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ABSTRACT
In subthreshold operation, circuits are more sensitive to the
impact of parametric variation due to reduced supply volt-
ages. To meet timing specification and ensure reliable opera-
tion, circuits require compensation techniques that mitigate
variation. We developed a design methodology to use adap-
tive forward body bias and reduce worst-case 3σ active en-
ergy, delay and standby energy caused by threshold voltage
variation. We validated this methodology on the ISCAS85
benchmarks and improved the worst-case metrics in each
case, with no loss of performance. Our approach reduces
worst-case standby energy and worst-case active energy by
up to 21.06% and 18.80%, respectively, on average.

1. INTRODUCTION
Designing circuits for subthreshold operation is challeng-

ing as the impact of process variation is more significant at
reduced voltages due to the exponential dependence of drain
current on gate voltage. Variation in analog circuits like cur-
rent mirrors and voltage reference circuits is minimized by
using large geometry devices. In subthreshold digital design,
however, minimum sized devices are optimal for energy ef-
ficiency [3]. For a low target frequency, body biasing was
more energy efficient than supply voltage scaling in mitigat-
ing process and temperature variation [9]. Reverse bias was
found to worsen drain current mismatch and forward bias
reduced the mismatch [5]. Gate-level clustering with cluster
specific body bias was found to improve leakage power [7].
However, these techniques do not adapt to variation, which
could limit their effectiveness. Threshold voltage variation
could affect transistor delays on critical paths, which in turn
affects active energy, circuit performance and thus overall
energy efficiency. Critical path replication [4] or approaches
like block-based and path-based statistical analyses [10] have
been used to measure this. To accurately determine the im-
pact of variation, the exact critical path and its delay need
to be estimated.

In this work, we reduce standby energy caused by thresh-
old voltage variation. We developed a design methodology
to use forward bias with a body bias regulator [1]. We use a
previous regulator, but, develop a digital design methodol-
ogy to mitigate the impact of variation. This paper presents
the methodology of: finding the optimal number of regula-
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tors, determining their placement and assigning cells to be
biased by these regulators.

The rest of this paper is organized as follows: We present
an overview of proposed approach along with a motivational
example in Section 2. In Section 3, we describe details of
our design methodology and LP formulation. We discuss ex-
perimental methods including variation model, static timing
analysis and energy measurement in Section 4. We present
results in Section 5 and conclusions in Section 6.

2. METHODOLOGY OVERVIEW
We use the regulator circuit shown in Figure 1 which has

an NMOS and PMOS transistor in diode-connected mode
that are connected at the drains with their wells shorted.
This improves device matching in a circuit (an inverter in
this case) by producing an output voltage at which the leak-
age currents match. Even small variations in the doping
profile of FETs can lead to exponentially mismatched drain
currents. By shorting the wells, a pathway for the minority
carriers exists between wells.

2.1 Variation-aware Adaptive Regulation
Consider an inverter with equal rise and fall times, biased

by an equal sized regulator as shown in Figure 1. The regu-
lator is designed to output a voltage of Vdd/2 since the two
FETs in cutoff act like a voltage divider. In the presence
of threshold voltage variation, the actual regulator output
voltage will be higher or lower than Vdd/2 depending on the
specific FET threshold voltages.

We assume the threshold voltages of NFETs (and PFETs)
of both circuits to be normally distributed around the nom-
inal value. According to Pelgrom’s model the variance of
the parameter mismatch between transistors is directly pro-
portional to the distance between them and inversely pro-
portional to the area of the devices [8]. Given the distance
between two transistors, variance of threshold voltage mis-
match can be computed using Pelgrom’s model. Using vari-
ance of mismatch, variance of threshold voltage distribution
and uncorrelated random samples from this distribution, we
determine the correlation between random variables.

In Figure 2, we compare the worst-case 3σ standby energy
of an inverter biased by the regulator, and an inverter biased
by a voltage source at Vdd/2. Well-biases and offsets between
wells can have many possible combinations to meet target
performance and power. Instead, a simple way to mitigate
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Figure 1: An inverter biased by the bias regulator
circuit when the transistors are perfectly matched.



impact of variation is biasing both wells by the same amount.
For this work, we use Vdd/2 because, the substrate current
is much smaller than drain current and thus scalable to deep
subthreshold voltages. In the case of the inverter biased by
the regulator, we see the inverter worst-case standby energy
decreases over a range of correlation values which changes
over distance between inverter and regulator.

3. ON-CHIPREGULATORMETHODOLOGY
Standard cell design flows use a set of pre-designed library

of cells. From Figure 2, we see savings in worst-case 3σ en-
ergy when the regulator is nearby and thus correlates better
with the cell. The regulator circuit consumes standby en-
ergy and incurs area. Our methodology makes a trade-off in
the number of regulators and the performance of the circuit.
We target filler cell locations for regulator insertion.

3.1 Regulator Design
We use the Nangate Open Cell Library implemented us-

ing 45nm FreePDK process technology. The library cells
were redesigned for equal rise and fall times in the worst
case switching condition. The impact of variation can vary
between a cell and its associated regulator, which in turn
could affect the leakage current match and hence energy
savings. For improved matching, the transistor dimensions
of the regulator need be similar to that of the library cells.
So, we custom designed a set of regulators based on the
functionality and transistor dimensions of the library cells.

3.2 Cell Characterization
The worst-case standby energy of the inverter follows a lin-

ear trend over distance between inverter and regulator. So,
to use this methodology in a standard cell based flow tar-
geting worst-case energy savings, we characterized all cells
in Nangate Open Cell Library for power and performance
using cell specific regulators and with the variation model
that was used to characterize the inverter circuit described
earlier. Using the characterization data, we fit linear models
for the worst-case standby energy savings of each cell in the
library, as a function of distance.

3.3 Design Implementation
We developed a CAD flow with industry standard tools

for synthesis and placement of standard cells and a separate
regulator placement and assignment tool. The regulator as-
signment is formulated as a Linear Program (LP), which
is described in the next section. In Figure 3, we show the
CAD flow of our proposed design and verification method-
ology. Starting with Verilog description of the benchmarks,
we synthesized them using Synopsys Design Compiler and
Nangate Open Cell Library to obtain gate level netlists.
These netlists were placed using Synopsys IC Compiler. The
placement contains filler cells in the unused areas. Our LP
optimizer reads in the placed netlists containing geometric
coordinates of the cell and filler instances. Because the reg-
ulators consume standby power, we do not want to replace
all of the filler cells, but they are candidate locations for
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Figure 2: On-chip bias regulators improve worst-
case 3σ standby energy better when they are nearby,
and more correlated, with the circuit they bias.

Figure 3: Block diagram showing on-chip bias regu-
lator design and verification methodology.

regulator instances. Our optimizer solves for the optimal
clustering of cells biased by regulators, using LP Solve [2].

3.4 Regulator Placement and Assignment
Insertion of each regulator incurs a standby energy cost.

To achieve worst-case energy savings at the circuit level we
determine the optimal number of regulators, the placement
of these regulators and the cell(s) assigned to a regulator.

We model the problem of assigning regulators to one or
more groups of standard cells as an LP. We demonstrate
two algorithms to solve this LP problem. The first is an
exhaustive approach yielding the optimal solution, while the
second is a faster, heuristic solution. The two approaches
differ in the number of LP constraints formulated and how
they generate the constraints.

In the optimal solution, we consider all filler cells as can-
didate locations for regulators, each of which can be paired
with any cell on chip.

In the heuristic approach, we derive candidate subsets of
filler locations from the set of all filler locations, for regula-
tor insertion. We then proceed to determine the regulators
to make clusters with cell instances. For these subsets, we
consider only rows immediately adjacent to a cell, for each
cell in the design. Using this row adjacency constraint, we
build LP constraints and attempt to solve the LP. If the LP
does not converge, we increase the set of rows from which
we derive the subset of filler cells, for each cell in the design.
Again we attempt to solve the LP. The goal of the heuristic
is to determine the smallest number of rows from which the
subsets can be derived leading to a solvable LP. The goal
of the LP formulation is to identify a subset of regulators
from the available regulators and determine the grouping of
standard cells to be assigned to those selected regulators.

The LP formulations of both algorithms have identical
cost functions and differ only in the number of constraints.
So, for brevity we present the equations of the optimal for-
mulation and indicate the areas where they differ.

Both algorithms have similar inputs, namely, placed file
containing fillers and cells and the cell-specific characteri-
zation data. The output from both algorithms is the gate
clustering and regulator assignment. For brevity, we present
the heuristic and indicate where it differs from the optimal
solution. Lines 2,5 and 6 constitute the iterative part of the
heuristic solution only and are not applied in the optimal
solution. All other aspects are common to both algorithms.

To physically implement our methodology we leverage fea-
tures available in place and route tools. We first create rel-
ative placement groups for each cell cluster connected to a
regulator and associate a power domain with that group. We
then designate the output net of each regulator as a supply
net and connect those nets to cell bias pins.

• Let m be the number of cell instances in the design.
• Let i be an index variable such that i = 0,1,......(m-1).
• Let C represent the set of all cells indicated by Ci

where i = 0,1,...(m-1).
• Let n represent the number of regulators in the design.
• Let j be an index variable such that j = 0,1,.......(n-1).



Algorithm 1: Heuristic algorithm finds clustering of
cells and assigns bias regulators

Define : RSS = Row Search Space,
RSSmin = 1, RSScurr = RSSmin,
RSSmax =Number of rows in placed chip

Input : Placed File, Cell characterizing information
Output: Gate clustering, Regulator assignment
while RSScurr ≤ RSSmax do1

write ILP constraints using RSScurr;2

solve ILP() ;3

RSScurr ++4

end5

• Let R represent the set of regulators indicated by Rj

where j = 0,1,...(n-1).
• Let a be a constant representing the standby energy

cost of a single regulator.
• Let Xij represent a decision variable taking values

{0, 1} indicating whether a specific cell Ci is assigned
to a specific regulator Rj .

• Let Yi represent an auxiliary variable denoting the cost
of a specific cell being assigned a specific regulator from
the available regulators.

• Let eij represent the energy savings coefficient for a
given cell Ci regulator Ri assignment. This is obtained
from the linear energy savings model discussed earlier,
with distance of a fixed regulator to a given cell as
input to this model.

The LP solver solves for decision variables Xij which de-
termines the optimal grouping of cells biased by regulators.
Our formulation is described below:

Minimize
m∑

i=1

Yi +m · a such that (1)
n∑

j=1

[e(i·n)+j ·X(i·n)+j ] ≤ Y(i+1) ∀i = 0, 1, 2...(m − 1) (2)
n∑

j=1

X(i·n)+j = 1 ∀i = 0, 1, 2...(m − 1) (3)

Xp = {0, 1} ∀p = 1, 2, ...(m · n) (4)

The cost function in Eq.1 describes the goal of this for-
mulation, which is to minimize the number of clusters into
which all standard cells can be grouped, such that each clus-
ter is connected to a regulator. Here Yi denotes the lin-
earized worst-case 3σ standby energy cost of a cell i from
amongst the set of all cell instances C, when biased by a reg-
ulator. Summed over the set of all cell instances, our goal
is to minimize the cost of clustering all the cell instances in
the design. The second term indicates the standby energy
cost of the regulators needed to cluster all the cell instances.

The set of constraints denoted by Eq.2 determine which
of the cells get clustered together to be biased by a common
regulator and get assigned a regulator. The coefficient term
is the energy cost of driving a particular cell with a particular
regulator. This term is obtained by precharacterizing the
cells of the standard cell library and the distance between
the regulator and the cell.

The LHS of constraint Eq.2 represents the energy cost of
biasing a given standard cell by each of the available regula-
tors. The RHS of constraint Eq.2 ensures this cell is biased
by one of the available regulators only.

The constraint Eq.3 ensures each cell has to be driven
by a regulator and enables grouping of cells to a common
regulator. The constraint Eq.4 indicates Xij is a binary
decision variable taking values {0,1}.

The above described constraints apply to the Algorithm-
1. For Algorithm-2, the indices of the variables and the
limits of the summation are not constant n and instead take
variable values based on the number of regulator candidates
available in the rows adjacent to each cell.
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Figure 4: On-chip regulator methodology improves
worst-case 3σ delay compared to an unbiased circuit.
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Figure 5: On-chip regulator methodology improves
worst-case 3σ active energy using Vdd=350mV

4. EXPERIMENTAL METHODS
We use Nangate Open Cell Library implemented using

the 45nm FreePDK process as our standard cell library. We
designed the bias regulators using this process. The nominal
threshold voltages of the transistor models in this process
were Vth0N = 0.4106 V and |Vth0P | = 0.3842 V.

4.1 Variation Model
We consider parametric variation of threshold voltage caused

by Random Dopant Fluctuation (RDF). Our input variation
model is based on Pelgrom’s model given by,

σ2 (Vth) = (S2
Vth

·Distance2) + (
A2

Vth

W · L
)· (5)

S2
Vth

and A2
Vth

are technology specific constants in the range
of 0.01 mV/µm and 0.001 mV respectively. We assume the
threshold voltage is normally distributed around the nomi-
nal value, with 1σ variance of 20 mV [11]. All instances of
standard cells and regulators are subject to threshold voltage
variation from the distribution. Given spatial separation be-
tween a cell instance and regulator instance and the variance
of mismatch between them, we proceed to find the respec-
tive threshold voltages of the FETs. For a given mismatch
variance, which is a function of the spatial separation, and
the threshold voltage distribution, the correlation between
the random variables is computed. Two randomly picked
threshold voltage values are transformed into correlated val-
ues using the computed correlation coefficient, by applying
Cholesky decomposition [6].

4.2 Optimized Circuit
Our optimizer reads in placed netlists containing coor-

dinates of cell and filler instances. Considering filler cells
as candidate locations for regulator insertion, our optimizer
solves for the clustering of cells biased by regulators and the
locations of regulators, using LP Solve [2]. Using the re-
sults of optimization and placed netlists, we obtain SPICE
netlists containing clusters of cells biased by regulators. We
apply our variation model on these netlists.

4.3 Timing and Energy Measurement
Circuit timing paths are affected when threshold voltage

variation causes delay variation in transistors. This affects
circuit performance and energy consumption. So, we find
the exact critical path delay by performing transistor level
static timing analysis using Synopsys Nanotime and find the
maximum operating frequency fmax of the circuit. Using



Table 1: Savings in worst-case 3σ standby energy using on-chip regulator assignment at Vdd=350mV

Circuit

Unbiased vs On-chip biased Offchip biased vs On-chip biased
Unbiased Optimal Savings Heuristic Savings Offchip bias Optimal Savings Heuristic Savings

(fJ) (fJ) (%) (fJ) (%) (fJ) (fJ) (%) (fJ) (%)
c432 0.92 0.60 41.95 0.87 5.70 1.04 0.60 42.30 0.87 17.12
c499 1.15 0.98 1.64 1.24 -8.13 1.32 0.98 25.75 1.24 6.41
c1355 1.16 0.90 3.30 1.26 -8.61 1.29 0.90 30.23 1.26 2.69
c1908 1.67 1.35 12.52 1.65 1.41 1.74 1.35 22.41 1.65 5.50
c2670 2.00 1.96 4.07 1.98 1.15 2.04 1.96 3.92 1.98 3.06
c3540 1.94 1.80 5.21 1.95 -0.82 2.04 1.80 11.76 1.95 4.03
c5315 2.34 2.16 3.15 2.36 -0.57 2.43 2.16 11.11 2.36 2.97
Avg. 10.26 -1.41 - 21.06 5.96

critical path delay, we then simulate the circuit at fmax using
random input stimuli and measure active and standby en-
ergy per cycle using Synopsys Hspice. We perform this pro-
cess of applying variation, determining critical path, finding
fmax and using it to compute energy using 1000 iterations of
Monte Carlo simulation. We then compare the benchmark
performance with an unbiased circuit and a circuit biased
using a voltage source at Vdd/2, described earlier in Section
2, comparable to an off-chip bias source. Since the regu-
lators are connected to on-chip supply voltage, our results
include the energy overhead of the regulators.

5. RESULTS
In this section, we present the results of our optimization

process and the impact of optimization driven body bias on
energy and performance of ISCAS85 benchmarks.

The run time of our optimization process was measured
for several benchmarks using the optimal and heuristic ap-
proaches. Across the benchmarks, the improvement in run-
time of the heuristic solution, was 68% on average. This is
due to the reduced subset of candidate regulators considered
for each cell by our optimizer.

We found the active energy, standby energy and delay
following log-normal distributions. So, we evaluate the dis-
tributions using typical parameters namely mean (µ) and
worst-case 3σ. The regulator bias method provides improve-
ment by delivering a forward bias which is adapted to the
cell variation in that spatial vicinity. This locally relevant
forward bias offers a better matching of the FET off-currents
and lowers the cell threshold voltage, thus improving its per-
formance. This increased performance enables scaling the
circuit to lowered supply voltages, thus saving worst-case
active energy and standby energy.

Since each regulator could output a bias voltage different
from another regulator, we consider inter-well spacing for
wells at different potential to measure the impact on circuit
area. This area overhead spans a range of 17.5% at the
minimum to 24.5% at the maximum across all benchmarks
with an average of 19.4%.

From Figure 4, we see the regulator method offers im-
provement in worst-case delay of the circuit for all bench-
marks compared to an unbiased circuit. The improvements
decrease as the supply voltage is scaled down. This is be-
cause, at lower operating voltages, the impact of variation is
much higher than the applied bias compensation. The im-
provement in delay spans a range of 10.89% at the minimum
to 50.16% at the maximum. Considering all benchmarks, the
average improvement in worst-case delay is 36.93%, 27.85%
and 12.74% at 350mV, 300mV and 250mV respectively us-
ing Algorithm-2, compared with an unbiased circuit.

From Figure 5, we see the regulator method offers sav-
ings in worst-case active energy of the circuit for all bench-
marks when compared against an unbiased circuit and an
offchip biased circuit. We have verified this using both
our algorithms. The active energy savings on average com-
pared to an unbiased circuit across all benchmarks include
14.52% and 4.50% for Algorithm-1 and Algorithm-2 respec-
tively. Compared to an offchip biased circuit, the savings
are 18.84% and 9.20% using Algorithm-1 and Algorithm-2
respectively. We can see Algorithm-1 slightly outperforms

Algorithm-2 in both cases of comparison, namely against
an unbiased circuit and offchip biased circuit. This is be-
cause, the optimal solution algorithm offers a wider choice
of regulators to choose from, resulting in improved savings.

In Table 1 we list the savings in worst-case 3σ standby
energy using our methodology. We compare this against un-
biased circuits and with offchip biased circuits using both al-
gorithms. Algorithm-1 offers savings across all benchmarks,
while Algorithm-2 offers savings in some cases. In other
cases there is a slight increase in the worst-case standby en-
ergy. This corresponds to the cases where the active energy
savings are also at the lowest, due to the reduced

6. CONCLUSION
In this work we developed a design methodology to use for-

ward bias and reduced the impact of threshold voltage vari-
ation. We formulated optimal assignment of forward bias as
a LP optimization in this methodology. We reduce worst-
case standby energy and active energy by up to 21.06% and
18.80% on average respectively and reduce worst-case delay
by up to 37.8% on average. The improvements are available
over a range of deep subthreshold voltages.
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