
Lawrence Berkeley National Laboratory
LBL Publications

Title
An ontology-based knowledge graph for representing interactions involving RNA 
molecules

Permalink
https://escholarship.org/uc/item/1dn7880c

Journal
Scientific Data, 11(1)

ISSN
2052-4463

Authors
Cavalleri, Emanuele
Cabri, Alberto
Soto-Gomez, Mauricio
et al.

Publication Date
2024-08-01

DOI
10.1038/s41597-024-03673-7

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dn7880c
https://escholarship.org/uc/item/1dn7880c#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1Scientific Data |          (2024) 11:906  | https://doi.org/10.1038/s41597-024-03673-7

www.nature.com/scientificdata

An ontology-based knowledge 
graph for representing interactions 
involving RNA molecules
Emanuele Cavalleri   1, Alberto Cabri1, Mauricio Soto-Gomez1, Sara Bonfitto1, 
Paolo Perlasca1, Jessica Gliozzo   1, Tiffany J. Callahan   2, Justin Reese3,  
Peter N. Robinson   4,5, Elena Casiraghi   1,3,5, Giorgio Valentini1,5 & Marco Mesiti   1,3 ✉

The “RNA world” represents a novel frontier for the study of fundamental biological processes and 
human diseases and is paving the way for the development of new drugs tailored to each patient’s 
biomolecular characteristics. Although scientific data about coding and non-coding RNA molecules 
are constantly produced and available from public repositories, they are scattered across different 
databases and a centralized, uniform, and semantically consistent representation of the “RNA world” 
is still lacking. We propose RNA-KG, a knowledge graph (KG) encompassing biological knowledge about 
RNAs gathered from more than 60 public databases, integrating functional relationships with genes, 
proteins, and chemicals and ontologically grounded biomedical concepts. To develop RNA-KG, we 
first identified, pre-processed, and characterized each data source; next, we built a meta-graph that 
provides an ontological description of the KG by representing all the bio-molecular entities and medical 
concepts of interest in this domain, as well as the types of interactions connecting them. Finally, we 
leveraged an instance-based semantically abstracted knowledge model to specify the ontological 
alignment according to which RNA-KG was generated. RNA-KG can be downloaded in different formats 
and also queried by a SPARQL endpoint. A thorough topological analysis of the resulting heterogeneous 
graph provides further insights into the characteristics of the “RNA world”. RNA-KG can be both directly 
explored and visualized, and/or analyzed by applying computational methods to infer bio-medical 
knowledge from its heterogeneous nodes and edges. The resource can be easily updated with new 
experimental data, and specific views of the overall KG can be extracted according to the bio-medical 
problem to be studied.

Background & Summary
The involvement of RNAs in various physiological processes has been ascertained by several studies1–3 that have 
revealed the pervasive transcription of an unexpected variety of RNA molecules4–7. These molecules can lead to 
a significant breakthrough in the treatment of cancer, genetic and neurodegenerative disorders, cardiovascular 
and infectious diseases8. The study of RNA is also one of the most promising avenues of research in therapeutics, 
as evidenced by the recent success of mRNA-based vaccines for the COVID-19 pandemic9, for the treatment 
of melanoma10, for the development of new drugs that can target both proteins and mRNA, as well as other 
non-coding RNAs, and for encoding missing or defective proteins, regulating the transcriptome, and mediating 
DNA or RNA editing11. Thus, RNA technology significantly broadens the set of druggable targets, and is also 
less expensive than other technologies (e.g., drug synthesis based on recombinant proteins), due to the relatively 
simple structure of RNA molecules that facilitate their biochemical synthesis and chemical modifications12. 
Non-coding RNAs (ncRNAs) comprise a large range of RNA species13, and a large set of scientific data is made 
publicly available by several genomics laboratories representing different kinds of interactions among them and 
with other bio-entities (e.g., genes, proteins, chemicals, diseases, and phenotypes).
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The possibility of integrating the interactions that they make available would be of great relevance for knowl-
edge discovery and also for the development of new RNA-based drugs. However, these sources adopt different 
data models, formats, and conventions for the representation of the bio-entities, and different semantics can be 
assigned to the proposed interactions. The extraction and integration of information from even two data sources 
for conducting knowledge discovery activity would require a lot of effort from researchers. To address these 
issues, Knowledge graphs (KGs)14 have emerged as a compelling abstraction for organizing interrelated knowl-
edge in different domains and a way for integrating heterogeneous information extracted from multiple data 
sources with the aim of highlighting complex interdependencies and uncovering hidden relationships. KGs can 
be represented both with property graphs (e.g., Neo4j15) or according to the Resource Description Framework 
(RDF16) with different advantages and disadvantages17. When a KG is generated according to an ontology, it 
contains a schema part (denoted TBox or terminologies) and a data part (denoted ABox, facts, or assertions) on 
top of which different kinds of reasoning activities can be conducted using expressive languages (like OWL18, 
DL19, or SPARQL20). KGs have started to play a central role also in the life sciences21 for the representation of 
bio-entities and their interactions and for the application of AI approaches for discovering new knowledge and 
eventually for explaining it. Different ontologies have been proposed for systematizing the corpus of terms used 
to describe the function and localization of bio-entities and for offering a formal framework to represent bio-
logical knowledge. Specific biological KGs (e.g., PrimeKG22, Human Disease benchmark KG23, ReproTox-KG24, 
Monarch Knowledge Graph25, Oregano Knowledge Graph26, and Knowledge Base of Biomedicine27) have been 
recently constructed for conducting different kinds of analysis and supporting research activities.

In this paper we describe RNA-KG, the first ontology-based KG for representing coding and non-coding 
RNA molecules and their interactions with other biomolecular data as well as with pathways, abnormal pheno-
types and diseases to support the study and the discovery of the biological role of the “RNA-world”. RNA-KG 
contains RDF triples extracted from more than 60 public data sources and also integrates related bio-medical 
concepts. RNA-KG can be exploited for the study of RNA molecules and the development of innovative graph 
algorithms to support knowledge discovery in data science. A big effort has been dedicated to the characteriza-
tion of the data sources and to the identification of the bio-medical ontological concepts that better represent the 
information provided by the considered data sources and the interactions involving RNA molecules. This work 
culminated in the construction of a meta-graph that represents all the possible interactions that can be devised 
from the considered data sources. The relationships have been grounded according to the Relation Ontology 
(RO28), which ensures common semantics for the different relationships that can be extracted from the sources. 
Relying on the generated meta-graph and exploiting the Phenotype Knowledge Translator (PheKnowLator23) 
tool, we extracted 673,825 nodes and 12,692,212 high-quality edges according to the metrics provided in each 
data source. Different analyses have been conducted to characterize the types of nodes and interactions that are 
represented in RNA-KG, their distribution, and the topological structure. RNA-KG can be exported according 
to different knowledge models and can be accessed through a SPARQL endpoint.

RNA-KG takes advantage of a preliminary meta-graph29 and the PheKnowLator system23 for the construction 
of semantically rich, large-scale biomedical KGs that are Semantic Web compliant and amenable to automatic 
OWL reasoning, and conforming to contemporary property graph standards. We have used PheKnowLator to 
download data, transform and/or pre-processing resources into edge lists, construct KGs, and generate a wide 
range of outputs.

Related Work
For a better understanding of the approach that we have followed in the construction of RNA-KG, we first out-
line the methods developed for integrating graph-based biomedical heterogeneous data sources and then sum-
marize the main characteristics of the different types of RNA molecules. Finally, we outline the bio-ontologies 
that can be exploited for the characterization of RNA molecules and the bio-entities with which they are related.

Approaches for the construction of bio-medical knowledge graphs.  Data integration is a widely 
recognized challenge in data management, that prompted the development of numerous approaches to handle 
relational data30. However, the proliferation of data formats (like CSV, JSON, and XML), alongside the vari-
ability in representing similar data types31,32, has underscored the necessity of leveraging ontologies as global 
models for both accessing (OBDA - Ontology-Based Data Access) and integrating (OBDI - Ontology-Based 
Data Integration) data sources33. In OBDA, queries are expressed according to ontology terms, with mappings 
between the ontology and data sources’ schema described through declarative rules. Typically, two approaches 
have been proposed for enabling access and integration across different data sources: materialization and virtual-
ization. Materialization involves aligning local data formats to the ontology concepts and relationships, whereas 
virtualization executes transformations on the fly during query evaluation, utilizing mapping rules and ontology. 
In virtualization, only data pertinent to the query from the original sources are accessed. Materialization offers 
swift and accurate data access to the data that are collected and organized in a centralized repository. However, 
frequent changes in data sources may compromise data freshness. Conversely, virtualization allows access to fresh 
data but may introduce delays and inconsistencies when the local source schema changes. Various approaches 
exist for specifying mapping rules, including R2RML34 (a W3C standard for relational to RDF mapping), RML35 
(a R2RML extension for dealing with multiple formats), SPARQL-Generate36, YARRRML37, and ShExML38, cater-
ing to data heterogeneity.

In the biological domain, significant efforts are being dedicated to constructing knowledge graphs (KGs) by 
integrating diverse public sources, using materialization and virtualization approaches. For instance, Zhang et al.39  
utilized a Connecting Ontology (CO) to integrate external ontologies describing involved data sources. By 
leveraging algorithms for fusion and annotation integration, they generated an enriched KG spanning mul-
tiple data sources, annotated with an integrated biological ontology combining Gene40, Trait41, Disease42, and 

https://doi.org/10.1038/s41597-024-03673-7


3Scientific Data |          (2024) 11:906  | https://doi.org/10.1038/s41597-024-03673-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Plant43 ontologies. PrimeKG22 was developed to represent comprehensive views of diseases, integrating over 20 
high-quality resources capturing information such as disease-associated perturbations and molecular pathways. 
Ontologies (e.g. Disease Gene Network, Mayo Clinical Knowledgebase, Mondo, Bgee, and DrugBank) have been 
used to annotate the collected data. ReproTox-KG24 combines gene, drug, and preclinical small molecule infor-
mation with birth defect associations, aiming to predict compound-induced birth abnormalities and whether 
these compounds are likely to cross the placental barrier. The information is extracted from scientific literature 
taking into account ontologies like HPO44, CDC birth-defect terms45, Geneshot46 for connecting genes with 
birth-defect terms, DrugCentral47 for connecting drugs with birth-defect terms, and LINCS L1000 data48 for 
drug-gene associations. Other examples include the Oregano KG for drug repositioning26 and a virtualization 
approach proposed by Sima et al.49 for federating three data sources (Bgee, OMA, and UNIProtKB) through 
ontology-based integration. Specifically, starting from the GenEx semantic model for gene expression, mapping 
rules were proposed to deal with the different formats of the three sources and faced the issue of joint queries 
across the sources by leveraging SPARQL endpoints.

All these papers point out the difficulties that arise when trying to integrate different data sources that exploit 
different data models, formats, and ontologies. Specifically, data redundancies, data duplicates, and lack of com-
mon identifier mechanisms must be properly addressed. In the case of RNA data integration, we also have to 
consider the lack of specific ontologies for the description of all possible non-coding RNA sequences, and the 
presence of ontologies that are not well-recognized by the community because still in their infancy. All these 
aspects must be properly addressed in the generation of RNA-KG.

RNA molecules.  The wide functional role of the different types of RNA molecules opened the way to novel 
therapeutics able to revolutionize the treatment and prevention of human diseases50. Indeed, RNA molecules 
play a fundamental role in cell biology, performing a wide range of functions either i) directly by regulating 
gene expression, exhibiting enzymatic activity, through the modification or regulation of other RNAs or other 
bio-molecules, or ii) indirectly by being translated into proteins. Figure 1 shows the main classes of RNAs.

Coding RNA.  Eukaryotic messenger RNA (mRNA) primary transcripts undergo extensive processing to obtain 
their protein-encoding mature form from pre-mRNA; mRNA is finally translated by ribosomes into sequence of 
amino acids connected through peptide bonds51.

Non-coding RNA.  Non-coding RNAs (ncRNAs) are transcripts not translated into proteins. Two subgroups 
named long non-coding RNAs (lncRNAs) and small non-coding RNAs (sncRNAs) can be distinguished relying 
on a length cut-off of 200 nucleotides13.

Long non-coding RNA (lncRNA).  lncRNAs constitute the bulk of transcription products and hold crucial 
importance in the onset and advancement of diseases52. lncRNAs are involved in competitive endogenous RNA 
(ceRNA) regulation, transcriptional regulation and epigenetic regulation53. They can modulate chromatin func-
tion, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation 
of cytoplasmic mRNAs, and interfere with signaling pathways54. Its transcriptional regulation activity is real-
ized either modifying transcription factor activity, or regulating the association and activity of co-regulators55. 
lncRNAs are also involved in post-transcriptional regulation. Several studies showed that lncRNAs act as com-
petitive endogenous RNAs (ceRNAs) by “sponging” target miRNAs to regulate mRNA expression53. Among 
lncRNAs, circular RNAs (circRNAs) derive from alternative splicing and can be involved in the regulation 
of splicing events. Their abnormal expression is detected in numerous human diseases, including cancer and 
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Fig. 1  Schematic representation of the RNA network within a cell.
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neurodegenerative disorders like Alzheimer’s and Parkinson’s disease56. lncRNAs are also well-known epige-
netic regulators that guide target enzymes necessary to control chromatin organization. For instance, they are 
involved in the inactivation of X-chromosome in female mammals (e.g., Xist) and in genomic imprinting (e.g., 
Kcnq1ot1) by recruiting histone modifying enzymes leading to gene silencing57,58. Moreover, lncRNAs and cir-
cRNAs can interact directly or indirectly with the enzyme families involved in DNA methylation (i.e., DNMT) 
and demethylation (i.e., TET) to modulate methylation at specific genomic positions, in turn being involved in 
many tumors59 but also in physiological processes (e.g., Kcnq1ot1 interacts with Dnmt1 to further control the 
silencing of ubiquitous imprinted genes58).

Small non-coding RNA (sncRNA).  sncRNAs participate in multiple cellular biological processes, encompass-
ing: translation, RNA interference (RNAi) pathways, splicing and self-cleavage processes, biochemical reactions 
catalysis, and targeted gene editing.

sncRNAs involved in the translation process.  Numerous sncRNAs play various important roles in the transla-
tion phase of protein biosynthesis, such as: some types of small rRNA, transfer RNAs (tRNAs), small nuclear 
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and Small Cajal body-specific RNAs (scaRNAs, snoRNAs 
localized in the Cajal body). While rRNAs are the structural and enzymatic scaffold of the ribosome, tRNAs 
have a unique structure comprising an acceptor stem that binds to a specific amino acid and a distinct anticodon 
sequence of three bases complementary to the mRNA codon triplet. This configuration guarantees the accurate 
translation of mRNA codons into their corresponding chain of amino acids. snRNAs and snoRNAs mainly 
direct the chemical modification of other RNAs (e.g. rRNA and tRNA) and regulate the chromatin condensation 
state and DNA accessibility.

sncRNAs associated with RNA interference pathways.  RNA interference is a post-transcriptional regulation 
mechanism of gene expression and its alteration is associated with many pathologies60. sncRNAs participating 
in RNAi pathways include: microRNAs (miRNAs), short interfering RNAs (siRNAs), short hairpin RNAs (shR-
NAs), antisense oligonucleotides (ASOs), piwi-interacting RNAs (piRNAs), tRNA-derived fragments (tRFs), 
and tRNA-derived small RNAs (tsRNAs). Mature miRNAs, siRNAs, shRNAs, and ASOs modulate mRNA 
expression by inhibiting translation or facilitating the degradation of the target transcript via complementary 
base pairing. In contrast to siRNAs, a single miRNA has the capacity to concurrently regulate hundreds of 
protein-coding genes and transcription factors (TFs). The term for miRNAs that are detected in various human 
biological fluids but originate from exogenous sources is xeno-miRNAs61. On the other hand, ASOs suppress 
the expression of nuclear targets with greater efficacy while siRNA have better performance in the inhibition of 
cytoplasmic target62 by recruiting the RNA-induced Silencing Complex (RISC) through siRNA:mRNA duplex, 
which in turn catalyzes the mRNA cleavage reaction. piRNAs and tRFs similarly leverage RNA interference 
mechanisms to silence transposons, retrotransposons and repeat sequences, thus preserving genome integrity 
and cellular homeostasis63.

Aptamers, riboswitches, ribozymes and guide-RNA.  RNAs can perform interference activities also exploiting 
their tertiary structure. Aptamers are short single-stranded DNA or RNA molecules that, due to their specific 
3D conformation, can act like chemical antibodies binding a diverse array of targets (e.g., proteins, peptides, 
carbohydrates, DNA, and RNA)64–66. Riboswitches are small non-coding RNAs that perform a ligand-dependent 
conformational change triggering alternative splicing and self-cleavage processes that cause the modulation 
of gene expression and mRNA degradation, which is of pivotal importance for cell survival and adaptation to 
different environmental stimuli67. Some RNAs (e.g. ribozymes) have enzymatic activity acting as catalysts to 
accelerate biochemical reactions like mRNA and protein cleavage. Ribozymes can be artificially engineered to 
target specific sequences and synthetic ribozymes have already been designed against viral RNA. Synthetic guide 
RNAs (gRNAs) are employed in the CRISPR-Cas9 system, which is utilized for gene editing and gene therapy 
purposes68.

Biomedical ontologies for the semantic characterization of RNA-KG.  Several standard biomedical 
ontologies can be used to set up common semantics in the considered data sources. Table 1 shows those consid-
ered during RNA-KG construction (their specifications are made available in the web portals ebi.ac.uk/
ols4 and bioportal.bioontology.org). We selected these ontologies because their terms and hierar-
chical structures are commonly accepted by the scientific community to unequivocally describe biological classes 
and entities such as diseases, phenotypes, chemicals, biological processes, proteins, and relations between them. 
In the case of RNA-KG, we have also taken into account the lack of specific ontologies for the description of 
all possible RNA sequences (especially non-coding ones), and the presence of bio-ontologies that are yet not 
well-recognized by the community.

Methods
The creation of a KG is a complex task that requires passing through several phases that can be organized in a 
workflow such as the one reported in Fig. 2. In the remainder of the section, we provide a detailed description of 
the different issues and adopted solutions for each phase of the creation of our RNA-based KG.

RNA sources characterization.  In this phase, we have identified and analyzed the characteristics of rel-
evant data sources from which the information for feeding the KG has been extracted. This is a well recognized 
critical initial step in constructing a KG69.

https://doi.org/10.1038/s41597-024-03673-7
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With this aim, an extensive literature review was carried out and ended with the identification of more than 
60 public repositories dealing with RNA sequences and annotations developed by well-reputed organizations, 
published in top journals in the last 10 years, periodically updated, and containing significant amounts of 
RNA molecules and relevant relationships with other types of molecules and bio-entities. Sources provide data 
in different formats (e.g., CSV, TSV, gaf, reactome, xlsx, JSON, and HTML) or by issuing queries on content 

Name Abbr. Description

Human Phenotype Ontology44 HPO Terms representing medically relevant phenotypes and disease-phenotype annotations.

Gene Ontology40 GO Terms representing attributes of gene products in all organisms. Cellular component, 
molecular function, and biological process domains are covered.

Monarch Merged Disease Ontology98 Mondo Terms representing human diseases.

Vaccine Ontology99 VO Terms in the domain of vaccine and vaccination.

Chemical Entities of Biological Interest100 ChEBI Structured classification of molecular entities of biological interest focusing on “small” 
chemical compounds.

Uber-anatomy Ontology101 Uberon Terms representing body parts, organs and tissues in a variety of animal species, with a 
focus on vertebrates.

Cell Line Ontology102 CLO Terms representing publicly available cell lines.

PRotein Ontology103* PRO Terms representing protein-related entities (including specific modified forms, 
orthologous isoforms, and protein complexes).

Sequence Ontology104 SO Terms representing features and properties of nucleic acid used in biological sequence 
annotation.

Pathway Ontology105 PW Terms for annotating gene products to pathways.

Relation Ontology28 RO Terms and properties representing relationships used across a wide variety of biological 
ontologies.

Table 1.  Main biomedical ontologies used for RNA-KG construction (* modified to include only human and 
viral proteins).

Fig. 2  Workflow for the construction of RNA-KG.
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management systems. Once the data were downloaded, Pandas70 DataFrames were used to transform the data 
into a common format (TSV files) and remove syntactic inconsistencies.

The adoption of different types of molecular identifiers represents another issue. Indeed, the identification 
scheme encountered in the considered data may vary from the source and target of the relation and could be 
characterized by different accuracy levels. Four levels have been detected: Well-Reputed (denoted WR), when the 
identifiers are widely accepted by the scientific community (e.g., NCBI Entrez Gene identifiers); Ontology-based 
(denoted O), when the identifiers are directly represented with ontological terms; Mapping-based (denoted M), 
when the identifiers can be obtained by exploiting look-up tables; and Proprietary (denoted P), when all the 
previous techniques cannot be applied. Once the identification scheme adopted in a source has been classi-
fied, appropriate look-up tables for their mapping into the reference ontology have been realized by analyzing 
synonyms in the reference ontology or by examining the ones provided by the sources themselves to facilitate 
interoperability with other sources dealing with the same entities. For instance, we employed NCBI Gene Entrez 
identifiers to represent genes in RNA-KG, but many sources provide the correspondent Gene Symbol. In this 
case, a look-up table has been used to map gene identifiers into the chosen representation (Fig. 3). To guarantee 
a high level of reliability of the relationships to be included in RNA-KG, only meaningful relationships have 
been considered, that is those satisfying constraints that take into account p-values or FDR – False Discovery 
Rate (e.g., pval < 0.01), experimental validation of results, or scores (denoted with σ) defined as reliable in the 
considered data source.

The main characteristics of the identified repositories are reported in Tables 2, 3, 4, whose entries are organ-
ized according to the main type of RNA molecules made available by the source. Sources with miRNA entities 
can contain hairpin miRNA, xeno-miRNA, and mature miRNA molecules (last ones, in turn, can be classified 
in -3p and -5p transcripts). Inter RNA sources are those that do not focus on a single RNA type but pro-
pose multiple relationships among different types of RNA molecules and bio-entities (e.g., disease in the case of 
RNADisease or cellular component in the case of RNALocate). Note that no species is present for RNA drugs, 
vaccines and aptamers because they are synthetic. Regarding the format, the majority of the considered data 
sources (≥70%) export data in a flat-file format (CSV). Only a small fraction of them (around 20%) provides an 
API for accessing data stored in a relational database. Only DrugBank and the GO resource offer an RDF data 
representation coupled with a SPARQL endpoint.

For the characterization of the relationships that can be extracted from the different data sources, we applied 
the Relation Ontology (RO). Moreover, the hierarchical organization of concepts in RO allows the expression 
of different kinds of relationships at different granularities (e.g., the general property interacts with can 
be substituted with more specific properties such as molecularly interacts with or genetically 
interacts with). Finally, in case of a lack of specific properties for describing relationships identified in 
a data source, we decided to approximate the concept/relationship type with a property already present in RO. 
This choice has the effect of getting a larger agreement on the meaning of the used terms.

Figure 4 summarizes the available relations involving RNA molecules and bio-entities (i.e., gene, protein, 
chemical, and disease) that we have identified in the different data sources. miRNA-lncRNA interactions are the 
most numerous. We can retrieve around 150 million distinct relationships of this type from public RNA-based 
data sources. In terms of cardinality, they are followed by lncRNA-mRNA interactions (~ 28 million) and 
miRNA-mRNA/miRNA-gene interactions (~ 6 million each). Around 800 thousand distinct relationships can 
also be identified for protein-lncRNA interactions. These categories of molecules often interact with each other 
in specific diseases. RNA aptamer-disease is the less represented one because at the current stage only two 
approved (or under-investigation) RNA aptamer drugs are present in DrugBank and, in general, RNA drugs 
are less represented than others because they are synthetic (DrugBank siRNA and mRNA vaccine categories 
contain only 4 approved or under-investigation drugs, ASO drugs are only 12, and RNA aptamer drugs only 
2). In addition to the so far discussed data sources, RNAcentral71 is a collector coordinated by the European 
Bioinformatics Institute (EBI72), which imports non-coding RNA sequences from multiple databases and ena-
bles integrated text search, sequence similarity search, bulk downloads, and programmatic data access through 
a reliable API.

To guarantee a high level of homogeneity in the KG, a few tuples have been omitted when the mapping 
to the reference ontology was not possible. For some types of RNA molecules (especially ncRNA sequences), 
the look-up tables cannot be adopted because of the lack of a reference ontology with which these molecules 
can be represented. In these cases, the NCBI Entrez Gene identifiers of the gene from which the specific RNA 

Fig. 3  The relationship between chemicals and miRNA cannot be decoded directly because of the use of 
different identification schemes. However, by means of a look-up table the relationship can be highlighted.
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is transcribed have been extended with a suffix that corresponds to the type of non-coding RNA (e.g., in case 
of small nucleolar RNA molecules the suffix is ?snoRNA). We remark that the lack of a common ontological 
representation among heterogeneous sources can cause the same molecule to be represented multiple times 
under different identifiers. At the current stage of development, we decided to admit their presence, but we will 
consider de-duplication techniques73,74 that rely on the use of similarity measures on the molecule sequences in 
future releases.

Starting from the need to understand whether the content of the different data sources overlap, we examined 
the entities and relationships made available in the considered data sources and identified containment (or over-
lapping) data sources. The result of our study is reported in Fig. 5 where bubbles represent the relationships made 
available by the data sources. We can note the presence of two prominent clusters (miRNet and RNAcentral) that 

Type Data source Species RNAs Format API Threshold SI Relation with TI Relation

miRNA

miRBase106 271 87,474 rel/CSV no validated WR miRNA
epi. mod.

WR
M

58,168
7

miRDB107 5 7,086 CSV no σ > 80 WR mRNA WR 3,519,884

miRNet108 10 7,928 rel/CSV yes WR

variant
gene
snoRNA
chemical
TF
epi. mod.
lncRNA
pseudogene
circRNA
disease

WR
WR
WR
M
M
M
WR
WR
WR
M

67,532
3,025,487
9,738
4,935
3,311
1,955
31,345
59,417
804,086
32,004

miRecords109 9 384 CSV no validated WR mRNA M 1,529

HMDD110 HS 1,206 CSV no WR disease M 35,547

EpimiR111 7 617 CSV no WR epi. mod. M 1,974

miR2Disease112 HS 349 CSV no WR disease O 3,273

TargetScan113 5 5,168 CSV no validated WR gene WR 2,850,014

SomamiR114 HS 1,078 CSV no validated WR
mRNA
circRNA
lncRNA
disease

WR
WR
WR
M

2,313,416
428,237
127,025
2,424

TarBase115 18 2,156 rel/CSV no WR gene WR 665,843

miRTarBase116 28 4,630 CSV no WR gene WR 2,200,449

SM2miR117 21 1,658 CSV no WR chemical M 4,989

TransmiR118 19 785 CSV no validated WR TF M 3,730

PolymiRTS119 HS 11,182 rel/CSV no validated WR
disease
variant
mRNA

M
WR
WR

83,516
16,412
16,412

dbDEMC120 HS 3,268 CSV no pval < 0.01 WR disease M 160,800

TAM121 HS 1,209 CSV no WR

mol. function
miRNA
TF
disease
anatomy

M
WR
M
M
M

2,538
1,218
165
12,516
58

PuTmiR122 HS 1,296 CSV no WR TF M 12,097

miRPathDB123 HS, MM 29,430 CSV no FDR < 0.05
validated WR

mol. function
bio. process
cell. component
pathway

O
O
O
WR

1,066,511
4,782,046
1,136,036
986,400

miRCancer124 HS 57,984 CSV no WR disease M 9,080

miRdSNP125 HS 249 CSV no validated WR
disease
variant
mRNA

M
WR
WR

786
758
180

miRandola126 14 1,002 CSV no WR extracell. form
chemical

M
M

3,262
25

mRNA vaccine DrugBank127 4 rel/RDF yesS P disease M 8

Table 2.  Main data sources (Part I). For each type of RNA molecule, the table reports the corresponding data 
sources. Moreover, for each data source, Species and RNAs columns specify the number of species and 
distinct sequences (HS and MM tags refer to specific species Homo sapiens and Mus musculus); Relation 
with and Relation columns specify the distinct relationships with bio-entities and their number; Format 
column refers to the data format (CSV for flatfiles, rel for relational tables, RDF, or HTML for web pages); API 
column reports the availability of API or SPARQL endpoints (the last one denoted with the superscript s) for 
data access; Threshold column provides identified quality threshold within the source. SI and TI columns 
contain the class of the identification schemes (WR – Well-Reputed, O – Ontology-based, M – Mapping- based, and 
P – Proprietary) adopted respectively by source and target(s) within a specific resource (the source is the RNA 
molecule specified in the Type column, whereas target(s) are specified in the Relation with column).
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https://compbio.uthsc.edu/SomamiR/
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https://www.biosino.org/dbDEMC/index
http://www.lirmed.com/tam2/
https://www.isical.ac.in/~bioinfo_miu/TF-miRNA1.php
https://mpd.bioinf.uni-sb.de/overview.html
http://mircancer.ecu.edu/
http://mirdsnp.ccr.buffalo.edu/
http://mirandola.iit.cnr.it/
https://go.drugbank.com/categories/DBCAT005631


8Scientific Data |          (2024) 11:906  | https://doi.org/10.1038/s41597-024-03673-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

properly include or overlap the relationships made available by other data sources. The identification of these 
containments has been exploited to reduce the issue of semantic compatibility. Furthermore, many miRNA and 
lncRNA sources contain relations that either overlap or are properly included within other sources. We remark 
that the Inter RNA sources RNAInter, RNALocate, RNAdisease, ncRDeathDB, cncRNAdb, and ViRBase are 
nicknamed “Sister Projects” because they are updated and maintained by the same research team. Common 
semantics in “Sister Projects” result useful for data handling because they share a practically identical structure.

Ontological description of the KG.  In this phase, we identified the classes of bio-entities that need to be 
managed and the kinds of relationships that can exist among them (schema layer). Moreover, specific instances 
and the properties that need to be maintained have been highlighted (data layer). This design activity plays a 
fundamental role in the hierarchy, structure, and content filling of the knowledge graph, and it is the basis for 
determining the kind of reasoning that can be supported.

Starting from the knowledge gained from the characterization of RNA sources, we moved toward the con-
struction of the ontological schema underlying the KG. A meta-graph was built to include all the kinds of 
bio-entities and relationships between them outlined in the previous phase. The meta-graph provides both direct 

Type Data source Species RNAs Format API Threshold SI Relation with TI Relation

s(i/h)RNA
ICBP siRNA128 HS, MM 147 HTML no P mRNA WR 147

DrugBank127 4 rel yesS P mRNA
disease

WR
M

4
6

RNA 
aptamer

Apta-Index129 230 rel no P chemical
protein

M
M

77
153

DrugBank127 2 rel/RDF yesS P protein
disease

M
M

5
6

ASO

eSkip-Finder130 4 2,196 rel no P mRNA WR 11,778

DrugBank127 12 rel/RDF yesS P
protein
mRNA
disease

M
WR
M

12
7
14

gRNA Addgene131 29 296 HTML no P gene WR 321

lncRNA

LncBook132 HS 323,950 rel/CSV no validated WR
miRNA
small protein
disease
bio. context

WR
WR
M
M

146,092,274
772,745
34,536
95,243

LncRNADisease133 4 6,066 CSV no WR disease M 20,277

LncExpDB134 HS 101,293 rel/CSV no pval < 0.01 WR mRNA WR 28,443,865

dbEssLnc135 HS, MM 207 JSON no WR bio. role
bio. process

P
O

207
28

lncATLAS136 HS 6,768 CSV no σ ≥ 28.50 WR cell. component M 2,429,368

NONCODE137 39 644,510 rel no WR disease O 32,226

Lnc2Cancer138 HS 3,402 CSV no WR disease O 9,254

LncRNAWiki139 HS 106,063 rel/CSV no WR

small protein
disease bio.
context
cell. component
gene
miRNA
TF
bio. process
mol. function
chemical
pathway

P
M
M
M
WR
WR
M
M
M
M
M

9,387
7,634
18,453
4,969
509
210
232
10,806
1,800
789
571

LncBase140 4 21,225 rel/CSV no σ1 ≥ 0.7325
σ2 ≥ 2.497 WR

miRNA
anatomy
cell
cell. component

WR
M
M
M

4,229,539
61,905
68,355
73,069

TANRIC141 HS 12,727 rel/CSV no σ ≥ 0.3 WR disease M 36,632

Ribozyme

Ribocentre142 1,195 21,084 rel no P bio. process M 34

Rfam143 16 35 rel yes P
bio. process
cell. component
mol. function

O
O
O

8
6
22

Riboswitch
TBDB144 3,621 23,497 CSV no P protein M 23,535

RSwitch145 50 215 rel/CSV no P bact. strain M 215

tRF & tsRNA

tRFdb146 7 863 CSV no P tRNA
cell

WR
M

792
2,292

tsRFun147 HS 3,940 CSV no FDR < 0.01 P
miRNA
tRNA
disease

WR
WR
M

45,165
46,798
4,620

MINTbase148 HS 28,824 CSV no P tRNA WR 125,285

Table 3.  Main data sources (Part II).

https://doi.org/10.1038/s41597-024-03673-7
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and inverse relationships that are considered to guarantee bi-directional navigation of the generated KG. Once 
classes of bio-entities and their relationships have been identified, we determined the properties that should be 
kept for them. At the current stage, only fundamental properties of bio-entities have been collected (identifiers, 
node types, and source provenance). This choice has the advantage of avoiding the explosion of the KG size. 
However, in future implementations, we wish to include class properties.

Table 5 reports the main relationships of the considered data sources according to the RO ontology. For each 
relation, the table reports the RO identifier, the corresponding meaning, and, whenever available, the inverse 
relation. The relation names that are exploited for unidirectional relationships are marked with the * symbol. 
The general relationships interacts with available in RO with the meaning “A relationship that holds 
between two entities in which the processes executed by the two entities are causally connected” have been 
specified in the most specific relationships molecularly interacts with in our classification to rep-
resent the situation in which the two partners are molecular entities that directly physically interact with each 
other (e.g., via a stable binding interaction or a brief interaction during which one modifies the other). We use 
this relationship to represent a specific interaction process at the molecular level (e.g., aptamer-protein binding 
interaction or tRNA molecule charged with a specific amino acid). We remark that some authors75,76 suggest that 
miRNA molecules are involved in negative regulation of complementary miRNA molecules by 
forming base-pairing interactions. However, this kind of relationship is not present in our data sources. Finally, 
we note that (the part of property, together with its inverse has part, formally belong to the Basic Formal 
Ontology – BFO77 – but are imported in RO).

The content of Tables 2–5 is the groundwork for the generation of the meta-graph reported in Fig. 6. The 
graphical representation provides a global overview of the richness of information that is currently provided. 
To simplify the visualization of the meta-graph, we omitted most of the non-RNA bio-entities that are known to 
play an important role in studying the biology (and supporting the discovery) of novel RNA drugs. Moreover, we 
have omitted some of the relationships extracted from the Inter RNA data sources (see Table 4) because of the 
limitation of their occurrences. The meta-graph in Fig. 6 can be further extended to include other nodes repre-
senting other bio-entities (e.g., diseases, epigenetic modifications, small molecules, tissues, biological pathways, 
and cellular components) and relationships relevant to the analysis. This “enlarged” meta-graph is quite complex 
and difficult to represent graphically. Figure 7 shows a very abstract representation by clustering in a single RNA 

Type Data source Species RNAs Format API Threshold SI Relation with TI Relation

Viral RNA ViroidDB149 9 9,891 CSV no WR ribozyme P 17,460

snoRNA snoDB150 HS 751 CSV no WR

gene
mRNA
lncRNA
miRNA
pseudogene
rRNA
snoRNA
snRNA
tRNA
scaRNA

WR
WR
WR
WR
WR
P
WR
WR
P
WR

763
276
45
17
10
735
670
164
164
34

tRNA
tRNAdb151 681 9,758 rel no WR amino acid M 8,872

GtRNAdb152 4,857 426,592 rel no WR epi. mod. M 1,366

piRNA

piRBase82 44 218,383,944 rel no WR
disease
variant
mRNA
lncRNA

M
WR
WR
WR

302
1,640,636
30,338
1,199

iPiDA-GCN153 HS 10,149 CSV no WR disease O 11,981

TarpiD154 9 1,154 rel no WR gene
disease

WR
M

28,682
11,869

Inter RNA

RNAInter155 156 455,887 CSV yes σ ≥ 0.2886 WR

chemical
histone mod.
RBP
TF
protein
gene

M
M
M
M
M
WR

10,890
1,060,685
5,200,067
9,323,690
22,543,829
119,377

RNALocate156 104 123,592 CSV yes WR cell. component M 213,429

RNADisease157 117 91,245 CSV yes σ ≥ 0.95 WR disease O 343,273

ncRDeathDB158 12 648 CSV yes WR prog. cell death M 4,615

cncRNADB159 21 2,002 CSV yes WR anatomy M 2,598

ViRBase160 152 41,718 CSV yes σ ≥ 0.7 WR viral RNA
viral protein

WR
M

719,214
195

Vesiclepedia161 41 20,490 CSV no WR extracell. form M 388,154

DirectRMDB162 25 19,702 CSV no WR epi. mod. M 904,712

Modomics163 32 225 rel/RDF yes WR epi. mod. M 276

The GO resource
(GO annotations)40 12 26,245 rel/RDF yesS P

bio. process
mol. function
cell. component

O
O
O

48,096
23,767
42,563

Table 4.  Main data sources (Part III).

https://doi.org/10.1038/s41597-024-03673-7
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node all the kinds of RNA molecules described in Fig. 6. Then, this node is connected with various bio-entities 
based on insights extracted from RNA sources and literature. 

Table 6 specifies the bio-ontologies that have been exploited for grounding concepts in RNA sources. RNA 
sources are categorized according to the main treated molecules of RNA (whose characteristics are reported in 
Tables 2–4).

Fig. 4  Number of relationships involving RNA molecules and relevant bio-entities (gene, protein, chemical, 
and disease) within the considered RNA sources. Colors represent the ranges of relationships in log scale, as 
reported in the legend.

Fig. 5  Bubbles represent the relationships made available from the considered data sources. Overlapping and 
inclusions of bubbles show the presence of common relationships among the considered data sources.

https://doi.org/10.1038/s41597-024-03673-7
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Ontological alignment specification.  In this phase, we identified the KG representation and the kind 
of storage system to adopt. RDF triples have turned out to be suitable because of their common, flexible, and 
uniform data model. These properties result in an ontologically-grounded KG for conducting different kinds of 
analysis and reasoning.

Since a standardized formal definition for the concept of a KG is still lacking, we considered the one adopted 
by Callahan and colleagues23 in which a KG is a pair  < T, A > , where T is the TBox and A the ABox. The 
TBox represents the taxonomy of a particular domain including classes, properties/relationships, and assertions 
that are assumed to generally hold within a domain (e.g., a miRNA is a small regulatory ncRNA located in an 
exosome as depicted in Fig. 8). The ABox describes attributes and roles of class instances (i.e., individuals) and 
assertions about their membership in classes within the TBox (e.g., hsa-miR-125b-5p is a miRNA whose over-
expression has been associated with leukemia). Non-ontological entities (i.e., entities from a data source that 
are not compliant to a given set of ontologies such as RNA molecules) can be integrated with ontologies using 
either a TBox (i.e., class-based) or ABox (i.e., instance-based) knowledge model. For the class-based approach, 

Relation ID Name Inverse Relation ID Inverse Name

RO:0000056 participates in RO:0000057 has participant

RO:0000079 function of RO:0000085 has function

RO:0011013 indirectly positively regulates activity of

RO:0001015 location of RO:0001025 located in

RO:0011016 indirectly negatively regulates activity of

RO:0002202 develops from RO:0002203 develops into

RO:0002204 gene product of RO:0002205 has gene product

RO:0002245 over-expressed in

RO:0002246 under-expressed in

RO:0002260 has biological role

RO:0002263 acts upstream of

RO:0002264 acts upstream of or within

RO:0002291 ubiquitously expressed in RO:0002293 ubiquitously expresses

RO:0002302 is treated by substance RO:0002606 is substance that treats

RO:0002314 characteristic of part of

RO:0002325 colocalizes with*

RO:0002326 contributes to

RO:0002327 enables RO:0002333 enabled by

RO:0002331 involved in

RO:0002387 has potential to develop into

RO:0002428 involved in regulation of

RO:0002430 involved in negative regulation of

RO:0002432 is active in

RO:0002434 interacts with*

RO:0002435 genetically interacts with*

RO:0002436 molecularly interacts with*

RO:0002448 directly regulates activity of

RO:0002449 directly negatively regulates activity of

RO:0002450 directly positively regulates activity of

RO:0002479 has part that occurs in

RO:0002526 overlaps sequence of*

RO:0002528 is upstream of sequence of RO:0002529 is downstream of sequence of

RO:0002559 causally influenced by RO:0002566 causally influences

RO:0003002 represses expression of

RO:0003302 causes or contributes to condition

RO:0004033 acts upstream of or within, negative effect

RO:0004035 acts upstream of, negative effect

RO:0010001 generically depends on RO:0010002 is carrier of

RO:0011002 regulates activity of

RO:0011007 decreases by repression quantity of

BFO:0000050 part of BFO:0000051 has part

RO:HOM0000000 in similarity relationship with*

RO:HOM0000001 in homology relationship with*

Table 5.  Main relations among bio-entities involving RNA with the RO identifier (* symmetric relationship).
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each database entity is represented as subClassOf an existing ontology class, while for the instance-based 
approach it is represented as instanceOf an existing ontology class.

For the construction of the KG we have employed the PheKnowLator ecosystem23 because it offers both 
approaches for the representation of bio-entities and their relationships, and also because of its simplicity in the 
identification of the columns containing the molecules’ identifiers and for the specification of their relationships 

Fig. 6  RNA-KG meta-graph. Most non-RNA entities are not represented to simplify the visualization.

Fig. 7  The complete conceptual RNA-KG meta-graph. RNA nodes are summarized into a few general types 
(e.g., ncRNA and mRNA) to simplify the visualization.

https://doi.org/10.1038/s41597-024-03673-7
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in terms of the RO ontology. PheKnowLator also provides tools to easily generate the ontology that better 
describes the content of the KG that, besides the terms and relationships of the meta-graph, also includes other 
ontological terms for supporting the reasoning.

KGs can be easily exported according to different kinds of models offered by PheKnowLator depending on 
the analyses to be conducted. Even if RNA-KG is made available in all the supported knowledge models, we 
think that the instance-based, inverse relation, semantically abstracted (OWL-NETS78 without harmonization) 
configuration is the most suitable to be processed by different kinds of ML algorithms for node and link pre-
diction. This solution ensures that RNA molecules (which lack semantic characterizations in bio-ontologies) 
and other non-ontological data can be specified as subClassOf specific ontological classes. Moreover, 
this approach enables the automatic specification of inverse relations among the involved bio-entities. Lastly, 
OWL-NETS reversibly abstracts ontological biomedical knowledge into a network representation containing 
only biologically meaningful concepts and relations. Figure 9 shows a small toy-example subgraph extracted 
from RNA-KG according to the proposed set-up. We can notice the presence of inverse relationships (located 
in and its inverse location of), and the relation RDF subClassOf connected to entities that do not have 
a corresponding term in a reference ontology (miRNA molecules are specified as subClassOf the SO term 
miRNA).

By studying the characteristics of the data sources, specific mapping rules have been devised through 
PheKnowLator to extract triples compliant with the adopted ontologies. Mapping rules contain the position of 

Type Data source GO Mondo HPO VO ChEBI Uberon CLO PRO SO PW

miRNA

miRBase x x

miRDB x

miRNet x x x x x

miRecords x

EpimiR x

HMDD x x x

miR2Disease x x x

TargetScan x

SomamiR x x x

TarBase x

miRTarBase x

SM2miR x x

TransmiR x x

PolymiRTS x x x

dbDEMC x x x

TAM x x x x x x

PuTmiR x x

miRPathDB x x x

miRCancer x x x

miRdSNP x x x

miRandola x x x

mRNA vaccine DrugBank x x x x

s(i/h)RNA
ICBP siRNA x

DrugBank x x x

RNA aptamer
Apta-Index x x x

DrugBank x x x x

ASO
eSkip-Finder x

DrugBank x x x x

gRNA Addgene x

lncRNA

LncBook x x x x x x x

LncRNADisease x x x

LncExpDB x

dbEssLnc x x x

lncATLAS x x

NONCODE x x x

Lnc2Cancer x x x

LncRNAWiki x x x x x x

LncBase x x x x

TANRIC x x

Table 6.  Bio-ontologies that can be exploited for the characterization of data sources (Part I).
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the source and object in the TSV file, the two human-readable labels for subject and object (e.g., mRNA and dis-
ease), the type of relationship that holds/exists between them according to RO (e.g., RO_0003302 corresponds 
to causes or contributes to condition relation), and further detailed options (e.g., thresholds for 
considering the tuple, row filtering options, transformation options according to the look-up table). These rules 
will be exploited for the extraction of the triples according to the reference ontology.

Fig. 8  An example of the use of Description Logic (DL) for knowledge modeling. The TBox includes classes 
(i.e., miRNA, small regulatory ncRNA, and exosome), and the assertions between classes (i.e., 
“miRNA subClassOf small regulatory ncRNA” and “miRNA is located in exosome”). The 
ABox includes instances of classes (i.e., hsa-miR-125b-5p) represented in the TBox and assertions about those 
instances (i.e., “hsa-miR-125b-5p instanceOf miRNA” and “hsa-miR-125b-5p causes leukemia”).

Fig. 9  Example of a RNA-KG subgraph realized according to the instance-based, inverse relations, semantically 
abstracted (OWL-NETS without harmonization) parameters.

https://doi.org/10.1038/s41597-024-03673-7
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Since many ontologies are used in our context, we adopted the PheKnowLator tools to clean ontology files 
(i.e., remove and normalize errors, eliminate obsolete and/or deprecated entities, remove duplicate classes 
and class concepts) and merge cleaned ontology files into a single one that describes entirely the structure of 
RNA-KG and is compliant with our meta-graph.

RNA-KG generation and analysis.  In this final phase, the PheKnowLator mapping rules have been issued 
on the pre-processed data for generating a KG compliant with the meta-graph identified in Phase 2 (ontological 
description of the KG). In order to evaluate the characteristics of the generated KG, we used the GRAPE library 
that we recently developed for fast and efficient graph processing and embedding79. By importing RNA-KG into 
the GRAPE environment, we were able to retrieve relevant topological information and topological oddities that 
can be useful in identifying (eventual) data duplication. Moreover, GRAPE can be exploited to implement differ-
ent types of graph embedding techniques that cannot be realized by means of other tools because of the size of 
the generated KG. Finally, a Blazegraph endpoint80 was created to make RNA-KG freely available and accessible. 
Using SPARQL, it is possible to extract portions of the graph and use it for different kinds of analysis (see the 
examples reported in the Supplementary Listings S1–S3). Moreover, the entire RNA-KG can be downloaded from 
our lab website http://RNA-KG.anacleto.di.unimi.it.

Data Records
RNA-KG data resource is hosted on Zenodo81. We have deposited the KG and all relevant intermediate files 
in this repository. The current version of RNA-KG (version 0.9) has a single connected component containing 
673,825 nodes and 12,692,212 edges. The number of nodes and edges has been substantially reduced by consid-
ering only the relationships with high reliability. The construction process of the graph is designed to be period-
ically updated, including data from other public RNA and related biomedical sources. Moreover, thresholds can 
be tuned for enlarging or reducing the KG size. Table 7 depicts the main macroscopic topological and structural 
properties of the current RNA-KG.

RNA-KG is made available in N-Triples format. The files made available are described in Supplementary 
Tables S1–S8. These tables provide a breakdown of the number of nodes by node type and the number of edges by 
edge type. RNA-KG is available via SPARQL endpoint that can be accessed at http://RNA-KG.anacleto.di.unimi.it.

The dataset also includes the N-Triples KG that merges RNA-KG and Human Disease benchmark KG. 
Moreover, we provide supporting input files for the generation of RNA-KG by using PheKnowLator. Specifically: 

•	 edge_source_list.txt. It contains the organization of the resources directory in which data files 
downloaded from the repositories are maintained. For each file, it reports the kinds of edges that can be 
extracted by PheKnowLator.

Type Data source GO Mondo HPO VO ChEBI Uberon CLO PRO SO PW

Ribozyme
Ribocentre x x

Rfam x x

Viral RNA ViroidDB x

Riboswitch
TBDB x x x

RSwitch x x

tRF & tsRNA

tRFdb x x

tsRFun x x

MINTbase x

snoRNA snoDB x

tRNA
tRNAdb x x

GtRNAdb x x

piRNA

piRBase x x

iPiDA-GCN x x

TarpiD x x x

Inter RNA

RNAInter x x x

RNALocate x x

RNADisease x x

ncRDeathDB x x

cncRNADB x x x

ViRBase x x

Vesiclepedia x x x x

DirectRMDB x x

Modomics x x x

The GO resource x x

Table 7.  Bio-ontologies that can be exploited for the characterization of data sources (Part II).
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•	 ontology_source_list.txt. It contains the bio-ontologies chosen to describe the meta-graph. 
Ontologies employed for building the current release of RNA-KG were updated to date April 22, 2024.

•	 resource_info.txt. It contains the meta-graph. RO properties are used to describe the interactions 
stored in edge_source_list.txt. Moreover, this file is used to specify prefixes for subject and object 
nodes (e.g., http://purl.obolibrary.org/obo/ for ontological nodes), apply evidence criteria to filter a source, 
and map node identifiers through look-up tables.

Raw data are also reported on Zenodo and have been collected from the public data sources referenced in 
Tables 2–4. The data sources’ owners have been contacted to present the initiative and asked the use permission 
for their data. No one answered that their data cannot be used for academic purposes.

Technical Validation
To evaluate the quality of RNA-KG, several analyses were executed whose results are reported in the following 
paragraphs.

RNA-KG statistical analysis.  Figure 10a shows the distribution of nodes contained in RNA-KG. Nodes 
can be classified into nodes representing bio-entities and those representing ontological terms. Bio-entities have 
been further subdivided into RNA nodes (gathering together sncRNA, mRNA, lncRNA, viral RNA, and unclas-
sified RNA nodes), and non-RNA nodes (named other bio-entities) that contain, for instance, gene 
and variant (SNP)-typed nodes. Furthermore, Fig. 11a presents the distribution of nodes according to the main 
type of RNA molecules, detailing the different categories of sncRNA, mRNA, viral RNA, and lncRNA. miRNA, 
mRNA, and lncRNA molecules are among the most represented in RNA-KG because they are well-studied (many 
RNA sources have been categorized/typed as lncRNA and miRNA, and mRNA are in relationships with many 
other ncRNAs as already discussed in the characterization of the data sources). piRNAs are the most numer-
ous sncRNA category because they are very short sequences of ~ 20 − 30 nucleotides that originate from large 
genomic regions called piRNA clusters, which can be transcribed into long single-strand precursors and further 
processed into mature piRNAs that often act on the same gene or mRNA transcript in specific diseases or aberrant 
phenotypes82,83. Additionally, tRF molecules are abundant because they are “fragments” of tRNAs (one tRNA 
can generate more than one tRF or tsRNA). Riboswitches are also numerous because in RNA-KG we have many 
riboswitches belonging to human-pathogenic bacteria that can be targets for drugs. Each bacterial riboswitch 
comes with a different identifier.

The unclassified RNA category includes 780 RNA nodes for which a better semantic characterization 
cannot be assigned because, in the original sources, they are specified as “other RNA”, “miscellaneous RNA”, 
“unknown RNA”, “ncRNA”, or “RNA molecules to be experimentally confirmed”. Finally, the other category 
includes sncRNA molecules whose distribution is negligible in RNA-KG (71 sncRNA molecules among ribo-
zymes, enhancer RNAs, vault RNAs, Y RNAs, retained introns, mitochondrial RNAs, small conditional RNAs, 
and scaRNAs). The total number of mRNA, and in general, RNA, is consistent with experimental studies regard-
ing the number of genes in humans (~ 22-25K protein coding genes and more than 100K total genes84).

Ontological terms shown in Fig. 10a are introduced in the generation of the KG for supporting reasoning 
activities and can be further classified according to the specific bio-ontology from which they are extracted (e.g., 
ChEBI for chemicals and HPO for phenotypes). Among them, chemical and protein nodes cover around 47.8% 
of the total amount of nodes in RNA-KG. This is because ChEBI and PRO both contain many terms representing 
chemical entities and proteins for Homo sapiens. Figure 11b further details the distribution of ontological terms. 
Since the considered ontologies contain also terms that do not follow the usual pattern for their identification 
(e.g., terms representing glycans belong to PRO but their identifier starts with the prefix GNO which differs from 

Fig. 10  Pie-chart of: (a) node distribution according to node types; (b) edge distribution according to edge types.

https://doi.org/10.1038/s41597-024-03673-7
http://purl.obolibrary.org/obo/


17Scientific Data |          (2024) 11:906  | https://doi.org/10.1038/s41597-024-03673-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

the usual one adopted for identifying proteins), we have introduced the category species, with the terms rep-
resenting the species (all species start with the prefix NCBITaxon), and the category other terms generally 
containing all the others.

Figure 10b shows the distribution of edges in RNA-KG. Edges have been subdivided into three categories: i) 
edges representing RO properties that have been further classified in those that describe the interactions among 
RNA molecules and RO properties introduced by the integrations of the bio-ontologies; ii) edges representing 
the subClassOf relationships; and iii) edges representing other kinds of relationships not included in RO 
(e.g., has gene template belonging to PRO). Figure 12a details the distribution of the types of edges 
involving RNA molecules. As reflected by the organization of the meta-graph, interacts with is the most 
represented edge type because it encompasses edges for which the original source does not provide specific 
semantics, whereas the presence of many regulates activity of edges is justified by the vast majority of 
miRNA molecules within RNA-KG that indeed regulate the activity of, for example, genes and pseudogene and 
mRNA molecules. Moreover, Fig. 12b shows the distribution of the remaining edges included in RNA-KG. We 
can notice the prevalence of many subClassOf due to the integration of the bio-ontologies, and because each 
RNA molecule is subClassOf an appropriate class within SO (e.g., SO_0000276 for miRNA molecules).

t-SNE representation.  Figure 13 shows the t-SNE representation of an embedding of the nodes/edges in 
RNA-KG by using the GRAPE implementation of Node2Vec with continuous bag of words (CBOW), a ran-
dom walk-based second-order embedding algorithm85, with walk length equal to 5. Figure 13a shows how the 
embedding of the node type is able to effectively identify the similarities among the nodes of the same type, thus 
capturing their function in the network. On the other hand, Fig. 13b depicts the edge embedding for RNA-KG. 
Also in this case, the embedding is able to capture the similarity between edges with the only exception of the 
interacts with and regulates activity of relations which seem to overlap several other edge 
types. This fact is not so surprising considering that the interacts with relation is also used to denote a 
generic relation between nodes. Moreover, the various subcategories of regulates activity of existing 
between miRNA and mRNA (e.g., directly regulates activity of and its subtypes directly 
positively regulates activity of and directly negatively regulates activity 
of) are not distinguished as the algorithm is homogeneous. In the future, we plan to adopt algorithms that take 
into account the heterogeneity of RNA-KG.

Topological analysis.  The topological analysis led to the identification of top-5 nodes with the highest 
degree centrality: microvesicle (GO_1990742) with degree 26.94K (whose type is GO); nucleus (GO_0005634) 
with degree 20.45K; hcmv-miR-US25-1-5p (human cytomegalovirus hcmv-miR-US25-1-5p 
mature miRNA) with degree 18.18K and node type miRNA; and, (human) hFOXA1 (PR_P55317) with 
degree 17.37K and node type protein. We remark that the nodes nucleus and microvescicle represent cellular 
components used for aggregating different bio-entities existing in the context of a cell and this is the main reason 
for the high node degree within RNA-KG.

Fig. 11  Node distribution according to node types.
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Moreover, the RNA relationships with these kinds of cellular components are enhanced by the seman-
tics of location of edge type together with its respective RO inverse located in. On the other hand, 
hcmv-miR-US25-1-5p is a human cytomegalovirus (HCMV)-encoded -5p miRNA transcript, whose diagnostic and 
prognostic value has been proved valid for several human diseases and their clinical implications86. Relationships 
involving this miRNA sequence are mainly borrowed from ViRBase source. Finally, hFOXA1 is a human forkhead 
TF known to be the main target of insulin signaling, to regulate metabolic homeostasis in response to oxidative 
stress, and to interact with chromatin. The central role assumed by hFOXA1 in RNA-KG is quite interesting since 
this TF is implicated in various human malignancies characterized by altered expression of ncRNAs87.

Fig. 12  Edges distribution.

Fig. 13  Bidimensional view of RNA-KG embeddings.
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Degree distribution.  As shown in Table 7, the average degree of the undirected version of RNA-KG is rela-
tively small (25.23). Despite the sparsity of the graph, the diameter of the KG is also relatively small (33). On the 
other hand, as shown in Fig. 14a, the degree distribution suggests a heavy-tailed distribution. All of these proper-
ties are usually associated with scale-free networks, or more generally to heavy-tailed degree distributions, which 
is a common structure in real-world complex systems. This motivates the computation of the empirical comple-
mentary cumulative distribution function (CCDF) for the degree reported in Fig. 14b. This curve approximates the 
probability distribution that a randomly selected node has a degree greater than or equal to x. A linear trend in 
this plot is usually associated with a powerlaw distribution, where the CCDF is given by a function proportional 
to x1−α. We estimate the power of the distribution using88, obtaining a value of α = 1.708. The theoretical power-
law obtained for the degrees is shown in Fig. 14b together with other common heavy-tailed distributions. Among 
these alternatives, we found that the truncated powerlaw distribution fits better according to the log-likelihood 
ratio criterion89 with p-values smaller than or equal to 10−20. This distribution behaves as a power law’s scaling on 
a range but is truncated by an exponentially bounded tail according to the distribution x−αe−λx. Further explo-
ration should be made to confirm the powerlaw properties of the graph since they are usually associated with a 
hierarchical modular structure of the network, entailing algorithmic advantages for its analysis. For instance, the 
closeness centrality distribution in Fig. 14c exhibits a bimodal behavior, which could be explained by the exist-
ence of a well-connected core usually present in heavy-tail degree distribution networks.

Treewidth.  Treewidth is a graph parameter measuring the structural similarity between a graph and a tree. It 
is based on the construction of a tree decomposition which captures how subset of nodes can be grouped to form 
a tree structure that maintains the global structure of the former graph. For instance, graphs having treewidth 
equal to one are trees, cycles have treewidth two, and clique graphs have a treewidth equal to the number of nodes 
minus one. The computation of the treewidth is in NP, but several approximation strategies can be used90. The 
upper bound (10, 611 in Table 7), computed on the undirected version of the KG, can be considered relatively 
small because it represents about 1.57% of the KG size. This result is consistent with a tree-like hierarchical struc-
ture of RNA-KG that has a small and well-connected core.

Isomorphic node groups.  RNA-KG contains 761 isomorphic node groups, that is nodes with exactly the 
same neighbours, node and edge types. Nodes in such groups are topologically indistinguishable, that is, swap-
ping their identifiers would not change the graph topology. These groups involve a total of 9.15K nodes (1.36%) 
and 272.30K edges (2.15%), with the largest one involving 372 nodes and 10.86K edges. This particular group has 
degree 10 and is composed of tRFs, specifically i-tRFs (i.e. tRF molecules originating from the internal region of 
mature tRNA91), and contains sequences that stem from tRNA molecules whose predicted tRNA isotypes/anti-
codons are all Histidine-GTG. Other detected isomorphic group components involve tRNA molecules that 
are all interacting with amino acids at a molecular level or tRF and tsRNA sequences that originate from tRNAs 
with molecular interactions tied to specific amino acids. For example, some of these groups include Aspartic 
acid-GTC tRNA sequences or tsRNA-Leucines. The remaining isomorphic node groups involve mRNA and 
piRNA molecules. All these isomorphic node groups deserve further investigation to check whether the involved 
molecules correspond to the same tRNA, mRNA, piRNA, tsRNA, or tRF and thus their pruning improves the 
information quality of RNA-KG. Indeed, many of these groups derive from different RNA sources and contain 
molecules presenting proprietary identifiers that might collapse.

Usage Notes
The methodology we employed to construct RNA-KG enabled us to generate a high-quality KG that includes 
reliable interactions, validated through experimental methods and/or strongly endorsed by data providers, and 
whose meaning was meticulously verified to ensure a consistent representation of domain knowledge.

RNA-KG can generate heterogeneous biomedical graphs in different formats that can be processed by 
graph-based computational tools to infer biomedical knowledge, provide insights into biomolecular mecha-
nisms and biological processes underlying diseases, support the discovery of new drugs, especially those based 

Fig. 14  (a) Node degree distribution (semi-log). (b) Complementary cumulative distribution (CCDF) for the 
node degree. (c) Approximated closeness centrality distribution.

https://doi.org/10.1038/s41597-024-03673-7


20Scientific Data |          (2024) 11:906  | https://doi.org/10.1038/s41597-024-03673-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

on RNA, and evaluate biomedical hypotheses in silico. Specific views of RNA-KG can also be generated or 
extracted by querying the entire KG according to the type of prediction task to be conducted. Predefined views 
of interest are already provided on RNA-KG’s website and queries, like the one reported in the Supplementary 
material, can be issued on RNA-KG for extracting meaningful hidden patterns from the data.

RNA-KG is specifically designed to deal with computational tasks involving RNAs by e.g., exploiting the 
information about ncRNA interactions for gene and protein expression regulation, collected from tens of pub-
licly available databases. By leveraging the biomedical concepts represented in the biomedical ontologies embed-
ded in the KG, RNA-KG can be also analyzed to predict associations and causal relationships of the “RNA world” 
with diseases and abnormal phenotypes. We also observe that the rich information embedded in the RNA-KG 
can be leveraged for classical biomedical prediction tasks, including e.g., gene-disease prioritization, drug-target 
prediction, drug repurposing and synthetic lethality interaction detection92,93.

Most of these biomedical tasks can be modeled as link or node-label prediction problems in heterogeneous 
graphs. Even if, in principle we could apply methods developed for homogeneous graphs94, to leverage the rich 
information scattered across the different types of modes and edges of the RNA-KG, we suggest applying meth-
ods specifically designed for heterogeneous graphs95. To this end, several AI graph-based methods have been 
recently proposed to deal with heterogeneous graphs, also in the context of biomedical KGs96. In particular, we 
foresee that Graph Representation Learning methods, by leveraging the topology of the complex bio-medical 
heterogeneous graphs to embed them into compact vectorial spaces, could be the most promising choice to 
properly analyze the complex heterogeneous structure of RNA-KG97.

Code availability
The RNA-KG’s project website is at http://RNA-KG.anacleto.di.unimi.it. The code to reproduce results, 
together with documentation and tutorials, is available in RNA-KG’s GitHub repository at https://github.com/
AnacletoLAB/RNA-KG. In addition, the repository contains information and Python scripts to build new 
versions of RNA-KG as the underlying primary resources get updated and new data become available.
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