 + 𝛿𝑮𝑛‖2𝐹 ] ≤
𝑛2

𝛿2
.

Theorem in hand, we can furnish the promised improvement to Theorem 3.14.

Proposition 3.17. Let 𝐴 ∈ ℂ𝑛×𝑛 be an arbitrary matrix and let 𝑮𝑛 be a complex Ginibre matrix.
Then for any 𝑡, 𝛿 > 0

ℙ[gap(𝐴 + 𝛿𝑮𝑛) < 𝑡] ≤ 𝑛3(𝑡/𝛿)2.

Thus, gap(𝐴 + 𝛿𝑮𝑛) = 𝑂(𝛿/𝑛3/2) with probability bounded away from zero.
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Proof. Using Lemma 3.15 and again writing 𝝀1, ..., 𝝀𝑛 and 𝒗1, ..., 𝒗𝑛 for the eigenalues and right
eigenvectors of 𝐴 + 𝛿𝑮𝑛, we find

1
gap(𝐴 + 𝛿𝑮𝑛)2

= max
𝑖

1
gap𝑖(𝐴 + 𝛿𝑮𝑛)2

≤ max
𝑖

𝜇(𝐴 + 𝛿𝑮𝑛, 𝝀𝑖 , 𝒗 𝑖)2

‖𝐴 + 𝛿𝑮𝑛‖2𝐹
≤ 𝑛

𝜇𝐹 ,av(𝐴 + 𝛿𝑮𝑛)2

‖𝐴 + 𝛿𝑮𝑛‖2𝐹
.

Combining this with Theorem 3.16 we can bound

𝔼 [
1

gap(𝐴 + 𝛿𝑮𝑛)2 ]
≤
𝑛3

𝛿2

and conclude the proof by applying Markov’s inequality.

3.5 Discussion
Our main regularization result, Theorem 1.10, quickly follows from Theorem 3.6 and Proposition
3.17. After pausing to prove it, we will briefly situate thee techniques and results of this chapter
within the broader random matrix theory literature.

Proof of Theorem 1.7. Instantiating the argument of Theorem 3.6 with 𝑡 = 𝑛2/𝛿 , Proposition 3.17
with 𝑡 = 𝛿/𝑛2, and using ‖𝐴‖ ≤ 1 an 𝛿 ≤ 1/2, we find

ℙ
[
∑
𝑖
𝜅2𝑖 (𝐴 + 𝛿𝑮𝑛) ≥ 𝑛3/𝛿2, gap(𝐴 + 𝑮𝑛) ≤ 𝛿/𝑛2, ‖𝑮𝑛‖ ≤ 4

]
≤ 9/𝑛 + 1/𝑛 ≤ 10/𝑛.

On this event, we clearly have 𝜅𝑉 (𝐴 + 𝛿𝑮𝑛) ≤ 𝑛2/𝛿 , and moreover by Bauer-Fike, Λ𝜖(𝐴 + 𝛿𝑮𝑛)
is contained in disks of radius 𝑛2𝜖/𝛿 about the eigenvalues, and thus has disjoint connected
components for every 𝜖 ≤ 𝛿2/2𝑛4.

Eigenvector and Eigenvalue Condition Numbers of Random Matrices. There have been
numerous studies of the eigenvalue condition numbers 𝜅(𝜆𝑖)2, sometimes called eigenvector
overlaps in the random matrix theory and mathematical physics literature, for non-Hermitian
random matrix models of type 𝐴+𝛿𝐺𝑛. In the centered case 𝐴 = 0 and 𝛿 = 1 of a standard complex
Ginibre matrix, the seminal work of Chalker and Mehlig [46] calculated the large-𝑛 limit of the
conditional expectations

𝔼[𝜅(𝜆)2|𝜆 = 𝑧] ∼
𝑛→∞

𝑛(1 − |𝑧|2),

whenever |𝑧| < 1. Recent works by Bourgade and Dubach [36] and Fyodorov [80] improved on
this substantially by giving exact nonasymptotic formulas for the distribution of 𝜅(𝜆)2 conditional
on the location of the eigenvalue 𝜆, as well as concise descriptions of the scaling limits for these
formulas. The paper [32] proved (in the more general setup of invariant ensembles) that the angles
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between the right eigenvectors (𝑣∗
𝑖𝑣𝑗)/‖𝑣𝑖‖‖𝑣𝑗‖ have subgaussian tails, which has some bearing on

𝜅𝑉 (for instance, a small angle between unit eigenvectors causes ‖𝑉 −1‖ and therefore 𝜅𝑉 to blow
up.)

In the non-centered case, Davies and Hager [55] showed that if 𝐴 is a Jordan block and 𝛿 = 𝑛−𝛼
for some appropriate 𝛼 , then almost all of the eigenvalues of 𝐴+ 𝛿𝐺𝑛 lie near a circle of radius 𝛿1/𝑛
with probability 1 − 𝑜𝑛(1). Basak, Paquette, and Zeitouni [20, 21] showed that for a sequence of
banded Toeplitz matrices 𝐴𝑛 with a finite symbol, the spectral measures of 𝐴𝑛 + 𝑛−𝛼𝐺𝑛 converge
weakly in probability, as 𝑛 → ∞, to a predictable density determined by the symbol. Both of the
above results were recently and substantially improved by Sjöstrand and Vogel [138, 139] who
proved that for any Toeplitz 𝐴, almost all of the eigenvalues of 𝐴 + 𝑛−𝛼𝐺𝑛 are close to the symbol
curve of 𝐴 with exponentially good probability in 𝑛. Note that none of the results mentioned
in this paragraph explicitly discuss the 𝜅(𝜆𝑖); however, they do deal qualitatively with related
phenomena surrounding spectral instability of non-Hermitian matrices.

The idea of managing spectral instability by adding a random perturbation can be traced back
to the influential papers of Haagerup and Larsen [92] and Śniady [142] (see also [91, 76]), who
used it to study convergence of the eigenvalues of certain non-Hermitian random matrices to a
limiting Brown measure, in the context of free probability theory.

There are three notable differences between Theorems 3.4 and 3.6 and the results mentioned
above. Our result is much coarser, and only guarantees an upper bound on the 𝔼𝜅(𝜆𝑖)2, rather than
a precise description of any distribution, limiting or not; applies to any 𝐴 ∈ ℂ𝑛×𝑛 and 𝛿 ∈ (0, 1);
and is completely nonasymptotic in 𝑛.

Minimum Eigenvalue Gap of Random Matrices The minimum eigenvalue gap of random
matrices has been studied in the case of Hermitian and unitary matrices, beginning with the work
of Vinson [154], who proved an Ω(𝑛−4/3) lower bound on this gap in the case of the Gaussian
Unitary Ensemble (GUE) and the Circular Unitary Ensemble (CUE). Bourgade and Ben Arous
[7] derived exact limiting formulas for the distributions of all the gaps for the same ensembles.
Nguyen, Tao, and Vu [121] obtained non-asymptotic inverse polynomial bounds for a large class
of non-integrable Hermitian models with i.i.d. entries (including Bernoulli matrices). In a different
direction, Aizenman et al. proved an inverse-polynomial bound [2] in the case of an arbitrary
Hermitian matrix plus a GUE matrix or a Gaussian Orthogonal Ensemble (GOE) matrix, which
may be viewed as a smoothed analysis of the minimum gap. Theorem 3.14 and Proposition 3.17
may be viewed as non-Hermitian analogues of this last result.

In the non-Hermitian case, Ge [81] obtained an inverse polynomial bound for i.i.d. matrices
with real entries satisfying some mild moment conditions, and [137] proved an inverse polynomial
lower bound for the complex Ginibre ensemble. Theorem 3.14 thus generalizes these results to
non-centered complex Gaussian matrices.



CHAPTER 3. REGULARIZATION BY COMPLEX GAUSSIAN PERTURBATIONS 39

Bibliographic Note
This chapter interleaves material [19] and [15], and much of the material appears verbatim here as
it did there. Sections 3.1-3.2 draw from the presentation in both [19, 15], and Section 3.3 contains
the bulk of the former’s main text. Section 3.4 is new, but follows the approach in [16]. The
alternative gap bounds in 3.4 are drawn from Appendix D of [15]. Finally, Section 3.5 collates the
discussion of related work in [19] and [15].
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Chapter 4

Regularization by Real Perturbations

In Chapter 3, we showed that entrywise complex Gaussian perturbation of any (real or complex)
matrix tames the eigenvector and eigenvalue condition numbers, as well as the eigenvalue gap.
Here, we show an analogous result for entrywise real Gaussian perturbations of arbitrary real
matrices — and moreover extend to the case of arbitrary real random perturbation matrix with
independent, absolutely continuous entries. Beyond their theoretical value within the random
matrix literature, these results may be employed in as preconditioners for algorithms that solve
the eigenproblem on real matrices, where the complex regularization approach of Chapter 3 may
be undesirable. However, the provable algorithms for the eigenproblem discussed in Chapters
5-7 are stated in terms of arbitrary complex matrices, and will not use the results in the present
chapter — as such, the reader primarily interested in the forthcoming eigenvalue algorithms may
skip to Chapter 5 and return to the present one at her leisure.

4.1 Introduction
Throughout this chapter, we will write 𝑯 𝑛 to denote a normalized real Ginibre matrix; in other
words, the entries of 𝑯 𝑛 are independent real random variables, each distributed as ℝ(0, 1/𝑛).
More generally, we will write 𝑴𝑛 for an 𝑛 × 𝑛 real random matrix satisfying the following
assumption:

Assumption 4.1. The matrix 𝑴𝑛 has independent entries, each with density on ℝ bounded almost
everywhere by √

𝑛𝐾 > 0. (Equivalently, 𝑴𝑛 = 𝑛−1/2𝑴𝑛 where 𝑴𝑛 has independent real entries
with density bounded by 𝐾 .)

Of course, 𝑯 𝑛 satisfies Assumption 4.1 with 𝐾 = 1/
√
2𝜋 . We do not require that 𝑴𝑛 have mean

zero, nor will we make any explicit moment assumptions on its entries. Instead, our results will
often be stated in terms of the 𝐿𝑝 norm of its operator norm, which we denote by

𝐵𝑴𝑛 ,𝑝 ≜ 𝔼 [‖𝑴𝑛‖𝑝]1/𝑝 . (4.1)
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Remark 4.2. The main result in [166] implies that if the entries of 𝑴𝑛 have finite fourth moment
then 𝔼[‖𝑴𝑛‖] = 𝑂(1), and in particular in the Gaussian case the numbers 𝐵𝑯𝑛 ,𝑝 are constants (see
Lemma 4.14 below). On the other hand, the complementary result in [12] shows that without the
fourth moment assumption lim𝑛 𝔼[‖𝑴𝑛‖] = ∞. It is important to remark that even in the latter
case we obtain meaningful results, since a finite second moment assumption of the entries of 𝑴𝑛
is enough to obtain a bound on 𝐵𝑴𝑛 ,𝑝 with polynomial dependence on 𝑛.

In the above notation, we will be interested in the minimum gap and eigenvector/eigenvalue
condition numbers of random matrices with the form

𝐴 + 𝛿𝑯 𝑛 or 𝐴 + 𝛿𝑀𝑛,

where 𝐴 ∈ ℝ𝑛×𝑛 is deterministic, and 𝛿 > 0 is a fixed small parameter. As in Chapter 3, we will
study the eigenvalue condition numbers by way of the 𝜖-pseudospectrum and the limiting area
formula in Lemma 2.4. However, the case of real matrices with real random perturbations presents
one additional complication: the possibility of purely real eigenvalues, whose behavior can be
substantively different from their complex counterparts. For instance, Real Ginibre matrices alone
are known to have Θ(

√
𝑛) real eigenvalues on average [71], with eigenvalue condition numbers

satisfying
𝔼 ∑

𝑖∶𝜆𝑖∈ℝ
𝜅2𝑖 (𝑯 𝑛) = ∞.

(See the discussion following [80, Remark 2.2].) We will address this issue via a complementary
result to Lemma 2.4, whose proof is analogous.

Lemma 4.3 (Limiting Length of Pseudospectrum on Real Line). Let 𝐴 ∈ ℝ𝑛×𝑛 have 𝑛 distinct
eigenvalues 𝜆1, ..., 𝜆𝑛. Let Lebℝ denote the Lebesgue measure on ℝ, and let Ω ⊂ ℝ be an open,
measurable set. Then

∑
𝑖∶𝜆𝑖∈Ω

𝜅𝑖(𝐴) ≤ lim inf
𝜖→0

Lebℝ (Λ𝜖(𝐴) ∩ Ω)
2𝜖

.

Lemmas 2.4 and 4.3 in hand, we can control eigenvalue condition numbers of 𝐴 + 𝛿𝑯 𝑛 with
upper bounds on the probabilities

ℙ[𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝑯 𝑛)] = ℙ[𝜎𝑛(𝑧 − 𝐴 − 𝛿𝑯 𝑛) ≤ 𝜖] (4.2)

(and similarly for𝑀𝑛), provided that one obtains the correct exponents 𝜖1 for 𝑧 ∈ ℝ and 𝜖2 for 𝑧 ∈ ℂ⧵ℝ.
The same singular value tail bounds will also allow us to control the minimum eigenvalue gap,
using the approach in Section 3.4.

The pursuit of tail bounds with this sharp 𝜖-dependence will be a main technical theme of this
chapter, in contrast to much of the rest of random matrix theory where the emphasis is instead on
obtaining sharp dependence on 𝑛. Our main probabilistic results below show that the probability
in (4.2) is 𝑂(𝜖) for 𝑧 ∈ ℝ and 𝑂(𝜖2/|ℑ(𝑧)|) for 𝑧 ∉ ℝ, which is good enough to take the limit as
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𝜖 → 0 after establishing that there are unlikely to be eigenvalues of 𝐴 + 𝛿𝑯 𝑛 of 𝐴 = 𝛿𝑀𝑛 near the
real line but not on it. Because the nonreal eigenvalues of real matrices come in complex conjugate
pairs, this property charmingly follows from a lower bound on the minimum eigenvalue gap.

Let us now state the shifted singular value bounds precisely. Here (and throughout the paper)
we will give separate statements for general matrices satisfying Assumption 4.1 vs. for real Ginibre
perturbations, as in the latter case we are frequently able to obtain improvements by exploiting
specific properties of Gaussians.

Theorem 4.4 (Singular Values of 𝑴𝑛). Let𝑴𝑛 ∈ ℝ𝑛×𝑛 be a random matrix satisfying Assumption 4.1
with parameter 𝐾 > 0. Then

ℙ [𝜎𝑛−𝑘+1(𝑴𝑛) ≤ 𝜖] ≤ (
𝑛
𝑘)(

√
2𝐾𝜖

√
𝑘𝑛(𝑛 − 𝑘 + 1))

𝑘2

≤ 𝑛𝑘
2+𝑘𝑘

1
2 𝑘

2
(
√
2𝐾)𝑘

2
𝜖𝑘

2
.

Note that Theorem 4.4 includes as a special case matrices of type 𝑧 − 𝐴 − 𝛿𝑴𝑛 for real 𝑧 and 𝐴, as
such matrices themselves satisfy Assumption 1.

Theorem 4.4G (Singular Values of Real Shifts: Gaussian). Let 𝑧 ∈ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic,
and let 𝑯 𝑛 be a normalized Ginibre matrix. For every 𝛿 > 0,

ℙ[𝜎𝑛−𝑘+1(𝑧 − 𝐴 − 𝛿𝑯 𝑛) ≤ 𝜖] ≤ (

√
2𝑒𝑛𝜖
𝑘𝛿 )

𝑘2

.

In the case 𝑘 = 1, one has a better constant:

ℙ[𝜎𝑛(𝑧 − 𝐴 − 𝛿𝑯 𝑛) ≤ 𝜖] ≤
𝑛𝜖
𝛿
.

The key improvement we obtain the case of nonreal complex 𝑧 is an extra factor of 2 in the
exponent.

Theorem 4.5 (Singular Values of Complex Shifts). Let 𝑧 ∈ ℂ ⧵ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and
let𝑴𝑛 satisfy Assumption 4.1 with parameter 𝐾 > 0. For every 𝑘 ≤

√
𝑛 − 2,

ℙ [𝜎𝑛−𝑘+1 (𝑧 − 𝐴 − 𝑴𝑛) ≤ 𝜖] ≤ (1 + 𝑘2)(
𝑛
𝑘)

2

(𝐶4.5𝑘2(𝑛𝐾)3 ((𝐵𝑴𝑛 ,2𝑘2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝜖2

|ℑ𝑧|)

𝑘2

,

where 𝐶4.5 = 8
√
3(𝑒𝜋)3/2.

Theorem 4.5G (Singular Values of Complex Shifts: Gaussian). Let 𝑧 ∈ ℂ ⧵ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be
deterministic, and let 𝑯 𝑛 be a normalized 𝑛 × 𝑛 real Ginibre matrix. For every 𝛿 > 0, and every
𝑘 ≤ 𝑛/7,

ℙ [𝜎𝑛−𝑘+1(𝑧 − 𝐴 − 𝛿𝑯 𝑛) ≤ 𝜖] ≤ (
𝑛
𝑘)

2

(

√
7𝑒𝑘2𝑛3

2𝛿3 ((9𝛿 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝜖2

|ℑ𝑧|)

𝑘2

.
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The proofs of Theorems 4.4–4.5G appear in Sections 4.4 and 4.5, and rely on anticoncentration
bounds for quadratic polynomials in independent, absolutely continuous random variables as well
as Gaussians, which may be of independent interest and are developed in Section 4.3.

Theorems 4.4–4.5G are valuable because they apply to𝑂(𝑛) singular values and have the correct
dependence on 𝜖 in the limit 𝜖 → 0. In the large-𝑛 context where one hopes to prove convergence
of the empirical spectral distribution of 𝐴 + 𝛿𝑴 to the Brown measure of an appropriate limiting
object, such tail bounds give one crucial control over the log potential — we refer the reader to
[35] for a survey and to [142, 148, 90] for examples of specific applications. In a different direction,
by the log majorization property of singular values and eigenvalues in Lemma 3.11, they also
imply bounds on the probability that many eigenvalues of 𝐴 + 𝛿𝑴 lie in a small region of the
complex plane — such bounds are variously referred to as Wegner- or Minami-type estimates and
have been studied primarily for Hermitian random matrices and the Anderson model on ℤ𝑑 , see
for example [74, 2, 163, 115, 50] and references within.

Along these lines, we will obtain the following minimum gap bounds in Section 4.6 by control-
ling the bottom two singular values of complex shifts and employing a simple net argument over
the complex plane.

Theorem 4.6 (Minimum Eigenvalue Gap). Let 𝑛 ≥ 16, 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and 𝑴𝑛 be a
random matrix satisfying Assumption 4.1 with parameter 𝐾 > 0. For any 0 < 𝛿 < 𝐾 and 𝑠 < 1 < 𝑅:

ℙ [gap(𝐴 + 𝛿𝑴𝑛) ≤ 𝑠] ≤ 𝐶4.6𝑅2 (𝛿𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅) (𝐾/𝛿)5/2𝑛4𝑠2/7 + ℙ [‖𝐴 + 𝑴𝑛‖ ≥ 𝑅] , (4.3)

where 𝐶4.6 is a universal constant defined in equation (4.51). Moreover, if 𝑯 𝑛 is an 𝑛 × 𝑛 real Ginibre
and 0 < 𝛿 < 1 then

ℙ [gap(𝐴 + 𝛿𝑯 𝑛) ≤ 𝑠] ≤ 15 (‖𝐴‖ + 7)3 𝑛3𝛿−5/2𝑠2/7 + 𝑒−2𝑛. (4.4)

The novelty of this result in comparison to existing minimum gap bounds (such as [81, 112]) is
that it works for heterogeneous non-centered random matrices 𝑋 , as opposed to only matrices with
i.i.d. entries.

Finally, by combining the above results and using the limiting area/length approach (employing
the minimum gap bound to rule out nonreal eigenvalues with small imaginary part, we can
finally control the eigenvector condition number. In the following theorem, a typical setting has
‖𝐴‖, ‖𝑀𝑛‖, 𝐾 , and 𝑅 all of order Θ(1), so one may obtain upper bounds of order poly(𝑛, 1/𝛿) with
high probability by setting 𝜖1, 𝜖2 appropriately.

Theorem 4.7 (Eigenvalue and Eigenvector Condition Numbers). Let 𝑛 ≥ 9. Let 𝐴 ∈ ℝ𝑛×𝑛 be
deterministic, and let𝑴𝑛 satisfy Assumption 4.1 with parameter 𝐾 > 0. Let 0 < 𝛿 < 𝐾 min{1, ‖𝐴‖+𝑅},
and write 𝝀1, ..., 𝝀𝑛 for the eigenvalues of 𝐴 + 𝛿𝑴𝑛. Let 𝑅 > 𝔼‖𝛿𝑴𝑛‖. Then for any 𝜖1, 𝜖2 > 0, with
probability at least

1 − 2𝜖1 − 𝑂 (
𝑅(𝑅 + ‖𝐴‖)3/5𝐾 8/5𝑛14/5𝜖3/52

𝛿8/5 ) − 2ℙ[𝛿‖𝑴𝑛‖ > 𝑅],
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we have

∑
𝑖∶𝝀𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11 𝐶4.7𝐾𝑛2
‖𝐴‖ + 𝑅

𝛿
,

∑
𝑖∶𝝀𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11 log(1/𝜖2)𝐶4.7𝐾 3𝑛5 ⋅
(‖𝐴‖ + 𝑅)3

𝛿3
, and

𝜅𝑉 (𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11
√
log(1/𝜖2)𝐶4.7𝐾 3/2𝑛3 ⋅

(‖𝐴‖ + 𝑅)3/2

𝛿3/2
,

Theorem 4.7G (Eigenvalue and Eigenvector Condition Numbers: Gaussian). Let 𝑛 ≥ 7. Let
𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let 𝑯 𝑛 be a real Ginibre matrix. Let 0 < 𝛿 < min{1, ‖𝐴‖}, and
write 𝝀1, ..., 𝝀𝑛 for the eigenvalues of 𝐴 + 𝛿𝑯 𝑛. Then for any 𝜖1, 𝜖2 > 0, with probability at least
1 − 2𝜖1 − 30‖𝐴‖8/5𝑛8/5

𝛿8/5 𝜖3/52 − 2𝑒−2𝑛 we have

∑
𝑖∶𝝀𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝑯 𝑛) ≤ 5𝜖−11 𝑛
‖𝐴‖
𝛿
,

∑
𝑖∶𝝀𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝑯 𝑛) ≤ 1000𝜖−11 log(1/𝜖2)
𝑛5‖𝐴‖3

𝛿3
, and

𝜅𝑉 (𝐴 + 𝛿𝑴𝑛) ≤ 1000𝜖−11
√
log(1/𝜖2)

𝑛3‖𝐴‖3/2

𝛿3/2
.

By assuming a smaller upper bound on 𝛿 , one can make order of magnitude improvements in the
constants, so we have made no effort to optimize them. To prove Theorem 1.11, simply take a
union bound over the events in Theorems 4.6 and 4.7G, and set 𝑠, 𝜖1, and 𝜖2 to ensure that each
probability term is 𝑂(1/𝑛). The proofs of Theorems 4.7 and 4.7G appear in Section 4.7, and we
conclude with a discussion of open questions in Section 4.8.

Related Work
Eigenvalue Condition Numbers and Overlaps. We surveyed the literature on eigenvalue
condition numbers in the complex Ginibre ensemble in Chapter 3; for the real Ginibre ensemble,
results are more limited. The paper [80] gives a formula for the joint density of a real eigenvalue
and its (squared) eigenvalue condition number. Compared to such a joint density formula, our
Theorem 4.7 (a polynomial upper bound with high probability) is rather coarse, but our theorem
holds for general continuous matrices. Besides our result, we are not aware of any results in the
literature regarding diagonal overlaps for nonreal eigenvalues of the real Ginibre ensemble, or
any other non-Hermitian random matrix model with real entries.
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Singular Values of Real Matrices with Complex Shifts. In the course of our proof, it will be
of particular importance to quantify the behavior of the small singular values of 𝑧 − 𝐴 − 𝛿𝑯 𝑛 or
𝑧 − 𝐴 − 𝛿𝑴𝑛 as a function of the imaginary part of the complex scalar 𝑧 ∈ ℂ. There have already
been a number of recent results in this direction, which we summarize below.

In the thesis of Ge [81] it was shown that when 𝑴𝑛 is a real matrix with i.i.d. entries of mean
zero and variance 1/𝑛 satisfying a standard anticoncentration condition, one has

ℙ [𝜎𝑛(𝑧 − 𝑴𝑛) ≤ 𝜖 and ‖𝑴𝑛‖ ≤ 𝑀] ≤
𝐶𝑛2𝜖2

|ℑ(𝑧)|
+ 𝑒−𝑐𝑛 (4.5)

for all 𝑧, where 𝐶 and 𝑐 are universal constants, independent of 𝑛. The additional exponential term
is an essential feature of the proof technique of considering “compressible” and “incompressible”
vectors in a net argument, and does not go away if one additionally assumes that the entries are
absolutely continuous.

In the case of real Ginibre matrices, the following finer result was obtained by Cipolloni, Erdős
and Schröder in [48]:

ℙ [𝜎𝑛(𝑯 𝑛 − 𝑧) ≤ 𝜖] ≤ 𝐶(𝑛2(1 + | log 𝜖|)𝜖2 + 𝑛𝜖𝑒−
1
2𝑛(ℑ𝑧)

2
) (4.6)

for |𝑧| ≤ 1 + 𝑂(1/
√
𝑛), with an improved 𝑛-dependence at the edge |𝑧 − 1| = 𝑂(1/

√
𝑛). In later

work [49], the same authors showed that when 𝑴𝑛 has real i.i.d. entries with unit variance and
|ℑ𝑧| ∼ 1, the statistics of the small singular values 𝑧 − 𝑴𝑛 agree with those of the complex Ginibre
ensemble.1

As remarked in the introduction, the key feature of our bounds is that we obtain a strict
𝜖2 dependence for nonreal 𝑧, without any additive terms. Our approach is essentially different
from the above two approaches, and relies on exploiting a certain conditional independence
(Observation 4.23) between submatrices of the real and imaginary parts of the resolvent.

Singular Values of Real Matrices with Real Shifts. In the more general non-Gaussian case,
there are a number of recent results in the literature. The most relevant recent result is that of
Nguyen [122], who proves a tail bound for all singular values for non-centered ensembles with
potentially discrete entries. In the particular case of continuous entries, Nguyen shows that if 𝑴𝑛
satisfies Assumption 4.1 with parameter 𝐾 > 0,

𝐏 [𝜎𝑛−𝑘+1(𝑴𝑛) ≤ 𝜖] ≤ 𝑛𝑘(𝑘−1)(𝐶𝑘𝐾𝜖)(𝑘−1)
2
, (4.7)

in addition to a bound greatly improving the dependence in 𝑘 at the expense of the dependence on
𝜖 and 𝑛, as well as results for symmetric Wigner matrices and perturbations thereof. The exponent

1They further write, “It is expected that the same result holds for all (possibly 𝑛-dependent) 𝑧 as long as |ℑ(𝑧)| ≫
𝑛−1/2, while in the opposite regime |ℑ(𝑧)| ≪ 𝑛−1/2 the local statistics of the real Ginibre prevails with an interpolating
family of new statistics which emerges for |ℑ(𝑧)| ∼ 𝑛−1/2.”
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Result Bound Setting
[70] ℙ[𝜎𝑛(𝑴𝑛) < 𝜖] ≤ 𝑛𝜖 real Ginibre
[134] ℙ[𝜎𝑛(𝑴𝑛) < 𝜖] ≤ 𝐶𝑛𝜖 + 𝑒−𝑐𝑛 real i.i.d. subgaussian
[147] ℙ[𝜎𝑛(𝑴𝑛) < 𝜖] ≤ 𝑛𝜖 + 𝑂(𝑛−𝑐) real i.i.d., finite moment assumption
[136] ℙ[𝜎𝑛(𝐴 + 𝑴𝑛) < 𝜖] ≤ 𝐶𝑛𝜖 real Ginibre, 𝐴 real
[150] ℙ[𝜎𝑛(𝐴 + 𝑴𝑛) < 𝜖] ≤ 𝐶𝑛𝜖 real ind. rows with log-concave law, 𝐴 real
Theorem 4.4G ℙ[𝜎𝑛(𝐴 + 𝑴𝑛) < 𝜖] ≤ 𝑛𝜖 real Ginibre, 𝐴 real

Table 4.1: Some bounds on 𝜎𝑛 for real 𝑴𝑛 and 𝐴. Entries of 𝑴𝑛 have variance 1/𝑛.

of 𝜖 in (4.7) is suboptimal, which renders (4.7) incompatible with our approach. In Theorem 4.4
we obtain the optimal exponent of 𝜖, namely 𝑘2, in exchange for a worse exponent of 𝑛. The key
ingredient in doing this is a simple “restricted invertibility” type estimate (Lemma 4.19) tailored to
our setting. Finally for bounds on the least singular value alone, there is a substantial literature;
see Table 4.1 for a non-exhaustive summary.

MinimumEigenvalue Gap. Bounds on the minimum eigenvalue gap of random non-Hermitian
matrices have seen rapid progress in the last few years. Ge shows in the thesis [81] that when
𝑴𝑛 has i.i.d. entries with zero mean and variance 1/𝑛, satisfying a standard anticoncentration
condition,

ℙ[gap(𝑴𝑛) < 𝑠] = 𝑂 (𝜁𝑛
2+𝑜(1) +

𝑠2𝑛4+𝑜(1)

𝜁 2 ) + 𝑒−𝑐𝑛 + ℙ[‖𝑴𝑛‖ ≥ 𝑀]

for every 𝐶 > 0 and every 𝜁 > 𝑠 > 𝑛−𝐶 . In recent work, Luh and O’Rourke [112] build on Ge’s
result, dropping the mean zero assumption and extending the range of 𝑠 all the way down to 0:

ℙ[gap(𝑴𝑛) ≤ 𝑠 and ‖𝑴𝑛‖ ≤ 𝑀] ≤ 𝐶𝑠2/3𝑛16/15 + 𝐶𝑒−𝑐𝑛 + ℙ[‖𝑴𝑛‖ ≥ 𝑀]. (4.8)

However, (4.8) still requires the entries of 𝑴𝑛 to be identically distributed, so it does not imply
a gap bound for the noncentered Ginibre ensemble 𝐴 + 𝑯 𝑛 unless 𝐴 is a scalar multiple of the
all-ones matrix. The only other work we are aware of proving gap bounds for the case of matrices
with i.i.d. entries is [137], which proves an inverse polynomial lower bound for the complex
Ginibre ensemble.

Alternative Condition Number and Gap Bounds. Independent of (and concurrent to) the
results in this chapter, [99] obtained some similar results to ours. Their bound on 𝜅𝑉 improves
Theorem 4.7 by a factor of 𝑂(𝑛/(

√
𝛿 log(𝑛/𝛿))), thus almost matching the dependence on 𝛿 in

Davies’ conjecture, discussed in Section 3.3; their bound on the minimum eigenvalue gap is also
better than that supplied by Theorem 4.6 by a poly(𝑛/𝛿) factor. They do not obtain specific control
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on the eigenvalue condition numbers for real and complex eigenvalues separately, and our bound
for the sum of condition numbers of the real eigenvalues in Theorem 4.7 implies a bound for the
maximum which is slightly better than their 𝜅𝑉 bound alone.

The techniques used by [99], and those used here, focus on deriving tail bounds for the least
singular value with the correct scaling in 𝜖, but the proofs are essentially different. In particular,
our proof relies on studying the entries of the resolvent, whereas theirs is more geometric. We
obtain bounds on the 𝑘th smallest singular values of real and complex shifts (Theorems 4.4–4.5G)
with the correct 𝜖𝑘2 and 𝜖2𝑘2 scaling, whereas they derive bounds for 𝑘 = 1, 2, but with better
dependence on 𝑛. Finally, they do not take the limit as 𝜖 → 0 to derive 𝜅𝑉 bounds, relying instead
on a bootstrapping scheme, while we do.

4.2 Probabilistic Tools
Many of our probabilistic arguments hinge on the phenomenon of anticoncentration, whereby
a random vector is unlikely to lie in a small region. An elementary way to extract quantitative
information about such behavior is by controlling the density function of the random vector. Let
𝒙 ∈ ℝ𝑑 be a random vector. If the distribution 𝑓𝒙 of 𝒙 is absolutely continuous with respect to the
Lebesgue measure on ℝ𝑑 , we denote by

𝛿∞(𝒙) ≜ ‖𝑓𝒙‖∞ (4.9)

the infinity norm of its density. We will use, ad nauseam, two basic observations about the quantity
𝛿∞. First, for any 𝑣 ∈ ℝ𝑑 ,

ℙ [‖𝒙 − 𝑣‖ ≤ 𝜖] ≤
𝜋𝑑/2

Γ(𝑑/2 + 1)
𝛿∞(𝒙) ≤

1
√
𝜋𝑑 (

2𝑒𝜋
𝑑 )

𝑑/2
𝛿∞(𝒙), (4.10)

where in the first inequality we use the formula for the volume of a ball in ℝ𝑑 , and in the second
inequality we use Stirling’s approximation for the gamma function. Second, 𝛿∞ is preserved under
convolution:

Observation 4.8 (Convolution Bound). Let 𝒙, 𝒚 ∈ ℝ𝑑 be independent random vectors. Then

𝛿∞(𝒙 + 𝒚) ≤ min{𝛿∞(𝒙), 𝛿∞(𝒚)}.

We will require as well a much more general result, due first to Rudelson and Vershynin in
[135] and improved in [110], quantifying the deterioration of 𝛿∞ after orthogonal projection.2

2Throughout the chapter, we will refer to a rectangular matrix with orthonormal columns as an “orthogonal
projection” although this is not standard.
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Theorem 4.9 (Projection Bound). Let 𝒙 ∈ ℝ𝑑 have independent entries, each with density pointwise
bounded by 𝐾 . Let 𝑃 ∈ ℝ𝑘×𝑑 denote a deterministic orthogonal projection onto a subspace of dimension
𝑘 ≤ 𝑑 . Then

𝛿∞(𝑃𝒙) ≤ (
√
2𝐾)𝑘 .

If 𝒙 has independent  (0, 1) entries, the lemma of course holds with the constant 1 instead of
√
2,

and we may take 𝐾 = (2𝜋)−1/2.
Many of our results on real random matrices whose independent entries have bounded density—

in other words, matrices satisfying Assumption 4.1—can be strengthened for real Ginibre matrices.
In the complex case treated in Chapter 3, we used the comparison Theorem 3.2 of Śniady to
translate classical centered bounds of Szarek and Edelman, Theorem 3.1 and (3.1), to the non-
centered case. For real Ginibre matrices, a novel real analogue of Theorem 3.2 facilitates the same
approach.

Theorem 4.10 (Real Śniady Theorem). Let 𝑘 ≤ 𝑛, and let 𝐴(1) and 𝐴(2) be 𝑛 × 𝑘 real matrices, each
with 𝑘 distinct singular values, such that 𝜎𝑖(𝐴(1)) ≤ 𝜎𝑖(𝐴(2)) for all 𝑖 ∈ [𝑘]. Then for every 𝑡 ≥ 0, there
exists a joint distribution on pairs of real 𝑛 × 𝑘 random matrices (𝑯 (1), 𝑯 (2)) such that

(i) Each marginal 𝑯 (1) and 𝑯 (2) has independent (0, 1) entries, and

(ii) Almost surely 𝜎𝑖(𝐴(1) + 𝑡𝑯 (1)) ≤ 𝜎𝑖(𝐴(2) + 𝑡𝑯 (2)) for all 1 ≤ 𝑖 ≤ 𝑘.

Proof. For simplicity, we will prove the case 𝑘 = 𝑛; adaptation to the general case is straightforward.
As in the complex case, the squared singular values 𝜼1, ..., 𝜼𝑛 of a real matrix Brownian motion
satisfy a stochastic differential equation, which was derived by Bru in her work on Wishart
processes [39, 40] and independently by Le in her work on shape theory [107, 108]. The equation
reads as follows:

d𝜼𝑖 =
2√𝜼𝑖
𝑛

d𝑩𝑖 + (
1 +∑

𝑗≠𝑖

𝜼𝑖 + 𝜼𝑗
𝜼𝑖 − 𝜼𝑗)

d𝑡, 1 ≤ 𝑖 ≤ 𝑛. (4.11)

Śniady’s strategy in proving Theorem 3.2, sketched in Chapter 3, crucially relies on the existence
and uniqueness of strong solutions to the singular value SDE. This is needed in order to obtain
two solutions 𝜼(1)

1 , ..., 𝜼(1)
𝑛 and 𝜼(2)

1 , ..., 𝜼(2)
𝑛 driven by the same Brownian motion but with initial

conditions given by the squares singular values of 𝐴(1) and 𝐴(2), respectively. In particular, we
need to assert (i) that the law of each solution indeed matches the law of the singular values of a
noncentered Ginibre matrix, and (ii) that they preserve the monotonicity property of the initial
singular values. (See [3] for a definition of strong solution and a rigorous proof of existence and
uniqueness of strong solutions for Dyson Brownian motion, the Hermitian analogue of the Ginibre
singular values process.)
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Fortunately, such results are known for the SDE (4.11). Let Λ denote the domain

Λ ∈ ℝ𝑛 ≜ {𝜼 ∶ 0 ≤ 𝜼𝑛 < ⋯ < 𝜼1}.

For any initial data 𝜼(0) lying in the closure Λ, it is known that strong solutions to (4.11) exist,
are unique, and lie in Λ for all 𝑡 > 0, almost surely [87, Corollary 6.5]. Combining this with [39,
Theorem 1], we have that for initial data 𝜼(0) lying in Λ, the law of the strong solutions to (4.11)
matches the law of the squared singular values process of 𝐴 + 𝑛−1/2𝑾 , where 𝑾 is a matrix of i.i.d.
standard real Brownian motions and 𝐴 has squared singular values 𝜼(0). (It should be possible to
extend this last statement for initial data in Λ, but the proof may be somewhat involved; a starting
point is again [3], which contains a proof of the corresponding extension for Dyson Brownian
motion.)

Let 𝑎𝑖(𝜼) = 1 + ∑𝑗≠𝑖
𝜼𝑖+𝜼𝑗
𝜼𝑖−𝜼𝑗

denote the drift coefficient in (4.11). As in Śniady’s proof for the
complex Ginibre case, the key property of 𝑎 allowing for the comparison theorem is the so-
called quasi-monotonicity (see [66]) or Kamke–Ważewski condition [116, §XI.13] from differential
inequalities, which is simply that

for all 𝑖, 𝑎𝑖(𝜼(1)) ≤ 𝑎𝑖(𝜼(2)) whenever 𝜼(1)
𝑖 = 𝜼(2)

𝑖 and 𝜼(1)
𝑗 ≤ 𝜼(2)

𝑗 for all 𝑗 ≠ 𝑖. (4.12)

One easily checks that 𝑎 satisfies this condition on the domain Λ.
The nonconstant (indeed, non-Lipschitz) diffusion coefficient 2√𝜼𝑖/𝑛 in (4.11) is a technical

obstacle which does not appear in the SDE (3.2) for the complex case. Consequently, the final
step of Śniady’s proof as sketched below Theorem 3.2 cannot be repeated naively, because taking
the difference of two solutions no longer cancels out the diffusion terms. Fortunately, theory has
been developed to handle Hölder-1/2 diffusion coefficients; see [132, §IX.3] for exposition of the
one-dimensional case and see [102] for a survey of comparison theorems for SDEs in general.

Quasi-monotonicity and the one-dimensional Hölder-1/2 comparison theory are combined in
a rather general multidimensional comparison theorem of Geiß and Manthey [82, Theorem 1.2].
Applied to the SDE (4.11), this theorem provides exactly the right conclusion to replace the final
step of Śniady’s proof. We state the relevant special case of their theorem below:
Theorem 4.11 (Geiß-Manthey). Consider the SDE

d𝑿 𝑖 = 𝜎𝑖(𝑿) d𝑩𝑖 + 𝑎𝑖(𝑿) d𝑡, 1 ≤ 𝑖 ≤ 𝑛,

where the 𝑩𝑖 are independent standard real Brownian motions, and 𝜎𝑖 , 𝑎𝑖 ∶ ℝ𝑛 → ℝ are continuous.
Suppose the following conditions are satisfied:

(i) the drift coefficient 𝑎 satisfies the, quasi-monotonicity condition (4.12);

(ii) there exists 𝜌 ∶ ℝ+ → ℝ+ increasing with ∫ 𝜖
0 𝜌−2(𝑢) 𝑑𝑢 = ∞ for some 𝜖 > 0, such that

|𝜎𝑖(𝑥) − 𝜎𝑖(𝑦)| ≤ 𝜌(|𝑥𝑖 − 𝑦𝑖 |) for all 𝑖 and all 𝑥, 𝑦 ∈ ℝ𝑛; and
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(iii) strong solutions for the SDE exist for all time and are unique.

Further, assume initial conditions 𝑿 (1)(0) and 𝑿 (2)(0) satisfy the inequality 𝑿 (1)
𝑖 (0) ≤ 𝑿 (2)

𝑖 (0) for all 𝑖.
Then almost surely, 𝑿 (1)

𝑖 (𝑡) ≤ 𝑿 (2)
𝑖 (𝑡) for all 𝑖 and for all 𝑡 > 0.

Setting 𝜌(𝑢) ≜ √
𝑢, the SDE (4.11) satisfies the conditions of the Geiß-Manthey theorem, except

that our domain for both 𝑎𝑖 and 𝜎𝑖 is Λ, not ℝ𝑛. We address these two coefficients in turn.
First we deal with the drift coefficient 𝑎𝑖 , using a standard localization argument already

implicit in the proof of Geiß and Manthey. They (implicitly) define the stopping time 𝝑𝑁 to be the
first time ‖𝑿 (1)‖ ≥ 𝑁 or ‖𝑿 (2)‖ ≥ 𝑁 , and use the fact that 𝑎 is Lipschitz on the restricted domain
‖𝑿‖ ≤ 𝑁 to show that

ℙ [𝑿
(1)
𝑖 (𝑡) ≤ 𝑿 (2)

𝑖 (𝑡) for all 0 ≤ 𝑡 ≤ 𝝑𝑁] = 1.

Since strong solutions exist for all time, we have 𝝑𝑁 → ∞ as 𝑁 → ∞ almost surely, which proves
the theorem. We modify this strategy for our SDE (4.11) in the standard way: Define the stopping
time 𝝉1/𝑚 to be the first time either 𝜼(1) or 𝜼(2) leaves the set

Λ1/𝑚 ≜ {𝜼 ∈ Λ ∶ |𝜼𝑖 − 𝜼𝑖+1| > 1/𝑚 for all 1 ≤ 𝑖 ≤ 𝑛 − 1.}.

Since strong solutions starting in Λ stay in Λ for all 𝑡 ≥ 0 and are continuous, we have 𝝉1/𝑚 → ∞
as 𝑚 → ∞ almost surely. Since our 𝑎 is Lipschitz on Λ1/𝑚, the proof of Theorem 4.11 shows that

ℙ [𝜼
(1)
𝑖 (𝑡) ≤ 𝜼(2)

𝑖 (𝑡) for all 0 ≤ 𝑡 ≤ 𝝉1/𝑚] = 1

for all 𝑚. Taking 𝑚 → ∞, the result follows.
Finally, we address the diffusion coefficient 𝜎𝑖(𝜼) = 2√𝜼𝑖/𝑛. The standard fix is to first modify

the SDE to have diffusion coefficients 2
√
|𝜼𝑖 |/𝑛 for all 𝑖, so that the domain of 𝜎𝑖 is enlarged to ℝ𝑛

and Theorem 4.11 may be applied. For this modified SDE, note that the constant zero function
𝜼(1)(𝑡) = 0 is a strong solution. Now let 𝜼(2) be any solution with 𝜼(2)

𝑖 (0) ≥ 0 for all 𝑖. Applying
Theorem 4.11 to 𝜼(1) and 𝜼(2), we conclude that in fact, 𝜼(2)(𝑡) ≥ 0 for all 𝑡 ≥ 0. Thus, the absolute
value bars in the modified SDE can be removed a posteriori. This argument is used, for example,
when setting up the SDE for the so-called Bessel process, which shares this square-root diffusion
coefficient—see [132, §XI.1] for details.

As from Theorem 3.2, we obtain from Theorem 4.10 a stochastic dominance result relating the
singular value distributions of non-centered real Gaussian matrices.

Corollary 4.12. Let 𝑘 ≤ 𝑛, and let 𝐴(1) and 𝐴(2) be 𝑛 × 𝑘 real matrices satisfying 𝜎𝑖(𝐴(1)) ≤ 𝜎𝑖(𝐴(2))
for all 𝑖 ∈ [𝑘]. Then, for any 𝑡, 𝑠1, ..., 𝑠𝑘 ∈ ℝ≥0,

ℙ[𝜎𝑖(𝐴(1) + 𝑡𝑯 𝑛) ≤ 𝑠𝑖 , ∀𝑖 ∈ [𝑘]] ≥ ℙ[𝜎𝑖(𝐴(2) + 𝑡𝑯 𝑛) ≤ 𝑠𝑖 , ∀𝑖 ∈ [𝑘]].
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Finally, we will need classical singular value tail bounds for centered real Ginibre matrices, due
(as in the complex case, Theorem 3.1), to Szarek in [146].

Theorem 4.13 (Szarek). Let𝑯 𝑛 be a normalized real Ginibre matrix. There exists a universal constant
𝑐 > 0 so that

(𝑐𝜖)𝑘
2
≤ ℙ [𝜎𝑛−𝑘+1(𝑯 𝑛) ≤

𝑘𝜖
𝑛 ] ≤ (

√
2𝑒𝜖)𝑘

2
.

To end this section, we will bound the quantities 𝐵𝑯𝑛 ,𝑝 = 𝔼 [‖𝑯 𝑛‖𝑝]1/𝑝 explicitly in the Gaussian
case:

Lemma 4.14. Let 𝑯 𝑛 be an 𝑛 × 𝑛 real Ginibre matrix and assume that 1 ≤ 𝑝 ≤ 2𝑛. Then 𝐵𝑯𝑛 ,𝑝 ≤ 9.

Proof. The proof proceeds by integrating well-known tail bounds on th operator norm of a real
Ginibre matrix. Begin by observing that

𝔼[‖𝑯 𝑛‖𝑝] = 𝑝 ∫
2

0
𝑡𝑝−1ℙ[‖𝑯 𝑛‖ ≥ 𝑡] d𝑡 + 𝑝 ∫

∞

2
𝑡𝑝−1ℙ[‖𝑯 𝑛‖ ≥ 𝑡] d𝑡

≤ 2𝑝 + 𝑝 ∫
∞

2
𝑡𝑝−1 exp (−𝑛(𝑡 − 2)2/2) d𝑡 (4.13)

where the last inequality used a standard tail bound on ‖𝑯 𝑛‖ (see for example [52]). Now, by
Jensen’s inequality, for 𝑡 ≥ 2 we have

𝑡𝑝−1 = (𝑡 − 2 + 2)𝑝−1 ≤
1
2 (

2𝑝−1(𝑡 − 2)𝑝−1 + 4𝑝−1) .

Then, use this inequality and the formula for the absolute moments of the Gaussian distribution
to bound the last integral in (4.13). That is,

∫
∞

2
𝑡𝑝−1 exp (−𝑛(𝑡 − 2)2/2) d𝑡 ≤ 2𝑝−2 ⋅

2
𝑝−1
2 Γ (𝑝/2)
2𝑛

𝑝−1
2
√
𝜋

+ 4𝑝−2.

Hence

𝔼[‖𝑯 𝑛‖𝑝] ≤ 2𝑝 +
𝑝2

𝑝−1
2 Γ (𝑝/2)

2𝑛
𝑝−1
2
√
𝜋

+ 𝑝4𝑝−2 = 2𝑝 +
2
𝑝−1
2 Γ (𝑝/2 + 1)
𝑛

𝑝−1
2
√
𝜋

+ 𝑝4𝑝−2 ≤ 2𝑝 + (

√𝑝

𝑛
𝑝−1
2𝑝 )

𝑝

+ 5𝑝

Now, since 𝑝 ≤
√
𝑛 and using the fact that all the terms in the above inequality are positive

𝔼[‖𝑯 𝑛‖𝑝]
1
𝑝 ≤ 2 +

√𝑝

𝑛
𝑝−1
2𝑝

+ 5.

Since for 𝑥 > 1 the function 𝑥 𝑥
𝑥−1 is increasing, and we are assuming that 𝑝 ≤ 2𝑛 we have

𝑝
𝑝
𝑝−1 ≤ (2𝑛) 2𝑛

2𝑛−1 ≤ 4𝑛. Thus 𝑝 ≤ 4
𝑝−1
𝑝 𝑛

𝑝−1
𝑝 , which implies √𝑝 ≤ 2𝑛

𝑝−1
2𝑝 and concludes the proof.
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4.3 Anticoncentration
In this section we study the anticoncentration properties of certain quadratic functions of rectan-
gular matrices with independent entries. These will be necessary in Section 4.5 to extract singular
value tail bounds.

Theorem 4.15 (Density of Quadratic Forms). Assume that 𝑿, 𝒀 ∈ ℝ𝑛×𝑘 are random matrices with
independent entries, each with density on ℝ bounded a.e. by 𝐾 > 0. Let 𝑍 ∈ ℝ𝑛×𝑛, 𝑈 , 𝑉 ∈ ℝ𝑛×𝑘 , and
𝑊 ∈ ℝ𝑘×𝑘 be deterministic, and write 𝑞(𝑿, 𝒀 ) ≜ 𝑿⊺𝑍𝒀 + 𝑿⊺𝑈 + 𝑉 ⊺𝒀 + 𝑊 . Then

𝛿∞ (𝑞(𝑿 , 𝒀 )) ≤ (1 + 𝑘2)
(
2𝐾 2

√
2𝑒𝜋𝑘 min

𝑗>𝑘2+𝑘+1

1
√
𝑗 − 𝑘 + 1𝜎𝑗(𝑍 ))

𝑘2

.

Whenever 𝜎𝑗(𝑍 ) is zero, we interpret 1/𝜎𝑗(𝑍 ) = ∞; thus the above theorem has content only
when Rank(𝑍) > 𝑘2 + 𝑘 + 1. After presenting the proof, we will comment on some improvements
when 𝑋, 𝑌 are Gaussian or 𝑘 = 1. Let us begin with a small observation that we will use in the
proof to come.

Lemma 4.16. Consider measurable functions 𝑓 ∶ ℝ𝑝 × ℝ𝑞 → ℝ𝑟 and 𝑐 ∶ ℝ𝑞 → ℝ≥0. Let 𝒙 ∈ ℝ𝑝 and
𝒚 ∈ ℝ𝑞 be independent random vectors with densities bounded almost everywhere. Assume that for
almost all 𝑦 ∈ ℝ𝑟 it holds that 𝛿∞ (𝑓 (𝒙, 𝑦)) ≤ 𝑐(𝑦).Then

𝛿∞ (𝑓 (𝒙, 𝒚)) ≤ 𝔼[𝑐(𝒚)].

Proof. Let Leb𝑟ℝ denote the Lebesgue measure on ℝ𝑟 . Note that it is enough to show that for every
measurable set 𝐸 ⊂ ℝ𝑟 one has

ℙ[𝑓 (𝒙, 𝒚) ∈ 𝐸] ≤ Leb𝑟ℝ(𝐸)𝔼[𝑐(𝒚)].

On the other hand, by assumption, we have ℙ[𝑓 (𝒙, 𝑦) ∈ 𝐸] ≤ Leb𝑟ℝ(𝐸)𝑐(𝑦) for all 𝑦. From the fact
that 𝒙 and 𝒚 are independent and have a density it follows that

ℙ[𝑓 (𝒙, 𝒚) ∈ 𝐸] = 𝔼[𝟏{𝑓 (𝒙, 𝒚) ∈ 𝐸}] = 𝔼 [𝔼 [𝟏{𝑓 (𝒙, 𝒚) ∈ 𝐸}|𝒚]] ≤ 𝔼 [Leb𝑟ℝ(𝐸)𝑐(𝒚)] ,

as we wanted to show.

Second, we will require the following left tail bound on the smallest singular value of certain
rectangular random matrices, which is a direct consequence of Theorem 4.9.

Lemma 4.17. Let 𝒀 be a 𝑛 × 𝑘 random matrix whose entries are independent and have density on ℝ
bounded a.e. by 𝐾 > 0. Furthermore, for some 𝑘 ≤ 𝑗 ≤ 𝑛 let 𝑉 be a 𝑗 × 𝑛 projector. Then

ℙ[𝜎𝑘(𝑉𝒀 ) ≤ 𝑠] ≤ 𝑘
(
√
2𝐾

√
𝜋𝑘𝑠)𝑗−𝑘+1

Γ((𝑗 − 𝑘 + 3)/2)
≜ 𝐶𝑗,𝑘𝑠𝑗−𝑘+1 (4.14)
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Proof. Let 𝒚1, … , 𝒚𝑘 be the columns of 𝒀 and for every 𝑖 = 1, … , 𝑘 let 𝑾 𝑖 be the (𝑗 − 𝑘 + 1) × 𝑗
orthogonal projector onto the subspace orthogonal to the span of {𝑉𝒚 𝑙}𝑙≠𝑖 . Applying the “negative
second moment identity” [148], we have

𝑘 (min
𝑖∈[𝑘]

‖𝑾 𝑖𝑉𝒚 𝑖‖)

−2

≥
𝑘

∑
𝑖=1

‖𝑾 𝑖𝑉𝒚 𝑖‖
−2 ≥

𝑘

∑
𝑖=1

𝜎𝑖(𝑉𝒀 )−2 ≥ 𝑘𝜎𝑘(𝑉𝒀 )−2,

which implies
𝜎𝑘(𝒀 ) ≥

min𝑖 ‖𝑾 𝑖𝑉𝒚 𝑖‖√
𝑘

.

Since 𝑾 𝑖𝑉 is itself an orthogonal projector, and is independent of 𝒚 𝑖 , Theorem 4.9 and Observation
4.16 ensure that the density of ‖𝑾 𝑖𝑉𝒚 𝑖‖ is bounded by (

√
2𝐾)𝑗−𝑘+1. Applying a union bound and

recalling again the formula for a ball,

ℙ[𝜎𝑘(𝒀 ) ≤ 𝑠] ≤ ℙ[min
𝑖

‖𝑾 𝑖𝑉𝒚 𝑖‖ ≤
√
𝑘𝑠] ≤

𝑘

∑
𝑖=1

ℙ[‖𝑾 𝑖𝑉𝒚 𝑖‖ ≤
√
𝑘𝑠] ≤ 𝑘

(
√
2𝐾

√
𝜋𝑘𝑠)𝑗−𝑘+1

Γ((𝑗 − 𝑘 + 3)/2)
.

With these two tools in hand, we proceed with the proof.

Proof of Theorem 4.15. For any deterministic 𝑌 ∈ ℝ𝑛×𝑘 one has 𝛿∞(𝑞(𝑿 , 𝑌 )) = 𝛿∞(𝑿 𝑇 (𝑍𝑌 + 𝑈 )),
since 𝛿∞ is agnostic to deterministic translations. By the polar decomposition we can write
𝑍𝑌 + 𝑈 = 𝑉𝑆, where 𝑉 ∈ ℝ𝑛×𝑘 is an orthogonal projection and 𝑆 ⪰ 0. By Theorem 4.9, the density
of the random matrix 𝑿⊺𝑉 in ℝ𝑘×𝑘 is at most (

√
2𝐾)𝑘2 , and thus the density of 𝑿⊺𝑉𝑆 is at most

(
√
2𝐾)𝑘2(det 𝑆)−𝑘 ; moreover

det 𝑆 =
𝑘

∏
𝑖=1

𝜎𝑖(𝑆) =
𝑘

∏
𝑖=1

𝜎𝑖(𝑍𝑌 + 𝑈 ).

Therefore by Lemma 4.16,

𝛿∞(𝑞(𝑿 , 𝒀 )) ≤ (
√
2𝐾)𝑘

2
𝔼
[
∏
𝑖∈𝑘

𝜎𝑖(𝑍𝒀 + 𝑈 )−𝑘
]
. (4.15)

We now compute this expectation.
Choose 𝑗 ≥ 𝑘 so that 𝜎𝑗(𝑍 ) > 0, and write the SVD of 𝑍 in the following block form,

𝑍 = 𝑃𝑇Σ𝑄 = (𝑃
⊺
1 𝑃⊺

2 )(
Σ1

Σ2)(
𝑄1
𝑄2)

, (4.16)
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where Σ1 is a diagonal matrix containing the largest 𝑗 singular values, and 𝑃, 𝑄 are orthogonal
matrices. This gives

𝑍𝒀 + 𝑈 = (𝑃
⊺
1 𝑃⊺

2 )(
Σ1𝑄1𝒀 + 𝑃1𝑈
Σ2𝑄2𝒀 + 𝑃2𝑈) .

By interlacing of singular values, 𝜎𝑖(𝑍𝒀 + 𝑈 ) ≥ 𝜎𝑖(Σ1𝑄1𝒀 + 𝑃1𝑈 ) for each 𝑖 = 1, ..., 𝑘, so we are free
to study

𝔼
[
∏
𝑖∈[𝑘]

𝜎𝑖(Σ1𝑄1𝒀 + 𝑃1𝑈 )−𝑘
]
≤ 𝜎𝑗(Σ1)−𝑘

2
𝔼
[
∏
𝑖∈[𝑘]

𝜎𝑖(𝑄1𝒀 + Σ−1
1 𝑃1𝑈 )−𝑘

]
. (4.17)

Now, since 𝑄1 is a orthogonal projection, we can select a matrix 𝑈̌ so that 𝑄1𝑈̌ = Σ−1
1 𝑃1𝑈 , and

observe that
𝔼∏

𝑖∈[𝑘]
𝜎𝑖(Σ1𝑄1𝒀 + 𝑃1𝑈 )−𝑘 ≤ 𝜎𝑗(𝑍 )−𝑘

2
𝜎𝑘(𝑄1(𝒀 + 𝑈̌ ))−𝑘

2
.

The random matrix 𝒀 + 𝑈̌ satisfies the conditions of Lemma 4.17, so we can apply the tail formula
for expectation to obtain

𝔼 [𝜎𝑘(𝑄1(𝒀 + 𝑈̌ ))−𝑘
2

] = ∫
∞

0
ℙ [𝜎𝑘(𝑄1(𝒀 + 𝑈̌ ))−𝑘

2
≥ 𝑡] d𝑡

≤ 𝜆 + 𝐶𝑗,𝑘 ∫
∞

𝜆
𝑡−

𝑗−𝑘+1
𝑘2 d𝑡 𝐶𝑗,𝑘 from (4.14)

= 𝜆 + 𝐶𝑗,𝑘
𝑘2

𝑗 − 𝑘2 − 𝑘 + 1
𝜆

𝑘2+𝑘−𝑗−1
𝑘2 if 𝑗 − 𝑘 + 1 > 𝑘2.

Optimizing the above bound in 𝜆, we set 𝜆 = 𝐶
𝑘2

𝑗−𝑘+1
𝑗,𝑘 and evaluate 𝐶𝑗,𝑘 to find

𝔼 [𝜎𝑘(𝑄1(𝒀 + 𝑈̌ ))−𝑘
2

] ≤ (
𝑘(
√
2𝐾

√
𝜋𝑘)𝑗−𝑘+1

Γ((𝑗 − 𝑘 + 3)/2) )

𝑘2
𝑗−𝑘+1

(1 +
𝑘2

𝑗 − 𝑘2 − 𝑘 + 1)

≤ (
√
2𝐾

√
𝜋𝑘)𝑘

2

(
𝑘

Γ((𝑗 − 𝑘 + 3)/2))

𝑘2
𝑗−𝑘+1

(1 + 𝑘2)

≤ (
√
2𝐾

√
𝜋𝑘)𝑘

2

(
𝑘

√
𝜋(𝑗 − 𝑘 + 1))

𝑘2
𝑗−𝑘+1

(

√
2𝑒

√
𝑗 − 𝑘 + 1)

𝑘2

(1 + 𝑘2)

≤
(

√
2𝐾

√
2𝑒𝜋𝑘

√
𝑗 − 𝑘 + 1 )

𝑘2

(1 + 𝑘2)

where we have used that 𝑗 − 𝑘 + 1 > 𝑘2 in the second and fourth lines, as well as Stirling’s
approximation — Γ(𝑧 + 1) ≥

√
2𝜋𝑧(𝑧/𝑒)𝑧 , valid for real 𝑧 ≥ 2 — in the third. To complete the proof,

we combine the above with equation (4.15).
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To end this section, we offer some improvements of the above results when 𝑘 is small or 𝑿
and 𝒀 are Gaussian.

Corollary 4.18. In the case 𝑘 = 1, the conclusion of Theorem 4.15 may be improved to

𝛿∞ (𝑞(𝑿 , 𝒀 )) ≤ 2(
√
2𝐾)2

√
2𝑒𝜋 min

𝑗≥2

1
√
𝑗 ∏𝑖∈[𝑗] 𝜎𝑖(𝑍 )1/𝑗

.

Moreover, in the Gaussian case, we may replace (
√
2𝐾)2 with (2𝜋)−1.

Proof. The discussion between equations (4.15) and (4.17) in this case tells us

𝛿∞((𝑞(𝑿 , 𝒀 )) ≤
√
2𝐾𝔼 [‖Σ1𝑄1𝒀 + 𝑃1𝑈 ‖−1] .

The random vector Σ1𝑄1𝒀 + 𝑃1𝑈 has density on ℝ𝑗 bounded by (
√
2𝐾)𝑗 det Σ−1

1 , so we have the tail
bound

ℙ [‖Σ1𝑄1𝒀 + 𝑃1𝑈 ‖ ≤ 𝑠] ≤ det Σ−1
1
(
√
2𝐾

√
𝜋𝑠)𝑗

Γ(𝑗/2 + 1)
= det Σ−1

1 ⋅ 𝐶𝑗,1𝑠𝑗 .

Replacing in the remainder of the proof 𝐶𝑗,𝑘 with det Σ−1
1 𝐶𝑗,1, and recalling det Σ1 = 𝜎1(𝑍 )⋯ 𝜎𝑗(𝑍 ),

will give

𝛿∞ (𝑞(𝑿 , 𝒀 )) ≤
√
2𝐾𝔼 [‖Σ1𝑄1𝑌 + 𝑃1𝑈 ‖−1] ≤ 2

(
√
2𝐾)2

√
2𝑒𝜋

√
𝑗 ∏𝑖∈[𝑗] 𝜎𝑖(𝑍 )1/𝑗

whenever 𝑗 ≥ 2.

We believe that Theorem 4.15 should hold, for every 𝑘, with the 𝑗th singular value of 𝑍
exchanged for the geometric mean of the top 𝑗. The main obstacle seems to be that Theorem 4.9
cannot tightly bound the density of 𝐴𝒚, where 𝒚 ∈ ℝ𝑛 is a random vector with independent entries
and bounded density, and 𝐴 ∈ ℝ𝑛×𝑘 is an arbitrary matrix.

In a different direction, one can improve the constant in Theorem 4.15 under a Gaussian
assumption.

Theorem 4.15G. If 𝑿, 𝒀 ∈ ℝ𝑛×𝑘 have independent, standard Gaussian entries, then Theorem 4.15
holds with the stronger conclusion:

𝛿∞ (𝑞(𝑿 , 𝒀 )) ≤
(
1
2
min
𝑗>2𝑘

1
√
𝑗 − 2𝑘 + 1𝜎𝑗(𝑍 ))

𝑘2

. (4.18)

Proof. Once again we modify the proof beginning at (4.17). Observing that 𝑄1𝒀 +Σ−1
1 𝑃1𝑈 is a 𝑗 × 𝑘,

non-centered Gaussian matrix, Theorem 4.10 implies

𝔼
𝑘

∏
𝑖=1

𝜎𝑖(𝑄1𝒀 + Σ−1
1 𝑃1𝑈 )−𝑘

2
≤ 𝔼

𝑘

∏
𝑖=1

𝜎𝑖(𝑄1𝒀)−𝑘 = 𝔼(det 𝒀 ⊺𝑄⊺
1𝑄1𝑌 )−𝑘

2/2.
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Now, 𝒀 ⊺𝑄⊺
1𝑄1𝒀 is a real Wishart matrix with parameters (𝑗, 𝑘), and it is known [86] that the

determinant of such a matrix is distributed as a product of independent 𝜒 2 random variables
𝝂 𝑗𝝂 𝑗−1⋯𝝂 𝑗−𝑘+1, where 𝝂 𝑙 ∼ 𝜒 2(𝑙). Computing directly,

𝔼𝝂−𝑘/2
𝑙 = ∫

∞

0

𝑥 𝑙/2−𝑘/2−1 exp(−𝑥/2)
2𝑙/2Γ(𝑙/2)

d𝑥 =
2−𝑘/2Γ ((𝑙 − 𝑘)/2)

Γ (𝑙/2)
,

whenever 𝑙 > 𝑘. For even 𝑘, this has the closed form (𝑙 − 2)−1(𝑙 − 4)−1⋯ (𝑙 − 𝑘)−1 ≤ (𝑙 − 𝑘)−𝑘/2. This
final bound holds for odd 𝑘 ≥ 3, by repeated application of 𝑧Γ(𝑧) = Γ(𝑧 + 1) and one use of the
inequality

√
2𝑧/𝜋Γ(𝑧) ≤ Γ(1/2 + 𝑧) ≤

√
𝑧Γ(𝑧), valid for all 𝑧 ≥ 1/2. When 𝑘 = 1, this inequality again

gives us 𝔼𝜈−1/2𝑙 ≤ (𝜋(𝑙 − 1)/2)−1/2. As above, we can apply Theorem 4.9 with the constant 1 instead
of

√
2 and 𝐾 = (2𝜋)−1/2 in the Gaussian case, so

𝛿∞ (𝑞(𝑿 , 𝒀 )) ≤ (
1

√
2𝜋𝜎𝑗(𝑍 ))

𝑘2 𝑘

∏
𝑙=𝑗−𝑘+1

𝔼𝜈−𝑘/2𝑙

≤ (
1

2𝜎𝑗(𝑍 ))

𝑘2 𝑗

∏
𝑙=𝑗−𝑘+1

(𝑙 − 𝑘)−𝑘/2

≤
(

1
2
√
𝑗 − 2𝑘 + 1𝜎𝑗(𝑍 ))

𝑘2

.

The condition 𝑗 > 2𝑘 ensures that each 𝔼𝜈−𝑘/2𝑙 < ∞ for 𝑙 = 𝑗 − 2𝑘 + 1, ..., 𝑗.

4.4 Singular Value Bounds for Non-Centered Real Matrices
In this section, we discuss singular value tail bounds for real matrices with independent absolutely
continuous entries. In particular, our study of minimum eigenvalue gap and eigenvalue condition
numbers will require tail bounds on the least two singular values for shifted random matrices of
the form 𝑧 − 𝐴 −𝑴𝑛, where 𝑧 ∈ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 are deterministic, and 𝑴𝑛 satisfies Assumption 4.1.

As a warm-up, we obtain as an immediate consequence of Theorem 4.13 and Corollary 4.12—
Szarek’s singular value bounds for centered real Ginibre matrices, and the stochastic dominance
corollary to the real Śniady Comparison Theorem —that

ℙ [𝜎𝑛−𝑘+1(𝑧 − (𝐴 + 𝛿𝑯 𝑛)) ≤ 𝜖] ≤ (

√
2𝑒𝑛𝜖
𝑘𝛿 )

𝑘2

(4.19)

for every 𝛿 > 0 and 𝑘 ∈ [𝑛]. This 𝜖𝑘2 behavior will be a useful benchmark by which to assess our
results below.

For matrices with i.i.d. subgaussian entries, results similar to Szarek’s theorem are known, but
they are accompanied by additive error terms of the form 𝑒−𝑐𝑛 and therefore do not yield useful



CHAPTER 4. REGULARIZATION BY REAL PERTURBATIONS 57

results in the limit as 𝜖 → 0. The closest result to ours is due to Nguyen in [122]; it excises the
additive error terms, but contains a sub-optimal exponent on 𝜖. We will add one key insight to
Nguyen’s proof that allows one to obtain the correct 𝜖-dependence.

A Restricted Invertibility Lemma
The device we add to Nguyen’s argument, and which we will return to at several points throughout
the chapter, is the following lemma, which shows that the 𝑘th largest eigenvalue of a PSD matrix
is approximately witnessed by the smallest eigenvalue of some principal 𝑘 × 𝑘 submatrix.

Lemma 4.19 (Principal Submatrix with Large 𝜆𝑘). Let 𝑋 ∈ ℂ𝑛×𝑛 ⧵ {0} be positive semidefinite with
eigenvalues 𝜆𝑛(𝑋 ) ≤ ⋯ ≤ 𝜆1(𝑋 ). Then for every 1 ≤ 𝑘 ≤ 𝑛, there exists an 𝑘 × 𝑘 principal submatrix
𝑋𝑆,𝑆 , with eigenvalues 𝜆𝑘(𝑋𝑆,𝑆) ≤ ⋯ ≤ 𝜆1(𝑋𝑆,𝑆), such that

𝜆𝑘(𝑋𝑆,𝑆) ≥
tr(𝑋 )

∑𝑘
𝑖=1 𝜆𝑖(𝑋 )

⋅
𝜆𝑘(𝑋 )

𝑘(𝑛 − 𝑘 + 1)
. (4.20)

Proof. Examining the coefficient of 𝜆𝑘 in the characteristic polynomial det(𝜆 − 𝑋), we have

∑
|𝑆|=𝑘

det 𝑋𝑆,𝑆 = 𝑒𝑘(𝜆1(𝑋 ), 𝜆2(𝑋 ), … , 𝜆𝑛(𝑋 )),

where 𝑒𝑘 here denotes the 𝑘-th elementary symmetric function, and the sum runs over subsets of
[𝑛]. We may now have the upper bound:

𝑒𝑘(𝑋 ) = ∑
|𝑆|=𝑘

det(𝑋𝑆,𝑆)

= ∑
|𝑆|=𝑘

𝜆𝑘(𝑋𝑆,𝑆)𝜆𝑘−1(𝑋𝑆,𝑆) … 𝜆1(𝑋𝑆,𝑆)

≤ ∑
|𝑆|=𝑘

𝜆𝑘(𝑋𝑆,𝑆)𝑒𝑘−1(𝑋𝑆,𝑆) since 𝜆𝑖(𝑋𝑆,𝑆) ≥ 0 by interlacing

≤ max
𝑆

𝜆𝑘(𝑋𝑆,𝑆) ⋅ ∑
|𝑆|=𝑘

∑
𝑇⊂𝑆,|𝑇 |=𝑘−1

det(𝑋𝑆′,𝑆′)

= max
𝑆

𝜆𝑘(𝑋𝑆,𝑆) ⋅ (𝑛 − 𝑘 + 1)𝑒𝑘−1(𝑋 ).

It now remains to furnish a complementary lower bound on 𝑒𝑘(𝑋 ) in terms of 𝑒𝑘−1(𝑋 ). Recall the
routine fact that

𝑘𝑒𝑘(𝑋 ) = 𝑘 ∑
|𝑆|=𝑘

∏
𝑖∈𝑆

𝜆𝑖(𝑋 ) = ∑
|𝑇 |=𝑘−1

∑
𝑗∉𝑇

𝜆𝑗(𝑋 )∏
𝑖∈𝑇

𝜆𝑖(𝑋 ).
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Now, for each |𝑇 | = 𝑘 − 1,

∑
𝑗∈[𝑘]

𝜆𝑗(𝑋 )∑
𝓁∉𝑇

𝜆𝓁 (𝑋 ) = ∑
𝑗∈[𝑘]

𝜆𝑗(𝑋 )(
𝑒1(𝑋 ) −∑

𝑗∈𝑇
𝜆𝑗(𝑋 ))

= 𝜆𝑘(𝑋 )𝑒1(𝑋 ) + (
∑

𝑗∈[𝑘−1]
𝜆𝑗(𝑋 ))

𝑒1(𝑋 ) − (
∑
𝑗∈𝑇

𝜆𝑗(𝑋 ))(
∑
𝑗∈[𝑘]

𝜆𝑗(𝑋 ))

≥ 𝜆𝑘(𝑋 )𝑒1(𝑋 ),

since ∑𝑗∈[𝑘−1] 𝜆𝑗(𝑋 ) ≥ ∑𝑗∈𝑇 𝜆𝑗(𝑋 ), and 𝑒1(𝑋 ) ≥ ∑𝑗∈[𝑘] 𝜆𝑗(𝑋 ). Thus

𝑘 ∑
𝑗∈[𝑘]

𝜆𝑗(𝑋 ) ⋅ 𝑒𝑘(𝑋 ) ≥ ∑
|𝑇 |=𝑘−1

𝜆𝑘(𝑋 )𝑒1(𝑋 )∏
𝑖∈𝑇

𝜆𝑖(𝑋 ) = 𝜆𝑘(𝑋 )𝑒1(𝑋 )𝑒𝑘−1(𝑋 ).

Putting everything together, and recalling 𝑒1(𝑋 ) = tr 𝑋 ,

max
𝑆

𝜆𝑘(𝑋𝑆,𝑆) ≥
𝑒𝑘(𝑋 )

(𝑛 − 𝑘 + 1)𝑒𝑘−1(𝑋 )
≥

tr(𝑋 )
∑𝑖∈[𝑘] 𝜆𝑖(𝑋 )

𝜆𝑘(𝑋 )
𝑘(𝑛 − 𝑘 + 1)

as desired.

We will employ Lemma 4.19 in the form of the corollary below.

Corollary 4.20. Let 1 ≤ 𝑘 ≤ 𝑛. For every matrix 𝑅 ∈ ℂ𝑛×𝑘 , there exists a 𝑘 × 𝑘 submatrix 𝑄 of 𝑅 such
that

𝜎𝑘(𝑄) ≥
𝜎𝑘(𝑅)√

𝑘(𝑛 − 𝑘 + 1)
. (4.21)

Similarly, for every matrix 𝐴 ∈ ℂ𝑛×𝑛, there are subsets 𝑆, 𝑇 ⊂ [𝑛] of size 𝑘 such that

𝜎𝑘(𝐴𝑆,𝑇 ) ≥
‖𝐴‖𝐹√

∑𝑖∈[𝑘] 𝜎𝑖(𝐴)2
𝜎𝑘(𝐴)

𝑘(𝑛 − 𝑘 + 1)
≥

𝜎𝑘(𝐴)
𝑘(𝑛 − 𝑘 + 1)

(4.22)

This generalizes the elementary fact that the operator norm of an 𝑛 × 𝑛 matrix is bounded above
by 𝑛 times the maximal entry. Corollary 4.20 additionally sits within a much larger literature on
restricted invertibility; see [120] for a comprehensive introduction. Most notably, the main result
in [83] states that for any 𝑅 ∈ ℂ𝑛×𝑘 of rank 𝑘, there exist a 𝑘 × 𝑘 submatrix 𝑄 of 𝑅, such that

1
∑𝑘

𝑖=1 𝜎𝑖(𝑄)−2
≥

1
(𝑛 − 𝑘 + 1)∑𝑘

𝑖=1 𝜎𝑖(𝑅)−2
. (4.23)

Note that neither (4.21) implies (4.23) nor (4.23) implies (4.21). However, from (4.21) one can derive
an inequality very similar to (4.23) that has a slightly weaker dependence on 𝑘, and vice versa.
The proof in [83] shares some features with our proof of Lemma 4.17, but differs in that it does
not exploit the fact that coefficients of the characteristic polynomial can be written both in terms
of the eigenvalues and in terms of the entries of the matrix. This allows us to obtain a result for
general 𝑛 × 𝑛 matrices, namely (4.22), which is not clear how to obtain from (4.23).
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Proof of the Tail Bound

Restatement of Theorem 4.4. Let 𝑴𝑛 ∈ ℝ𝑛×𝑛 be a random matrix satisfying Assumption 4.1 with
parameter 𝐾 > 0. Then

ℙ [𝜎𝑛−𝑘+1(𝑴𝑛) ≤ 𝜖] ≤ (
𝑛
𝑘)(

√
2𝐾𝜖

√
𝑘𝑛(𝑛 − 𝑘 + 1))

𝑘2

≤ 𝑛𝑘
2+𝑘𝑘

1
2 𝑘

2
(
√
2𝐾)𝑘

2
𝜖𝑘

2
.

Proof of Theorem 4.4. We repeat the argument of Nguyen [122], but using Corollary 4.20 where
Nguyen uses the restricted invertibility theorem of [120].

Suppose 𝜎𝑛−𝑘+1(𝑴𝑛) ≤ 𝜖. By the minimax formula for singular values, there exist (random)
orthogonal unit vectors 𝒛1, … , 𝒛𝑘 ∈ ℝ𝑛 such that ‖𝑴𝑛𝒛𝑖‖ ≤ 𝜖. Letting 𝒁 ∈ ℝ𝑛×𝑘 be the matrix whose
columns are 𝒛1, … , 𝒛𝑘 , we can bound ‖𝑴𝑛𝒁‖𝐹 ≤ 𝜖

√
𝑘. Since 𝜎𝑘(𝒁) = 1, by Corollary 4.20, there is a

𝑘 × 𝑘 submatrix 𝒁 1 of 𝒁 for which

‖𝒁−1
1 ‖ ≤

√
𝑘(𝑛 − 𝑘 + 1).

Denote by 𝒁 the subset of rows of 𝒁 participating in 𝒁 1; by permuting if necessary we can write

𝒁 = (
𝒁 1
𝒁 2)

and 𝑴𝑛 = (𝑴1 𝑴2) ,

observing that

𝑴𝒁𝒁−1
1 = (𝑴1 𝑴2)(

𝒁 1
𝒁 2)

𝒁−1
1 = 𝑴1 + 𝑴2𝒁 2𝒁−1

1 . (4.24)

Denote the columns of 𝑴𝑛 by 𝒎1, … ,𝒎𝑛 and let 𝑯 denote the orthogonal projector onto the
𝑘-dimensional subspace orthogonal to the span of {𝒎𝑖}𝑖∉𝑺 , so that 𝑯𝑴2 = 0. Thus we have

∑
𝑖∈𝑺

‖𝑯𝒎𝑖‖2 = ‖𝑯𝑴𝒁𝒁−1
1 ‖2𝐹 ≤ ‖𝑴𝑛𝒁𝒁−1

1 ‖2𝐹 ≤ ‖𝑴𝑛𝒁‖2𝐹 ‖𝒁
−1
1 ‖2 ≤ 𝜖2𝑘2(𝑛 − 𝑘 + 1).

Since the entries of 𝑴𝑛 are independent, with densities on ℝ bounded by √
𝑛𝐾 , by Theorem 4.9

the above event occurs with probability at most

𝑘

∏
𝑖=1

ℙ [‖𝑯𝒎𝑖‖ ≤ 𝜖𝑘
√
𝑛 − 𝑘 + 1] < (

√
2𝐾

√
𝑛 ⋅ 𝜖

√
𝑘(𝑛 − 𝑘 + 1))

𝑘2

.

Performing a union bound over all possibilities for the subset 𝑺 of rows of 𝒁 , we finally obtain

ℙ [𝜎𝑛−𝑘+1(𝑴𝑛) ≤ 𝜖] ≤ (
𝑛
𝑘)(

√
2𝐾𝜖

√
𝑘𝑛(𝑛 − 𝑘 + 1))

𝑘2

≤ 𝑛𝑘
2+𝑘𝑘

1
2 𝑘

2
(
√
2𝐾)𝑘

2
𝜖𝑘

2
.
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Comparing with Szarek’s centered singular value bounds (Theorem 4.13 above), we conclude
that the exponent of 𝜖 in Theorem 4.4 is optimal, and if not for the factor of (𝑛𝑘) arising from the
union bound, the exponent of 𝑛 would be optimal as well. Since we made no requirement that 𝑴𝑛
is centered, the following corollary is immediate:

Corollary 4.21. Let 𝑧 ∈ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and 𝑴𝑛 satisfy Assumption 4.1 with
parameter 𝐾 > 0. Then

ℙ[𝜎𝑛−𝑘+1(𝑧 − 𝐴 − 𝛿𝑴𝑛) ≤ 𝜖] ≤ 𝑛
1
2 𝑘

2+𝑘𝑘
1
2 𝑘

2
(
√
2𝐾/𝛿)𝑘

2
𝜖𝑘

2
.

We record our initial observation regarding real Ginibre matrices, equation (4.19), as the
following theorem.

Restatement of Theorem 4.4G. Let 𝑧 ∈ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and 𝑯 𝑛 be a normalized
Ginibre matrix. For every 𝛿 > 0,

ℙ[𝜎𝑛−𝑘+1(𝑧 − (𝐴 + 𝛿𝑴𝑛)) ≤ 𝜖] ≤ (

√
2𝑒𝑛𝜖
𝑘𝛿 )

𝑘2

.

In the case 𝑘 = 1, one has a better constant:

ℙ[𝜎𝑛(𝑧 − (𝐴 + 𝛿𝑴𝑛)) ≤ 𝜖] ≤
𝑛𝜖
𝛿
.

Proof. When 𝐴 = 0, this is Theorem 4.13, and the better constant for 𝑘 = 1 is a result of Edelman
[70]. The conclusion for general 𝐴 then follows from Corollary 4.12.

4.5 Singular Value Bounds for Real Matrices with Complex
Shifts

In order to control the eigenvalue gaps and pseudospectrum of random real perturbations, we
need to understand the smallest singular values of real random matrices with complex scalar shifts.
As discussed in the introduction, our results will be stated in terms of the quantities

𝐵𝑴𝑛 ,𝑝 ≜ [𝔼‖𝑴𝑛‖𝑝]1/𝑝 ,

and important features of the bounds in our context are (1) the optimal dependence on 𝜖 as 𝜖 → 0,
and (2) the factor 1

|ℑ𝑧| controlling the necessary deterioration of the bound as 𝑧 approaches the real
line.
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Restatement of Theorem 4.5. Let 𝑧 ∈ ℂ ⧵ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let 𝑴𝑛 satisfy
Assumption 4.1 with parameter 𝐾 > 0. For every 𝑘 ≤

√
𝑛 − 2,

ℙ [𝜎𝑛−𝑘+1 (𝑧 − 𝐴 − 𝑴𝑛) ≤ 𝜖] ≤ (1 + 𝑘2)(
𝑛
𝑘)

2

(𝐶4.5𝑘2(𝑛𝐾)3 ((𝐵𝑴𝑛 ,2𝑘2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝜖2

|ℑ𝑧|)

𝑘2

,

where 𝐶4.5 is a universal constant defined in (4.27).

In the Gaussian case, we can excise this factor of (1 + 𝑘2) and extend the range of 𝑘.

Restatement of Theorem 4.5G. Let 𝑧 ∈ ℂ ⧵ ℝ and 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let 𝑯 𝑛 be a
normalized 𝑛 × 𝑛 real Ginibre matrix. For every 𝛿 > 0, and every 𝑘 ≤ 𝑛/7,

ℙ [𝜎𝑛−𝑘+1(𝑧 − (𝐴 + 𝛿𝑯 𝑛)) ≤ 𝜖] ≤ (
𝑛
𝑘)

2

(

√
7𝑒𝑘2𝑛3

2𝛿3 ((𝛿𝐵𝑯𝑛 ,2𝑘2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝜖2

|ℑ𝑧|)

𝑘2

.

Proof of Theorem 4.5
In view of Corollary 4.20, we can study the 𝑘th smallest singular value of 𝑧 −(𝐴+𝑴𝑛) by examining
the smallest singular value of every 𝑘 × 𝑘 submatrix of its inverse. In particular, we will show
momentarily that the main technical work in proving Theorem 4.5 occurs in proving the following
lemma, which we shall do later on in this section. Theorem 4.5G requires only a few small
modifications to the arguments of the general case, and we defer the proof until the end of the
section.

Lemma 4.22 (Tail Bound for Corner of the Resolvent). Let 𝜁 ∈ ℝ, let 𝑈 be a permutation matrix,
and let 𝑴𝑛 satisfy Assumption 4.1 with parameter 𝐾 > 0. Denote the upper-left 𝑘 × 𝑘 corner of
(𝜁 𝑖𝑈 − 𝑴𝑛)−1 by 𝑵 𝑘 . If 𝑛 ≥ (𝑘 + 2)2,

ℙ [𝜎𝑘(𝑵 𝑘) ≥ 1/𝜖] ≤ (1 + 𝑘2) (8
√
3(𝑒𝜋)3/2𝐾 3𝑛

𝜖2

|𝜁 |)

𝑘2

𝔼 [(‖𝑴𝑛‖2 + 𝜁 2)
𝑘2

] . (4.25)

Proof of Theorem 4.5 assuming Lemma 4.22. Applying Corollary 4.20 and a union bound,

ℙ [𝜎𝑛−𝑘+1(𝑧 − 𝐴 − 𝑴𝑛) ≤ 𝜖] = ℙ [𝜎𝑘 ((𝑧 − 𝐴 − 𝑴𝑛)−1) ≥ 1/𝜖]

≤ ℙ [ max
𝑆,𝑇⊂[𝑛],|𝑆|=|𝑇 |=𝑘

𝜎𝑘 ((𝑧 − 𝐴 − 𝑴𝑛)−1𝑆,𝑇) ≥
1

𝑘(𝑛 − 𝑘 + 1)𝜖 ]

≤ ∑
𝑆,𝑇⊂[𝑛],|𝑆|=|𝑇 |=𝑘

ℙ [𝜎𝑘 ((𝑧 − 𝐴 − 𝑴𝑛)−1𝑆,𝑇) ≥
1

𝑘(𝑛 − 𝑘 + 1)𝜖 ]
. (4.26)
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Fixing 𝑆, 𝑇 ⊂ [𝑛] of size 𝑘, there are permutation matrices 𝑃 and 𝑄 such that

(𝑧 − 𝐴 − 𝑴𝑛)−1𝑆,𝑇 = (𝑄⊺(𝑧 − 𝐴 + 𝑴𝑛)−1𝑃)[𝑘],[𝑘]
= (𝑃𝑄⊺𝑖ℑ𝑧 + 𝑃(ℜ𝑧 − 𝐴 − 𝑴𝑛)𝑄⊺)−1[𝑘],[𝑘] .

As 𝑃𝑄⊺ is a permutation matrix and 𝑃(ℜ𝑧 − (𝐴 + 𝑴𝑛))𝑄⊺ satisfies Assumption 4.1 with parameter
𝐾 > 0, we can apply Lemma 4.22. Defining

𝐶4.5 ≜ 8
√
3(𝑒𝜋)3/2, (4.27)

this gives

ℙ [𝜎𝑘 ((𝑧 − 𝐴 − 𝑴𝑛)−1𝑆,𝑇) ≥
1

𝑘(𝑛 − 𝑘 + 1)𝜖 ]

=ℙ [𝜎𝑘 (𝑖ℑ𝑧𝑃𝑄
⊺ − 𝑃(ℜ𝑧 − (𝐴 + 𝑴𝑛))𝑄⊺)−1[𝑘],[𝑘] ≥

1
𝑘(𝑛 − 𝑘 + 1)𝜖 ]

≤(1 + 𝑘2) (𝐶4.5𝐾 3𝑛
𝑘2(𝑛 − 𝑘 + 1)2𝜖2

|ℑ𝑧| )

𝑘2

𝔼 [(‖𝑃(ℜ𝑧 − 𝐴 + 𝑀𝑛)𝑄⊺‖2 + |ℑ𝑧|2)
𝑘2

]

≤(1 + 𝑘2) (𝐶4.5𝑘2𝑛3𝐾 3 𝜖2

|ℑ𝑧|)

𝑘2

𝔼 [(‖𝑃(ℜ𝑧 − 𝐴 − 𝑴𝑛)𝑄⊺‖2 + |ℑ𝑧|2)
𝑘2

] ,

where we have bounded 𝑛 − 𝑘 + 1 ≤ 𝑛. By Jensen, 𝐵𝑴,𝑠 ≤ 𝐵𝑴,𝑡 for any random matrix 𝑴 and 𝑠 ≤ 𝑡 ,
and thus expanding out with the binomial theorem gives 𝐵𝐴+𝑴,𝑠 ≤ 𝐵𝑴,𝑠 +‖𝐴‖ for every deterministic
𝐴. Finally,

𝔼 [(‖𝑃(ℜ𝑧 − 𝐴 − 𝑴𝑛)𝑄⊺‖2 + |ℑ𝑧|2)
𝑘2

] = 𝔼 [(‖ℜ𝑧 − 𝐴 − 𝑴𝑛‖2 + |ℑ𝑧|2)
𝑘2

]

=
𝑘2

∑
𝑟=0

(
𝑘2

𝑟 )
𝐵2𝑟
ℜ𝑧−𝐴−𝑴𝑛 ,2𝑟 |ℑ𝑧|

2𝑘2−2𝑟

≤ (𝐵2
ℜ𝑧−𝐴−𝑴𝑛 ,2𝑘2 + |ℑ𝑧|2)𝑘

2

≤ ((𝐵𝑴𝑛 ,2𝑘2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝑘2 .

We finish by combining this with the previous equation, and multiplying by (𝑛𝑘)
2 for the union

bound over pairs of size-𝑘 subsets 𝑆 and 𝑇 .

Proof of Lemma 4.22
In what follows we use the notation and assumptions of Lemma 4.22. In particular, 𝑴𝑛 satisfies
Assumption 4.1 with parameter 𝐾 > 0, 𝑈 is a permutation matrix, and 𝜁 ∈ ℝ. Once again writing
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𝑵 𝑘 for the upper left 𝑘 × 𝑘 block of (𝜁 𝑖𝑈 + 𝑴𝑛)−1, we need to show that ℙ[‖𝑵 −1
𝑘 ‖ ≤ 𝜖] = 𝑂(𝜖2𝑘2).

One would expect this behavior if the real and imaginary parts of 𝑵 −1
𝑘 were independent, and

each had a density on ℝ𝑘×𝑘 . We will not be quite so lucky, but we will be able to separate the
randomness in its real and imaginary parts, obtaining the 𝑂(𝜖2𝑘2) behavior by conditioning on
some well-chosen entries of 𝑴𝑛. To make this precise, we will need some notation.

Let us write 𝑴𝑛 and 𝜁𝑈 in the following block form:

𝑴𝑛 = (
𝑴11 𝑴12
𝑴21 𝑴22)

and 𝜁𝑈 = (
𝑈11 𝑈12
𝑈21 𝑈22)

(4.28)

where 𝑴11 and 𝑈11 are 𝑘 × 𝑘 matrices. Define as well the (𝑛 − 𝑘) × (𝑛 − 𝑘) matrices 𝑿 and 𝒀 as

𝑿 ≜ ℜ(𝑴22 + 𝑖𝑈22)−1 and 𝒀 ≜ ℑ(𝑴22 + 𝑖𝑈22)−1. (4.29)

Applying the Schur complement formula to the block decomposition in (4.28), we get

𝑵 −1
𝑘 = 𝑴11 + 𝑖𝑈11 − (𝑴12 + 𝑖𝑈12)(𝑴22 + 𝑖𝑈22)−1(𝑴21 + 𝑖𝑈21)
= 𝑴11 + 𝑖𝑈11 − (𝑴12 + 𝑖𝑈12)(𝑿 + 𝑖𝒀 )(𝑴21 + 𝑖𝑈21),

meaning that

ℜ𝑵 −1
𝑘 = 𝑴11 − 𝑴12𝑿𝑴21 + 𝑈12𝒀𝑴21 − 𝑴12𝒀𝑈21 + 𝑈12𝑿𝑈21 (4.30)

ℑ𝑵 −1
𝑘 = 𝑈11 − 𝑴12𝒀𝑴21 − 𝑴12𝑿𝑈21 − 𝑈12𝑿𝑴21 + 𝑈12𝒀𝑈21. (4.31)

Examining these two formulae, and recalling that the entries of 𝑴𝑛 are independent and have
a joint density on ℝ𝑛×𝑛, we arrive at the key observation of this section:

Observation 4.23. The imaginary part ℑ𝑵 −1
𝑘 is independent of 𝑴11. Moreover, conditional on

𝑴12, 𝑴21 and 𝑴22, the real part ℜ𝑵 −1
𝑘 has independent entries, each with density on ℝ bounded

by 𝐾√𝑛.

Writing this conditioning explicitly,

ℙ [𝜎𝑘(𝑵 𝑘) ≥ 1/𝜖] = ℙ [‖𝑵 −1
𝑘 ‖ ≤ 𝜖]

≤ ℙ [‖ℜ𝑵 −1
𝑘 + 𝑖ℑ𝑵 −1

𝑘 ‖𝐹 ≤ 𝜖
√
𝑘]

≤ ℙ [‖ℜ𝑵 −1
𝑘 ‖𝐹 ≤ 𝜖

√
𝑘, ‖ℑ𝑵 −1

𝑘 ‖𝐹 ≤ 𝜖
√
𝑘]

= 𝔼𝔼 [𝟏{‖ℜ𝑵 −1
𝑘 ‖𝐹 ≤ 𝜖

√
𝑘}𝟏{‖ℑ𝑵 −1

𝑘 ‖𝐹 ≤ 𝜖
√
𝑘} ||| 𝑴12, 𝑴21, 𝑴22]

= 𝔼 [𝟏{‖ℑ𝑵
−1
𝑘 ‖𝐹 ≤ 𝜖

√
𝑘}𝔼 [𝟏{‖ℜ𝑵 −1

𝑘 ‖𝐹 ≤ 𝜖
√
𝑘} ||| 𝑴12, 𝑴21, 𝑴22]] . (4.32)
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We can bound the inner conditional expectation using Observation 4.23:

𝔼 [𝟏{‖ℜ𝑵 −1
𝑘 ‖𝐹 ≤ 𝜖

√
𝑘} ||| 𝑴12, 𝑴21, 𝑴22] ≤

(
√
𝜋𝑘𝑛𝐾𝜖)𝑘2

Γ(𝑘2/2 + 1)
≤ (

√
2𝑒𝜋𝑛𝐾𝜖
√
𝑘 )

𝑘2

(4.33)

In the final two steps we have used the volume of a Frobenius norm ball in ℝ𝑘×𝑘 , and Stirling’s
approximation. Plugging into (4.32) gives

ℙ [𝜎𝑘(𝑵 𝑘) ≥ 1/𝜖] ≤ ℙ [‖ℑ𝑵 −1
𝑘 ‖𝐹 ≤ 𝜖

√
𝑘](

√
2𝑒𝜋𝑛𝐾𝜖
√
𝑘 )

𝑘2

,

and we now turn to the more serious task of the requisite small-ball probability estimate for ℑ𝑵 −1
𝑘 .

This calculation is facilitated by a second key observation, which is an immediate consequence of
the full expression (4.31) for ℑ𝑵 −1

𝑘 .

Observation 4.24. Conditional on 𝑴22, the imaginary part ℑ𝑵 −1
𝑘 is a quadratic function in 𝑴12

and 𝑴21, of the type studied in Section 4.3.

In particular, for any deterministic (𝑛 − 𝑘) × (𝑛 − 𝑘) matrices 𝑌 and 𝑋 , and 𝑗 satisfying 𝑛 − 𝑘 ≥
𝑗 > 𝑘2 + 𝑘 + 1, Theorem 4.15 implies

ℙ [‖𝑈12 − 𝑴12𝑌𝑴21 − 𝑴12𝑋𝑈21 − 𝑈12𝑋𝑴21 + 𝑈12𝑌𝑈21‖𝐹 ≤ 𝜖
√
𝑘]

≤ (1 + 𝑘2)
(

2𝐾 2𝑛
√
2𝑒𝜋𝑘

√
𝑗 − 𝑘 + 1𝜎𝑗(𝒀 ))

𝑘2

(

√
2𝑒𝜋𝜖
√
𝑘 )

𝑘2

= (1 + 𝑘2)
(

4𝐾 2𝑛 ⋅ 𝑒𝜋 ⋅ 𝜀
√
𝑗 − 𝑘 + 1𝜎𝑗(𝒀 ))

𝑘2

, (4.34)

(again using the volume of a Frobenius norm ball). Since 𝒀 depends only on the randomness in
𝑴22, and is thus independent of 𝑴12 and 𝑴21, conditioning and integrating over 𝑴22 gives us

ℙ [‖ℑ𝑵 −1
𝑘 ‖ ≤ 𝜖] ≤ (1 + 𝑘2)

(
4𝐾 2𝑛 ⋅ 𝑒𝜋 ⋅ 𝜀
√
𝑗 − 𝑘 + 1 )

𝑘2

𝔼 [𝜎𝑗(𝒀 )
−𝑘2

] . (4.35)

To finish the proof, we now need to bound this remaining expectation for a suitable choice
of 𝑗, satisfying 𝑛 − 𝑘 ≥ 𝑗 > 𝑘2 + 𝑘 + 1. In (4.29), we defined 𝒀 = ℑ(𝑴22 + 𝑖𝑈22)−1, and we now
require a more explicit formula. Using the representation of ℂ(𝑛−1)×(𝑛−1) as a set of block matrices
in ℝ2(𝑛−1)×2(𝑛−1), and again applying the Schur complement formula,

(
𝑿 −𝒀
𝒀 𝑿 ) = (

𝑴22 −𝑈22
𝑈22 𝑴22)

−1

= (
(𝑴22 + 𝑈22𝑴−1

22𝑈22)−1 (𝑴22 + 𝑈2,2𝑴−1
22𝑈22)−1𝑈22𝑴−1

22
−(𝑴22 + 𝑈22𝑴−1

22𝑈22)−1𝑈22𝑴−1
22 (𝑴2,2 + 𝑈22𝑴−1

22𝑈22)−1 )
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and hence
𝒀 = −(𝑴22 + 𝑈22𝑴−1

22𝑈22)−1𝑈22𝑴−1
22 . (4.36)

If we could invert 𝑈22, we could rewrite this as −(𝑴22𝑈 −1
22 𝑴22 + 𝑈22)−1 and set 𝑗 = 𝑛 − 𝑘, giving

𝜎𝑛−𝑘 (𝒀 )−𝑘
2
= ‖𝑴22𝑈22𝑴22 + 𝑈22‖𝑘

2
≤ (|𝜁 |−1‖𝑴22‖2 + |𝜁 |)

𝑘2 ≤ (|𝜁 |−1‖𝑴𝑛‖2 + |𝜁 |)
𝑘2 .

However, not every principal block of a permutation matrix is invertible, so we will need to work
a bit harder.

Since 𝑈 is a permutation matrix, and 𝑈22 is an (𝑛 − 𝑘) × (𝑛 − 𝑘) block of 𝜁𝑈 , by the usual
interlacing of singular values for submatrices [98, Corollary 7.3.6], we can be sure that 𝜎1(𝑈22) =
⋯ = 𝜎𝑛−2𝑘(𝑈22) = |𝜁 |. Hence, there exists a matrix 𝐸 of rank at most 2𝑘 such that 𝑈22 ≜ 𝑈22 + 𝐸 is
invertible, with all singular values equal to |𝜁 |. We can therefore write

𝒀 = −(𝑴22 + 𝑈22𝑴−1
22𝑈22)−1𝑈22𝑴−1

22 = −(𝑴22 + 𝑈22𝑴−1
22𝑈22 + 𝑬1)−1𝑈22𝑴−1

22 + 𝑬2

where 𝑬1 = −𝐸𝑴−1
22𝑈22 and 𝑬2 = −(𝑴22 − 𝑈22𝑴−1

22𝑈22)−1𝐸𝑴−1
22 . Since Rank(𝑬2) ≤ Rank(𝐸) ≤ 2𝑘,

interlacing of singular values upon low-rank updates [149, Theorem 1] ensures

𝜎𝑗(𝒀 ) ≥ 𝜎𝑗+2𝑘 ((𝑴22 + 𝑈22𝑴−1
22𝑈22 + 𝑬1)−1𝑈22𝑴−1

22) . (4.37)

On the other hand

(𝑴22 + 𝑈22𝑴−1
22𝑈22 + 𝑬1)−1𝑈22𝑴−1

22 = (𝑴22𝑈 −1
22 𝑴22 + 𝑈22 + 𝑀22𝑈 −1

22 𝑬1)−1, (4.38)

and since Rank(𝑴22𝑈 −1
22 𝑬1) ≤ Rank(𝑬1) ≤ Rank(𝐸) ≤ 2𝑘, a further application of the low-rank

update bound tells us

𝜎𝑗+2𝑘 ((𝑴22𝑈 −1
22 𝑴22 + 𝑈22 + 𝑴22𝑈 −1

22 𝑬1)−1) ≥ 𝜎𝑗+4𝑘 ((𝑴22𝑈 −1
22 𝑴22 + 𝑈22)−1) . (4.39)

Putting together (4.37), (4.38), and (4.39), we get

𝜎𝑗(𝒀 ) ≥ 𝜎𝑗+4𝑘 ((𝑴22𝑈 −1
22 𝑴22 + 𝑈22)−1) ,

and finally, setting 𝑗 = 𝑛 − 5𝑘, and recalling ‖𝑈2,2‖ = |𝜁 |, ‖𝑈 −1
2,2 ‖ = |𝜁 |−1, and ‖𝑴22‖ ≤ ‖𝑴𝑛‖, we have

𝜎𝑛−5𝑘(𝒀 )−𝑘
2
≤ ‖‖‖𝑴22𝑈 −1

22 𝑴22 + 𝑈22
‖‖‖
𝑘2
≤ (|𝜁 |−1‖𝑴𝑛‖2 + |𝜁 |)

𝑘2 (4.40)



CHAPTER 4. REGULARIZATION BY REAL PERTURBATIONS 66

We now assemble our work so far. For every 𝑘 satisfying 𝑛 − 𝑘 ≥ 𝑗 ≥ 𝑘2 + 𝑘 + 1,

ℙ [𝜎𝑘(𝑵 𝑘) ≥ 1/𝜖] ≤ ℙ [‖ℑ𝑵 −1
𝑘 ‖ ≤ 𝜖](

√
2𝑒𝜋𝑛𝐾𝜖
√
𝑘 )

𝑘2

≤ (1 + 𝑘2)
(
4𝐾 2𝑛 ⋅ 𝑒𝜋 ⋅ 𝜖
√
𝑗 − 𝑘 + 1 )

𝑘2

(

√
2𝑒𝜋𝑛𝐾𝜖
√
𝑘 )

𝑘2

𝔼 [𝜎𝑗(𝒀 )
−𝑘2

]

≤ (1 + 𝑘2)
(
4
√
2𝐾 3(𝑒𝜋𝑛)3/2

√
𝑘(𝑛 − 6𝑘 + 1))

𝑘2

(
𝜖2

|𝜁 |)

𝑘2

𝔼 (‖𝑴𝑛‖ + 𝜁 2)
𝑘2 setting 𝑗 = 𝑛 − 5𝑘.

For this to go through, we need 𝑛 ≥ max{6𝑘, (𝑘 +2)2} = (𝑘 +2)2. Finally, we can use 1/(𝑛 −6𝑘 +1) ≤
6𝑘/𝑛 to obtain the final result.

Proof of Theorem 4.5G
We will first modify the proof of Lemma 4.22, referring back to the argument in the prior section.
In order to perform these modifications, set 𝐾 = 1/𝛿 , and think of 𝑴𝑛 = 𝐾−1𝑯 𝑛. As above, 𝜁 ∈ ℝ is
a real number, 𝑈 is a permutation, and we write 𝑵 𝑘 for the upper left 𝑘 × 𝑘 block of (𝜁 𝑖𝑈 − 𝑴𝑛)−1.
In (4.33), using that the density of each entry of 𝑴𝑛 is bounded by (2𝜋)−1/2𝐾

√
𝑛, we find

𝔼 [𝟏{‖ℜ𝑁 −1
𝑘 ‖ ≤ 𝜖} || 𝑀12, 𝑀21𝑀22] ≤ (

√
𝑒𝑛𝐾𝜖
√
𝑘 )

𝑘2

.

In (4.34) and (4.35), swapping Theorem 4.15G for Theorem 4.15, we have that for any 𝑛−𝑘 ≥ 𝑗 > 2𝑘,

ℙ [‖ℑ𝑵 −1
𝑘 ‖ ≤ 𝜖] ≤ (

𝐾 2𝑛
2
√
𝑗 − 2𝑘 + 1)

𝑘2

𝔼 [𝜎𝑗(𝒀 )
−𝑘2

] ;

finally, in (4.40) if we now set 𝑗 = 𝑛 − 5𝑘, we have

𝔼 [𝜎𝑛−5𝑘(𝒀 )
−𝑘2

] ≤ 𝔼 [(|𝜁 |
−1‖𝑀‖2 + |𝜁 |)

𝑘2

] .

Putting all this together, for any 𝑘 satisfying 𝑛 ≥ 7𝑘,

ℙ [𝜎𝑘(𝑵 𝑘) ≥ 1/𝜖] ≤ (

√
7𝑒𝐾 3𝑛
2

𝜖2

|𝜁 |)

𝑘2

𝔼 [(‖𝑴𝑛‖2 + 𝜁 2)
𝑘2

] . (4.41)

Now, let 𝑧 ∈ ℂ, and continue as in the proof of Theorem 4.5 from Lemma 4.22. Recalling 𝐾 = 1/𝛿 ,
and substituting (4.41) in place of (4.25), we obtain

ℙ [𝜎𝑘(𝑧 − 𝐴 − 𝛿𝑯 𝑛) ≤ 𝜖] ≤ (
𝑛
𝑘)

2

(

√
7𝑒𝑘2𝑛3

2𝛿3 ((𝛿𝐵𝑯𝑛 ,2𝑘2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
𝜖2

|ℑ𝑧|)

𝑘2

.
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4.6 Minimum Eigenvalue Gap
This section is devoted to several results regarding eigenvalue gaps of real random matrices with
independent entries. Below we state the main result of this section.

Restatement of Theorem 4.6. Let 𝑛 ≥ 16, 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and 𝑴𝑛 be a random matrix
satisfying Assumption 4.1 with parameter 𝐾 > 0. For any 0 < 𝛿 < 𝐾 and 𝑠 < 1 < 𝑅:

ℙ [gap(𝐴 + 𝛿𝑴𝑛) ≤ 𝑠] ≤ 𝐶4.6𝑅2 (𝛿𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅) (𝐾/𝛿)5/2𝑛4𝑠2/7 + ℙ [‖𝐴 + 𝑴𝑛‖ ≥ 𝑅] ,

where 𝐶4.6 is a universal constant defined in equation (4.51). Moreover, if 𝑯 𝑛 is an 𝑛 × 𝑛 real Ginibre
and 0 < 𝛿 < 1 then

ℙ [gap(𝐴 + 𝛿𝑯 𝑛) ≤ 𝑠] ≤ 15 (‖𝐴‖ + 7)3 𝑛3𝛿−5/2𝑠2/7 + 𝑒−2𝑛.

As discussed in the introduction to this chapter, our proof will mirror the one in Section 3.4,
and hinge on the log majorization relationship between eigenvalues and singular values in lemma
3.11. As we did above, we will use a union bound over a well-chosen net. However, the proof
here contains as well a new complication, namelly that our tail bounds on the singular values
of 𝑧 − 𝐴 − 𝑴𝑛 depend on the shift 𝑧: on the real line they are governed by Theorem 4.4 , and
away from it by Theorem 4.5. To handle this, we will use a combination of nets, exploiting the
fact that real matrices have conjugate-symmetric spectra. Specifically, this symmetry means that
we can think of small gaps as arising in one of three different ways: gaps in which at least one
eigenvalue is real, gaps between a conjugate pair of eigenvalues with small imaginary part, and
gaps between complex eigenvalues away from the real line. Thus motivated, let us define, for any
matrix 𝑀 ∈ ℝ𝑛×𝑛 and 𝜁 > 0,

gapℝ(𝑀) ≜ min
{||𝜆𝑖(𝑀) − 𝜆𝑗(𝑀)|| ∶ 𝑖 ≠ 𝑗 and 𝜆𝑖(𝑀) ∈ ℝ

}
,

ℑmin(𝑀) ≜ min {|ℑ𝜆𝑖(𝑀)| ∶ 𝜆𝑖(𝑀) ∉ ℝ} ,
gapℑ≥𝜁 (𝑀) ≜ min

{||𝜆𝑖(𝑀) − 𝜆𝑗(𝑀)|| ∶ 𝑖 ≠ 𝑗 and |ℑ𝜆𝑖(𝑀)|, |ℑ𝜆𝑗(𝑀)| ≥ 𝜁
}
.

Proof of Theorem 4.6 . For most of the proof, let us absorb 𝛿 into the constant 𝐾—the condition
𝛿 < 1/𝐾 will not be relevant until the end.

First observe that if 𝜁 > 0,

{gap(𝐴 + 𝑴𝑛) ≤ 𝑠} = {gapℝ(𝐴 + 𝑴𝑛) ≤ 𝑠} ∪ {ℑmin(𝐴 + 𝑴𝑛) ≤ 𝜁 } ∪ {gapℑ≥𝜁 (𝐴 + 𝑴𝑛) ≤ 𝑠}. (4.42)

Now choose a covering of the region 𝔻(0, 𝑅) ⊂ ℂ with disks, whose centers will form the net, with
the property that any pair of eigenvalues at distance less than 𝑠 must both lie in at least one of
them. In view of (4.42), we will set up a separate net to union bound each of the events appearing
on the right-hand side: let

 ℝ
𝜂 ≜ {𝑗𝜂 ∶ 𝑗 ∈ ℤ} ∩ [−𝑅, 𝑅]

 ℂ
𝜁 ,𝜂 ≜ {𝜂𝑗 + 𝑖(𝜁 + 𝜂𝑘) ∶ 𝑗, 𝑘 ∈ ℤ} ∩ 𝐵(0, 𝑅).
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Then, judiciously choosing the spacing and radii of disks, for any 𝜁 > 0 we have:

ℙ [gap(𝐴 + 𝑴𝑛) ≤ 𝑠] ≤ ∑
𝑧∈ ℝ

2𝑠

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧, 3𝑠/2)| ≥ 2]

+ ∑
𝑧∈ ℝ

𝜁

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧,
√
2𝜁 )| ≥ 2]

+ ∑
𝑧∈ ℂ

𝜁 ,𝑠

ℙ [Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧,
√
5/4𝑠)| ≥ 2]

+ ℙ [‖𝐴 + 𝑴𝑛‖ ≥ 𝑅] .

(4.43)

The first line controls gapℝ, the second one ℑmin, the third one gapℑ≥𝜁 , and the final one the event
that some eigenvalue lies outside the region covered by our net. One could further optimize the
above in the pursuit of tighter constants, but we optimize for simplicity. The remainder of the
proof consists of bounding these events with Theorems 4.4 and 4.5—the constants and exponents
become somewhat unwieldy, and on a first reading we recommend following the argument at a
high level to avoid being bogged down in technicalities. The Gaussian case is quite similar, and
we will treat it at the end of the proof.

Step 1: Gaps on the Real Line. We first must bound the probability

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧, 3𝑠/2)| ≥ 2]

for 𝑧 ∈ ℝ. As we did in Section 3.4, we will first produce a tail bound on the product of the two
smallest singular values of 𝑧 − 𝐴 − 𝑴𝑛. For every 𝑧 ∈ ℝ and 𝑥 > 0,

ℙ [𝜎𝑛(𝑧 − 𝐴 − 𝑴𝑛)𝜎𝑛−1(𝑧 − 𝐴 − 𝑴𝑛) ≤ 𝑟2] ≤ ℙ [𝜎𝑛(𝐴 + 𝑴𝑛) ≤ 𝑟𝑥] + ℙ [𝜎𝑛−1(𝐴 + 𝑴𝑛) ≤ 𝑟/𝑥]
≤ 2𝐾𝑛2𝑟𝑥 + 16𝐾 4𝑛6𝑟4/𝑥4.

Optimizing in 𝑥 , we have

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧, 𝑟)| ≥ 2] ≤ (41/5 + 4−4/5) (2𝐾𝑟)8/5 𝑛14/5 ≤ 3𝑛14/5(
√
2𝐾𝑟)8/5. (4.44)

The rough bound || ℝ
2𝑠
|| ≤ (𝑅/𝑠 + 1) ≤ 3𝑅/2𝑠 now gives

∑
𝑧∈ ℝ

𝑠

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧, 3𝑠/2)| ≥ 2] ≤ ||
ℝ
𝑠
|| ⋅ 3𝑛

14/5(3
√
2𝐾𝑠/2)8/5

≤ 9𝑅(
√
2𝐾)8/5𝑛14/5𝑠3/5 (4.45)

Step 2: Eigenvalues Near the Real Line. Using (4.44) and imitating the remainder of Step 1,

∑
𝑧∈ ℝ

𝜁

𝑃 [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧,
√
2𝜁 )| ≥ 2] ≤ 8𝑅(

√
2𝐾)8/5𝑛14/5𝜁 3/5 (4.46)
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This directly implies a stand-alone tail bound on ℑmin, which we record for use in Section 4.7,:

ℙ [ℑmin(𝐴 + 𝑴𝑛) ≤ 𝜁 ] ≤ 8𝑅(
√
2𝐾)8/5𝑛14/5𝜁 3/5 + ℙ[‖𝑴𝑛‖ ≥ 𝑅]. (4.47)

Step 3: Eigenvalues Away from the Real Line. We finally turn to non-real 𝑧. As in Step 1, observe
that for any 𝑧 ∈ ℂ ⧵ ℝ, 𝑟 > 0, and 𝑛 ≥ 16, Theorem 4.5 implies

ℙ [|‖Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧, 𝑟)| ≥ 2] ≤ min
𝑥>0

{ℙ [𝜎𝑛(𝐴 + 𝑴𝑛) ≤ 𝑟𝑥] + ℙ [𝜎𝑛−1(𝐴 + 𝑴𝑛) ≤ 𝑟/𝑥]}

≤ min
𝑥>0

{
2𝐶4.5𝐾 3𝑛5 ((𝐵𝑴𝑛 ,2 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)

(𝑟𝑥)2

|ℑ𝑧|

+640𝐶4
4.5𝐾

12𝑛14 ((𝐵𝑴𝑛 ,8 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2)
4 𝑟8

𝑥8|ℑ𝑧|4

}

≤ 𝐶(4.48)(
(𝐵𝑴𝑛 ,8 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧| )

8/5

𝐾 24/5𝑟16/5𝑛34/5 (4.48)

where we have used 𝐵𝑴𝑛 ,1 ≤ 𝐵𝑴𝑛 ,8 and defined 𝐶(4.48) = 11𝐶4.5 = 88
√
3(𝑒𝜋)3/2.

Finally, observing that every 𝑧 ∈  ℂ
𝜁 ,𝑠 has |ℑ𝑧| > 𝜁 and |𝑧| ≤ 𝑅, we have

∑
𝑧∈ ℂ

𝜁 ,𝑠

ℙ [|Λ(𝐴 + 𝑴𝑛) ∩ 𝔻(𝑧,
√
5/4𝑠)| ≥ 2]

≤ 6(𝑅/𝑠)2𝐶(4.48) (
(𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅)2

𝜁 )

8/5

𝐾 24/5(
√
5𝑠/2)16/5𝑛34/5

≤ 𝐶(4.49)𝑅2(𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅)16/5
𝐾 24/5𝑠6/5𝑛34/5

𝜁 8/5
(4.49)

where 𝐶(4.49) ≜ 6(5/4)8/5𝐶(4.48) = 528(5/4)8/5
√
3(𝑒𝜋)3/2.

Step 4: Conclusion. We now put together the three steps above, substituting (4.45), (4.46), and (4.49)
into (4.43), and adding back in the 𝛿 scaling. Using the fact that 𝜓𝜁 3/5 +𝜙𝑠6/5𝜁 −8/5 ≤ 2𝜓 8/11𝜙3/11𝑠18/55,
we obtain

ℙ [gap(𝐴 + 𝑴𝑛) ≤ 𝑠] ≤ 9𝑅(
√
2𝐾/𝛿)8/5𝑛14/5𝑠3/5

+ 2 (𝐶(4.49)𝑅2(𝛿𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅)2(𝐾/𝛿)24/5𝑛34/5)
3/11

(8(
√
2𝐾/𝛿)8/5𝑛14/5)

8/11
𝑠18/55

+ ℙ [‖𝐴 + 𝛿𝑴𝑛‖ ≥ 𝑅]
≤ 𝐶4.6𝑅14/11 (𝛿𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅)6/11 (𝐾/𝛿)136/55𝑛214/55𝑠18/55 + ℙ [‖𝐴 + 𝑴𝑛‖ ≥ 𝑅]
≤ 𝐶4.6𝑅2 (𝛿𝐵𝑴𝑛 ,8 + ‖𝐴‖ + 𝑅) (𝐾/𝛿)5/2𝑛4𝑠2/7 + ℙ [‖𝐴 + 𝑴𝑛‖ ≥ 𝑅] , (4.50)
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where
𝐶4.6 ≜ 2𝐶3/11

(4.49) ⋅ 8
8/11√2

64/55
+ 9

√
2
8/5
< 250. (4.51)

Gaussian Case. Finally, we tackle the Gaussian case; we will be terse, as the structure of the proof
is identical. When 𝑧 ∈ 𝑅, Theorem 4.4G gives

ℙ [|Λ(𝐴 + 𝛿𝑯 𝑛) ∩ 𝔻(𝑧, 𝑟)| ≥ 2] ≤ min
𝑥>0

{
𝑛𝑟𝑥
𝛿

+ 4𝑒2 (
𝑛𝑟
2𝛿𝑥 )

4
}

=
5𝑒2/5

4
(𝑛𝑟/𝛿)8/5 ≤ 2(𝑛𝑟/𝛿)8/5. (4.52)

Similarly, using Theorem 4.5G for 𝑧 ∉ ℝ,

ℙ [|Λ(𝐴 + 𝛿𝑯 𝑛) ∩ 𝔻(𝑧, 𝑟)| ≥ 2] ≤ min
𝑥>0

{√
7𝑒𝑛4

2𝛿3
(9𝛿 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧
(𝑟𝑥)2

+
4 ⋅ 72𝑒2𝑛14

8𝛿12 (
(9𝛿 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧| )

4

(𝑟/𝑥)8
}

=
5(7𝑒)4/5

4 ⋅ 23/5 (
(9𝛿 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧| )

8/5

𝑛6𝑟16/5𝛿−24/5

≤ 9(
(9𝛿 + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧| )

8/5

𝑛6𝑟16/5𝛿−24/5

Using the same net as in the general proof above, and taking 𝑅 ≜ ‖𝐴‖ + 4𝛿 ,

ℙ [gap(𝐴 + 𝛿𝑯 𝑛) ≤ 𝑠] ≤ ∑
𝑧∈ ℝ

2𝑠

ℙ [|Λ(𝐴 + 𝛿𝑯 𝑛) ∩ 𝔻(𝑧, 3𝑠/2)| ≥ 2]

+ ∑
𝑧∈ ℝ

𝜁

𝑃 [|Λ(𝐴 + 𝛿𝑯 𝑛) ∩ 𝔻(𝑧,
√
2𝜁 )| ≥ 2]

+ ∑
𝑧∈ ℂ

𝜁 ,𝑠

ℙ [Λ(𝐴 + 𝛿𝑯 𝑛) ∩ 𝔻(𝑧,
√
5/4𝑠)| ≥ 2] + ℙ [‖𝐴 + 𝛿𝑯 𝑛‖ ≥ 𝑅]

≤
3(‖𝐴‖ + 4𝛿)

2𝑠
⋅ 2(3𝑛𝑠/2𝛿)8/5 +

3(‖𝐴‖ + 4𝛿)
2𝜁

⋅ 2(
√
2𝑛𝜁 /𝛿)8/5

+ 6(
‖𝐴‖ + 4𝛿

𝑠 )

2

⋅ 9 (
4(‖𝐴‖ + 6.5𝛿)2

𝜁 )

8/5

𝑛6(
√
5/4𝑠)16/5𝛿−24/5 + 𝑒−2𝑛

≤ 6 (‖𝐴‖ + 4𝛿) (𝑛/𝛿)8/5𝑠3/5 + 6 (‖𝐴‖ + 4𝛿) (𝑛/𝛿)8/5𝜁 3/5

+ 800 (‖𝐴‖ + 6.5𝛿)26/5 𝑛6𝑠6/5𝜁 −8/5𝛿−24/5 + 𝑒−2𝑛.
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Optimizing in 𝜁 using the same argument as the main proof, and 𝛿 < 1,

ℙ [gap(𝐴 + 𝛿𝑯 𝑛) ≤ 𝑠] ≤ 6 (‖𝐴‖ + 4𝛿) (𝑛/𝛿)8/5𝑠3/5

+ 2 (6 (‖𝐴‖ + 4𝛿) (𝑛/𝛿)8/5)
8/11

(800 (‖𝐴‖ + 6.5𝛿)26/5 𝑛6𝛿−24/5)
3/11 𝑠18/55 + 𝑒−2𝑛

≤ 6(‖𝐴‖ + 4𝛿)(𝑛/𝛿)8/5𝑠3/5 + 7(‖𝐴‖ + 6.5𝛿)118/55𝑛64/55𝑛18/11𝛿−136/55𝑠18/55 + 𝑒−2𝑛

≤ 15 (‖𝐴‖ + 7)3 𝑛3𝛿−5/2𝑠2/7 + 𝑒−2𝑛.

As in the non-Gaussian case, we separately state a tail bound for ℑmin:

ℙ [ℑmin(𝐴 + 𝛿𝑯 𝑛) ≤ 𝜁 ] ≤ 6 (‖𝐴‖ + 4𝛿) (𝑛/𝛿)8/5𝜁 3/5. (4.53)

4.7 Eigenvalue and Eigenvector Condition Numbers
In this section, we convert our probabilistic lower bounds on the least singular value into upper
bounds on the mean eigenvalue condition numbers, following Section 3.2 and using Lemmas 2.4
and 4.3.

Bounds in Expectation
We now come to the first main proposition of this section.

Proposition 4.25 (Condition Numbers of Real Eigenvalues). Let 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let
𝑴𝑛 satisfy Assumption 4.1 with parameter 𝐾 > 0. Write 𝝀1, ..., 𝝀𝑛 for the eigenvalues of 𝐴 + 𝛿𝑴𝑛.
Then for every measurable open set Ω ⊂ ℝ,

𝔼 ∑
𝑖∶𝝀𝑖∈Ω

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) ≤
𝐾𝑛2
√
2𝛿

⋅ Lebℝ(Ω).

In the real Ginibre case, one has the improvement

𝔼 ∑
𝑖∶𝝀𝑖∈Ω

𝜅𝑖(𝐴 + 𝛿𝑯 𝑛) ≤
𝑛
2𝛿

⋅ Lebℝ(Ω).

Proof. When 𝑧 is real, 𝑧 − 𝐴 is also real, so we may apply the tail bound in Corollary 4.21. In
particular, setting 𝑘 = 1, we obtain the following tail bound for real 𝑧:

ℙ[𝜎𝑛((𝑧 − 𝐴) + 𝛿(−𝑴𝑛)) ≤ 𝜖] <
√
2𝐾𝑛2𝜖
𝛿

.
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Since the eigenvalues of 𝑧 − (𝐴 + 𝛿𝑴𝑛) are distinct with probability 1, we have

2𝔼 ∑
𝑖∶𝜆𝑖∈Ω

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) ≤ 𝔼 lim inf
𝜖→0

𝜖−1 Lebℝ (Λ𝜖(𝐴 + 𝛿𝑴𝑛) ∩ Ω) Lemma 4.3

≤ lim inf
𝜖→0

𝜖−1𝔼∫
Ω
𝟏{𝑧∈Λ𝜖 (𝐴+𝛿𝑴𝑛)} 𝑑𝑧 Fatou’s lemma

= lim inf
𝜖→0

𝜖−1 ∫
Ω
ℙ[𝑧 ∈ Λ𝜖(𝐴 + 𝛿𝑴𝑛)] 𝑑𝑧 Fubini’s theorem

= lim inf
𝜖→0

𝜖−1 ∫
Ω
ℙ[𝜎𝑛(𝑧 − (𝐴 + 𝛿𝑴𝑛)) < 𝜖] 𝑑𝑧

≤
√
2𝐾𝑛2

𝛿
Lebℝ(Ω). Corollary 4.21

To obtain the improvement in the Ginibre case, in the final inequality we use the bound

ℙ[𝜎𝑛(𝑧 − (𝐴 + 𝛿𝑯 𝑛)) ≤ 𝜖] ≤
𝑛𝜖
𝛿

instead, from Theorem 4.4G.

We now give the analogous proposition for the nonreal eigenvalues.

Proposition 4.26 (Condition Numbers of Eigenvalues off the Real Line). Let 𝑛 ≥ 9. Let 𝐴 ∈ ℝ𝑛×𝑛

be deterministic. Let 𝑴𝑛 satisfy Assumption 4.1 with parameter 𝐾 > 0. Let 𝛿 > 0, and write 𝝀1, ..., 𝝀𝑛
for the eigenvalues of 𝐴 + 𝛿𝑴𝑛. Then for every open set Ω ⊆ ℂ ⧵ ℝ,

𝔼 ∑
𝑖∶𝝀𝑖∈Ω

𝜅2𝑖 (𝐴 + 𝛿𝑴𝑛)2 ≤
𝐶4.5𝐾 3𝑛5

𝛿3 ∫
Ω

(𝛿𝔼‖𝑴𝑛‖ + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧|
𝑑𝑧.

In the real Ginibre case, one may take 𝑛 ≥ 7 and replace the term 𝐶4.5𝐾 3 with
√
7𝑒
4𝜋 .

Proof. In the proof of Theorem 4.25, since Ω ⊆ ℂ ⧵ ℝ we replace Lemma 4.3 with Lemma 2.4. Since
𝑧 is no longer real we must also replace the singular value tail bound in Corollary 4.21 with the
one in Theorem 4.5 (or the one in Theorem 4.5G, for the Ginibre case).

Bounds with High Probability: Proofs of Theorems 4.7 and 4.7G
We now prove the main theorem of this section, which implies that all eigenvalue condition
numbers are bounded by poly(𝑛/𝛿) with probability 1 − 1/ poly(𝑛). In the notation of the theorem
below, 𝑅, ‖𝐴‖, 𝐾 , and 𝛿 will be Θ(1) in most applications, so 𝜖1 and 𝜖2 may be set to 1/𝑛𝐷 for
sufficiently high 𝐷.
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Restatement of Theorem 4.7. Let 𝑛 ≥ 9. Let 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let 𝑴𝑛 satisfy
Assumption 4.1 with parameter 𝐾 > 0. Let 0 < 𝛿 < 𝐾 min{1, ‖𝐴‖ + 𝑅}, and write 𝝀1, ..., 𝝀𝑛 for
the eigenvalues of 𝐴 + 𝛿𝑴𝑛. Let 𝑅 > 𝔼‖𝛿𝑴𝑛‖. Then for any 𝜖1, 𝜖2 > 0, with probability at least
1 − 2𝜖1 − 𝑂 (

𝑅(𝑅+‖𝐴‖)3/5𝐾 8/5𝑛14/5𝜖3/52
𝛿8/5 ) − 2ℙ[𝛿‖𝑴𝑛‖ > 𝑅] we have

∑
𝑖∶𝝀𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11 𝐶4.7𝐾𝑛2
‖𝐴‖ + 𝑅

𝛿
,

∑
𝑖∶𝝀𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11 log(1/𝜖2)𝐶4.7𝐾 3𝑛5 ⋅
(‖𝐴‖ + 𝑅)3

𝛿3
, and

𝜅𝑉 (𝐴 + 𝛿𝑴𝑛) ≤ 𝜖−11
√
log(1/𝜖2)𝐶4.7𝐾 3/2𝑛3 ⋅

(‖𝐴‖ + 𝑅)3/2

𝛿3/2
,

for some universal constant 𝐶4.7 > 0.

Proof. Going forward, assume that each of ∑𝑖∶𝝀𝑖∈ℝ 𝜅𝑖(𝐴+𝛿𝑴𝑛) and ∑𝑖∶𝝀𝑖∈ℂ⧵ℝ 𝜅
2
𝑖 (𝐴+𝛿𝑴𝑛) is at most

𝜖−11 times its expectation; by Markov’s inequality and a union bound this happens with probability
at least 1 − 2𝜖1.

Let 𝜁 ∈ (0, 𝑅) be a small parameter to be optimized later. Let 𝐿 ≜ ‖𝐴‖ + 𝑅, and define the regions
Ωℝ and Ωℂ as follows:

Ωℝ ≜ {𝑥 ∈ ℝ ∶ |𝑥| < 𝐿}
Ωℂ ≜ {𝑥 + 𝑦𝑖 ∈ ℂ ∶ |𝑥| < 𝐿 and 𝜁 < |𝑦| < 𝐿.}

Write 𝐸bound for the event that 𝛿‖𝑴𝑛‖ < 𝑅 and let 𝐸strip denote the event that ℑmin(𝐴 + 𝛿𝑴𝑛) > 𝜁 .
Then with probability at least 1−2𝜖1 −ℙ[𝐸bound] −ℙ[𝐸strip], all eigenvalues of 𝐴+𝛿𝑀𝑛 are contained
in Ωℝ ∪ Ωℂ, so

∑
𝑖∶𝝀𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) = ∑
𝑖∶𝝀𝑖∈Ωℝ

𝜅𝑖(𝐴 + 𝛿𝑴𝑛) ≤
𝐾𝑛2
√
2𝛿

Lebℝ(Ωℝ) ≤
√
2𝐾𝑛2𝐿
𝛿

and
∑

𝑖∶𝝀𝑖∈ℂ⧵ℝ
𝜅2𝑖 (𝐴 + 𝛿𝑴𝑛) = ∑

𝑖∶𝝀𝑖∈Ωℂ

𝜅2𝑖 (𝐴 + 𝛿𝑴𝑛)

≤
𝐶4.5𝐾 3𝑛5

𝛿3 ∫
Ωℂ

(𝛿𝔼‖𝑀𝑛‖ + ‖𝐴‖ + |ℜ𝑧|)2 + |ℑ𝑧|2

|ℑ𝑧|
d𝑧

≤ 2
𝐶𝐾 3𝑛5

𝛿3 ∫
𝐿

𝜁
∫

𝐿

−𝐿

(𝛿𝔼‖𝑀𝑛‖ + ‖𝐴‖ + |𝑥|)2 + 𝑦2

𝑦
d𝑥 d𝑦

≤ 2
𝐶4.5𝐾 3𝑛5

𝛿3 ∫
𝐿

𝜁
2𝐿

(2𝐿)2 + 𝐿2

𝑦
d𝑦

= 20
𝐶4.5𝐾 3𝑛5

𝛿3
𝐿3(log 𝐿 + log(1/𝜁 )).
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Finally recall from (4.47) that

ℙ[𝐸strip] = 𝑂(𝑅𝐾 8/5𝑛14/5𝜁 3/5/𝛿8/5) + ℙ[𝛿‖𝑴𝑛‖ ≥ 𝑅],

so setting 𝜁 = 𝐿𝜖2 yields the result.
To obtain the bound on 𝜅𝑉 , use Lemma 2.2.

In the special case of Ginibre matrices, we will endeavor to give an explicit bound on the
constant factors appearing in the proof of Theorem 4.7 without being too wasteful. We also save
one factor of 𝑛 in the bound for real eigenvalues in comparison to Theorem 4.7.

Restatement of Theorem 4.7G. Let 𝑛 ≥ 7. Let 𝐴 ∈ ℝ𝑛×𝑛 be deterministic, and let 𝑯 𝑛 be a real
Ginibre matrix. Let 0 < 𝛿 < min{1, ‖𝐴‖}, and write 𝝀1, ..., 𝝀𝑛 for the eigenvalues of 𝐴 + 𝛿𝑯 𝑛. Then
for any 𝜖1, 𝜖2 > 0, with probability at least 1 − 2𝜖1 − 30‖𝐴‖8/5𝑛8/5

𝛿8/5 𝜖3/52 − 2𝑒−2𝑛 we have

∑
𝑖∶𝝀𝑖∈ℝ

𝜅𝑖(𝐴 + 𝛿𝑯 𝑛) ≤ 5𝜖−11 𝑛
‖𝐴‖
𝛿
,

∑
𝑖∶𝝀𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝑯 𝑛) ≤ 1000𝜖−11 log(1/𝜖2)
𝑛5‖𝐴‖3

𝛿3
, and

𝜅𝑉 (𝐴 + 𝛿𝑴𝑛) ≤ 1000𝜖−11
√
log(1/𝜖2)

𝑛3‖𝐴‖3/2

𝛿3/2
.

Proof. We identify the necessary modifications to the proof of Theorem 4.7. First, set 𝑅 = 4𝛿 ,
so that ℙ[𝛿‖𝑯 𝑛‖ > 𝑅] < 𝑒−2𝑛. The statement for real eigenvalues is then immediate, using the
improvement for Ginibre matrices in Proposition 4.25.

Now we proceed to the bound for the nonreal eigenvalues. Take 𝜁 = 𝜖2‖𝐴‖, so that by (4.53)
we have

ℙ[𝐸strip] ≤ 6(‖𝐴‖ + 4𝛿)
𝑛8/5‖𝐴‖3/5𝜖3/52

𝛿8/5
≤
30𝑛8/5‖𝐴‖8/5𝜖3/52

𝛿8/5
,

where we use 𝛿 < ‖𝐴‖. Recall 𝔼‖𝑯 𝑛‖ ≤ 2 (see [8]). Replacing 𝐶4.5𝐾 3 with
√
7𝑒
4𝜋 as indicated in

Proposition 4.26, and computing the integral

∫
𝐿

𝜁
∫

𝐿

−𝐿

(𝐿 + |𝑥|)2 + 𝑦2

|𝑦|
d𝑥 d𝑦 =

14
3
𝐿3(log 𝐿 + log(1/𝜁 )) + 𝐿3 − 𝐿𝜁 2

≤
14
3
𝐿3(log 𝐿 + log(1/𝜖2) − log ‖𝐴‖) + 𝐿3,

one obtains

∑
𝑖∶𝝀𝑖∈ℂ⧵ℝ

𝜅2𝑖 (𝐴 + 𝛿𝑯 𝑛) ≤
7
√
7𝑒

6𝜋𝛿3
𝑛5(‖𝐴‖ + 4𝛿)3(log(‖𝐴‖ + 4𝛿) + log(1/𝜖2) − log ‖𝐴‖ + 3/14).

Using 𝛿 < ‖𝐴‖ and cleaning up the constants, we arrive at the form in the theorem statement.
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4.8 FurtherQuestions
There are a few natural directions to pursue. For instance, what can be said about the eigenvalue
condition numbers for random matrices without continuous entries? Solving this question would
require essentially different ideas from those presented in this chapter. More concretely, our proof
technique requires

lim
𝜖→0

ℙ[𝜎𝑛(𝑧 − (𝐴 + 𝑴𝑛)) ≤ 𝜖] = 0,

and this may no longer hold if the distributions of the entries of 𝑴𝑛 are allowed to be discrete. A
natural starting point is the case of i.i.d. ±1 entries:

Problem 4.27. Let𝑴𝑛 be a matrix with independent Rademacher entries. For which deterministic
matrices 𝐴 and which 𝛿 > 0 does it hold, with high probability, that 𝜅𝑉 (𝐴 + 𝛿𝑴𝑛) = 𝑂(𝑛𝐶) for some
𝐶 > 0?

With regards to the least singular value of complex shifts of real ensembles, we posit the
following possible improvement to Theorem 4.5G in the dependence on 𝑛:

Conjecture 4.28. Let 𝑯 𝑛 be an 𝑛 × 𝑛 real Ginibre matrix. Then, for any constant 𝐶 > 0 there exists
a constant 𝐶 ′ (depending on 𝐶 only) such that for any 𝜖 > 0 and 𝑧 ∈ ℂ ⧵ ℝ with |𝑧| ≤ 𝐶 it holds that

ℙ [𝜎𝑛(𝑧 − 𝑯 𝑛) ≤ 𝜖] ≤
𝐶 ′𝑛2𝜖2

|ℑ𝑧|
. (4.54)

Actually, we believe that a stronger conjecture is true. Namely, the bound in (4.54) should hold
even when 𝑯 𝑛 is substituted by 𝐴 + 𝑯 𝑛, where 𝐴 ∈ ℝ𝑛×𝑛 is deterministic. In this case 𝐶 ′ is also
allowed to depend on ‖𝐴‖.

Our next conjecture is that Szarek’s bound for singular values of real Ginibre matrices in
Theorem 4.13 holds, up to the value of the universal constant 𝐶 , in the more general setting of
matrices satisfying Assumption 4.1. This would constitute an improvement of Theorem 4.4 in the
dependence on 𝑘 and 𝑛.

Conjecture 4.29. Let 𝑴𝑛 be a real random matrix satisfying Assumption 4.1 with parameter 𝐾 > 0
and perhaps with some moment assumptions on its entries. Then, there is a universal constant 𝐶 such
that for any deterministic 𝐴 ∈ ℝ𝑛×𝑛, it holds that

ℙ [𝜎𝑛−𝑘+1(𝐴 + 𝑴𝑛) ≤
𝑘𝜖
𝑛 ] ≤ (𝐶𝐾𝜖)𝑘

2
.

It is worth noting that in some sense Conjecture 4.29 is known to be true when 𝑘 = 1. This was
proven by Tikhomirov in [150] under weaker assumptions on the independence of the entries of
𝑴𝑛 and with a mild technical assumption about the decay of their densities.
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Bibliographic Note
This chapter is primarily drawn from [16], and the material appears largely as it did there, other
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proof and statement of which appeared originally as [19, Theorem 2.4].
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Chapter 5

Diagonalization by Spectral Bisection

5.1 Introduction
We now begin the second main focus of this thesis: studying the algorithmic problem of approxi-
mately finding all of the eigenvalues and eigenvectors of a given arbitrary 𝑛 × 𝑛 complex matrix.
While this problem is quite well-understood in the special case of Hermitian matrices (see, e.g.,
[127]), the general non-Hermitian case has remained mysterious from a theoretical standpoint
even after several decades of research. In particular, the previously best known provable algo-
rithms for this problem run in time 𝑂(𝑛10/𝛿2) [5] or 𝑂(𝑛𝑐 log(1/𝛿)) [45] with 𝑐 ≥ 12 where 𝛿 > 0
is the desired accuracy, depending on the model of computation and notion of approximation
considered.1 To be sure, the non-Hermitian case is well-motivated: coupled systems of differential
equations, linear dynamical systems in control theory, transfer operators in mathematical physics,
and the nonbacktracking matrix in spectral graph theory are but a few situations where finding
the eigenvalues and eigenvectors of a non-Hermitian matrix is important.

The key difficulties in dealing with non-normal matrices are the interrelated phenomena of
non-orthogonal eigenvectors and spectral instability, the latter referring to extreme sensitivity of
the eigenvalues and invariant subspaces to perturbations of the matrix. Non-orthogonality slows
down convergence of standard algorithms such as the power method, and spectral instability
can force the use of very high precision arithmetic, also leading to slower algorithms. Both
phenomena together make it difficult to reduce the eigenproblem to a subproblem by “removing”
an eigenvector or invariant subspace, since this can only be done approximately and one must
control the spectral stability of the subproblem in order to be able to rigorously reason about it.

In this chapter, we overcome these difficulties by way of the Gaussian regularization results in
Chapter 3: adding a small complex Gaussian perturbation to any matrix typically yields a matrix
with well-conditioned eigenvectors and a large minimum gap between the eigenvalues, implying
spectral stability. We complement the above by proving that a variant of the well-known spectral

1A detailed discussion of these and other related results appears in Section 5.2.
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bisection algorithm in numerical linear algebra [30] is both fast and numerically stable when run
on a matrix whose eigenvector condition number and minimum gap are suitably controlled —
we call an iterative algorithm numerically stable if it can be implemented using finite precision
arithmetic with polylogarithmically many bits, corresponding to a dynamical system whose
trajectory to the approximate solution is robust to adversarial noise (see, e.g. [141]).

The main result of this chapter, Theorem 1.7 from Chapter 1, is that the spectral bisection
algorithm in finite arithmetic can be reduced to a polylogarithmic (in the desired accuracy and
dimension 𝑛) number of invocations of standard numerical linear algebra routines (multiplication,
inversion, and QR factorization), each of which is reducible to matrix multiplication [61], yielding
a nearly matrix multiplication runtime for the whole algorithm. This improves on the previously
best known running time in the Hermitian case (which is 𝑂(𝑛𝜔+1polylog(𝑛)) bit operations in the
setting 𝛿 = 1/ poly(𝑛) [31]) and yields the same improvement for the related problem of computing
the singular value decomposition of a matrix.

Matrix Sign Function
The key step in the bisection algorithm is computing the sign function of a matrix, a problem of
independent interest in many areas such including control theory and approximation theory [100].
Recall from Chapter 1 that the sign function of a matrix 𝐴 ∈ ℂ𝑛×𝑛 is

sgn(𝐴) ≜ 𝑃+ − 𝑃−,

where 𝑃± are the spectral projectors onto the invariant subspaces associated to the eigenvalues in
the right and left halfplanes of ℂ, respectively. The sign function is undefined for matrices with
eigenvalues on the imaginary axis. Quantifying this discontinuity, Bai and Demmel [10] defined
the following condition number for the sign function:

𝜅sgn(𝑀) ≜ inf
{
1/𝜖2 ∶ Λ𝜖(𝑀) does not intersect the imaginary axis

}
, (5.1)

and gave perturbation bounds for sgn(𝑀) depending on 𝜅sgn.
Roberts [133] showed that the simple iteration

𝐴𝑘+1 =
1
2 (

𝐴𝑘 + 𝐴−1
𝑘 ) (5.2)

converges globally and quadratically to sgn(𝐴) in exact arithmetic, but his proof relies on the fact
that all iterates of the algorithm are simultaneously diagonalizable, a property which is destroyed
in finite arithmetic since inversions can only be done approximately.2 In Section 5.6 we show that
this iteration is indeed convergent when implemented in finite arithmetic for matrices with small
𝜅sgn, given a numerically stable matrix inversion algorithm. This leads to the following result:

2Doing the inversions exactly in rational arithmetic could require numbers of bit length 𝑛𝑘 for 𝑘 iterations, which
will typically not even be polynomial.
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Theorem 5.1 (Sign Function Algorithm). There is a deterministic algorithm SGN which on input
an 𝑛 × 𝑛 matrix 𝐴 with ‖𝐴‖ ≤ 1, a number 𝐾 with 𝐾 ≥ 𝜅sgn(𝐴), and a desired accuracy 𝛽 ∈ (0, 1/12),
outputs an approximation SGN(𝐴) with

‖SGN(𝐴) − sgn(𝐴)‖ ≤ 𝛽,

in
𝑂((log 𝐾 + log log(1/𝛽))𝑇INV(𝑛)) (5.3)

arithmetic operations on a floating point machine with

𝑂(log 𝑛 log3 𝐾(log 𝐾 + log(1/𝛽)))

bits of precision, where 𝑇INV(𝑛) denotes the number of arithmetic operations used by a numerically
stable matrix inversion algorithm (satisfying Definition 5.5).

The key idea in the proof of Theorem 5.1 is to control the evolution of the pseudospectra
Λ𝜖𝑘 (𝐴𝑘) of the iterates with appropriately decreasing (in 𝑘) parameters 𝜖𝑘 , using a sequence of
carefully chosen shrinking contour integrals in the complex plane. The pseudospectrum provides
a richer induction hypothesis than scalar quantities such as condition numbers, and allows one
to control all quantities of interest using the holomorphic functional calculus. This technique is
introduced in Section 5.6, yielding Theorem 5.1.

Diagonalization by Spectral Bisection
Given an algorithm for computing the sign function, there is a natural and well-known approach
to the eigenproblem pioneered in [30]. The idea is that the matrices (1 ± sgn(𝐴))/2 are spectral
projectors onto the invariant subspaces corresponding to the eigenvalues of 𝐴 in the left and right
open half planes, so if some shifted matrix 𝑧 + 𝐴 or 𝑧 + 𝑖𝐴 has roughly half its eigenvalues in each
half plane, the problem can be reduced to smaller subproblems appropriate for recursion.

The two difficulties in carrying out the above approach are: (a) efficiently computing the sign
function (b) finding a balanced splitting along an axis that is well-separated from the spectrum.
These are nontrivial even in exact arithmetic, since the iteration (5.2) converges slowly if (b) is
not satisfied, even without roundoff error. We use Theorem 1.10 to ensure that a good splitting
always exists after a small Gaussian perturbation of order 𝛿 , and Theorem 5.1 to compute splittings
efficiently in finite precision. Combining this with well-understood techniques such as rank-
revealing QR factorization, we obtain the our main theorem, whose proof appears in Section
5.5.

Restatement of Theorem 1.7. There is a randomized algorithm EIG which on input any matrix
𝐴 ∈ ℂ𝑛×𝑛 with ‖𝐴‖ ≤ 1 and a desired accuracy parameter 𝛿 > 0 outputs a diagonal 𝐷 and invertible 𝑉
such that

‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿 and 𝜅(𝑉 ) ≤ 32𝑛2.5/𝛿
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in
𝑂 (𝑇MM(𝑛) log2

𝑛
𝛿 )

arithmetic operations on a floating point machine with

𝑂(log4(𝑛/𝛿) log 𝑛)

bits of precision, with probability at least 1 − 12/𝑛. Here 𝑇MM(𝑛) refers to the running time of a
numerically stable matrix multiplication algorithm (detailed in Section 5.3).

Remark 5.2 (Accuracy vs. Precision). The gold standard of “backward stability” in numerical
analysis postulates that

log(1/𝐮) = log(1/𝛿) + log(𝑛),

i.e., the number of bits of precision is linear in the number of bits of accuracy. The relaxed notion
of “logarithmic stability” introduced in [62] requires

log(1/𝐮) = log(1/𝛿) + 𝑂(log𝑐(𝑛) log(𝜅))

for some constant 𝑐, where 𝜅 is an appropriate condition number. In comparison, Theorem 1.7
obtains the weaker relationship

log(1/𝐮) = 𝑂(log4(1/𝛿) log(𝑛) + log5(𝑛)),

which is still polylogarithmic in 𝑛 in the regime 𝛿 = 1/ poly(𝑛).

5.2 Related Work
Smoothed Analysis and Free Probability. The study of numerical algorithms on Gaussian
random matrices (i.e., the case 𝐴 = 0 of smoothed analysis) dates back to [155, 140, 63, 70]. The
powerful idea of improving the conditioning of a numerical computation by adding a small amount
of Gaussian noise was introduced by Spielman and Teng in [143], in the context of the simplex
algorithm. Sankar, Spielman, and Teng [136] showed that adding real Gaussian noise to any matrix
yields a matrix with polynomially-bounded condition number. The main difference between our
results and most of the results on smoothed analysis (including [5]) is that our running time
depends logarithmically rather than polynomially on the size of the perturbation.

The broad idea of regularizing the spectral instability of a nonnormal matrix by adding a
random matrix can be traced back to the work of Śniady [142] and Haagerup and Larsen [92] in
the context of Free Probability theory.
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Matrix Sign Function. The matrix sign function was introduced by Zolotarev in 1877. It became
a popular topic in numerical analysis following the work of Beavers and Denman [29, 30, 65] and
Roberts [133], who used it first to solve the algebraic Ricatti and Lyapunov equations and then as
an approach to the eigenproblem; see [100] for a broad survey of its early history. The numerical
stability of Roberts’ Newton iteration was investigated by Byers [42], who identified some cases
where it is and isn’t stable. Malyshev [113], Byers, He, and Mehrmann [43], Bai, Demmel, and
Gu [11], and Bai and Demmel [10] studied the condition number of the matrix sign function,
and showed that if the Newton iteration converges then it can be used to obtain a high-quality
invariant subspace,3 but did not prove convergence in finite arithmetic and left this as an open
question.4 The key issue in analyzing the convergence of the iteration is to bound the condition
numbers of the intermediate matrices that appear, as N. Higham remarks in his 2008 textbook:

Of course, to obtain a complete picture, we also need to understand the effect of
rounding errors on the iteration prior to convergence. This effect is surprisingly
difficult to analyze. … Since errors will in general occur on each iteration, the overall
error will be a complicated function of 𝜅sign(𝑋𝑘) and 𝐸𝑘 for all 𝑘. … We are not aware of
any published rounding error analysis for the computation of sign(𝐴) via the Newton
iteration. –[95, Section 5.7]

This is precisely the problem solved by Theorem 5.1, which is as far as we know the first provable
algorithm for computing the sign function of an arbitrary matrix which does not require computing
the Jordan form.

In the special case of Hermitian matrices, Higham [93] established efficient reductions between
the sign function and the polar decomposition. Byers and Xu [44] proved backward stability of a
certain scaled version of the Newton iteration for Hermitian matrices, in the context of computing
the polar decomposition. Higham and Nakatsukasa [119] (see also the improvement [118]) proved
backward stability of a different iterative scheme for computing the polar decomposition, and
used it to give backward stable spectral bisection algorithms for the Hermitian eigenproblem with
𝑂(𝑛3)-type complexity.

Non-Hermitian Eigenproblem. The eigenproblem has been thoroughly studied in the numeri-
cal analysis community, in the floating point model of computation. While there are provably fast
and accurate algorithms in the Hermitian case (see the next subsection) and a large body of work
for various structured matrices (see, e.g., [34]), the general case is not nearly as well-understood.
As recently as 1997, J. Demmel remarked in his well-known textbook [64]: “… the problem of

3This is called an a fortiriori bound in numerical analysis.
4[43] states: “A priori backward and forward error bounds for evaluation of the matrix sign function remain

elusive.”
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devising an algorithm [for the non-Hermitian eigenproblem] that is numerically stable and globally
(and quickly!) convergent remains open.”

Demmel’s question remained entirely open until 2015, when it was answered in the following
sense by Armentano, Beltrán, Bürgisser, Cucker, and Shub in the remarkable paper [5]. They
exhibited an algorithm (see their Theorem 2.28) which given any 𝐴 ∈ ℂ𝑛×𝑛 with ‖𝐴‖ ≤ 1 and 𝜎 > 0
produces in 𝑂(𝑛9/𝜎 2) expected arithmetic operations the diagonalization of the nearby random
perturbation 𝐴 + 𝜎𝐺 where 𝐺 is a matrix with standard complex Gaussian entries. By setting 𝜎
sufficiently small, this may be viewed as a backward approximation algorithm for diagonalization,
in that it solves a nearby problem essentially exactly5 – in particular, by setting 𝜎 = 𝛿/

√
𝑛 and

noting that ‖𝐺‖ = 𝑂(√𝑛) with very high probability, their result implies a running time of𝑂(𝑛10/𝛿2)
in our setting. Their algorithm is based on homotopy continuation methods, which they argue
informally are numerically stable and can be implemented in finite precision arithmetic. Our
algorithm is similar on a high level in that it adds a Gaussian perturbation to the input and then
obtains a high accuracy forward approximate solution to the perturbed problem. The difference is
that their overall running time depends polynomially rather than logarithmically on the accuracy
𝛿 desired with respect to the original unperturbed problem.

Result Error Arithmetic Ops Boolean Ops Restrictions
[5]a Backward 𝑛10/𝛿2 𝑛10/𝛿2 ⋅ polylog(𝑛/𝛿)
[31]b Backward 𝑛𝜔+1polylog(𝑛) log(1/𝛿) 𝑛𝜔+1polylog(𝑛) log(1/𝛿) Hermitian
Theorem 1.7 c Backward 𝑇MM(𝑛) log2(𝑛/𝛿) 𝑇MM(𝑛) log6(𝑛/𝛿) log(𝑛)

a Does not specify a particular bound on precision.
b Bounds circuit complexity in exact arithmetic and argues informally that the algorithm is stable if all

operations are rounded to 𝑂(log(1/𝛿)) bits.
b 𝑇MM(𝑛) = 𝑂(𝑛𝜔+𝜂) for every 𝜂 > 0, see Definition 5.4 for details.

Table 5.1: Results for finite-precision floating-point arithmetic

If we relax the requirements further and ask for any provable algorithm in any model of
Boolean computation, there is only one more positive result with a polynomial bound on the
number of bit operations: Jin Yi Cai showed in 1994 [45] that given a rational 𝑛 × 𝑛 matrix 𝐴 with
integer entries of bit length 𝑎, one can find an 𝛿-forward approximation to its Jordan Normal
Form 𝐴 = 𝑉 𝐽𝑉 −1 in time poly(𝑛, 𝑎, log(1/𝛿)), where the degree of the polynomial is at least 12.
This algorithm works in the rational arithmetic model of computation, so it does not quite answer
Demmel’s question since it is not a numerically stable algorithm. However, it enjoys the significant
advantage of being able to compute forward approximations to discontinuous quantities such as
the Jordan structure.

5The output of their algorithm is 𝑛 vectors on each of which Newton’s method converges quadratically to an
eigenvector, which they refer to as “approximation à la Smale”.
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Result Model Error Arithmetic Ops Boolean Ops Restrictions
[45] Rational Forwarda poly(𝑎, 𝑛, log(1/𝛿))b poly(𝑎, 𝑛, log(1/𝛿))
[124] Rational Forward 𝑛𝜔 + 𝑛 log log(1/𝛿) 𝑛𝜔+1𝑎 + 𝑛2 log(1/𝛿) log log(1/𝛿) Eigs onlyc

[111] Finitec Forward 𝑛𝜔 log(𝑛) log(1/𝛿) 𝑛𝜔 log4(𝑛) log2(𝑛/𝛿) 𝜆1 of Herm.
a Actually computes the Jordan Normal Form. The degree of the polynomial is not specified, but is at least 12 in 𝑛.
b In the bit operations, 𝑎 denotes the bit length of the input entries.
c Uses a custom bit representation of intermediate quantities.

Table 5.2: Results for other models of arithmetic

As far as we are aware, there are no other published provably polynomial-time algorithms for
the general eigenproblem. The two standard references for diagonalization appearing most often in
theoretical computer science papers do not meet this criterion. In particular, the widely cited work
by Pan and Chen [124] proves that one can compute the eigenvalues of 𝐴 in 𝑂(𝑛𝜔 + 𝑛 log log(1/𝛿))
(suppressing logarithmic factors) arithmetic operations by finding the roots of its characteristic
polynomial, which becomes a bound of 𝑂(𝑛𝜔+1𝑎 + 𝑛2 log(1/𝛿) log log(1/𝛿)) bit operations if the
characteristic polynomial is computed exactly in rational arithmetic and the matrix has entries of
bit length 𝑎. However that paper does not give any bound for the amount of time taken to find
approximate eigenvectors from approximate eigenvalues, and states this as an open problem.6

Finally, the important work of Demmel, Dumitriu, and Holtz [61] (see also the followup [13]),
which we rely on heavily, does not claim to provably solve the eigenproblem either—it bounds
the running time of one iteration of a specific algorithm, and shows that such an iteration can be
implemented numerically stably, without proving any bound on the number of iterations required
in general.

Hermitian Eigenproblem. For comparison, the eigenproblem for Hermitian matrices is better
understood. We cannot give a complete bibliography of this huge area, but mention one relevant
landmark result: the work of Wilkinson [164], who exhibited a globally convergent shifting
strategy for the QR algorithm, and the work of Dekker and Traub [60] who quantified the rate of
convergence of Wilkinson’s shift. We refer the reader to [127, §8.10] for the simplest and most
insightful proof of this result, due to Hoffman and Parlett [96]. However, the above convergence
proofs are all in exact arithmetic, and we are not aware of rigorous analysis of Wilkinson’s shift
(or any other) in finite arithmetic.

6“The remaining nontrivial problems are, of course, the estimation of the above output precision 𝑝 [sufficient
for finding an approximate eigenvector from an approximate eigenvalue], … . We leave these open problems as a
challenge for the reader.” – [124, Section 12].
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There has also recently been renewed interest in this problem in the theoretical computer
science community, with the goal of bringing the runtime close to 𝑂(𝑛𝜔): Louis and Vempala
[111] show how to find a 𝛿−approximation of just the largest eigenvalue in 𝑂(𝑛𝜔 log4(𝑛) log2(1/𝛿))
bit operations, and Ben-Or and Eldar [31] give an 𝑂(𝑛𝜔+1polylog(𝑛))-bit-operation algorithm for
finding a 1/ poly(𝑛)-approximate diagonalization of an 𝑛 × 𝑛 Hermitian matrix normalized to have
‖𝐴‖ ≤ 1.

Reader Guide. This chapter contains a lot of parameters and constants. On first reading, it
may be good to largely ignore the constants not appearing in exponents, and to keep in mind the
typical setting 𝛿 = 1/ poly(𝑛) for the accuracy, in which case the important auxiliary parameters
𝜔, 1 − 𝛼, 𝜖, 𝛽, 𝜂 are all 1/ poly(𝑛), and the machine precision is log(1/𝐮) = polylog(𝑛).

5.3 Finite Arithmetic Assumptions
We begin by briefly elaborating on the axioms for floating-point arithmetic given in Chapter 2.
Similar guarantees to the ones appearing in that section for scalar-scalar operations also hold for
operations such as matrix-matrix addition and matrix-scalar multiplication. In particular, if 𝐴 is
an 𝑛 × 𝑛 complex matrix,

fl(𝐴) = 𝐴 + 𝐴 ◦ Δ |Δ𝑖,𝑗 | < 𝐮.

It will be convenient for us to write such errors in additive, as opposed to multiplicative form. We
can convert the above to additive error as follows. Recall that for any 𝑛 × 𝑛 matrix, the spectral
norm (the 𝓁 2 → 𝓁 2 operator norm) is at most √𝑛 times the 𝓁 2 → 𝓁 1 operator norm, i.e. the
maximal norm of a column. Thus we have

‖𝐴 ◦ Δ‖ ≤
√
𝑛max

𝑖
‖(𝐴 ◦ Δ)𝑒𝑖‖ ≤

√
𝑛max

𝑖,𝑗
|Δ𝑖,𝑗 | max

𝑖
‖𝐴𝑒𝑖‖ ≤ 𝐮

√
𝑛‖𝐴‖. (5.4)

For more complicated operations such as matrix-matrix multiplication and matrix inversion, we
use existing error guarantees from the literature; this is discussed further below.

We will also need to compute the trace of a matrix 𝐴 ∈ ℂ𝑛×𝑛, and normalize a vector 𝑥 ∈ ℂ𝑛.
Error analysis of these is standard (see for instance the discussion in [94, Chapters 3-4]) and the
results in this chapter are highly insensitive to the details. For simplicity, calling 𝑥̂ ≜ 𝑥/‖𝑥‖, we
will assume that

|fl (tr 𝐴) − tr 𝐴| ≤ 𝑛‖𝐴‖𝐮 (5.5)
‖fl(𝑥̂) − 𝑥̂‖ ≤ 𝑛𝐮. (5.6)

Each of these can be achieved by assuming that 𝐮𝑛 ≤ 𝜖 for some suitably chosen 𝜖, independent of
𝑛, a requirement which will be depreciated shortly by several tighter assumptions on the machine
precision.



CHAPTER 5. DIAGONALIZATION BY SPECTRAL BISECTION 85

Throughout the chapter, we will take the pedagogical perspective that our algorithms are games
played between the practitioner and an adversary who may additively corrupt each operation. In
particular, we will include explicit error terms (always denoted by 𝐸(⋅)) in each appropriate step
of every algorithm. In many cases we will first analyze a routine in exact arithmetic—in which
case the error terms will all be set to zero—and subsequently determine the machine precision 𝐮
necessary so that the errors are small enough to guarantee convergence.

Sampling Gaussians in Finite Precision
For various parts of the algorithm, we will need to sample from normal distributions. For our model
of arithmetic, we assume that the complex normal distribution can be sampled up to machine
precision in 𝑂(1) arithmetic operations. To be precise, we assume the existence of the following
sampler:

Definition 5.3 (Complex Gaussian Sampling). A 𝑐N-stable Gaussian sampler N(𝜎) takes as input
𝜎 ∈ ℝ≥0 and outputs a sample of a random variable 𝐺 = N(𝜎) with the property that there exists
𝐺 ∼ 𝑁ℂ(0, 𝜎 2) satisfying

|𝐺 − 𝐺| ≤ 𝑐N𝜎 ⋅ 𝐮

with probability one, in at most 𝑇N arithmetic operations for some universal constant 𝑇N > 0.

Note that, since the Gaussian distribution has unbounded support, one should only expect the
sampler N(𝜎) to have a relative error guarantee of the sort |𝐺 − 𝐺| ≤ 𝑐N𝜎|𝐺| ⋅ 𝐮. However, as it will
become clear below, we only care about realizations of Gaussians satisfying |𝐺| < 𝑅, for a certain
prespecified 𝑅 > 0, and the rare event |𝐺| > 𝑅 will be accounted for in the failure probability of
the algorithm. So, for the sake of exposition we decided to omit the |𝐺| in the bound on |𝐺 − 𝐺|.
We will only sample 𝑂(𝑛2) Gaussians during the algorithm, so this sampling will not contribute
significantly to the runtime. Here as everywhere in this thesis, we will omit issues of underflow
or overflow. To simplify some of our bounds, we will also assume that 𝑐N ≥ 1.

Black-box Error Assumptions for Multiplication, Inversion, and QR
Our algorithm uses matrix-matrix multiplication, matrix inversion, and QR factorization as primi-
tives. For our analysis, we must therefore assume some bounds on the error and runtime costs
incurred by these subroutines. In this section, we first formally state the kind of error and runtime
bounds we require, and then discuss some implementations known in the literature that satisfy
each of our requirements with modest constants.

Our definitions are inspired by the definition of logarithmic stability introduced in [61]. Roughly
speaking, they say that implementing the algorithm with floating point precision 𝐮 yields an
accuracy which is at most polynomially or quasipolynomially in 𝑛 worse than 𝐮 (possibly also
depending on the condition number in the case of inversion). Their definition has the property
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that while a logarithmically stable algorithm is not strictly-speaking backward stable, it can attain
the same forward error bound as a backward stable algorithm at the cost of increasing the bit
length by a polylogarithmic factor. See Section 3 of their paper for a precise definition and a more
detailed discussion of how their definition relates to standard numerical stability notions.

Definition 5.4. A 𝜇MM(𝑛)-stable multiplication algorithm MM(⋅, ⋅) takes as input 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 and a
precision 𝐮 > 0 and outputs 𝐶 = MM(𝐴, 𝐵) satisfying

‖𝐶 − 𝐴𝐵‖ ≤ 𝜇MM(𝑛) ⋅ 𝐮‖𝐴‖‖𝐵‖,

on a floating point machine with precision 𝐮, in 𝑇MM(𝑛) arithmetic operations.

Definition 5.5. A (𝜇INV(𝑛), 𝑐INV)−stable inversion algorithm INV(⋅) takes as input 𝐴 ∈ ℂ𝑛×𝑛 and a
precision 𝐮 and outputs 𝐶 = INV(𝐴) satisfying

‖𝐶 − 𝐴−1‖ ≤ 𝜇INV(𝑛) ⋅ 𝐮 ⋅ 𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖,

on a floating point machine with precision 𝐮, in 𝑇INV(𝑛) arithmetic operations.

Definition 5.6. A 𝜇QR(𝑛)-stable QR factorization algorithm QR(⋅) takes as input 𝐴 ∈ ℂ𝑛×𝑛 and a
precision 𝐮, and outputs [𝑄, 𝑅] = QR(𝐴) such that (i) 𝑅 is exactly upper triangular, and (ii) there is
a unitary 𝑄 and a matrix 𝐴 such that 𝑄𝐴 = 𝑅 and

‖𝑄′ − 𝑄‖ ≤ 𝜇QR(𝑛)𝐮, and ‖𝐴′ − 𝐴‖ ≤ 𝜇QR(𝑛)𝐮‖𝐴‖,

on a floating point machine with precision 𝐮. Its running time is 𝑇QR(𝑛) arithmetic operations.

Remark 5.7. Throughout this chapter, to simplify some of our bounds, we will assume that

1 ≤ 𝜇MM(𝑛), 𝜇INV(𝑛), 𝜇QR(𝑛), 𝑐INV log 𝑛.

The above definitions can be instantiated with traditional 𝑂(𝑛3)-complexity algorithms for
which 𝜇MM, 𝜇QR, 𝜇INV are all 𝑂(𝑛) and 𝑐INV = 1 [94]. This yields easily-implementable practical
algorithms with running times depending cubically on 𝑛.

In order to achieve 𝑂(𝑛𝜔)-type efficiency, we instantiate them with fast-matrix-multiplication-
based algorithms and with 𝜇(𝑛) taken to be a low-degree polynomial [61]. Specifically, the following
parameters are known to be achievable.

Theorem 5.8 (Fast and Stable Instantiations of MM, INV,QR).

(i) If 𝜔 is the exponent of matrix multiplication, then for every 𝜂 > 0 there is a 𝜇MM(𝑛)−stable
multiplication algorithm with 𝜇MM(𝑛) = 𝑛𝑐𝜂 and 𝑇MM(𝑛) = 𝑂(𝑛𝜔+𝜂), where 𝑐𝜂 does not depend on
𝑛.
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(ii) Given an algorithm for matrix multiplication satisfying (1), there is a (𝜇INV(𝑛), 𝑐INV)-stable
inversion algorithm with

𝜇INV(𝑛) ≤ 𝑂(𝜇MM(𝑛)𝑛lg 10), 𝑐INV ≤ 8,

and 𝑇INV(𝑛) ≤ 𝑇MM(3𝑛) = 𝑂(𝑇MM(𝑛)).

(iii) Given an algorithm for matrix multiplication satisfying (1), there is a 𝜇QR(𝑛)−stable QR factor-
ization algorithm with

𝜇QR(𝑛) = 𝑂(𝑛𝑐QR𝜇MM(𝑛)),

where 𝑐QR is an absolute constant, and 𝑇QR(𝑛) = 𝑂(𝑇MM(𝑛)).

In particular, all of the running times above are bounded by 𝑂(𝑇MM(𝑛)) for an 𝑛 × 𝑛 matrix.

Proof. The first assertion is Theorem 3.3 of [62]. The second is Theorem 3.3 (see also equation
(9) above its statement) of [61]. The final claim follows by noting that 𝑇MM(3𝑛) = 𝑂(𝑇MM(𝑛)) by
dividing a 3𝑛 × 3𝑛 matrix into nine 𝑛 × 𝑛 blocks and proceeding blockwise, at the cost of a factor
of 9 in 𝜇INV(𝑛). (3) appears in Section 4.1 of [61].

We remark that for specific existing fast matrix multiplication algorithms such as Strassen’s
algorithm, specific small values of 𝜇MM(𝑛) are known (see [62] and its references for details), so
these may also be used as a black box, though we will not do this in this chapter.

5.4 Pseudospectral Shattering
Our main Gaussian regularization result, Theorem 1.10, ensures that a small random perturbation
with high probability shatters the 𝜖-pseudospectrum of any 𝑛 × 𝑛 matrix into disjoint connected
components, for some modest 𝜖. The virtue of the shattering property is after any further per-
turbation of size at most 𝜖, each eigenvalue of the perturbed matrix will remain in one of these
connected components. The following key definitions make this phenomenon quantitative in a
sense which is useful for our analysis of spectral bisection.

Definition 5.9 (Grid). A grid in the complex plane consists of the boundaries of a lattice of
squares with lower edges parallel to the real axis. We will write

grid(𝑧0, 𝜔, 𝑠1, 𝑠2) ⊂ ℂ

to denote an 𝑠1 × 𝑠2 grid of 𝜔 × 𝜔-sized squares and lower left corner at 𝑧0 ∈ ℂ. Write diag(g) ≜
𝜔
√
𝑠21 + 𝑠22 for the diameter of the grid.

Definition 5.10 (Shattering). A pseudospectrum Λ𝜖(𝐴) is shattered with respect to a grid g if
every square of g has at most one eigenvalue of 𝐴 and Λ𝜖(𝐴) ∩ g = ∅.
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Figure 5.1: The numerical example from Figure 1.2 is pictured again; on the left is the 10−6-pseudospectrum
of a non-diagonalizable Toeplitz matrix 𝑇 , and on the right is the same pseudospectrum of 𝑇 + 10−6𝐺𝑛,
shattered with respect to the shown grid.

Observation 5.11. As Λ𝜖(𝐴) contains a ball of radius 𝜖 about each eigenvalue of 𝐴, shattering of
the 𝜖-pseudospectrum with respect to a grid with side length 𝜔 implies 𝜖 ≤ 𝜔/2.

As a warm-up for more sophisticated arguments later on, we give here an easy consequence of
the shattering property.

Lemma 5.12. If 𝜆1, … , 𝜆𝑛 are the eigenvalues of 𝐴, and Λ𝜖(𝐴) is shattered with respect to a grid g

with side length 𝜔, then every eigenvalue condition number satisfies 𝜅𝑖(𝐴) ≤ 2𝜔
𝜋𝜖 .

Proof. Let 𝑣, 𝑤∗ be a right/left eigenvector pair for some eigenvalue 𝜆𝑖 of 𝐴, normalized so that
𝑤∗𝑣 = 1. Letting Γ be the positively oriented boundary of the square of g containing 𝜆𝑖 , we can
extract the projector 𝑣𝑤∗ by integrating, and pass norms inside the contour integral to obtain

𝜅𝑖(𝐴) = ‖𝑣𝑤∗‖ =
‖‖‖‖
1
2𝜋𝑖 ∮Γ

(𝑧 − 𝐴)−1 d𝑧
‖‖‖‖
≤

1
2𝜋 ∮

Γ

‖‖(𝑧 − 𝐴)
−1‖‖ d𝑧 ≤ 2𝜔

𝜋𝜖
. (5.7)

In the final step we have used the fact that, given the definition of pseudospectrum above, Λ𝜖(𝐴)∩g =
∅ means ‖(𝑧 − 𝐴)−1‖ ≤ 1/𝜖 on g.

The theorem below quantifies the extent to which perturbing by a Ginibre matrix results in a
shattered pseudospectrum. See Figure 5.1 for an illustration in the case where the initial matrix is
poorly conditioned. In general, not all eigenvalues need move so far upon such a perturbation, in
particular if the respective 𝜅𝑖 are small.
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Theorem 5.13 (Exact Arithmetic Shattering). Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝐴 + 𝛿𝐺𝑛 for 𝐺𝑛 a complex Ginibre
matrix. Assume ‖𝐴‖ ≤ 1 and 0 < 𝛿 < 1/2. Let g ≜ grid(𝑧, 𝜔, ⌈8/𝜔⌉, ⌈8/𝜔⌉) with 𝜔 ≜ 𝛿

4𝑛2 , and 𝑧 chosen
uniformly at random from the square of side 𝜔 cornered at −4 − 4𝑖. Then, 𝜅𝑉 (𝐴 + 𝛿𝐺𝑛) ≤ 𝑛2/𝛿 ,
‖𝛿𝐺𝑛‖ ≤ 4𝛿 , and Λ𝜖(𝐴 + 𝛿𝐺𝑛) is shattered with respect to g for

𝜖 ≜
𝛿2

16𝑛6
,

with probability at least 1 − 11/𝑛.

Proof. Condition on the event in Theorem 1.10, so that

𝜅𝑉 (𝐴 + 𝛿𝐺𝑛) ≤
𝑛2

𝛿
, ‖𝛿𝐺𝑛‖ ≤ 4𝛿, and gap(𝐴 + 𝛿𝐺𝑛) ≥

𝛿
𝑛2

= 4𝜔.

Consider the random grid g. Since 𝔻(0, 3) is contained in the square of side length 8 centered at the
origin, every eigenvalue of 𝐴 + 𝛿𝐺𝑛 is contained in one square of g with probability 1. Moreover,
since gap(𝐴 + 𝛿𝐺𝑛) > 4𝜔, no square can contain two eigenvalues. Let

distg(𝑧) ≜ min
𝑦∈g

|𝑧 − 𝑦|.

Let 𝜆1, ...𝜆𝑛 be the eigenvalues of 𝐴 + 𝛿𝐺𝑛). We now have for each 𝜆𝑖 and every 𝑠 < 𝜔
2 :

ℙ[distg(𝜆𝑖) > 𝑠] =
(𝜔 − 2𝑠)2

𝜔2 = 1 −
4𝑠
𝜔

+
4𝑠2

𝜔2 ≥ 1 −
4𝑠
𝜔
,

since the distribution of 𝜆𝑖 inside its square is uniform with respect to Lebesgue measure. Setting
𝑠 = 𝜔/4𝑛2, this probability is at least 1 − 1/𝑛2, so by a union bound

ℙ[min
𝑖≤𝑛

distg(𝜆𝑖) > 𝜔/4𝑛2] > 1 − 1/𝑛, (5.8)

i.e., every eigenvalue is well-separated from g with probability 1 − 1/𝑛.
We now recall the Bauer-Fike theorem that

Λ𝜖(𝐴 + 𝛿𝐺𝑛) ⊂ ⋃
𝑖≤𝑛

𝔻(𝜆𝑖 , 𝜖𝜅𝑉 (𝐴 + 𝛿𝐺𝑛)),

Thus, if both (5.8) and the event from Theorem 1.10 hold, we see that Λ𝜖(𝐴 + 𝛿𝐺𝑛) is shattered
with respect to g as long as

𝜅𝑉 (𝐴 + 𝛿𝐺𝑛)𝜖 <
𝜔
4𝑛2

,

which is implied by

𝜖 <
𝛿
4𝑛2

⋅
1
4𝑛2

⋅
𝛿
𝑛2

=
𝛿2

16𝑛6
.

Thus, the advertised claim holds with probability at least 1 − 1/𝑛 − 10/𝑛 = 1 − 11/𝑛 as desired. as
desired.
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Finally, we show that the shattering property is retained when the Gaussian perturbation
is added in finite precision rather than exactly. This also serves as a pedagogical warmup for
our presentation of more complicated algorithms later in the chapter: we use 𝐸 to represent
an adversarial roundoff error (as in the second line), and for simplicity neglect roundoff error
completely in computations whose size does not grow with 𝑛 (as in the third and fourth lines,
which set scalar parameters).

SHATTER

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛, Gaussian perturbation size 𝛿 ∈ (0, 1/2).
Requires: ‖𝐴‖ ≤ 1.
Output: Matrix 𝑋 ∈ ℂ𝑛×𝑛, grid g, shattering parameter 𝜖 > 0.
Ensures: ‖𝑋 − 𝐴‖ ≤ 4𝛿 , 𝜅𝑉 (𝑋 ) ≤ 𝑛2/𝛿 , and Λ𝜖(𝑋 ) is shattered with respect to g, with probability
at least 1 − 11/𝑛.

1. 𝐺𝑖𝑗 ← N(1/𝑛) for 𝑖, 𝑗 = 1, … , 𝑛.

2. 𝑋 ← 𝐴 + 𝛿𝐺 + 𝐸.

3. Let g be a random grid with 𝜔 = 𝛿
4𝑛2 and bottom left corner 𝑧 chosen as in Theorem 5.13.

4. 𝜖 ← 1
2 ⋅

𝛿2
16𝑛6

Theorem 5.14 (Finite Arithmetic Shattering). Assume there is a 𝑐N-stable Gaussian sampling algo-
rithm N satisfying the requirements of Definition 5.3. Then SHATTER has the advertised guarantees
as long as the machine precision satisfies

𝐮 ≤
1
2
𝛿2

16𝑛6
⋅

1
(3 + 𝑐N)

√
𝑛
, (5.9)

and runs in
𝑛2𝑇N + 𝑛2 = 𝑂(𝑛2)

arithmetic operations.

Proof. The two sources of error in SHATTER are:

1. An additive error of operator norm at most 𝑛 ⋅ 𝑐N ⋅ (1/
√
𝑛) ⋅ 𝐮 ≤ 𝑐N

√
𝑛 ⋅ 𝐮 from N, by Definition

5.3.

2. An additive error of norm at most √𝑛 ⋅ ‖𝑋 ‖ ⋅ 𝐮 ≤ 3
√
𝑛𝐮, with probability at least 1 − 1/𝑛, from

the roundoff 𝐸 in step 2.
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Thus, as long as the precision satisfies (5.9), we have

‖SHATTER(𝐴, 𝛿) − shatter(𝐴, 𝛿)‖ ≤
1
2
𝛿2

16𝑛6
,

where shatter(⋅) refers to the (exact arithmetic) outcome of Theorem 5.13. The correctness of
SHATTER now follows from the stability of pseudospectrum under perturbations. Its running
time is bounded by

𝑛2𝑇N + 𝑛2

arithmetic operations, as advertised.

5.5 The Spectral Bisection Algorithm
In this section we will prove Theorem 1.7, deferring analysis of its subroutines to the later sections.
As discussed in Section 5.1, our algorithm is not new, and in its idealized form it reduces to the
two following tasks:

Split: Given an 𝑛 × 𝑛 matrix 𝐴, find a partition of the spectrum into pieces of roughly equal size,
and output spectral projectors 𝑃± onto each of these pieces.

Span: Given an 𝑛 × 𝑛 rank-𝑘 projector 𝑃 , output an 𝑛 × 𝑘 matrix 𝑄 with orthogonal columns that
span the range of 𝑃 .

These routines in hand, on input 𝐴 one can compute 𝑃± and the corresponding 𝑄±, and then deflate
𝐴 to the two matrices 𝐴± ≜ 𝑄∗

±𝐴𝑄±, and continue recursively. The observation below verifies that
this recursion is sound.

Observation 5.15. The spectrum of 𝐴 is exactly Λ(𝐴+) ⊔ Λ(𝐴−), and every eigenvector of 𝐴 is of
the form 𝑄±𝑣 for some eigenvector 𝑣 of one of 𝐴±.

The difficulty, of course, is that neither of these routines can be executed exactly: we will never
have access to true projectors 𝑃±, nor to the actual orthogonal matrices 𝑄± whose columns span
their range, and must instead make do with approximations. Because our algorithm is recursive
and our matrices nonnormal, we must take care that the errors in the sub-instances 𝐴± do not
corrupt the eigenvectors and eigenvalues we are hoping to find. Additionally, the Newton iteration
we will use to split the spectrum behaves poorly when an eigenvalue is close to the imaginary
axis, and it is not clear how to find a splitting which is balanced.

Our tactic in resolving these issues will be to pass to our algorithms a matrix and a grid with
respect to which its 𝜖-pseudospectrum is shattered. To find an approximate eigenvalue, then,
one can settle for locating the grid square it lies in; containment in a grid square is robust to
perturbations of size smaller than 𝜖. The shattering property is robust to small perturbations,
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inherited by the subproblems we pass to, and—because the spectrum is quantifiably far from the
grid lines—allows us to run the Newton iteration in the first place.

Let us now sketch the implementations and state carefully the guarantees for SPLIT and SPAN;
the analysis of these will be deferred to Sections 5.7 and 5.8. Our splitting algorithm is presented a
matrix 𝐴 whose 𝜖-pseudospectrum is shattered with respect to a grid g. For any vertical grid line
with real part ℎ, tr sgn(𝐴 − ℎ) gives the difference between the number of eigenvalues lying to its
left and right. As

| tr SGN(𝐴 − ℎ) − tr sgn(𝐴 − ℎ)| ≤ 𝑛‖SGN(𝐴 − ℎ) − sgn(𝐴 − ℎ)‖,

we can determine these eigenvalue counts exactly by running SGN to accuracy𝑂(1/𝑛) and rounding
tr SGN(𝐴−ℎ) to the nearest integer. We will show in Section 5.7 that, by mounting a binary search
over horizontal and vertical lines of g, we will always arrive at a partition of the eigenvalues into
two parts with size at least min{𝑛/5, 1}. Having found it, we run SGN one final time at the desired
precision to find the approximate spectral projectors.

SPLIT

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛, pseudospectral parameter 𝜖, grid g = grid(𝑧0, 𝜔, 𝑠1, 𝑠2), and desired
accuracy 𝛽
Requires: Λ𝜖(𝐴) is shattered with respect to g, and 𝛽 ≤ 0.05/𝑛
Output: Two matrices 𝑃± ∈ ℂ𝑛×𝑛, two subgrids g±, and two numbers 𝑛±
Ensures: Each subgrid g± contains 𝑛± eigenvalues of 𝐴, 𝑛± ≥ 𝑛/5, and ‖𝑃± − 𝑃±‖ ≤ 𝛽 , where 𝑃±
are the true spectral projectors for the eigenvalues in the subgrids g± respectively.

1. Execute a binary search over horizontal grid shifts ℎ until

tr SGN(𝐴 − ℎ, 𝜖/4, 1 −
𝜖

2 diag(g)2
, 𝛽) ≤ 3𝑛/5.

2. If this fails, set 𝐴 ← 𝑖𝐴 and repeat with vertical grid shifts

3. Once a shift is found,

𝑃± ← 1
2 (SGN(𝐴 − ℎ, 𝜖/4, 1 −

𝜖
2 diag(g)2

, 𝛽) ± 𝐼) ,

and g± are set to the two subgrids

Theorem 5.16 (Guarantees for SPLIT). Assume INV is a (𝜇INV, 𝑐INV)-stable matrix inversion algo-
rithm satisfying Definition 5.5. Let 𝜖 ≤ 0.5, 𝛽 ≤ 0.05/𝑛, and ‖𝐴‖ ≤ 4 and g have side lengths of at most
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8, and define
𝑁SPLIT ≜ lg

256
𝜖

+ 3 lg lg
256
𝜖

+ lg lg
4
𝛽𝜖

+ 7.59.

Then SPLIT has the advertised guarantees when run on a floating point machine with precision

𝐮 ≤ 𝐮SPLIT ≜ min
⎧⎪⎪
⎨⎪⎪⎩

(1 − 𝜖
256)

2𝑁SPLIT+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁SPLIT

,
𝜖

100𝑛
,
𝜖2

512

⎫⎪⎪
⎬⎪⎪⎭
,

using at most

𝑇SPLIT(𝑛, g, 𝜖, 𝛽) ≤ 12 lg
1

𝜔(g)
⋅ 𝑁SPLIT ⋅ (𝑇INV(𝑛) + 𝑂(𝑛2))

arithmetic operations. The number of bits required is

lg 1/𝐮SPLIT = 𝑂 (log 𝑛 log
3 256
𝜖 (log

1
𝛽
+ log

4
𝜖))

.

Deflation of the approximate projectors we obtain from SPLIT amounts to a standard rank-
revealing QR factorization. This can be achieved deterministically in 𝑂(𝑛3) time with the classic
algorithm of Gu and Eisenstat [89], or probabilistically in matrix-multiplication time with a variant
of the method of [61]; we will use the latter.

SPAN

Input: Matrix 𝑃 ∈ ℂ𝑛×𝑛, desired rank 𝑘, input precision 𝛽 , and desired accuracy 𝜂
Requires: ‖𝑃 − 𝑃‖ ≤ 𝛽 ≤ 1

4 for some rank-𝑘 projector 𝑃 .
Output: A tall matrix 𝑄 ∈ ℂ𝑛×𝑘

Ensures: There exists a matrix 𝑄 ∈ ℂ𝑛×𝑘 whose orthogonal columns span range(𝑃), such that
‖𝑄 − 𝑄‖ ≤ 𝜂, with probability at least 1 − (20𝑛)3

√
𝛽

𝜂2 .

1. 𝐻 ← 𝑛 × 𝑛 Haar unitary +𝐸1

2. (𝑈 , 𝑅) ← QR(𝑃𝐻 ∗)

3. 𝑄 ← first 𝑘 columns of 𝑈 .

Theorem 5.17 (Guarantees for SPAN). Assume MM and QR are matrix multiplication and QR
factorization algorithms satisfying Definitions 5.4 and 5.6. Then SPAN has the advertised guarantees
when run on a machine with precision:

𝐮 ≤ 𝐮SPAN ≜ min
{

𝛽
4‖𝑃‖max(𝜇QR(𝑛), 𝜇MM(𝑛))

,
𝜂

2𝜇QR(𝑛)

}
.
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The number of arithmetic operations is at most:

𝑇SPAN(𝑛) = 𝑛2𝑇N + 2𝑇QR(𝑛) + 𝑇MM(𝑛).

Remark 5.18. The proof of the above theorem, which is deferred to Section 5.8, closely follows and
builds on the analysis of the randomized rank revealing factorization algorithm (RURV) introduced
in [61] and further studied in [14]. The parameters in the theorem are optimized for the particular
application of finding a basis for a deflating subspace given an approximate spectral projector.

The main difference with the analysis in [61] and [14] is that here, to make it applicable to
complex matrices, we make use of Haar unitary random matrices instead of Haar orthogonal
random matrices. In our analysis of the unitary case, we discovered a strikingly simple formula
(Corollary 5.55) for the density of the smallest singular value of an 𝑟 × 𝑟 sub-matrix of an 𝑛 × 𝑛
Haar unitary; this formula is leveraged to obtain guarantees that work for any 𝑛 and 𝑟 , and
not only for when 𝑛 − 𝑟 ≥ 30, as was the case in [14]. Finally, we explicitly account for finite
arithmetic considerations in the Gaussian randomness used in the algorithm, where true Haar
unitary matrices can never be produced.

We are ready now to state completely an algorithm EIG which accepts a shattered matrix and
grid and outputs approximate eigenvectors and eigenvalues with a forward-error guarantee. Aside
from the a priori un-motivated parameter settings in lines 2 and 3—which we promise to justify
in the analysis to come—EIG implements an approximate version of the split, span, and deflate
framework that began this section.

Theorem 5.19 (EIG: Finite Arithmetic Guarantee). Assume MM,QR, and INV are numerically
stable algorithms for matrix multiplication, QR factorization, and inversion satisfying Definitions
5.4, 5.6, and 5.5. Let 𝛿 < 1, 𝐴 ∈ ℂ𝑛×𝑛 have ‖𝐴‖ ≤ 3.5 and, for some 𝜖 < 1/2, have 𝜖-pseudospectrum
shattered with respect to a grid g = grid(𝑧0, 𝜔, 𝑠1, 𝑠2) with side lengths at most 8 and 𝜔 ≤ 1. Define

𝑁EIG ≜ lg
256𝑛
𝜖

+ 3 lg lg
256𝑛
𝜖

+ lg lg
(5𝑛)26

𝜃2𝛿4𝜖9
+ 7.59.

Then EIG has the advertised guarantees when run on a floating point machine with precision satisfying:

𝐮 ≤ 2−max
{
lg3 𝑛

𝜖 lg(
(5𝑛)26

𝜃2𝛿4𝜖8 )2
9.59(𝑐INV log 𝑛+3)+lg 𝑁EIG,lg (5𝑛)30

𝜃2𝛿4𝜖8 +lgmax{𝜇MM(𝑛),𝜇QR(𝑛),𝑛}
}

≤ 2−𝑂(log
3 𝑛
𝜖 log

𝑛
𝜃𝛿𝜖 log 𝑛).

The number of arithmetic operations is at most

𝑇EIG(𝑛, 𝛿, g, 𝜖, 𝜃, 𝑛) = 60𝑁EIG lg
1

𝜔(g) (
𝑇INV(𝑛) + 𝑂(𝑛2)) + 10𝑇QR(𝑛) + 25𝑇MM(𝑛)

= 𝑂 (log
1

𝜔(g) (
log

𝑛
𝜖
+ log log

1
𝜃𝛿 )

𝑇MM(𝑛)) .
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EIG

Input: Matrix𝐴 ∈ ℂ𝑚×𝑚, desired eigenvector accuracy 𝛿 , grid g = grid(𝑧0, 𝜔, 𝑠1, 𝑠2), pseudospectral
guarantee 𝜖, acceptable failure probability 𝜃 , and global instance size 𝑛
Requires: Λ𝜖(𝐴) is shattered with respect to g, and 𝑚 ≤ 𝑛.
Output: Eigenvectors and eigenvalues (𝑉 , 𝐷)
Ensures: With probability at least 1 − 𝜃 , each entry 𝜆𝑖 = 𝐷𝑖,𝑖 lies in the same square as exactly
one eigenvalue 𝜆𝑖 ∈ Λ(𝐴), and each column 𝑣𝑖 of 𝑉 has norm 1 ± 𝑛𝐮, and satisfies ‖𝑣𝑖 − 𝑣𝑖‖ ≤ 𝛿
for some exact unit right eigenvector 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 .

1. If 𝐴 is 1 × 1, (𝑉 , 𝐷) ← (1, 𝐴)

2. 𝜂 ← 𝛿𝜖2
200

3. 𝛽 ← 𝜂4
(20𝑛)6

𝜃2
4𝑛8

4. (𝑃+, 𝑃−, g+, g−, 𝑛+, 𝑛−) ← SPLIT(𝐴, 𝜖, g, 𝛽)

5. 𝑄± ← SPAN(𝑃±, 𝑛±, 𝛽, 𝜂)

6. 𝐴± ← 𝑄∗
±𝐴𝑄± + 𝐸6,±

7. (𝑉±, 𝐷±) ← EIG(𝐴±, 4𝛿/5, g±, 4𝜖/5, 𝜃, 𝑛).

8. 𝑉 ← (𝑄+𝑉+ 𝑄−𝑉−) + 𝐸8

9. 𝑉 ← normalize(𝑉 ) + 𝐸9

10. 𝐷 ← (
𝐷+

𝐷−)

Remark 5.20. We have not fully optimized the large constant 29.59 appearing in the bit length
above.

Theorem 5.19 easily implies Theorem 1.7 when combined with SHATTER.

Restatement of Theorem 1.7. There is a randomized algorithm EIG which on input any matrix
𝐴 ∈ ℂ𝑛×𝑛 with ‖𝐴‖ ≤ 1 and a desired accuracy parameter 𝛿 ∈ (0, 1) outputs a diagonal 𝐷 and invertible
𝑉 such that

‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿 and 𝜅(𝑉 ) ≤ 32𝑛2.5/𝛿

in
𝑂 (𝑇MM(𝑛) log2

𝑛
𝛿 )
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arithmetic operations on a floating point machine with

𝑂 (log
4 𝑛
𝛿
log 𝑛)

bits of precision, with probability at least 1 − 12/𝑛. Here 𝑇MM(𝑛) refers to the running time of a
numerically stable matrix multiplication algorithm (detailed in Section 5.3).

Proof. Given 𝐴 and 𝛿 , consider the following two step algorithm:

1. (𝑋 , g, 𝜖) ← SHATTER(𝐴, 𝛿/8).

2. (𝑉 , 𝐷) ← EIG(𝑋 , 𝛿 ′, g, 𝜖, 1/𝑛, 𝑛), where

𝛿 ′ ≜
𝛿3

𝑛4.5 ⋅ 6 ⋅ 128 ⋅ 2
. (5.10)

The 𝑋, g, 𝜖 output by SHATTER(𝐴, 𝛿/8) easily satisfy the assumptions in Theorem 5.19, since
𝛿 ′ ≤ 𝛿 < 1, 𝜖 = (𝛿/8)2

32𝑛6 ≤ 1/2, g is defined by SHATTER to have side length 8, ‖𝑋 ‖ ≤ ‖𝐴‖ + ‖𝑋 − 𝐴‖ ≤
1 + 4(𝛿/8) ≤ 3.5, and 𝑋 has 𝜖-pseudospectrum shattered with respect to g.

We will show that the choice of 𝛿 ′ in (5.10) guarantees

‖𝑋 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿/2.

Theorem 5.14 implies that 𝑋 = 𝑊𝐶𝑊 −1 is diagonalizable with probability one, and moreover

‖𝑊 ‖‖𝑊 −1‖ ≤ 8𝑛2/𝛿

when 𝑊 is normalized to have unit columns, by (2.1) (where we are using the proof of Theorem
1.10), with probability at least 1 − 11/𝑛.

Since ‖𝑋 ‖ ≤ ‖𝐴‖ + ‖𝐴 − 𝑋‖ ≤ 1 + 4𝛿 ≤ 3 from Theorem 5.14, the hypotheses of Theorem 5.19 are
satisfied. Thus EIG succeeds with probability at least 1 − 1/𝑛, and both EIG and SHATTER succeed
with probability at least 1 − 12/𝑛 by a union bound. On this event, we have 𝑉 = 𝑊 + 𝐸 for some
‖𝐸‖ ≤ 𝛿 ′

√
𝑛, so

‖𝑉 − 𝑊‖ ≤ 𝛿 ′
√
𝑛,

as well as
𝜎𝑛(𝑉 ) ≥ 𝜎𝑛(𝑊 ) − ‖𝐸‖ ≥

𝛿
8𝑛2

− 𝛿 ′
√
𝑛 ≥

𝛿
16𝑛2

,

since our choice of 𝛿 ′ satisfies the much cruder bound of

𝛿 ′ ≤
𝛿

16𝑛2.5
,
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This implies that

𝜅(𝑉 ) = ‖𝑉 ‖‖𝑉 −1‖ ≤ 2
√
𝑛 ⋅

16𝑛2

𝛿
,

establishing the last item of the theorem.We can control the perturbation of the inverse as:

‖𝑉 −1 − 𝑊 −1‖ = ‖𝑊 −1(𝑊 − 𝑉 )𝑉 −1‖
≤ 𝜅(𝑊 )‖𝑊 − 𝑉 ‖‖𝑉 −1‖

≤
8𝑛2

𝛿
⋅ 𝛿 ′

√
𝑛 ⋅

16𝑛2

𝛿

≤
128𝑛4.5𝛿 ′

𝛿2
.

The grid output by SHATTER(𝐴, 𝛿/8) has 𝜔 = 𝛿2
4∗82∗𝑛6 ≤

𝛿√
2 provided 𝛿 < 1. Thus the guarantees

on EIG in Theorem 5.19 tell us each eigenvalue of 𝑋 = 𝑊𝐶𝑊 −1 shares a grid square with exactly
one diagonal entry of 𝐷, which means that ‖𝐶 − 𝐷‖ ≤

√
2𝜔 ≤ 𝛿 . So, we have:

‖𝑉𝐷𝑉 −1 − 𝑊𝐶𝑊 −1‖ ≤ ‖(𝑉 − 𝑊)𝐷𝑉 −1‖ + ‖𝑊 (𝐷 − 𝐶)𝑉 −1‖ + ‖𝑊𝐶(𝑉 −1 − 𝑊 −1)‖

≤ 𝛿 ′
√
𝑛 ⋅ 5 ⋅

16𝑛2

𝛿
+
√
𝑛𝛿 ′

16𝑛2

𝛿
+
√
𝑛 ⋅ 5 ⋅

128𝑛4.5𝛿 ′

𝛿2

=
𝛿 ′𝑛4.5

𝛿 (5 ⋅ 16 + 16 +
5 ⋅ 128
𝛿 )

≤
𝛿 ′𝑛4.5

𝛿2
⋅ 6 ⋅ 128

which is at most 𝛿/2, for 𝛿 ′ chosen as above. We conclude that

‖𝐴 − 𝑉𝐷𝑉 −1‖ ≤ ‖𝐴 − 𝑋‖ + ‖𝑋 − 𝑉𝐷𝑉 −1‖ ≤ 𝛿,

with probability 1 − 12/𝑛 as desired.
To compute the running time and precision, we observe that SHATTER outputs a grid with

parameters

𝜔 = Ω(
𝛿
𝑛2)

, 𝜖 = Ω(
𝛿2

𝑛6)
.

Plugging this into the guarantees of EIG, we see that it takes

𝑂 (log
𝑛
𝛿 (log

𝑛
𝛿
+ log log

𝑛
𝛿 )

𝑇MM(𝑛)) = 𝑂(𝑇MM(𝑛) log2(𝑛/𝛿))

arithmetic operations, on a floating point machine with precision

𝑂 (log
3 𝑛
𝛿
log

𝑛
𝛿
log 𝑛) = 𝑂(log4(𝑛/𝛿) log(𝑛))

bits, as advertised.
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Proof of Theorem 5.19
A key stepping-stone in our proof will be the following elementary result controlling the spectrum,
pseudospectrum, and eigenvectors after perturbing a shattered matrix — similar to Lemma 2.9.

Lemma 5.21 (Eigenvector Perturbation for a Shattered Matrix). Let Λ𝜖(𝐴) be shattered with respect
to a grid whose squares have side length 𝜔, and assume that ‖𝐴−𝐴‖ ≤ 𝜂 < 𝜖. Then, (i) each eigenvalue
of 𝐴 lies in the same grid square as exactly one eigenvalue of 𝐴, (ii) Λ𝜖−𝜂(𝐴) is shattered with respect
to the same grid, and (iii) for any right unit eigenvector 𝑣 of 𝐴, there exists a right unit eigenvector of
𝐴 corresponding to the same grid square, and for which

‖𝑣 − 𝑣‖ ≤
√
8𝜔
𝜋

𝜂
𝜖(𝜖 − 𝜂)

.

Proof. For (i), consider 𝐴𝑡 = 𝐴 + 𝑡(𝐴 − 𝐴) for 𝑡 ∈ [0, 1]. By continuity, the entire trajectory of each
eigenvalue is contained in a unique connected component of Λ𝜂(𝐴) ⊂ Λ𝜖(𝐴). For (ii), Λ𝜖−𝜂(𝐴) ⊂
Λ𝜖(𝐴), which is shattered by hypothesis. Finally, for (iii), let 𝑤∗ and 𝑤∗ be the corresponding left
eigenvectors to 𝑣 and 𝑣 respectively, normalized so that 𝑤∗𝑣 = 𝑤∗𝑣 = 1. Let Γ be the boundary
of the grid square containing the eigenvalues associated to 𝑣 and 𝑣 respectively. Then, using a
contour integral along Γ, one gets

‖𝑣𝑤∗ − 𝑣𝑤∗‖ ≤
2𝜔
𝜋

𝜂
𝜖(𝜖 − 𝜂)

.

Thus, using that ‖𝑣‖ = 1 and 𝑤∗𝑣 = 1,

‖𝑣𝑤∗ − 𝑣𝑤∗‖ ≥ ‖(𝑣𝑤∗ − 𝑣𝑤∗)𝑣‖ = ‖(𝑤∗𝑣)𝑣 − 𝑣‖.

Now, since (𝑣∗𝑣)𝑣 is the orthogonal projection of 𝑣 onto the span of 𝑣, we have that

‖(𝑤∗𝑣)𝑣 − 𝑣‖ ≥ ‖(𝑣∗𝑣)𝑣 − 𝑣‖ =
√
1 − |𝑣∗𝑣|2.

Multiplying 𝑣 by a phase we can assume without loss of generality that 𝑣∗𝑣 ≥ 0 which implies
that √

1 − (𝑣∗𝑣)2 =
√
(1 − 𝑣∗𝑣)(1 + 𝑣∗𝑣) ≥

√
1 − 𝑣∗𝑣.

The above discussion can now be summarized in the following chain of inequalities

√
1 − 𝑣∗𝑣 ≤

√
1 − (𝑣∗𝑣)2 ≤ ‖(𝑤∗𝑣)𝑣 − 𝑣‖ ≤ ‖𝑣𝑤∗ − 𝑣𝑤∗‖ ≤

2𝜔
𝜋

𝜂
𝜖(𝜖 − 𝜂)

.

Finally, note that ‖𝑣 − 𝑣‖ =
√
2 − 2𝑣∗𝑣 ≤

√
8𝜔
𝜋

𝜂
𝜖(𝜖−𝜂) as we wanted to show.
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The algorithm EIG works by recursively reducing to subinstances of smaller size, but requires
a pseudospectral guarantee to ensure speed and stability. We thus need to verify that the pseu-
dospectrum does not deteriorate too subtantially when we pass to a sub-problem. The following
is similar in spirit to Lemma 2.11.

Lemma 5.22 (Shattering is preserved after compression). Suppose 𝑃 is a spectral projector of
𝐴 ∈ ℂ𝑛×𝑛 of rank 𝑘. Let 𝑄 ∈ ℂ𝑛×𝑘 be such that 𝑄∗𝑄 = 𝐼𝑘 and that its columns span the same space as
the columns of 𝑃 . Then for every 𝜖 > 0,

Λ𝜖(𝑄∗𝐴𝑄) ⊂ Λ𝜖(𝐴).

Alternatively, the same pseudospectral inclusion holds if again 𝑄∗𝑄 = 𝐼𝑘 and, instead, the columns of
𝑄 span the same space as the rows of 𝑃 .

Proof. We will first analyze the case when the columns of 𝑄 span the same space as the columns
of 𝑃 . To begin, note that if 𝑧 ∈ Λ𝜖(𝑄∗𝐴𝑄) then there exists 𝑣 ∈ ℂ𝑘 satisfying ‖(𝑧 − 𝑄∗𝐴𝑄)𝑣‖ ≤ 𝜖‖𝑣‖.
Since 𝐼𝑘 = 𝑄∗𝐼𝑛𝑄 we have

‖𝑄∗(𝑧 − 𝐴)𝑄𝑣‖ ≤ 𝜖‖𝑣‖.

And, because 𝑄∗ acts as an isometry on range(𝑄) (the span of the columns of 𝑄) and by assumption
this space is invariant under 𝑃 (and hence under (𝑧 − 𝐴)), we have that (𝑧 − 𝐴)𝑄𝑣 ∈ range(𝑄), and
therefore ‖𝑄∗(𝑧 − 𝐴)𝑄𝑣‖ = ‖(𝑧 − 𝐴)𝑄𝑣‖. From where we obtain

‖(𝑧 − 𝐴)𝑄𝑣‖ ≤ 𝜖‖𝑣‖ = 𝜖‖𝑄𝑣‖,

showing that 𝑧 ∈ Λ𝜖(𝐴).
For the case in which the columns of 𝑄 span the rows of 𝑃 , the above proof can be easily

modified by now taking 𝑣 with the property that ‖𝑣∗𝑄∗(𝑧 − 𝐴)𝑄‖ ≤ 𝜖‖𝑣‖.

Observation 5.23. Since 𝛿, 𝜔(g), 𝜖 ≤ 1, our assumption on 𝜂 in Line 2 of the pseudocode of EIG
implies the following bounds on 𝜂 which we will use below:

𝜂 ≤ min
{
0.02, 𝜖/75, 𝛿/100,

𝛿𝜖2

200𝜔(g)

}
.

Initial lemmas in hand, let us begin to analyze the algorithm. At several points we will make
an assumption on the machine precision in the margin. These will be collected at the end of the
proof, where we will verify that they follow from the precision hypothesis of Theorem 5.19.
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Correctness.

Lemma 5.24 (Accuracy of 𝜆𝑖). When SPAN succeeds, each eigenvalue of 𝐴 shares a square of g with
a unique eigenvalue of either 𝐴+ or 𝐴−, and furthermore Λ4𝜖/5(𝐴±) ⊂ Λ𝜖(𝐴).

Proof. Let 𝑃± be the true projectors onto the two bisection regions found by SPLIT(𝐴, 𝛽), 𝑄± be
the matrices whose orthogonal columns span their ranges, and 𝐴± ≜ 𝑄∗

±𝐴𝑄±. From Theorem 5.17,
on the event that SPAN succeeds, the approximation 𝑄± that it outputs satisfies ‖𝑄± −𝑄±‖ ≤ 𝜂, so in
particular ‖𝑄±‖ ≤ 2 as 𝜂 ≤ 1. The error 𝐸6,± from performing the matrix multiplications necessary
to compute 𝐴± admits the bound

‖𝐸6,±‖ ≤ 𝜇MM(𝑛)‖𝑄±‖‖𝐴𝑄±‖𝐮 + 𝜇MM(𝑛)2‖𝑄±𝐴‖𝐮 + 𝜇MM(𝑛)2‖𝑄±‖2‖𝐴‖𝐮
≤ 16 (𝜇MM(𝑛)𝐮 + 𝜇MM(𝑛)2𝐮2) ‖𝐴‖ ≤ 4, ‖𝑄±‖ ≤ 1 + 𝜂 ≤ 1.02

≤ 3𝜂 𝐮 ≤
𝜂

10𝜇MM(𝑛)2
.

Iterating the triangle inequality, we obtain

‖𝐴± − 𝐴±‖ ≤ ‖𝐸6,±‖ + ‖(𝑄± − 𝑄±)𝐴𝑄±‖ + ‖𝑄±𝐴(𝑄± − 𝑄±)‖
≤ 3𝜂 + 8𝜂 + 4𝜂 ‖𝑄± − 𝑄±‖ ≤ 𝜂
≤ 𝜖/5 𝜂 ≤ 𝜖/75.

We can now apply Lemma 5.21.

Everything is now in place to show that, if every call to SPAN succeeds, EIG has the advertised
accuracy guarantees. After we show this, we will lower bound this success probability and compute
the running time.

When 𝐴 ∈ ℂ1×1, the algorithm works as promised. Assume inductively that EIG has the desired
guarantees on instances of size strictly smaller than 𝑛. In particular, maintaining the notation
from the above lemmas, we may assume that

(𝑉±, 𝐷±) = EIG(𝐴±, 4𝜖/5, g±, 4𝛿/5, 𝜃, 𝑛)

satisfy (i) each eigenvalue of 𝐷± shares a square of g± with exactly one eigenvalue of 𝐴±, and (ii)
each column of 𝑉± is 4𝛿/5-close to a true eigenvector of 𝐴±. From Lemma 5.21, each eigenvalue of
𝐴± shares a grid square with exactly one eigenvalue of 𝐴, and thus the output

𝐷 = (
𝐷+

𝐷−)

satisfies the eigenvalue guarantee.
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To verify that the computed eigenvectors are close to the true ones, let ̃̃𝑣± be some approximate
right unit eigenvector of one of 𝐴± output by EIG (with norm 1±𝑛𝐮), 𝑣± the exact unit eigenvector
of 𝐴± that it approximates, and 𝑣± the corresponding exact unit eigenvector of 𝐴±. Recursively,
EIG(𝐴, 𝜖, g, 𝛿 , 𝜃, 𝑛) will output an approximate unit eigenvector

𝑣 ≜
𝑄± ̃̃𝑣± + 𝑒
‖𝑄± ̃̃𝑣± + 𝑒‖

+ 𝑒′,

whose proximity to the actual eigenvector 𝑣 ≜ 𝑄𝑣± we need now to quantify. The error terms
here are 𝑒, a column of the error matrix 𝐸8 whose norm we can crudely bound by

‖𝑒‖ ≤ ‖𝐸8‖ ≤ 𝜇MM(𝑛)‖𝑄±‖‖𝑉±‖𝐮 ≤ 4𝜇MM(𝑛)𝐮 ≤ 𝜂,

and 𝑒′, a column 𝐸9 incurred by performing the normalization in floating point; in our initial
discussion of floating point arithmetic we assumed in (5.6) that ‖𝑒′‖ ≤ 𝑛𝐮.

First, since 𝑣 − 𝑒′ and 𝑄± ̃̃𝑣± + 𝑒 are parallel, the distance between them is just the difference in
their norms:

‖‖‖‖‖

𝑄± ̃̃𝑣± + 𝑒
‖𝑄± ̃̃𝑣± + 𝑒‖

− 𝑄± ̃̃𝑣± + 𝑒
‖‖‖‖‖
≤ |||‖𝑄± ̃̃𝑣± + 𝑒‖ − 1||| ≤ (1 + 𝜂)(1 + 𝐮) + 4𝜇MM𝐮 − 1 ≤ 4𝜂.

Inductively ‖ ̃̃𝑣± − ̃̃𝑣±‖ ≤ 4𝛿/5, and since ‖𝐴± − 𝐴±‖ ≤ 𝜖/5 and 𝐴± has shattered 𝜖-pseudospectrum
from Lemma 5.22, Lemma 5.21 ensures

‖ ̃̃𝑣± − 𝑣±‖ ≤
√
8𝜔(g) ⋅ 15𝜂

𝜋 ⋅ 𝜖(𝜖 − 15𝜂)

≤
√
8𝜔(g) ⋅ 15𝜂
𝜋 ⋅ 4𝜖2/5

𝜂 ≤ 𝜖/75

≤ 𝛿/10 𝜂 ≤
𝛿𝜖2

200𝜔(g)
.

Thus putting together the above, iterating the triangle identity, and using ‖𝑄±‖ = 1,

‖𝑣 − 𝑣‖ =
‖‖‖‖‖

𝑄± ̃̃𝑣± + 𝑒
‖𝑄± ̃̃𝑣± + 𝑒‖

+ 𝑒′ − 𝑄±𝑣±
‖‖‖‖‖

≤
‖‖‖‖‖

𝑄± ̃̃𝑣± + 𝑒
‖𝑄± ̃̃𝑣± + 𝑒‖

− 𝑄± ̃̃𝑣± + 𝑒
‖‖‖‖‖
+ ‖𝑒′‖ + ‖𝑒‖ + ‖(𝑄± − 𝑄±) ̃̃𝑣±‖ + ‖𝑄±( ̃̃𝑣± − 𝑣±)‖ + ‖𝑄±(𝑣± − 𝑣±)‖

≤ 4𝜂 + 𝑛𝐮 + 𝜇MM(𝑛)𝐮 + 𝜂(1 + 𝑛𝐮) + 4𝛿/5 + 𝛿/10
≤ 8𝜂 + 4𝛿/5 + 𝛿/10 𝑛𝐮, 𝜇MM(𝑛)𝐮 ≤ 𝜂
≤ 𝛿 𝜂 ≤ 𝛿/200.

This concludes the proof of correctness of EIG.
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Running Time and Failure Probability. Let’s begin with a simple lemma bounding the depth
of EIG’s recursion tree.

Lemma 5.25 (Recursion Depth). The recursion tree of EIG has depth at most log5/4 𝑛, and every
branch ends with an instance of size 1 × 1.

Proof. By Theorem 5.16, SPLIT can always find a bisection of the spectrum into two regions
containing 𝑛± eigenvalues respectively, with 𝑛+ +𝑛− = 𝑛 and 𝑛± ≥ 4𝑛/5, and when 𝑛 ≤ 5 can always
peel off at least one eigenvalue. Thus the depth 𝑑(𝑛) satisfies

𝑑(𝑛) =

{
𝑛 𝑛 ≤ 5
1 + max𝜃∈[1/5,4/5] 𝑑(𝜃𝑛) 𝑛 > 5

(5.11)

As 𝑛 ≤ log5/4 𝑛 for 𝑛 ≤ 5, the result is immediate from induction.

We pause briefly to verify that the assumptions 𝛿 < 1, 𝜖 < 1/2, grid has side lengths at most 8,
and ‖𝐴‖ ≤ 3.5 in Theorem 5.19 ensure that every call to SPLIT throughout the algorithm satisfies
the hypotheses of Theorem 5.16, namely that 𝜖 ≤ 0.5, 𝛽 ≤ 0.05/𝑛, ‖𝐴‖ ≤ 4, and grid has side lengths
of at most 8. Since 𝛿, 𝜖, and 𝛽 are non-increasing as we travel down the recursion tree of EIG —
with 𝛽 monotonically decreasing in 𝛿 and 𝜖 — we need only verify that the hypotheses of Theorem
5.16 hold on the initial call to EIG. The condition on 𝜖 is immediately satisfied; for the one on 𝛽 ,
we have

𝛽 =
𝜂4𝜃2

(20𝑛)6 ⋅ 4𝑛8
=

𝜃2𝛿4𝜖8

2004(20𝑛)6 ⋅ 4𝑛8
,

which is clearly at most 0.05/𝑛.
On each new call to EIG the grid only decreases in size, so the initial assumption is sufficient.

Finally, we need that every matrix passed to SPLIT throughout the course of the algorithm has
norm at most 4. Lemma 5.24 shows that if ‖𝐴‖ ≤ 4 and has its 𝜖-pseudospectrum shattered, then
‖𝐴± − 𝐴±‖ ≤ 𝜖/5, and since ‖𝐴±‖ = ‖𝐴‖, this means ‖𝐴±‖ ≤ ‖𝐴‖ + 𝜖/5. Thus each time we pass to a
subproblem, the norm of the matrix we pass to EIG (and thus to SPLIT) increases by at most an
additive 𝜖/5, where 𝜖 is the input to the outermost call to EIG. Since 𝜖 decreases by a factor of 4/5
on each recursion step, this means that by the end of the algorithm the norm of the matrix passed
to EIG will increase by at most an additive (𝜖 + (4/5)𝜖 + (4/5)2𝜖 + ⋯)/5 = 𝜖 ≤ 1/2. Thus we will be
safe if our initial matrix has norm at most 3.5, as assumed.

Lemma 5.26 (Lower Bounds on the Parameters). Assume EIG is run on an 𝑛 × 𝑛 matrix, with some
parameters 𝛿 and 𝜖. Throughout the algorithm, on every recursive call to EIG, the corresponding
parameters 𝛿 ′ and 𝜖′ satisfy

𝛿 ′ ≥ 𝛿/𝑛 𝜖′ ≥ 𝜖/𝑛.
On each such call to EIG, the parameters 𝜂′ and 𝛽 ′ passed to SPLIT and SPAN satisfy

𝜂′ ≥
𝛿𝜖2

200𝑛3
𝛽 ′ ≥

𝜃2𝛿4𝜖8

(5𝑛)26
.
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Proof. Along each branch of the recursion tree, we replace 𝜖 ← 4𝜖/5 and 𝛿 ← 4𝛿/5 at most
log5/4 𝑛 times, so each can only decrease by a factor of 𝑛 from their initial settings. The parameters
𝜂′ and 𝛽 ′ are computed directly from 𝜖′ and 𝛿 ′.

Lemma 5.27 (Failure Probability). EIG fails with probability no more than 𝜃 .

Proof. Since each recursion splits into at most two subproblems, and the recursion tree has depth
log5/4 𝑛, there are at most

2 ⋅ 2log5/4 𝑛 = 2𝑛
log 2
log 5/4 ≤ 2𝑛4

calls to SPAN. We have set every 𝜂 and 𝛽 so that the failure probability of each is 𝜃/2𝑛4, so a crude
union bound finishes the proof.

The arithmetic operations required for EIG satisfy the recursive relationship

𝑇EIG(𝑛, 𝛿, g, 𝜖, 𝜃, 𝑛) ≤ 𝑇SPLIT(𝑛, 𝜖, 𝛽) + 𝑇SPAN(𝑛, 𝛽, 𝜂) + 2𝑇MM(𝑛)
+ 𝑇EIG(𝑛+, 4𝛿/5, g+, 4𝜖/5, 𝜃, 𝑛) + 𝑇EIG(𝑛−, 4𝛿/5, g−, 4𝜖/5, 𝜃, 𝑛)
+ 2𝑇MM(𝑛) + 𝑂(𝑛2).

All of 𝑇SPLIT, 𝑇SPAN, and 𝑇MM are of the form polylog(𝑛) poly(𝑛), with all coefficients nonnegative and
exponents in the poly(𝑛) no smaller than 2. So, for any 𝑛+ + 𝑛− = 𝑛 and 𝑛± ≥ 4𝑛/5, holding all other
parameters fixed, 𝑇SPLIT(𝑛+, ...) + 𝑇SPLIT(𝑛−, ...) ≤ ((4/5)2 + (1/5)2) 𝑇SPLIT(𝑛, ...) = (17/25)𝑇SPLIT(𝑛, ...)
and the same holds for 𝑇SPAN and 𝑇MM. Applying this recursively, with all parameters other than 𝑛
set to their lower bounds from Lemma 5.26, we then have

𝑇EIG(𝑛, 𝛿, g, 𝜖, 𝜃, 𝑛) ≤
1

1 − 17/25 (
𝑇SPLIT (𝑛, 𝜖/𝑛, g,

𝛿4𝜖8𝜃2

(5𝑛)26 )

+ 𝑇SPAN (𝑛, 𝛽/𝑛, 𝜖/𝑛,
𝛿4𝜖8𝜃2

(5𝑛)26 )
+ 4𝑇MM(𝑛) + 𝑂(𝑛2))

=
25
8 (12𝑁EIG lg

1
𝜔(g) (

𝑇INV(𝑛) + 𝑂(𝑛2)) + 2𝑇QR(𝑛)

+ 5𝑇MM(𝑛) + 𝑛2𝑇N + 𝑂(𝑛2))

≤ 60𝑁EIG lg
1

𝜔(g) (
𝑇INV(𝑛) + 𝑂(𝑛2)) + 10𝑇QR(𝑛) + 25𝑇MM(𝑛),

where
𝑁EIG ≜ lg

256𝑛
𝜖

+ 3 lg lg
256𝑛
𝜖

+ lg lg
(5𝑛)26

𝜃2𝛿4𝜖9
+ 7.59.

In the above inequalities, we’ve substituted in the expressions for 𝑇SPLIT and 𝑇SPAN from Theorems
5.16 and 5.17, respectively; 𝑁EIG is defined by recomputing 𝑁SPLIT with the parameter lower bounds,
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and the 𝜖9 is not an error. The final inequality uses our assumption 𝑇N = 𝑂(1). Thus using the fast
and stable instantiations of MM, INV, and QR from Theorem 5.8, we have

𝑇EIG(𝑛, 𝛿, g, 𝜖, 𝜃, 𝑛) = 𝑂 (log
1

𝜔(g) (
log

𝑛
𝜖
+ log log

1
𝜃𝛿 )

𝑇MM(𝑛, 𝐮)) ; (5.12)

exact constants can be extracted by analyzing 𝑁EIG and opening Theorem 5.8.

Required Bits of Precision. We will need the following bound on the norms of all spectral
projectors.

Lemma 5.28 (Sizes of Spectral Projectors). Throughout the algorithm, every approximate spectral
projector 𝑃 given to SPAN satisfies ‖𝑃‖ ≤ 10𝑛/𝜖.

Proof. Every such 𝑃 is 𝛽-close to a true spectral projector 𝑃 of a matrix whose 𝜖/𝑛-pseudosepctrum
is shattered with respect to the initial 8 × 8 unit grid g. Since we can generate 𝑃 by a contour
integral around the boundary of a rectangular subgrid, we have

‖𝑃‖ ≤ 2 + ‖𝑃‖ ≤ 2 +
32
2𝜋

𝑛
𝜖
≤ 10𝑛/𝜖,

with the last inequality following from 𝜖 < 1.

Collecting the machine precision requirements 𝐮 ≤ 𝐮SPLIT, 𝐮SPAN from Theorems 5.16 and 5.17,
as well as those we used in the course of our proof so far, and substituting in the parameter lower
bounds from Lemma 5.26, we need 𝐮 to satisfy

𝐮 ≤ min
⎧⎪⎪
⎨⎪⎪⎩

(1 − 𝜖
256𝑛)

2𝑁EIG+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁EIG

,

𝜖
100𝑛2

,
𝜃2𝛿4𝜖8

(5𝑛)26
1

4‖𝑃‖max{𝜇QR(𝑛), 𝜇MM(𝑛)}
,

𝛿𝜖2

100𝑛3 ⋅ 2𝜇QR(𝑛)
,

𝛿𝜖2

100𝑛3max{4𝜇MM(𝑛), 𝑛, 2𝜇QR(𝑛)}

}

From Lemma 5.28, ‖𝑃‖ ≤ 10𝑛/𝜖, so the conditions in the second two lines are all satisfied if we
make the crass upper bound

𝐮 ≤
𝜃2𝛿4𝜖8

(5𝑛)30
1

max{𝜇QR(𝑛), 𝜇𝑀𝑀 (𝑛), 𝑛}
, (5.13)
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i.e. if lg 1/𝐮 ≥ 𝑂 (lg 𝑛
𝜃𝛿𝜖 ). Unpacking the first requirement, using the definition 𝑁EIG ≜ lg 256𝑛

𝜖 +
3 lg lg 256𝑛

𝜖 +lg lg (5𝑛)26
𝜃2𝛿4𝜖9 +7.59 from Theorem 5.19, and recalling that 𝜖 ≤ 1/2, 𝑛 ≥ 1, and (1−𝑥)1/𝑥 ≥ 1/4

for 𝑥 ∈ (0, 1/512), we have

(1 − 𝜖
256𝑛)

2𝑁EIG+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁EIG

=
((1 −

𝜖
256𝑛)

256𝑛
𝜖
)
lg3 256𝑛

𝜖 lg (5𝑛)26

𝜃2𝛿4𝜖8 2
8.59(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁EIG

≥
4− lg

3 256𝑛
𝜖 lg (5𝑛)26

𝜃2𝛿4𝜖8 2
8.59(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁EIG

,

so setting 𝐮 smaller than the final expression is sufficient to guarantee EIG and all subroutines
can execute as advertised. This gives

lg 1/𝐮 ≥ lg3
𝑛
𝜖
lg

(5𝑛)26

𝜃2𝛿4𝜖8
29.59(𝑐INV log 𝑛 + 3) + lg 𝑁EIG

= 𝑂 (log
3 𝑛
𝜖
log

𝑛
𝜃𝛿𝜖

log 𝑛) .

This dominates the precision requirement from (5.13), and completes the proof of Theorem 5.19.

Remark 5.29. A constant may be extracted directly from the expression above — leaving 𝜖, 𝛿, 𝜃
fixed, a crude bound on it is 29.59 ⋅ 26 ⋅ 8 ⋅ 𝑐INV ≈ 160303𝑐INV. This can certainly be optimized,
the improvement with the highest impact would be tighter analysis of SPLIT, with the aim of
eliminating the additive 7.59 term in 𝑁SPLIT.

5.6 Approximating the Matrix Sign Function
The algortithmic centerpiece of this chapter is the analysis, in finite arithmetic, of Roberts’ iterative
method for approximating to the matrix sign function. Recall from Section 5.1 that if 𝐴 is a matrix
whose spectrum avoids the imaginary axis, then

sgn(𝐴) = 𝑃+ − 𝑃−

where the 𝑃+ and 𝑃− are the spectral projectors corresponding to eigenvalues in the open right
and left half-planes, respectively. The iterative algorithm we consider approximates the matrix
sign function by repeated application to 𝐴 of the function

𝑔(𝑧) ≜
1
2
(𝑧 + 𝑧−1). (5.14)

This is simply Newton’s method to find a root of 𝑧2 − 1, but one can verify that the function 𝑔
fixes the left and right halfplanes, and thus we should expect it to push those eigenvalues in the
former towards −1, and those in the latter towards +1.



CHAPTER 5. DIAGONALIZATION BY SPECTRAL BISECTION 106

SGN

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛, pseudospectral guarantee 𝜖, circle parameter 𝛼 , and desired accuracy 𝛿
Requires: Λ𝜖(𝐴) ⊂ C𝛼 .
Output: Approximate matrix sign function 𝑆
Ensures: ‖𝑆 − sgn(𝐴)‖ ≤ 𝛿

1. 𝑁 ← ⌈lg(1/(1 − 𝛼)) + 3 lg lg(1/(1 − 𝛼)) + lg lg(1/(𝛽𝜖)) + 7.59⌉

2. 𝐴0 ← 𝐴

3. For 𝑘 = 1, ..., 𝑁 ,

a) 𝐴𝑘 ← 1
2 (𝐴𝑘−1 + 𝐴−1

𝑘−1) + 𝐸𝑘

4. 𝑆 ← 𝐴𝑁

We denote the specific finite-arithmetic implementation used in our algorithm by SGN; the
pseudocode is provided below.

In Subsection 5.6 we briefly discuss the specific preliminaries that will be used throughout
this section. In Subsection 5.6 we give a pseudospectral proof of the rapid global convergence of
this iteration when implemented in exact arithmetic. In Subsection 5.6 we show that the proof
provided in Subsection 5.6 is robust enough to handle the finite arithmetic case; a formal statement
of this main result is the content of Theorem 5.38.

Circles of Apollonius
It has been known since antiquity that a circle in the plane may be described as the set of points
with a fixed ratio of distances to two focal points. By fixing the focal points and varying the ratio
in question, we get a family of circles named for the Greek geometer Apollonius of Perga. We will
exploit several interesting properties enjoyed by these Circles of Apollonius in the analysis below.

More precisely, we analyze the Newton iteration map 𝑔 in terms of the family of Apollonian
circles whose foci are the points ±1 ∈ ℂ. For the remainder of this section we will write 𝑚(𝑧) = 1−𝑧

1+𝑧
for the Möbius transformation taking the right half-plane to the unit disk, and for each 𝛼 ∈ (0, 1)
we denote by

C+
𝛼 = {𝑧 ∈ ℂ ∶ |𝑚(𝑧)| ≤ 𝛼} , C−

𝛼 = {𝑧 ∈ ℂ ∶ |𝑚(𝑧)|−1 ≤ 𝛼}

the closed region in the right (respectively left) half-plane bounded by such a circle. Write 𝜕C+
𝛼

and 𝜕C−
𝛼 for their boundaries, and C𝛼 = C+

𝛼 ∪ C−
𝛼 for their union. See Figure 5.2 for an illustration.

The region C+
𝛼 is a disk centered at 1+𝛼2

1−𝛼2 ∈ ℝ, with radius 2𝛼
1−𝛼2 , and whose intersection with

the real line is the interval (𝑚(𝛼), 𝑚(𝛼)−1); C−
𝛼 can be obtained by reflecting C+

𝛼 with respect to the
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Figure 5.2: Apollonian circles appearing in the analysis of the Newton iteration. Depicted are
𝜕C+

𝛼2𝑘
for 𝛼 = 0.8 and 𝑘 = 0, 1, 2, 3, with smaller circles corresponding to larger 𝑘.

imaginary axis. For 𝛼 > 𝛽 > 0, we will write

A+
𝛼,𝛽 = C+

𝛼 ⧵ C
+
𝛽

for the Apollonian annulus lying inside C+
𝛼 and outside C+

𝛽 ; note that the circles are not concentric
so this is not strictly speaking an annulus, and note also that in our notation this set does not
include 𝜕C+

𝛽 . In the same way define A−
𝛼,𝛽 for the left half-plane and write A𝛼,𝛽 = A+

𝛼,𝛽 ∪ A−
𝛼,𝛽 . The

following observation is due to Roberts [133].

Observation 5.30. The Newton map 𝑔 is a two-to-one map from C+
𝛼 to C+

𝛼2 , and a two-to-one
map from C−

𝛼 to C−
𝛼2 .

Proof. This follows from the fact that for each 𝑧 in the right half-plane,

|𝑚(𝑔(𝑧))| =
|||||

1 − 1
2 (𝑧 + 1/𝑧)

1 + 1
2 (𝑧 + 1/𝑧)

|||||
=
||||
(1 − 𝑧)2

(𝑧 + 1)2
||||
= |𝑚(𝑧)|2

and similarly for the left half-plane.

It follows from Observation 5.30 that under repeated application of the Newton map 𝑔, any
point in the right or left half-plane converges to +1 or −1, respectively.
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Exact Arithmetic
In this section, we set 𝐴0 ≜ 𝐴 and 𝐴𝑘+1 ≜ 𝑔(𝐴𝑘) for all 𝑘 ≥ 0. In the case of exact arithmetic,
Observation 5.30 implies global convergence of the Newton iteration when 𝐴 is diagonalizable.
For the convenience of the reader we provide this argument (due to [133]) below.

Proposition 5.31. Let 𝐴 be a diagonalizable 𝑛 × 𝑛 matrix and assume that Λ(𝐴) ⊂ C𝛼 for some
𝛼 ∈ (0, 1). Then for every 𝑁 ∈ ℕ we have the guarantee

‖𝐴𝑁 − sgn(𝐴)‖ ≤
4𝛼2𝑁

𝛼2𝑁+1 + 1
⋅ 𝜅𝑉 (𝐴).

Moreover, when 𝐴 does not have eigenvalues on the imaginary axis the minimum 𝛼 for which
Λ(𝐴) ⊂ C𝛼 is given by

𝛼2 = max
1≤𝑖≤𝑛

{
1 −

4|ℜ(𝜆𝑖(𝐴))|
|𝜆𝑖(𝐴) − sgn(𝜆𝑖(𝐴))|2

}

Proof. Consider the spectral decomposition 𝐴 = ∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑤∗

𝑖 , and denote by 𝜆(𝑁 )
𝑖 the eigenvalues

of 𝐴𝑁 . By Observation 5.30 we have that Λ(𝐴𝑁 ) ⊂ C𝛼2𝑁 and sgn(𝜆𝑖) = sgn(𝜆(𝑁 )
𝑖 ). Moreover, 𝐴𝑁 and

sgn(𝐴) have the same eigenvectors. Hence

‖𝐴𝑁 − sgn(𝐴)‖ ≤
‖‖‖‖‖‖
∑

ℜ(𝜆𝑖 )>0
(𝜆(𝑁 )

𝑖 − 1)𝑣𝑖𝑤∗
𝑖

‖‖‖‖‖‖
+
‖‖‖‖‖‖
∑

ℜ(𝜆𝑖 )<0
(𝜆(𝑁 )

𝑖 + 1)𝑣𝑖𝑤∗
𝑖

‖‖‖‖‖‖
. (5.15)

Now we will use that the operator norm of any matrix is at most the spectral radius times the
eigenvector condition number. Observe that the spectral radii of the two matrices appearing on
the right hand side of (5.15) are bounded by max𝑖 |𝜆𝑖 − sgn(𝜆𝑖)|, which in turn is bounded by the
radius of the circle C+

𝛼2𝑁
, namely 2𝛼2𝑁 /(𝛼2𝑁+1 + 1). On the other hand, the eigenvector condition

number of these matrices is bounded by 𝜅𝑉 (𝐴). This concludes the first part of the statement.
In order to compute 𝛼 note that if 𝑧 = 𝑥 + 𝑖𝑦 with 𝑥 > 0, then

|𝑚(𝑧)|2 =
(1 − 𝑥)2 + 𝑦2

(1 + 𝑥)2 + 𝑦2 = 1 −
4𝑥

(1 + 𝑥)2 + 𝑦2 ,

and analogously when 𝑥 < 0 and we evaluate |𝑚(𝑧)|−2.

The above analysis becomes useless when trying to prove the same statement in the framework
of finite arithmetic. This is due to the fact that at each step of the iteration the roundoff error
can make the eigenvector condition numbers of the 𝐴𝑘 grow. In fact, since 𝜅𝑉 (𝐴𝑘) is sensitive to
infinitesimal perturbations whenever 𝐴𝑘 has a multiple eigenvalue, it seems difficult to control
it against adversarial perturbations as the iteration converges to sgn(𝐴𝑘) (which has very high
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multiplicity eigenvalues). A different approach, also due to [133], yields a proof of convergence in
exact arithmetic even when 𝐴 is not diagonalizable. However, that proof relies heavily on the fact
that 𝑚(𝐴𝑁 ) is an exact power of 𝑚(𝐴0), or more precisely, it requires the sequence 𝐴𝑘 to have the
same generalized eigenvectors, which is again not the case in the finite arithmetic setting.

Therefore, a robust version of the above proof is needed, tolerant to perturbations. To this end,
instead of simultaneously keeping track of the eigenvector condition number and the spectrum of
the matrices 𝐴𝑘 , we will just show that for certain 𝜖𝑘 > 0, the 𝜖𝑘−pseudospectra of these matrices
are contained in a certain shrinking region dependent on 𝑘. This invariant is inherently robust
to perturbations smaller than 𝜖𝑘 , unaffected by clustering of eigenvalues due to convergence,
and allows us to bound the accuracy and other quantities of interest via the functional calculus.
For example, the following lemma shows how to obtain a bound on ‖𝐴𝑁 − sgn(𝐴)‖ solely using
information from the pseudospectrum of 𝐴𝑁 .

Lemma 5.32 (Pseudospectral Error Bound). Let 𝐴 be any 𝑛 × 𝑛 matrix and let 𝐴𝑁 be the 𝑁 th
iterate of the Newton iteration under exact arithmetic. Assume that 𝜖𝑁 > 0 and 𝛼𝑁 ∈ (0, 1) satisfy
Λ𝜖𝑁 (𝐴𝑁 ) ⊂ C𝛼𝑁 . Then we have the guarantee

‖𝐴𝑁 − sgn(𝐴)‖ ≤
8𝛼2

𝑁

(1 − 𝛼𝑁 )2(1 + 𝛼𝑁 )𝜖𝑁
. (5.16)

Proof. Note that sgn(𝐴) = sgn(𝐴𝑁 ). Using the functional calculus we get

‖𝐴𝑁 − sgn(𝐴𝑁 )‖ =
‖‖‖‖‖‖

1
2𝜋𝑖 ∮𝜕C𝛼𝑁

𝑧(𝑧 − 𝐴𝑁 )−1 d𝑧 − 1
2𝜋𝑖 (∮

𝜕C+
𝛼𝑁

(𝑧 − 𝐴𝑁 )−1 d𝑧 − ∮
𝜕C−

𝛼𝑁

(𝑧 − 𝐴𝑁 )−1 d𝑧
)

‖‖‖‖‖‖

=
‖‖‖‖‖

1
2𝜋𝑖 ∮𝜕C+

𝛼𝑁

𝑧(𝑧 − 𝐴𝑁 )−1 − (𝑧 − 𝐴𝑁 )−1 d𝑧 + 1
2𝜋𝑖 ∮𝜕C−

𝛼𝑁

𝑧(𝑧 − 𝐴𝑁 )−1 + (𝑧 − 𝐴𝑁 )−1 d𝑧
‖‖‖‖‖

≤
1
2𝜋

‖‖‖‖‖
∮
𝜕C+

𝛼𝑁

(𝑧 − 1)(𝑧 − 𝐴𝑁 )−1 d𝑧
‖‖‖‖‖
+

1
2𝜋

‖‖‖‖‖
∮
𝜕C−

𝛼𝑁

(𝑧 + 1)(𝑧 − 𝐴𝑁 )−1 d𝑧
‖‖‖‖‖

≤ 2 ⋅
1
2𝜋

𝓁(𝜕C+
𝛼𝑁 ) sup{|𝑧 − 1| ∶ 𝑧 ∈ C+

𝛼𝑁 }
1
𝜖𝑁

=
4𝛼𝑁
1 − 𝛼2

𝑁 (
1 + 𝛼𝑁
1 − 𝛼𝑁

− 1)
1
𝜖𝑁

=
8𝛼2

𝑁

(1 − 𝛼𝑁 )2(1 + 𝛼𝑁 )𝜖𝑁
.

In view of Lemma 5.32, we would now like to find sequences 𝛼𝑘 and 𝜖𝑘 such that

Λ𝜖𝑘 (𝐴𝑘) ⊂ C𝛼𝑘
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and 𝛼2
𝑘 /𝜖𝑘 converges rapidly to zero. The dependence of this quantity on the square of 𝛼𝑘 turns out

to be crucial. As we will see below, we can find such a sequence with 𝜖𝑘 shrinking roughly at the
same rate as 𝛼𝑘 . This yields quadratic convergence, which will be necessary for our bound on the
required machine precision in the finite arithmetic analysis of Section 5.6.

The lemma below is instrumental in determining the sequences 𝛼𝑘 , 𝜖𝑘 .

Lemma 5.33 (Key Lemma). If Λ𝜖(𝐴) ⊂ C𝛼 , then for every 𝛼 ′ > 𝛼2, we have Λ𝜖′(𝑔(𝐴)) ⊂ C𝛼 ′ where

𝜖′ ≜ 𝜖
(𝛼 ′ − 𝛼2)(1 − 𝛼2)

8𝛼
.

Proof. From the definition of pseudospectrum, our hypothesis implies ‖(𝑧 − 𝐴)−1‖ < 1/𝜖 for every 𝑧
outside of C𝛼 . The proof will hinge on the observation that, for each 𝛼 ′ ∈ (𝛼2, 𝛼), this resolvent
bound allows us to bound the resolvent of 𝑔(𝐴) everywhere in the Appolonian annulus A𝛼,𝛼 ′ .

Let 𝑤 ∈ A𝛼,𝛼 ′ ; see Figure 5.3 for an illustration. We must show that 𝑤 ∉ Λ𝜖′(𝑔(𝐴)). Since
𝑤 ∉ C𝛼2 , Observation 5.30 ensures no 𝑧 ∈ C𝛼 satisfies 𝑔(𝑧) = 𝑤; in other words, the function
(𝑤 − 𝑔(𝑧))−1 is holomorphic in 𝑧 on C𝛼 . As Λ(𝐴) ⊂ Λ𝜖(𝐴) ⊂ C𝛼 , Observation 5.30 also guarantees
that Λ(𝑔(𝐴)) ⊂ C𝛼2 . Thus for 𝑤 in the union of the two Appolonian annuli in question, we can
calculate the resolvent of 𝑔(𝐴) at 𝑤 using the holomorphic functional calculus:

(𝑤 − 𝑔(𝐴))−1 =
1
2𝜋𝑖 ∮𝜕C𝛼

(𝑤 − 𝑔(𝑧))−1(𝑧 − 𝐴)−1 d𝑧,

where by this we mean to sum the integrals over 𝜕C+
𝛼 and 𝜕C−

𝛼 , both positively oriented. Taking
norms, passing inside the integral, and applying Observation 5.30 one final time, we get:

‖‖(𝑤 − 𝑔(𝐴))−1‖‖ ≤
1
2𝜋 ∮

𝜕C𝛼
|(𝑤 − 𝑔(𝑧))−1| ⋅ ‖(𝑧 − 𝐴)−1‖ d𝑧

≤
𝓁 (𝜕C+

𝛼 ) sup𝑦∈C+
𝛼2
|(𝑤 − 𝑦)−1| + 𝓁 (𝜕C−

𝛼 ) sup𝑦∈C−
𝛼2
|(𝑤 − 𝑦)−1|

2𝜋𝜖

≤
1
𝜖

8𝛼
(𝛼 ′ − 𝛼2)(1 − 𝛼2)

.

In the last step we also use the forthcoming Lemma 5.34. Thus, with 𝜖′ defined as in the theorem
statement, A𝛼,𝛼 ′ contains none of the 𝜖′-pseudospectrum of 𝑔(𝐴). Since Λ(𝑔(𝐴)) ⊂ C𝛼2 , Lemma 2.1
tells us that there can be no 𝜖′-pseudospectrum in the remainder of ℂ ⧵ C𝛼 ′ , as such a connected
component would need to contain an eigenvalue of 𝑔(𝐴).

Lemma 5.34. Let 1 > 𝛼, 𝛽 > 0 be given. Then for any 𝑥 ∈ 𝜕C𝛼 and 𝑦 ∈ 𝜕C𝛽 , we have |𝑥−𝑦| ≥ (𝛼−𝛽)/2.
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Figure 5.3: Illustration of the proof of Lemma 5.33

Proof. Without loss of generality 𝑥 ∈ 𝜕C+
𝛼 and 𝑦 ∈ 𝜕C+

𝛽 . Then we have

|𝛼 − 𝛽| = ||𝑚(𝑥)| − |𝑚(𝑦)|| ≤ |𝑚(𝑥) − 𝑚(𝑦)| =
2|𝑥 − 𝑦|

|1 + 𝑥||1 + 𝑦|
≤ 2|𝑥 − 𝑦|.

Lemma 5.33 will also be useful in bounding the condition numbers of the𝐴𝑘 , which is necessary
for the finite arithmetic analysis.

Corollary 5.35 (Condition Number Bound). Using the notation of Lemma 5.33, if Λ𝜖(𝐴) ⊂ C𝛼 , then

‖𝐴−1‖ ≤
1
𝜖

and ‖𝐴‖ ≤
4𝛼

(1 − 𝛼)2𝜖
.

Proof. The bound ‖𝐴−1‖ ≤ 1/𝜖 follows from the fact that 0 ∉ C𝛼 ⊃ Λ𝜖(𝐴). In order to bound 𝐴 we
use the contour integral bound

‖𝐴‖ =
‖‖‖‖‖

1
2𝜋𝑖 ∮𝜕C𝛼

𝑧(𝑧 − 𝐴)−1 d𝑧
‖‖‖‖‖

≤
𝓁 (𝜕C𝛼 )
2𝜋 ( sup

𝑧∈𝜕C𝛼
|𝑧|)

1
𝜖

=
4𝛼

1 − 𝛼2

1 + 𝛼
1 − 𝛼

1
𝜖
.
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Another direct application of Lemma 5.33 yields the following.

Lemma 5.36. Let 𝜖 > 0. If Λ𝜖(𝐴) ⊂ C𝛼 , and 1/𝛼 > 𝐷 > 1 then for every 𝑁 we have the guarantee

Λ𝜖𝑁 (𝐴𝑁 ) ⊂ C𝛼𝑁 ,

for 𝛼𝑁 = (𝐷𝛼)2𝑁 /𝐷 and 𝜖𝑁 = 𝛼𝑁 𝜖
𝛼 (

(𝐷−1)(1−𝛼2)
8𝐷 )

𝑁
.

Proof. Define recursively 𝛼0 = 𝛼 , 𝜖0 = 𝜖, 𝛼𝑘+1 = 𝐷𝛼2
𝑘 and 𝜖𝑘+1 = 1

8𝜖𝑘𝛼𝑘(𝐷 − 1)(1 − 𝛼2
0 ). It is easy to

see by induction that this definition is consistent with the definition of 𝛼𝑁 and 𝜖𝑁 given in the
statement.

We will now show by induction that Λ𝜖𝑘 (𝐴𝑘) ⊂ C𝛼𝑘 . Assume the statement is true for 𝑘, so
from Lemma 5.33 we have that the statement is also true for 𝐴𝑘+1 if we pick the pseudospectral
parameter to be

𝜖′ = 𝜖𝑘
(𝛼𝑘+1 − 𝛼2

𝑘 )(1 − 𝛼2
𝑘 )

8𝛼𝑘
=
1
8
𝜖𝑘𝛼𝑘(𝐷 − 1)(1 − 𝛼2

𝑘 ).

On the other hand
1
8
𝜖𝑘𝛼𝑘(𝐷 − 1)(1 − 𝛼2

𝑘 ) ≥
1
8
𝜖𝑘𝛼𝑘(𝐷 − 1)(1 − 𝛼2

0 ) = 𝜖𝑘+1,

which concludes the proof of the statement.

We are now ready to prove the main result of this section, a pseudospectral version of Proposi-
tion 5.31.

Proposition 5.37. Let 𝐴 ∈ ℂ𝑛×𝑛 be a diagonalizable matrix and assume that Λ𝜖(𝐴) ⊂ C𝛼 for some
𝛼 ∈ (0, 1). Then, for any 1 < 𝐷 < 1

𝛼 for every 𝑁 we have the guarantee

‖𝐴𝑁 − sgn(𝐴)‖ ≤ (𝐷𝛼)2
𝑁
⋅
𝜋𝛼(1 − 𝛼2)2

8𝜖
⋅ (

8𝐷
(𝐷 − 1)(1 − 𝛼2))

𝑁+2

.

Proof. Using the choice of 𝛼𝑘 and 𝜖𝑘 given in the proof of Lemma 5.36 and the bound (5.16), we
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get that

‖𝐴𝑁 − sgn(𝐴)‖ ≤
8𝜋𝛼2

𝑁

(1 − 𝛼𝑁 )2(1 + 𝛼𝑁 )𝜖𝑁

=
8𝜋𝛼0𝛼𝑁

𝜖0(1 − 𝛼𝑁 )2(1 + 𝛼𝑁 ) (
8𝐷

(𝐷 − 1)(1 − 𝛼2
0 ))

𝑁

= (𝐷𝛼0)2
𝑁 8𝐷3𝜋𝛼0
(𝐷 − (𝐷𝛼0)2𝑁 )2(𝐷 + (𝐷𝛼0)2𝑁 )𝜖0 (

8𝐷
(𝐷 − 1)(1 − 𝛼2

0 ))

𝑁

≤ (𝐷𝛼0)2
𝑁 8𝐷2𝜋𝛼0
(𝐷 − 1)2𝜖0 (

8𝐷
(𝐷 − 1)(1 − 𝛼2

0 ))

𝑁

= (𝐷𝛼0)2
𝑁 𝜋𝛼0(1 − 𝛼2

0 )2

8𝜖0 (
8𝐷

(𝐷 − 1)(1 − 𝛼2
0 ))

𝑁+2

,

where the last inequality was taken solely to make the expression more intuitive, since not much
is lost by doing so.

Finite Arithmetic
Finally, we turn to the analysis of SGN in finite arithmetic. By making the machine precision
small enough, we can bound the effect of roundoff to ensure that the parameters 𝛼𝑘 , 𝜖𝑘 are not
too far from what they would have been in the exact arithmetic analysis above. We will stop the
iteration before any of the quantities involved become prohibitively small, so we will only need
polylog(1 − 𝛼0, 𝜖0, 𝛽) bits of precision, where 𝛽 is the accuracy parameter.

In exact arithmetic, recall that the Newton iteration is given by𝐴𝑘+1 = 𝑔(𝐴𝑘) = 1
2 (𝐴𝑘+𝐴−1

𝑘 ).Here
we will consider the finite arithmetic version G of the Newton map 𝑔, defined as G(𝐴) ≜ 𝑔(𝐴) + 𝐸𝐴
where 𝐸𝐴 is an adversarial perturbation coming from the round-off error. Hence, the sequence of
interest is given by 𝐴0 ≜ 𝐴 and 𝐴𝑘+1 ≜ G(𝐴𝑘) .

In this subsection we will prove the following theorem concerning the runtime and precision
of SGN. Our assumptions on the size of the parameters 𝛼0, 𝛽, 𝜇INV(𝑛) and 𝑐INV are in place only to
simplify the analysis of constants; these assumptions are not required for the execution of the
algorithm.

Theorem 5.38 (Main guarantees for SGN). Assume INV is a (𝜇INV(𝑛), 𝑐INV)-stable matrix inversion
algorithm satisfying Definition 5.5. Let 𝜖0 ∈ (0, 1), 𝛽 ∈ (0, 1/12), assume 𝜇INV(𝑛) ≥ 1 and 𝑐INV log 𝑛 ≥ 1,
and assume 𝐴 = 𝐴0 is a floating-point matrix with 𝜖0-pseudospectrum contained in C𝛼0 where
0 < 1 − 𝛼0 < 1/100. Run SGN with

𝑁 = ⌈lg(1/(1 − 𝛼0)) + 3 lg lg(1/(1 − 𝛼0)) + lg lg(1/(𝛽𝜖0)) + 7.59⌉
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iterations (as specified in the statement of the algorithm). Then 𝐴𝑁 = SGN(𝐴) satisfies the advertised
accuracy guarantee

‖𝐴𝑁 − sgn(𝐴)‖ ≤ 𝛽

when run with machine precision satisfying

𝐮 ≤ 𝐮SGN ≜
𝛼2𝑁+1(𝑐INV log 𝑛+3)
0

𝜇INV(𝑛)
√
𝑛𝑁

,

corresponding to at most

lg(1/𝐮SGN)) = 𝑂(log 𝑛 log3(1/(1 − 𝛼0))(log(1/𝛽) + log(1/𝜖0)))

required bits of precision. The number of arithmetic operations is at most

𝑁(4𝑛2 + 𝑇INV(𝑛)).

Later on, we will need to call SGN on a matrix with shattered pseudospectrum; the lemma below
calculates acceptable parameter settings for shattering so that the pseudospectrum is contained in
the required pair of Appolonian circles, satisfying the hypothesis of Theorem 5.38.

Lemma 5.39. If 𝐴 has 𝜖-pseudospectrum shattered with respect to a grid g = grid(𝑧0, 𝜔, 𝑠1, 𝑠2) that
includes the imaginary axis as a grid line, then one has Λ𝜖0(𝐴) ⊆ C𝛼0 where 𝜖0 = 𝜖/2 and

𝛼0 = 1 −
𝜖

diag(g)2
.

In particular, if 𝜖 is at least 1/ poly(𝑛) and 𝜔𝑠1 and 𝜔𝑠2 are at most poly(𝑛), then 𝜖0 and 1 − 𝛼0 are
also at least 1/ poly(𝑛).

Proof. First, because it is shattered, the 𝜖/2-pseudospectrum of 𝐴 is at least distance 𝜖/2 from g.
Recycling the calculation from Proposition 5.31, it suffices to take

𝛼2
0 = max

𝑧∈Λ𝜖/2(𝐴)(
1 −

4|ℜ𝑧|
|𝑧 − sgn(𝑧)|2)

.

From what we just observed about the pseudospectrum, we can take |ℜ𝑧| ≥ 𝜖/2. To bound the
denominator, we can use the crude bound that any two points inside the grid are at distance no
more than diag(g). Finally, we use

√
1 − 𝑥 ≤ 1 − 𝑥/2 for any 𝑥 ∈ (0, 1).

The proof of Theorem 5.38 will proceed as in the exact arithmetic case, with the modification
that 𝜖𝑘 must be decreased by an additional factor after each iteration to account for roundoff. At
each step, we set the machine precision 𝐮 small enough so that the 𝜖𝑘 remain close to what they
would be in exact arithmetic. For the analysis we will introduce an explicit auxiliary sequence 𝑒𝑘
that lower bounds the 𝜖𝑘 , provided that 𝐮 is small enough.
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Lemma 5.40 (One-step additive error). Assume the matrix inverse is computed by an algorithm
INV satisfying the guarantee in Definition 5.5. Then G(𝐴) = 𝑔(𝐴) + 𝐸 for some error matrix 𝐸 with
norm

‖𝐸‖ ≤ (‖𝐴‖ + ‖𝐴−1‖ + 𝜇INV(𝑛)𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖) 2
√
𝑛𝐮. (5.17)

The proof of this lemma is deferred to Section 5.10.
With the error bound for each step in hand, we now move to the analysis of the whole iteration.

It will be convenient to define 𝑠 ≜ 1 − 𝛼0, which should be thought of as a small parameter. As
in the exact arithmetic case, for 𝑘 ≥ 1, we will recursively define decreasing sequences 𝛼𝑘 and 𝜖𝑘
maintaining the property

Λ𝜖𝑘 (𝐴𝑘) ⊂ C𝛼𝑘 for all 𝑘 ≥ 0 (5.18)
by induction as follows:

1. The base case 𝑘 = 0 holds because by assumption, Λ𝜖0 ⊂ C𝛼0 .

2. Here we recursively define 𝛼𝑘+1. Set

𝛼𝑘+1 ≜ (1 + 𝑠/4)𝛼2
𝑘 .

In the notation of Subsection 5.6, this corresponds to setting 𝐷 = 1 + 𝑠/4. This definition
ensures that 𝛼2

𝑘 ≤ 𝛼𝑘+1 ≤ 𝛼𝑘 for all 𝑘, and also gives us the bound (1 + 𝑠/4)𝛼0 ≤ 1 − 𝑠/2. We
also have the closed form

𝛼𝑘 = (1 + 𝑠/4)2
𝑘−1𝛼2𝑘

0 ,

which implies the useful bound
𝛼𝑘 ≤ (1 − 𝑠/2)2

𝑘
. (5.19)

3. Here we recursively define 𝜖𝑘+1. Combining Lemma 5.33, the recursive definition of 𝛼𝑘+1,
and the fact that 1 − 𝛼2

𝑘 ≥ 1 − 𝛼2
0 ≥ 1 − 𝛼0 = 𝑠, we find that Λ𝜖′ (𝑔(𝐴𝑘)) ⊂ C𝛼𝑘+1 , where

𝜖′ = 𝜖𝑘
(𝛼𝑘+1 − 𝛼2

𝑘) (1 − 𝛼2
𝑘 )

8𝛼𝑘
= 𝜖𝑘

𝑠𝛼𝑘(1 − 𝛼2
𝑘 )

32
≥ 𝜖𝑘

𝛼𝑘𝑠2

32
.

Thus in particular
Λ𝜖𝑘𝛼𝑘𝑠2/32 (𝑔(𝐴𝑘)) ⊂ C𝛼𝑘+1 .

Since 𝐴𝑘+1 = G(𝐴𝑘) = 𝑔(𝐴𝑘) + 𝐸𝑘 , for some error matrix 𝐸𝑘 arising from roundoff, stability
of pseudospectrum ensures that if we set

𝜖𝑘+1 ≜ 𝜖𝑘
𝑠2𝛼𝑘
32

− ‖𝐸𝑘‖ (5.20)

we will have Λ𝜖𝑘+1(𝐴𝑘+1) ⊂ C𝛼𝑘+1 , as desired.



CHAPTER 5. DIAGONALIZATION BY SPECTRAL BISECTION 116

We now need to show that the 𝜖𝑘 do not decrease too fast as 𝑘 increases. In view of (5.20), it
will be helpful to set the machine precision small enough to guarantee that ‖𝐸𝑘‖ is a small fraction
of 𝜖𝑘 𝛼𝑘𝑠

2

32 .

First, we need to control the quantities ‖𝐴𝑘‖, ‖𝐴−1
𝑘 ‖, and 𝜅(𝐴𝑘) = ‖𝐴𝑘‖‖𝐴−1

𝑘 ‖ appearing in our
upper bound (5.17) on ‖𝐸𝑘‖ from Lemma 5.40, as functions of 𝜖𝑘 . By Corollary 5.35, we have

‖𝐴−1
𝑘 ‖ ≤

1
𝜖𝑘

and ‖𝐴𝑘‖ ≤ 4
𝛼𝑘

(1 − 𝛼𝑘)2𝜖𝑘
≤

4
𝑠2𝜖𝑘

.

Thus, we may write the coefficient of 𝐮 in the bound (5.17) as

𝐾𝜖𝑘 ≜ [
4
𝑠2𝜖𝑘

+
1
𝜖𝑘

+ 𝜇INV(𝑛)(
4
𝑠2𝜖2𝑘)

𝑐INV log 𝑛 1
𝜖𝑘 ]

2
√
𝑛

so that Lemma 5.40 reads
‖𝐸𝑘‖ ≤ 𝐾𝜖𝑘𝐮. (5.21)

Plugging this into the definition (5.20) of 𝜖𝑘+1,we have

𝜖𝑘+1 ≥ 𝜖𝑘
𝑠2𝛼𝑘
32

− 𝐾𝜖𝑘𝐮. (5.22)

Now suppose we take 𝐮 small enough so that

𝐾𝜖𝑘𝐮 ≤
1
3
𝜖𝑘
𝑠2𝛼𝑘
32

. (5.23)

For such 𝐮, we then have
𝜖𝑘+1 ≥

2
3
𝜖𝑘
𝑠2𝛼𝑘
32

=
1
48
𝜖𝑘𝑠2𝛼𝑘 , (5.24)

which implies
‖𝐸𝑘‖ ≤

1
2
𝜖𝑘+1; (5.25)

this bound is loose but sufficient for our purposes. Inductively, we now have the following bound
on 𝜖𝑘 in terms of 𝛼𝑘 :

Lemma 5.41 (Preliminary Lower Bound on 𝜖𝑘). Let 𝑘 ≥ 0, and for all 0 ≤ 𝑖 ≤ 𝑘 − 1, assume 𝐮
satisfies the requirement (5.23):

𝐾𝜖𝑖𝐮 ≤
1
3
𝜖𝑖
𝑠2𝛼𝑖
32

.

Then we have

𝜖𝑘 ≥ 𝑒𝑘 ≜ 𝜖0 (
𝑠2

50)

𝑘

𝛼𝑘 .

In fact, it suffices to assume the hypothesis only for 𝑖 = 𝑘 − 1.
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Proof. The last statement follows from the fact that 𝜖𝑖 is decreasing in 𝑖 and 𝐾𝜖𝑖 is increasing in 𝑖.
Since (5.23) implies (5.24), we may apply (5.24) repeatedly to obtain

𝜖𝑘 ≥ 𝜖0(𝑠2/48)𝑘
𝑘−1

∏
𝑖=0

𝛼𝑖

= 𝜖0(𝑠2/48)𝑘(1 + 𝑠/4)2
𝑘−1−𝑘𝛼2𝑘−1

0 by the definition of 𝛼𝑖

= 𝜖0 (
𝑠2

48(1 + 𝑠/4))

𝑘 𝛼𝑘
𝛼0

≥ 𝜖0 (
𝑠2

50)

𝑘

𝛼𝑘 . 𝛼0 ≤ 1, 𝑠 < 1/8

We now show that the conclusion of Lemma 5.41 still holds if we replace 𝜖𝑖 everywhere in the
hypothesis by 𝑒𝑖 , which is an explicit function of 𝜖0 and 𝛼0 defined in Lemma 5.41. Note that we
do not know 𝜖𝑖 ≥ 𝑒𝑖 a priori, so to avoid circularity we must use a short inductive argument.

Corollary 5.42 (Lower Bound on 𝜖𝑘 with Explicit Hypothesis). Let 𝑘 ≥ 0, and for all 0 ≤ 𝑖 ≤ 𝑘 − 1,
assume 𝐮 satisfies

𝐾𝑒𝑖𝐮 ≤
1
3
𝑒𝑖
𝑠2𝛼𝑖
32

(5.26)

where 𝑒𝑖 is defined in Lemma 5.41. Then we have

𝜖𝑘 ≥ 𝑒𝑘 .

In fact, it suffices to assume the hypothesis only for 𝑖 = 𝑘 − 1.

Proof. The last statement follows from the fact that 𝑒𝑖 is decreasing in 𝑖 and 𝐾𝑒𝑖 is increasing in
𝑖. Assuming the full hypothesis of this lemma, we prove 𝜖𝑖 ≥ 𝑒𝑖 for 0 ≤ 𝑖 ≤ 𝑘 by induction on 𝑖.
For the base case, we have 𝜖0 ≥ 𝑒0 = 𝜖0𝛼0. For the inductive step, assume 𝜖𝑖 ≥ 𝑒𝑖 . Then as long as
𝑖 ≤ 𝑘 − 1, the hypothesis of this lemma implies

𝐾𝜖𝑖𝐮 ≤
1
3
𝜖𝑖
𝑠2𝛼𝑖
32

,

so we may apply Lemma 5.41 to obtain 𝜖𝑖+1 ≥ 𝑒𝑖+1, as desired.

Lemma 5.43 (Main Accuracy Bound). Suppose 𝐮 satisfies the requirement (5.23) for all 0 ≤ 𝑘 ≤ 𝑁 .
Then

‖𝐴𝑁 − sgn(𝐴)‖ ≤
8
𝑠

𝑁−1

∑
𝑘=0

‖𝐸𝑘‖
𝜖2𝑘+1

+
8 ⋅ 50𝑁

𝑠2𝑁+2𝜖0
(1 − 𝑠/2)2

𝑁
. (5.27)
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Proof. Since sgn = sgn ◦ 𝑔, for every 𝑘 we have

‖sgn(𝐴𝑘+1) − sgn(𝐴𝑘)‖ = ‖sgn(𝐴𝑘+1) − sgn(𝑔(𝐴𝑘))‖ = ‖sgn(𝐴𝑘+1) − sgn(𝐴𝑘+1 − 𝐸𝑘)‖.

From the holomorphic functional calculus we can rewrite ‖sgn(𝐴𝑘+1) − sgn(𝐴𝑘+1 − 𝐸𝑘)‖ as the norm
of a certain contour integral, which in turn can be bounded as follows:

1
2𝜋

‖‖‖‖‖
∮
𝜕C+

𝛼𝑘+1

((𝑧 − 𝐴𝑘+1)−1 − (𝑧 − (𝐴𝑘+1 − 𝐸𝑘))−1) d𝑧 − ∮
𝜕C−

𝛼𝑘+1

((𝑧 − 𝐴𝑘+1)−1 − (𝑧 − (𝐴𝑘+1 − 𝐸𝑘))−1) d𝑧
‖‖‖‖‖

≤
1
𝜋 ∮

𝜕C+
𝛼𝑘+1

‖(𝑧 − (𝐴𝑘+1 − 𝐸𝑘))−1‖‖𝐸𝑘‖‖(𝑧 − 𝐴𝑘+1)−1‖ d𝑧

≤
1
𝜋
𝓁(𝜕C+

𝛼𝑘+1)‖𝐸𝑘‖
1

𝜖𝑘+1 − ‖𝐸𝑘‖
1
𝜖𝑘+1

=
4𝛼𝑘+1
1 − 𝛼2

𝑘+1
‖𝐸𝑘‖

1
𝜖𝑘+1 − ‖𝐸𝑘‖

1
𝜖𝑘+1

,

where we use the definition and stability of pseudospectrum, together with the property (5.18).
Ultimately, this chain of inequalities implies

‖sgn(𝐴𝑘+1) − sgn(𝐴𝑘)‖ ≤
4𝛼𝑘+1
1 − 𝛼2

𝑘+1
‖𝐸𝑘‖

1
𝜖𝑘+1 − ‖𝐸𝑘‖

1
𝜖𝑘+1

.

Summing over all 𝑘 and using the triangle inequality, we obtain

‖sgn(𝐴𝑁 ) − sgn(𝐴0)‖ ≤
𝑁−1

∑
𝑘=1

4𝛼𝑘+1
1 − 𝛼2

𝑘+1
‖𝐸𝑘‖

1
𝜖𝑘+1 − ‖𝐸𝑘‖

1
𝜖𝑘+1

≤
8
𝑠

𝑁−1

∑
𝑘=0

‖𝐸𝑘‖
𝜖2𝑘+1

,

where in the last step we use 𝛼𝑘 ≤ 1 and 1 − 𝛼2
𝑘+1 ≥ 𝑠, as well as (5.25).

By Lemma 5.32 (to be precise, by repeating the proof of that lemma with 𝐴𝑁 substituted for
𝐴𝑁 ), we have

‖𝐴𝑁 − sgn(𝐴𝑁 )‖ ≤
8𝛼2

𝑁

(1 − 𝛼𝑁 )2(1 + 𝛼𝑁 )𝜖𝑁

≤
8
𝑠2
𝛼𝑁

𝛼𝑁
𝜖𝑁

≤
8
𝑠2
𝛼𝑁

1
𝜖0 (

50
𝑠2 )

𝑁

≤
8
𝑠2𝜖0

(1 − 𝑠/2)2
𝑁

(
50
𝑠2 )

𝑁

≤
8 ⋅ 50𝑁

𝑠2𝑁+2𝜖0
(1 − 𝑠/2)2

𝑁
.
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where we use 𝑠 < 1/2 in the last step. Combining the above with the triangle inequality, we obtain
the desired bound.

We would like to apply Lemma 5.43 to ensure ‖𝐴𝑁 − sgn(𝐴)‖ is at most 𝛽 , the desired accuracy
parameter. The upper bound (5.27) in Lemma 5.43 is the sum of two terms; we will make each
term less than 𝛽/2. The bound for the second term will yield a sufficient condition on the number
of iterations 𝑁 . Given that, the bound on the first term will then give a sufficient condition on the
machine precision 𝐮. This will be the content of Lemmas 5.45 and 5.46.

We start with the second term. The following preliminary lemma will be useful:

Lemma 5.44. Let 1/800 > 𝑡 > 0 and 1/2 > 𝑐 > 0 be given. Then for

𝑗 ≥ lg(1/𝑡) + 2 lg lg(1/𝑡) + lg lg(1/𝑐) + 1.62,

we have
(1 − 𝑡)2𝑗

𝑡2𝑗
< 𝑐.

The proof is deferred to Section 5.10.

Lemma 5.45 (Bound on Second Term of (5.27)). Suppose we have

𝑁 ≥ lg(8/𝑠) + 2 lg lg(8/𝑠) + lg lg(16/(𝛽𝑠2𝜖0)) + 1.62.

Then
8 ⋅ 50𝑁

𝑠2𝑁+2𝜖0
(1 − 𝑠/2)2

𝑁
≤ 𝛽/2.

Proof. It is sufficient that
8 ⋅ 64𝑁

𝑠2𝑁+2𝜖0
(1 − 𝑠/8)2

𝑁
≤ 𝛽/2.

The result now follows from applying Lemma 5.44 with 𝑐 = 𝛽𝑠2𝜖0/16 and 𝑡 = 𝑠/8.

Now we move to the first term in the bound of Lemma 5.43.

Lemma 5.46 (Bound on First Term of (5.27)). Suppose

𝑁 ≥ lg(8/𝑠) + 2 lg lg(8/𝑠) + lg lg(16/(𝛽𝑠2𝜖0)) + 1.62,
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and suppose the machine precision 𝐮 satisfies

𝐮 ≤
(1 − 𝑠)2𝑁+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁

.

Then we have
8
𝑠

𝑁−1

∑
𝑘=0

‖𝐸𝑘‖
𝜖2𝑘+1

≤ 𝛽/2.

Proof. It suffices to show that for all 0 ≤ 𝑘 ≤ 𝑁 − 1,

‖𝐸𝑘‖ ≤
𝛽𝜖2𝑘+1𝑠
16𝑁

.

In view of (5.21), which says ‖𝐸𝑘‖ ≤ 𝐾𝜖𝑘𝐮, it is sufficient to have for all 0 ≤ 𝑘 ≤ 𝑁 − 1

𝐮 ≤
1
𝐾𝜖𝑘

𝛽𝜖2𝑘+1𝑠
16𝑁

. (5.28)

For this, we claim it is sufficient to have for all 0 ≤ 𝑘 ≤ 𝑁 − 1

𝐮 ≤
1
𝐾𝑒𝑘

𝛽𝑒2𝑘+1𝑠
16𝑁

. (5.29)

Indeed, on the one hand, since 𝛽 < 1/6 and by the loose bound 𝑒𝑘+1 < 𝑠𝛼𝑘+1 < 𝑠𝛼𝑘 we have that
(5.29) implies 𝐮 ≤ 1

3𝐾𝑒𝑘
𝑠2𝑒𝑘
32 , which means that the assumption in Corollary 5.42 is satisfied. On the

other hand Corollary 5.42 yields 𝑒𝑘 ≤ 𝜖𝑘 for all 0 ≤ 𝑘 ≤ 𝑁 , which in turn, combined with (5.29)
would give (5.28) and conclude the proof.

We now show that (5.29) holds for all 0 ≤ 𝑘 ≤ 𝑁 − 1. Because 1/𝐾𝑒𝑘 and 𝑒𝑘 are decreasing in 𝑘,
it is sufficient to have the single condition

𝐮 ≤
1
𝐾𝑒𝑁

𝛽𝑒2𝑁 𝑠
16𝑁

.

We continue the chain of sufficient conditions on 𝐮, where each line implies the line above:

𝐮 ≤
1
𝐾𝑒𝑁

𝛽𝑒2𝑁 𝑠
16𝑁

𝐮 ≤
(

4
𝑠2𝑒𝑁

+
1
𝑒𝑁

+ 𝜇INV(𝑛)(
4

𝑠2𝑒2𝑁 )

𝑐INV log 𝑛 1
𝑒𝑁 )

−1
1

2
√
𝑛
𝛽𝑒2𝑁 𝑠
16𝑁

𝐮 ≤
(
6𝜇INV(𝑛)(

4
𝑠2𝑒𝑁 )

𝑐INV log 𝑛+1

2
√
𝑛
)

−1
𝛽𝑒2𝑁 𝑠
16𝑁

𝐮 ≤
𝛽

6 ⋅ 2 ⋅ 16𝜇INV(𝑛)
√
𝑛𝑁 (

𝑒𝑁 𝑠2

4 )

𝑐INV log 𝑛+3

.
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where we use the bound 1
𝑒𝑁

≤ 4
𝑠2𝑒2𝑁

without much loss, and we also use our assumption 𝜇INV(𝑛) ≥ 1
and 𝑐INV log 𝑛 ≥ 1 for simplicity.

Substituting the value of 𝑒𝑁 as defined in Lemma 5.41, we get the sufficient condition

𝐮 ≤
𝛽

192𝜇INV(𝑛)
√
𝑛𝑁 (

𝜖0(𝑠2/50)𝑁𝛼𝑁 𝑠2

4 )

𝑐INV log 𝑛+3

,

and replacing 𝛼𝑁 by the smaller quantity 𝛼2𝑁
0 = (1 − 𝑠)2𝑁 and cleaning up the constants yields the

stronger condition

𝐮 ≤
𝛽

192𝜇INV(𝑛)
√
𝑛𝑁 (

𝜖0(𝑠2/50)𝑁 (1 − 𝑠)2
𝑁 𝑠2

4 )

𝑐INV log 𝑛+3

.

Now we finally will use our hypothesis on the size of 𝑁 to simplify this expression. Applying
Lemma 5.45, we have

𝜖0(𝑠2/50)𝑁 /4 ≥
4(1 − 𝑠)2𝑁

𝑠2𝛽
.

Thus, our sufficient condition becomes

𝐮 ≤
𝛽

192𝜇INV(𝑛)
√
𝑛𝑁 (

4(1 − 𝑠)2𝑁+1

𝛽 )

𝑐INV log 𝑛+3

.

To make the expression simpler, since 𝑐INV log 𝑛 + 3 ≥ 4 we may pull out a factor of 44 > 192 and
remove the occurrences of 𝛽 to yield the sufficient condition

𝐮 ≤
(1 − 𝑠)2𝑁+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁

.

Matching the statement of Theorem 5.38, we give a slightly cleaner sufficient condition on 𝑁
that implies the hypothesis on 𝑁 appearing in the above lemmas. The proof is deferred to Section
5.10.

Lemma 5.47 (Final Sufficient Condition on 𝑁 ). If

𝑁 = ⌈lg(1/𝑠) + 3 lg lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) + 7.59⌉,

then
𝑁 ≥ lg(8/𝑠) + 2 lg lg(8/𝑠) + lg lg(16/(𝛽𝑠2𝜖0)) + 1.62.
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Taking the logarithm of the machine precision yields the number of bits required:

Lemma 5.48 (Bit Length Computation). Suppose

𝑁 = ⌈lg(1/𝑠) + 3 lg lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) + 7.59⌉

and

𝐮SGN =
(1 − 𝑠)2𝑁+1(𝑐INV log 𝑛+3)

𝜇INV(𝑛)
√
𝑛𝑁

.

Then
lg(1/𝐮SGN) = 𝑂( log 𝑛 log(1/𝑠)3(log(1/𝛽) + log(1/𝜖0))).

Proof. In the course of the proof, for convenience we also record a nonasymptotic bound (for
𝑠 < 1/100, 𝛽 < 1/12, 𝜖0 < 1 and 𝑐INV log 𝑛 > 1 as in the hypothesis of Theorem 5.38), at the cost of
making the computation somewhat messier.

Immediately we have

lg(1/𝐮SGN) ≤ lg 𝜇INV(𝑛) +
1
2
lg 𝑛 + lg 𝑁 + (𝑐INV log 𝑛 + 3)2𝑁+1 log(1/(1 − 𝑠)).

Note that log(1/(1 − 𝑠)) < 𝑠 for 𝑠 < 1/2. Also, 2𝑁+1 ≤ (1/𝑠) lg(1/𝑠)3(lg(1/𝛽) + lg(1/𝜖0))29.59. Putting this
together, we have

lg(1/𝐮SGN) ≤ lg 𝜇INV(𝑛) +
1
2
lg 𝑛 + lg 𝑁 + 1000(𝑐INV log 𝑛 + 3) lg(1/𝑠)3(lg(1/𝛽) + lg(1/𝜖0)).

We now crudely bound lg 𝑁 . Note that for 𝑠 < 1/100 we have lg(1/𝑠) + 3 lg lg(1/𝑠) + 7.59 ≤ 1/𝑠. Thus,

lg 𝑁 ≤ lg(1/𝑠 + lg lg(1/(𝛽𝜖0)))
≤ lg(1/𝑠 + lg(1/(𝛽𝜖0)))
≤ lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) lg(𝑎 + 𝑏) ≤ lg 𝑎 + lg 𝑏 for 𝑎, 𝑏 > 2
≤ lg(1/𝑠)3 lg(1/(𝛽𝜖0)).

Combining the above, we may fold the lg 𝑁 and lg 𝑛 terms into the final term to obtain

lg(1/𝐮SGN) ≤ lg 𝜇INV(𝑛) + 5000𝑐INV log 𝑛 lg(1/𝑠)3(lg(1/𝛽) + lg(1/𝜖0)) (5.30)

where we use that 𝑐INV log 𝑛 > 1 and therefore 𝑐INV log 𝑛 + 3 < 4𝑐INV log 𝑛. Using that 𝜇INV(𝑛) =
poly(𝑛) and discarding subdominant terms, we obtain the desired asymptotic bound.

This completes the proof of Theorem 5.38. Finally, we may prove the theorem advertised in
Section 5.1.

Proof of Theorem 5.1. Set 𝜖 ≜ min{ 1
𝐾 , 1}. Then Λ𝜖(𝐴) does not intersect the imaginary axis, and

furthermore Λ𝜖(𝐴) ⊆ 𝔻(0, 2) because ‖𝐴‖ ≤ 1. Thus, we may apply Lemma 5.39 with diag(g) = 4
√
2

to obtain parameters 𝛼0, 𝜖0 with the property that log(1/(1 − 𝛼0)) and log(1/𝜖0) are both 𝑂(log 𝐾).
Theorem 5.38 now yields the desired conclusion.
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5.7 Analysis of SPLIT
Although it has many potential uses in its own right, the purpose of the approximate matrix sign
function in our algorithm is to split the spectrum of a matrix into two roughly equal pieces, so that
approximately diagonalizing 𝐴 may be recursively reduced to two sub-problems of smaller size.

First, we need a lemma ensuring that a shattered pseudospectrum can be bisected by a grid
line with at least 𝑛/5 eigenvalues on each side.

Lemma 5.49. Let 𝐴 have 𝜖-pseudospectrum shattered with respect to some grid g. Then there
exists a horizontal or vertical grid line of g partitioning g into two grids g±, each containing at least
min{𝑛/5, 1} eigenvalues.

Proof. We will view g as a 𝑠1×𝑠2 array of squares. Write 𝑟1, 𝑟2, ..., 𝑟𝑠1 for the number of eigenvalues in
each row of the grid. Either there exists 1 ≤ 𝑖 < 𝑠2 such that 𝑟1+⋯+𝑟𝑖 ≥ 𝑛/5 and 𝑟𝑖+1+⋯+𝑟𝑠1 ≥ 𝑛/5—
in which case we can bisect at the grid line dividing the 𝑖th from (𝑖 + 1)st rows—or there exists
some 𝑖 for which 𝑟𝑖 ≥ 3/5. In the latter case, we can always find a vertical grid line so that at least
𝑛/5 of the eigenvalues in the 𝑖th row are on each of the left and right sides. Finally, if 𝑛 ≤ 5, we
may trivially pick a grid line to bisect along so that both sides contain at least one eigenvalue.

Proof of Theorem 5.16. The main observation is that, given any matrix 𝐴, we can determine how
many eigenvalues are on either side of any horizontal or vertical line by approximating the sign
function of a shift of the matrix. To be precise, in exact arithmetic tr sgn(𝐴 − ℎ) = 𝑛+ − 𝑛−, where
𝑛± are the eigenvalue counts for 𝐴 on either side of the line ℜ𝑧 = ℎ. We will now show that under
the shattered pseudospectrum assumption, one can exactly compute 𝑛+ − 𝑛− using the advertised
precision.

Running SGN to a final accuracy of 𝛽 ,

| tr SGN(𝑀) + 𝑒4 − tr sgn(𝑀)| ≤ | tr SGN(𝑀) − tr sgn(𝑀)| + |𝑒4|
≤ 𝑛(‖SGN(𝑀) − sgn(𝑀)‖ + ‖SGN(𝑀)‖𝐮) Using (5.5) to bound |𝑒4|
≤ 𝑛(𝛽 + (𝛽 + ‖sgn(𝑀)‖)𝐮).

It remains to control ‖sgn(𝑀)‖ and quantify the distance between sgn(𝑀) = sgn(𝐴 − ℎ + 𝐸2)
and sgn(𝐴 − ℎ). We first do the latter. Since we need only to modify the diagonal entries of 𝐴
when creating 𝑀 , the incurred diagonal error matrix 𝐸2 has norm at most 𝐮max𝑖 |𝐴𝑖,𝑖 − ℎ|. Using
|𝐴𝑖,𝑖 | ≤ ‖𝐴‖ ≤ 4 and |ℎ| ≤ 4, the fact that 𝐮 ≤ 𝜖/100𝑛 ≤ 𝜖/16 ensures that the 𝜖/2-pseudospectrum of
𝑀 will still be shattered with respect to g. We can then form sgn(𝐴 − ℎ) and sgn(𝑀) by integrating
around the boundary of the portions of g on either side of the line ℜ𝑧 = ℎ, then using the resolvent
identity as in Section 5.6, and the fact that Λ𝜖(𝐴) and Λ𝜖/2(𝑀) are shattered we get

‖sgn(𝐴) − sgn(𝑀)‖ ≤
‖𝐸2‖
2𝜋

⋅
1
𝜖
⋅
2
𝜖
𝜔(2𝑠1 + 4𝑠2) ≤

128𝐮
𝜖2
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SPLIT

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛, grid g = grid(𝑧0, 𝜔, 𝑠1, 𝑠2) pseudospectral guarantee 𝜖, and a desired
accuracy 𝜈 .
Requires: Λ𝜖(𝐴) is shattered with respect to g, and 𝛽 ≤ 0.05/𝑛.
Output: Sub-grids g±, approximate spectral projectors 𝑃±, and ranks 𝑛±.
Ensures: There exist true spectral projectors 𝑃± satisfying (i) 𝑃+ +𝑃− = 1, (ii) Rank(𝑃±) = 𝑛± ≥ 𝑛/5,
(iii) ‖𝑃± − 𝑃±‖ ≤ 𝛽 , and (iv) 𝑃± are the spectral projectors onto the interiors of g±.

1. ℎ ← ℜ𝑧0 + 𝜔𝑠1/2

2. 𝑀 ← 𝐴 − ℎ + 𝐸2

3. 𝛼0 ← 1 − 𝜖
2 diag(g)2

4. 𝜙 ← round (tr SGN(𝑀, 𝜖/4, 𝛼0, 𝛽) + 𝑒4)

5. If |𝜙| < min(3𝑛/5, 𝑛 − 1)

a) g− = grid(𝑧0, 𝜔, 𝑠1/2, 𝑠2)

b) 𝑧0 ← 𝑧0 + ℎ

c) g+ = grid(𝑧0, 𝜔, 𝑠1/2, 𝑠2)

d) (𝑃+, 𝑃−) = 1
2 (1 ± SGN(𝐴 − ℎ, 𝛽))

6. Else, execute a binary search over horizontal grid-line shifts ℎ until tr SGN(𝐴 −
ℎ, 𝜖/4, 𝛼0, 𝛽) ≤ 3𝑛

5 , at which point output g±, the subgrids on either side of the shift ℎ,
and set
𝑃± ← 1

2 (SGN(ℎ − 𝐴, 𝜖/4, 𝛼0, 𝛽)).

7. If this fails, set 𝐴 ← 𝑖𝐴, and execute a binary search among vertical shifts from the original
grid.

where in the last inequality we have used that g has side lengths of at most 8 and ‖𝐸2‖ ≤ 8𝐮.
Now, using the contour integral again and the shattered pseudospectrum assumption

‖sgn(𝐴 − ℎ)‖ ≤
1
2𝜋

1
𝜖
𝜔(2𝑠1 + 4𝑠2) ≤ 8/𝜖.

Combining the above bounds we get a a total additive error of 𝑛(𝛽 + 𝛽𝐮 + 8𝐮/𝜖) + 128𝐮
𝜖2 in computing

the trace of the sign function. If 𝛽 ≤ 0.1/𝑛 and 𝐮 ≤ min{𝜖/100𝑛, 𝜖2
512 , this error will strictly be less

than 0.5 and we can round tr SGN(𝐴 − ℎ) to the nearest real integer. Horizontal bisections work
similarly, with 𝑖𝐴 − ℎ instead.
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Now that we have shown that it is possible to compute 𝑛+−𝑛− exactly, recall that from the above
discussion, the 𝜖/2-pseudospectrum of 𝑀 will still be shattered with respect to the translation of
the original grid g. Using Lemma 5.39 and the fact that diag(g)2 = 128, we can safely call SGN
with parameters 𝜖0 = 𝜖/4 and

𝛼0 = 1 −
𝜖
256

.

Plugging these in to the Theorem 5.38 (𝜖 < 1/2 so 1 − 𝛼0 ≤ 1/100, and 𝛽 ≤ 0.05/𝑛 ≤ 1/12 so the
hypotheses are satisfied) for final accuracy 𝛽 a sufficient number of iterations is

𝑁SPLIT ≜ lg
256
𝜖

+ 3 lg lg
256
𝜖

+ lg lg
4
𝛽𝜖

+ 7.59.

In the course of these binary searches, we make at most lg 𝑠1𝑠2 calls to SGN at accuracy 𝛽 . These
require at most

lg 𝑠1𝑠2 𝑇SGN (𝑛, 𝜖/2, 1 −
𝜖

2 diag(g)2
, 𝛽)

arithmetic operations. In addition, creating 𝑀 and computing the trace of the approximate sign
function cost us 𝑂(𝑛 lg 𝑠1𝑠2) scalar addition operations. We are assuming that g has side lengths
at most 8, so lg 𝑠1𝑠2 ≤ 12 lg 1/𝜔(g). Combining all of this with the runtime analysis and machine
precision of SGN appearing in Theorem 5.38, we obtain

𝑇SPLIT(𝑛, g, 𝜖, 𝛽) ≤ 12 lg
1

𝜔(g)
⋅ 𝑁SPLIT ⋅ (𝑇INV(𝑛, 𝐮) + 𝑂(𝑛2)) .

5.8 Analysis of SPAN
The algorithm SPAN, defined in Section 5.5, can be viewed as a small variation of the randomized
rank revealing algorithm introduced in [61] and revisited subsequently in [14]. Following these
works, we will call this algorithm RURV.

Roughly speaking, in finite arithmetic, RURV takes a matrix 𝐴 with 𝜎𝑟 (𝐴)/𝜎𝑟+1(𝐴) ≫ 1, for
some 1 ≤ 𝑟 ≤ 𝑛 − 1, and finds nearly unitary matrices 𝑈 , 𝑉 and an upper triangular matrix 𝑅 such
that 𝑈𝑅𝑉 ≈ 𝐴. Crucially, 𝑅 has the block decomposition

𝑅 = (
𝑅11 𝑅12

𝑅22)
, (5.31)

where 𝑅11 ∈ ℂ𝑟×𝑟 has smallest singular value close to 𝜎𝑟 (𝐴), and 𝑅22 has largest singular value
roughly 𝜎𝑟+1(𝐴). We will use and analyze the following implementation of RURV.

As discussed in Section 5.5, we hope to use SPAN to approximate the range of a projector
𝑃 with rank 𝑟 < 𝑛, given an approximation 𝑃 close to 𝑃 in operator norm. We will show that
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RURV

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛

Output: A pair of matrices (𝑈 , 𝑅).
Ensures: ‖𝑅22‖ ≤

√
𝑟(𝑛−𝑟)
𝜃 𝜎𝑟+1(𝐴) with probability 1 − 𝜃2, for every 1 ≤ 𝑟 ≤ 𝑛 − 1 and 𝜃 > 0, where

𝑅22 is the (𝑛 − 𝑟) × (𝑛 − 𝑟) lower-right corner of 𝑅.

1. 𝐺 ← 𝑛 × 𝑛 complex Ginibre matrix +𝐸1

2. (𝑉 , 𝑅) ← QR(𝐺)

3. 𝐵 ← 𝐴𝑉 ∗ + 𝐸3

4. (𝑈 , 𝑅) ← QR(𝐵)

from the output of RURV(𝑃) we can obtain a good approximation to such a subspace. More
specifically, under certain conditions, if (𝑈 , 𝑅) = RURV(𝑃), then the first 𝑟 columns of 𝑈 carry all
the information we need. For a formal statement see Proposition 5.60 and Proposition 5.65 below.

Since it may be of broader use, we will work in somewhat greater generality, and define the
subroutine SPAN which receives a matrix 𝐴 and an integer 𝑟 and returns a matrix 𝑆 ∈ ℂ𝑛×𝑟 with
nearly orthonormal columns. Intuitively, if 𝐴 is diagonalizable, then under the guarantee that 𝑟 is
the smallest integer 𝑘 such that 𝜎𝑘(𝐴)/𝜎𝑘+1(𝐴) ≫ 1, the columns of the output 𝑆 span a space close
to the span of the top 𝑟 eigenvectors of 𝐴. Our implementation of SPAN is as follows.

SPAN

Input: Matrix 𝐴 ∈ ℂ𝑛×𝑛 and parameter 𝑟 ≤ 𝑛
Requires: 1/3 ≤ ‖𝐴‖, and ‖𝐴 − 𝐴‖ ≤ 𝛽 for some 𝐴 ∈ ℂ𝑛×𝑛 with Rank(𝐴) = Rank(𝐴2) = 𝑟 , as well
as 𝛽 ≤ 1/4 ≤ ‖𝐴‖ and 1 ≤ 𝜇MM(𝑛), 𝜇QR(𝑛), 𝑐N.
Output: Matrix 𝑆 ∈ ℂ𝑛×𝑟 .
Ensures: There exists a matrix 𝑆 ∈ ℂ𝑛×𝑘 whose orthogonal columns span range(𝐴), such that
‖𝑆 − 𝑆‖ ≤ 𝜂, with probability at least 1 − (20𝑛)3

√
𝛽

𝜂2𝜎𝑟 (𝐴)
.

1. (𝑈 , 𝑅) ← RURV(𝐴)

2. 𝑆 ← first 𝑟 columns of 𝑈 .

3. Output 𝑆

Throughout this section we use rurv(⋅) and span(⋅, ⋅) to denote the exact arithmetic versions
of RURV and SPAN respectively. In Subsection 5.8 we present a random matrix result that will
be needed in the analysis of SPAN. In Subsection 5.8 we state the properties of RURV that will
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be needed. Finally in Subsections 5.8 and 5.8 we prove the main guarantees of span and SPAN,
respectively, that are used throughout this chapter.

Smallest Singular Value of the Corner of a Haar Unitary
We recall the defining property of the Haar measure on the unitary group:

Definition 5.50. A random 𝑛 × 𝑛 unitary matrix 𝑉𝑛 is Haar-distributed if, for any other unitary
matrix 𝑊 , 𝑉𝑛𝑊 and 𝑊𝑉𝑛 are Haar-distributed as well. For short, we will often refer to such a
matrix as a Haar unitary.

Let 𝑛 > 𝑟 be positive integers. In what follows we will consider an 𝑛 × 𝑛 Haar unitary matrix
𝑉𝑛 and denote by 𝑋 its upper-left 𝑟 × 𝑟 corner. The purpose of the present subsection is to derive a
tail bound for the random variable 𝜎𝑟 (𝑋 ). We begin by showing a fact that allows us to reduce our
analysis to the case when 𝑟 ≤ 𝑛/2.

Observation 5.51. Let 𝑛 > 𝑟 > 0 and 𝑉 ∈ ℂ𝑛×𝑛 be a unitary matrix and denote by 𝑉11 and 𝑉22 its
upper-left 𝑟 × 𝑟 corner and its lower-right (𝑛 − 𝑟) × (𝑛 − 𝑟) corner respectively. If 𝑟 ≥ 𝑛/2, then 2𝑟 − 𝑛
of the singular values of 𝑉11 are equal to 1, while the remaining 𝑛 − 𝑟 are equal to those of 𝑉22.

Proof. Decompose 𝑉 as follows

𝑉 = (
𝑉11 𝑉12
𝑉21 𝑉22 ) .

Since 𝑉 is unitary 𝑉𝑉 ∗ = 𝐼𝑛, and looking at the upper-left corner of this equation we get 𝑉11𝑉 ∗
11 +

𝑉12𝑉 ∗
12 = 𝐼𝑟 . Then, since 𝑉11𝑉 ∗

11 = 𝐼𝑟 − 𝑉12𝑉 ∗
12, we have Spec(𝑉11𝑉 ∗

11) = 1 − Spec(𝑉12𝑉 ∗
12).

Now, looking at the lower-right corner of the equation 𝑉 ∗𝑉 = 𝐼𝑛 we get 𝑉 ∗
12𝑉12 + 𝑉 ∗

22𝑉22 = 𝐼𝑛−𝑟
and hence Spec(𝑉 ∗

22𝑉22) = 1 − Spec(𝑉 ∗
12𝑉12).

Now recall that for any two matrices 𝑋 and 𝑌 , the symmetric difference of the sets Spec(𝑋𝑌 )
and Spec(𝑌𝑋) is {0}, with multiplicity equal to the difference between the dimensions. Hence
Spec(𝑉12𝑉 ∗

12) = Spec(𝑉 ∗
12𝑉12) ∪ {0} where the multiplicity of 0 is 𝑟 − (𝑛 − 𝑟) = 2𝑟 − 𝑛. Combining

this with Spec(𝑉11𝑉 ∗
11) = 1 − Spec(𝑉12𝑉 ∗

12) and Spec(𝑉 ∗
22𝑉22) = 1 − Spec(𝑉 ∗

12𝑉12) we get the desired
result.

Proposition 5.52 (𝜎min of a Submatrix of a Haar Unitary). Let 𝑛 > 𝑟 > 0 and let 𝑉𝑛 be an 𝑛 × 𝑛
Haar unitary. Let 𝑋 be the upper left 𝑟 × 𝑟 corner of 𝑉𝑛. Then, for all 𝜃 ∈ (0, 1],

ℙ [
1

𝜎𝑟 (𝑋 )
≤
1
𝜃 ]

= (1 − 𝜃2)𝑟(𝑛−𝑟). (5.32)

In particular, for every 𝜃 ∈ (0, 1] we have

ℙ
[

1
𝜎𝑟 (𝑋 )

≤
√
𝑟(𝑛 − 𝑟)
𝜃 ]

≥ 1 − 𝜃2. (5.33)
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This exact formula for the CDF of the smallest singular value of 𝑋 is remarkably simple, and
we have not seen it anywhere in the literature. It is an immediate consequence of substantially
more general results of Dumitriu [68], from which one can extract and simplify the density of
𝜎𝑟 (𝑋 ). We will begin by introducing the relevant pieces of [68], deferring the final proof until the
end of this subsection.

Some of the formulas presented here are written in terms of the generalized hypergeometric
function which we denote by 2𝐹

𝛽
1 (𝑎, 𝑏; 𝑐; (𝑥1, … , 𝑥𝑚)). For our application it is sufficient to know

that
2𝐹

𝛽
1 (0, 𝑏; 𝑐, (𝑥1, … , 𝑥𝑚)) = 1, (5.34)

whenever 𝑐 > 0 and 2𝐹1 is well defined. The above equation can be derived directly from the
definition of 2𝐹

𝛽
1 (see Definition 13.1.1 in [77] or Definition 2.2 in [68]).

The generic results in [68] concern the 𝛽-Jacobi random matrices, which we have no cause here
to define in full. Of particular use to us will be [68, Theorem 3.1], which expresses the density of
the smallest singular value of such a matrix in terms of the generalized hypergeometric function:

Theorem 5.53. The density of the probability distribution of the smallest eigenvalue 𝜆, of the 𝛽-Jacobi
ensembles of parameters 𝑎, 𝑏 and size 𝑚, which we denote by 𝑓𝜆min(𝜆) , is given by

𝐶𝛽,𝑎,𝑏,𝑚𝜆
𝛽
2 (𝑎+1)−1(1 − 𝜆)

𝛽
2𝑚(𝑏+𝑚)−1

2𝐹
2/𝛽
1 (1 −

𝛽(𝑎 + 1)
2

,
𝛽(𝑏 + 𝑚 − 1)

2
;
𝛽(𝑏 + 2𝑚 − 1)

2
+ 1; (1 − 𝜆)𝑚−1

) ,

(5.35)
for some normalizing constant 𝐶𝛽,𝑎,𝑏,𝑚.

For a particular choice of parameters, the above theorem can be applied to describe the the
distribution of 𝜎 2

𝑟 (𝑋 ). The connection between singular values of corners of Haar unitary matrices
and 𝛽-Jacobi ensembles is the content of [73, Theorem 1.5], which we rephrase now to match our
context.

Theorem 5.54. Let 𝑉𝑛 be an 𝑛 × 𝑛 Haar unitary matrix and let 𝑟 ≤ 𝑛
2 . Let 𝑋 be the 𝑟 × 𝑟 upper-left

corner of 𝑉𝑛. Then, the eigenvalues of 𝑋𝑋 ∗ distribute as the eigenvalues of a 𝛽−Jacobi matrix of size
𝑟 with parameters 𝛽 = 2, 𝑎 = 0 and 𝑏 = 𝑛 − 2𝑟 .

In view of the above result, Theorem 5.53 gives a formula for the density of 𝜎 2
𝑟 (𝑋 ).

Corollary 5.55 (Density of 𝜎 2
𝑟 (𝑋 )). Let 𝑉𝑛 be an 𝑛 × 𝑛 Haar unitary and 𝑋 be its upper-left 𝑟 × 𝑟

corner with 𝑟 < 𝑛, then 𝜎 2
𝑟 (𝑋 ) has the following density

𝑓𝜎2
𝑟 (𝑥) ≜

{
𝑟(𝑛 − 𝑟) (1 − 𝑥)𝑟(𝑛−𝑟)−1 if 0 ≤ 𝑥 ≤ 1,
0 otherwise.

(5.36)
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Proof. If 𝑟 > 𝑛/2, since we care only about the smallest singular value of 𝑋 , we can use Observation
5.51 to analyse the (𝑛 − 𝑟) × (𝑛 − 𝑟) lower right corner of 𝑉𝑛 instead. Hence, we can assume without
loss of generality that 𝑟 ≤ 𝑛/2. Now, substitute 𝛽 = 2, 𝑎 = 0, 𝑏 = 𝑛 − 2𝑟, 𝑚 = 𝑟 in Theorem 5.53 and
observe that in this case

𝑓𝜆min(𝑥) = 𝐶(1 − 𝑥)
𝑟(𝑛−𝑟)−1

2𝐹 1
1 (0, 𝑛 − 𝑟 − 1; 𝑛; (1 − 𝑥)𝑟−1) = 𝐶(1 − 𝑥)𝑟(𝑛−𝑟)−1 (5.37)

where the last equality follows from (5.34). Using the relation between the distribution of 𝜎 2
𝑟 (𝑋 )

and the distribution of the minimum eigenvalue of the respective 𝛽-Jacobi ensemble described
in Theorem 5.54 we have 𝑓𝜎2

𝑟 (𝑥) = 𝑓𝜆min(𝑥). By integrating on [0, 1] the right side of (5.37) we find
𝐶 = 𝑟(𝑛 − 𝑟).

Proof of Proposition 5.52. From (5.36) we have that

ℙ [𝜎 2
𝑟 (𝑋 ) ≤ 𝜃] = 𝑟(𝑛 − 𝑟) ∫

𝜃

0
(1 − 𝑥)𝑟(𝑛−𝑟)−1𝑑𝑥 = 1 − (1 − 𝜃)𝑟(𝑛−𝑟),

from where (5.32) follows. To prove (5.33) note that 𝑔(𝑡) ≜ (1 − 𝑡)𝑟(𝑛−𝑟) is convex in [0, 1], and hence
𝑔(𝑡) ≥ 𝑔(0) + 𝑡𝑔′(0) for every 𝑡 ∈ [0, 1].

Sampling Haar Unitaries in Finite Precision
It is a well-known fact that Haar unitary matrices can be numerically generated from complex
Ginibre matrices. We refer the reader to [72, Section 4.6] and [114] for a detailed discussion. In
this subsection we carefully analyze this process in finite arithmetic. The following fact (see [114,
Section 5]) is the starting point of our discussion.

Lemma 5.56 (Haar from Ginibre). Let 𝐺𝑛 be a complex 𝑛 × 𝑛 Ginibre matrix and 𝑈 , 𝑅 ∈ ℂ𝑛×𝑛 be
defined implicitly, as a function of 𝐺𝑛, by the equation 𝐺𝑛 = 𝑈𝑅 and the constraints that 𝑈 is unitary
and 𝑅 is upper-triangular with nonnegative diagonal entries7. Then, 𝑈 is Haar distributed in the
unitary group.

The above lemma suggests that QR(⋅) can be used to generate random matrices that are
approximately Haar unitaries. While doing this, one should keep in mind that when working with
finite arithmetic, the matrix 𝐺𝑛 passed to QR is not exactly Ginibre-distributed, and the algorithm
QR itself incurs round-off errors.

Following the discussion in Section 5.3 we can assume that we have access to a random matrix
𝐺𝑛, with

𝐺𝑛 = 𝐺𝑛 + 𝐸,
7𝐺𝑛 is almost surely invertible and under this event 𝑈 and 𝑅 are uniquely determined by these conditions.
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where 𝐺𝑛 is a complex 𝑛 × 𝑛 Ginibre matrix and 𝐸 ∈ ℂ𝑛×𝑛 is an adversarial perturbation whose
entries are bounded by 1√

𝑛𝑐Nu. Hence, we have ‖𝐸‖ ≤ ‖𝐸‖𝐹 ≤
√
𝑛𝑐N𝐮.

In what follows we use qr(⋅) to denote the exact arithmetic version of QR(⋅). Furthermore, we
assume that for any 𝐴 ∈ ℂ𝑛×𝑛, qr(𝐴) returns a pair (𝑈 , 𝑅) with the property that 𝑅 has nonnegative
entries on the diagonal. Since we want to compare qr(𝐺𝑛) with QR(𝐺𝑛) it is necessary to have a
bound on the condition number of the 𝑄𝑅 decomposition; recall from Lemma 2.12 that if 𝑈 and 𝑈
are the unitaries produced by qr(𝐴) and qr(𝐴 + 𝐸), where 𝐴 is invertible and ‖𝐸‖‖𝐴−1‖ ≤ 1

2 , then

‖𝑈 − 𝑈 ‖𝐹 ≤ 4‖𝐴−1‖‖𝐸‖𝐹 .

We are now ready to prove the main result of this subsection. As in the other sections devoted
to finite arithmetic analysis, we will assume that 𝐮 is small compared to 𝜇QR(𝑛); precisely, let us
assume that

𝐮𝜇QR(𝑛) ≤ 1. (5.38)

Proposition 5.57 (Guarantees for Finite-Arithmetic Haar Unitaries). Suppose that QR satisfies
the assumptions in Definition 5.6 and that it is designed to output upper triangular matrices with
nonnegative entries on the diagonal.8 If (𝑉 , 𝑅) = QR(𝐺𝑛), then there is a Haar unitary matrix 𝑈 and
a random matrix 𝑬 such that 𝑉 = 𝑈 + 𝐸. Moreover, for every 1 > 𝛼 > 0 and 𝑡 > 2

√
2 + 1 we have

ℙ [‖𝑬‖ <
8𝑡𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮] ≥ 1 − 2𝑒𝛼2 − 2𝑒−𝑡

2𝑛.

Proof. From our Gaussian sampling assumption, 𝐺𝑛 = 𝐺𝑛 + 𝐸 where ‖𝐸‖ ≤
√
𝑛𝑐N𝐮. Also, by the

assumptions on QR from Definition 5.6, there are matrices ̃̃𝐺𝑛 and 𝑉 such that (𝑉 , 𝑅) = qr( ̃̃𝐺𝑛), and

‖𝑉 − 𝑉 ‖ < 𝜇QR(𝑛)𝐮

‖ ̃̃𝐺𝑛 − 𝐺𝑛‖ ≤ 𝜇QR(𝑛)𝐮‖𝐺𝑛‖ ≤ 𝜇QR(𝑛)𝐮 (‖𝐺𝑛‖ +
√
𝑛𝑐N𝐮) .

The latter inequality implies, using (5.38), that

‖ ̃̃𝐺𝑛 − 𝐺𝑛‖ ≤ 𝜇QR(𝑛)𝐮 (‖𝐺𝑛‖ +
√
𝑛𝑐N𝐮) +

√
𝑛𝑐N𝐮 ≤ 𝜇QR(𝑛)𝐮‖𝐺𝑛‖ + 2

√
𝑛𝑐N𝐮. (5.39)

Let (𝑈 , 𝑅′) ≜ qr(𝐺𝑛). From Lemma 5.56 we know that 𝑈 is Haar distributed on the unitary
group, so using (5.39) and Lemma 2.12, and the fact that ‖𝑀‖ ≤ ‖𝑀‖𝐹 ≤

√
𝑛‖𝑀‖ for any 𝑛 × 𝑛 matrix

𝑀 , we know that

‖𝑈 − 𝑉 ‖ − 𝜇QR(𝑛)𝐮 ≤ ‖𝑈 − 𝑉 ‖ − ‖𝑉 − 𝑉 ‖ ≤ ‖𝑈 − 𝑉 ‖ ≤ 4
√
𝑛𝑐N𝜇QR(𝑛)𝐮‖𝐺𝑛‖‖𝐺−1

𝑛 ‖ + 10𝑛𝑐N𝐮‖𝐺−1
𝑛 ‖. (5.40)

8Any algorithm that yields the 𝑄𝑅 decomposition can be modified in a stable way to satisfy this last condition at
the cost of 𝑂∗(𝑛 log(1/𝐮)) operations
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Now, from ‖𝐺−1
𝑛 ‖ = 1/𝜎𝑛(𝐺𝑛) and from Theorem 3.1 we have that

𝑃 [‖𝐺
−1
𝑛 ‖ ≥

𝑛
𝛼 ]

≤ (
√
2𝑒𝛼)2 = 2𝑒𝛼2.

On the other hand, from Lemma 3.5, we have 𝑃 [‖𝐺𝑛‖ > 2
√
2 + 𝑡] ≤ 𝑒−𝑛𝑡

2 . Hence, under the events
‖𝐺−1

𝑛 ‖ ≤ 𝑛
𝛼 and ‖𝐺𝑛‖ ≤ 2

√
2 + 𝑡 , inequality (5.40) yields

‖𝑈 − 𝑉 ‖ ≤
4𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮 (2

√
2 + 𝑡 + 1) +

10𝑛2

𝛼
𝑐N𝐮.

Finally, if 𝑡 > 2
√
2 + 1 we can exchange the term 2

√
2 + 𝑡 + 1 for 2𝑡 in the bound. Then, using a

union bound we obtain the advertised guarantee.

Preliminaries of RURV
Let 𝐴 ∈ ℂ𝑛×𝑛 and (𝑈 , 𝑅) = rurv(𝐴). As will become clear later, in order to analyze SPAN(𝐴, 𝑟) it is of
fundamental importance to bound the quantity ‖𝑅22‖, where 𝑅22 is the lower-right (𝑛 − 𝑟) × (𝑛 − 𝑟)
block of 𝑅. To this end, it will suffice to use Corollary 5.59 below, which is the complex analog to
the upper bound given in equation (4) of [14, Theorem 5.1]. Actually, Corollary 5.59 is a direct
consequence of [13, Lemma 4.1], stated below, and Proposition 5.52 proved above.

Lemma 5.58. Let 𝑛 > 𝑟 > 0, 𝐴 ∈ ℂ𝑛×𝑛 and 𝐴 = 𝑃Σ𝑄∗ be its singular value decomposition. Let
(𝑈 , 𝑅) = rurv(𝐴), 𝑅22 be the lower right (𝑛 − 𝑟) × (𝑛 − 𝑟) corner of 𝑅, and 𝑉 be such that 𝐴 = 𝑈𝑅𝑉 .
Then, if 𝑋 = 𝑄∗𝑉 ∗,

‖𝑅22‖ ≤
𝜎𝑟+1(𝐴)
𝜎𝑟 (𝑋11)

,

where 𝑋11 is the upper left 𝑟 × 𝑟 block of 𝑋 .

This lemma reduces the problem to obtaining a lower bound on 𝜎𝑟 (𝑋11). But, since 𝑉 is a Haar
unitary matrix by construction and 𝑋 = 𝑄∗𝑉 with 𝑄∗ unitary, we have that 𝑋 is distributed as a
Haar unitary. Combining Lemma 5.58 and Proposition 5.52 gives the following result.

Corollary 5.59. Let 𝑛 > 𝑟 > 0, 𝐴 ∈ ℂ𝑛×𝑛, (𝑈 , 𝑅) = rurv(𝐴) and 𝑅22 be the lower right (𝑛 − 𝑟) × (𝑛 − 𝑟)
corner of 𝑅. Then for any 𝜃 > 0

ℙ
[
‖𝑅22‖ ≤

√
𝑟(𝑛 − 𝑟)
𝜃

𝜎𝑟+1(𝐴)]
≥ 1 − 𝜃2.
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Exact Arithmetic Analysis of SPAN
It is a standard consequence of the properties of the 𝑄𝑅 decomposition that if 𝐴 is a matrix of
rank 𝑟 , then almost surely span(𝐴, 𝑟) is a 𝑛 × 𝑟 matrix with orthonormal columns that span the
range of 𝐴. As a warm-up let’s recall this argument.

Let (𝑈 , 𝑅) = rurv(𝐴) and 𝑉 be the unitary matrix used by the algorithm to produce this output.
Since we are working in exact arithmetic, 𝑉 is a Haar unitary matrix, and hence it is almost surely
invertible. Therefore, with probability 1 we have that Rank(𝐴𝑉 ∗) = 𝑟 and that the first 𝑟 columns of
𝐴𝑉 ∗ are linearly independent, so since 𝑈𝑅 is the QR decomposition of 𝐴𝑉 ∗, almost surely, 𝑅22 = 0
and 𝑅11 ∈ ℂ𝑟×𝑟 , where 𝑅11 and 𝑅22 are as in (5.31). Writing

𝑈 = (
𝑈11 𝑈12
𝑈21 𝑈22)

for the block decomposition of 𝑈 with 𝑈11 ∈ ℂ𝑟×𝑟 , note that

𝐴𝑉 ∗ = 𝑈𝑅 = (
𝑈11𝑅11 𝑈11𝑅12 + 𝑈12𝑅22
𝑈21𝑅11 𝑈21𝑅12 + 𝑈22𝑅22)

. (5.41)

On the other hand, almost surely the first 𝑟 columns of 𝐴𝑉 ∗ span the range of 𝐴. Using the right
side of equation (5.41) we see that this subspace also coincides with the span of the first 𝑟 columns
of 𝑈 , since 𝑅11 is invertible.

We will now prove a robust version of the above observation for a large class of matrices,
namely those 𝐴 for which Rank(𝐴) = Rank(𝐴2).9 We make this precise below and defer the proof
to the end of the subsection.

Proposition 5.60 (Main Guarantee for span). Let 𝛽 > 0 and 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be such that ‖𝐴 − 𝐴‖ ≤ 𝛽
and Rank(𝐴) = Rank(𝐴2) = 𝑟 . Denote 𝑆 ≜ span(𝐴, 𝑟) and 𝑇 ≜ span(𝐴, 𝑟). Then, for any 𝜃 ∈ (0, 1),
with probability 1 − 𝜃2 there exists a unitary 𝑊 ∈ ℂ𝑟×𝑟 such that

‖𝑆 − 𝑇𝑊 ∗‖ ≤

√
8
√
𝑟(𝑛 − 𝑟)

𝜎𝑟 (𝑇 ∗𝐴𝑇)
⋅

√
𝛽
𝜃
. (5.42)

Remark 5.61 (Projectors). In the case in which the matrix𝐴 of Proposition 5.60 is a (not necessarily
orthogonal) projector, 𝑇 ∗𝐴𝑇 = 𝐼𝑟 , and the 𝜎𝑟 term in the denominator of (5.42) becomes a 1.

We now show that the orthogonal projection 𝑃 ≜ span(𝐴, 𝑟)span(𝐴, 𝑟)∗ is close to a projection
onto the range of 𝐴, in the sense that 𝑃𝐴 ≈ 𝐴.

9For example, diagonalizable matrices satisfy this criterion.
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Lemma 5.62. Let 𝛽 > 0 and 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be such that Rank(𝐴) = 𝑟 and ‖𝐴 − 𝐴‖ ≤ 𝛽 . Let
(𝑈 , 𝑅) ≜ rurv(𝐴) and 𝑆 ≜ span(𝐴, 𝑟). Then, almost surely

‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ ≤ ‖𝑅22‖ + 𝛽, (5.43)

where 𝑅22 is the lower right (𝑛 − 𝑟) × (𝑛 − 𝑟) block of 𝑅.

Proof. We will begin by showing that ‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ is small. Let 𝑉 be the unitary matrix that
was used to generate (𝑈 , 𝑅). As span(⋅, ⋅) outputs the first 𝑟 columns of 𝑈 , we have the block
decomposition 𝑈 = (𝑆 𝑈 ′), where 𝑆 ∈ ℂ𝑛×𝑟 and 𝑈 ′ ∈ ℂ𝑛×(𝑛−𝑟).

On the other hand we have 𝐴 = 𝑈𝑅𝑉 , so

(𝑆𝑆∗ − 𝐼𝑛)𝐴 = (𝑆𝑆∗ − 𝐼 ) (𝑆 𝑈 ′) 𝑅𝑉 = (0 −𝑈 ′) 𝑅𝑉 = (0 −𝑈 ′𝑅2,2) 𝑉 .

Since ‖𝑈 ′‖ = ‖𝑉 ‖ = 1 from the above equation we get ‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ ≤ ‖𝑅22‖. Now we can conclude
that

‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ ≤ ‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ + ‖(𝑆𝑆∗ − 𝐼𝑛)(𝐴 − 𝐴)‖ ≤ ‖𝑅22‖ + 𝛽.

The inequality (5.43) can be applied to quantify the distance between the ranges of span(𝐴, 𝑟)
and span(𝐴, 𝑟) in terms of ‖𝑅22‖, as the following result shows.

Lemma 5.63 (Bound in Terms of ‖𝑅22‖). Let 𝛽 > 0 and 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be such that Rank(𝐴) =
Rank(𝐴2) = 𝑟 and ‖𝐴 − 𝐴‖ ≤ 𝛽 . Denote by (𝑈 , 𝑅) ≜ rurv(𝐴), 𝑆 ≜ span(𝐴, 𝑟) and 𝑇 ≜ span(𝐴, 𝑟). Then,
almost surely there exists a unitary𝑊 ∈ ℂ𝑟×𝑟 such that

‖𝑆 − 𝑇𝑊 ∗‖ ≤ 2
√

‖𝑅22‖ + 𝛽
𝜎𝑟 (𝑇 ∗𝐴𝑇)

, (5.44)

where 𝑅22 is the lower right (𝑛 − 𝑟) × (𝑛 − 𝑟) block of 𝑅.

Proof. From Lemma 5.62 we know that almost surely ‖(𝑆𝑆∗ − 𝐼𝑛)𝐴‖ ≤ ‖𝑅22‖ + 𝛽 . We will use this to
show that ‖𝑇 ∗𝑆𝑆∗𝑇 − 𝐼𝑟 ‖ is small, which can be interpreted as 𝑆∗𝑇 being close to unitary. First note
that

‖𝑇 ∗𝑆𝑆∗𝑇 − 𝐼𝑟 ‖ = sup
𝑤∈ℂ𝑟 ,‖𝑤‖=1

‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝑇𝑤‖ = sup
𝑤∈range(𝐴),‖𝑤‖=1

‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝑤‖. (5.45)

Now, since Rank(𝐴) = Rank(𝐴2), if 𝑤 ∈ range(𝐴) then 𝑤 = 𝐴𝑣 for some 𝑣 ∈ range(𝐴). So by the
Courant-Fischer formula

‖𝑤‖
‖𝑣‖

=
‖𝐴𝑣‖
‖𝑣‖

≥ inf
𝑢∈range(𝐴)

‖𝐴𝑢‖
‖𝑢‖

= 𝜎𝑟 (𝑇 ∗𝐴𝑇).
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We can then revisit (5.45) and get

sup
𝑤∈range(𝐴),‖𝑤‖=1

‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝑤‖ = sup
𝑣∈range(𝐴),‖𝑣‖≤1

‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝐴𝑣‖
𝜎𝑟 (𝑇 ∗𝐴𝑇)

≤
‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝐴𝑇 ‖

𝜎𝑟 (𝑇 ∗𝐴𝑇)
. (5.46)

On the other hand ‖𝑇 ∗(𝑆𝑆∗ − 𝐼𝑟 )𝐴𝑇 ‖ ≤ ‖(𝑆𝑆∗ − 𝐼𝑟 )𝐴‖ ≤ ‖𝑅22‖ + 𝛽 , so combining this fact with (5.45)
and (5.46) we obtain

‖𝑇 ∗𝑆𝑆∗𝑇 − 𝐼𝑟 ‖ ≤
‖𝑅22‖ + 𝛽
𝜎𝑟 (𝑇 ∗𝐴𝑇)

.

Now define 𝑋 ≜ 𝑆∗𝑇 , 𝛽 ′ ≜ ‖𝑅22‖+𝛽
𝜎𝑟 (𝑇 ∗𝐴𝑇) and let 𝑋 = 𝑊 |𝑋 | be the polar decomposition of 𝑋 . Observe that

‖|𝑋 | − 𝐼𝑟 ‖ ≤ 𝜎1(𝑋 ) − 1 ≤ |𝜎1(𝑋 )2 − 1| = ‖𝑋 ∗𝑋 − 𝐼𝑟 ‖ ≤ 𝛽 ′.

Thus ‖𝑆∗𝑇 − 𝑊‖ = ‖𝑋 − 𝑊‖ = ‖(|𝑋 | − 𝐼𝑛)𝑊 ‖ ≤ 𝛽 ′. Finally note that

‖𝑆 − 𝑇𝑊 ∗‖2 = ‖(𝑆∗ − 𝑊𝑇 ∗)(𝑆 − 𝑇𝑊 ∗)‖
= ‖2𝐼𝑟 − 𝑆∗𝑇𝑊 ∗ − 𝑊𝑇 ∗𝑆‖
= ‖2𝐼𝑟 − 𝑆∗𝑇 (𝑇 ∗𝑆 + 𝑊 ∗ − 𝑇 ∗𝑆) − (𝑆∗𝑇 + 𝑊 − 𝑆∗𝑇 )𝑇 ∗𝑆‖
≤ 2‖𝐼𝑟 − 𝑆∗𝑇 𝑇 ∗𝑆‖ + ‖𝑆∗𝑇 (𝑊 ∗ − 𝑇 ∗𝑆)‖ + ‖(𝑊 − 𝑆∗𝑇 )𝑇 ∗𝑆‖ ≤ 4𝛽 ′,

which concludes the proof.

Note that so far our results have been deterministic. The possibility of failure of the guarantee
given in Proposition 5.60 comes from the non-deterministic bound on ‖𝑅22‖.

Proof of Proposition 5.60. From the stability of singular values we have 𝜎𝑟+1(𝐴) ≤ 𝛽 . Now combine
Lemma 5.63 with Corollary 5.59.

Finite Arithmetic Analysis of SPAN
In what follows we will have an approximation 𝐴 of a matrix 𝐴 of rank 𝑟 with the guarantee that
‖𝐴 − 𝐴‖ ≤ 𝛽 .

For the sake of readability we will not present optimal bounds for the error induced by roundoff,
and we will assume that

4‖𝐴‖ ⋅ max{𝑐N𝜇MM(𝑛)u, 𝑐N𝜇QR(𝑛)u} ≤ 𝛽 ≤
1
4
≤ ‖𝐴‖ and 1 ≤ min{𝜇MM(𝑛), 𝜇QR(𝑛), 𝑐N}. (5.47)

We begin by analyzing the subroutine RURV in finite arithmetic. This was done in [61, Lemma
5.4]. Here we make the constants arising from this analysis explicit and take into consideration
that Haar unitary matrices cannot be exactly generated in finite arithmetic.
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Lemma 5.64 (Analysis of RURV). Assume that QR and MM satisfy the guarantees in Definitions
5.4 and 5.6. Also suppose that the assumptions in (5.47) hold. Then, if (𝑈 , 𝑅) ≜ RURV(𝐴) and 𝑉 is
the matrix used to produce such output, there are unitary matrices 𝑈 , 𝑉 and a matrix 𝐴 such that
𝐴 = 𝑈𝑅𝑉 and the following guarantees hold:

1. ‖𝑈 − 𝑈 ‖ ≤ 𝜇QR(𝑛)u.

2. 𝑉 is Haar distributed in the unitary group.

3. For every 1 > 𝛼 > 0 and 𝑡 > 2
√
2 + 1, the event:

‖𝑉 −𝑉 ‖ <
8𝑡𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮+

10𝑛2

𝛼
𝐮 and ‖𝐴−𝐴‖ < ‖𝐴‖(

9𝑡𝑛 3
2

𝛼
𝑐N𝜇QR(𝑛)𝐮 + 2𝜇MM(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮)
(5.48)

occurs with probability at least 1 − 2𝑒𝛼2 − 2𝑒−𝑡2𝑛.

Proof. By definition 𝑉 = QR(𝐺𝑛) with 𝐺𝑛 = 𝐺𝑛 + 𝐸, where 𝐺𝑛 is an 𝑛 × 𝑛 Ginibre matrix and
‖𝐸‖ ≤

√
𝑛𝐮. A direct application of the guarantees on each step yields the following:

1. From Proposition 5.57, we know that there is a Haar unitary 𝑉 and a random matrix 𝐸0,
such that 𝑉 = 𝑉 + 𝐸0 and

ℙ [‖𝐸0‖ <
8𝑡𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮] ≥ 1 − 2𝑒𝛼2 − 2𝑒−𝑡

2𝑛. (5.49)

2. If 𝐵 ≜ MM(𝐴, 𝑉 ∗) = 𝐴𝑉 ∗+𝐸1, then from the guarantees for MM we have ‖𝐸1‖ ≤ ‖𝐴‖‖𝑉 ‖𝜇MM(𝑛)u.
Now from the guarantees for QR we know that 𝑉 is 𝜇QR(𝑛)𝐮 away from a unitary, and hence

‖𝑉 ‖𝜇MM(𝑛)𝐮 ≤ (1 + 𝜇QR(𝑛)𝐮)𝜇MM(𝑛)𝐮 ≤
5
4
𝜇MM(𝑛)𝐮

where the last inequality follows from the assumptions in (5.47). This translates into

‖𝐵‖ ≤ ‖𝐴‖‖𝑉 ‖ + ‖𝐸1‖ ≤ (1 + 𝜇QR(𝑛)𝐮)‖𝐴‖ + ‖𝐸1‖ ≤
5
4
‖𝐴‖ + ‖𝐸1‖.

Putting the above together and using (5.47) again, we get

‖𝐸1‖ ≤
5
4
‖𝐴‖𝜇MM(𝑛)u and 𝐵 ≤

5
4
‖𝐴‖(1 + 𝜇MM(𝑛)u) < 2‖𝐴‖. (5.50)

3. Let (𝑈 , 𝑅) = QR(𝐵). Then there is a unitary 𝑈 and a matrix 𝐵 such that 𝑈 = 𝑈 +𝐸2, 𝐵 = 𝐵+𝐸3,
and 𝐵 = 𝑈𝑅, with error bounds ‖𝐸2‖ ≤ 𝜇QR(𝑛)u and ‖𝐸3‖ ≤ ‖𝐵‖𝜇QR(𝑛)u. Using (5.50) we obtain

‖𝐸3‖ ≤ ‖𝐵‖𝜇QR(𝑛)u < 2‖𝐴‖𝜇QR(𝑛)u. (5.51)
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4. Finally, define 𝐴 ≜ 𝐵𝑉 . Note that 𝐴 = 𝑈𝑅𝑉 and

𝐴 = 𝐵𝑉 = (𝐵 − 𝐸3)𝑉 = (𝐴𝑉 ∗ + 𝐸1 − 𝐸3)𝑉 = (𝐴(𝑉 + 𝐸0)∗ + 𝐸1 − 𝐸3)𝑉 = 𝐴 + (𝐴𝐸∗
0 + 𝐸1 − 𝐸3)𝑉 ,

which translates into
‖𝐴 − 𝐴‖ ≤ ‖𝐴‖‖𝐸0‖ + ‖𝐸1‖ + ‖𝐸3‖.

Hence, on the event described in the left side of (5.49), we have

‖𝐴 − 𝐴‖ ≤ ‖𝐴‖(
8𝑡𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮 +

5
4
𝜇MM(𝑛)𝐮 + 2𝜇QR(𝑛)𝐮) ,

and using some crude bounds, the above inequality yields the advertised bound.

We can now prove a finite arithmetic version of Proposition 5.60.

Proposition 5.65 (Main Guarantee for SPAN). Let 𝑛 > 𝑟 be positive integers, and let 𝛽, 𝜃 > 0
and 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 be such that ‖𝐴 − 𝐴‖ ≤ 𝛽 and Rank(𝐴) = Rank(𝐴2) = 𝑟 . Let 𝑆 ≜ SPAN(𝐴, 𝑟) and
𝑇 ≜ span(𝐴, 𝑟). If QR andMM satisfy the guarantees in Definitions 5.4 and 5.6, and (5.47) holds, then,
for every 𝑡 > 2

√
2 + 1 there exist a unitary𝑊 ∈ ℂ𝑟×𝑟 such that

‖𝑆 − 𝑇𝑊 ∗‖ ≤ 𝜇QR(𝑛)u + 12

√
𝑡𝑛2

√
𝑟(𝑛 − 𝑟)

𝜎𝑟 (𝑇 ∗𝐴𝑇)
.

√
𝛽
𝜃2
, (5.52)

with probability at least 1 − 7𝜃2 − 2𝑒−𝑡2𝑛.

Proof. Let (𝑈 , 𝑅) = RURV(𝐴). From Lemma 5.64 we know that there exist 𝑈 , ̃̃𝐴 ∈ ℂ𝑛×𝑛, such that
‖𝑈 − 𝑈 ‖ and ‖𝐴 − ̃̃𝐴‖ are small, and (𝑈 , 𝑅) = rurv(̃̃𝐴) for the respective realization of an exact Haar
unitary matrix. Then, from ‖𝐴‖ ≤ ‖𝐴‖ + 𝛽 and (5.48), for every 1 > 𝛼 > 0 and 𝑡 > 2

√
2 + 1 we have

‖‖‖𝐴 − ̃̃𝐴‖‖‖ ≤
‖‖‖
̃̃𝐴 − 𝐴‖‖‖ + ‖𝐴 − 𝐴‖ ≤ (‖𝐴‖ + 𝛽)(

9𝑡𝑛 3
2

𝛼
𝜇QR(𝑛)𝑐N𝐮 + 2𝜇MM(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮) + 𝛽, (5.53)

with probability 1 − 2𝑒𝛼2 − 2𝑒−𝑡2𝑛.
Now, from (5.47) we have 𝐮 ≤ 𝛽 ≤ 1

4 and 𝑐N‖𝐴‖𝜇𝐮 ≤ 𝛽 for 𝜇 = 𝜇QR(𝑛), 𝜇MM(𝑛), so we can bound
the respective terms in (5.53) by 𝛽 :

(‖𝐴‖ + 𝛽)(
9𝑡𝑛 3

2

𝛼
𝑐N𝜇QR(𝑛)𝐮 + 2𝜇MM(𝑛)𝐮 +

10𝑛2

𝛼
𝑐N𝐮) + 𝛽 ≤ (1 + 𝛽)(

9𝑡𝑛 3
2

𝛼
𝛽 + 2𝛽 +

10𝑛2

𝛼
𝛽) + 𝛽

≤
(12𝑡 + 16)

𝛼
𝑛2𝛽, (5.54)
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where the last crude bound uses 1 ≤ 𝑛 3
2 ≤ 𝑛2, 1 + 𝛽 ≤ 5

4 and 𝑡 > 2.

Observe that 𝑆 = span(̃̃𝐴, 𝑟) is the matrix formed by the first 𝑟 columns of 𝑈 , and that by
Proposition 5.60 we know that for every 𝜃 > 0, with probability 1 − 𝜃2 there exists a unitary 𝑊
such that

‖𝑆 − 𝑇𝑊 ∗‖ ≤

√
8
√
𝑟(𝑛 − 𝑟)

𝜎𝑟 (𝑇 ∗𝐴𝑇)
.

√
‖‖‖𝐴 − ̃̃𝐴‖‖‖

𝜃
. (5.55)

On the other hand, 𝑆 is the matrix formed by the first 𝑟 columns of 𝑈 . Hence

‖𝑆 − 𝑆‖ ≤ ‖𝑈 − 𝑈 ‖ ≤ 𝜇QR(𝑛)u.

Putting the above together we get that under this event

‖𝑆 − 𝑇𝑊 ∗‖ ≤ ‖𝑆 − 𝑆‖ + ‖𝑆 − 𝑇𝑊 ∗‖ ≤ 𝜇QR(𝑛)u +

√
8
√
𝑟(𝑛 − 𝑟)

𝜎𝑟 (𝑇 ∗𝐴𝑇)
.

√
‖‖‖𝐴 − ̃̃𝐴‖‖‖

𝜃
. (5.56)

Now, taking 𝛼 = 𝜃 , we note that both events in (5.53) and (5.55) happen with probability at least
1− (2𝑒 +1)𝜃2 −2𝑒−𝑡2𝑛. The result follows from replacing the constant 2𝑒 +1 with 7, using 𝑡 > 2

√
2+1

and replacing 8(12𝑡 + 16) with 144𝑡 , and combining the inequalities (5.53), (5.54) and (5.56).

We end by proving Theorem 5.17, the guarantees on SPAN that we will use when analyzing
the main algorithm.

Proof of Theorem 5.17. As Remark 5.61 points out, in the context of this theorem we are passing
to SPAN an approximate projector 𝑃 , and the above result simplifies. Using this fact, as well as the
upper bound 𝑟(𝑛 − 𝑟) ≤ 𝑛2/4, we get that

‖𝑆 − 𝑇𝑊 ∗‖ ≤ 𝜇QR(𝑛)𝐮 +
12
√
𝑡𝑛3𝛽
𝜃

.

with probability at least 1 − 7𝜃2 − 2𝑒−𝑡2𝑛 for every 𝑡 > 2
√
2. If our desired quality of approximation

is ‖𝑆 − 𝑇𝑊 ∗‖ = 𝜂, then some basic algebra gives the success probability as at least

1 − 1008
𝑛3𝑡𝛽

(𝜂 − 𝜇QR(𝑛)𝐮)2
− 2𝑒−𝑡

2𝑛.

Since 𝛽 ≤ 1/4, we can safely set 𝑡 =
√
2/𝛽 , giving

1 − 1426
𝑛3
√
𝛽

(𝜂 − 𝜇QR(𝑛)𝐮)2
− 2𝑒−2𝑛/𝛽 .
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To simplify even further, we’d like to use the upper bound 2𝑒−2𝑛/𝛽 ≤ 𝑛3
√
𝛽

(𝜂−𝜇QR(𝑛)𝐮)2
. These two terms

have opposite curvature in 𝛽 on the interval (0, 1), and are equal at zero, so it suffices to check
that the inequality holds when 𝛽 = 1. The terms only become closer by setting 𝑛 = 1 everywhere
except in the argument of 𝜇QR(⋅), so we need only check that

2
𝑒2

≤
1

(𝜂 − 𝜇QR(𝑛)𝐮)2
.

Under our assumptions 𝜂, 𝜇QR(𝑛)𝐮 ≤ 1, the right hand side is greater than one, and the left hand
less. Thus we can make the replacement, use 𝐮 ≤ 𝜂

2𝜇𝑄𝑅(𝑛)
, and round for readability to a success

probability of no worse than

1 − 6000
𝑛3
√
𝛽

𝜂2
;

the constant here is certainly not optimal.
Finally, for the running time, we need to sample 𝑛2 complex Gaussians, perform two QR

decompositions, and one matrix multiplication; this gives the total bit operations as

𝑇SPAN(𝑛) = 𝑛2𝑇N + 2𝑇QR(𝑛) + 𝑇MM(𝑛).

Remark 5.66. Note that the exact same proof of Theorem 5.17 goes through in the more general
case where the matrix in question is not necessarily a projection, but any matrix close to a rank-
deficient matrix 𝐴. In this case an extra 𝜎𝑟 (𝑇 ∗𝐴𝑇) term appears in the probability of success (see
the guarantee given in the box for the Algorithm SPAN that appears in Section 5.8.

5.9 Discussion
In this chapter, we reduced the approximate diagonalization problem to a polylogarithmic number
of matrix multiplications, inversions, and QR factorizations on a floating point machine with
precision depending only polylogarithmically on 𝑛 and 1/𝛿 . The key phenomena enabling this
were: (a) every matrix is 𝛿-close to a matrix with well-behaved pseudospectrum, and such a
matrix can be found by a complex Gaussian perturbation; and (b) the spectral bisection algorithm
can be shown to converge rapidly to a forward approximate solution on such a well-behaved
matrix, using a polylogarithmic in 𝑛 and 1/𝛿 amount of precision and number of iterations. The
combination of these facts yields a 𝛿-backward approximate solution for the original problem.

Using fast matrix multiplication, we obtain algorithms with nearly optimal asymptotic compu-
tational complexity (as a function of 𝑛, compared to matrix multiplication), for general complex
matrices with no assumptions. Using naı̈ve matrix multiplication, we get easily implementable
algorithms with 𝑂(𝑛3) type complexity and much better constants which are likely faster in prac-
tice. The constants in our bit complexity and precision estimates (see Theorem 5.19 and equations
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(5.30) and (5.10)), while not huge, are likely suboptimal. The reasonable practical performance
of spectral bisection based algorithms is witnessed by the many empirical papers (see e.g. [11])
which have studied it. The more recent of these works further show that such algorithms are
communication-avoiding and have good parallelizability properties.

Remark 5.67 (Hermitian Matrices). A curious feature of our algorithm is that even when the input
matrix is Hermitian or real symmetric, it begins by adding a complex non-Hermitian perturbation
to regularize the spectrum. If one is only interested in this special case, one can replace this
first step by a Hermitian GUE or symmetric GOE perturbation and appeal to the result of [2]
instead of Theorem 1.10, which also yields a polynomial lower bound on the minimum gap of the
perturbed matrix. It is also possible to obtain a much stronger analysis of the Newton iteration in
the Hermitian case, since the iterates are all Hermitian and 𝜅𝑉 = 1 for such matrices. By combining
these observations, one can obtain a running time for Hermitian matrices which is significantly
better (in logarithmic factors) than our main theorem. We do not pursue this further since our
main goal was to address the more difficult non-Hermitian case.

We conclude by listing several problems which merit further study.

Open Problem 5.68. Devise a deterministic algorithm with similar guarantees to EIG.

The main bottleneck to doing this is deterministically finding a regularizing perturbation,
which seems quite mysterious. Another obstacle is computing a rank-revealing QR factorization
in near matrix multiplication time deterministically, as all of the currently known deterministic
algorithms require Ω(𝑛3) time.

Open Problem 5.69. Reduce the dependence of the running time and precision to a smaller power
of log(1/𝛿).

The Shifted QR algorithm we analyze in Chapter 7 improves the precision somewhat, still
short of the holy grail of 𝑂(log(1/𝛿)) bits of precision. The bottleneck in the current algorithm
is the precision required for stable convergence of the Newton iteration for computing the sign
function. Other, “inverse-free” iterative schemes have been proposed for this, which conceivably
require lower precision.

Open Problem 5.70. Study the convergence of “scaled Newton iteration” and other rational approx-
imation methods (see [95, 118]) for computing the sign function on non-Hermitian matrices.

More broadly, we hope that the techniques introduced in this chapter—pseudospectral shat-
tering and pseudospectral analysis of matrix iterations using contour integrals—are useful in
attacking other problems in numerical linear algebra.
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5.10 Deferred Proofs from Section 5.6
Restatement of Lemma 5.40. Assume the matrix inverse is computed by an algorithm INV

satisfying the guarantee in Definition 5.5. Then G(𝐴) = 𝑔(𝐴) + 𝐸 for some error matrix 𝐸 with norm

‖𝐸‖ ≤ (‖𝐴‖ + ‖𝐴−1‖ + 𝜇INV(𝑛)𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖) 2
√
𝑛𝐮. (5.57)

Proof. The computation of G(𝐴) consists of three steps:

1. Form 𝐴−1 according to Definition 5.5. This incurs an additive error of 𝐸INV = 𝜇INV(𝑛) ⋅ 𝐮 ⋅
𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖. The result is INV(𝐴) = 𝐴−1 + 𝐸INV.

2. Add 𝐴 to INV(𝐴). This incurs an entry-wise relative error of size 𝐮: The result is

(𝐴 + 𝐴−1 + 𝐸INV) ◦ (𝐽 + 𝐸𝑎𝑑𝑑 )

where 𝐽 denotes the all-ones matrix, ‖𝐸𝑎𝑑𝑑 ‖𝑚𝑎𝑥 ≤ 𝐮, and where ◦ denotes the entrywise
(Hadamard) product of matrices.

3. Divide the resulting matrix by 2, which is an exact operation in our floating-point model as
we can simply decrement the exponent. The final result is

G(𝐴) =
1
2
(𝐴 + 𝐴−1 + 𝐸INV) ◦ (𝐽 + 𝐸𝑎𝑑𝑑 ).

Finally, recall that for any 𝑛 × 𝑛 matrices 𝑀 and 𝐸, we have the relation (5.4)

‖𝑀 ◦ 𝐸‖ ≤ ‖𝑀‖‖𝐸‖𝑚𝑎𝑥
√
𝑛.

Putting it all together, we have

‖G(𝐴) − 𝑔(𝐴)‖ ≤
1
2 (

‖𝐴‖ + ‖𝐴−1‖) 𝐮
√
𝑛 + ‖𝐸INV‖(1 + 𝐮)

√
𝑛

≤
1
2 (

‖𝐴‖ + ‖𝐴−1‖) 𝐮
√
𝑛 + 𝜇INV(𝑛) ⋅ 𝐮 ⋅ 𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖(1 + 𝐮)

√
𝑛

≤ (‖𝐴‖ + ‖𝐴−1‖ + 𝜇INV(𝑛)𝜅(𝐴)𝑐INV log 𝑛‖𝐴−1‖) 2
√
𝑛𝐮

where we use 𝐮 < 1 in the last line.

In what remains of this section we will repeatedly use the following simple calculus fact.

Lemma 5.71. Let 𝑥, 𝑦 > 0, then

log(𝑥 + 𝑦) ≤ log(𝑥) +
𝑦
𝑥

and lg(𝑥 + 𝑦) ≤ lg(𝑥) +
1

log 2
𝑦
𝑥
.
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Proof. This follows directly from the concavity of the logarithm.

Restatement of Lemma 5.44. Let 1/800 > 𝑡 > 0 and 1/2 > 𝑐 > 0 be given. Then for

𝑗 ≥ lg(1/𝑡) + 2 lg lg(1/𝑡) + lg lg(1/𝑐) + 1.62,

we have
(1 − 𝑡)2𝑗

𝑡2𝑗
< 𝑐.

Proof. An exact solution for 𝑗 can be written in terms of the Lambert 𝑊 -function; see [51] for
further discussion and a useful series expansion. For our purposes, it is simpler to derive the
necessary quantitative bound from scratch.

Immediately from the assumption 𝑡 < 1/800, we have 𝑗 > log(1/𝑡) ≥ 9. First let us solve the
case 𝑐 = 1/2. We will prove the contrapositive, so assume

(1 − 𝑡)2𝑗

𝑡2𝑗
≥ 1/2.

Then taking log on both sides, we have

2𝑗 log(1/𝑡) + 1 ≥ −2𝑗 log(1 − 𝑡) ≥ 2𝑗𝑡.

Taking lg of both sides and applying the second inequality in Lemma 5.71 with 𝑥 = 2𝑗 log(1/𝑡) and
𝑦 = 1, using lg 𝑥 = 1 + lg 𝑗 + lg log(1/𝑡), we obtain

1 + lg 𝑗 + lg log(1/𝑡) +
1

log 2
1

2𝑗 log(1/𝑡)
≥ 𝑗 + lg 𝑡.

Since 𝑡 < 1/800 we have 1
log 2

1
2𝑗 log(1/𝑡) < 0.01, so

𝑗 − lg 𝑗 ≤ lg(1/𝑡) + lg log(1/𝑡) + 1.01 ≤ lg(1/𝑡) + lg lg(1/𝑡) + 0.49 =∶ 𝐾.

But since 𝑗 ≥ 9, we have 𝑗 − lg 𝑗 ≥ 0.64𝑗, so

𝑗 ≤
1

0.64
(𝑗 − lg 𝑗) ≤

1
0.64

𝐾

which implies
𝑗 ≤ 𝐾 + lg 𝑗 ≤ 𝐾 + lg(1.57𝐾) = 𝐾 + lg 𝐾 + 0.65.

Note 𝐾 ≤ 1.39 lg(1/𝑡), because 𝐾 − lg(1/𝑡) = lg lg(1/𝑡) + 0.49 ≤ 0.39 lg(1/𝑡) for 𝑡 ≤ 1/800. Thus

lg 𝐾 ≤ lg(1.39 lg(1/𝑡)) ≤ lg lg(1/𝑡) + 0.48,
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so for the case 𝑐 = 1/2 we conclude the proof of the contrapositive of the lemma:

𝑗 ≤ 𝐾 + lg 𝐾 + 0.65
≤ lg(1/𝑡) + lg lg(1/𝑡) + 0.49 + (lg lg(1/𝑡) + 0.48) + 0.65
= lg(1/𝑡) + 2 lg lg(1/𝑡) + 1.62.

For the general case, once (1 − 𝑡)2𝑗 /𝑡2𝑗 ≤ 1/2, consider the effect of incrementing 𝑗 on the left
hand side. This has the effect of squaring and then multiplying by 𝑡2𝑗−2, which makes it even
smaller. At most lg lg(1/𝑐) increments are required to bring the left hand side down to 𝑐, since
(1/2)2lg lg(1/𝑐) = 𝑐. This gives the value of 𝑗 stated in the lemma, as desired.

Restatement of Lemma 5.47. If

𝑁 = ⌈lg(1/𝑠) + 3 lg lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) + 7.59⌉,

then
𝑁 ≥ lg(8/𝑠) + 2 lg lg(8/𝑠) + lg lg(16/(𝛽𝑠2𝜖0)) + 1.62.

Proof. We aim to provide a slightly cleaner sufficient condition on 𝑁 than the current condition

𝑁 ≥ lg(8/𝑠) + 2 lg lg(8/𝑠) + lg lg(16/(𝛽𝑠2𝜖0)) + 1.62.

Repeatedly using Lemma 5.71, as well as the cruder fact lg lg(𝑎𝑏) ≤ lg lg 𝑎+lg lg 𝑏 provided 𝑎, 𝑏 ≥ 4,
we have

lg lg(16/(𝛽𝑠2𝜖0)) ≤ lg lg(16/𝑠2) + lg lg(1/(𝛽𝜖0))
= 1 + lg(3 + lg(1/𝑠)) + lg lg(1/(𝛽𝜖0))

≤ 1 + lg lg(1/𝑠) +
3

log 2 lg(1/𝑠)
+ lg lg(1/(𝛽𝜖0))

≤ lg lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) + 1.66

where in the last line we use the assumption 𝑠 < 1/100. Similarly,

lg(8/𝑠) + 2 lg lg(8/𝑠) ≤ 3 + lg(1/𝑠) + 2 lg(3 + lg(1/𝑠))

≤ 3 + lg(1/𝑠) + 2(lg lg(1/𝑠) +
3

log 2 lg(1/𝑠))
≤ lg(1/𝑠) + 2 lg lg(2/𝑠) + 4.31

Thus, a sufficient condition is

𝑁 = ⌈lg(1/𝑠) + 3 lg lg(1/𝑠) + lg lg(1/(𝛽𝜖0)) + 7.59⌉.
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Chapter 6

The Shifted QR Algorithm in Exact
Arithmetic

6.1 Introduction
The Hessenberg Shifted QR Algorithm, discovered in the late 1950s independently by Francis
[78, 79] and Kublanovskaya [106], has been for several decades the most widely used method
for approximately computing all of the eigenvalues of a dense matrix. It is implemented in all
of the major software packages for numerical linear algebra and was listed as one of the “Top
10 algorithms of the twentieth century,” along with the Metropolis algorithm and the Simplex
algorithm [67, 128]. As discussed in Chapter 1, the algorithm is specified by a shifting strategy,
which is an efficiently computable function

Sh ∶ ℍ𝑛×𝑛 → 𝑘 ,

where ℍ𝑛×𝑛 is the set of 𝑛 × 𝑛 complex Hessenberg matrices and 𝑘 is the set of monic complex
univariate polynomials of degree 𝑘, for some 𝑘 = 𝑘(𝑛) typically much smaller than 𝑛. The word
“shift” comes from the fact that when 𝑘 = 1 we have 𝑝𝑡(𝐻𝑡) = 𝐻𝑡 −𝑠𝑡 𝐼 for some 𝑠𝑡 ∈ ℂ. The algorithm
then consists of the following discrete-time isospectral nonlinear dynamical system on ℍ𝑛×𝑛, given
an initial condition 𝐻0:

𝐻𝑡+1 = 𝑄∗
𝑡𝐻𝑡𝑄𝑡 Where 𝑝𝑡(𝐻𝑡) = 𝑄𝑡𝑅𝑡 , for 𝑝𝑡 = Sh(𝐻𝑡) (6.1)

The expression 𝑝𝑡(𝐻𝑡) = 𝑄𝑡𝑅𝑡 is (6.1) is a 𝑄𝑅 decomposition so that 𝑄𝑡 is unitary, and it is not hard
to see that each iteration preserves the Hessenberg structure.

The relevance of this iteration to the eigenvalue problem stems from two facts. First, every
matrix 𝐴 ∈ ℂ𝑛×𝑛 is unitarily similar to a Hessenberg matrix 𝐻0, and in exact arithmetic such a
similarity can be computed exactly in 𝑂(𝑛3) operations. Second, it was shown in [78, 106] that
for the trivial “unshifted” strategy 𝑝(𝑧) = 𝑧, the iterates 𝐻𝑡 under some mild genericity conditions
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always converge to an upper triangular matrix 𝐻∞; this is because the unshifted QR iteration can
be precisely related to both power and inverse iteration (the paper [162] articulates this connection
and is an essential reference, see also [152]). Combining the unitary similarities accumulated
during the iteration, these two facts yield a Schur factorization 𝐴 = 𝑄∗𝐻∞𝑄 of the original matrix,
from which the eigenvalues of 𝐴 can be read off. The unshifted QR iteration does not give an
efficient algorithm, however, as it is easy to see that convergence can be arbitrarily slow if the
ratios of the magnitudes of the eigenvalues of 𝐻0 are close to 1. The role of the shifting strategy is
to adaptively improve these ratios and thereby accelerate convergence. The challenge is that this
must be done efficiently without prior knowledge of the eigenvalues.

As discussed in Chapter 1, when looking for a backward approximation to the eigenvalues of
𝐻0, is not advisable to wait around for the entire subdiagonal of 𝐻𝑡 to become small. Instead, the
relevant notion of convergence is the time required for some subdiagonal entry to become so: once
this happens, we can deflate 𝐻𝑡 by deleting the small entry (or entries), and continue the iteration
separately on the diagonal blocks of the resulting block upper triangular matrix. We therefore
quantify the rate of convergence of (6.1) in terms of the 𝜔-decoupling time, or in other words the
number of iterations required to drive at least one subdiagonal entry below 𝜔‖𝐻𝑡‖. Each deflation
introduces a backward error of 𝜔‖𝐻𝑡‖ into the calculation, so relative accuracy 𝛿 is ensured by
taking 𝜔 = 𝑂(𝛿/𝑛). In this setup “rapid” convergence means that the 𝜔-decoupling time is a very
slowly growing function of 𝑛 and 1/𝜔, ideally logarithmic or polylogarithmic.

There are two distinct phenomena which make analyzing the dynamics of shifted QR chal-
lenging.

1. Transient behavior due to nonnormality. In the nonnormal case, the iterates 𝐻𝑡 can behave
chaotically on short time scales,1 lacking any kind of obvious algebraic or geometric mono-
tonicity properties (which are present in the symmetric case). This lack of monotonicity
makes it hard to reason about convergence.

2. Fixed points and periodic orbits due to symmetry. The most natural shifting strategies define
𝑝𝑡(𝑧) as a simple function of the entries of 𝐻𝑡 , typically a function of the characteristic
polynomial of the bottom right 𝑘 × 𝑘 corner (𝐻𝑡)(𝑘) of 𝐻𝑡 . These strategies typically have
attractive fixed points and cycles which are not upper triangular, leading to slow convergence
or nonconvergence (e.g. see [125, 22, 56]). The conceptual cause of these fixed points is
symmetry — at a very high level, the dynamical system “cannot decide which invariant
subspace to converge to.” This feature is seen even in normal matrices, and in fact its most
severe manifestation occurs in the case of unitary matrices.

1We measure time not as the number of QR steps, but as the number of QR steps of degree 1, so for example a QR
step with a degree 𝑘 shift corresponds to 𝑘 time steps.
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Example 6.1. Both pathologies are seen in the instructive family of 𝑛 × 𝑛 examples

𝑀 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑚𝑛
𝑚1

𝑚2
⋱

𝑚𝑛−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where 𝑚1, … ,𝑚𝑛 ∈ (0, 1). Observe that, for 𝑘 ≤ 𝑛−1, the characteristic polynomial of 𝑀(𝑘) is just 𝑧𝑘 ,
so any naı̈ve shifting strategy based on it will yield the trivial shift. One can verify that a QR step
with the trivial strategy applied to 𝑀 cyclically permutes the 𝑚𝑖 , while leaving the zero pattern
of 𝑀 intact. This means that for adversarially chosen 𝑚1, ..., 𝑚𝑛, the bottom few subdiagonal
entries of 𝑀 — the traditional place to look for monotonicity in order to prove convergence —
exhibit arbitrary behavior. At very long time scales of 𝑛 steps, the behavior becomes periodic and
predictable, but there is still no convergence.

Previous approaches this problem have been essentially algebraic (relying on examining entries
of the iterates, their resolvents, or characteristic polynomials of their submatrices) or geometric
(viewing the iteration as a flow on a manifold), and have been unable to surmount these difficulties
in the nonsymmetric case.

In contrast, we take an essentially analytic approach. Building off of the sketched shifting
strategy for normal matrices in the introduction, the key idea is that when the eigenvector
condition number 𝜅𝑉 (𝐻0) is bounded, the dynamics of shifted QR can be understood in terms of
certain measures, similar in spirit to the notion of spectral measure of a normal matrix used in
Chapter 1, associated with the (not necessarily normal) iterates 𝐻𝑡 . On short time scales, these
measures lack any semblance of the monotonicity exhibited by the shift from the introduction,
but over time scales of 𝑘 ≫ lg 𝜅𝑉 (𝐻0) they evolve in a predictable way, much like in the normal
case. This is explained in detail in Section 6.4. Moreover, the behavior of these measures can be
related to the geometric mean of the bottom 𝑘 subdiagonal entries of the current iterate, a quantity
we will write as

𝜓𝑘(𝐻 ) ≜ (𝐻𝑛−𝑘,𝑛−𝑘+1 ⋯𝐻𝑛−1,𝑛)1/𝑘 (6.2)

and use as a potential function to track convergence.
To see this phenomenon in action, if we impose a bound on 𝜅𝑉 (𝑀) in Example 6.1, it can be

seen that the ratios of the 𝑚𝑖 cannot be arbitrary and the geometric mean of the bottom lg 𝜅𝑉 (𝑀)
subdiagonal entries of 𝑀 behaves predictably rather than chaotically on intervals of 𝑘 ≫ lg 𝜅𝑉 (𝑀)
time steps.

Guided by this insight, we carefully design a shifting strategy which satisfies the following
dichotomy: either (i) a QR step of degree 𝑘 significantly decreases the potential definedin (6.2), or,
(ii) the measure associated to the current iterate must have a special structure. In the second case
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(which corresponds to the symmetry case discussed above) we exploit the structure to design a
simple exceptional shift which is guaranteed to significantly reduce the potential, giving linear
convergence in either case. Thus, our proof articulates that transience and symmetry are the only
obstacles to rapid convergence of the shifted QR iteration on nonsymmetric matrices.

As discussed in Chapter 1, we define Sh𝑘,𝐵(𝐻𝑡) in terms of the Ritz values of the current iterate
𝐻𝑡 . Recall that the Ritz values of order 𝑘 of a Hessenberg matrix 𝐻 are the eigenvalues of its bottom
right 𝑘 × 𝑘 corner 𝐻(𝑘); they are related to the potential 𝜓𝑘(𝐻 ) via the variational characterization
of the latter which we discussed in the introduction and pause here to restate and prove [152,
Theorem 34.1]. Let us write 𝜒𝑘(𝑧) = det(𝑧 − 𝐻(𝑘)).

Lemma 6.2 (Variational Formula for 𝜓𝑘). For any Hessenberg 𝐻 ∈ 𝑯 𝑛×𝑛 and any 𝑘 ∈ ℕ,

𝜓𝑘(𝐻 ) = min
𝑝∈𝑘

‖𝑒∗𝑛𝑝(𝐻)‖1/𝑘 ,

with the minimum attained for 𝑝 = 𝜒𝑘 .

Proof. Since 𝐻 is upper Hessenberg, for any polynomial 𝑝 ∈ 𝑘 we have

𝑝(𝐻)𝑛,𝑛−𝑗 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑝(𝐻(𝑘))𝑘,𝑘−𝑗+1 𝑗 = 0, … , 𝑘 − 1,
𝐻𝑛−𝑘,𝑛−𝑘−1⋯𝐻𝑛,𝑛−1 𝑗 = 𝑘,
0 𝑗 ≥ 𝑘 + 1.

Thus for every such 𝑝,

min
𝑝∈𝑘

‖𝑒∗𝑛𝑝(𝐻)‖ ≥ |𝐻𝑛−𝑘,𝑛−𝑘−1⋯𝐻𝑛,𝑛−1| = 𝜓𝑘(𝐻 )𝑘 ,

and the bound will be tight for any polynomial whose application to 𝐻(𝑘) zeroes out the last row;
by Cayley-Hamilton, the matrix 𝜒𝑘(𝐻(𝑘)) is identically zero.

Since computing eigenvalues exactly is impossible when 𝑘 ≥ 5, we assume access to a method
for computing approximate Ritz values, in a specific sense motivated by Lemma 6.2 and encapsu-
lated in the following definition.

Definition 6.3 (𝜃-Optimal Ritz Values and Ritz Value Finders). Let 𝜃 ≥ 0. We call  = {𝑟1, … , 𝑟𝑘} ⊂
ℂ a set of 𝜃-optimal Ritz values of a Hessenberg matrix 𝐻 if

‖‖𝑒
∗
𝑛 ∏

𝑖≤𝑘
(𝐻 − 𝑟𝑖)‖‖

1/𝑘 ≤ 𝜃𝜓𝑘(𝐻 ) = 𝜃 min
𝑝∈𝑘

‖𝑒∗𝑛𝑝(𝐻)‖1/𝑘 . (6.3)

A Ritz value finder is an algorithm OptRitz(𝐻 , 𝑘, 𝜃) that takes as inputs a Hessenberg matrix
𝐻 ∈ 𝑪𝑛×𝑛, a positive integer 𝑘 and an accuracy parameter 𝜃 > 1, and outputs a set  = {𝑟1, … , 𝑟𝑘}
of 𝜃-optimal Ritz values of 𝐻 whenever the right hand side of (6.3) is nonzero. Let 𝑇OptRitz(𝑘, 𝜃, 𝜔)
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be the maximum number of arithmetic operations used by OptRitz(𝐻 , 𝑘, 𝜃) over all inputs 𝐻 such
that the 𝜓𝑘(𝐻 ) ≥ 𝜔‖𝐻‖.2

With some additional insights, a Ritz value finder satisfying Definition 6.3 can be efficiently
instantiated using polynomial root finders or other provable eigenvalue computation algorithms
(e.g. Theorem 1.7’s EIG) with guarantees of type 𝑇OptRitz(𝜃, 𝑘, 𝜔) = 𝑂(𝑘𝑐 lg( 1

𝜔(𝜃−1) )). We defer a
detailed discussion of numerical precision issues surrounding this implementation to Chapter
7. The subtlety of not being able to compute Ritz values exactly is secondary to the dynamical
phenomena which are the focus of the current chapter, so on first reading it is recommended to
assume 𝜃 = 1 (i.e., Ritz values are computed exactly), even though this is unrealistic when 𝑘 > 4.
Here, as in Chapter 7, we will take 𝜃 = 2. We now restate Theorem 1.13 precisely; it will be proved
in Section 6.4.

Restatement of Theorem 1.13. For each 𝑘 = 2, 4, 8, ... and 𝐵 ≥ 1, there is a shifting strategy
Sh𝑘,𝐵 ∶ ℍ𝑛×𝑛

𝐵 → 𝑘 which, in exact arithmetic,

(i) achieves 𝜔-decoupling in at most 4 lg(1/𝜔) iterations, and

(ii) costs at most

(lg 𝑘 + 𝑁net (0.002 𝐵
− 8 lg 𝑘+4

𝑘−1 )) ⋅ 7𝑘𝑛2 + 𝑇OptRitz(𝑘, 2, 𝜔) + lg 𝑘 (6.4)

arithmetic operations per iteration before 𝜔-decoupling occurs, where 𝑁net(𝜀) = 𝑂(𝜀−2) is the
number of points in an efficiently computable 𝜀-net of the unit disk.

The term involving 𝑁net captures the the cost of performing certain “exceptional shifts” (see Section
5.2) used in the strategy and the number 7𝑘𝑛2 corresponds to an upper bound on the arithmetic
cost of a degree 𝑘 implicit QR step (see Section 6.4).

The tradeoff between the nonnormality of the input matrix and the efficiency of the shifting
strategy appears in the cost of the exceptional shift, and we can see that by setting

𝑘 = Ω(lg 𝐵 lg lg 𝐵) (6.5)

yields a total running time of 𝑂(𝑛2𝑘 lg 𝑘) operations per iteration. Note that the bound 𝐵 ≥ 𝜅𝑉 (𝐻0)
must be known in advance in order to determine how large a 𝑘 is needed to make the cost of the
exceptional shift small. One may also take 𝑘 to be a constant independent of 𝐵, which causes the
arithmetic complexity of each iteration to depend polynomially on 𝐵, rather than logarithmically.

2This lower bound is no issue since we are using the OptRitz to 𝜔-decouple 𝐻 , but is necessary since otherwise
we could use OptRitz to compute the eigenvalues of 𝐻(𝑘) to arbitrary accuracy in finite time, which is unrealistic.
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Remark 6.4. For normal matrices, we will show for good measure that Sh4,1 achieves rapid
decoupling at a cost of at most 1500𝑛2 + 𝑂(1) arithmetic operations per iteration; the reason is
that we may take 𝐵 = 1 and (since the 𝑘 = 4 Ritz values are the roots of a quartic, and can thus be
computed exactly using 𝑂(1) arithmetic operations) 𝜃 = 1 as well.

Remark 6.5 (Higher Degree Shifts). It is well-known, and verified in the sequel, that a QR step
with a degree 𝑘 shift 𝑝(𝑧) = (𝑧 − 𝑟1) … (𝑧 − 𝑟𝑘) is identical to a sequence of 𝑘 steps with degree 1
shifts (𝑧 − 𝑟1), (𝑧 − 𝑟2), … , (𝑧 − 𝑟𝑘), so any degree 𝑘 strategy can be simulated by a degree 1 strategy
while increasing the iteration count by a factor of 𝑘.3 We choose to present our strategy as higher
degree for conceptual clarity. The efficiency of using degrees as high as 𝑘 = 180 has been tested in
the past [37, Section 3] and 𝑘 = 50 is often used in practice [105].

6.2 History and Related Work
The literature on shifted QR is vast, so we mention only the most relevant works — in particular, we
omit the large body of experimental work and do not discuss the many works on local convergence
of shifted QR (i.e., starting from an 𝐻0 which is already very close to decoupling). The reader
is directed to the excellent surveys [24, 141, 47] or [128, 162, 84] for a dynamical or numerical
viewpoint, respectively, or to the books [85, 152, 64, 161] for a comprehensive treatment.

Most of the shifting strategies studied in the literature are a combination of the following
three types. The motivation for considering shifts depending on 𝐻(𝑘) is closely related to Krylov
subspace methods, see e.g. [161]. Below 𝐻 denotes the current Hessenberg iterate.

1. 𝑘-Francis Shift. Take 𝑝(𝑧) = det(𝑧 − 𝐻(𝑘)) for some 𝑘. The case 𝑘 = 1 is called Rayleigh shift.

2. Wilkinson Shift. Take 𝑝(𝑧) = (𝑧 − 𝑎) where 𝑎 is the root of det(𝑧 − 𝐻(2)) closer to 𝐻(1).

3. Exceptional Shift. Let 𝑝(𝑧) = (𝑧 − 𝑥) for some 𝑥 chosen randomly or arbitrarily, perhaps with
a specified magnitude (e.g. |𝑥| = 1 for unitary matrices in [69, 156, 157, 158]).

Shifting strategies which combine more than one of these through some kind of case analysis are
called “mixed” strategies.

Symmetric Matrices. In a celebrated work, Wilkinson [164] proved global convergence of shifted
QR on all real symmetric tridiagonal matrices using the shifting strategy that now carries his name.
The linear convergence bound of 𝜔-decoupling in 𝑂(lg(1/𝜔)) iterations for this shifting strategy
was then obtained by Dekker and Traub [60] (in the more general setting of Hermitian matrices),
and reproven by Hoffman and Parlett [96] using different arguments. Other than these results for
Hermitian matrices, there is no known bound on the worst-case decoupling time of shifted QR

3This also has some important advantages with regards to numerical stability, which are discussed in Chapter 7.
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for any large class of matrices or any other shifting strategy. Shifted QR is nonetheless the most
commonly used algorithm for the nonsymmetric eigenproblem on dense matrices, though there is
little theoretical foundation for this practice. The strategies implemented in standard software
libraries heuristically converge very rapidly on “typical” inputs, but occasionally examples of
nonconvergence are found [56, 117] and dealt with in ad hoc ways.

In the realm of higher order shifts, Jiang [75] showed that the geometric mean of the bottom 𝑘
subdiagonal entries is monotone for the 𝑘-Francis strategy in the case of symmetric tridiagonal
matrices. Aishima et al. [1] showed that this monotonicity continues to hold for a “Wilkinson-like”
shift which chooses 𝑘 − 1 out of 𝑘 Ritz values. Both of these results yield global convergence on
symmetric tridiagonal matrices (without a rate).

RayleighQuotient Iteration and Normal Matrices. The behavior of shifted QR is well known to be
related to shifted inverse iteration (see e.g. [152]). In particular, the Rayleigh shifting strategy
corresponds to a vector iteration process known as Rayleigh Quotient Iteration (RQI). Parlett
[126] (building on [123, 41, 129]) showed that RQI converges globally (but without giving a rate)
on almost every normal matrix and investigated how to generalize this to the nonnormal case.

Batterson [22] studied the convergence of 2-Francis shifted QR on 3 × 3 normal matrices with a
certain exceptional shift and showed that it always converges. The subsequent work [23] showed
that 2-Francis shifted QR converges globally on almost every real 𝑛 × 𝑛 normal matrix (without
a rate). In Theorem 6 of that paper, it was shown that the same potential that we consider is
monotone-decreasing when the 𝑘-Francis shift is run on normal matrices, which was an inspiration
for our proof of almost-monotonicty for nonnormal matrices.

Nonnormal Matrices. Parlett [125] showed that an unshifted QR step applied to a singular matrix
leads to immediate 0-decoupling, taking care of the singularity issue that was glossed over in the
introduction, and further proved that all of the fixed points of an extension of the 2-Francis shifted
QR step (for general matrices) are multiples of unitary matrices.

In a sequence of works, Batterson and coauthors investigated the behavior of RQI and 2-Francis
on nonnormal matrices from a dynamical systems perspective. Batterson and Smillie [26, 27]
showed that there are real matrices such that RQI fails to converge for an open set of real starting
vectors. The latter paper also established that RQI exhibits chaotic behavior on some instances, in
the sense of having periodic points of infinitely many periods. Batterson and Day [25] showed
that 2-Francis shifted QR converges globally and linearly on a certain conjugacy class of 4 × 4
Hessenberg matrices.

In the realm of periodicity and symmetry breaking, Day [56], building on an example of
Demmel, showed that there is an open set of 4 × 4 matrices on which certain mixed shifting
strategies used in the library EISPACK fail to converge rapidly; such an example was independently
discovered by Moler [117]. These examples are almost normal in the sense that they satisfy 𝜅𝑉 ≤ 2,
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so the reason for nonconvergence is symmetry, and our strategy Sh𝑘,𝐵 with modest parameters
𝑘 = 𝐵 = 2 is guaranteed to converge rapidly on them.

Using topological considerations, Leite et al. [109] proved that no single shifting strategy
which is continuous in the entries of the matrix can cause decoupling on every symmetric matrix.
Accordingly (in retrospect), the most successful shifting strategy for symmetric matrices, Wilkin-
son’s, is discontinuous and explicitly breaks symmetry when the latter occurs. Our strategy Sh𝑘,𝐵
is also discontinuous in the entries of the matrix.

Mixed and Exceptional Shifts. Eberlein and Huang [69] showed global convergence (without a
bound on the rate) of a certain mixed strategy for unitary Hessenberg matrices; more recently, the
works [156, 157, 158] exhibited mixed strategies which converge globally for unitary Hessenberg
matrices with a bound on the rate, but this bound depends on the matrix in a complicated way
and is not clearly bounded away from 1. Our strategy Sh𝑘,𝐵 is also a mixed strategy which in a
sense combines all three types above. Our choice of exceptional shift was in particular inspired by
the work of [69, 157] — the difference is that the size of the exceptional shift is naturally of order
1 in the unitary case, but in the general case it must be chosen carefully at the correct spectral scale.

Higher Degree Shifts. The idea of using higher degree shifts was already present in [78, 60], but was
popularized in by Bai and Demmel in [9], who observed that higher order shifts can sometimes
be implemented more efficiently than a sequence of lower order ones; see [9, Section 3] for a
discussion of various higher order shifting strategies which were considered in the 1980s.

Integrable Systems. The unshifted QR algorithm on Hermitian matrices is known to correspond to
evaluations of an integrable dynamical system called the Toda flow at integer times [57]; such a
correspondence is not known for any nontrivial shifting scheme or for nonnormal matrices. See
[47] for a detailed survey of this connection. More recently, the line of work [131, 59, 58] studied
the universality properties of the decoupling time of unshifted QR on random matrices, and used
the connection to Toda flow to prove universality in the symmetric case; it was experimentally
observed that such universality continues to hold for shifted QR.

6.3 Preliminaries
We begin with some preliminaries on QR steps in exact arithmetic. Recall our notation [𝑄, 𝑅] =
qr(𝐴) for the 𝑄𝑅 decomposition of an matrix 𝐴, where 𝑄 is unitary and 𝑅 is upper triangular with
nonnegative diagonal entries. Given a polynomial 𝑝(𝑧) and a Hessenberg matrix 𝐻 , iqr(𝐻 , 𝑝(𝑧))
will denote the matrix 𝐻 = 𝑄∗𝐻𝑄 where [𝑄, 𝑅] = 𝑝(𝐻). When 𝑝(𝑧) = 𝑧 − 𝑠 we will use iqr(𝐻 , 𝑠) as a
shorthand notation for iqr(𝐻 , 𝑧 − 𝑠). The 𝑄𝑅 iteration iqr has a fundamental composition property
articulated in the lemma below; the proof is standard, but we will need to adapt it in Chapter 7 so
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we include it for the reader’s convenience.

Lemma 6.6. For any invertible 𝐻 and polynomial 𝑝(𝑧) = (𝑧 − 𝑟1) ⋯ (𝑧 − 𝑟𝑘),

iqr(𝐻 , 𝑝(𝑧)) = iqr(⋯ iqr(iqr(𝐻 , 𝑟1), 𝑟2), ..., 𝑟𝑘). (6.6)

Moreover, if 𝑝(𝐻) = 𝑄𝑅, 𝐻1 = 𝐻 , and for each 𝓁 ∈ [𝑘]we set [𝑄𝓁 , 𝑅𝓁 ] ≜ qr(𝐻𝓁 −𝑟𝓁 ) and𝐻𝓁+1 ≜ 𝑄∗
𝓁𝐻𝓁𝑄𝓁 ,

then
𝑄 = 𝑄1 ⋯𝑄𝑘 and 𝑅 = 𝑅𝑘𝑅𝑘−1⋯𝑅1. (6.7)

Proof. Repeatedly using definition of 𝑄𝓁 , 𝑅𝓁 , and 𝐻𝓁 for each 𝓁 ∈ [𝑘], we can compute

𝑝(𝐻) = 𝑝(𝐻1) = (𝐻1 − 𝑟𝑘) ⋯ (𝐻1 − 𝑟1)
= (𝐻1 − 𝑟𝑘) ⋯ (𝐻1 − 𝑟2)𝑄1𝑅1 𝐻1 − 𝑟1 = 𝑄1𝑅1
= (𝐻1 − 𝑟𝑘) ⋯𝑄1(𝐻2 − 𝑟2)𝑅1 𝐻2 = 𝑄∗

1𝐻1𝑄1

= (𝐻1 − 𝑟𝑘) ⋯ (𝐻1 − 𝑟3)𝑄1𝑄2𝑅2𝑅1 𝐻2 − 𝑟2 = 𝑄2𝑅2
= 𝑄1𝑄2 ⋯𝑄𝑘𝑅𝑘𝑅𝑘−1⋯𝑅1, etc.

where in the final equality we repeatedly pass the product 𝑄1⋯𝑄𝓁 across the term 𝐻1 − 𝑟𝓁 and
then use the fact that 𝐻𝓁 − 𝑟𝓁 = 𝑄𝓁𝑅𝓁 . Since each 𝑄𝓁 is unitary and 𝑅𝓁 has positive diagonal
entries, uniqueness of the 𝑄𝑅 decomposition gives 𝑄 = 𝑄1 ⋯𝑄𝑘 and 𝑅 = 𝑅𝑘 ⋯𝑅1 as desired. The
composition property (6.6) is then immediate.

The following corollary will be repeatedly useful.

Lemma 6.7. Under the hypotheses of Lemma 6.6,

‖𝑒∗𝑛𝑝(𝐻)−1‖−1 = 𝑅𝑛,𝑛 = (𝑅1)𝑛,𝑛 ⋯ (𝑅𝑘)𝑛,𝑛 (6.8)

Proof. Maintaining the notation of Lemma 6.6, we have

‖𝑒∗𝑛𝑝(𝐻)−1‖ = ‖𝑒∗𝑛𝑅
−1𝑄∗‖ = ‖𝑒∗𝑛𝑅

−1‖ =
1
𝑅𝑛,𝑛

,

and the proof is concluded by observing that (6.7) implies 𝑅𝑛,𝑛 = (𝑅1)𝑛,𝑛 ⋯ (𝑅𝑘)𝑛,𝑛.

The “i” in iqr is for “implicit,” since one of the many virtues of Hessenberg matrices is that one
can execute a shifted 𝑄𝑅 iteration step in 𝑂(𝑛2) arithmetic operations, without fully computing
a 𝑄𝑅 decomposition [162, Section 3, e.g.]. In Chapter 7 we will implement a degree-1 implicit
𝑄𝑅 step using 7𝑛2 arithmetic operations by way of 2 × 2 Givens rotations, which are the unitary
matrices mapping

(
𝑥
𝑦) ↦ (

√
|𝑥|2 + |𝑦|2

0 ) .
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Since for any 𝑠 ∈ ℂ the shifted matrix 𝐻 − 𝑠 is still upper Hessenberg, we can bring it to upper
triangular form by applying 𝑛 − 1 sequential 2 × 2 Givens rotations on the left, each zeroing
out one of the subdiagonal entries in 𝑂(𝑛) arithmetic operations. The resulting matrix is upper
triangular with nonnegative entries, so it must be the 𝑅 in the𝑄𝑅 decomposition of𝐻 −𝑠. To obtain
𝐻 = iqr(𝐻 , 𝑠), it suffices to apply the same Givens rotations to 𝑅 on the right, each again requiring
𝑂(𝑛) arithmetic operations. Using Lemma 6.6, we can therefore assume black box access to an
implicit QR algorithm routine for efficiently performing a degree-𝑘 QR step with the guarantees
below.

Definition 6.8 (Implicit QR Algorithm). For 𝑘 ≤ 𝑛, an efficient implicit QR algorithm iqr(𝐻 , 𝑝(𝑧))
takes as inputs a Hessenberg matrix 𝐻 ∈ 𝑪𝑛×𝑛 and a polynomial 𝑝(𝑧) = (𝑧 − 𝑠1) ⋯ (𝑧 − 𝑠𝑘) and,
whenever 𝑝(𝐻) is invertible, outputs a Hessenberg matrix 𝐻 satisfying

𝐻 = 𝑄∗𝐻𝑄,

where [𝑄, 𝑅] = qr(𝑝(𝐻 )), as well as the number 𝑅−1
𝑛,𝑛 = ‖𝑒∗𝑛𝑝−1(𝐻 )‖. It runs in at most 7𝑘𝑛2 operations.

We have proposed to use the potential

𝜓𝑘(𝐻 ) ≜ (𝐻𝑛−𝑘,𝑛−𝑘+1 ⋯𝐻𝑛−1,𝑛)1/𝑘

to track convergence of the QR iterates, and it will be accordingly useful to have a mechanism for
proving upper bounds on the potential of 𝐻 = IQR(𝐻 , 𝑝(𝑧)). To this end, for let 𝑝 ∈ 𝑘 and define

𝜏𝑝(𝐻 ) ≜ ‖𝑒∗𝑛𝑝(𝐻)−1‖−1/𝑘 , (6.9)

when 𝑝(𝐻) is invertible, and 𝜏𝑝(𝐻 ) = 0 otherwise. The special case 𝑘 = 1 of this quantity has been
used to great effect in previous work studying linear shifts[96, e.g.], and our next lemma shows
that it bounds the potential of 𝐻 = iqr(𝐻 , 𝑝(𝑧)) for shift polynomials 𝑝 of arbitrary degree.

Lemma 6.9 (Upper Bounds on 𝜓𝑘(𝐻 )). Let 𝐻 ∈ 𝑪𝑛×𝑛 be a Hessenberg matrix, 𝑝(𝑧) a monic polyno-
mial of degree 𝑘 and 𝐻 = iqr(𝐻 , 𝑝(𝑧)). Then

𝜓𝑘(𝐻 ) ≤ 𝜏𝑝(𝐻 ).

Proof. Assume first that 𝑝(𝐻) is singular. In this case for any QR decomposition 𝑝(𝐻) = 𝑄𝑅,
the entry 𝑅𝑛,𝑛 = 0, and because 𝑝(𝐻) = 𝑄∗𝑝(𝐻)𝑄 = 𝑅𝑄, the last row of 𝑝(𝐻) is zero as well. In
particular 𝜓𝑘(𝐻 ) = |𝑝(𝐻)1,𝑘+1|1/𝑘 = 0 = 𝜏𝑝(𝐻 ). When 𝑝(𝐻) is invertible, applying Lemma 6.2 and
using repeatedly that 𝑄 is unitary, 𝑅 is triangular, and 𝑝(𝐻) = 𝑄𝑅,

𝜓𝑘(𝐻 )𝑘 ≤ ‖𝑒∗𝑛𝑝(𝐻)‖ = ‖𝑒∗𝑛𝑄
∗𝑝(𝐻)‖ = ‖𝑒∗𝑛𝑅‖ = ‖𝑒∗𝑛𝑅

−1𝑄∗‖−1 = ‖𝑒∗𝑛𝑝(𝐻)−1‖−1 = 𝜏𝑝(𝐻 )𝑘 .



CHAPTER 6. THE SHIFTED QR ALGORITHM IN EXACT ARITHMETIC 154

Lemma 6.9 ensures that given 𝐻 , we can reduce the potential with an implicit QR step by
producing a polynomial 𝑝 with ‖𝑒∗𝑛𝑝(𝐻)−1‖1/𝑘 ≤ 𝛾𝜓𝑘(𝐻 ). To do so, we will require a final lemma
relating quantities of this form to the moments of a certain measure associated to 𝐻 which
quantifies the overlap of the vector 𝑒∗𝑛 with the left eigenvectors of 𝐻 .

The following notation will be used extensively throughout the this chapter and the next.
Assume that 𝐻 = 𝑉𝐷𝑉 −1 is diagonalizable, with 𝑉 chosen so that ‖𝑉 ‖ = ‖𝑉 −1‖ =

√
𝜅𝑉 (𝐻 ), 𝐷 a

diagonal matrix with 𝐷𝑖,𝑖 = 𝜆𝑖 , the eigenvalues of 𝐻 . Write 𝑍𝐻 for the random variable4 supported
on the eigenvalues of 𝐻 , with distribution

ℙ[𝑍𝐻 = 𝜆𝑖] =
|𝑒∗𝑛𝑉𝑒𝑖 |2

‖𝑒∗𝑛𝑉 ‖2

so that ℙ[𝑍𝐻 = 𝜆𝑖] = 1 exactly when 𝑒∗𝑛 is a left eigenvector with eigenvalue 𝜆𝑖 . In the event that
there are multiple such choices of 𝑉 it does not matter which we choose, only that it remains
fixed throughout the analysis.

When 𝐻 is normal, the distribution of 𝑍𝐻 is the spectral measure of 𝐻 associated to 𝑒∗𝑛 that
we considered in the introduction. We checked there that by the functional calculus we have
‖𝑒∗𝑛𝑝(𝐻)−1‖ = 𝔼[|𝑝(𝑍𝐻 )|−2]1/2, meaning that the (inverse) moments of 𝑍𝐻 are observable to us even
without knowing the true eigenvectors and eigenvalues of 𝐻 . The following lemma generalizes
this fact to the nonnormal case, at a multiplicative cost of 𝜅𝑉 (𝐻 ).

Lemma 6.10 (Approximate Functional Calculus). For any upper Hessenberg𝐻 and complex function
𝑓 whose domain includes the eigenvalues of 𝐻 ,

‖𝑒∗𝑛𝑓 (𝐻 )‖
𝜅𝑉 (𝐻 )

≤ 𝔼 [|𝑓 (𝑍𝐻 )|2]
1/2 ≤ 𝜅𝑉 (𝐻 )‖𝑒∗𝑛𝑓 (𝐻 )‖.

Proof. By the definition of 𝑍𝐻 above,

𝔼 [|𝑓 (𝑍𝐻 )|2]
1/2 =

‖𝑒∗𝑛𝑓 (𝐻 )𝑉 ‖
‖𝑒∗𝑛𝑉 ‖

≤ ‖𝑒∗𝑛𝑓 (𝐻 )‖‖𝑉 ‖‖𝑉 −1‖ = ‖𝑒∗𝑛𝑓 (𝐻 )‖𝜅𝑉 (𝐻 ),

and the left hand inequality is analogous.

Using this lemma with some carefully chosen rational functions 𝑓 of degree 𝑘, we are able
to probe the distribution of 𝑍𝐻 for each iterate 𝐻 of the algorithm by examining the observable
quantities ‖𝑒∗𝑛𝑓 (𝐻 )‖1/𝑘 — for appropriately large 𝑘, these are related to (𝔼|𝑓 (𝑍𝐻 )|2)1/𝑘 by a multiplica-
tive factor of 𝜅𝑉 (𝐻 )1/𝑘 ≈ 1, so we obtain accurate information about 𝑍𝐻 , which enables a precise
understanding of convergence. Since the iterates are all unitarily similar, 𝜅𝑉 is preserved with
each iteration, so the 𝑘 required is an invariant of the algorithm. Thus the use of a sufficiently
high-degree shifting strategy is both an essential feature and unavoidable cost of our approach.

4Our shifting strategy is deterministic, but we use random variables rather than measures for notational conve-
nience.
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6.4 Finite Arithmetic Analysis of Sh𝑘,𝐵
We will prove Theorem 1.13 by showing that, for some 𝛾 ∈ (0, 1), our shifting strategy Sh𝑘,𝐵
guarantees potential reduction, namely the efficient computation of a Hessenberg 𝐻 , unitarily
equivalent to 𝐻 , with

𝜓𝑘(𝐻 ) ≤ 𝛾𝜓𝑘(𝐻 ).

It follows immediately that we can achieve 𝜔-decoupling in lg 𝛾
lg 𝑤𝑎𝑐𝑐 iterations.

The table below collates several constants which will appear throughout the chapter.

Symbol Meaning Typical Scale
𝐻 Upper Hessenberg matrix
𝐵 Eigenvector condition bound 𝐵 ≥ 𝜅𝑉 (𝐻 )
𝑘 Shift degree 𝑂(lg 𝐵 lg lg 𝐵)
𝜔 Decoupling parameter
𝛾 Decoupling rate 0.8
𝜃 Ritz Value Optimality 2
𝛼 Promising Ritz value parameter 𝐵4𝑘−1 lg 𝑘 = 1 + 𝑜(1)

Table 6.1: Constants used by Sh𝑘,𝐵

Promising Ritz Values and Almost Monotonicity of the Potential
In the same spirit as Wilkinson’s shift, which chooses a particular Ritz value (out of two), but
using a different criterion, our shifting strategy will begin by choosing a Ritz value (out of 𝑘) that
has the following property for some 𝛼 ≥ 1.

Definition 6.11 (𝛼-Promising Ritz value). Let 𝛼 ≥ 1,  = {𝑟1, ..., 𝑟𝑘} be a set of 𝜃-optimal Ritz
values for 𝐻 , and 𝑝(𝑧) = ∏𝑘

𝑖=1(𝑧 − 𝑟𝑖). We say that 𝑟 ∈  is 𝛼-promising if

𝔼
1

|𝑍𝐻 − 𝑟|𝑘
≥

1
𝛼𝑘

𝔼
1

|𝑝(𝑍𝐻 )|
. (6.10)

Note that there is at least one 1-promising Ritz value in every set of 𝜃-optimal Ritz values,
since

1
𝑘

𝑘

∑
𝑖=1

𝔼
1

|𝑍𝐻 − 𝑟𝑖 |𝑘
= 𝔼

1
𝑘

𝑘

∑
𝑖=1

1
|𝑍𝐻 − 𝑟𝑖 |𝑘

≥ 𝔼
1

|𝑝(𝑍𝐻 )|
(6.11)

by linearity of expectation and the inequality of arithmetic and geometric means. The notion of
𝛼-promising Ritz value is a relaxation which can be computed efficiently from the entries of 𝐻 (in
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fact, as we will explain in Section 6.4, using a small number of implicit QR steps with Francis-like
shifts of degree 𝑘/2).

As a warm-up for the analysis of the shifting strategy, we will first show that if 𝑘 ≫ lg 𝜅𝑉 (𝐻 )
and 𝑟 is a promising Ritz value, the potential is almost monotone under the shift (𝑧 − 𝑟)𝑘 . This
justifies the intuition from Section 6.1 and suggests that promising Ritz values should give rise to
good polynomial shifts, but is not actually used in the proof of our main theorem. Subsequent
proofs will instead use the stronger property (6.12) established below.

Lemma 6.12 (Almost-Monotonicity and Moment Comparison). Let  = {𝑟1, … , 𝑟𝑘} be a set of
𝜃-optimal Ritz values and assume that 𝑟 ∈  is 𝛼-promising. If 𝐻 = iqr(𝐻 , (𝑧 − 𝑟)𝑘) then

𝜓𝑘(𝐻 ) ≤ 𝜅𝑉 (𝐻 )
2
𝑘 𝛼𝜃𝜓𝑘(𝐻 ),

and moreover
𝔼 [|𝑍𝐻 − 𝑟|−2𝑘] ≥ 𝔼 [|𝑍𝐻 − 𝑟|−𝑘]

2 ≥
1

𝜅𝑉 (𝐻 )2(𝛼𝜃𝜓𝑘(𝐻 ))2𝑘
. (6.12)

Proof. Let 𝑝(𝑧) = ∏𝑘
𝑖=1(𝑧 − 𝑟𝑖). The claim follows from the following chain of inequalities:

√
𝔼 [|𝑍𝐻 − 𝑟|−2𝑘] ≥ 𝔼 [|𝑍𝐻 − 𝑟|−𝑘] Jensen, 𝑥 ↦ 𝑥2

≥
1
𝛼𝑘

𝔼[|𝑝(𝑍𝐻 )|−1] 𝑟 is 𝛼-promising

≥
1
𝛼𝑘

1
√
𝔼[|𝑝(𝑍𝐻 )|2]

Jensen, 𝑥 ↦ 𝑥2

≥
1
𝛼𝑘

1
‖𝑒∗𝑛𝑝(𝐻)‖𝜅𝑉 (𝐻 )

Lemma 6.10

≥
1
𝛼𝑘

1
𝜃𝑘‖𝑒∗𝑛𝜒𝑘(𝐻 )‖𝜅𝑉 (𝐻 )

Definition 6.3 of 𝜃-optimal

=
1
𝛼𝑘

1
𝜃𝑘𝜓𝑘(𝐻 )𝑘𝜅𝑉 (𝐻 )

Lemma 6.2.

This already shows (6.12). For the other claim, rearrange both extremes of the above inequality to
get

𝛼𝜃𝜅𝑉 (𝐻 )1/𝑘𝜓𝑘(𝐻 ) ≥ 𝔼 [|𝑍𝐻 − 𝑟|−2𝑘]
− 1
2𝑘

≥
𝜏(𝑧−𝑟)𝑘 (𝐻 )
𝜅𝑉 (𝐻 )1/𝑘

Lemma 6.10

≥
𝜓𝑘(𝐻 )
𝜅𝑉 (𝐻 )1/𝑘

Lemma 6.9

which concludes the proof.
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In Section 6.4, we will see that when the shift associated with a promising Ritz value does
not reduce the potential, Lemma 6.12 can be used to provide a two-sided bound on the quantities
𝔼[|𝑍𝐻 − 𝑟|−2𝑘] and 𝔼[|𝑍𝐻 − 𝑟|−𝑘]2. This is the main ingredient needed to obtain information about
the distribution of 𝑍𝐻 when potential reduction is not achieved.

The Shifting Strategy
An important component of our shifting scheme, discussed in detail below, is a simple subroutine,
“find,” guaranteed to produce an 𝛼-promising Ritz value with 𝛼 = 𝜅𝑉 (𝐻 )

4 lg 𝑘
4 . Guarantees for this

subroutine are stated in the lemma below and proved in Section 6.4.

Lemma 6.13 (Guarantees for find). The subroutine find specified in Section 6.4 produces a 𝜅𝑉 (𝐻 )4
lg 𝑘
𝑘 -

promising Ritz value, using at most 7𝑘 lg 𝑘𝑛2 + lg 𝑘 arithmetic operations.

Our strategy is then built around the following dichotomy, which crucially uses the 𝛼-promising
property: in the event that a degree 𝑘 implicit QR step with the 𝛼-promising Ritz value output by
find does not achieve potential reduction, we show that there is a modestly sized set of exceptional
shifts, one of which is guaranteed to achieve potential reduction. These exceptional shifts are
constructed by the procedure “exc” described in Section 6.4. The overall strategy is specified below.

Sh𝑘,𝐵

Input: Hessenberg 𝐻 and a set  of 𝜃-approximate Ritz values of 𝐻
Output: Hessenberg 𝐻 .
Requires: 0 < 𝜓𝑘(𝐻 ) and 𝜅𝑉 (𝐻 ) ≤ 𝐵
Ensures: 𝜓𝑘(𝐻 ) ≤ 𝛾𝜓𝑘(𝐻 ) and 𝜅𝑉 (𝐻 ) ≤ 𝐵

1. 𝑟 ← find(𝐻 ,)

2. If 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑟)𝑘)) ≤ 𝛾𝜓𝑘(𝐻 ), output 𝐻 = iqr(𝐻 , (𝑧 − 𝑟)𝑘)

3. Else,  ← exc(𝐻 , 𝑟 , 𝐵)

4. For each 𝑠 ∈  , if 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑠)𝑘)) ≤ 𝛾𝜓𝑘(𝐻 ), output 𝐻 = iqr(𝐻 , (𝑧 − 𝑠)𝑘)

The failure of line (2) of Sh𝑘,𝐵 to reduce the potential gives useful quantitative information
about the distribution of 𝑍𝐻 , articulated in the following lemma. This will then be used to design
the set  of exceptional shifts produced by exc in line (3) and prove that at least one of them
makes progress in line (4).

Lemma 6.14 (Stagnation Implies Support). Let 𝛾 ∈ (0, 1) and 𝜃 ≥ 1, and let  = {𝑟1, … , 𝑟𝑘} be a
set of 𝜃-approximate Ritz values of 𝐻 . Suppose 𝑟 ∈  is 𝛼-promising and assume



CHAPTER 6. THE SHIFTED QR ALGORITHM IN EXACT ARITHMETIC 158

𝜓𝑘 (iqr(𝐻 , (𝑧 − 𝑟)𝑘)) ≥ 𝛾𝜓𝑘(𝐻 ) > 0. (6.13)

Then 𝑍𝐻 is well-supported on an disk of radius approximately 𝛼𝜓𝑘(𝐻 ) centered at 𝑟 in the following
sense: for every 𝑡 ∈ (0, 1):

ℙ
[
|𝑍𝐻 − 𝑟| ≤ 𝜃𝛼 (

𝜅𝑉 (𝐻 )
𝑡 )

1/𝑘

𝜓𝑘(𝐻 )
]
≥ (1 − 𝑡)2

𝛾 2𝑘

𝛼2𝑘𝜃2𝑘𝜅𝑉 (𝐻 )4
. (6.14)

Proof. Observe that 𝐻 − 𝑟 is invertible since otherwise, for 𝐻 = iqr(𝐻 , (𝑧 − 𝑟)𝑘), we would have
𝜓𝑘(𝐻 ) = 0 by Lemma 6.9. Our assumption implies that that:

𝛾𝜓𝑘(𝐻 ) ≤ 𝜓𝑘(𝐻 ) hypothesis
≤ 𝜏(𝑧−𝑟)𝑘 (𝐻 ) Lemma 6.9
= ‖𝑒∗𝑛(𝐻 − 𝑟)−𝑘‖−1/𝑘 definition

≤
(

𝜅𝑉 (𝐻 )

𝔼 [|𝑍𝐻 − 𝑟|−2𝑘]
1
2 )

1/𝑘

Lemma 6.10.

Rearranging and using (6.12) from Lemma 6.12 we get

𝜅𝑉 (𝐻 )2

(1 − 𝛾)2𝑘𝜓𝑘(𝐻 )2𝑘
≥ 𝔼 [|𝑍𝐻 − 𝑟|−2𝑘] ≥ 𝔼 [|𝑍𝐻 − 𝑟|−𝑘]

2 ≥
1

𝛼2𝑘𝜃2𝑘𝜓𝑘(𝐻 )2𝑘𝜅𝑉 (𝐻 )2
, (6.15)

which upon further rearrangement yields the “reverse Jensen” type bound:

𝔼[|𝑍𝐻 − 𝑟|−2𝑘]
𝔼[|𝑍𝐻 − 𝑟|−𝑘]2

≤ (
𝛼𝜃
𝛾 )

2𝑘

𝜅𝑉 (𝐻 )4. (6.16)

We now have

ℙ [|𝑍𝐻 − 𝑟| ≤
𝛼
𝑡1/𝑘

𝜃𝜓𝑘(𝐻 )𝜅1/𝑘𝑉 ] = ℙ [|𝑍𝐻 − 𝑟|−𝑘 ≥ 𝑡
1

𝛼𝑘𝜃𝑘𝜓𝑘(𝐻 )𝑘𝜅𝑉 ]

≥ ℙ [|𝑍𝐻 − 𝑟|−𝑘 ≥ 𝑡𝔼[|𝑍𝐻 − 𝑟|−𝑘]] by (6.15)

≥ (1 − 𝑡)2
𝔼[|𝑍𝐻 − 𝑟|−𝑘]2

𝔼[|𝑍𝐻 − 𝑟|−2𝑘]
Paley-Zygmund

≥ (1 − 𝑡)2
𝛾 2𝑘

𝛼2𝑘𝜃2𝑘𝜅𝑉 (𝐻 )4
by (6.16),

establishing (6.14), as desired.



CHAPTER 6. THE SHIFTED QR ALGORITHM IN EXACT ARITHMETIC 159

Note that the conclusion of Lemma 6.14 in fact follows from the weaker condition 𝜏(𝑧−𝑟)𝑘 (𝐻 ) ≥
𝛾𝜓𝑘(𝐻 ); this fact will be used in Chapter 7. We will shortly use Lemma 6.14 to prove the following
guarantee on exc.

Lemma 6.15 (Guarantees for exc). The subroutine exc specified in Section 6.4 produces a set  of
exceptional shifts, one of which achieves potential reduction. If 𝜃 ≤ 2, 𝛾 = 0.8, and 𝛼 = 𝐵4 lg 𝑘/𝑘 , then
both the arithmetic operations required for exc, and the size of  , are at most

𝑁net (0.002𝐵
− 8 lg 𝑘+4

𝑘 ) ,

where 𝑁net(𝜖) = 𝑂(𝜖−2) denotes number of points in an efficiently computable 𝜖-net of the unit disk.
In the normal case, taking 𝐵 = 𝛼 = 𝜃 = 1, 𝑘 = 4, 𝛾 = 0.8, the arithmetic operations required and the
size of | | are both bounded by 50.

Remark 6.16 (Improving the Disk to an Annulus). Control on the other tail of |𝑍𝐻 − 𝑟| can
be achieved by using Markov’s inequality and the upper bound (6.16) on the inverse moment
𝔼[|𝑍𝐻 − 𝑟|−2𝑘]. Then, for 𝑘 ≫ lg 𝜅𝑉 (𝐻 ), the control on both tails yields that the distribution of 𝑍𝐻
has significant mass on a thin annulus (the inner and outer radii are almost the same). In this
scenario one can take a net  with fewer elements when calling the exceptional shift, which would
reduce the running time of 𝑇exc(𝑘, 𝐵). However, following this path would complicate the analysis
and for the sake of exposition we decided to not pursue it any further.

We are now ready to prove Theorem 1.13.

Proof of Theorem 1.13. Rapid convergence. In the event that we choose a 𝛼-promising Ritz value
in step (1) that does not achieve potential reduction in step (2), Lemma 6.15 then guarantees we
achieve potential reduction in (3). Thus each iteration decreases the potential by a factor of at
least 𝛾 = 0.8, and since 𝜓𝑘(𝐻0) ≤ ‖𝐻‖ we need at most

lg(1/𝜔)
lg(1/𝛾 )

≤ 4 lg(1/𝜔)

iterations before 𝜓𝑘(𝐻𝑡) ≤ 𝜔‖𝐻0‖, which in particular implies 𝜔-decoupling.

Arithmetic Complexity. Computing a full set  of 𝜃-approximate Ritz values of 𝐻 has a cost
𝑇OptRitz(𝑘, 𝜃, 𝜔). Then, using an efficient implicit QR algorithm (cf. Definition 6.8) each computation
of iqr(𝐻 , (𝑧 − 𝑟𝑖)𝑘) has a cost of 7𝑘𝑛2. By Lemma 6.13, we can produce a promising Ritz value in at
most 12𝑘 lg 𝑘𝑛2 + lg 𝑘 arithmetic operations. Then, in the event that the promising shift fails to
reduce the potential the algorithm calls exc, which takes 𝑁net(0.002𝐵− 8 lg 𝑘+4

𝑘−1 ) arithmetic operations
to specify the set  of exceptional shifts. Some exceptional shift achieves potential reduction, and
we pay 7𝑘𝑛2 operations for each one that we check.

Using the normal case of Lemma 6.15, with 𝑘 = 4, the coefficient on 𝑛2 in the arithmetic
operations is 7 ⋅ 4 ⋅ 2 + 7 ⋅ 4 ⋅ 50 ≤ 1500, as promised in Remark 6.4.
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Efficiently Finding a Promising Ritz Value
In this section we show how to efficiently find a promising Ritz value, in 𝑂(𝑛2𝑘 lg 𝑘) arithmetic
operations. Note that it is trivial to find a 𝜅𝑉 (𝐻 )2/𝑘-promising Ritz value in 𝑂(𝑛2𝑘2) arithmetic
operations simply by computing ‖𝑒∗𝑛(𝐻 − 𝑟𝑖)−𝑘/2‖ for 𝑖 = 1, … , 𝑘 with 𝑘 calls to iqr(𝐻 , (𝑧 − 𝑟𝑖)𝑘/2),
choosing the maximizing index 𝑖, and appealing to Lemma 6.10. The content of Lemma 6.13 below
that this can be done considerably more efficiently if we use a binary search type procedure. This
improvement has nothing to do with the dynamical properties of our shifting strategy so readers
uninterested in computational efficiency may skip this section.

find

Input: Hessenberg 𝐻 , a set  = {𝑟1, … , 𝑟𝑘} of 𝜃-optimal Ritz values of 𝐻 .
Output: A complex number 𝑟 ∈ 
Requires: 𝜓𝑘(𝐻 ) > 0
Ensures: 𝑟 is 𝛼-promising for 𝛼 = 𝜅𝑉 (𝐻 )

4 lg 𝑘
𝑘 .

1. For 𝑗 = 1, ..., lg 𝑘

a) Evenly partition  = 0 ⊔1, and for 𝑏 = 0, 1 set 𝑝𝑗,𝑏 = ∏𝑟∈𝑏
(𝑧 − 𝑟)

b)  ← 𝑏, where 𝑏 maximizes ‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−2𝑗−1‖

2. Output  = {𝑟}

Proof of Lemma 6.13 (Guarantees for find). First, observe that ‖𝑒∗𝑛𝑞(𝐻)‖ ≠ 0 for every polynomial
appearing in the definition of find, since otherwise we would have 𝜓𝑘(𝐻 ) = 0.

On the first step of the subroutine 𝑝1,0𝑝1,1 = 𝑝, the polynomial whose roots are the full set of
approximate Ritz values, so

max
𝑏

‖𝑒∗𝑛𝑝1,𝑏(𝐻 )−1‖ ≥
1

𝜅𝑉 (𝐻 )2
𝔼 [

1
2 (

|𝑝1,0(𝑍𝐻 )|−2 + |𝑝1,1(𝑍𝐻 )|−2)] Lemma 6.10

≥
1

𝜅𝑉 (𝐻 )2
𝔼[|𝑝(𝑍𝐻 )|−1] AM/GM.

On each subsequent step, we’ve arranged things so that 𝑝𝑗+1,0𝑝𝑗+1,1 = 𝑝𝑗,𝑏, where 𝑏 maximizes
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‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−2𝑗−1‖, and so by the same argument

max
𝑏

‖𝑒∗𝑛𝑝𝑗+1,𝑏(𝐻 )−2
𝑗
‖2 ≥

1
𝜅𝑉 (𝐻 )2

𝔼 [
1
2 (

|𝑝𝑗+1,0(𝑍𝐻 )|−2
𝑗+1
+ |𝑝𝑗+1,1(𝑍𝐻 )|−2

𝑗+1

)] Lemma 6.10

≥
1

𝜅𝑉 (𝐻 )2
𝔼 [|𝑝𝑗+1,0(𝑍𝐻 )𝑝𝑗+1,1(𝑍𝐻 )|

−2𝑗
] AM/GM

≥
1

𝜅𝑉 (𝐻 )4
‖𝑒∗𝑛(𝑝𝑗+1,0(𝐻 )𝑝𝑗+1,1(𝐻 ))−2

𝑗−1
‖ Lemma 6.10

=
1

𝜅𝑉 (𝐻 )4
max
𝑏

‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−2
𝑗−1
‖.

Paying a further 𝜅𝑉 (𝐻 )2 on the final step to convert the norm into an expectation, we get

𝔼 [|𝑍𝐻 − 𝑟|−𝑘] ≥
1

𝜅𝑉 (𝐻 )4 lg 𝑘
𝔼 [|𝑝(𝑍𝐻 )|−1]

as promised.
For the runtime, we can compute every ‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−2𝑗−1‖ by running an implicit QR step with the

polynomials 𝑝2𝑗−1𝑗,𝑏 , all of which have degree 𝑘/2. There are 2 lg 𝑘 such computations throughout the
subroutine, and each one requires 6𝑘𝑛2 arithmetic operations. Beyond that we need only compare
the two norms on each of the lg 𝑘 steps.

Remark 6.17 (Opportunism and Judicious Partitioning). In practice, it may be beneficial to
implement find opportunistically, meaning that in each iteration one should check if the new set of
Ritz values gives potential reduction (this can be combined with the computation of ‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−2𝑗−1‖
and implemented with no extra cost). Moreover, note that find does not specify a way to partition
the set of Ritz values obtained after each iteration, and as can be seen from the above proof, the
algorithm works regardless of the partitioning choices. It is conceivable that a judicious choice of
the partitioning could be used to obtain further improvements.

Analysis of the Exceptional Shift
To conclude our analysis, it remains only to define the subroutine “exc,” which produces a set
 of possible exceptional shifts in the event that an 𝛼-promising Ritz value does not achieve
potential reduction. The main geometric intuition is captured in the case when 𝐻 is normal and
𝜅𝑉 (𝐻 ) = 1. Here, find gives us a 1-promising Ritz value 𝑟 and Lemma 6.14 with 𝑡 = 1/2 tells us that
if 𝑟 does not achieve potential reduction, than 𝑍𝐻 has measure at least 1

4 (𝛾 /𝜃)
2𝑘 on a disk of radius

𝑅 ≜ 21/𝑘𝜃𝜓𝑘(𝐻 ).
For any 𝜖 > 0, we can easily construct an 𝑅𝜖-net  contained in this disk — i.e., a set with the

property that every point in the disk is at least 𝑅𝜖-close to a point in  — with 𝑂(1/𝜖)2 points.
One can then find a point 𝑠 ∈  satisfying

𝜏(𝑧−𝑠)𝑘 (𝐻 )−2𝑘 = ‖𝑒∗𝑛(𝐻 − 𝑠)−𝑘‖2 = 𝔼[|𝑍𝐻 − 𝑠|−2𝑘] ≥
ℙ[|𝑍𝐻 − 𝑠| ≤ 𝜓𝑘(𝐻 )]

| |(𝑅𝜖)2𝑘
≈
1
4 (

𝛾
𝜃 )

2𝑘 1
𝑅2𝑘𝜖2𝑘−2

,
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where the first equality is by normality of 𝐻 , and second inequality comes from choosing 𝑠 ∈  to
maximize |𝑍𝐻 − 𝑠|−2𝑘 . Since 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑠)𝑘)) ≤ 𝜏(𝑧−𝑠)𝑘 (𝐻 ), we can ensure potential reduction by
setting 𝜖 ≈ 𝛾 2𝑅

𝜃𝜓𝑘 (𝐻 ) ≈ (𝛾 /𝜃)2.

When 𝐻 is nonnormal, the chain of inequalities above hold only up to factors of 𝜅𝑉 (𝐻 ),
and find is only guaranteed to produce a 𝜅𝑉 (𝐻 )4 lg 𝑘/𝑘-promising Ritz value. The necessary adjust-
ments are addressed below in the implementation of exc and the subsequent proof of its guarantees.

exc

Input: Hessenberg 𝐻 , a 𝜃-approximate Ritz value 𝑟 , a condition number bound 𝐵, promising
parameter 𝛼
Output: A set  ⊂ ℂ
Requires: 𝜅𝑉 (𝐻 ) ≤ 𝐵, 𝑟 is 𝛼-promising, and 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑟)𝑘) ≥ 𝛾𝜓𝑘(𝐻 )
Ensures: For some 𝑠 ∈  , 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑠)𝑘) ≤ 𝛾𝜓𝑘(𝐻 )

1. 𝑅 ← 21/𝑘𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 )

2. 𝜖 ← (
𝛾 2

(12𝐵4)1/𝑘𝛼2𝜃2)
𝑘
𝑘−1

3.  ← 𝜖𝑅-net of 𝑅𝜓𝑘(𝐻 ).

Proof of Lemma 6.15: Guarantees for exc. Instantiating 𝑡 = 1/2 in equation (6.14), we find that for
the setting of 𝑅 in line (1) of exc,

ℙ [|𝑍𝐻 − 𝑟| ≤ 𝔻(𝑟, 𝑅)] ≥
1
4𝐵4 (

𝛾
𝛼𝜃 )

2𝑘
.

Let  be an 𝜖𝑅-net of 𝔻(𝑟, 𝑅); it is routine that such a net has at most (1 + 2/𝜖)2 ≤ 9/𝜖2 points. By
Lemma 6.9, to show that some 𝑠 ∈  achieves potential reduction, it suffices to find one for which

‖𝑒∗𝑛(𝐻 − 𝑠)−𝑘‖2 ≥
1

𝛾 2𝑘𝜓𝑘(𝐻 )2𝑘
.
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We thus compute

max
𝑠∈

‖𝑒∗𝑛(𝐻 − 𝑠)−𝑘‖2 ≥
1

𝜅𝑉 (𝐻 )2| |
∑
𝑠∈

𝔼 [|𝑍𝐻 − 𝑠|−2𝑘]

≥
𝜖2

9𝐵2𝔼 [
∑
𝑠∈

|𝑍𝐻 − 𝑠|−2𝑘 ⋅ 𝟏{𝑍𝐻 ∈ 𝔻(𝑟, 𝑅)}
]

Fubini and 𝜅𝑉 (𝐻 ) ≤ 𝐵

≥
𝜖2

9𝐵2𝔼 [max
𝑠∈

|𝑍𝐻 − 𝑠|−2𝑘 ⋅ 𝟏{𝑍𝐻 ∈ 𝔻(𝑟, 𝑅)}]

≥
𝜖2

9𝐵2𝔼 [
𝟏{𝑍𝐻 ∈ 𝔻(𝑟, 𝑅)}

(𝜖𝑅)2𝑘 ]  is an 𝜖𝑅-net

≥
ℙ[𝑍𝐻 ∈ 𝔻(𝑟, 𝑅)]
9𝐵2𝑅2𝑘𝜖2𝑘−2

≥
1

𝛾 2𝑘𝜓(𝐻)2𝑘

with the second to last line following from the fact that some 𝑠 ∈  is at least 𝜖𝑅-close to 𝑍𝐻
whenever the latter is in 𝔻(𝑟, 𝑅), and the final inequality holding provided that

𝜖 ≤ (
ℙ[|𝑍𝐻 − 𝑟| ≤ 𝑅𝜓𝑘(𝐻 )]𝛾 2𝑘𝜓𝑘(𝐻 )2𝑘

9𝐵2𝑅2𝑘 )

1
2𝑘−2

.

Expanding the probability and using the definition of 𝑅 in line 1, it suffices to set 𝜖 smaller than

(
𝛾 2𝑘

4𝐵4𝛼2𝑘𝜃2𝑘
⋅
𝛾 2𝑘𝜓𝑘(𝐻 )2𝑘

9𝐵2 ⋅
1

4𝐵2𝛼2𝑘𝜃2𝑘𝜓𝑘(𝐻 )2𝑘)

1
2𝑘−2

= (
𝛾 2

(12𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

,

which is the quantity appearing in line 2. Setting 𝜃 = 2, 𝛾 = 0.8, and 𝛼 = 𝐵4 lg 𝑘/𝑘 , and using 𝑘 ≥ 2,
we obtain the expression appearing in 𝑁net(⋅) in the statement of Lemma 6.15.

A practical choice of net, which we will return to in Chapter 7’s forthcoming finite arithmetic
analysis, is an equilateral triangular lattice with spacing

√
3𝜖, intersected with the 𝔻(𝑟, (1 + 𝜖)𝑅).

Such a construction is optimal as 𝜖 → 0, and can be used to give a better bound on 𝑁net(𝜖) when 𝜖
is small. For instance, by adapting an argument of [4, Lemma 2.6] one can show that this choice
of  satisfies

𝑁net(𝜖) ≤
2𝜋
3
√
3
(1 + 1/𝜖)2 +

4
√
2

√
3
(1 + 1/𝜖) + 1.

In the normal case, when 𝐵 = 𝛼 = 𝜃 = 1, 𝑘 = 4, and 𝛾 = 0.8, the above bound gives

| | ≤ 𝑁net ((
0.82

121/4)

4/3

)
≤ 49.9.
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Bibliographic Note
This chapter is lightly adapted from its original presentation in [17], and includes some of the
preliminary material on QR decomposition and iteration from the forthcoming [18].
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Chapter 7

The Shifted QR Algorithm in Finite
Arithmetic

7.1 Introduction
In Chapter 6 we gave a family of shifting strategies, Sh𝑘,𝐵, for which the Hessenberg shifted QR
algorithm converges globally and rapidly on nonsymmetric matrices whose eigenvector condition
number is bounded, in exact arithmetic. Our final task in this thesis is to that both the correctness
and rapid convergence of these strategies continue to hold in floating point arithmetic with an
appropriate implementation, and prove a bound on the number of bits of precision needed, for
matrices with controlled eigenvector condition number and minimum eigenvalue gap.

To do so, we develop some general tools enabling rigorous finite arithmetic analysis of the
shifted QR iteration with any shifting strategy which uses Ritz values as shifts, of which Sh𝑘,𝐵 is a
special case. We specifically address the following two issues.

Issue 7.1 (Forward Stability of QR Steps). Consider a degree 𝑘 shifted QR step:

𝑝(𝐻) = 𝑄𝑅 𝐻 = 𝑄∗𝐻𝑄,

where 𝑝(𝑧) = (𝑧 − 𝑟1) … (𝑧 − 𝑟𝑘) is a monic polynomial of degree 𝑘 and 𝐻 is an upper Hessenberg
matrix. It is well-known that such a step can be implemented in a way which is backward stable,
in the sense that the finite arithmetic computation produces a matrix 𝐻 which is the unitary
conjugation of a matrix near 𝐻 [151]. Backward stability is sufficient to prove correctness of
the shifted QR algorithm in finite arithmetic, i.e., whenever it converges in a small number of
iterations, the backward error is controlled. However, it is insufficient for proving an upper bound
on the number of iterations before decoupling, which requires showing that certain subdiagonal
entries of the Hessenberg iterates decay rapidly — to reason about these entries, some form of
forward stability is required. The issue is that a shifted QR step is not forward stable when 𝑝(𝐻) is
nearly singular (which can occur before decoupling). Thus, the existing convergence proofs break
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down in finite arithmetic whenever this situation occurs. As far as we know, there is no complete
and published proof of rapid convergence of the shifted QR algorithm with any shifting strategy in
finite arithmetic, even on symmetric matrices.

Issue 7.2 (Computation of Ritz Values). All higher order shifting strategies we are aware of are
defined in terms of these Ritz values. However, we are not aware of any theoretical analysis of
how to compute the Ritz values (approximately) in the case of nonsymmetric 𝐻(𝑘), nor a theoretical
treatment of which notion of approximation is appropriate for their use in the shifted QR iteration.
In practice, and in the current version of LAPACK, the prescription is just to run the shifted QR
algorithm itself on 𝐻(𝑘), but there are no proven guarantees for this approach.

The two obstacles above are closely related. A natural strategy for obtaining forward stability
is to perturb the zeros 𝑟1, … , 𝑟𝑘 of the shift polynomial 𝑝(𝑧) so that they avoid the eigenvalues
of 𝐻 . Such a perturbation must be large enough to ensure forward stability, but small enough
to preserve the convergence properties of the QR iteration, which are presumably tied to the
𝑟1, … , 𝑟𝑘 being approximate Ritz values. The precise notion of “approximate” thus determines how
constrained we are in choosing our shifts while maintaining good convergence properties.

This chapter contains the following three contributions, which together provide a solution to
Issues 7.1-7.2 for a wide class of shifting strategies, on matrices with nonzero eigenvalue gap (and
thus finite eigenvector condition number).
(i) Forward Stability by Regularization. We handle Issue 7.1 above simply by replacing any
given shifts 𝑟1, … , 𝑟𝑘 in a QR step by random perturbations 𝑟1 + 𝑤1, … , 𝑟𝑘 + 𝑤𝑘 where 𝑤𝑘 are
independent random numbers of an appropriate size (which depends on 𝜅𝑉 (𝐻 ) and gap(𝐻)). We
refer to this technique as shift regularization and show in Section 7.4 (Lemma 7.14) that it yields
forward stability of an implicit QR step with high probability, for any Hessenberg matrix 𝐻 with
an upper bound on 𝜅𝑉 (𝐻 ) and a lower bound on gap(𝐻), and any shifts 𝑟1, … , 𝑟𝑘 .

The proof of forward stability requires us to establish stronger backward stability of implicit
QR steps than was previously recorded in the literature; this appears in Sections 7.4 and 7.4 and
may be of independent interest.
(ii) Optimal Ritz Value/Early Decoupling Dichotomy. The second issue is more subtle. The
notion of approximate Ritz values relevant for analyzing Sh𝑘,𝐵 is the following variational one.
Recall from Definition 6.3 that {𝑟1, … , 𝑟𝑘} ⊂ ℂ is called a set of 𝜃-optimal Ritz values of a Hessenberg
matrix 𝐻 if:

‖𝑒∗𝑛(𝐻 − 𝑟1) … (𝐻 − 𝑟𝑘)‖1/𝑘 ≤ 𝜃 min
𝑝

‖𝑒∗𝑛𝑝(𝐻)‖1/𝑘 , (7.1)

where the minimization is over monic polynomials of degree 𝑘. Thus, the true Ritz values are
1-optimal.

It is not immediately clear how to efficiently compute a set of 𝜃-optimal Ritz values, so we
reduce this task to the more standard one of computing forward-approximate Ritz values, which
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are just forward-approximations of the eigenvalues of 𝐻(𝑘) with an appropriately chosen accuracy
parameter 𝛽 . Our key result (Theorem 7.15) is the following dichotomy: if a set of 𝛽-forward
approximate Ritz values 𝑟1, … , 𝑟𝑘 of 𝐻 is not 𝜃-optimal, then one of the Ritz values 𝑟𝑗 must be
close to an eigenvalue of 𝐻 and the corresponding right eigenvector of 𝐻 must have a large inner
product with 𝑒𝑛. In the latter scenario we show that a single degree 𝑘 implicit QR step using
the culprit Ritz value 𝑟𝑗 as a shift must lead to immediate decoupling, which we refer to as early
decoupling.

Importantly, this dichotomy is compatible with the random regularizing perturbation used
in (i), since the property of being a 𝛽-forward approximate Ritz value is preserved under small
perturbations 𝑟𝑖 → 𝑟𝑖 + 𝑤𝑖 when |𝑤𝑖 | ≪ 𝛽 . Thus, as long as we can compute 𝛽-forward approxi-
mations 𝑟1, … , 𝑟𝑘 of the eigenvalues of 𝐻(𝑘), the combination of (i) and the dichotomy guarantees
that with high probability, 𝑟1 + 𝑤1, … , 𝑟𝑘 + 𝑤𝑘 are 𝜃-optimal Ritz values and the corresponding QR
step is forward stable (which is exactly what is needed in order to analyze convergence of the
iteration) — or we achieve early decoupling.
(iii) Approximating the Eigenvalues of Small Matrices. In order to carry out (ii), we require
an efficient way to obtain forward approximations to the eigenvalues of the small 𝑘 × 𝑘 matrix 𝐻(𝑘).
Since 𝑘 is very small, it is acceptable to use an algorithm with worse than 𝑂(𝑘3) complexity. On
the other hand, our shifting strategy breaks down on matrices of size 𝑘 × 𝑘 or smaller, so we also
need an algorithm to compute approximations to the eigenvalues of small matrices, to use once
we have deflated to a sufficiently small matrix. We will assume access to a black box algorithm
SmallEig for use in these two situations, with the following guarantee on a matrix 𝑀 of dimension
𝑘 or smaller.

Definition 7.3. A small eigenvalue solver SmallEig(𝑀, 𝛽, 𝜙) takes as input a matrix 𝑀 of size at
most 𝑘 × 𝑘, and with probability at least 1 − 𝜙, outputs 𝜆̃1, ..., 𝜆̃𝑘 ∈ ℂ such that |𝜆̃𝑖 − 𝜆𝑖 | ≤ 𝛽 for each
of 𝜆1, ..., 𝜆𝑘 ∈ Spec𝑀 .

Remark 7.4. The notion of forward error here is absolute, instead of relative — this will simplify
some of the analysis later on.

Remark 7.5. Using a forward error algorithm for the base case calls is overkill, since of course
we only require backward error in that case, but we will see that the computational cost of these
base case calls is dominated by that of the forward errors along the way, and the choice will thus
not impact the asymptotics of the runtime. For concreteness, SmallEig may be instantiated with
EIG from Chapter 5, using Theorem 2.6 to verify that backward error Ω(𝛽𝑘) ensures forward error
𝛽 in the sense above.

Finally, we combine (i-iii) above in Section 7.7 to prove Theorem 1.14, which we restate here
precisely.

Restatement ofTheorem 1.14. Let𝐻 ∈ ℍ𝑛×𝑛
𝐵/2 , and assume further that ‖𝐻 ‖ ≤ 2Σ and Γ ≤ gap(𝐻)/2.

For a certain 𝑘 = 𝑂(lg 𝐵 lg lg 𝐵), the shifting strategy Sh𝑘,𝐵 can be implemented in finite arithmetic
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to give a randomized shifted QR algorithm, ShiftedQR, with the following guarantee: for any 𝛿 > 0
ShiftedQR(𝐻 , 𝛿, 𝜙) produces the eigenvalues of a matrix 𝐻 ′ with ‖𝐻 − 𝐻 ′‖ ≤ 𝛿 , with probability at
least 1 − 𝜙, using

(i) 𝑂 ((lg 𝑛𝐵Σ
𝛿Γ ⋅ 𝑘 lg 𝑘 + 𝑘2)𝑛3) arithmetic operations on a floating point machine with 𝑂(𝑘 lg 𝑛𝐵Σ

𝛿Γ𝜙 )
bits of precision, and

(ii) 𝑂(𝑛 lg 𝑛𝐵Σ
𝛿Γ ) calls to SmallEig with accuracy Ω( 𝛿2Γ2

𝑛4𝐵4Σ ) and failure probability tolerance Ω( 𝜙
𝑛3 lg 𝑛𝐵Σ

𝛿Γ
).

Note that the bounds 𝐵, Γ, and Σ must be known to the algorithm in advance. The above
restatement differs from the statement in the introduction only in that the former set Σ = 1/2,
hiding the resulting factor in the asymptotic notation.

Let us now collect the many algorithm inputs, constants, parameters, and subroutines that the
reader will encounter in this chapter, along with their typical settings. We will regard our main
algorithm ShiftedQR in fact as a family of algorithms, indexed by several defining parameters;
these in turn used to set a number of global constants used by the algorithm and its subroutines.
The most important global constant is the ‘non-normality’ or condition number bound 𝐵, from
which we define the shift degree 𝑘 to be the smallest power of 2 for which

𝐵
8 lg 𝑘+3
𝑘−1 ⋅ (2𝐵4)

2
𝑘−1 ≤ 3, (7.2)

which makes 𝑘 = 𝑂(lg 𝐵 lg lg 𝐵). We further define the auxiliary constants

𝛼 ≜ (1.01𝐵)4 log 𝑘/𝑘 ∈ [1, 2], 𝜃 ≜ 1.01
0.9981/𝑘 (2𝐵

4)1/2𝑘 ∈ [1, 2] 𝛾 ≜ 0.8, (7.3)

which depend only on 𝐵.

Defining Parameter Meaning Typical Setting
𝐵 Eigenvector Condition Number Bound 𝐵 ≥ 2𝜅𝑉 (𝐻 )
Γ Minimum Gap Bound Γ ≤ gap(𝐻)/2
Σ Operator Norm Bound Σ ≥ 2‖𝐻‖
𝑘 Shift Degree 𝑂(log 𝐵 log log 𝐵)
Global Constant
𝛼 Ritz Value Promising-ness 𝛼 ∈ [1, 2]
𝜃 Ritz Value Optimality 𝜃 ∈ [1, 2]
𝛾 Decoupling Rate 0.8

Table 7.1: Global Data for ShiftedQR
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Table 7.2 contains the input parameters for ShiftedQR, as well as internal parameters used by
its subroutines. The setting of the working accuracy below is to ensure that the norm, eigenvector
condition number, and minimum eigenvalue gap are controlled for every matrix 𝐻 ′ encountered
in the course of the algorithm, in the sense that

𝜅𝑉 (𝐻 ′) ≤ 2𝜅𝑉 (𝐻 ) ≤ 𝐵 ‖𝐻 ′‖ ≤ 2‖𝐻‖ ≤ Σ gap(𝐻 ′) ≥ gap(𝐻)/2 ≥ Γ.

We will not include the defining parameters or global constants as input to ShiftedQR or its
subroutines, and instead assume that all subroutines have access to them; however, we will for
clarity keep track of which of this global data each subroutine uses, and any constraints that it
places on their inputs. Table 7.1 contains the main subroutines (note that we will write SH𝑘,𝐵 for
the finite aritmetic implementation of Sh𝑘,𝐵).

Input Parameter Meaning Typical Setting
𝐻 Upper Hessenberg Matrix
𝛿 Accuracy
𝜙 Failure Probability Tolerance

Internal Parameter

𝜔 Working Accuracy Ω(min{𝛿/𝑛, Γ/𝑛2𝐵2})
𝜑 Working Failure Probability Tolerance Ω(

𝜙
log(𝜔/Σ))

𝜂1, 𝜂2 Regularization Parameters Ω(𝜔2), Ω(𝜔2𝜙−1/2Σ−1)
𝛽 Forward Accuracy for Ritz Values Ω(𝜔2Σ−1)
 Approximate Ritz Values
 Exceptional Shifts

Table 7.2: Input and Internal Parameters for ShiftedQR

7.2 Related Work
Forward Stability of Shifted QR. An important step towards understanding and addressing the
two issues mentioned above was taken by Parlett and Le [130], who showed that for symmetric
tridiagonal matrices, high sensitivity of the next QR iterate to the shift parameter (a form of
forward instability) is always accompanied by “premature deflation”, which is a phenomenon
specific to “bulge-chasing” implementations of the implicit QR algorithm on tridiagonal matrices.
Our dichotomy is distinct from but was inspired by their paper, and carries the same conceptual
message: if the behavior of the algorithm is highly sensitive to the choice of shifts, then one must
already be close to convergence in some sense.



CHAPTER 7. THE SHIFTED QR ALGORITHM IN FINITE ARITHMETIC 170

Subroutine Action Output Input Global Data

IQR Implicit QR Step ̃̂𝐻 , 𝑅 𝐻 , 𝑝(𝑧)
TAU𝑚 Approximate 𝜏𝑚𝑝(𝑧)(𝐻 ) = ‖𝑒∗𝑛𝑝(𝐻)−1‖ 𝜏𝑚 𝐻, 𝑝(𝑧)
OPTIMAL Check Ritz Value Optimality opt 𝐻, 𝜃
RITZ-OR-DEC Compute 𝜃-Optimal Ritz Values 𝐻,, dec 𝐻, 𝜔, 𝜙 Σ, Γ, 𝜃
FIND Find a 𝛼-Promising Ritz Value 𝑟 𝐻 , 𝛼
EXC Compute Exceptional Shifts  𝐻, 𝑟, 𝜔, 𝜙 𝐵, Σ, 𝜃, 𝛼
SH𝑘,𝐵 Shifting Strategy to Reduce 𝜓𝑘(𝐻 ) 𝐻 𝐻 ,, 𝜔, 𝜙 𝐵, Σ, 𝛾 , 𝜃, 𝛼
DEFLATE Deflate a Decoupled Matrix 𝐻1, 𝐻2, ... 𝐻 , 𝜔

Table 7.3: Subroutines of ShiftedQR

Watkins [159] argued informally (but did not prove) that the implicit QR iteration should in
many cases converge rapidly even in the presence of forward instability. This is an intriguing
direction for further theoretical investigation, and could potentially lead to provable guarantees
for the shifted QR algorithm with lower precision than required in this paper.

Aggressive Early Deflation. The classical criterion for decoupling/deflation in shifted QR algorithms
is the existence of small subdiagonal entries of 𝐻 . The celebrated papers [37, 38] introduced an
additional criterion called aggressive early deflation which yields significant improvements in
practice. Kressner [104] showed that this criterion is equivalent to checking for converged Ritz
values (i.e., Ritz pairs which are approximate eigenpairs of 𝐻 ), and “locking and deflating them”
(i.e., deflating while preserving the Hessenberg structure of 𝐻 ) using Stewart’s Krylov-Schur
algorithm [144].

The early decoupling procedure introduced in this paper is similar in spirit to aggressive
early deflation — in that it detects Ritz values which are close to eigenvalues of 𝐻 and enables
decoupling even when the subdiagonal entries of 𝐻 are large — but different in that it does not
require the corresponding Ritz vector to have a small residual, and it ultimately produces classical
decoupling in the sense of a small subdiagonal entry.

Shift Blurring. The shifting strategies considered in this chapter use shift polynomials 𝑝(𝑧) =
(𝑧 − 𝑟1) … (𝑧 − 𝑟𝑘) of degree 𝑘 where 𝑘 is roughly proportional to lg 𝜅𝑉 (𝐻 ). It was initially proposed
[9] that such higher degree shifts should be implemented via “large bulge chasing”, a procedure
which computes the 𝑄𝑅 decomposition of 𝑝(𝐻) in a single implicit QR step. This procedure was
found to have poor numerical stability properties, which was referred to as “shift blurring” and
explained by Watkins [160] and further by Kressner [103] by relating it to some ill-conditioned
eigenvalue and pole placement problems.
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To avoid these issues, we implement all degree 𝑘 QR steps in this paper as a sequence of 𝑘
degree-1 “small bulge” QR steps. However, since our analysis requires establishing forward stability
of each degree 𝑘 step, the amount of numerical precision required for provable 𝛿−decoupling
increases as a function of 𝑘, roughly as 𝑂(𝑘 lg(1/𝛿)) bits. This increase in precision is sufficient to
avoid shift blurring. We suspect that forward stability of large bulge chasing can be established
given a similar increase in precision, and leave this as a direction for further work.

7.3 Preliminaries
During this chapter, we will find it useful to define ShiftedQR in terms of an absolute notion of
decoupling, instead of the relative one used in Chapter 6. The reason is that our algorithm does
not have access to the norm of any matrices it encounters, only to the upper bound Σ.

Definition 7.6. We will say that an upper Hessenberg matrix 𝐻 is absolutely 𝜔-decoupled if some
subdiagonal entry of 𝐻 is smaller than 𝜔 (as opposed to 𝜔‖𝐻‖).

We will require some finite arithmetic assumptions and results beyond the floating point
axioms from Chapter 2. First, as mentioned in Chapter 6, our implementation of implicit QR
steps is based on Givens rotations. If 𝑥 ∈ ℝ2, write giv(𝑥) for the 2 × 2 Givens rotation mapping
giv(𝑥) ∶ 𝑥 ↦ ‖𝑥‖𝑒1. It is routine [94, Lemmas 19.7-19.8, e.g.] that, assuming 𝐮 ≤ 1/24, one can
compute the norm of 𝑥 with relative error 2𝐮 and apply giv(𝑥) to a vector 𝑦 ∈ ℝ2 in floating point
so that

|||(g̃iv(𝑥)𝑦)𝑖 − (giv(𝑥)𝑦)𝑖
||| ≤ ‖𝑦‖

6𝐮
1 − 6𝐮

≤ ‖𝑦‖ ⋅ 8𝐮 𝑖 = 1, 2.

For some tasks, our algorithm and many of its subroutines need to set certain scalar parameters
in order to know when to halt, at what scale to perform certain operations and how many iterations
to perform. In this context, sometimes the algorithm will have to compute 𝑘-th roots for moderate
values of 𝑘 — even though these operations are not directly used on the matrices in question.
These can be computed in the following sense, for instance by running Newton’s method with a
starting point found by bisection.

Lemma 7.7 (𝑘th Roots). There exist small universal constants 𝐶root, 𝑐root ≥ 1, such that whenever
𝑘𝑐root𝐮 ≤ 𝜖 ≤ 1/2 and for any 𝑎 ∈ 𝑹+, there exists an algorithm that computes 𝑎 1

𝑘 with relative error 𝜖
in at most

𝑇root(𝑘, 𝜖) ≜ 𝐶root𝑘 lg(𝑘 lg(1/𝜖))

arithmetic operations.

As discussed above, we will repeatedly regularize our shifts by replacing each with uniformly
random point on a small surrounding disk of radius 𝑂(𝛿2), where 𝛿 is the accuracy. To simplify
the presentation, we will assume that these perturbations can be executed in exact arithmetic.
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Importantly, this assumption’s only impact is on the failure probability of the algorithm, and
its effect is quite mild. We will see below that the algorithm fails when one of our randomly
perturbed shifts happens to land too close to an eigenvalue, and we bound the failure probability
by computing the area of the ‘bad’ subset of the disk where this occurs. If the random perturbation
was instead executed in finite arithmetic, the probability of landing in the bad set differs from this
estimate by 𝑂(𝐮/𝛿2). Since we will set 𝐮 = 𝑜(𝛿2), this discrepancy can reasonably be neglected.

Definition 7.8 (Efficient Perturbation Algorithm). An efficient random perturbation algorithm
takes as input 𝑟 ∈ ℂ an 𝑅 > 0, and generates a random 𝑤 ∈ ℂ distributed uniformly in the disk
𝔻(𝑟, 𝑅) using 𝐶D arithmetic operations.

7.4 Implicit QR: Implementation, Forward Stability, and
Regularization

In this section we present a standard implementation (called “IQR”) of a degree 1 (i.e., single shift)
implicit QR step using Givens rotations and provide an analysis of its backward stability which is
slightly stronger than the guarantees of [151] for an implementation with Householder reflectors.
We then use this to give a corresponding backward error bound for a degree 𝑘 IQR step. We
suspect much of this material is already known to experts, but we could not find it in the literature
so we record it here. Finally, we prove bounds on the forward error of a degree 𝑘 IQR step in terms
of the eigenvector condition number of the matrix and the distance of the roots of the shifting
polynomial to its spectrum. The former is controlled by assumption, and the latter can be tamed
by a random perturbation of the shifts; we check this in Section 7.4.

Degree-1 IQR

We will use the following notion of backward stability for a single implicit QR step; the distinction
with [151] is the additional second equation below.

Definition 7.9 (Backward-Stable Degree-1 Implicit QR Algorithm). A 𝜈IQR(𝑛)-stable single-shift
implicit QR algorithm takes as inputs a Hessenberg matrix 𝐻 ∈ 𝑪𝑛×𝑛 and a shift 𝑠 ∈ 𝑪 and outputs
a Hessenberg matrix ̃̂𝐻 and an exactly triangular matrix 𝑅, for which there exists a unitary 𝑄
satisfying

‖‖
̃̂𝐻 − 𝑄∗𝐻𝑄‖‖ ≤ ‖𝐻 − 𝑠‖𝜈IQR(𝑛)𝐮 (7.4)

‖‖𝐻 − 𝑠 − 𝑄𝑅‖‖ ≤ ‖𝐻 − 𝑠‖𝜈IQR(𝑛)𝐮 (7.5)

We now verify that there is a suitable backward-stable implicit QR algorithm. The pseucodode
of our IQR is given below.
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IQR

Input: Hessenberg 𝐻 , shift 𝑠 ∈ ℂ
Output: Hessenberg ̃̂𝐻 and triangular 𝑅
Ensures: ‖̃̂𝐻 ‖ ≤ ‖𝐻‖ + 32𝑛3/2𝐮 ⋅ ‖𝐻 − 𝑠‖, and there exists unitary 𝑄 for which ‖̃̂𝐻 − 𝑄∗𝐻(̃𝑄)‖ ≤
32𝑛3/2𝐮 ⋅ ‖𝐻 − 𝑠‖ and ‖𝐻 − 𝑠 − 𝑄𝑅‖ ≤ 16𝑛3/2𝐮 ⋅ ‖𝐻 − 𝑠‖

1. 𝑅 ← 𝐻 − 𝑠

2. For 𝑖 = 1, 2, ..., 𝑛 − 1

(a) 𝑋1∶2,𝑖 ← 𝑅𝑖∶𝑖+1,𝑖
(b) 𝑅𝑖∶𝑖+1,𝑖+1,𝑛 ← giv(𝑋1∶2,𝑖)∗𝑅𝑖∶𝑖+1,𝑖+1∶𝑛 + 𝐸2,𝑖,𝑏

(c) 𝑅𝑖∶𝑖+1,𝑖 ← (
‖𝑋1∶2,𝑖‖ + 𝐸2,𝑖,𝑐

0 )

3. ̃̂𝐻 ← 𝑅

4. For 𝑖 = 1, 2, ...𝑛 − 1

(a) ̃̂𝐻 1∶𝑛,𝑖∶𝑖+1 ←
̃̂𝐻 1∶𝑛,𝑖∶𝑖+1giv(𝑋1∶2,𝑖) + 𝐸4,𝑖

5. ̃̂𝐻 ← ̃̂𝐻 + 𝑠

Lemma 7.10 (Backward Stability of Degree 1 IQR). Assuming

𝐮 ≤ min
{

1
24
,
lg 2
8𝑛5/2

}
= 2−𝑂(lg 𝑛), (7.6)

IQR satisfies its guarantees and uses at most 7𝑛2 arithmetic operations. In particular, it is a 𝜈IQR(𝑛)-
stable implicit QR algorithm for 𝜈IQR(𝑛) = 32𝑛3/2.

Proof. For the purpose of the analysis, let us define 𝐻0 ≜ 𝐻 − 𝑠 and for each 𝑖 = 1, ..., 𝑛 − 1, denote
by 𝐻𝑖 the matrix 𝑅 as it stands at the end of line 2c on the the 𝑖th step of the loop. Additionally,
write 𝐺𝑖 for the unitary matrix which applies giv(𝑋1∶2,𝑖) to the span of 𝑒𝑖 and 𝑒𝑖+1 and is the identity
elsewhere. We will show that the unitary 𝑄 ≜ 𝑄𝑛−1 satisfies the guarantees of IQR. We then have

𝐻𝑖 = 𝐺∗
𝑖𝐻𝑖−1 + 𝐸2,𝑖 ,

where 𝐸2,𝑖 is the structured error matrix which in rows (𝑖 ∶ 𝑖 + 1) is equal to

(
𝐸2,𝑖,𝑐
0 𝐸2,𝑖,𝑏)



CHAPTER 7. THE SHIFTED QR ALGORITHM IN FINITE ARITHMETIC 174

and is zero otherwise. From the discussion at the beginning of this appendix, we know that
each entry of 𝐸2,𝑖,𝑏 has size at most 8‖𝐻𝑖−1‖𝐮 and similarly that |𝐸2,𝑖,𝑐 | ≤ 2‖𝑋1∶2,𝑖‖𝐮 ≤ 8‖𝐻𝑖−1‖𝐮. Thus
‖𝐸2,𝑖‖ ≤ 8

√
𝑛‖𝐻𝑖−1‖𝐮, and inductively we have

‖𝐻𝑖‖ ≤ ‖𝐻𝑖−1‖ + ‖𝐸2,𝑖‖
≤ ‖𝐻𝑖−1‖ (1 + 8

√
𝑛𝐮)

≤ ‖𝐻0‖ (1 + 8
√
𝑛𝐮)

𝑛

≤ ‖𝐻0‖ exp (8𝑛3/2𝐮)
≤ 2‖𝐻 − 𝑠‖ 𝑖 = 1, ..., 𝑛 − 1.

Since 𝑄 and every 𝐺𝑖 is unitary, this gives

‖𝐻 − 𝑠 − 𝑄𝑅‖ = ‖𝑄∗𝐻0 − 𝑅‖ ≤ ∑
𝑖∈[𝑛−1]

‖𝐸2,𝑖‖ ≤ 16𝑛3/2𝐮 ⋅ ‖𝐻 − 𝑠‖.

A similar inductive argument applied to line 4 gives that ‖𝐸4,𝑖‖ ≤ 16
√
𝑛𝐮⋅ ‖𝐻 −𝑠‖ for every 𝑖 ∈ [𝑛−1],

and thus that the ̃̂𝐻 output by IQR(𝐻 , 𝑠) satisfies

̃̂𝐻 − 𝑠 = 𝑅𝑄 + 𝐸4,𝑛−1(𝐺1 ⋯𝐺𝑛−2) + ⋯ + 𝐸4,2𝐺1 + 𝐸4,1
= 𝑄∗(𝐻 − 𝑠)𝑄 + 𝐸4,𝑛−1(𝐺1⋯𝐺𝑛−2) + ⋯ + 𝐸4,2𝐺1 + 𝐸4,1

+ (𝐺∗
𝑛−2 ⋯𝐺∗

1)𝐸2,1𝑄 + (𝐺∗
𝑛−3⋯𝐺∗

1)𝐸2,2𝑄 + ⋯ + 𝐺∗
1𝐸2,𝑛−1𝑄,

meaning
‖̃̂𝐻 − 𝑄∗𝐻𝑄‖ ≤ 32𝑛3/2𝐮 ⋅ ‖𝐻 − 𝑠‖

and
‖̃̂𝐻 ‖ ≤ ‖𝐻‖ + 32𝑛3/2‖𝐻 − 𝑠‖𝐮,

as desired.
In terms of arithmetic operations, it costs 𝑛 to compute 𝑅 from𝐻 in line 1. In line 2b, computing

‖𝑋1∶2,𝑖‖ costs 4, computing giv(𝑋1∶2,𝑖) given this norm costs another 2, zeroing out 𝑅𝑖+1,𝑖 costs 1,
replacing 𝑅𝑖,𝑖 with ‖𝑋1∶2,𝑖‖ costs 1, and applying the rotation to 𝑅𝑖∶𝑖+1,𝑖+1∶𝑛 costs 4(𝑛 − 𝑖 + 1). We do
this for each of 𝑖 = 1, 2, ...𝑛 − 1, giving 6(𝑛 − 1) + 2(𝑛 − 1) + 2𝑛(𝑛 − 1). In line 4, assuming we have
stored each Givens rotation, applying them again requires 2𝑛(𝑛 + 1) − 4. Finally, in line 5 we pay
another 𝑛 to re-apply the shift. Thus in total we have

𝑛 + 6(𝑛 − 1) + 2(𝑛 − 1) + 2𝑛(𝑛 − 1) + 2𝑛(𝑛 + 1) − 4 + 𝑛 = 4𝑛2 + 12𝑛 − 12 ≤ 7𝑛2 𝑛 ≥ 2.



CHAPTER 7. THE SHIFTED QR ALGORITHM IN FINITE ARITHMETIC 175

Backward Stability of Higher-Degree IQR

We now extend the definition of IQR to shifts of higher degree. We take the straightforward
approach of composing many degree 1 𝑄𝑅 steps to obtain a higher degree one. Given a Hessenberg
matrix 𝐻 , an implicit QR algorithm IQR satisfying Definition 7.9, and shifts 𝑠1, … , 𝑠𝑘 , we will define

IQR(𝐻 , {𝑠1, … , 𝑠𝑘}) ≜ IQR(IQR(⋯ IQR(IQR(𝐻 , 𝑠1), 𝑠2), ⋯), 𝑠𝑘), (7.7)

which can be executed in 𝑇IQR(𝑛, 𝑘) = 7𝑘𝑛2 arithmetic operations. We will sometimes use the
notation

IQR(𝐻 , 𝑝(𝑧)) = IQR(𝐻 , {𝑠1, … , 𝑠𝑘})

where 𝑝(𝑧) = (𝑧 − 𝑠1) … (𝑧 − 𝑠𝑘), though it is understood that IQR takes the roots of 𝑝 and not its
coefficients as input. Lemma 7.10 is readily adapted to give backward stability guarantees for
IQR(𝐻 , 𝑝(𝑧)).

Lemma 7.11 (Backward Error Guarantees for Higher Degree IQR). Fix 𝐶 > 0 and let 𝑝(𝑧) =
∏𝓁∈[𝑘](𝑧 − 𝑠𝓁 ), where  = {𝑠1, ..., 𝑠𝑘} ⊂ 𝔻(0, 𝐶‖𝐻‖). Write [

̃̂𝐻 , 𝑅1, ..., 𝑅𝑘] = IQR(𝐻 , 𝑝(𝑧)), and let 𝑄𝓁
be the unitary guaranteed by Definition 7.9 to the 𝓁 th internal call to IQR. Assuming

𝜈IQR(𝑛)𝐮 ≤ 1/4,

the outputs 𝑅 = 𝑅𝑘 ⋯𝑅1 and 𝑄 = 𝑄1 ⋯𝑄𝑘 satisfy

‖‖
̃̂𝐻 − 𝑄∗𝐻𝑄‖‖ ≤ 1.4𝑘(1 + 𝐶)‖𝐻‖𝜈IQR(𝑛)𝐮 (7.8)

‖‖𝑝(𝐻 ) − 𝑄𝑅‖‖ ≤ 4(2(1 + 𝐶)‖𝐻‖)
𝑘
𝜈IQR(𝑛)𝐮. (7.9)

Proof of Lemma 7.11. Let 𝐻1 = 𝐻 , and for each 𝓁 ∈ [𝑚 − 1], let [𝐻𝓁+1, 𝑅𝓁 ] = IQR(𝐻𝓁 , 𝑟𝓁 ) and 𝑄𝓁 be
as guaranteed by Definition 7.9. We have

‖𝐻2 − 𝑄∗
1𝐻1𝑄1‖ ≤ ‖𝐻1 − 𝑠1‖𝜈IQR(𝑛)𝐮 ≤ (1 + 𝐶)‖𝐻‖𝜈IQR(𝑛)𝐮,

and inductively, assuming that

‖𝐻𝓁 − 𝑄∗
𝓁−1𝐻𝓁−1𝑄𝓁−1‖ ≤ (1 + 𝐶)‖𝐻‖(𝜈IQR(𝑛)𝐮 + ⋯ + (𝜈IQR(𝑛)𝐮)𝓁 ),

we have

‖𝐻𝓁+1 − 𝑄∗
𝓁𝐻𝓁𝑄𝓁 ‖ ≤ ‖𝐻𝓁 − 𝑠𝓁 ‖𝜈IQR(𝑛)𝐮

≤ ‖𝐻‖(1 + (1 + 𝐶)(𝜈IQR(𝑛)𝐮 + ⋯ + (𝜈IQR(𝑛)𝐮)𝓁 ) + 𝐶)𝜈IQR(𝑛)𝐮
≤ (1 + 𝐶)‖𝐻‖(𝜈IQR(𝑛)𝐮 + ⋯ + (𝜈IQR(𝑛)𝐮)𝓁+1).
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This gives the first asserted bound, since

‖𝐻 − 𝑄∗𝐻𝑄‖ ≤ ∑
𝓁∈[𝑚−1]

‖𝐻𝓁+1 − 𝑄∗
𝓁𝐻𝓁𝑄𝓁 ‖ ≤ (1 + 𝐶)‖𝐻‖

𝑚𝜈IQR(𝑛)𝐮
1 − 𝜈IQR(𝑛)𝐮

and 1
1−𝜈IQR(𝑛)𝐮

≤ 4/3 ≤ 1.4.

For the second assertion, we will mirror the proof of Lemma 6.6, using backward stability
guarantees on a single IQR step from Definition 7.9. In particular, in view of the definition and
the above bound, we can write

𝐻𝓁 − 𝑠𝓁 = 𝑄𝓁𝑅𝓁 + 𝐸𝓁 ‖𝐸𝓁 ‖ ≤ (1 + 𝐶)‖𝐻‖
𝜈IQR(𝑛)𝐮

1 − 𝜈IQR(𝑛)𝐮

𝐻1𝑄𝓁 ⋯𝑄1 = 𝑄𝓁 ⋯𝑄1𝐻𝓁+1 + ‖Δ𝓁+1‖ Δ𝓁+1 ≤ (1 + 𝐶)‖𝐻‖
𝜈IQR(𝑛)𝐮

1 − 𝜈IQR(𝑛)𝐮

so that

𝑝(𝐻) = 𝑝(𝐻1) = (𝐻1 − 𝑠𝑚) ⋯ (𝐻1 − 𝑠1)
= (𝐻1 − 𝑠𝑚) ⋯ (𝑄1𝑅1 + 𝑄∗

1𝐸1)
= (𝐻1 − 𝑠𝑚) ⋯ (𝐻1 − 𝑠2)𝑄1(𝑅1 + 𝑄∗

1𝐸1)
= (𝐻1 − 𝑠𝑚) ⋯𝑄1(𝐻2 − 𝑠2 + Δ2)(𝑅1 + 𝑄∗

1𝐸1)
= (𝐻1 − 𝑠𝑚) ⋯ (𝐻1 − 𝑠3)𝑄1𝑄2(𝑅2 + 𝑄∗

2𝐸2 + 𝑄
∗
2Δ2)(𝑅1 + 𝑄∗

1𝐸1)
= 𝑄1 ⋯𝑄𝑚(𝑅𝑚 + 𝑄∗

𝑚𝐸𝑚 + 𝑄∗
𝑚Δ𝑚) ⋯ (𝑅2 + 𝑄∗

2𝐸2 + 𝑄
∗
2Δ2)(𝑅1 + 𝑄∗

1𝐸1)

Thus, using the bounds on 𝐸𝓁 and Δ𝓁 , and the fact that ‖𝑅𝓁 ‖ = ‖𝐻𝓁 − 𝑠𝓁 ‖ ≤ (1+𝐶)‖𝐻‖
1−𝜈IQR(𝑛)𝐮

,

‖𝑝(𝐻 ) − 𝑄1 ⋯𝑄𝑚𝑅𝑚 ⋯𝑅1‖ = ‖𝑅𝑚 ⋯𝑅1 − (𝑅𝑚 + 𝑄∗
𝑚𝐸𝑚 + 𝑄∗

𝑚Δ𝑚) ⋯ (𝑅2 + 𝑄∗
2𝐸2 + 𝑄

∗
2Δ2)(𝑅1 + 𝑄∗

1𝐸1)‖

≤ ∏
𝓁∈[𝑚]

(‖𝑅𝓁 ‖ +
2(1+𝐶)‖𝐻‖
1−𝜈IQR(𝑛)𝐮) − ∏

𝓁∈[𝑚]
‖𝑅𝓁 ‖

≤ (
(1+𝐶)‖𝐻‖
1−𝜈IQR(𝑛)𝐮)

𝑚
((1 + 2𝜈IQR(𝑛)𝐮)𝑚 − 1)

≤ 4(2(1 + 𝐶)‖𝐻‖)
𝑚𝜈IQR(𝑛)𝐮;

in the final line we are using again that 𝜈IQR(𝑛)𝐮 ≤ 1/4 and thus that ((1 + 2𝜈IQR(𝑛)𝐮)𝑚 − 1) ≤
(3/2)𝑚𝜈IQR(𝑛)𝐮/4, whereas (1 − 𝜈IQR(𝑛)𝐮)−𝑚 ≤ (4/3)𝑚.

Forward Stablity of Higher-Degree IQR

In this subsection we prove forward error guarantees for IQR(𝐻 , 𝑝(𝑧)) using the backward error
guarantees of the previous section. We pause to restate a lemma from the preliminaries on the
forward stability of the QR decomposition itself:
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Restatement of Lemma 2.12. Let 𝐴, 𝐴 ∈ ℂ𝑛×𝑛 with 𝐴 invertible and ‖𝐴 − 𝐴‖‖𝐴−1‖ ≤ 1/2. Then If
[𝑄, 𝑅] = qr(𝐴) and [𝑄, 𝑅] = qr(𝐴), then

‖𝑄 − 𝑄‖𝐹 ≤ 4‖𝐴−1‖‖𝐴 − 𝐴‖𝐹 and ‖𝑅 − 𝑅‖ ≤ 3‖𝐴−1‖‖𝑅‖‖𝐴 − 𝐴‖.

The main result of this subsection, which will be used throughout the paper, is the following.

Lemma 7.12 (Forward Error Guarantees for IQR). Under the hypotheses of Lemma 7.11, and
assuming further that [𝑄, 𝑅] = qr(𝑝(𝐻 )), 𝐻 = 𝑄∗𝐻𝑄, and

𝐮 ≤ 𝐮IQR (𝑛, 𝑘, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist( , Spec 𝐻))

≜
1

8𝜅𝑉 (𝐻 )𝜈IQR(𝑛) (
dist( , Spec 𝐻)

‖𝐻‖ )

𝑘

(7.10)

= 2−𝑂(lg 𝑛𝜅𝑉 (𝐻 )+𝑘 lg ‖𝐻 ‖
dist( ,Spec 𝐻)),

we have the forward error guarantees:

‖𝑄 − 𝑄‖𝐹 ≤ 16𝜅𝑉 (𝐻 )(
(2 + 2𝐶)‖𝐻‖

dist( , Spec 𝐻))

𝑘

𝑛1/2𝜈IQR(𝑛)𝐮 (7.11)

‖𝑅 − 𝑅‖ ≤ 12𝜅𝑉 (𝐻 )(
(2 + 2𝐶)2‖𝐻 ‖2

dist( , Spec 𝐻))

𝑘

𝜈IQR(𝑛)𝐮 (7.12)

‖̃̂𝐻 − 𝐻‖𝐹 ≤ 32𝜅𝑉 (𝐻 )‖𝐻 ‖(
(2 + 2𝐶)‖𝐻‖

dist( , Spec 𝐻))

𝑘

𝑛1/2𝜈IQR(𝑛)𝐮. (7.13)

Proof. The first two assertions are immediate from applying Lemma 2.12 to 𝑀 = 𝑝(𝐻), computing

‖𝑀−1‖ = ‖𝑝(𝐻)−1‖ ≤
𝜅𝑉 (𝐻 )

dist( , Spec 𝐻)𝑘
,

bounding ‖𝑝(𝐻 )‖ ≤ (2 + 2𝐶)𝑘‖𝐻 ‖𝑘 , and using Lemma 7.11 to control ‖𝐸‖ ≤ 2(2 + 2𝐶)𝑘‖𝐻 ‖𝑘𝜈IQR(𝑛)𝐮.
For the third, observe that

‖𝑄∗𝐻𝑄 − 𝑄𝐻𝑄‖𝐹 ≤ ‖𝑄∗𝐻(𝑄 − 𝑄)‖𝐹 + ‖(𝑄∗ − 𝑄∗)𝐻𝑄‖𝐹 ≤ 2‖𝐻‖‖𝑄 − 𝑄‖𝐹 ,

and use the first assertion again.

We close the subsection by giving forward error bounds for computing 𝜏𝑝(𝐻 )𝑘 = ‖𝑒∗𝑛𝑝(𝐻)−1‖−1
indirectly, from the 𝑅’s output by IQR(𝐻 , 𝑝(𝑧)), for 𝑝 a polynomial of degree 𝑘.
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TAU𝑘

Input: Hessenberg 𝐻 ∈ 𝑪𝑛×𝑛, polynomial 𝑝(𝑧) = (𝑧 − 𝑠1) ⋯ (𝑧 − 𝑠𝑘).
Output: 𝜏 𝑘 ≥ 0
Ensures: |𝜏 𝑘 − 𝜏𝑝(𝐻 )𝑘 | ≤ 0.001𝜏𝑝(𝐻 )𝑘

1. [̃̂𝐻 , 𝑅1, … , 𝑅𝑘] ← IQR(𝐻 , 𝑝(𝑧))

2. 𝜏 𝑘 ← fl ((𝑅1)𝑛𝑛 ⋯ (𝑅𝑘)𝑛𝑛)

Lemma 7.13 (Guarantees for TAU𝑘). If  = {𝑠1, ..., 𝑠𝑘} ∈ 𝔻(0, 𝐶‖𝐻‖) and

𝐮 ≤ 𝐮TAU(𝑛, 𝑘, 𝐶, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist( , Spec 𝐻)) (7.14)

≜
1

6 ⋅ 103𝜅𝑉 (𝐻 )𝜈IQR(𝑛) (
dist( , Spec 𝐻)
(2 + 2𝐶)‖𝐻‖ )

2𝑘

(7.15)

= 2−𝑂(lg 𝑛𝜅𝑉 (𝐻 )+𝑘 lg ‖𝐻 ‖
dist( ,Spec 𝐻)),

then TAU𝑘 satisfies its guarantees, and runs in

𝑇TAU(𝑛, 𝑘) ≜ 𝑇IQR(𝑘, 𝑛) + 𝑘 = 𝑂(𝑘𝑛2)

arithmetic operations.

Proof. Let [𝑄, 𝑅] = qr(𝑝(𝐻 )) and recall that (6.8) shows that 𝜏𝑝(𝐻 )𝑘 = 𝑅𝑛𝑛. As (7.14) implies
𝐮 ≤ 𝐮IQR(𝑛, 𝑘, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist( , Spec 𝐻)), we can apply Lemma 7.12: the matrix 𝑅 = 𝑅𝑘 ⋯𝑅1
satisfies

|𝑅𝑛,𝑛 − 𝑅𝑛,𝑛| ≤ ‖𝑅 − 𝑅‖

≤ 12𝜅𝑉 (𝐻 )(
(2 + 2𝐶)2‖𝐻 ‖2

dist( , Spec 𝐻))

𝑘

𝜈IQR(𝑛)𝐮 Lemma 7.12

≤
0.0005
‖𝑝(𝐻)−1‖

(7.14) and ‖𝑝(𝐻 )−1‖ ≤
𝜅𝑉 (𝐻 )

dist( , Spec 𝐻)𝑘

≤ 0.0005 𝜎𝑛(𝑅) 𝑝(𝐻) = 𝑄𝑅
≤ 0.0005 𝑅𝑛,𝑛. 𝜎𝑛(𝑅) ≤ ‖𝑒∗𝑛𝑅‖ = 𝑅𝑛,𝑛
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Now, because 𝜏 𝑘 is the result of computing the product of the (𝑅𝑖)𝑛,𝑛 in floating point arithmetic,
we have |||𝜏

𝑘 − 𝑅𝑛,𝑛
||| ≤ 𝑘𝐮𝑅𝑛,𝑛, whence

|||𝜏
𝑘 − 𝑅𝑛,𝑛

||| ≤
|||𝜏
𝑘 − 𝑅𝑛,𝑛

||| +
|||𝑅𝑛,𝑛 − 𝑅𝑛,𝑛

|||
≤ 𝑘𝐮𝑅𝑛,𝑛 + 0.0005 𝑅𝑛,𝑛
≤ (1.0005𝑘𝐮 + 0.0005)𝑅𝑛,𝑛
≤ 0.001𝑅𝑛,𝑛.

It will also be useful to observe that
||||
1
𝜏 𝑘

−
1
𝑅𝑛,𝑛

||||
≤
0.001
|𝜏 𝑘 |

≤
0.001
|𝜏 𝑘 |

≤
0.001

||𝑅𝑛,𝑛 − |𝜏 𝑘 − 𝑅𝑛,𝑛|||
≤

0.001
0.99𝑅𝑛,𝑛

≤
0.0011
𝑅𝑛,𝑛

.

Shift Regularization
The forward error bounds on our shifts are controlled by the distance to Spec𝐻 ; to ensure that
this is not too large, we regularize the shifts 𝑟1, … , 𝑟𝑘 by randomly perturbing them.

Lemma 7.14 (Regularization of Shifts). Let  = {𝑟1, ..., 𝑟𝑘} ∈ 𝑪 and 𝜂2 ≥ 𝜂1 > 0. Assume

𝜂1 + 𝜂2 ≤
gap(𝐻)

2
.

Let 𝑤1, ..., 𝑤𝑘 ∼ Unif(𝔻(0, 𝜂2)) be i.i.d. and ̌ = {𝑟1, ..., 𝑟𝑘} = {𝑟1 + 𝑤1, ..., 𝑟𝑘 + 𝑤𝑘}. Then with
probability at least 1 − 𝑘 (𝜂1/𝜂2)2, we have dist(̌, Spec 𝐻) ≥ 𝜂1.

Proof. Define the bad region  ⊂ 𝑪 as the union of disks  ≜ ⋃𝜆∈Spec𝐻 𝔻(𝜆, 𝜂1). The assumption
𝜂1 + 𝜂2 ≤ gap(𝐻)/2 implies that for each 𝑟𝑖 , the disk 𝔻(𝑟𝑖 , 𝜂2) intersects at most one disk in ; since
𝑟𝑖 is distributed uniformly in 𝔻(𝑟𝑖 , 𝜂2) we have

ℙ[𝑟𝑖 ∈ ] ≤ (
𝜂1
𝜂2)

2

,

and the total probability that at least one 𝑟𝑖 lies in the bad region is at most 𝑘 times this by a union
bound.
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7.5 Finding Well Conditioned Optimal Ritz Values (or
Decoupling Early)

The shifting strategy Sh𝑘,𝐵 from Chapter 6 uses the notion of 𝜃-optimal Ritz values from Definition
6.3, and we assumed there the existence of a black box algorithm for computing these. In this
section we will show how to compute 𝜃-optimal Ritz values for a Hessenberg matrix 𝐻 which are
moreover not too close to Spec𝐻 , or else guarantee rapid decoupling. By Lemma 7.12 that any
IQR step using such well-conditioned approximate Ritz values as shifts is forward stable.

The procedure consists of two steps, and relies on a black box algorithm, SmallEig, for computing
forward approximations of the eigenvalues of a 𝑘 × 𝑘 or smaller matrix. The first step of our
approximation procedure is simply to compute forward approximations to the Ritz values using
SmallEig. Second, we show the following dichotomy: for appropriately set parameters, any forward-
approximate set of Ritz values  of a Hessenberg matrix 𝐻 is either (i) 𝜃-optimal or (ii) contains
a Ritz value which can be used to decouple the matrix in a single degree 𝑘 implicit QR step (in
fact, the proof shows that this Ritz value must be close to an eigenvalue of 𝐻 , see Remark 7.17).
This is the content of Theorem 7.15, which is established in Section 7.5. We give a finite arithmetic
implementation of this dichotomy in Section 7.5.

The Dichotomy in Exact Arithmetic
In this subsection we show that for 𝛽 small enough and 𝜃 large enough, any set  = {𝑟1, … , 𝑟𝑘} of
𝛽-forward approximate Ritz values of 𝐻 either yields a 𝜃-optimal set of Ritz values, or one of the
𝑟𝑖 ∈  has a small value of 𝜏(𝑧−𝑟𝑖 )𝑘 (𝐻 ).

Theorem 7.15 (Dichotomy). Let P = {𝜌1, … , 𝜌𝑘} be the Ritz values of 𝐻 and assume that  =
{𝑟1, … , 𝑟𝑘} satisfies |𝜌𝑖 − 𝑟𝑖 | ≤ 𝛽 for all 𝑖 ∈ [𝑘]. If

𝜃 ≥ (2𝜅4𝑉 (𝐻 ))1/2𝑘 and
𝛽

gap(𝐻)
≤
1
2 (

𝜃
(2𝜅4𝑉 (𝐻 ))1/2𝑘

− 1) =∶ 𝑐 (7.16)

then at least one of the following is true:

(i)  is a set of 𝜃-optimal Ritz values of 𝐻 .

(ii) There is an 𝑟𝑖 ∈  for which

‖𝑒∗𝑛(𝐻 − 𝑟𝑖)−𝑘‖1/𝑘 ≥
1

2𝜅𝑉 (𝐻 )2/𝑘
⋅ (

𝜓𝑘(𝐻 )
‖𝐻 ‖ + 𝛽)

⋅
(
1 − (2𝜅4𝑉 )

1/2𝑘

𝜃

𝛽 )
. (7.17)

The remainder of this subsection is dedicated to the proof of Theorem 7.15. Let P = {𝜌1, … , 𝜌𝑘}
and  = {𝑟1, … , 𝑟𝑘} be as in Lemma 7.15, and set 𝜒(𝑧) = (𝑧−𝜌1) ⋯ (𝑧−𝜌𝑘) and 𝑝(𝑧) = (𝑧−𝑟1) ⋯ (𝑧−𝑟𝑘).
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Of course, by construction 𝜒(𝑧) is the characteristic polynomial of 𝐻(𝑘). Our strategy in proving
Theorem 7.15 will be to show that if (i) does not hold, then (ii) does; assuming the former, we can
get that

𝔼[|𝑝(𝑍𝐻 )|2] ≥
‖𝑒∗𝑛𝑝(𝐻)‖2

𝜅𝑉 (𝐻 )2
Lemma 6.10

≥
𝜃2𝑘‖𝑒∗𝑛𝜒(𝐻)‖2

𝜅𝑉 (𝐻 )2
Negation of i

≥
𝜃2𝑘𝔼[|𝜒(𝑍𝐻 )|2]

𝜅𝑉 (𝐻 )4
Lemma 6.10 (7.18)

= 2(1 + 2𝑐)2𝑘𝔼[|𝜒(𝑍𝐻 )|2] (7.16) (7.19)

In other words, 𝔼[|𝑝(𝑍𝐻 )|2] is much larger than 𝔼[|𝜒(𝑍𝐻 )|2]. On the other hand, by the as-
sumptions in Theorem 7.15, the roots of 𝑝(𝑧) and 𝜒(𝑧) are quite close. Intuitively, because 𝑍𝐻 is
supported on the eigenvalues of 𝐻 , these two phenomena can only occur simultaneously if some
root of 𝑝(𝑧) is close to an eigenvalue of of 𝐻 with significant mass under the distribution of 𝑍𝐻 .
The following lemma, whose proof we will briefly defer, articulates this precisely. The lemma does
not require any particular properties of 𝑝 and 𝜒 other than that their roots are close, so we will
phrase it in terms of two generic polynomials 𝑞 and 𝑞̌; when we apply the lemma, we will set
𝑞 = 𝜒 and 𝑞̌ = 𝑝.

Lemma 7.16. Assume that 𝛽
𝑐 ≤ gap(𝐻) with 𝑐 defined as in (7.16), 𝑞(𝑧) ≜ (𝑧 − 𝑠1) ⋯ (𝑧 − 𝑠𝑘) for some

 = {𝑠1, … , 𝑠𝑘} ⊂ 𝔻(0, ‖𝐻 ‖), and let 𝑞̌(𝑧) ≜ (𝑧 − 𝑠1) ⋯ (𝑧 − 𝑠𝑘) with 𝑠1, ..., 𝑠𝑘 ∈ ℂ satisfying

max
𝑖∈[𝑘]

|𝑠𝑖 − 𝑠𝑖 | ≤ 𝛽.

Then

ℙ [dist(𝑍𝐻 , {𝑠1, ..., 𝑠𝑘}) ≤
𝛽
2𝑐 ]

≥
𝔼[|𝑞̌(𝑍𝐻 )|2] − (1 + 2𝑐)2𝑘𝔼[|𝑞(𝑍𝐻 )|2]

(2(‖𝐻 ‖ + 𝛽)(1 + 2𝑐))2𝑘
.

Lemma in hand, we can now complete the proof.

Proof of Theorem 7.15. Using Lemma 7.16 with 𝑞(𝑧) = 𝜒(𝑧) = (𝑧 − 𝜌1) … (𝑧 − 𝜌𝑘) and 𝑞̌(𝑧) = 𝑝(𝑧) =
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(𝑧 − 𝑟1) … (𝑧 − 𝑟𝑘), we find that

ℙ [dist(𝑍𝐻 , P) ≤
𝛽
2𝑐 ]

≥
𝔼[|𝑝(𝑍𝐻 )|2] − (1 + 2𝑐)2𝑘𝔼[|𝜒(𝑍𝐻 )|2]

(2(‖𝐻 ‖ + 𝛽)(1 + 2𝑐))2𝑘

≥
𝔼[|𝜒(𝑍𝐻 )|2]

22𝑘(‖𝐻 ‖ + 𝛽)2𝑘
(7.19)

≥
‖𝑒∗𝑛𝜒(𝐻)‖2

22𝑘𝜅𝑉 (𝐻 )2(‖𝐻 ‖ + 𝛽)2𝑘
Lemma 6.10

=
𝜓 2𝑘
𝑘 (𝐻 )

22𝑘𝜅𝑉 (𝐻 )2(‖𝐻 ‖ + 𝛽)2𝑘
Lemma 6.2.

Since the right hand side is nonzero and 𝑍𝐻 is supported on the spectrum of 𝐻 (and since 𝑐 ≤ 1/2
by assumption) this implies that for some 𝑖 ∈ [𝑘] and 𝜆 ∈ Spec𝐻

|𝜌𝑖 − 𝜆| ≤
𝛽
2𝑐
.

On the other hand, as we are assuming 𝛽/𝑐 ≤ gap(𝐻), there can be at most one eigenvalue
within 𝛽/2𝑐 of each 𝜌𝑖 — otherwise by the triangle inequality two such eigenvalues would be at
distance less that 𝛽/𝑐 ≤ gap(𝐻) from one another. Since there are only 𝑘 of the 𝜌𝑖’s, at least one
eigenvalue, say 𝜆, must be at least 𝛽/2𝑐-close some 𝜌𝑖 and additionally satisfy

ℙ [𝑍𝐻 = 𝜆] ≥
1
𝑘 (

𝜓𝑘(𝐻 )
2𝜅𝑉 (𝐻 )1/𝑘(‖𝐻 ‖ + 𝛽))

2𝑘

. (7.20)

By the triangle inequality, we then have

|𝑟𝑖 − 𝜆| ≤ |𝑟𝑖 − 𝜌𝑖 | + |𝜌𝑖 − 𝜆| ≤ 𝛽 (1 +
1
2𝑐)

. (7.21)

Finally,

‖𝑒∗𝑛(𝐻 − 𝑟𝑖)−𝑘‖1/𝑘 ≥
𝔼 [|𝑍𝐻 − 𝑟|−2𝑘]

1/2𝑘

𝜅𝑉 (𝐻 )1/𝑘
Lemma 6.10

≥
1

𝜅𝑉 (𝐻 )1/𝑘
⋅

1
(2𝑘)1/2𝑘 (

𝜓𝑘(𝐻 )
𝜅𝑉 (𝐻 )1/𝑘(‖𝐻 ‖ + 𝛽))

⋅ (
2𝑐

(2𝑐 + 1)𝛽)
,

where the second inequality uses 𝔼 [|𝑍𝐻 − 𝑟𝑖 |−2𝑘] ≥ ℙ[𝑍𝐻=𝜆]
|𝜆−𝑟|2𝑘 and (7.20), (7.21). This yields the

conclusion by substituting 𝑐 and noting that (2𝑘)1/2𝑘 ≤ 2.

Remark 7.17. By (7.20) and (7.21), the above proof shows that the culprit Ritz value 𝑟𝑖 is close to
an eigenvalue of 𝐻 and the corresponding right eigenvector has a large inner product with 𝑒𝑛.
This could alternatively be used to decouple the matrix using other techniques such as inverse
iteration.
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Proof of Lemma 7.16. We begin by partitioning the set  = {𝑠1, ..., 𝑠𝑘} according to which eigen-
value of 𝐻 is the closest: relabelling Spec𝐻 = {𝜆1, ..., 𝜆𝑛} as necessary, write  = 𝑆1 ⊔⋯⊔𝑆𝓁 , where
𝑆𝑗 consists of those 𝑠𝑖 whose closest eigenvalue is 𝜆𝑗 (breaking ties arbitrarily).

Now, recursively define a sequence of polynomials 𝑞0, … , 𝑞𝑙 with 𝑙 ≤ 𝑘 given by 𝑞0(𝑧) = 𝑞(𝑧)
and

𝑞𝑗+1(𝑧) ≜
∏𝑖∈𝑆𝑗+1(𝑧 − 𝑠𝑖)
∏𝑖∈𝑆𝑗+1(𝑧 − 𝑠𝑖)

𝑞𝑗(𝑧);

in other words, the 𝑞𝑗 interpolate between 𝑞 and 𝑞̌ by exchanging the original roots 𝑠1, ..., 𝑠𝑘 for the
perturbed ones 𝑠1, ..., 𝑠𝑘 , doing so in batches according to the partition  = 𝑆1 ⊔ ⋯ ⊔ 𝑆𝓁 . The proof
reduces to the following bound on 𝔼[|𝑞𝑗(𝑍𝐻 )|2] in terms of 𝔼[|𝑞𝑗−1(𝑍𝐻 )|2], which we will prove
shortly.
Claim 7.18. For each 𝑗 = 1, ..., 𝓁 , we have

𝔼[|𝑞𝑗(𝑍𝐻 )|2] ≤ (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2] + (2(‖𝐻 ‖ + 𝛽))2𝑘ℙ[𝑍𝐻 = 𝜆𝑗]𝟏{dist(𝜆𝑗 ,) ≤ 𝛽
2𝑐}.

In view of the claim, we can inductively assemble these bounds to compare 𝔼[|𝑞(𝑍𝐻 )|2] and
𝔼[|𝑞̌(𝑍𝐻 )2]:

𝔼[|𝑞̌(𝑍𝐻 )|2] = 𝔼[|𝑞𝓁 (𝑍𝐻 )|2]

≤ (1 + 2𝑐)2|𝑆𝓁 |𝔼[|𝑞𝓁−1(𝑍𝐻 )|2] + (2(‖𝐻 ‖ + 𝛽))2𝑘ℙ[𝑍𝐻 = 𝜆𝓁 ]𝟏{dist(𝜆𝓁 ,) ≤ 𝛽
2𝑐}

≤ (1 + 2𝑐)2𝑘𝔼[|𝑞0(𝑍𝐻 )|2]

+ ∑
𝑖∈[𝓁 ]

(2(‖𝐻 ‖ + 𝛽))2𝑘(1 + 2𝑐)2∑
𝑖
𝑗=1 |𝑆𝑖 |ℙ[𝑍𝐻 = 𝜆𝑖]𝟏{dist(𝜆𝑖 ,) ≤ 𝛽

2𝑐}

≤ (1 + 2𝑐)2𝑘
(
𝔼[|𝑞(𝑍𝐻 )|2] + (2(‖𝐻 ‖ + 𝛽))2𝑘 ∑

𝑖∈[𝓁 ]
ℙ[𝑍𝐻 = 𝜆𝑖]𝟏{dist(𝜆𝑖 ,) ≤ 𝛽

2𝑐})

≤ (1 + 2𝑐)2𝑘 (𝔼[|𝑞(𝑍𝐻 )|2] + (2(‖𝐻 ‖ + 𝛽))2𝑘ℙ [dist(𝑍𝐻 ,) ≤ 𝛽
2𝑐]) .

Rearranging gives the bound advertised in the lemma.
It remains to prove Claim 7.18. To lighten notation, we’ll write 𝑠 and 𝑠 for an arbitrary element

in 𝑆𝑗 ⊂  , and its perturbation, respectively. For any 𝑚 ∈ [𝑛] ⧵ 𝑗 and 𝑠 ∈ 𝑆𝑗 , we have |𝜆𝑚 − 𝑠| ≥ gap(𝐻)
2 ,

so
||||
𝜆𝑚 − 𝑠
𝜆𝑚 − 𝑠

||||
≤ 1 +

||||
𝑠 − 𝑠
𝜆𝑚 − 𝑠

||||
≤ 1 +

2|𝑠 − 𝑠|
gap(𝐻)

≤ 1 + 2𝑐,

and hence
∏
𝑠∈𝑆𝑗

||||
𝜆𝑚 − 𝑠
𝜆𝑚 − 𝑠

||||
≤ (1 + 2𝑐)|𝑆𝑗 |.
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Using the above, the definition of 𝑞𝑗 in terms of 𝑞𝑗−1, and expanding the expectation as a sum, we
find

𝔼[|𝑞𝑗(𝑍𝐻 )|2] = ℙ[𝑍𝐻 = 𝜆𝑗]|𝑞𝑗(𝜆𝑗)|2 + ∑
𝑚∈[𝑛]⧵𝑗

ℙ[𝑍𝐻 = 𝜆𝑚]|𝑞𝑗−1(𝜆𝑚)|2 ∏
𝑠∈𝑆𝑗+1

||||
𝜆𝑚 − 𝑠
𝜆𝑚 − 𝑠

||||

2

≤ ℙ[𝑍𝐻 = 𝜆𝑗]|𝑞𝑗(𝜆𝑗)|2 + (1 + 2𝑐)2|𝑆𝑗 | ∑
𝑚∈[𝑛]⧵𝑗

ℙ[𝑍𝐻 = 𝜆𝑚]|𝑞𝑗−1(𝜆𝑚)|2

≤ ℙ[𝑍𝐻 = 𝜆𝑗] (|𝑞𝑗(𝜆𝑗)|2 − (1 + 2𝑐)2|𝑆𝑗 ||𝑞𝑗(𝜆𝑗−1)|2) + (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2] (7.22)

≤ ℙ[𝑍𝐻 = 𝜆𝑗]|𝑞𝑗−1(𝜆𝑗)|2(
∏
𝑠∈𝑆𝑗

(1 +
||||
𝑠 − 𝑠
𝜆𝑗 − 𝑠

||||)

2

− (1 + 2𝑐)2|𝑆𝑗 |
)

+ (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2] (7.23)

We have defined 𝑆𝑗 so that 𝜆𝑗 is the closest eigenvalue to every 𝑠 ∈ 𝑆𝑗 , so dist(𝜆𝑗 ,) = dist(𝜆𝑗 , 𝑆𝑗).
Thus when dist(𝜆𝑗 ,) > 𝛽

2𝑐 , we can rearrange to see that

0 ≥ (1 +
𝛽

dist(𝜆𝑗 , 𝑆𝑗))

2|𝑆𝑗 |

− (1 + 2𝑐)2|𝑆𝑗 |

≥ ∏
𝑠∈𝑆𝑗

(1 +
|𝑠 − 𝑠|
|𝜆𝑗 − 𝑠|)

2

− (1 + 2𝑐)2|𝑆𝑗 |;

the latter is a factor of the first term on the right hand side of (7.23), so in the event dist(𝜆𝑗 ,) > 𝛽
2𝑐

we have
𝔼[|𝑞𝑗(𝑍𝐻 )|2] ≤ (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2].

On the other hand, (7.22) implies that independent of dist(𝜆𝑗 ,) — and thus in particular when
dist(𝜆𝑗 ,) ≤ 𝛽

2𝑐 — we have the inequality

𝔼[|𝑞𝑗(𝑍𝐻 )|2] ≤ ℙ[𝑍𝐻 = 𝜆𝑗]|𝑞𝑗(𝜆𝑗)|2 + (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2]
≤ ℙ[𝑍𝐻 = 𝜆𝑗](2(‖𝐻 ‖ + 𝛽))2𝑘 + (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2.

For the final line, note that 𝜆𝑗 ∈ 𝔻(0, ‖𝐻 ‖) and, because  ⊂ 𝔻(0, ‖𝐻 ‖), and |𝑠 − 𝑠| ≤ 𝛽 for every
𝑠 ∈  , the roots of each 𝑞𝑗 are contained in 𝔻(0, ‖𝐻 ‖ + 𝛽). Combining the bounds on 𝔼[|𝑞𝑗(𝑍𝐻 )|2] in
the cases dist(𝜆𝑗 ,) > 𝛽

2𝑐 and dist(𝜆𝑗 ,) ≤ 𝛽
2𝑐 , we find that

𝔼[|𝑞𝑗(𝑍𝐻 )|2] ≤ (1 + 2𝑐)2|𝑆𝑗 |𝔼[|𝑞𝑗−1(𝑍𝐻 )|2] + (2(‖𝐻 ‖ + 𝛽))2𝑘ℙ[𝑍𝐻 = 𝜆𝑗]𝟏 [dist(𝜆𝑗 ,) ≤ 𝛽
2𝑐] ,

estabilishing the claim.
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Finite Arithmetic Implementation of RITZ-OR-DEC
In this subsection we combine Theorem 7.15 and the regularization procedure of Lemma 7.14 to
obtain a finite arithmetic algorithm, RITZ-OR-DEC, for finding 𝜃-optimal Ritz values in the sense
of Definition 6.3, for 𝜃 set as in 7.1, and with the additional feature that the Ritz values are not
too close to Spec𝐻 . The first step is testing whether a set of putative approximate Ritz values are
𝜃-optimal.

OPTIMAL

Input: Hessenberg 𝐻 ∈ 𝑪𝑛×𝑛, {𝑠1, … , 𝑠𝑘} =  ⊂ 𝑪
Global Data: Optimality parameter 𝜃
Output: Optimality flag opt

Requires:
Ensures: If opt = true, then  are 𝜃-optimal; if opt = false, then they are not (.9981/𝑘𝜃)-
optimal.

1. 𝑣0 ← 𝑒𝑛

2. For 𝑗 = 0, … , 𝑘 − 1,

(a) 𝑣𝑗+1 ← fl ((𝐻 − 𝑠𝑗+1)∗𝑣𝑗)

3. If fl(‖𝑣𝑘‖) ≥ .999𝜃𝑘𝜓 𝑘
𝑘 (𝐻 ), opt ← false, else opt ← true.

Lemma 7.19 (Guarantees for OPTIMAL). Assume that 𝑠1, … , 𝑠𝑘 ∈ 𝔻(0, 𝐶‖𝐻‖) and

𝐮 ≤ 𝐮OPTIMAL(𝑛, 𝑘, 𝐶, ‖𝐻 ‖, 𝜃) ≜
1

2 ⋅ 103𝑛2 (
𝜓𝑘(𝐻 )

𝜃(2 + 2𝐶)‖𝐻‖)

𝑘

= 2
−𝑂(lg 𝑛+𝑘 lg

𝜃‖𝐻‖
𝜓𝑘 (𝐻 )); (7.24)

then OPTIMAL satisfies its guarantees and runs in at most 𝑇OPTIMAL(𝑘) ≜ 4𝑘2 = 𝑂(𝑘2) arithmetic
operations.

Proof. From our initial floating point assumptions, we have 𝑣𝑖 = (𝐻 − 𝑠𝑖)𝑣𝑖−1 + Δ𝑖 , where Δ is
supported only on its 𝑖+1 final coordinates, each of which has magnitude at most (1+𝐶)‖𝐻‖‖𝑣𝑖−1‖⋅𝑛𝐮,
giving the crude bound ‖Δ𝑖‖ ≤ (1 + 𝐶)‖𝐻‖‖𝑣𝑖−1‖ ⋅ 𝑛3/2𝐮. Thus inductively

‖𝑣𝑖‖ ≤ ((1 + 𝐶)‖𝐻‖(1 + 𝑛3/2𝐮))
𝑖

and given 𝐮 ≤ 𝑛−3/2,
||fl (‖𝑣𝑘‖) − ‖𝑒∗𝑛𝑝(𝐻)‖|| ≤ 𝑛𝐮‖𝑣𝑘‖ + ||‖𝑣𝑘‖ − ‖𝑒∗𝑛𝑝(𝐻)‖||

≤ 𝑛𝐮 ((1 + 𝐶)‖𝐻‖(1 + 𝑛3/2𝐮))
𝑘 + 𝑘𝑛3/2𝐮 ⋅ ((1 + 𝐶)‖𝐻‖(1 + 𝑛3/2𝐮))

𝑘

≤ 2𝑛2(2 + 2𝐶)𝑘‖𝐻 ‖𝑘𝐮.
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Thus if fl(‖𝑣𝑘‖) ≥ .999𝜃𝑘𝜓 𝑘
𝑘 (𝐻 ), our assumption on 𝐮 ensures

‖𝑒∗𝑛𝑝(𝐻)‖ ≥ .999𝜃𝑘𝜓 𝑘
𝑘 (𝐻 ) − 2(1 + 𝐶)𝑘‖𝐻 ‖𝑘𝑘2𝑛3/2𝐮 ≥ .998𝜃𝑘𝜓 𝑘

𝑘 (𝐻 ).

On the other hand, if fl(‖𝑣𝑘‖) ≤ .999𝜃𝑘𝜓 𝑘
𝑘 (𝐻 ), then analogously we have

‖𝑒∗𝑛𝑝(𝐻)‖ ≤ 𝜃𝑘𝜓 𝑘
𝑘 (𝐻 ).

For the running time, each 𝑣𝑖 is supported only on 𝑖 + 2 coordinates, so each multiplication
(𝐻 − 𝑠𝑖)𝑣𝑖−1 requires 3𝑖 + 3 arithmetic operations, for a total of 3𝑘(𝑘 +1)/2; we then require a further
2𝑘 to compute ‖𝑣𝑘‖, giving 3𝑘(𝑘 + 1)/2 + 2𝑘 ≤ 4𝑘2 arithmetic operations overall.

RITZ-OR-DEC

Input: Hessenberg 𝐻 , working accuracy 𝜔, failure probability 𝜙
Global Data: Norm bound Σ, optimality parameter 𝜃 as in Table 7.1
Requires: 𝐻 is absolutely 𝜔-decoupled, ‖𝐻 ‖ ≤ Σ, gap(𝐻) ≥ 2𝜔2

Σ , 𝑘/𝜙 ≥ 2.
Output: Hessenberg 𝐻̂ , 𝜃-approximate Ritz values ̌, decoupling flag dec.
Ensures: With probability at least 1 − 𝜙, dist(̌, Spec 𝐻) ≥ 𝜂1 (as defined in line 1) and exactly
one of the following holds:

• dec = false, 𝐻 = 𝐻 , and ̌ is an exact set of 𝜃-optimal Ritz values of 𝐻 , satisfying
̌ ⊂ 𝔻(0, 1.1‖𝐻 ‖).

• dec = true and for some 𝑟 ∈ ̌, 𝐻 = IQR(𝐻 , (𝑧 − 𝑟)𝑘) is absolutely 𝜔-decoupled.

1. 𝛽 ← 𝜔2

16⋅101⋅Σ , 𝜂2 ←
𝛽
2 , 𝜂1 ←

𝜂2√
2𝑘/𝜙

= 𝜔2
√
𝜙

32⋅101⋅Σ
√
2𝑘

2.  ← SmallEig (𝐻(𝑘), 𝛽/2, forward, 𝜙/2)

3. {𝑟1, … , 𝑟𝑘} = ̌ ← {𝑟1 +𝑤1, … , 𝑟𝑘 +𝑤𝑘}, where the 𝑤𝑖 are i.i.d samples from Unif(𝔻(0, 𝜂2))

4. If OPTIMAL(̌, 𝐻 , 𝜃) = true, set 𝐻 ← 𝐻 and dec ← false

5. Else if OPTIMAL(̌, 𝐻 , 𝜃) = false, for 𝑖 = 1, ..., 𝑘

(a) 𝐻 ← IQR(𝐻 , (𝑧 − 𝑟𝑖)𝑘)

(b) If 𝐻𝑗+1,𝑗 ≤ 𝜔 for any 𝑗 ∈ {𝑛 − 𝑘, 𝑛 − 𝑘 + 1, … , 𝑛 − 1}, set dec ← true and halt
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Lemma 7.20 (Guarantees for RITZ-OR-DEC). Assuming that

𝐮 ≤ 𝐮RITZ-OR-DEC(𝑛, 𝑘, Σ, 𝐵, 𝜃, 𝜔, 𝜙)

≜ min

{

𝐮OPTIMAL(𝑛, 𝑘, 1.1, Σ, 𝜃),
𝜔

8𝑛1/2Σ
𝐮IQR (

𝑛, 𝑘, 1.1, Σ, 𝐵,
𝜔2

√
𝜙

32 ⋅ 101 ⋅ Σ
√
2𝑘)

}

(7.25)

= 2−𝑂(lg 𝑛𝐵+𝑘 lg
𝜃‖𝐻‖⋅𝑘Σ
𝜔𝜙 ) (7.26)

then RITZ-OR-DEC satisfies its guarantees and its running time depends on the value of the decoupling
flag. In either case it makes one call to SmallEig, in addition to that call

(i) if dec = false, RITZ-OR-DEC uses at most

𝑇RITZ-OR-DEC(𝑛, 𝑘, false) ≜ 𝑘𝐶D + 𝑘 + 𝑇OPTIMAL(𝑘) = 𝑂(𝑘2)

arithmetic operations.

(ii) otherwise, RITZ-OR-DEC uses at most

𝑇RITZ-OR-DEC(𝑛, 𝑘, true) ≜ 𝑇OPTIMAL(𝑘) + 𝑘(𝑇IQR(𝑛, 𝑘) + 𝑘 + 𝐶D + 1) = 𝑂(𝑘2𝑛2)

arithmetic operations.

Proof. First, the assumptions of RITZ-OR-DEC on its input parameters imply that

𝜂1 + 𝜂2 ≤ 𝛽 ≤
𝜔2

Σ
≤ gap(𝐻)/2

so we can apply Lemma 7.14 to find that dist(̌, Spec 𝐻) ≥ 𝜂1 with probability at least

1 − 𝑘 (
𝜂1
𝜂2)

2

= 1 − 𝑘
(

√
𝜙
2𝑘)

2

≥ 1 − 𝜙/2.

By the black box assumptions on SmallEig,  is a set of 𝛽/2-forward approximate Ritz values
with probability at least 1 − 𝜙/2. The perturbed set ̌ are in this case 𝛽-forward approximate Ritz
values, and we further have

𝛽 ≤ 0.1𝜔 ≤ 0.1‖𝐻 ‖

so the set ̌ is contained in a disk of radius 1.1‖𝐻 ‖.
The assumption 𝐮 ≤ 𝐮OPTIMAL(1.1, 𝑘, 𝑛, 𝐻 ) means that if OPTIMAL(̌, 𝐻 , 𝜃) outputs opt = true

we are guaranteed that ̌ is indeed a set of 𝜃-optimal Ritz values for 𝐻 . On the other hand if
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opt = false, then by Lemma 7.19 the ̌ fail to be 0.9981/𝑘𝜃-optimal. Examining the definitions of
𝜃 and 𝛽 , we verify the hypotheses of Theorem 7.15:

𝑐 =
1
2 (

0.9981/𝑘𝜃
(2𝜅𝑉 (𝐻 )4)1/2𝑘

− 1) ≥
1
2 (

101
100 (2𝐵

4)1/2𝑘

(2𝐵4)1/2𝑘
− 1) =

1
200

≥
𝛽

gap(𝐻)
,

and conclude that there is some 𝑟 ∈ ̌ for which

‖𝑒∗𝑛(𝐻 − 𝑟)−𝑘‖1/𝑘 ≥
1

2𝜅𝑉 (𝐻 )2/𝑘
⋅ (

𝜓𝑘(𝐻 )
‖𝐻 ‖ + 𝛽)

⋅
(
1 − (2𝜅4𝑉 )

1/2𝑘

0.9981/𝑘𝜃

𝛽 )

≥
1
4
⋅ (

𝜔
2Σ)

⋅ (
1 − 100

101

𝛽 ) 𝐵2/𝑘 ≤ 2, 𝜓𝑘(𝐻 ) ≤ 𝜔, 𝛽 ≤ ‖𝐻‖

≥
2
𝜔

by the definition of 𝛽 in line 1. In the event that dist(̌, Spec 𝐻) ≥ 𝜂1, our choice of 𝐮 in (7.25)
means that we can apply Lemma 7.12 to 𝐻 = IQR(𝐻 , (𝑧 − 𝑟)𝑘) with 𝐶 = 1.1, giving

‖𝐻 − iqr(𝐻 , (𝑧 − 𝑟)𝑘)‖𝐹 ≤ 32𝜅𝑉 (𝐻 )‖𝐻 ‖(
4.2‖𝐻‖

dist(𝑟 , Spec𝐻))

𝑘

𝑛1/2𝜈IQR(𝑛)𝐮 ≤ 𝜔/2.

Using 𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑟)𝑘) ≤ 𝜏(𝑧−𝑟)𝑘 (𝐻 ) ≤ 𝜔/2, we find that iqr(𝐻 , (𝑧 − 𝑟)𝑘) is absolutely 𝜔/2-decoupled,
so 𝐻 must be 𝜔-decoupled, completing the proof of correctness.

To analyze the running time, note that when dec = false other than the call to SmallEig,
in line 3 𝑘 samples are taken from Unif(𝔻(0, 𝜂2)) and 𝑘 additions are made which amounts to
𝐶D𝑘 + 𝑘 operations, and in line 4 OPTIMAL is called once, adding 𝑇OPTIMAL(𝑘) to the running time.
In addition to that, when dec = true, at most 𝑘 calls to IQR with degree 𝑘 are made and each
time 𝑘 subdiagonals of 𝐻̂ are checked, adding 𝑘𝑇IQR(𝑛, 𝑘) + 𝑘2 operations.

7.6 Finite Arithmetic Analysis of One Iteration of SH𝑘,𝐵

In this section we provide the finite arithmetic implementation and analysis of a single iteration of
the shifting strategy Sh𝑘,𝐵 from Chapter 6. In exact arithmetic, SH𝑘,𝐵 takes as input a Hessenberg
matrix𝐻 with 𝜅𝑉 (𝐻 ) ≤ 𝐵, and a set  of 𝜃-optimal Ritz values for𝐻 , and ouputs a new Hessenberg
matrix 𝐻̂ unitarily equivalent to 𝐻 , with 𝜓𝑘(𝐻̂ ) ≤ (1 − 𝛾)𝜓𝑘(𝐻 ). Along the way, it first uses a
subroutine find to generate a promising Ritz value 𝑟 ∈  and then — in the event that the shift
(𝑧 − 𝑟)𝑘 does not reduce the potential — uses a subroutine exc to produce a set of exceptional
shifts  , one of which is guaranteed to achieve potential reduction. Let us now specify the finite
arithmetic counterparts of these routines, FIND and EXC, and and state their guarantees.
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Computation of 𝜏 and 𝜓𝑘.
The shifting strategy SH𝑘,𝐵 needs access to both 𝜏𝑝(𝐻 ) and 𝜓𝑘(𝐻 ). The former can be computed
using Lemma 7.13. For the latter, we will assume for simplicity that 𝜓 𝑘

𝑘 (𝐻 ) can be computed exactly
(this could for instance be achieved by temporary use of moderately increased precision). On the
other hand, in some places it will be important to account for the error in computing the 𝑘-th root
of 𝜓 𝑘

𝑘 (𝐻 ), so we will denote
𝜓𝑘(𝐻 ) ≜ fl((𝜓

𝑘
𝑘 (𝐻 ))

1/𝑘
) ,

and assume
|𝜓𝑘(𝐻 ) − 𝜓𝑘(𝐻 )| ≤ (1 − 0.9991/𝑘)𝜓𝑘(𝐻 ) ≤ 0.001𝜓𝑘(𝐻 ), (7.27)

which as per Lemma 7.7 can be computed in 𝑇𝜓 (𝑘) ≜ 𝑘 + 𝑇root(𝑘, 1 − 0.9991/𝑘) arithmetic operations
provided that

𝐮 ≤ 𝐮𝜓 (𝑘) ≜
1 − 0.9991/𝑘

𝑘(𝑐root + 1 − 0.9991/𝑘)
= 2−𝑂(lg 𝑘). (7.28)

This setting of the accuracy of 𝜓𝑘 will be convenient for the analysis of EXC below.

Analysis of FIND.
To produce a promising Ritz value with FIND, we will proceed as in the exact arithmetic case,
using TAU𝑘 to guide our binary search procedure. The guarantees on TAU𝑘 are only strong enough
to ensure that we discover a (1.01𝜅𝑉 (𝐻 ))

4 lg 𝑘
𝑘 -promising Ritz value — as opposed the 𝜅𝑉 (𝐻 )

4 lg 𝑘
𝑘 -

optimality we are guaranteed in the exact case.

FIND

Input: Hessenberg 𝐻 , a set  = {𝑟1, … , 𝑟𝑘} ⊂ ℂ
Global Data: Promising parameter 𝛼 = (1.01𝐵)

4 lg 𝑘
𝑘

Output: A complex number 𝑟 ∈ 
Requires: 𝜓𝑘(𝐻 ) > 0
Ensures: 𝑟 is 𝛼-promising for 𝛼 as in Table 7.1

1. For 𝑗 = 1, ..., lg 𝑘

(a) Evenly partition  = 0 ⊔1, and for 𝑏 = 0, 1 set 𝑝𝑗,𝑏 = ∏𝑟∈𝑏
(𝑧 − 𝑟)

(b)  ← 𝑏𝑗 , where 𝑏𝑗 is the 𝑏 that minimizes TAU𝑘/2(𝐻 , 𝑝2𝑗−1𝑗,𝑏 )

2. Output  = {𝑟}
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Lemma 7.21 (Guarantees for FIND). Assume that  ⊂ 𝔻(0, 𝐶‖𝐻‖) and

𝐮 ≤ 𝐮FIND (𝑛, 𝑘, 𝐶, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist(, Spec 𝐻))
≜ 𝐮TAU(𝑛, 𝑘/2, 𝐶, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist(, Spec 𝐻)) (7.29)

= 2−𝑂(lg 𝑛𝜅𝑉 (𝐻 )+𝑘 lg ‖𝐻 ‖
dist(,Spec 𝐻)).

Then FIND satisfies its guarantees, and runs in

𝑇FIND(𝑛, 𝑘) ≜ 2 lg 𝑘𝑇TAU(𝑛, 𝑘/2) + lg 𝑘 = 𝑂(𝑘 lg 𝑘 ⋅ 𝑛2)

arithmetic operations.

Proof. This proof will slightly modify that of Lemma 6.13, where we analyzed find in exact arith-
metic. The definition of 𝐮FIND is sufficient to let us invoke Lemma 7.13 and conclude that it
satisfies its guarantees throughout FIND. On each step of the iteration, write 𝑏𝑗 for the 𝑏 ∈ {0, 1}
maximizing ‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−1‖. Applying Lemma 7.13, for each 𝑏 ∈ {0, 1} we have

|||TAU
𝑘/2(𝐻 , 𝑝𝑗,𝑏) − ‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−1‖−1||| ≤ 0.0011‖𝑒∗𝑛𝑝𝑗,𝑏(𝐻 )−1‖−1,

and thus it always holds that

‖𝑒∗𝑛𝑝𝑗,𝑏𝑗 (𝐻 )−1‖2 ≥ (1 − 0.0022)2‖𝑝𝑗,𝑏𝑗 (𝐻 )−1‖2 ≥
1

2.02 (
‖𝑝𝑗,0(𝐻 )−1‖2 + ‖𝑝𝑗,1(𝐻 )−1‖2) .

We now mirror the proof of the analogous Lemma 2.7 in Part 1 of this work, which analyzes FIND
in exact arithmetic. On each step of the iteration, we have defined thing so that

𝑝𝑗,𝑏𝑗 (𝑧) = 𝑝𝑗+1,0(𝑧)𝑝𝑗+1,1(𝑧). (7.30)

On the first step of the subroutine, this identity becomes 𝑝(𝑧) = 𝑝1,0(𝑧)𝑝1,1(𝑧), where 𝑝(𝑧) is the
polynomial whose roots are the full set  of approximate Ritz values, so

‖𝑒∗𝑛𝑝1,𝑏1(𝐻 )−1‖2 ≥
1

2.02 (
‖𝑒∗𝑛𝑝1,0(𝐻 )−1‖2 + ‖𝑒∗𝑛𝑝1,1(𝐻 )−1‖2)

≥
1

1.01𝜅𝑉 (𝐻 )2
𝔼 [

1
2 (

|𝑝1,0(𝑍𝐻 )|−2 + |𝑝1,1(𝑍𝐻 )|−2)] Lemma 6.10

≥
1

1.01𝜅𝑉 (𝐻 )2
𝔼[|𝑝(𝑍𝐻 )|−1] AM/GM and (7.30)
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Applying the same argument to each subsequent step,

‖𝑒∗𝑛𝑝𝑗+1,𝑏𝑗+1(𝐻 )−2
𝑗
‖2 ≥

1
1.01𝜅𝑉 (𝐻 )2

𝔼 [
1
2 (

|𝑝𝑗+1,0(𝑍𝐻 )|−2
𝑗+1
+ |𝑝𝑗+1,1(𝑍𝐻 )|−2

𝑗+1

)] Lemma 6.10

≥
1

1.01𝜅𝑉 (𝐻 )2
𝔼 [|𝑝𝑗+1,0(𝑍𝐻 )𝑝𝑗+1,1(𝑍𝐻 )|

−2𝑗
] AM/GM

≥
1

1.01𝜅𝑉 (𝐻 )4
‖𝑒∗𝑛(𝑝𝑗+1,0(𝐻 )𝑝𝑗+1,1(𝐻 ))−2

𝑗−1
‖ Lemma 6.10

=
1

1.01𝜅𝑉 (𝐻 )4
‖𝑒∗𝑛𝑝𝑗,𝑏𝑗 (𝐻 )−2

𝑗−1
‖. (7.30)

Paying a further 𝜅𝑉 (𝐻 )2 on the final step to convert the norm into an expectation, we get

𝔼 [|𝑍𝐻 − 𝑟|−𝑘] ≥ (
1

1.01𝜅𝑉 (𝐻 ))

4 lg 𝑘

𝔼 [|𝑝(𝑍𝐻 )|−1]

as promised.
For the runtime, we make 2 lg 𝑘 calls to TAU𝑘/2 and lg 𝑘 comparisons of two floating point

numbers.

Analysis of EXC.
We now come to the exceptional shift, effectuated by the subroutine EXC in the event that a
promising Ritz value fails to achieve potential reduction. As with FIND, we will proceed similarly
to the exact arithmetic setting. However, we will need to ensure that all of our exceptional shifts
are suitably far from Spec𝐻 , so that the IQR steps executed with them will be forward stable.
To achieve this, we will apply a random perturbation, in the same spirit as Section 7.4. Let us
first pause to prove a key lemma ensuring potential reduction in finite arithmetic for sufficiently
well-conditioned shifts. In particular, we will use the forward error guarantee of Lemma 7.12 to
analyze the potential of IQR(𝐻 , 𝑝(𝑧)), by directly comparing it to that of iqr(𝐻 , 𝑝(𝑧)).

Lemma 7.22. Let 𝑝(𝑧) = (𝑧 − 𝑠1)...(𝑧 − 𝑠𝑚) for some floating point complex numbers  = {𝑠1, ..., 𝑠𝑚} ⊂
𝔻(0, 𝐶‖𝐻‖), and assume that for some 𝜔 > 0,

𝐮 ≤ 𝐮7.22(𝑛, 𝑘, 𝐶, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), 𝜔)

≜
𝜔

103𝑛1/2‖𝐻 ‖
𝐮IQR(𝑛, 𝑘, 𝐶, ‖𝐻 ‖, 𝜅𝑉 (𝐻 ), dist( , Spec 𝐻)) (7.31)

= 2−𝑂(lg
𝑛𝜅𝑉 (𝐻)

𝜔 +𝑘 lg ‖𝐻 ‖
dist( ,Spec 𝐻)).

Then at least one of the following holds:

(i) (Decoupling) IQR(𝐻 , 𝑝(𝑧)) is absolutely 𝜔-decoupled
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(ii) (Potential Approximation) 𝜓𝑘(IQR(𝐻 , 𝑝(𝑧))) ≤ 1.0011𝜓𝑘(iqr(𝐻 , 𝑝(𝑧))).

Proof. Calling ̃̂𝐻 = IQR(𝐻 , 𝑝(𝑧)) and 𝐻 = iqr(𝐻 , 𝑝(𝑧)), one of two cases are possible. If 𝐻𝑖+1,𝑖 <
0.999𝜔 for some 𝑖 ∈ [𝑛 − 1], then applying Lemma 7.12 and our assumption on 𝐮,

̃̂𝐻 𝑖+1,𝑖 < 𝐻𝑖+1,𝑖 + 0.001𝜔 < 𝜔.

On the other hand, if for every 𝑖 ∈ [𝑛 − 1] we have 𝐻𝑖+1,𝑖 ≥ 0.999𝜔, then

𝜓𝑘(
̃̂𝐻) ≤ 𝜓𝑘(𝐻)(

∏
𝑖∈[𝑛−1]

(1 +
0.001𝜔
𝐻𝑖+1,𝑖 ))

1/𝑘

≤ 1.0011𝜓𝑘(𝐻).

EXC

Input: Hessenberg 𝐻 , initial shift 𝑟 , working accuracy 𝜔, stagnation ratio 𝜉 , failure probability
tolerance 𝜙
Global Data: Condition number bound 𝐵, norm bound Σ, optimality parameter 𝜃 , promising
parameter 𝛼
Output: Finite subset  ⊂ ℂ.
Requires: 𝜅𝑉 (𝐻 ) ≤ 𝐵, ‖𝐻 ‖ ≤ Σ, 𝐻 is not absolutely 𝜔-decoupled 𝑟 is a 𝜃-approximate, 𝛼-
promising Ritz value, and 𝜏(𝑧−𝑟)𝑘 (𝐻 ) ≥ 𝜉𝜓𝑘(𝐻 )
Ensures: With probability at least 1 − 𝜙, some 𝑠 ∈  satisfies at least one of

• (Decoupling) IQR(𝐻 , (𝑧 − 𝑠)𝑘) is absolutely 𝜔-decoupled

• (Potential Reduction) 𝜓𝑘(IQR(𝐻 , (𝑧 − 𝑠)𝑘)) ≤ 1.0011𝛾𝜓𝑘(𝐻 ).

1. 𝑅 ← 21/𝑘𝛼𝐵1/𝑘𝜃𝜓𝑘(𝐻 )

2. 𝜀 ← (
𝜉𝛾

(13𝐵4)1/𝑘𝛼2𝜃2)
𝑘
𝑘−1

3. 0 ← maximal 0.99𝜀-net of 𝔻(0, 1 + 𝜀)

4. 𝑤 ∼ Unif (𝔻(0, 𝜀𝑅))

5.  ← fl ((𝑟 + 𝑤 + 𝑅0)) ∩ 𝔻(𝑟, 𝑅)
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Lemma 7.23 (Guarantees for EXC). Assume that |𝑟 | + 1.001𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 ) ≤ 𝐶‖𝐻‖ and

𝐮 ≤ 𝐮EXC(𝑛, 𝑘, 𝐶, Σ, 𝐵, 𝜃, 𝜔, 𝜙, 𝛾 , 𝜉 , 𝛼)

≜ min
{
𝐮𝜓 (𝑘),

0.1𝜀 ⋅ 1.998𝜃𝛼𝐵𝜔
4(𝜀 + 2(1 + 𝜀)𝐶Σ)

,

𝐮7.22 (
𝑛, 𝑘, 𝐶, Σ, 𝐵, (

𝜉𝛾
(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

⋅
1.998 𝜃𝛼𝐵1/𝑘𝜔

√
𝜙

√
3𝑛

, 𝜔
)

}

(7.32)

= 2−𝑂(𝑘 log
𝑛Σ𝐵𝛼𝜃
𝜉𝛾𝜔𝜙 ). (7.33)

Then EXC satisfies its guarantees and runs in at most

𝑇EXC(𝑛, 𝑘, 𝜉 , 𝛾 , 𝐵, 𝛼, 𝜃) ≜ 𝑇𝜓 (𝑘) + 2𝑆
((

𝜉𝛾
(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

)
+ 𝐶D + 𝑂(1) = 𝑂 (

𝐵
8
𝑘−1

(
𝛼2𝜃2

𝜉𝛾 )

2𝑘
𝑘−1

)

arithmetic operations and

| | ≤ 𝑆
((

𝜉𝛾
(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

)
= 𝑂

(
𝐵

8
𝑘−1

(
𝛼2𝜃2

𝜉𝛾 )

2𝑘
𝑘−1

)

where the function 𝑆(𝜀) = 𝑂(𝜀−2) is defined in (7.35).

Proof. From (7.27), the fact that 𝐮 ≤ 𝐮𝜓 (𝑘) we can bound
1.998 𝜃𝛼𝐵𝜓𝑘(𝐻 ) ≤ (2 ⋅ .999)1/𝑘𝜃𝛼𝐵𝜓𝑘(𝐻 ) ≤ 𝑅 ≤ 1.001 ⋅ 𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 ), (7.34)

meaning that (as 𝜓𝑘(𝐻 ) ≤ ‖𝐻‖) the set  is contained in a disk of radius |𝑟 |+1.001𝜃𝛼𝐵1/𝑘‖𝐻 ‖ = 𝐶‖𝐻‖.
We can then obtain that

ℙ [𝑍𝐻 ∈ 𝔻(𝑟, 𝑅)] ≥ ℙ [|𝑍𝐻 − 𝑟| ≤ 1.998 𝜃𝛼𝜅1/𝑘𝑉 (𝐻 )𝜓𝑘(𝐻 )] by (7.34)

≥ (1 −
1

1.998)
2 𝜉 2𝑘

𝜅𝑉 (𝐻 )4𝛼2𝑘𝜃2𝑘
[17, Lemma 2.8] with 𝑡 = 1

1.998

≥
0.24 𝜉 2𝑘

𝐵4𝛼2𝑘𝜃2𝑘
≜ 𝑃.

When we shift and scale each point 𝑠0 ∈ 0 in finite arithmetic,

|fl(𝑟 + 𝑤 + 𝑅𝑠0) − 𝑟 + 𝑤 + 𝑅𝑠0| ≤
3𝐮

1 − 3𝐮
|𝑟 + 𝑤 + 𝑅𝑠0|

≤ 4𝐮 (|𝑟 | + 𝜀 + (1 + 𝜀)1.001𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 ))
≤ 4𝐮 (𝜀 + 2(1 + 𝜀)𝐶Σ)
≤ 0.1𝜀 ⋅ 1.998 𝜃𝛼𝐵𝜔
≤ 0.1𝜀𝑅
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from our assumption on 𝐮, which means that the computed  still contains a 𝜀𝑅-net of 𝔻(𝑟, 𝑅).
We will assume for simplicity that one can perform the intersection in the final line of EXC while
preserving the property that  is a maximal 𝜀-net of 𝔻(𝑟, 𝑅)) —this can be achieved, e.g., by
intersecting with a slightly larger set and projecting all points outside 𝔻(𝑟, 𝑅)) to this latter set.
Since  is a maximal 𝜀-net of 𝔻(𝑟, 𝑅)), it has size at most 9/𝜀2, and we may recycle a calculation
from [17],

max
𝑠∈

𝜏−2𝑘(𝑧−𝑠)𝑘 (𝐻 ) ≥
𝑃

9𝐵2𝜀2𝑘−2𝑅2𝑘
≥

1
𝛾 2𝑘𝜓 2𝑘

𝑘 (𝐻 )

provided that 𝜀 is no larger than

(
𝑃𝛾 2𝑘𝜓 2𝑘

𝑘 (𝐻 )
9𝐵2𝑅2𝑘 )

1
2𝑘−2

≥ (
0.24𝜉 2𝑘𝛾 2𝑘

𝐵6𝛼2𝑘𝜃2𝑘 ⋅ 9 ⋅ 2.0012𝜃2𝑘𝛼2𝑘𝐵2)

1
2𝑘−2

≥ (
𝜉𝛾

(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

,

which is the expression appearing in line 2 of EXC.
On the other hand, after the random translation, one can quickly show that every 𝑠 ∈  is

forward stable with high probability. Because the net is maximal (meaning that no two of the
points in it are within 𝜀𝑅 of one another) each eigenvalue 𝜆 ∈ Spec𝐻 lies within distance 𝜀𝑅 of at
most three points in the net, so the probability that dist(𝜆,) < 𝜂 after the random translation is
at most 3𝜂2/𝜀2𝑅2. Thus the probability that dist(Spec𝐻 ,) < 𝜂 after the random translation is at
most 3𝑛𝜂2/𝜀2𝑅2. To ensure that this is smaller than the failure probability 𝜙, we can safely set

𝜂 =
𝜀𝑅

√
𝜙

√
3𝑛

≥ (
𝜉𝛾

(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

⋅
1.998𝜃𝛼𝐵1/𝑘𝜔

√
𝜙

√
3𝑛

.

In the event that the shifts are all forward stable, the definition of 𝐮EXC means that we can invoke
Lemma 7.22: either some subdiagonal of IQR(𝐻 , (𝑧 − 𝑠)𝑘) is smaller than 𝜔, or IQR(𝐻 , (𝑧 − 𝑠)𝑘)
satisfies

𝜓𝑘(IQR(𝐻 , (𝑧 − 𝑠)𝑘)) < 1.0011𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑠)𝑘)) ≤ 1.0011𝜏(𝑧−𝑠)𝑘 (𝐻 ) ≤ 1.0011𝛾𝜓𝑘(𝐻 ).

As discussed in our analysis of exc in Chapter 6, one can take the initial .99𝜀-net of 𝔻(0, (1 + 𝜀))
is to take an equilateral triangular lattice with spacing

√
3𝜀 and intersect it with 𝔻(0, (1 + 1.99𝜀)),

in which case

| | ≤ |0| ≤
2𝜋
3
√
3 (

1.99 +
1

0.99𝜀 )
2
+
4
√
2

√
3 (1.99 +

1
0.99𝜀 )

+ 1

≜ 𝑆(𝜀) (7.35)
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We will see below that every time EXC is called in the course of the full algorithm ShiftedQR, the
same 𝜀 is used, depending only on the global data. Thus the original net of 𝔻(0, 1 + 𝜀) need only
be computed once, and can be regarded a fixed overhead cost of the algorithm. Given the original
net, computing  costs one arithmetic operation to add 𝑟 + 𝑤 , followed by |0| each to scale and
shift by 𝑟 + 𝑤 . Add to this the operations to compute 𝜓𝑘(𝐻 ) and 𝑅, and the cost of obtaining the
single random sample, and we get a total of

2| | + 𝐶root𝑘 lg(𝑘 lg 1
1−0.9991/𝑘 ) + 𝑂(1)

arithmetic operations. Bounding |0| ≤ 𝑆(𝜀) yields the assertion of the lemma.

Analysis of Sh𝑘,𝐵
We now specify and analyze the complete shifting strategy SH𝑘,𝐾 .

SH𝑘,𝐵

Input: Hessenberg 𝐻 , 𝜃-optimal Ritz values  of 𝐻 , working accuracy 𝜔, failure probability
tolerance 𝜙.
GlobalData: Condition number bound 𝐵, decoupling rate 𝛾 , norm boundΣ, optimality parameter
𝜃 , promising parameter 𝛼
Output: Hessenberg 𝐻 .
Requires: 𝐻 is absolutely 𝜔-unreduced and 𝜅𝑉 (𝐻 ) ≤ 𝐵
Ensures: With probability at least 1 − 𝜙, either 𝐻 is 𝜔-decoupled or 𝜓𝑘(𝐻 ) ≤ 1.002𝛾𝜓𝑘(𝐻 )

1. 𝑟 ← FIND(𝐻 ,)

2. If TAU𝑘(𝐻 , (𝑧 − 𝑟)𝑘) ≤ 𝛾 𝑘𝜓 𝑘
𝑘 (𝐻 ), output 𝐻 = IQR(𝐻 , (𝑧 − 𝑟)𝑘).

3. Else,  ← EXC(𝐻 , 𝑟 , 𝜔, 0.999𝛾 , 𝜙).

4. For each 𝑠 ∈  , if 𝜓𝑘(IQR(𝐻 , (𝑧−𝑠)𝑘)) ≤ 1.002𝛾𝜓𝑘(𝐻 ) or some subdiagonal of IQR(𝐻 , (𝑧−𝑠)𝑘)
is smaller than 𝜔, output 𝐻 = iqr(𝐻 , (𝑧 − 𝑠)𝑘)

Lemma 7.24 (Guarantees for Sh𝑘,𝐵). Assume that |𝑟 | + 1.001𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 ) ≤ 𝐶‖𝐻‖ and

𝐮 ≤ 𝐮SH(𝑛, 𝑘, 𝐶, Σ, 𝐵, dist(, Spec 𝐻), 𝜃, 𝜔, 𝜙, 𝛾 , 𝛼) (7.36)

≜ min
{
𝐮FIND(𝑛, 𝑘, 𝐶, Σ, 𝐵, dist(, Spec 𝐻)),

𝐮EXC (𝑛, 𝑘, 𝐶, Σ, 𝐵, 𝜃, 𝜔, 𝜙, 𝛾 , 0.999𝛾 , 𝛼) ,

𝐮7.22(𝑛, 𝑘, 𝐶, Σ, 𝐵, dist(, Spec 𝐻), 𝜔)
}

(7.37)

= 2−𝑂(𝑘 log
𝑛Σ𝐵𝜃𝛼

𝛾𝜔𝜙 dist(,Spec 𝐻))
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Then, SH𝑘,𝐵 satisfies its guarantees, and runs in at most

𝑇SH(𝑛, 𝑘, 𝛾 , 𝐵, 𝛼, 𝜃) ≜ 𝑇FIND(𝑛, 𝑘) + 𝑇TAU(𝑛, 𝑘) + 𝑇EXC(𝑛, 𝑘, 0.999𝛾 , 𝛾 , 𝐵, 𝛼, 𝜃)

+ 𝑆
((

0.999𝛾 2

(13𝐵4)1/𝑘𝛼2𝜃2)

𝑘
𝑘−1

)(𝑇IQR(𝑛, 𝑘) + 𝑇𝜓 (𝑛, 𝑘))

= 𝑂
(
𝑘𝑛2𝐵

8
𝑘−1

(
𝛼𝜃
𝛾 )

4𝑘
𝑘−1

)

arithmetic operations.

Proof. The definition of 𝐮SH ensures that EXC and FIND (and therefore TAU) satisfy their guaran-
tees when called in the course of SH; the analysis of SH is accordingly straightforward. In line 1,
FIND produces an 𝛼-promising, 𝜃-approximate Ritz value 𝑟 for 𝛼 = (1.01𝐵)

4 log 𝑘
𝑘 as in Table 7.1; in

line 2 — because every subdiagonal of 𝐻 is assumed larger than 𝜔 — we know from definition of
𝐮SH and Lemma 7.22 that if TAU𝑘(𝐻 , (𝑧 − 𝑟)𝑘) ≤ 𝛾 𝑘𝜓 𝑘

𝑘 (𝐻 ), then

𝜓𝑘(IQR(𝐻 , (𝑧 − 𝑟)𝑘)) ≤ 1.0011𝜓𝑘(iqr(𝐻 , (𝑧 − 𝑟)𝑘))
≤ 1.0011𝜏(𝑧−𝑟)𝑘 (𝐻 )

≤ 1.0011 ⋅ (1.001TAU𝑘(𝐻 , (𝑧 − 𝑟)𝑘))
1/𝑘

≤ 1.002𝛾𝜓𝑘(𝐻 ).

On the other hand, if TAU𝑘(𝐻 , (𝑧 − 𝑟)𝑘) > 𝛾 𝑘𝜓 𝑘
𝑘 (𝐻 ) in line 2, then using the guarantees for TAU𝑘 ,

𝜏 𝑘(𝑧−𝑟)𝑘 (𝐻 ) > 0.999TAU𝑘(𝐻 , (𝑧 − 𝑟)𝑘) ≥ 0.999𝛾 𝑘𝜓𝑘(𝐻 ).

Finally, EXC satisfies its guarantees from Lemma 7.23 when called with 𝛼 = (1.01𝐵)
4 log 𝑘
𝑘 and

𝜉 = 0.9991/𝑘𝛾 . Thus with probability at least 1 − 𝜙 at least one exceptional shift 𝑠 ∈  satisfies
either decoupling (some subdiagonal smaller than 𝜔) or potential reduction (𝜓𝑘(IQR(𝐻 , (𝑧 − 𝑠)𝑘)) ≤
1.0011𝛾𝜓𝑘(𝐻 ) ≤ 1.002𝛾𝜓𝑘(𝐻 )).

For the arithmetic operations, SH𝑘,𝐵 requires one call to FIND, one to TAU𝑘 , one to EXC with
stagnation ratio 𝜉 = 0.999𝛾 , and finally | | calls to degree-𝑘 IQR. We can bound | | ≤ 𝑆(𝜀), where
𝜀 is defined in the course of EXC with stagnation ratio parameter 𝜉 = 0.999𝛾 , and 𝑆(⋅) is defined
in (7.35). Since and checking every shift in  for potential reduction dominates the arithmetic
operations, we get that

𝑇SH(𝑛, 𝑘, 𝐵, 𝛾 , 𝛼, 𝜃) = 𝑂 (
𝑘𝑛2 ⋅ 𝐵

8
𝑘−1

(
𝛼𝜃
𝛾 )

4𝑘
𝑘−1

)
.
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7.7 Finite Arithmetic Analysis of ShiftedQR
We are now ready to analyze, in finite arithmetic, how the shifting strategy Sh𝑘,𝐵 introduced in Chap-
ter 6 can be used to approximately find all eigenvalues of a Hessenberg matrix 𝐻 . One simple sub-
routine is required in addition to the ones described in the preceding sections: DEFLATE(𝐻 , 𝜔, 𝑘)
takes as input a Hessenberg matrix 𝐻 , deletes any of the bottom 𝑘 − 1 subdiagonal entries smaller
than 𝜔, and outputs the resulting diagonal blocks 𝐻1, 𝐻1, .... It runs in 𝑇DEFLATE(𝐻 , 𝜔, 𝑘) = 𝑘 arith-
metic operations.

ShiftedQR

Input: Hessenberg matrix 𝐻 , accuracy 𝛿 , failure probability tolerance 𝜙
Global Data: Eigenvector condition number bound 𝐵, eigenvalue gap bound Γ, matrix norm
bound Σ, original matrix dimension 𝑛
Requires: Σ ≥ 2‖𝐻‖, 𝐵 ≥ 2𝜅𝑉 (𝐻 ), Γ ≤ gap(𝐻)/2, 𝛿 ≤ Σ
Output: A multiset Λ ⊂ 𝑪
Ensures: With probability at least 1 − 𝜙, Λ are the eigenvalues of some 𝐻 with ‖𝐻 − 𝐻‖ ≤ 𝛿

1. 𝜔 ← 1
2𝑛 min

{
𝛿, Γ

8𝑛2𝐵2
}

, 𝜑 ← 𝜙
3𝑛2

log 1.002𝛾
log 𝜔

Σ

2. If dim(𝐻 ) ≤ 𝑘, Λ ← SmallEig(𝐻 , 𝛿, 𝜙), output Λ and stop.

3. Else Λ ← ∅ and

a) While max𝑛−𝑘+1≤𝑖≤𝑛 𝐻𝑖,𝑖−1 < 𝜔,
i. [, 𝐻 , dec] = RITZ-OR-DEC(𝐻 , 𝜔, 𝜑)

ii. If dec = true, 𝐻 ← 𝐻 and end while
iii. Else if dec = false, 𝐻 ← SH𝑘,𝐵(𝐻 ,, 𝜔, 𝜑)

b) [𝐻1, 𝐻2, ...𝐻𝓁 ] = DEFLATE(𝐻 , 𝜔)

c) For each 𝑗 ∈ [𝓁 ]

i. If dim(𝐻𝑗) ≤ 𝑘, Λ ← Λ ⊔ SmallEig(𝐻𝑗 , 𝛿/𝑛, 𝜙/3𝑛).
ii. Else, repeat lines 3a-3c on 𝐻𝑖

Theorem 7.25 (Guarantees for ShiftedQR). Let 𝑘, 𝜃 , 𝛼 , and 𝛾 be set in terms of 𝐵 as in (7.2), 𝑁dec be
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defined as in (7.41), and 𝜔 and 𝜑 be defined as in line 1 of ShiftedQR. Assuming

𝐮 ≤ 𝐮ShiftedQR(𝑛, 𝑘, Σ, 𝐵, 𝛿)

≜ min
{

𝜔
4.5𝑘𝑁dec ⋅ 𝑛𝜈IQR(𝑛)Σ

, 𝐮RITZ-OR-DEC (𝑛, 𝑘, Σ, 𝐵, 𝜃, 𝜔, 𝜑) ,

𝐮Sh (𝑛, 𝑘, 3, Σ, 𝐵,
𝜔2√𝜑

32 ⋅ 101 ⋅ Σ
√
2𝑘
, 𝜃, 𝜔, 𝜑, 𝛾 , 𝛼)

}
(7.38)

= 2−𝑂(𝑘 log
𝑛Σ𝐵
𝛿Γ𝜙 ),

ShiftedQR satisfies its guarantees and runs in at most

𝑇ShiftedQR(𝑛, 𝑘, 𝛿, 𝐵, Σ, 𝛾 ) ≤ 𝑛(𝑇RITZ-OR-DEC(𝑛, 𝑘, true)

+ 𝑁dec(𝑇RITZ-OR-DEC(𝑛, 𝑘, false) + 𝑇Sh(𝑛, 𝑘, 𝛾 , 𝐵, 𝛼, 𝜃)) (7.39)

+ 𝑇DEFLATE(𝑘))

= 𝑂 ((log
𝑛𝐵Σ
𝛿Γ

𝑘 log 𝑘 + 𝑘2)𝑛3)

arithmetic operations, plus𝑂(𝑛 log 𝑛𝐵Σ
𝛿Γ ) calls to SmallEigwith accuracyΩ( Γ2

𝑛4𝐵4Σ ) and failure probability
tolerance Ω( 𝜙

𝑛2 log 𝑛𝐵Σ
𝛿Γ
).

Theorem 1.14 follows immediately from 7.25.

Proof of Theorem 7.25. At a high level, ShiftedQR is given an input matrix 𝐻 , 𝜔-decouples 𝐻 to a
unitarily similar matrix 𝐻 via a sequence of applications of RITZ-OR-DEC + SH𝑘,𝐵, deflates 𝐻 to a
block upper triangular matrix with diagonal blocks 𝐻1, ..., 𝐻𝓁 , then repeats this process on each
block 𝐻𝑗 with dimension larger than 𝑘 ×𝑘. Since the effect of RITZ-OR-DEC and SH𝑘,𝐵 on any input
matrix 𝐻 ′ is approximately a unitary conjugation, it will be fruitful for the analysis to regard each
of the blocks 𝐻1, ..., 𝐻𝓁 as embedded in the original matrix, and promote the approximate unitary
conjugation actions of the subroutines on each block to unitary conjugations of the full matrix.
The same goes once each of 𝐻1, ..., 𝐻𝓁 is decoupled and deflated and we pass to further submatrices
of each one. Importantly, this viewpoint is necessary only for the analysis: the algorithm need not
actually manipulate the entries outside the blocks 𝐻1, ..., 𝐻𝓁 . In this picture, the end point of the
algorithm is a matrix of the form

⎛
⎜
⎜
⎝

𝐿1 ∗ ∗
𝐿2 ∗

⋱

⎞
⎟
⎟
⎠
, (7.40)

where 𝐿1, 𝐿2, ... are all 𝑘 × 𝑘 or smaller matrices on which SmallEig can be called directly, and the ∗
entries are unknown and irrelevant to the algorithm. By the guarantees on SmallEig (and the fact
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that 𝛽-forward approximation of eigenvalues implies 𝛽-backward approximation), the output of
the algorithm is thus

⨆
𝑗
SmallEig(𝐿𝑗 , 𝜔, 𝜑) = ⨆

𝑗
Spec 𝐿𝑗 = Spec

⎛
⎜
⎜
⎝

𝐿1 ∗ ∗
𝐿2 ∗

⋱

⎞
⎟
⎟
⎠

where 𝐿1, 𝐿2, ... are some matrices satisfying ‖𝐿𝑗 − 𝐿𝑗‖ ≤ 𝛿/𝑛, and the remaining entries are identical
to those in (7.40). Our goal in the proof will thus be to show that for some unitary 𝑄,

‖‖‖‖‖‖

⎛
⎜
⎜
⎝

𝐿1 ∗ ∗
𝐿2 ∗

⋱

⎞
⎟
⎟
⎠
− 𝑄∗𝐻𝑄

‖‖‖‖‖‖
≤ 𝛿 − 𝛿/𝑛,

where the left hand matrix is a block upper triangular matrix with the blocks 𝐿1, 𝐿2, ... on the
diagonal. This will in turn imply that

‖‖‖‖‖‖‖

⎛
⎜
⎜
⎝

𝐿1 ∗ ∗
𝐿2 ∗

⋱

⎞
⎟
⎟
⎠
− 𝑄∗𝐻𝑄

‖‖‖‖‖‖‖

≤

‖‖‖‖‖‖‖

⎛
⎜
⎜
⎝

𝐿1 − 𝐿1 ∗ ∗
𝐿2 − 𝐿2 ∗

⋱

⎞
⎟
⎟
⎠

‖‖‖‖‖‖‖

+ 𝛿 − 𝛿/𝑛

≤ max
𝑖

‖𝐿𝑖 − 𝐿𝑖‖ + 𝛿 − 𝛿/𝑛 ≤ 𝛿,

as desired.
We begin by analyzing the while loop in line 3a.

Lemma 7.26. Assume that in the course of ShiftedQR, the while loop in line 3a is initialized with a
matrix 𝐻 ′ satisfying ‖𝐻 ′‖ ≤ (1 − 1/2𝑛)Σ, 𝜅𝑉 (𝐻 ′) ≤ (1 − 1/2𝑛)𝐵, and gap(𝐻 ′) ≥ (1 + 1/2𝑛)Γ. Let

𝑁dec ≜
log Σ

𝜔

log 1
1.002𝛾

. (7.41)

If
𝐮 ≤ 𝐮ShiftedQR(𝑛, 𝑘, Σ, 𝐵, 𝛿),

then the loop terminates in at most 𝑁dec iterations, having produced a 𝜔-decoupled matrix 𝐻 ′ at most
𝜔-far from a unitary conjugate of 𝐻 ′.

Proof. Let us write 𝐻 ′′ for the matrix produced by several runs through lines 3(a)i-3(a)iii, after
the while loop has been initialized with 𝐻 ′, and assume that all prior calls to RITZ-OR-DEC or
SH𝑘,𝐵 during the loop have satisfied their guarantees, and moreover that all prior shifts have had
modulus at most 4.5‖𝐻 ′‖ in the complex plane. (We will show inductively that this last condition
holds throught the while loop.)
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Because the prior calls to RITZ-OR-DEC and SH𝑘,𝐵 satisfy their guarantees, each previous
run through lines 3(a)i-3(a)iii has either effected immediate decoupling or potential reduction by
a multiplicative 1.002𝛾 . Since 𝜔 ≤ 𝜓𝑘(𝐻 ′) ≤ ‖𝐻 ′‖ ≤ Σ, through lines 3(a)i-3(a)iii can have been
executed at most 𝑁dec times so far, the result of each of which is application of an IQR step of
degree 𝑘, meaning that we can think of 𝐻 ′′ as being produced 𝐻 ′ a single IQR step of degree
𝑘𝑁dec. Thus by Lemma 7.11, our inductive assumption on the prior shifts, and the hypothesis on
𝐮, the distance from 𝐻 ′′ to a unitary conjugate of 𝐻 ′ is at most 4.5‖𝐻 ‖𝑘𝑁dec𝜈IQR(𝑛)𝐮 ≤ 𝜔. If 𝐻 ′′ is
𝜔-decoupled, then the while loop terminates, and the proof is complete.

Otherwise 𝐻 ′′ is not 𝜔-decoupled. By the definition of 𝜔 and the fact that 𝜔 ≤ 𝛿/2𝑛 ≤ Σ/2𝑛,
we can apply the triangle inequality and Lemmas 2.8 and 2.10 to find

‖𝐻 ′′‖ ≤ ‖𝐻 ′‖ + 𝜔 ≤ (1 − 1/2𝑛)Σ + Σ/2𝑛 ≤ Σ

𝜅𝑉 (𝐻 ′′) ≤ 𝜅𝑉 (𝐻 ′) + 8𝑛2
𝜅3𝑉 (𝐻 ′)
gap(𝐻 ′)

𝜔 ≤ (1 − 1/2𝑛)𝐵 + 𝐵/2𝑛 ≤ 𝐵

gap(𝐻 ′′) ≥ gap(𝐻 ′) − 2𝜅𝑉 (𝐻 ′)𝜔 ≥ (1 + 1/2𝑛)Γ − Γ/2𝑛 ≥ Γ,

and we furthermore have 2𝜔2/Σ ≤ 2𝜔 ≤ Γ ≤ gap(𝐻 ′′) by the above and the definition of 𝜔. This
means RITZ-OR-DEC(𝐻 ′′, 𝜔, 𝜑) meets its requirements, and from our assumption on 𝐮 we can
apply Lemma 7.20 to conclude that it satisfies its guarantees. If this call to RITZ-OR-DEC outputs
dec = true, then the matrix it outputs is indeed decoupled and the while loop terminates.

If on the other hand dec = false, then RITZ-OR-DEC outputs 𝐻 ′′ and 𝜃-approximate Ritz
values  contained in in a disk of radius 1.1‖𝐻 ′′‖, and RITZ-OR-DEC guarantees

dist(, 𝐻 ′′) ≥
𝜔2√𝜑

32 ⋅ 101 ⋅ Σ
√
2𝑘
.

The bound on 𝜅𝑉 (𝐻 ′′) in the previous paragraph ensures that the requirements of SH𝑘,𝐵(𝐻 ,, 𝜔, 𝜑)
have been met, and the parameter settings in (7.2)-(7.3) give us

1.001𝜃𝛼𝐵1/𝑘𝜓𝑘(𝐻 ′′) = 1.001
1.01

0.9981/𝑘
(2𝐵4)1/2𝑘(1.01𝐵)

4 log 𝑘
𝑘 𝐵1/𝑘𝜓𝑘(𝐻 ′′)

= 1.04 ⋅ 21/2𝑘𝐵
4 log 𝑘+3

𝑘 𝜓𝑘(𝐻 ′′)

≤ 1.04 ⋅
√
2 2
𝑘−1𝐵

8 log 𝑘+11
𝑘−1 ‖𝐻 ′′‖

≤ 1.04
√
3‖𝐻 ′′‖

≤ 1.9‖𝐻 ′′‖,

so every exceptional shift has modulus at most 3‖𝐻 ′′‖ in the complex plane. Our assumption on 𝐮
lets us invoke Lemma 7.24 to conclude that SH𝑘,𝐵 achieves potential reduction by a multiplicative
factor of 1.002𝛾 . Moreover, the shifts executed by RITZ-OR-DEC and SH in the above run through
the while loop had modulus at most

3‖𝐻 ′′‖ ≤ 3‖𝐻 ′‖(1 + 4.5𝑘𝑁dec𝜈IQR(𝑛)𝐮) ≤ 3‖𝐻 ′‖ ⋅ (1 + 𝜔/Σ) ≤ 4.5‖𝐻 ′‖,
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again since 𝜔 ≤ 𝛿/2𝑛 ≤ Σ.
The proof above ensures that for each of its first 𝑁dec iterations, the while loop either produces

decoupling or potential reduction by a multiplicative 1.002𝛾 , and our earlier discussion implies
that it therefore terminates after after at most 𝑁dec iterations. When it does, the proof above
additionally tells us that the final matrix 𝐻 ′ is at most 𝜔-far from a unitary conjugate of 𝐻 ′, as
desired.

We next check that each time the while loop begins in the course of ShiftedQR, the hypotheses
of Lemma 7.26 are satisfied. This is immediate the first time the loop begins, where the requirements
of ShiftedQR give ‖𝐻 ‖ ≤ Σ/2, 𝜅𝑉 (𝐻 ) ≤ 𝐵/2, and gap(𝐻) ≥ 2Γ. If 𝐻 ′ is a matrix passed to the while
loop, and each of the while loops in its production has satisfied the conclusion of Lemma 7.26,
then 𝐻 ′ is the result of at most 𝑛 − 1 of decouplings-and-deflations, each of which caused the
norm, eigenvector condition number, and gap to deteriorate by at worst an additive 2𝜔. Thus,
finally using the full force of the 1/4𝑛 factor in the definition of 𝜔,

‖𝐻 ′‖ ≤ ‖𝐻‖ + 2(𝑛 − 1)𝜔 ≤ (1 − 1/2𝑛)Σ

𝜅𝑉 (𝐻 ′) ≤ 𝜅𝑉 (𝐻 ) + 8𝑛2
𝜅3𝑉 (𝐻 )
gap(𝐻)

⋅ 2(𝑛 − 1)𝜔 ≤ (1 − 1/2𝑛)𝐵

gap(𝐻 ′) ≥ gap(𝐻) − 2𝜅𝑉 (𝐻 ) ⋅ 2(𝑛 − 1)𝜔 ≥ (1 + 1/2𝑛)Γ

by the definition of 𝜔.
This ensures that every execution of the while loop throughout ShiftedQR satisfies the conclu-

sion of Lemma 7.26, which means that the set of ‘base case’ matrices 𝐿1, 𝐿2, ... are produced by a
tree of alternating decouplings and deflations with depth at most 𝑛 − 1, and moreover that

‖‖‖‖‖‖

⎛
⎜
⎜
⎝

𝐿1 ∗ ∗
𝐿2 ∗

⋱

⎞
⎟
⎟
⎠
− 𝑄∗𝐻𝑄

‖‖‖‖‖‖
≤ 2(𝑛 − 1)𝜔 ≤ 𝛿 − 𝛿/𝑛,

for some unitary 𝑄, as we had set out to show.

Failure Probability. We have already shown that RITZ-OR-DEC and SH𝑘,𝐵 satisfy their guarantees
(including their failure probability) throughout ShiftedQR whenever the hypotheses of Theorem
7.25; these, plus the base calls to SmallEig, are the only sources of randomness in the algorithm.
There are at most 𝑛2 ⋅ 𝑁dec calls each to RITZ-OR-DEC and SH𝑘,𝐵 over the course of the algorithm,
each failing with probability 𝜑, and at most 𝑛 calls to SmallEig, each failing with probability at
most 𝜙/3𝑛. By a union bound and the definition of 𝜑, the total failure probability is at most 𝜙.

Arithmetic Operations and Calls to SmallEig. ShiftedQR recursively runs through line 3 many times
in the course of the algorithm; write 𝑇3(𝑚, 𝑘, 𝛿, 𝐵, Σ, Γ) for the arithmetic operations required to
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execute this line on some matrix of size 𝑚 ×𝑚 during the algorithm, with the convention that this
quantity is zero when 𝑚 ≤ 𝑘. Then we have

𝑇ShiftedQR(𝑛, 𝑘, 𝛿, 𝐵, Σ, Γ) = 𝑇3(𝑛, 𝑘, 𝛿, 𝐵, Σ, Γ)
≤ 𝑇RITZ-OR-DEC(𝑛, 𝑘, true)

+ 𝑁dec(𝑇RITZ-OR-DEC(𝑛, 𝑘, false) + 𝑇SH(𝑛, 𝑘, 𝛿, 𝐵, Σ, Γ))
+ 𝑇DEFLATE(𝑘) + max

∑𝑖 𝑛𝑖=𝑛
∑
𝑖
𝑇3(𝑛𝑖 , 𝑘, 𝛿, 𝐵, Σ, Γ).

Since each of the expressions 𝑇□(⋅) is a polynomial of degree at most two in 𝑛, the maximum in
the third line can be bounded by 𝑇3(𝑛 − 1, 𝑘, 𝛿, 𝐵, Σ, Γ). Losing only a little in the constant, we can
bound as

𝑇ShiftedQR(𝑛, 𝑘, 𝛿, 𝐵, Σ, 𝛾 ) ≤ 𝑛(𝑇RITZ-OR-DEC(𝑛, 𝑘, true)

+ 𝑁dec(𝑇RITZ-OR-DEC(𝑛, 𝑘, false) + 𝑇SH(𝑛, 𝑘, 𝛿, 𝐵, Σ, Γ))

+ 𝑇DEFLATE(𝑘))

= 𝑂 ((log
𝑛𝐵Σ
𝛿Γ

𝑘 log 𝑘 + 𝑘2)𝑛3) .

In addition, ShiftedQR requires at most 𝑂(𝑛 log 𝑛𝐵Σ
𝛿Γ ) calls to SmallEig with accuracy Ω(𝜔2/Σ) and

failure probability tolerance 𝜑 in the course of the calls to RITZ-OR-DEC, plus 𝑂(𝑛) ‘base case’
calls with accuracy 𝛿/𝑛 and failure probability tolerance 𝜙/3𝑛; the latter calls to SmallEig are
asymptotically dominated by the former. The estimates in the theorem statement come from
bounding 𝜔 and 𝜑.

Bibliographic Note
This chapter is lightly adapted from the forthcoming [18].
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