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Research and Applications
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Abstract
Importance: Electronic health record textual sources such as medication signeturs (sigs) contain valuable information that is not always avail
able in structured form. Commonly processed through manual annotation, this repetitive and time-consuming task could be fully automated 
using large language models (LLMs). While most sigs include simple instructions, some include complex patterns.
Objectives: We aimed to compare the performance of GPT-3.5 and GPT-4 with smaller fine-tuned models (ClinicalBERT, BlueBERT) in extract
ing the average daily dose of 2 immunomodulating medications with frequent complex sigs: hydroxychloroquine, and prednisone.
Methods: Using manually annotated sigs as the gold standard, we compared the performance of these models in 702 hydroxychloroquine and 
22 104 prednisone prescriptions.
Results: GPT-4 vastly outperformed all other models for this task at any level of in-context learning. With 100 in-context examples, the model 
correctly annotates 94% of hydroxychloroquine and 95% of prednisone sigs to within 1 significant digit. Error analysis conducted by 2 additional 
manual annotators on annotator-model disagreements suggests that the vast majority of disagreements are model errors. Many model errors 
relate to ambiguous sigs on which there was also frequent annotator disagreement.
Discussion: Paired with minimal manual annotation, GPT-4 achieved excellent performance for language regression of complex medication 
sigs and vastly outperforms GPT-3.5, ClinicalBERT, and BlueBERT. However, the number of in-context examples needed to reach maximum 
performance was similar to GPT-3.5.
Conclusion: LLMs show great potential to rapidly extract structured data from sigs in no-code fashion for clinical and research applications.

Lay Summary
Electronic health records contain important medication instructions that are often not in an easy-to-use format. These instructions usually need to 
be manually reviewed, which is repetitive and time-consuming. This study looked at whether advanced computer programs, specifically large lan
guage models (LLMs), could automate this task. The goal was to compare how well different language models, including GPT-3.5, GPT-4, and 
some smaller specialized models, could understand and extract the daily doses of two medications, hydroxychloroquine and prednisone, which 
often have complicated instructions. Using a set of instructions that were manually reviewed as the standard, we tested these programs on 702 
hydroxychloroquine and 22 104 prednisone prescriptions. GPT-4 performed the best, correctly identifying the daily doses in 94% of hydroxychloro
quine and 95% of prednisone instructions when given 100 examples to learn from. Most mistakes by the models were due to unclear instruc
tions, which even human reviewers sometimes found confusing. In summary, GPT-4, with minimal human help, showed excellent ability to under
stand and process complex medication instructions, doing much better than GPT-3.5 and the smaller specialized models. This suggests that 
LLMs like GPT-4 could be very useful in quickly turning medication instructions into a structured, easy-to-use format for doctors and researchers.
Key words: natural language processing; large language models; in-context learning; language regression; immunomodulating drugs. 

Introduction
Prescription signeturs (sigs), Latin for “let it be labeled,” refer 
to the text describing medication instructions as written by 
the prescribing physician and printed on the medication con
tainer. They contain specific directions as to the time, fre
quency and number of pills the patient should take (eg, “take 
one tab after every meal”). Most sigs are straightforward and 
specific (eg, “take one 40mg tab per day”), but some sigs can 
contain complex instructions due to tapering regimens or 

narrow toxicity profiles (eg, “take one tab m-f, two tabs on 
weekends”; “take 4 tabs/day for a week, then 3 tabs/day for 
another week, then 2 tabs/day”).

Additionally, sigs often express the same information in 
different ways (eg, “take 200mg every day” and “take one 
tablet by mouth every day”) or have some ambiguity: from 
having general indications that are difficult to turn into a sin
gle structured variable (eg, “take 1-3 pills a day”), to having 
contradicting instructions due to presenting a generic sig that 
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the physician has replaced without overwriting the original 
description (eg, “take 1 pill a day. Take 2 pills a day”). Fur
thermore, some are unresolvable without additional chart 
review (eg, “as directed”).

Implementing efficient methods to accurately extract struc
tured data from sigs is essential to, in turn, have reliable 
structured data from which to conduct downstream research 
and make clinical decisions, such as adjusting dosage for a 
current patient based on toxicity or conducting large-scale 
studies to establish safety in real world settings. While man
ual annotation is still the gold standard, different approaches 
have been studied to address this challenge. In this work, we 
focused on methods to extract the average daily dose for a 
medication. We believe this task is particularly challenging 
because it requires both named entity recognition (NER) as 
well as algebraic operations with the identified entities (eg, 
calculating the average dose per day of the week and then 
computing a total average), which we refer to as language 
regression throughout this manuscript.

Methods for this task can be primarily divided into 2 
groups. The first group consists of designing a hardcoded or 
rule-based tool. This is usually based on reducing sigs to reg
ular expressions from which a formula can be deducted. 
While highly accurate for the dataset they are created for, 
these will fail to generalize to unseen datasets and are signifi
cantly time-intensive, as they require manual review, textual 
pre-processing and regular expression design. Examples 
include the R package Doseminer1 or sig2db2. The second 
group consists of using some form of classifier. This approach 
consists of using NER or contextual embeddings either fully 
fine-tuned or paired with a fine-tuned classifier head. While 
much less time-intensive than hardcoded tools, these models 
require training with a large variety of sigs and thus do not 
remove the need for manual annotation. They will also fail to 
generalize to unseen output values.3,4

A more adaptable approach is to use a large language 
model (LLM), ideally somewhat proficient in question 
answering, information extraction, and basic mathematical 
operations, such as GPT.5 In this way, LLMs can be queried 
for specific structured data fields that derive from sigs. This 
approach has two advantages: (1) it maximizes model versa
tility, as it will be the easiest approach to generalize, espe
cially if research finds minimal or no fine-tuning is needed, 
and (2) it will minimize, or ideally eliminate, the need for 
manual annotation. This approach was already described 
and prototypically implemented, albeit with older LLM 
architecture, in previous research.6 However, recent LLMs 
such as GPT have shown drastic advances for medical reason
ing7 and information extraction,8–10 offering a no-code solu
tion to this problem. The viability of using LLMs to extract 
structured data explicitly available in free-text clinical notes 
(information extraction) has been widely discussed,11 as have 
its limitations.12 While this feat can greatly facilitate applica
tions requiring these data, such as clinical decision support or 
research, its viability for language regression is still unclear,13

as is the varying contribution of in-context examples.14

To assess the feasibility of applying LLMs to analyze sigs, 
their overall performance needs to be established. Addition
ally, a comparison with a smaller, fine-tuned model, should 
be performed. Our study aims to do so by providing the fol
lowing innovations: (1) examining the performance of LLMs 
to structure complex sigs, which can be framed as a language 
regression task that requires simple mathematical operations 

such as products, sums, and averages, (2) evaluating the mini
mum number of manual annotations, provided as in-context 
examples, to achieve maximum performance, and (3) provid
ing a comparison with a baseline consisting of smaller, fine- 
tuned models, such as ClinicalBERT15 or BlueBERT.16 In 
this study, sigs from two commonly prescribed immunomo
dulating drugs that commonly have complex instructions 
were used to conduct these analyses.

Methods
Dataset
The data used in this study were derived from data aggre
gated from 2 other observational studies examining medica
tion dose. Briefly, one study was based at an academic 
medical center (UCSF Health) and involved all hydroxychlor
oquine orders issued from the rheumatology or dermatology 
clinics for adult patients, between 2015 and 2020. This 
yielded 702 hydroxychloroquine 200 mg sigs included in the 
current study, representing approximately 12 250 orders 
from 3000 patients.

Separately, a second study used data from Rheumatology 
Informatics System for Effectiveness, a national electronic 
health record (EHR)-based registry with data derived from 
over 300 practices17 and involved all oral glucocorticoid 
orders for patients with rheumatoid arthritis and Medicare 
insurance during 2018. This yielded 22 104 sigs for predni
sone or its equivalents included in the current study, repre
senting approximately 194 500 orders from 44 500 patients.

Our initial annotation (referred to as original annotation) 
was performed by three separate annotators for hydroxy
chloroquine (one epidemiologist specializing in rheumatology 
and two rheumatology senior research data analysts) and five 
for prednisone (two rheumatologist attending physicians, one 
rheumatology fellow, one internal medicine resident, and one 
senior research data analyst). In case of disagreement, the 
senior rheumatologist’s opinion was included. For the 
hydroxychloroquine set, if two conflicting instructions were 
found, chart review of clinical notes was performed, which 
confirmed that the second instruction in a series was correct. 
These datasets contain complex expressions, such as:

� EHR default text overwriting (eg, “take 1 tablet by mouth 
daily. take 1 and 1/2 tablets by mouth daily”). For this 
type of sig all manual annotators only considered the sec
ond instruction, based on the results of the chart review 
mentioned above. 

� Ranges (eg, “1.0 mg tabs. take 1-5 milligram by oral 
route every day”) 

� Complex patterns (eg, “take 1 tablet every tu, wed, th, 
sat., sun. take 2 tablets mon and fri only”) 

Overall approach
Three models were tested in the hydroxychloroquine set, 
including (1) a ClinicalBERT15 and BlueBERT16 sequence 
classification model fine-tuned for regression on 75% of the 
dataset and tested on the remaining 25%, (2) zero-shot GPT- 
3.5 and GPT-4, and (3) few-shot (1,5,10,20,40,60,75,100) 
GPT-3.5 and GPT-4. For dataset splitting, stratification was 
used to make sure both splits have the same output label dis
tribution as the full set.
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In-context examples for few-shot learning
For the few-shot approach, in-context examples were pro
vided with four different criteria. We conceived these criteria 
as potential methods to sample highly informative sigs for in- 
context learning for minimal manual annotation, as follows:

� Selected randomly from the full set of sigs (labeled 
random); 

� Selected randomly from the top 15% by sig length 
(labeled word count); 

� Selected randomly from the top 15% by infrequent words 
(labeled uncommon words); and 

� Selected randomly from the top 15% by absolute distance 
between zero-shot GPT-3.5 and GPT-4’s prediction 
(labeled model disagreement). 

In all selective approaches, we sampled from the top 15%, 
as opposed to selecting the longest or most complex sigs in 
the set. By opting to sample from the top 15%, the aim was 
to create a subset that may better represent potentially unseen 
sets that could exhibit slight deviations from our distribution. 
For tests on the full set, sigs that are provided as in-context 
examples are removed from the list of prompts. After obtain
ing results for the hydroxychloroquine dataset, the best- 
performing model from all zero- and few-shot GPT-based 
approaches was compared with a similarly fine-tuned Clini
calBERT model for the larger prednisone set.

Model selection and construction
For all GPT models, a temperature of 0.5 and a max output 
token length of 10 with the API version 2023-05-15 were 
used. The most recent version of both models was used at the 
time of the experiment (November 13-15, 2023). As a com
parison baseline, we selected ClinicalBERT and BlueBERT in 
its PubMed þ MIMIC-III version. Both of these models are 
BERT based and have been pretrained with medical papers 
and free-text notes and should perform reasonably given a 
sufficiently large dataset and fine-tuning.

For ClinicalBERT, we used a learning rate of 1E− 5, 
ADAM optimization and mean squared error loss. When 
designing this study, we considered offering the output of a 

locally hosted chat model, Llama2-13B or Llama2-7B, as an 
additional result. However, significant model verbosity was 
observed, as the output would be contaminated by the model 
making up additional examples or adding undesired explana
tions that would make the task of extracting the model’s 
numeric output from its textual reply another natural lan
guage processing task in itself. This led us to discard this 
option. For prednisone sigs, as tab sizes vary, the tab size was 
included in the sig (eg, “4.0 mg tabs. take 1-3 tablets by 
mouth daily”). The model prompt always followed the same 
structure: 

“The following text describes the dosing pattern of [Medi
cation name]. The task is to extract the daily average dose 
in number of milligrams per day. Reply only with a num
ber with one decimal value. Do not include an explana
tion. Examples: [Input 1]. [Output 1]. (. . .) [Input n]. 
[Output n]. [Input].”

A flowchart describing the experiments for both datasets is 
presented in Figures 1 and 2.

Outcomes
The outcome of interest was the proportion of sigs within a 
certain threshold of absolute error in miligrams per day. A 
range of errors, based on clinical significance, was chosen 
between a maximum of 10% (highly clinically significant) 
and 0.1% (not clinically significant) of the average daily dose 
for each drug. Mean absolute error (MAE) and standard 
deviation (SD) were calculated as well. In each case, we 
reported results for the complete set (for zero- and few-shot 
settings) as well as for the selected 25% test set to offer a fair 
comparison between the fine-tuned model and other 
approaches.

Error analysis
Following these experiments, we conducted an error analysis 
procedure on the subset of sigs for which the best-performing 
model’s annotation disagreed with the original annotation. 
For those sigs, we requested two additional annotators (B.R. 
and A.H., both rheumatologists, anonymized as annotator 1 

Figure 1. Experiment flowchart for hydroxychloroquine.
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and annotator 2) to re-annotate said sigs. Inclusive of provid
ing an annotation in mg/day, when possible, annotators were 
asked to provide two additional and not mutually exclusive 
outputs:

� An indication that the sig was ambiguous (ie, two contra
dicting instructions or a range) and 

� An indication that the sig was impossible to resolve (ie, 
not enough information to provide an estimate, or the sig 
contains incorrect information, eg, a mention of ml or a 
different medication such as methotrexate, or “as 
directed”). 

For this error analysis task, we asked both annotators to 
re-annotate the hydroxychloroquine set to estimate interrater 
agreement, and we divided the prednisone set evenly. Instruc
tions given to these two annotators were identical to those of 
the original annotation, including an indication to resolve 
two conflicting instructions by attending to only the second 
one. We reduced the size of the prednisone set for manual 
annotation by removing all but one entry where the manual 
annotation and the model annotation were identical, and 
thus the difference between both was the same. Our selected 
outcomes for error analysis, which are thus also not mutually 
exclusive, are as follows:

� Number of sigs marked as ambiguous; 
� Number of sigs marked as impossible to resolve; 
� Annotator 1 or 2 disagrees with original annotation; and 
� Annotator 1 or 2 disagrees with model’s annotation and 

agrees with original annotation. We define these as con
firmed model errors. 

We provide Cohen’s kappa as a measure of interrater 
agreement for the error analysis outcomes in the hydroxy
chloroquine set, and the MAE and SD comparing annotators 
1 and 2’s dose values with the original annotation and the 
model.

Ethics
Sigs were de-identified and no PHI was included. The GPT-4 
and GPT-3.5 models were used via the HIPAA compliant 
Versa API at UCSF Health such that no data were either 

permanently transferred to or stored by either Microsoft or 
OpenAI for any purposes. BERT experiments were con
ducted on a local computer. The data derive from source 
studies with IRB numbers 16-21347 for hydroxychloroquine 
and 21-34133 for prednisone.

Results
Results on the hydroxychloroquine set for GPT-3.5 and 
GPT-4 for the full set are presented in Figures 3 and 4, while 
results comparing GPT models with BERT models on the 
25% designated test sets are provided in Table 1. All GPT 
models vastly outperformed BERT models, even in a zero- 
shot setting. Both GPT-3.5 and GPT-4 experienced a propor
tional accuracy gain as more context is provided, with GPT-4 
consistently annotating 15% more sigs within an error 
threshold of 0.1 mg/day or less. GPT-4 plateaud at 94.0% 
sigs within 0.1 mg/day or less and an MAE (SD) of 4.3(± 
22.2) mg/day at 100 in-context examples, from its zero-shot 
performance of 76.9% and 32.5(±146.1) mg/day. Complete 
experiment results are provided in Appendix A. A slight 
advantage was observed in all in-context example selection 
criteria over random selection.

The best-performing approach was GPT-4 with the 100- 
shot word count criterion. Appendix A displays the distribu
tion of this approach’s errors across the distribution of out
put doses. For this approach, errors were highly concentrated 
in infrequent output doses that have the most complex sigs 
associated to them, as discussed in the error analysis section 
of our experiments. As an additional insight into model 
errors, we present the evolution of signed and absolute error 
with different amounts of in-context examples for the word 
count method in Figure 5. While signed error plateaud at 40 
in-context examples, absolute error did not.

As described above, based on the results of the experiments 
shown in Appendix A, we selected the 100-shot word count 
GPT-4 model to compare to manual annotation and fine- 
tuned BERT-based models on the prednisone sigs. For the 
complete set, GPT-4 achieved an MAE of 0.53 (±10.63) mg/ 
day and 94.5% sigs within 0.1% of the average daily dose.

We analyzed errors in the predictions for hydroxychloro
quine and prednisone, detailed in Tables 2 and 3, 

Figure 2. Experiment flowchart for prednisone.
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respectively. This involved examining instances where our 
model’s annotation differed from the original annotation, 
resulting in 36 instances for hydroxychloroquine and 267 
for prednisone. For hydroxychloroquine, we reviewed all 
36 instances. For prednisone, we only included one instance 
of each group of instances where the model’s annotation 
and the original annotation are identical (and in disagree
ment). Both drugs had sigs with ambiguity per our annota
tors. Most discrepancies were found to be model errors, as 
our annotators aligned with the original annotation against 
the model’s prediction. However, a few instances were 
identified as mislabeled, where annotators favored the mod
el’s annotation over the original. Further details on the 
error analysis for hydroxychloroquine can be found in 
Appendix B.

Discussion
Establishing the accurate prescribed dose of a medication is 
required for clinical research studies and federal quality 
reporting programs. Traditionally, arriving at an accurate 
prescribed dose requires manual annotation for medications 
with complex sigs. This can be costly and time-consuming. In 
this paper, the performance of GPT-3.5, GPT-4, Clinical
BERT, and BlueBERT for this task was evaluated. It was 
found that GPT-4 vastly outperforms all other models. How
ever, depending on error tolerance, BlueBERT may offer a 
viable solution for a fraction of the cost. In addition, we found 
that providing annotated sigs as in-context examples signifi
cantly increases model accuracy. These findings align with the 
existing literature supporting the potential of GPT as an excel
lent method for information extraction, and contribute new 

Figure 3. Mean absolute error of hydroxychloroquine sigs. Error bars correspond to maximum and minimum values for number of in-context of examples 
across criteria. Results for the full set are only possible with GPT models, a comparison with BERT models on the test set is provided in Table 1.

Figure 4. Proportion of correctly annotated hydroxychloroquine sigs. We define correct as MAE <0.1 mg/day. Error bars correspond to maximum and 
minimum values for number of in-context of examples across criteria. Results for the full set are only possible with GPT models, a comparison with BERT 
models on the test set is provided in Table 1. MAE ¼mean absolute error.
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sights into its clinical language regression capabilities. How
ever, our findings also highlight an area with potential for 
improvement, as the model required a significant number of 
annotated sigs before it reached its maximum performance.

When selecting criteria to provide the most informative 
samples for in-context learning, it was found that any of the 

methods we considered (selecting particularly long sigs, or 
sigs with uncommon words, or sigs where zero-shot GPT-3.5 
and GPT-4 disagree the most) slightly outperformed random 
selection. Further research using larger datasets and addi
tional medications is required to fully understand which of 
these methods, or any other, works best. However, by 

Table 1. Performance of fine-tuned BERT models, compared to different GPT versions, on the hydroxychloroquine and prednisone test sets.

Model MAE SD Within 0.1% 0.5% 1% 5% 10%

Hydroxychloroquine mg/day mg/day % sigs % sigs % sigs % sigs % sigs
ClinicalBERT 78.87 83.28 0.0% 0.0% 28.2% 35.6% 36.2%
BlueBERT 29.58 55.5 2.8% 14.1% 21.5% 75.1% 77.4%
GPT-3.5 Zero-shot 45.02 89.37 63.8% 63.8% 63.8% 65.0% 66.9%
GPT-4 Zero-shot 19.50 59.33 75.6% 76.9% 77.5% 80.0% 82.5%
GPT-3.5 100-shot 24.79 53.38 76.1% 76.1% 76.1% 76.8% 78.2%
GPT-4 100-shot 5.77 28.67 94.4% 94.4% 94.4% 94.4% 95.0%
Prednisone
ClinicalBERT 1.04 23.56 0.5% 3.7% 8.4% 68.4% 96.3%
BlueBERT 0.99 23.68 1.5% 9.4% 16.2% 79.0% 96.7%
GPT-3.5 Zero-shot 3.49 21.80 68.4% 70.5% 70.8% 71.4% 72.4%
GPT-4 Zero-shot 0.99 23.55 81.8% 87.9% 88.4% 88.9% 89.9%
GPT-4 100-shot 0.75 20.57 93.0% 94.3% 94.4% 94.6% 94.8%

Hydroxychloroquine n¼ 702, prednisone n¼ 22 104. In-context examples provided through the word count criterion, that is, selected randomly from the 
top 15% by sig length. Within % refers to within % of average dose. Average dose of hydroxychloroquine: 298 mg/day. Average dose of prednisone: 9 mg/ 
day. Due to cost limitations, we were unable to include GPT-3.5 100-shot for prednisone. Bold values indicate the best performing model.
Abbreviation: MAE ¼mean absolute error.

Figure 5. MAE and signed error for GPT-4 word count. While signed error plateaus at 40 in-context examples, absolute error does not. MAE ¼mean 
absolute error.

Table 2. Manual annotation of model errors in hydroxychloroquine sigs (n¼ 36).

Hydroxycholoroquine (n¼36) Annotator 1 n Annotator 2 n Cohen’s kappa

Sig is ambiguousa 14 13 0.8
Sig cannot be resolveda 2 2 0.5
Disagree with original annotationa 12 16 0.8
Confirmed model errora 24 20 0.8
Original annotation MAE (SD) (mg/day) 25.7 (±55.3) 27.3 (±54.8) N/A
Model MAE (SD) (mg/day) 46.3 (±54.0) 46.7 (±54.1) N/A

When both annotated, annotators disagree on 4 annotations with MAE 1.6 mg/day. Confirmed model error is defined as annotator 1/2 agreeing with original 
annotation and disagreeing with model annotation. Full table, including sig content, is provided in Appendix B.
Abbreviation: MAE ¼mean absolute error.

a Categories are not mutually exclusive.
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designing our criteria selecting among the top 15% of exam
ples as opposed to simply choosing the most suitable ones, 
we believe our results will generalize to other domains as 
well, and selection criteria for in-context learning will outper
form random selection.

Our findings can be interpreted in the broader context of 
the performance of LLMs for classification and regression. 
Using LLMs for classification has shown that a highly rele
vant factor for successful in-context learning is to provide a 
distribution that is most representative of the dataset distri
bution, even if incorrect examples are intentionally pro
vided.18 However, if the goal was to select unannotated sigs 
to maximize model performance, it would be unfair to use 
the annotated value as a factor in that selection. An addi
tional interesting finding is that, despite the accuracy values 
of GPT-4 being consistently higher than those of GPT-3.5, 
the performance gain rate with added context for both mod
els is similar, although MAE values for GPT-3.5 across exam
ple criteria are noisier, as depicted in Figure 3.

We anticipated GPT-4 outperforming GPT-3.5, as it is a 
larger model trained on more data. However, the fact that it 
needs the same amount of context to converge to its maxi
mum dataset performance is somewhat surprising. This result 
can be explained by a broader discussion of the limitations of 
LLMs when doing mathematical operations, as models show 
limitations for mathematical reasoning.13 Even at its maxi
mum performance values, the model struggled with a small 
number of sigs. Error analysis and reannotation revealed that 
these sigs are often ambiguous, and some, but not all errors 
would also be committed by a manual annotator with 
domain knowledge. An aspect of our results that we consider 
particularly relevant is the presence and resolution of ambig
uous sigs. Mostly, these were generated when a sig is auto
matically included by default in the EHR, and the prescribing 
physician, instead of overwriting it, added a second duplica
tive sig. This results in a particularly common pattern that is 
present in approximately half of the model’s errors for 
hydroxychloroquine (eg, “take 1 tablet by mouth daily. take 
1 and 1/2 tablets by mouth daily”). The original annotators 
resolved this ambiguity by ignoring the first set of instruc
tions based on clinical note reviews that revealed the second 
sig was what the prescriber intended. Almost all models, 
however, not knowing which of the instructions was the cor
rect one, simply tended to calculate the average of both sets, 
as is the case when the sig offers a range instead of a set value. 
The models also often incur errors in ranges, which can in 
some cases be very wide (eg, “take 1-8 tablet by oral route 
every day”), making the impact of this error in MAE results 
significant. We intentionally decided to not add any specific 

instructions to the model to address these issues to provide 
results that are consistent with a minimal (or no) manual 
annotation scenario. However, the metrics presented in this 
manuscript could be further improved by simply adding spe
cific instructions to the model’s prompt.

Our study has several important limitations. First, resource 
limitations meant we were unable to run all experiments in 
our larger prednisone set. While the model provides excellent 
performance in a 100-shot setting, it may be that a higher 
number of in-context examples may offer even better results, 
or that less context performs similarly well. Second, our data 
were extracted from an academic center and a national rheu
matology registry that represents about 30% of the US rheu
matology workforce.17 Together these data sources include 
hundreds of rheumatologists practicing in academic centers 
and community-based clinics; however, the data may not be 
representative of sigs written by other providers, including 
those outside of the United States or nonrheumatologists. 
Third, the limited size of our hydroxychloroquine set may 
have limited ClinicalBERT’s and BlueBERT’s performance, 
considering that their error rate is significantly higher than 
that of prednisone as presented in Table 1. For this reason, if 
only very few sigs are available, GPT will be a far superior 
approach. Finally, our study does not evaluate the perform
ance of these models for other drugs in which a larger distri
bution of potential output values may exist.

In our work, GPT-4 exhibited superior accuracy extracting 
average daily doses from sigs without the need for extensive 
coding or prolonged computational time. However, imple
menting this method at scale may prove financially challeng
ing. For instance, during our experiments, the cost was 
calculated at $0.03 per 1000 tokens for input and $0.06 per 
1000 tokens for output, which, despite seeming minimal, 
escalates quickly with tasks requiring large contexts or 
numerous prompts. The total approximate cost of our experi
ments, including some repetitions, was around $3700. 
In contrast, BlueBERT emerges as a much more cost-effective 
alternative, although it may not match GPT-4’s performance 
in all aspects. In the short term, focusing on improving 
smaller models like these may offer a financially viable path
way for enhancing clinical decision support and research 
depending on error tolerance if sufficient data for training are 
available. Future authors may also consider smaller, locally 
deployable LLMs based on platforms such as Llama-2 that 
will likely increasingly show competitive performance in 
algorithmic reasoning and reduced verbosity, as measured by 
datasets such as GSM8K.19

In sum, we believe that this study highlights the potential 
of general purpose LLMs to significantly reduce the burden 
of manual data annotation by efficiently and accurately turn
ing EHR unstructured data into structured data with minimal 
supervision and annotation. While it seems that LLMs have 
not fully eliminated the need for manual annotation if very 
high accuracy is needed, they are a very significant step for
ward toward minimizing it. Application of these methods 
will ultimately make the data more useful for research and 
clinical care by accelerating the research and clinical decision 
support pipelines. In the future, we aim to augment the sig 
extraction pipeline by standardizing chart review of clinical 
notes as a second step to resolve ambiguous or unresolvable 
sigs and using this information to improve prescriber sigs. 
We also hope future work will reveal other factors useful for 
more selective in-context learning to reduce costs.

Table 3. Manual annotation of model errors in predisone sigs (n¼ 267).

Prednisone (n¼ 267) Annotator 1 n Annotator 2 n

Sig is ambiguousa 113 191
Sig cannot be resolveda 66 227
Disagree with original annotationa 16 26
Confirmed model errora 164 93
Original annotation  

MAE (SD) (mg/day)
0.25 (±1.3) 6.40 (±24.8)

Model MAE (SD) (mg/day) 1.83 (±1.4) 28.13 (±144.5)

Model error is defined as annotator 1/2 agreeing with original annotation 
and disagreeing with model annotation.
Abbreviation: MAE ¼mean absolute error.

a Categories are not mutually exclusive.
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