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Design Automation for Smart
Building Systems
This paper presents a platform-based design flow for smart buildings. The proposed
flow maps high-level specifications of desired building applications to their physical
implementations through three intermediate design platforms, namely the virtual
device platform, the module platform, and the implementation platform.

By RUOXI JIA , BAIHONG JIN, MING JIN, YUXUN ZHOU, IOANNIS C. KONSTANTAKOPOULOS,
HAN ZOU, JOYCE KIM, DAN LI, WEIXI GU, REZA ARGHANDEH, Senior Member IEEE,
PIERLUIGI NUZZO, Member IEEE, STEFANO SCHIAVON,
ALBERTO L. SANGIOVANNI-VINCENTELLI, Fellow IEEE, AND COSTAS J. SPANOS, Fellow IEEE

ABSTRACT | Smart buildings today are aimed at providing

safe, healthy, comfortable, affordable, and beautiful spaces

in a carbon and energy-efficient way. They are emerging as

complex cyber–physical systems with humans in the loop.

Cost, the need to cope with increasing functional complexity,

flexibility, fragmentation of the supply chain, and time-to-

market pressure are rendering the traditional heuristic and ad

hoc design paradigms inefficient and insufficient for the future.

In this paper, we present a platform-based methodology for

smart building design. Platform-based design (PBD) promotes

the reuse of hardware and software on shared infrastructures,
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enables rapid prototyping of applications, and involves exten-

sive exploration of the design space to optimize design per-

formance. In this paper, we identify, abstract, and formalize

components of smart buildings, and present a design flow that

maps high-level specifications of desired building applications

to their physical implementations under the PBD framework.

A case study on the design of on-demand heating, ventilation,

and air conditioning (HVAC) systems is presented to demon-

strate the use of PBD.

KEYWORDS | Control; cyber–physical system; design automa-

tion; machine learning; smart building

I. I N T R O D U C T I O N

We spend most of our time indoors [1], and the indoor
environment influences our health, wellbeing, and
productivity. Buildings account for 40% of primary
energy usage in the United States [2], and a large
part of building occupants are not satisfied with the
buildings that they occupy [3], even in green and high-
performing buildings [4]. The convergence of various new
technologies, such as large-scale sensing and actuation
techniques, advanced control, and big data analytics,
has spurred the evolution of buildings from simple
to automated and multifunctional habitats, i.e., smart
buildings, with an emphasis on safe, healthy, comfortable,
affordable, and sustainable living environments, and
support for reliable grid operation. The demand for smart
buildings has seen tremendous growth in the last decade,
doubling every three years on a global scale, in both
developed and developing urban areas [5].

A smart building can be characterized by three aspects:
components, functions, and outcomes. The components
comprise multiple interconnected pieces of technical
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building equipment and appliances, including both
traditional systems such as heating, ventilation and air
conditioning (HVAC), lighting, network and electrical
systems, along with their associated sensing and control
infrastructure, and emerging technologies such as onsite
energy generation and storage. These components enable
a multitude of functions. For instance, a building equipped
with power meters and an energy storage system can
participate in demand response activity; a building capable
of sensing occupancy can tailor the treatment of the indoor
space (lighting, thermal, and indoor air quality) in accor-
dance with occupancy changes in order to save energy. The
functions that a building can perform define its intelligence
and effectiveness, and eventually facilitate outcomes, such
as health, comfort, productivity, and energy efficiency,
which benefit the environment, society, and the economy.

There has been extensive work on the development
of smart functions for buildings, including communica-
tion [6], computing [7], and control [8]. However, the
deployment and integration of smart functions, as of now,
have largely remained heuristic and ad hoc processes [9].

Traditionally, each application is designed and assembled
independently in a self-contained manner. Suppose that
a building owner wishes to deploy a demand control
ventilation system and an occupant responsive lighting
system. The necessary components for a demand control
ventilation system include an economizer or air makeup
unit with modulating damper, a sensing device such as a
camera that counts the number of people in the space,
and a controller to communicate either directly with the
economizer controller or with a central control system. The
responsive lighting control system would require a wireless
passive infrared sensor that measures people’s presence
and a daylight sensor. Although some of the data collected,
such as occupancy, are useful for both ventilation and light-
ing, the two systems can hardly share resources because
they are often purchased from two different vendors.
For instance, Lennox [10] offers ventilation services and
Lutron [11] provides lighting control solutions. This one-
function–one-box paradigm, illustrated in Fig. 1(a), allows
for optimization of the design of a particular application
offered by a given supplier. Although this design paradigm

Fig. 1. Illustrations of current smart building supply chains and the proposed automated design methodology via an example of designing

a demand control ventilation system and an occupant responsive lighting system. (a) The one-function–one-box paradigm limits the

opportunities for component reuse. For instance, the on-demand ventilation system and the occupant responsive lighting system use

separate components to monitor occupancy—camera in the former and PIR sensor in the latter. (b) The application stack paradigm allows the

sharing of components among different functions. For instance, the camera is used for informing both ventilation and lighting controls.

(c) The automated, structured, and integrated design paradigm further enables the design space exploration to achieve more cost-effective

designs. For instance, the camera in (b) can be functionally replaced by a WiFi-based location system that leverages existing WiFi

infrastructure, which therefore saves the cost for extra instrumentation.
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limits the opportunities for component reuse for other
services and accompanying cost reductions, it has been
widely adopted due to the complexity and multidiscipli-
nary nature of smart building applications as well as the
fragmental supply chain of technology offerings.

Another emerging paradigm for application integration,
which we call the application stack paradigm [12], allows
the sharing of components among different functions, as
illustrated in Fig. 1(b). This paradigm is enabled by recent
innovations in building operating systems (BOSs), which
are programming platforms that provide uniform abstrac-
tions and controlled access to shared physical resources in
a building, e.g., XBOS [7]. In the ventilation and lighting
example above, occupancy data collected from the camera
system is useful for informing both ventilation and lighting
controls. The application stack paradigm allows the ven-
tilation and lighting applications to share the data from
a common infrastructure, eliminating redundant software
and hardware efforts. Even in this paradigm, however,
the add-on infrastructure is usually incorporated into the
building systems in an empirical manner, which hinders
the ability to achieve cost-effective designs due to the lack
of design space exploration (DSE). The emergence of the
concepts of BOSs and application stacks has been driving
the disaggregation of smart building technology from a
vertically oriented model into a horizontally oriented one.
The components can be purchased independently, opening
the door for competition among software suppliers.

However, the two aforementioned paradigms of smart
function integration are facing increasing challenges. In
particular, the following challenges are driving demand for
a more rigorous design paradigm.

1) Cost: Building renovation decisions are sensitive to
costs. The expenditures for add-on sensors and the
labor costs for setting up and calibrating systems
increase with the size of the building and the number
of functions to be integrated. Consider the example
of retrofitting the HVAC system of a commercial
building to be responsive to occupancy. To prop-
erly monitor occupancy changes in the space, every
entrance and exit on each floor would need to be
instrumented with an occupancy sensor that counts
people walking in any direction. Even more sen-
sors would be needed to realize more fine-grained
control over different zones on a particular floor
or to identify different occupants and their needs.
The associated hardware and installation costs will
scale up accordingly. However, substantial economic
savings could be achieved by leveraging the exist-
ing infrastructure and sharing hardware resources
among different functions. For instance, the cameras
installed for security purposes could also be adapted
for occupancy counting; information extracted from
WiFi [13] and calendar systems has also proven to
be useful for inferring occupancy.

2) Increasing functional complexity: Future smart
buildings will be required to support an

ever-increasing number of additional functions, such
as intelligent trash collection, automatic building
cleaning, comfortable and personalized indoor envi-
ronment, food and drink management, and layout
and space management, to name a few. These func-
tions are complex, distributed, and interdependent.
Consider, for example, that buildings are envisioned
to be able to offer customized indoor environment to
each occupant’s preference, location, and activities
(e.g., at work or leisure). In addition to the internal
distributed stimuli from occupants, buildings will
also be required to respond to external signals
from the grid and onsite generation. Therefore,
the management of building equipment must be
performed in a holistic manner, taking into account
various objectives including occupants’ comfort,
carbon emission reduction, energy saving, and grid
stability. The integration of the various functions will
require several stages of planning and arbitration,
representing an unprecedented level of complexity
and interdependency among functions and systems.

3) Barriers to implementing new technologies: Smart
buildings are interdisciplinary and involve multi-
industrial systems engineering and design. The
innovations and technological advancements related
to smart buildings are also heterogeneous, ranging
from more sustainable building architectures
and lower power and more cost-effective sensor
networks to more sophisticated and robust control
and data analytics algorithms. As the function
integrators, building owners today have limited
knowledge of the synergistic benefits of integrating
different technologies due to the lack of a platform
for abstracting, modeling, and validating new
technologies, which in turn, inhibits their adoption.
For example, although occupancy counting systems
on the market often rely on thermal imaging
and video-based solutions, fruitful research has
been conducted on inferring occupancy from less
expensive, less intrusive, more privacy-preserving
sensors, such as CO2 sensors. A number of
algorithms based on machine learning or dynamic
systems theory [14] have been proposed to improve
the accuracy and decrease the latency of CO2-based
occupancy sensing. A separate effort has also been
made to reduce the size and cost of CO2 sensors.
The development of an optimal design for smart
functions often involves a broad range of expertise
from different groups of engineers. However, the
current function deployment paradigms do not
allow for the systematic exploration and uptake
of new technologies at different levels, which
often results in low-efficacy designs. In addition, a
building is a dynamic environment. Rooms may be
converted for different uses, occupants and their
preferences can change over time, and various
systems are subject to aging issues and contingent
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failures. Therefore, the system design of a building
is not a one-time effort at design time; rather, it is
a task that persists throughout the building’s entire
life cycle. This situation requires a design flow that
not only is effective but also allows for efficient
progression from specifications to implementations.

When all of these challenges and opportunities are con-
sidered, the natural result is a new paradigm of automated,
structured, and integrated design, in which the objective is
to increase the efficiency and cost-effectiveness of build-
ing application prototypes. The design flow should start
with the high-level specifications provided by the building
owner and proceed with the automatic synthesis of a set of
functions and their implementations that meet the specifi-
cations. Expertise and previous experience from different
system designers are encapsulated into the libraries in a
structured way to aid future design practices. As long as
the interfaces between different libraries are organized
in a cohesive and consistent manner, each library can
be separately enriched while remaining capable of being
easily integrated with the other libraries to be collectively
leveraged to explore the design space. The concept of
libraries promotes the reuse of hardware and software
on shared infrastructures and enables extensive DSE to
optimize design performance. Such automation of the
design process is expected to increase the efficiency of the
design flow and to facilitate the reconfiguration of building
systems for adaptation to different uses. In contrast to
the application stack paradigm, our proposed paradigm
enables DSE in a principled manner, leading to designs
with verifiable benefits in terms of cost savings, comfort,
etc. We use the aforementioned lighting and ventilation
design example in Fig. 1 to illustrate the advantage of the
proposed paradigm. Since WiFi-based occupancy counters
can be built upon the existing WiFi infrastructure, as a
result of DSE, the proposed design paradigm will alter-
natively use a WiFi-based occupancy counter [Fig. 1(b)]
instead of a camera-based one [Fig. 1(c)] to obtain a more
economical and privacy-preserving solution.

In this paper, we use platform-based design (PBD) as
a unifying methodology to support automated, structured,
and integrated building application design. PBD has been
applied to design problems in various application domains,
including hardware–software codesign [15], analog circuit
design [16], automotive electronic system design [17], and
communication design [18], both on-chip and at the sys-
tem level. The PBD paradigm proceeds in two phases. The
bottom-up phase generates a set of libraries by abstracting
behavioral models, performance models, and rules to com-
pose components in libraries. The top-down phase consists
of a set of optimization steps where a cost function is
optimized over the components in the libraries constructed
in the bottom-up phase, thus reducing the complexity of
DSE while analyzing a promising set of solutions.

This paper is organized as follows. Section II provides
a brief conceptual overview of the PBD methodology and
our proposed integrated design flow for smart building

systems. In Section III, we describe how to construct the
design libraries in the bottom-up phase of the proposed
design approach; the top-down design flow is then detailed
in Section IV. We present an illustrative case study in
Section V and then conclude the paper in Section VI.

II. A N O V E RV I E W O F P B D A N D T H E
P R O P O S E D D E S I G N F L O W

A. PBD Methodology

PBD [19] was first proposed to address the increasing
complexity of hardware–software codesign in embedded
systems. The essential concept underlying this paradigm
is the orthogonalization of concerns, i.e., the separation
of various aspects of design, e.g., the separation between
function (what a system is supposed to do) and
architecture (how the system does it), to allow more
effective exploration of alternative solutions. For example,
the design of a video decoder can take a full software
implementation on a general-purpose CPU platform,
or a mixed hardware–software solution where part of
the functionality is mapped to an application-specific
coprocessor which provides a better performance. The
design decisions are supported by a rigorous DSE process;
see [20] for a more detailed description.

The basic principles of PBD consist of starting at the
highest level of abstraction, hiding unnecessary details of
an implementation, summarizing the important parame-
ters of the implementation in an abstract model, limiting
the design space exploration to a set of library components,
and conducting the design process as a sequence of “refine-
ment” steps that proceed from the initial specifications
toward the final implementation using platforms at various
levels of abstraction [20]–[22].

In PBD, a platform is defined as a library (collection)
of components and their associated composition rules that
can be used to generate a design at the corresponding
level of abstraction. A platform can thus be seen as
a parameterization of the space of potential solutions.
The design process is neither a fully top-down nor a
fully bottom-up process but rather follows a “meet-in-the-
middle” approach combining two phases.

• Bottom-up: The bottom-up phase consists of building
a design platform by defining its components and
their abstractions, which, in the context of a cyber–
physical system (CPS), include both the physical and
cyber aspects of the system [23].

• Top-down: In the top-down phase, high-level design
requirements are formalized and mapped to a lower
level platform implementation.

A component M in a library can be seen as the abstrac-
tion of an element of a design, characterized by the follow-
ing attributes [23], [24].

• A set of input ports U , a set of output ports Y , a set of
internal variables X (including state variables), and a
set of configuration parameters K. Components can
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be connected together by sharing certain ports under
appropriate constraints on the values of the related
variables.

• A behavioral model. Behaviors are generic and can
be implicitly represented by a dynamic behavioral
model F(u, x, y, κ) = 0 in the form of differential
algebraic equations, or by sequences of values or
events recognized by an automaton.

• A set of extra-functional models that enable computa-
tion of the nonfunctional attributes of a component,
such as cost and performance metrics.

• A set of labels that indicate the function (e.g., lighting
control) and features (e.g., occupancy-driven) of a
component.

Mapping is the mechanism that allows the design to
move from one level of abstraction to a lower one, and the
DSE performed during the mapping process can generally
be cast as a multiobjective optimization problem in which
a set of performance metrics are optimized over a space
constrained by the platform library and the design require-
ments. The mapping must be guaranteed to preserve the
semantics of the model to ensure that all properties that
have been verified on the model are still valid after its
implementation on the platform.

In a sense, PBD combines aspects from the layered
design approach [25], which formalizes the “vertical”
abstraction and the refinement steps of the design flow,
with the strengths of component-based design [26], rea-
soning about composition and decomposition at the same
level of abstraction.

B. Overview of the Proposed Design Flow

We propose to apply the PBD paradigm to the automated
design and integration of smart building systems. DSE is
performed at different steps throughout the entire design
flow to inform high-level decisions, such as the choice of

ventilation strategies, as well as low-level decisions such as
the choice of CO2 sensors. The establishment of a suitable
number of intermediate design platforms as well as their
locations and components is essential to the success of
the PBD methodology [27]. Our proposed design flow
consists of three layers, namely, the function design layer,
the module design layer, and the implementation design
layer, as shown in Fig. 2. The libraries associated with the
three layers are named virtual device platform, module
platform and implementation platform, respectively.

In our conceptual framework, modules are used as
design primitives to represent basic functions such as
computation, sensing, and actuation. A prototype design
represented as a set of interconnected modules can be
executed in a design environment to verify its correct-
ness before it is translated into a form for deployment
in the target building. The abstraction provided by the
modules decouples the upper level functions from their
dependencies on the implementation platform (building
infrastructure, device drivers, BOS, etc.).

Higher level functionalities can be realized by
assembling modules into more complex components.
We define a virtual device as an abstract component built
on top of modules, which serves a high-level function
that can be further used as a building block for various
building functions, both new and existing. An architecture
describes the interconnection of a set of components
(either abstract or concrete). Since our goal is to
provide a methodology that is capable of efficiently
exploiting different implementation architectures, we
define architecture templates including function templates
and virtual device templates, to capture the architecture
with which abstract components can be built. Function
templates represent the composition rules associated with
the virtual device platform, i.e., they specify how virtual
devices can be assembled to achieve certain functions.

Fig. 2. An overview of the proposed design flow. The “hourglass” at each layer in the above figure illustrates a “meet-in-the-middle”

process. Models and abstractions for the platform specification and architecture are at the top and the bottom of the hourglass, respectively.
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Similarly, virtual device templates define composition
rules for the module platform, in that they specify how
virtual devices can be assembled out of modules.

We rely on a library-based approach in each step of
our design flow. In the function design layer, the top-level
specifications from the designer are first mapped to a pro-
totype design represented as a set of virtual devices on an
architecture defined by function templates selected from
the virtual device library. Serving as the specifications for
the subsequent module design layer, this prototype design
is further mapped to a more refined design expressed as
a set of interconnected modules; a template-based DSE
approach is once again used during this mapping process.
In the final implementation design layer, all abstractions in
the previous layers are fully instantiated with hardware or
software implementations on the target building platform,
thus concluding the design flow.

III. B O T T O M-U P D E S I G N F L O W

The proposed design flow follows a “meet-in-the-middle”
approach that makes extensive use of library components
at each design layer. If the design specifications cannot
be met using existing components in the library or
the mapping result is not satisfactory to the designer,
additional elements can be designed and inserted into
the library. Although the physical elements of the building
(structure, equipment, occupants, etc.) are considered
fixed in the context of this paper and thus are not subjects
of design, their models should still be included in our
design library to serve as part of the environment for the
cyber components.

In addition to the components, an important element of
the library is the composition rules that must be observed
throughout the entire design flow to enforce a correct com-
position of the components. Some of the composition rules
are port constraints, which ensure that the information
communicated between components is of the proper types;
others are design rules, which ensure that the compositions
of the library components are functionally correct or abide
by the relevant law or building code. Like the components,
such rules should also be organized in a hierarchical
fashion. For example, “camera devices should never be
installed in bathrooms” is a composition rule built into the
module design library as a design constraint that prevents
any camera-based solutions from being applied in a bath-
room, whereas the rule “two wireless sensors communicat-
ing via the ZigBee protocol should be placed within a range
of 5 m” will be enforced in the final implementation design
layer as a constraint on the device placement algorithm.

It is worth noting that the previously mentioned archi-
tecture templates belong to a special class of composition
rules that become active only when they are chosen from
the library to implement a design. As a set of structural
constraints, an architecture template represents a family
of potential solutions for implementing a functionality
following a given architecture.

A. Implementation Platform

At the very bottom of our design library is the
implementation platform. In our conceptual framework,
a BOS and its associated device drivers are responsible for
the scheduling of the available hardware resources
(computing, sensing, actuation, etc.) and of the
communication between them and for providing access
to those resources through application programmable
interfaces (APIs) (for accessing sensing and control points)
or through an execution environment (for accessing
computational resources). An instance of the upper level
module platform, when deployed in different buildings,
may require slightly different implementations depending
on the actual BOS being used.

B. Module Platform

The module platform library Lm is a triple of the form
(Cm, T m,Rm), consisting of modules Cm, virtual device
templates T m, and design rules Rm. The behaviors of a
module can be modeled in terms of input–output relations,
and additional characteristics or features can be captured
by labels on the module. One approach to capturing the
cost of a module is to divide it into two parts, i.e., the
investment cost and the operational cost. The former is
an estimate of the cost of setting up the module, and the
latter estimates the operating expenses as well as possible
depreciations.

In addition to models representing basic functions in
our design, such as sensing, actuation, and computation,
models of physical processes and human behaviors can
also be captured as modules in our design environment.
The realization of a module depends on the actual imple-
mentation platform. For distinct realizations of the same
functionality, a design decision must sometimes be made
regarding whether to define a single parameterized mod-
ule or multiple separate modules. In fact, such a decision
is usually based on how “related” the different realizations
are, and it often involves a tradeoff between granularity
and optimality. For example, suppose that we have two
modules for humidity sensing, one representing a wired
solution and the other a wireless solution; these two solu-
tions differ considerably from each other in both latency
and cost. Thus, it would be more desirable to package them
as two individual modules because each of them can then
assume simpler latency and cost models.

Below, we list several types of modules that are
commonly used for constructing higher level functions.

A sensing module provides a basic service for fetching
sensing data. The realization of such a module usually
involves a piece of sensing hardware and the associated
device driver. It is worth noting that the hardware does
not necessarily have to be a physical sensor in the strict
sense; e.g., a cellphone, which can interact with a building
occupant, can also serve as a “sensor.” In the context
of this paper, we assume that each underlying piece of
sensing hardware is associated with an individual sensing
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Table 1 Sensing Modules

module serving as its abstraction. Table 1 presents several
examples of sensing module descriptions, in which the
behavioral model and device cost of each solution are
listed as input-output relations and extra-functional prop-
erties, respectively.

A control module represents a decision-making service
for control actions (e.g., setpoint selection). For opti-
mal control approaches such as model predictive control
(MPC), the decision-making process usually takes a set of
constraints and sensor measurements as input and then
relies on an optimization engine to determine the optimal
control action. Another widely used control scheme is
fuzzy control, whose control module depends on fuzzy
logic to compute the chosen control action. Several exam-
ples of control module characterizations, including their
behavioral models in the form of input–output relations
and their configuration parameters, are listed in Table 2.

An actuation module provides a service for implement-
ing the high-level control actions from the control modules,
such as “set airflow volume to 0.236 m3/s,” on actual
building components. It is realized by means of the corre-
sponding driver in the BOS, which encapsulates the device-
specific logic needed to provide a standardized interface on
top of the existing hardware.

A data analytics module abstracts the process of
constructing and using models for prediction and
inference. Machine learning algorithms that estimate
contextual information, e.g., occupancy and thermal
comfort, based on data input from sensors in the building
are examples of data analytics modules. Each data
analytics module can be modeled as a switched system that
has two modes with different dynamics, namely, a training
mode and a testing mode. The training mode abstracts

the process of devising or learning model parameters
from available data, while the testing mode represents
the process of adopting the trained model for various
prediction and inference tasks. In the training mode, a data
analytics module takes input data such as historical data
sets, documentation, and expert knowledge, and outputs
a set of parameters that define a certain model to be used
for testing. In the testing mode, a data analytics module
computes model outputs from input data and the model
parameters. The inputs and outputs are characterized
by data types, including 1) categorical data, e.g., user
identity or event type; 2) ordinal data, e.g., user thermal
preference or event criticality; and 3) measurement data,
e.g., dry-bulb air temperature and humidity. For different
types of data analytics modules, the training modes may
differ in terms of the length of the data collection period
and the amount of effort required for calibration. Thus,
we also categorize different analytical methods into three
levels of training intensity, namely, low, medium, and high.
For instance, threshold-based methods used for inferring
occupancy from passive infrared (PIR) and WiFi access
require minimal training, and physics-based occupancy
inference methods such as “sense-by-proxy” [14] require
approximately several hours to a day of training effort,
whereas data-driven methods such as machine learning
typically require several days of data collection. Several
methods exist for categorizing algorithms; among these
methods, sample complexity measures such as the
Rademacher complexity are most commonly employed to
characterize the performance bounds as a function of the
number of data points [28]. From a practitioner’s point of
view, the training intensity of each algorithm is relevant
because the user is typically concerned with the labor and

Table 2 Control Modules

1686 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018



Jia et al.: Design Automation for Smart Building Systems

Table 3 Data Analytics Modules

maintenance effort required for actual deployment. A list
of data analytics module examples is provided in Table 3.

C. Virtual Device Platform

Similar to the module platform library, the virtual device
platform library Lf is a triple of the form (Cf, T f,Rf),
consisting of virtual devices Cf, function templates T f, and
design rules Rf. The architecture for implementing each
virtual device is specified by the corresponding virtual
device template in the module platform library Lm. The
behavioral model of each virtual device, just as that of a
module, can be described in terms of input–output rela-
tions. Because of the variety of possible implementations,
the cost estimates for virtual devices can be captured as
ranges, nominal values, or qualitative measures.

We present several examples below for the purpose of
illustration. The detailed behavioral and extra-functional
models of virtual devices are summarized in Table 4.

A virtual occupancy sensor returns the occupancy state
of a zone, either as an integer variable representing the
number of occupants or as a binary variable. This function-
ality admits multiple implementation architectures, includ-
ing CO2-based [14], camera-based, WiFi-based [33], and
PIR-based solutions. Each of these architectures is modeled
as an individual virtual sensor in the library.

A virtual fault detection sensor monitors the health
status of an HVAC system. Analytical-model-based,

signal-based, knowledge-based methods [34]–[38], and
various combinations thereof, have been proposed for
detecting and diagnosing HVAC faults using the data
already available in buildings. A model-based method
relies on an explicit description of the system, a signal-
based method investigates the correlation between faults
and system output signals, and a knowledge-based or data-
driven method mines knowledge and related features from
measured data in buildings, including outside environ-
mental factors, internal loads, and the working conditions
of mechanical systems [39], [40]. Each of these types
of methods is represented by an individual virtual fault
detection sensor in the library.

A virtual VAV controller regulates the setpoints for a VAV
box, e.g., air flow rate and discharge air temperature. Two
typical solutions that incorporate occupants into the loop
are rule-based control and MPC. A rule-based controller
relies on a set of simple and intuitive “if-else” logic rules for
decision making; an MPC approach instead uses a model
to predict future disturbances and solves an optimization
problem to determine the optimal control action in real
time.

The main difference between the virtual device platform
and the module platform lies in the level of abstraction.
The module platform consists of basic functions such as
sensing, actuation, and computation, whereas the virtual
device platform contains higher level functions that can
be built from the components on the module platform.

Table 4 Virtual Devices
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For instance, a virtual occupancy sensor captures the func-
tion of sensing the occupancy state and its implementation
may involve a sensing module and a data analytics module
that distills the occupancy information from the sensor
data.

A building function can be constructed by assembling
virtual sensors and virtual controllers into a closed-loop
system with their external environment, i.e., the physical
environment and the building occupants. The intercon-
nections of these components are described by a function
template. A function template is labeled with a set of
features that define its type and the associated functional
features that it can provide.

To illustrate the relationships among modules, virtual
devices, and function templates, the architecture of a
lighting control social game [41] is shown in Fig. 3 as an
example. The game consists of occupants voting according
to their usage preferences regarding the brightness level
of shared lighting. They win points based on how energy-
efficient their votes are compared with those of other
occupants. After each vote is logged, the average of all
votes is implemented in the office. The points are used to
determine an occupant’s likelihood of winning in a lottery.
A mobile application is designed to allow occupants to
vote, view their points, and observe all other occupants’
consumption patterns and points. This platform also stores
all past data, allowing the building manager to use these
data to estimate occupant behavior, i.e., the utility function
of each occupant. The building manager can design and
issue incentives based on the learned occupant models,
aiming to promote energy-preserving behaviors and reduce
costs. The architecture depicted in Fig. 3 includes an
environmental component, a virtual sensor, and a virtual
controller. The virtual devices admit multiple implemen-
tations, since the modules have not been fully instanti-
ated. For example, several different parameter estimation
schemes may be used for the “utility function estimator”

Fig. 3. A smart lighting control function using a social game

concept [42].

module in the virtual sensor. The reader is referred
to [41] and [42] for a more detailed account.

IV. T O P-D O W N D E S I G N F L O W

The starting point of the top-down design flow is a set of
top-level specifications from the designer, which include a
set of functional and extra-functional requirements on the
final design. The functional requirements, e.g., “we need
an occupancy-driven HVAC system,” can be captured by
a set of predefined features in the design automation
tool, and the extra-functional requirements, e.g., “the total
retrofit cost should not exceed $50 000,” can be repre-
sented by algebraic constraints.

A. Function Design Layer

In the function design layer, the input specifications
are mapped to a prototype design MT that is assembled
from a set of virtual devices C and a set of function
templates T selected from the library. To ensure that
the prototype design is functionally correct, the features
offered by T should cover those specified in the functional
requirements. Although the components in the prototype
design are not fully instantiated in this layer, a cost esti-
mate cost(MT ) for the design can still be obtained based
on the cost of each selected virtual device. It is worth
noting that virtual sensors can be shared between different
functions. The mapping process in this layer can thus be
cast as a combinatorial optimization problem with the
objective of finding the optimal selection of virtual devices
and function templates to minimize cost(MT ), with the
composition rules serving as constraints on this problem.

B. Module Design Layer

Given the function architecture determined in the previ-
ous layer, the goal of the module design layer is to further
instantiate the design with modules from the library. Since
more details of the final design are revealed in this layer,
we are able to obtain more accurate estimates of both
the performance and the cost of the system during DSE.
In addition, some reuse opportunities that are invisible in
the previous layer can now be leveraged during DSE to
further reduce the implementation cost. For example, a
humidity sensing module and a CO2 sensing module from
two different virtual devices may be mapped to the same
multiuse building-in-briefcase (BiB) sensing module [43],
provided that such a configuration produces no conflicts
between the specifications of each individual module.

Similar to that in the function design layer, the mapping
process in this layer still relies on templates from the
library to search for the best architecture for implement-
ing virtual devices during DSE. The differences from the
previous layer are that 1) not only the components but
also their parameters need to be selected during DSE,
meaning that the optimal mapping process is conceptu-
ally a mixed discrete-continuous optimization problem;
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and 2) simulation techniques can be used to obtain an
accurate estimation of the operation costs in this layer.
Discretization of the parameter space can assist in the
handling of the infinite search space, and heuristics based
on empirical assumptions can also help to guide the search
toward a satisfactory design more rapidly during DSE.

One benefit of using PBD is to eliminate integration
errors as early as possible during the design flow. Although
predefined composition errors in the library are avoided
by enforcing predefined design rules during the mapping
process, some integration errors due to subtle interactions
between components are still difficult to catch. Let us
consider the design of a smart lighting control function
that switches the lights on or off based on the current
occupancy status of a room. If a camera-based occupancy
sensor were to be deployed in the room, a situation
would arise in which people coming into the room when
the lights are off would not be detected by the sensor,
causing the specification of the composite system, i.e.,
occupants present ↔ lights on, to be violated. Although
the components have not been instantiated at this stage,
such undesirable behaviors can be found by using for-
mal methods (e.g., model checking techniques [44]) or
through simulation techniques. In situations where errors
are identified, the DSE process will continue until a new
design is found and validated.

C. Implementation Design Layer

In the implementation design layer, the goal is to deter-
mine the necessary details for the deployment of the
designed functions in the target building. It is assumed that
the target building is equipped with a BOS that hides much
of the complexity during the deployment phase. In our
conceptual framework, typical tasks that need to be done
in this layer include: 1) the deployment of the BOS; and
2) the placement and configuration of sensing devices.

The uniform access to heterogeneous recourses in build-
ing systems provided by BOSs has eased the task of deploy-
ing modules. As an example, consider a retrofitting case
in which an intelligent HVAC function is to be deployed
in a building and several additional sensors need to be
installed. The function attempts to save energy by adjust-
ing the discharge air temperature setpoint in each room
depending on the occupancy status of the room. The
necessary modules can be translated into executable code
on the target BOS platform using automatic code gener-
ation, as done in several previous works [15]. Specially,
high-level descriptions such as “discharge air temperature
setpoint in Room 406” can be automatically translated into
the corresponding unique BACnet identifier of the control
point during code generation.

Regarding sensor placement, a variety of
approaches [45] have been proposed in the literature
for various specific target domains; in general, the
sensor placement problem can be cast as an optimization
problem or a constraint satisfaction problem, in which

the specifications and design rules must be respected as
constraints on the solution. For example, the locations
of the sensors used in CO2-based occupancy detection
modules are constrained to the vicinity of air exhaust vents
(in mixing ventilation systems) [46] or occupied zone (in
displacement or underfloor air distribution systems) [47]
to ensure successful capture of the CO2 concentration of
the exhaust air.

Beyond the scope of this paper, other system design chal-
lenges also exist during the deployment phase, e.g., effec-
tive scheduling and partitioning of the building functions
on the execution platform. Although many building func-
tions are not subject to stringent real-time requirements
as in other time-critical CPSs, if there are a large number
of functions running simultaneously on the BOS, their
associated service requests (e.g., sensing data acquisition)
may cause significant latencies in the system. The proposed
integrated design approach can help alleviate such issues
by promoting component reuse on the function design
level. Considering the recent developments in system-
level design in areas such as network design [16], [18]
and software design [48], [49], we believe that the PBD
paradigm will also be key to addressing these challenges
in the BOS context.

V. C A S E S T U D Y

In this section, we present a case study to illustrate the
proposed design flow. Suppose that a designer wishes
to retrofit the HVAC system in a building to make it
energy efficient and occupant responsive, with a moderate
cost budget. In this case study, we will show how the
specifications provided by the designer are manifested
in a hardware and software implementation through the
proposed PBD design flow.

As the first step, the building designer specifies a set
of requirements for the retrofit project, including the
expected savings in energy consumption, the comfort
requirements, the budget constraints, and the expected
payback horizon. In addition, a detailed building model,
e.g., a building information modeling (BIM) model, is also
provided as input to the design tool to provide comprehen-
sive information (building structure, occupancy schedules,
etc.) about the building. Suppose that the specifications
from the designer are given as follows:

• building type: commercial;
• size: 10 000 m2;
• current annual energy bill: $5000;
• systems to be retrofitted: HVAC;
• comfort requirement: static setpoints (20 ◦C–25 ◦C);
• monetary constraints: energy savings ≥30%, payback

horizon ≤3 years, and starting capital ≤ $50 000.

Here, the comfort requirements are categorized into two
types, namely, “ static setpoints ” and “ personalized.”
“Static setpoints” denotes control that is based on national
or international thermal comfort standards, like ASHRAE
55-2013 [50] and requires the dry-bulb air temperature to
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be within a given range (e.g., 20 ◦C–25 ◦C). It may also
require relative humidity constraints. A “static setpoint”
comfort requirement has a low fulfillment cost because it
does not need additional infrastructure for collecting, for
example, opinions or behaviour from the buildings occu-
pants. This approach cannot account for the idiosyncratic
particularities of different buildings and occupants. By con-
trast, control strategies that allow the comfort range to be
customized to the preferences of occupants are character-
ized as “personalized,” an example is Comfy [51]. Personal
comfort systems, like heated and cool chairs [52] or desk
fans [53], can improve occupant satisfaction and poten-
tially reduce energy use. The personalization could happen
at the group level or specific individual level [54]. Such
designs can also handle time-varying comfort requests due
to environmental and physiological/psychological changes
among the inhabitants. Realizing “personalized” thermal
comfort requirements demands investment in additional
hardware (e.g., personal comfort system, sensors, etc.)
and software (BOS that can collect occupant feedback
or behavior and process the data). In this case study,
we consider a static temperature range as the comfort
requirement. However, we would like to emphasize that
this paradigm can incorporate more sophisticated specifi-
cations, such as time-varying setpoints and requirements
on other important comfort factors, including humidity
and indoor air quality. The design would adapt itself to
different specifications. For instance, if humidity regulation
were desired, then we would need sensors with humidity
sensing capabilities and controllers that can incorporate
humidity information in real time.

A. Function Design Layer

Given the high-level design specifications, the mapping
engine in the function design layer refines the design into a
set of virtual device components based on an architecture
instance made up of function templates selected from the
library.

As shown in Fig. 4, we have two HVAC function tem-
plates in our library, in addition to templates for other
functions such as lighting. Of the two function templates,
APP-HVAC-1 requires that the comfort level be inferred
from measurements of the ambient environment rather
than from interactions with the occupants, and as such,
it is labeled “static setpoints.” The other function template,
APP-HVAC-2, is labeled “personalized” and must use feed-
back from occupants to update the comfort range used for
building control.

Also shown in Fig. 4 are three categories of virtual
devices in the virtual device platform library. The abstrac-
tions for the virtual devices should specify necessary
information about their implementations, including their
behaviors, costs and performances, to allow the design
automation tool to make a suitable choice.

1) Virtual Occupancy Sensors: Three virtual occupancy
sensors provided in the library are shown, each with

different characteristics. VS-occup-1 offers the best
occupancy counting accuracy; however, it is typically
costly and is considered to have possible privacy con-
cerns. VS-occup-2 abstracts a “sense-by-proxy” [14]
scheme that infers the occupancy count from the
CO2 concentration. VS-occup-2 is more cost effective
than VS-occup-1, but the occupancy estimates from
VS-occup-2 often experience some degree of latency.
For HVAC control, the slow response of CO2 sensors
is not critical; however, this characteristic renders such
sensors unsuitable for functions such as lighting control.
VS-occup-3 detects a binary occupancy status.

2) Virtual Environmental Sensors: Three virtual environ-
mental sensors are available in the virtual device library.
The multimodal VS-env-1 senses both temperature and
humidity in the indoor environment, whereas VS-env-2
and VS-env-3 are unimodal sensors for temperature and
humidity, respectively.

3) Virtual VAV Controllers: The two candidate com-
ponents for virtual VAV controllers, VC-vav-1 and
VC-vav-2, are depicted in Fig. 4; these components
fall under the categories of rule-based control and MPC,
respectively. Rule-based controllers, which are widely
deployed in existing buildings, rely on a set of simple and
intuitive “if-else” logic rules for decision making, so they do
not require significant effort to set up. By contrast, MPC, as
an optimal control approach that recently receives a great
deal of attention, requires more effort during deployment
because it needs more information for decision-making;
in the case of VC-vav-2, the virtual controller requires
not only temperature, humidity, and occupancy measure-
ments but also a thermodynamic model and a comfort
model for computing the optimal control action. A pre-
vious study has shown that MPC approaches can achieve
greater energy savings than rule-based controllers [8], due
in no small part to their capabilities of prediction and
optimization.

The DSE process in this layer can be cast as a discirete
optimization problem to search for an optimal combination
of function templates and virtual devices. Suppose that
there are m function templates and n virtual devices in
the design library. Let z ∈ {0, 1}m be an array of binary
variables indicating whether each template Ti has been
selected, and let x ∈ N

n
+ represent the selection of virtual

devices (there can be multiple instances of a given virtual
device in a design). Each virtual device Vi is also associated
with a purchase cost ci. The operational cost associated
with the selected function template and virtual devices is
denoted by o(z,x), and can be estimated via simulations
when building the library. Fig. 5 illustrates the heat and
electricity energy consumption of a simple building that
adopts different virtual controllers and virtual occupancy
sensors under the APP-HVAC-1 function template. Real-
world occupancy data and San Francisco weather data are
used to generate energy consumption in the simulation.
It is shown that an occupancy counter is necessary for
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Fig. 4. A detailed overview of the design flow in the case study.

MPC to control the building more energy efficiently,
while increasing accuracy of occupancy counting
results does not provide significant energy savings.

The operational cost can be obtained from simulated
energy consumption and energy prices in the area where
the building is located.
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Fig. 5. Simulation of (a) heat and (b) electricity energy

consumption of a simple building with the HVAC system described

in [55].

Let PH represent the maximum payback horizon;
ES, the minimum expected savings; SC, the maximum
starting capital; and EB, the current annual energy bill
before the retrofit. In our example, PH=3 years, ES = 30%,
and SC = $50 000. The payback horizon for the retrofit
investment is

h(z,x) =

�n
i=1 xici

EB − o(z,x)
. (1)

An optimization problem with the objective of minimizing
the payback horizon can then be formulated as follows:

min
z,x

h(z,x) (2a)

s.t. z |= ψ, (z,x) |= φ (2b)

h(z,x) ≤ PH (2c)

o(z,x) ≤ (1 − ES) · EB (2d)
n�

i=1

xici ≤ SC. (2e)

A set of logical predicates is encoded in (2b), where the
|= operator indicates a “satisfy” relation between a set of
binary variables and some property on these variables. The
constraint z |= ψ ensures that the design covers all desired
features in the specifications and (z,x) |= φ enforces that
the composition rules are observed. If the optimal mapping
problem defined in (2) returns a result of infeasible,
then the design automation tool can analyze the source of
the conflicts in the design specifications and provide useful
suggestions to the designer; otherwise, the design flow can
proceed to the next level.

In accordance with the attributes of the virtual devices
in the example library illustrated by Fig. 4, we consider

the implementation depicted in Fig. 6 as selected by the
mapping engine.

B. Module Design Layer

The objective of the module design layer is to instantiate
each virtual device produced by the upper layer, using
modules and predefined virtual device templates from the
module library. The following virtual device templates are
considered in our library (Fig. 4).

1) Virtual VAV Controller Templates: For notational
convenience, we use the same identifiers for both the
virtual devices and their corresponding architecture
templates. Two types of virtual VAV controller templates
are provided in the module platform, as shown in Fig 7(a).
VC-vav-1 represents a rule-based controller that takes
as input instantaneous measurements of temperature,
humidity, and occupancy count as well as the specified
comfort range, and tailors the flow rate and, if needed,
the temperature of the air injected into the indoor space in
accordance with the associated rules. The input occupant
comfort preferences and occupancy count are encoded as a
set of rules in the rule-based control module, e.g., “setting
the minimum airflow rate to be proportional to the number
of occupants” and “setting the allowed temperature range
during an unoccupied period to be wider than that during
an occupied period.” VC-vav-2 represents a typical
MPC control scheme: an optimal control module CTRL-1
formulates and solves an optimization problem in real time
to determine the optimal control actions. To formulate the
optimization problem, in addition to the current ambient
temperature and humidity, CTRL-1 also needs a predictor
of future occupancy from ML-occup-pred, a thermody-
namic model for predicting future states from ML-phy,
and a set of comfort models representing different comfort
ranges under changing occupancy states from ML-comf.

2) Virtual Occupancy Sensor Templates: Three types of
virtual occupancy sensor templates, as shown in Fig. 7(b),
are provided in the module library. VS-occup-1 repre-
sents the architecture for an occupancy sensor enabled
by a camera module and the associated computer vision
module for counting the number of people in a video

Fig. 6. The mapping result after the function design layer.
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Fig. 7. Virtual device templates in the library of module design platform. (a) Virtual VAV controller templates. (b) Virtual occupancy sensor

templates. (c) Virtual environmental sensor templates.

stream. VS-occup-2 uses a “sense-by-proxy” [14] module
to infer the occupancy count from the measured CO2

concentration output by the corresponding sensing mod-
ule. VS-occup-3 represents an off-the-shelf PIR sensing
system, which can detect a binary occupancy status.

3) Virtual Environmental Sensor Templates: The module
library also includes several virtual environmental sen-
sors that measure different aspects of the environment.
Fig. 7(c) provides examples of three virtual environmental
sensors — the first one can sense both temperature and
humidity and the last two can only generate temperature
or humidity measurements.

The modules in the library for this layer consist of the
following (Fig 4).

4) Environmental Sensing Modules: Multiple environ-
mental sensors are incorporated into our design library
to implement the required functionalities (temperature,
humidity, and CO2 measurement) in the prototype design.
In particular, Sensing-1 represents an integrated multi-
modal BiB device that supports multiple sensing functions
simultaneously.

5) Data Analytics Modules: Eight data analytics modules
are included in our library. Note that two of these data
analytics modules, ML-1 and ML-2, can be used for gen-
eral purposes, whereas others are tagged with specialized
use cases that limit their use to only a few virtual device
templates.
ML-1 implements a convex piecewise linear classi-

fier (CPLC) [56], a classifier with a polygonal envelope
that can be represented by a set of linear constraints.
ML-2 implements a neural network, a typical example
of nonlinear classifiers. ML-3 and ML-4, respectively,
represent a KNN method, which is deterministic, and a
Markov chain model, which is stochastic. These are two
widely used occupancy prediction methods. A stochastic
prediction method outputs a probability distribution of
occupancy counts and thus can enable various stochastic
control algorithms that can better handle the uncertainty

of the controlled system. Deterministic prediction meth-
ods, meanwhile, produce deterministic estimates of future
occupancy values and can be easily plugged into sim-
ple deterministic MPC schemes for occupancy-responsive
indoor climate control.

The library also provides thermal dynamics models with
varying degrees of complexity. In general, there are three
types of thermal models, namely, white-box, gray-box, and
black-box models. White-box models represent dedicated
physical models, such as EnergyPlus [57] (i.e., ML-7) or
Modelica [58], and are accurate if the relevant parameters
are correctly identified. However, such models often
incur high computational costs and setup times, and they
are challenging to construct if the building document
is incomplete or if the building environment changes
frequently over time. Black-box models, by contrast,
are data-driven, nonphysical models. They incur low
computational costs, but they are accurate only if sufficient
historical data exist for training. An example of a white-box
model is ML-2. Gray-box models are a class of models in
between black-box and white-box models and are typically
simplified physical models, such as ML-5 and ML-6. ML-5
is an abstraction of the temperature model presented
in [55], which is a simple bilinear model derived from the
law of conservation. A thermal circuit model, represented
by ML-6, uses a resistance–capacitance circuit to model
heat transfer among the interiors, walls, windows, etc. of
different zones. Gray-box models can often provide mod-
erate accuracy at a low computational cost. However, the
parameter estimation task for these models is challenging.

6) Control Modules: A list of control modules that com-
pute control actions from given inputs are also included in
the module platform. CTRL-1 represents a control module
that solves an optimization problem to determine the
desired control action. CTRL-2 abstracts the rule-based
control module proposed in [59], which adjusts a room’s
temperature setpoint according to the current time and
the length of an occupied/unoccupied period. CTRL-3
also represents a rule-based control module, but one that
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applies a different set of rules, described in [8], to control
the environment. The rules in CTRL-3 adaptively change
the flow rate and temperature setpoints in response to
occupancy changes and occupants’ comfort preferences.

In the function design layer, VS-env-1, VS-occ-2,
and VC-vav-2 have been chosen for implementing an
MPC control scheme (Fig. 6). For implementing the virtual
occupancy sensor VS-occ-2, the design automation tool
will select ML-8, i.e., the “sense-by-proxy” module, since
it can achieve improved occupancy detection accuracy
compared with other machine learning algorithms,
as discussed in [14]. For implementation of the virtual
environment sensor VS-env-1, we have a number of
choices for implementation, e.g., using the single module
Sensing-1, which is a multimodal BiB sensing solution,
to cover all three sensing needs or implementing each
of them individually with the unimodal sensing modules
Sensing-2, Sensing-3, and Sensing-4.

For implementation of the virtual controller VC-vav-2,
CTRL-1 will be used since it is the only available control
module in our library for the VC-vav-2 template. The
available candidates for the ML-phy module are ML-5
and ML-6, because CTRL-1 requires an explicit algebraic
model to formulate an optimization problem for the MPC
scheme. For the modeling of comfort regions, both ML-1
and ML-2 can be used. Although the neural network
model (ML-2) may provide a better description of the
comfort region by means of nonlinear boundaries, the
polygonal comfort region defined by the CPLC (ML-1)
makes it very suitable for integration into an MPC scheme.
Since our optimal control module is only able to support
deterministic MPC formulations, the KNN model (ML-3) is
a more proper occupancy predictor than the Markov chain
model (ML-4).

The DSE in this layer is a nontrivial task, as it involves
optimization over both a discrete search space, for the
virtual device templates and modules, and a continuous
search space, for the configuration parameters for the
selected modules. Multiple factors, including monetary
costs and computational performances, may need to be
considered, making the DSE conceptually a multiobjec-
tive optimization problem. The solution to this problem
can benefit from the advanced search and optimization
algorithms [60], [61] for DSE in other related domains.
In addition, for evaluating the tradeoffs between design
instances, simulation techniques can be used during DSE
since designs at this level are executable. Based on the dis-
cussions presented above, we consider the design shown in
Fig. 8 to be the final mapping result for this layer.

C. Implementation Design Layer

In the implementation layer, the task is to deploy
the designed functions in the form of various building
components, which requires both hardware configuration
and software synthesis.

The sensors that are required by the designed functions
but do not already exist in the target building need to be

Fig. 8. The mapping result after the module design layer.

purchased, calibrated, and placed in the proper locations
in the building in accordance with the constraints imposed
by the design results from the upper layer as well as
aesthetic and legal aspects. For instance, the BiB sensors
in our design are required to provide CO2 measurements
for the occupancy counting algorithm SBP as well as
temperature and humidity measurements for predicting
comfort and room dynamics, and therefore, the placements
of the BiB sensors are constrained to places that are close
to ventilation outlets and where people tend to spend most
of their time to ensure that the CO2 measurements will
indicate the cumulative CO2 generation of occupants in
the space and that the room temperature and humidity
measurements will accurately reflect the conditions that
most people perceive.

The objective of software synthesis is to generate
BOS-executable codes for the data analytics and control
modules in the mapping result after module design. The
ANother Tool for Language Recognition (ANTLR) frame-
work [62] can be used to automatically translate the
high-level programming language used for modeling and
simulating the modules into the language compatible with
the BOS.

VI. C O N C L U S I O N A N D F U T U R E W O R K

In this paper, we have discussed an integrated design flow
for smart building functions using a PBD methodology
that enables effective DSE in the realization of building
functions. A case study on designing an HVAC function is
presented to illustrate the proposed design flow. The same
methodology can be applied to other building services
such as water systems, fire protection, Internet, electrical
systems, elevators, security systems, etc., although the
examples presented in this paper are mainly focused on
HVAC and lighting systems. To conclude, we would like to
note several challenges that are not addressed in this paper.

A. Populating the Libraries

A vital line of future work is to further enrich the design
libraries with available resources. This process involves:
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a) identifying a behavioral model that predicts compo-
nent behavior with acceptable errors and validating the
model; b) assuring that the library components function
correctly in different environments; c) defining variation
range for parameters and operational modes as well as
constants for each component; and d) defining component
interfaces and composition rules that allow for integra-
tion of various components in a plug-and-play manner.
Oftentimes, the cost for incorporating a resource into a
library and for its maintenance is high. Therefore, the
choice of resources worth including in the libraries has to
be made strategically. There has been a broad variety of
models developed for building automation, ranging from
occupancy [63] to HVAC systems [64]. As the paradigm
becomes more pervasive, vendors will be incentivized
to populate libraries, constructing simulation models of
their components. A design ecosystem where vendors are
continually incentivized, e.g., by an intellectual property
market, to enrich the library with scrutinized models of
their components will be key to the success of the proposed
paradigm.

B. Enhancing DSE

One major bottleneck in the design flow remains the
inability to accurately quantify the impact of design deci-
sions made early in the design process. For example, the
operational cost of a virtual device, which is assumed to be
a known value in our case study, depends not only on its
actual implementation but also on the physical equipment
on which it is operating, making it often difficult to obtain
an accurate estimate. We envision that data-driven tech-
niques, e.g., [65], can help to address this conundrum and
that future design flows will become a “collective” effort:
cost and performance models trained using both simulated
data from the design environment and operational data
from other existing buildings will provide guidance for the
design flow. In later stages of the design flow, the DSE
process is cast as a mixed discrete-continuous optimization
problem, in which both the candidate modules and their
configuration parameters need to be chosen. Due in no
small part to the advancement of optimization techniques,
mixed-integer programs can now be solved on a large
scale using the off-the-shelf solvers. In addition, time-
consuming simulation runs are often needed to evaluate
the performance of a design, which hinders more effective
DSE, especially when the design space is extremely large.
Similar challenges are encountered in other CPS design
domains, e.g., aircraft environment control systems [66],
aircraft electric power systems [23], [67]–[69], and wire-
less networks [70], [71]. To cope with the complexity of
the DSE process, an iterative DSE framework, as shown
in Fig. 9, has been proposed in recent publications [23],
[66]–[71]. The key to an efficient search strategy lies in
the feedback from the candidate evaluation engine, which
helps prune a large portion of the discrete design space
based on the insights gathered from simulation runs; see,
e.g., Finn et al.’s work [66] for a more detailed account.

Fig. 9. An iterative DSE framework.

C. Toward a Holistic Design Flow

The design of a smart building includes not only the
deployment of energy-efficient building systems, such as
HVAC and lighting, but also the design of the building’s
form, structure, interior, facade, cultural expression, etc.
This paper does not explicitly address the latter. The code-
sign of cyber, physical, and human aspects of a building
is presumably a more challenging problem than the one
discussed in this paper; however, we believe that the
proposed PBD paradigm will also serve as a key enabler for
a future holistic design flow. This ambitious prospect calls
for more effective modeling for cyber, physical, and human
aspects along with their interactions, better interoperabil-
ity of the tools used in the design flow and more power-
ful DSE engines that can continuously improve a design
by gaining insights from the design exploration process.
Recent developments in computer-aided design (CAD)
and BIM technologies have led to impressive results in
the domain of building architectural design, which, for
example, enable a more streamlined construction process
and allow architects to perform basic energy performance
assessments of their designs. However, these capabilities
alone are clearly insufficient for the design of future smart
buildings. One obstacle is the integration of models and
design tools across several diverse domains, which pro-
hibits consideration of the impact of smart functions on
design performance using simulation techniques. A repre-
sentative and ongoing effort to facilitate model exchange
and cosimulation is the functional mockup interface (FMI)
standard [72], which is particularly appealing as a tool-
independent standard that enables the coupling of two
or more simulation tools in a cosimulation environment.
A function based on this standard can be found in [73],
where an HVAC system model is packaged as a functional
mockup unit (FMU) and linked to a room model in Ener-
gyPlus [57]. The performance of the composite system can
then be evaluated through cosimulation.

D. Handling Uncertainties

Due to the deeply complex intertwist among cyber
components, dynamic physical components, and human
activities, smart buildings must be operated and designed
in the presence of various sources of uncertainties, ranging
from operational uncertainty, manufacturing variability,
and model error. Operational uncertainty refers to the
randomness of environments in which smart building
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systems function. Building environments are constantly
modified due to occupant activities, such as generating
heat and CO2 emission when they are present, or their
interaction with windows, blinds, lighting, etc. The uncer-
tainty of building environments is often accommodated
by probabilistic modeling [74]. The random nature of
operation conditions gives rise to challenges in the design
verification. Mosalam et al. [75] have recently proposed
a method based on performance-based engineering to
incorporate uncertainty in building design and the optimal
design decision is made by comparing the expected utility
of different designs. We want to point out that similar
challenges are also present in the integrated circuit (IC)
design, which has to deal with an exponentially explod-
ing multiplicity of functional states and state transitions.
There has been fruitful research on balancing the tradeoff
between cost and benefit of test generation in the IC design
community. We hope that smart building design can ben-
efit from the innovations there. Manufacturing processes,

including manufacturing and assembling different equip-
ment into a system, also introduces uncertainty. Handling
of such variability relies on proper modeling of the man-
ufacturing process and ensuring enough margin in the
design parameters to explicitly account for such variability.
Last but not least, developing models of various cyber
and physical components in buildings is a nontrivial task.
For instance, current building energy simulation software,
such as EnergyPlus [57], are often based on idealized phys-
ical models to calculate thermal loads, system response,
and resulting energy use via solving physics equations.
We expect that data-driven approaches in combination
with physics modeling would lead to models with higher
accuracy and better adaptivity.

We view the challenges mentioned above as open ques-
tions for future research. It is believed that, with the emer-
gence of an open standard for design libraries, the PBD
paradigm will become a true game changer for the design
and operation of smart buildings. �
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