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Probing the Pore of ClC-0 by Substituted Cysteine Accessibility Method 
Using Methane Thiosulfonate Reagents

 

Chia-Wei Lin 

 

and

 

 Tsung-Yu Chen

 

Center for Neuroscience and Department of Neurology, University of California, Davis, CA 95616

 

abstract

 

ClC channels are a family of protein molecules containing two ion-permeation pores. Although
these transmembrane proteins are important for a variety of physiological functions, their molecular operations
are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the
structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacte-
rial homologues is not clear. To study the pore architecture of the 

 

Torpedo

 

 ClC-0 channel, we employed the substi-
tuted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to mod-
ify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pat-
tern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is
indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively
charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electro-
static potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the se-
lectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast
gate of ClC-0 cannot be located at a position intracellular to the Cl

 

�

 

 selectivity filter. Thus, the proposal that the
glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional
conservation of ClC channels between bacterial and vertebrate species.

 

key words:

 

MTS modification • SCAM • charge selection • state dependence

 

I N T R O D U C T I O N

 

The ClC channel family comprises members widely dis-
tributed in different living species from bacteria to ver-
tebrate animals (Jentsch et al., 1999, 2002; Maduke et
al. 2000; Hille, 2001). These channels are unique in
that two identical ion-conducting pores are present in
a channel molecule. Recently solved high-resolution
X-ray structures of the bacterial ClC channels have pro-
vided a basis for understanding the molecular opera-
tions of these anion channels (Dutzler et al., 2002,
2003). The structures show that ClC channels are ho-
modimers containing two pores, and each pore is
formed entirely by a subunit containing 18 

 

�

 

-helices
named helix A to R. These helices wrap around a com-
mon center, and the amino acids at the NH

 

2

 

-terminal
end of the 

 

�

 

-helices are brought together to coordinate
the bound chloride (Cl

 

�

 

) ion at a site (the central site,
S

 

cen

 

) likely to serve as the ion selectivity filter (Dutzler

et al., 2002). Besides the S

 

cen

 

 site, there are two other
Cl

 

�

 

 binding sites found in the ion permeation pathway:
one internal to the S

 

cen

 

 site, and the other located ex-
ternal to S

 

cen

 

 at a position of the negative charge on a
glutamate residue (Dutzler et al., 2003). This glutamate
residue, which corresponds to glutamate 166 (E166) of
ClC-0, projects its negatively charged side chain into
the ion permeation pathway to occlude the ion flux.
Competition of Cl

 

�

 

 with this glutamate side chain has
been proposed to be responsible for the coupling of
gating to the ion permeation (Dutzler et al., 2002,
2003). Although not as clear as the pore in the KcsA K

 

�

 

channel (Doyle et al., 1998), the bacterial ClC channel
structures also suggest the Cl

 

�

 

 permeation pathway. In
particular, basic amino acid residues in the internal
and external pore entrances were thought to be impor-
tant in funneling the permeant ions to the pore (Dutz-
ler et al., 2002).

Although these interesting structural features in the
bacterial ClC channels are very informative, the diffi-
culty in recording the bacterial ClC channels with con-
ventional electrophysiological techniques has impeded
the studies of the structure-function relation in bacte-
rial ClC channels. ClC-0 from the electric organ of 

 

Tor-
pedo

 

 rays (Jentsch et al., 1990; O’Neill et al., 1991) pro-
vides a model system to understand the channel func-
tions. Significant characterization of ClC-0 properties
has been obtained from functional recordings of this
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Torpedo

 

 channel in the past two decades. For example,
the “double barrel” feature of the channel was pre-
dicted based on the binomial distribution of the three
current levels found in single-channel recording traces
of ClC-0 (Miller, 1982; Hanke and Miller, 1983; Miller
and White, 1984; Middleton et al., 1994, 1996; Ludewig
et al., 1996; Lin and Chen, 2000). The proposal that
the permeant ion may compete with the negatively
charged side chain of the glutamate to open the pore is
used to explain the previous functional observation
that the gating of ClC-0 is tightly coupled to ion perme-
ation (Pusch et al., 1995; Chen and Miller, 1996). Fi-
nally, a positively charged lysine residue at the inner
pore mouth of ClC-0 has been demonstrated to control
the pore conductance (Middleton et al., 1996; Chen
and Chen, 2003). These channel properties derived
from functional studies of ClC-0 appear to fit the struc-
tures of the bacterial ClC channels quite nicely.

Although the above properties of ClC-0 appear to
find support from the bacterial ClC channel structures,
other aspects of the channel remain uncertain. First,
the 

 

Torpedo

 

 ClC-0 channel is known to have two distinct
gating mechanisms, a fast and a slow (inactivation) gat-
ing, each operating at very different time scales (for re-
view see Miller and Richard, 1990; Maduke et al.,
2000). The crystal structures of bacterial ClC channels,
however, have suggested only one gate, the side-chain
of a glutamate residue. One might be curious which
gating mechanism, the fast or the slow gating of ClC-0,
corresponds to the glutamate gate observed in bacterial
ClC channel structures. Even though bacterial ClC
channel structures show a glutamate side chain in each
pore, suggesting that this side chain is more likely to be
the fast gate, the absence of the structure for the
COOH-terminal half of the ClC-0 molecule makes this
assertion less certain. Second, the bacterial ClC chan-
nel structures provide a structural basis for identifying
the pore-lining residues in the ion-permeation path-
ways. In comparison with the structure of KcsA K

 

�

 

channel, however, the two ion permeation pathways in
bacterial ClC channels are more obscure. For example,
the bound Cl

 

�

 

 ions at the selectivity filter are nearly in-
visible from the pore entrances. The curved ion perme-
ation pathway, as defined by the bound ions and the
crucial charged residues in the pore (Dutzler et al.,
2002, 2003), is void of water filled space as the one ob-
served in the KcsA K

 

�

 

 channel (Doyle et al., 1998).
Therefore, whether the 20% sequence-identity 

 

Torpedo

 

homologue adopts a similar pore structure is unknown.
A direct exploration of the ClC-0 pore will thus comple-
ment bacterial ClC channel structures to define the
pore residues of the ClC-0 channel.

To understand if the pore architecture is conserved
between ClC-0 and bacterial ClC channels, we em-
ployed substituted cysteine–accessibility method (SCAM)*

and used methane thiosulfonate (MTS) reagents to
probe the putative inner pore region of ClC-0. SCAM
has been widely employed in a variety of cation and an-
ion channels (Akabas et al., 1992; Lu and Miller, 1995;
Cheung and Akabas, 1997; Fahlke et al., 1997; Liu et
al., 1997; Karlin and Akabas, 1998; Lu et al., 1999;
Reeves et al., 2001). By comparing the reaction rates of
the negatively and positively charged MTS reagents
with the cysteine in the pore, it is possible to measure
the extent of anion to cation selectivity in the pore
(Cheung and Akabas, 1997; Pascual and Karlin, 1998;
Wilson et al., 2000). Studying the accessibility of the in-
troduced cysteine to MTS reagents at open and closed
states would also reveal potential state-dependent mod-
ifications, which may be used to argue for the presence
of a gate (Liu et al., 1997). In the present study, we in-
troduce cysteine at the positions from Y512 to E526
(see also Ludewig et al., 1997), residues that potentially
form an 

 

�

 

 helix (helix R, according to the bacterial ClC
structures) extending from the S

 

cen

 

 site to the proposed
inner pore mouth. We also place a cysteine in place of
S123. The side chain of the corresponding serine of the
bacterial ClC channel coordinates the bound Cl

 

�

 

 at
S

 

cen

 

. Comparisons of the modification rates of MTS re-
agents with the introduced cysteine at these positions
reveal that a more positive intrinsic electrostatic poten-
tial is encountered by the MTS reagents as the intro-
duced cysteine is located deeper in the pore. Altering
the side-chain charge of the amino acid residues in the
pore also significantly changes the MTS modification
rate, suggesting that the charges of the pore residues
participate in selecting anionic over cationic MTS re-
agents. We have also conducted experiments to exam-
ine if there is a state-dependent modification by MTS
reagents of a cysteine placed at various positions in the
pore.

 

M A T E R I A L S  A N D  M E T H O D S

 

Mutagenesis, Channel Expression, and Transfection

 

Site-directed mutagenesis was performed using PCR-based tech-
niques, and the mutations were confirmed by DNA sequencing.
All the cysteine mutants in the present study are created in the
background of the C212S mutation (Lin et al., 1999), and there-
fore this inactivation-suppressed mutant will be referred to as the
wild-type (WT) channel. For channel expressions in 

 

Xenopus

 

 oo-
cyte, all the mutants were constructed in the pBluescript vector
(Stratagene). The method for RNA synthesis and the injection of
RNA into oocytes have been described in previous studies (Chen,
1998; Lin et al., 1999; Lin and Chen, 2000; Chen and Chen,
2003). For channel expression in human embryonic kidney
(HEK) 293 cells, mutant plasmids in pBluescript vector were di-
gested with two restriction enzymes, KpnI and AgeI (New En-
gland Biolabs, Inc.). The cDNA fragments containing the muta-
tions were sub-cloned into a WT ClC-0 constructed in the
pcDNA3 vector.

HEK 293 cells were plated into a 35-mm culture dish (Corn-
ing, Inc.) at a density of 3 

 

�

 

 10

 

5

 

 per well one day before transfec-
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tion. The medium was the antibiotics-free Dulbecco’s Modified
Eagle Medium supplemented with 20 mM 

 

l

 

-glutamine and 10%
fetal bovine serum. Upon transfection, cells usually grew to

 

�

 

90% confluence, and 1–3 

 

�

 

g of the channel cDNA and 0.4–0.7

 

�

 

g of green fluorescence protein (GFP) cDNA were cotrans-
fected into the cells with Lipofectamine

 

TM

 

 2000 (GIBCO BRL)
according to the procedures from the manufacturer. On the day
when the recordings were performed (usually 24–48 h after
transfection) the cells were dissociated into individual cells with
1 

 

�

 

 EDTA/Trypsin (GIBCO BRL) and plated onto coverslips
coated with 0.01% poly-

 

l

 

-lysine (Sigma Aldrich). The cells were
allowed to settle down onto the coverslip for two hours, and iden-
tification of the transfected cells was facilitated through GFP pro-
tein using a fluorescence microscope (Leica DM IRB).

 

Electrophysiological Recordings

 

The excised inside-out patch configuration (Hamill et al., 1981)
was used throughout all recordings. Borosilicate glass electrodes
were pulled by PP-830 puller (Narashige Co.), and when filled
with the pipette solution, have resistance of 

 

�

 

1–2 M

 

�

 

. For re-
cordings of HEK 293 cells, the standard bath (intracellular) solu-
tion consisted of (in mM): 130 NaCl, 5 HEPES, 5 MgCl

 

2

 

, 1 EGTA,
pH 

 

	 

 

7.4. The pipette (extracellular) solution contained (in
mM): 130 NMDG-Cl, 5 HEPES, 5 MgCl

 

2

 

, 1 CaCl

 

2

 

, pH 

 

	 

 

7.4. In
the experiments using an extracellular solution containing only
4 mM Cl

 

�

 

, the 130 mM NMDG-Cl in the pipette solution was re-
placed with 130 mM NMDG-glutamate and 5 mM MgCl

 

2

 

 was
changed to 1 mM. For single-channel recordings, the bath and
the pipette solutions were described previously (Lin and Chen,
2000; Chen and Chen, 2003). The pH of the bath and the pipette
solution was titrated with NaOH and NMDG, respectively.

Macroscopic currents recorded from HEK 293 cells were low-
pass filtered at 1kHz (digital filter associated with the acquisition
software) and were digitized by Digidata 1320 acquisition board
(Axon Instruments, Inc.) at 5 kHz with pClamp8 software. Out of
the 16 mutants, only L521C did not produce large enough cur-
rent for functional studies. To evaluate the mutation effects of in-
troducing a cysteine residue to various positions, a series of volt-
age steps was delivered to the membrane patch to elicit a family
of macroscopic currents that allows a calculation of the 

 

P

 

o

 

 of the
channel. Examples from the WT channel and several cysteine
mutants are displayed in Fig. 1. Such a voltage protocol contains
a prepulse voltage step to 60 or 80 mV for 100 ms, followed by
different test voltages from 100 or 80 mV to 

 

�

 

160 mV in 

 

�

 

20-mV
steps for 200 ms. The tail current was measured with a voltage
step to 

 

�

 

100 mV for 150 ms. The steady-state 

 

P

 

o

 

 for all the chan-
nels except S123C (see text in 

 

results

 

) was estimated by normal-
izing the initial tail current to the one following the most depo-
larized test pulse (100 or 80 mV).

 

MTS Modification

 

MTSES (2-sulfonatoethyl MTS) and MTSET (2-(trimethylammo-
nium)ethyl MTS) were purchased from Toronto Research Chem-
icals and were prepared as 100- or 300-mM stock solutions in
ddH

 

2

 

O stored at 

 

�

 

80

 




 

C. Upon use, an aliquot of the stock solu-
tion was thawed into the working solution right before the appli-
cation of the reagents. Solution exchange was achieved using SF-
77 solution exchanger (Warner Instruments). The modification
procedures are as follows. The holding potential of the inside-
out patch was at 0 mV, and the voltage protocol used in the mod-
ification experiments contains a modification voltage (V

 

MO

 

) step
followed by a monitoring voltage (V

 

MN

 

) step. The duration of
V

 

MO

 

 was 550 or 950 ms, and this voltage step was divided into
three sections. The first section of 100 ms allows the gating relax-
ation reach to a steady-state in control solution. In the second

section, a digital signal from Digidata 1320 board was used to
move the solution-delivering pipes so that the patch was exposed
for 400 or 800 ms to the solution containing MTS reagents. The
delay in the solution exchange was 

 

�

 

30–35 ms as judged from a
separate junction potential measurement. Thus, the final 50-ms
section at V

 

MO

 

 allowed the patch to fully return to the control so-
lution before the voltage was step to V

 

MN

 

. In experiments at high
external Cl

 

�

 

 concentration ([Cl

 

�

 

]

 

o

 

) V

 

MN

 

 was usually at 60 or 80
mV, and the current was measured at the steady-state. However,
the modifications of K519C and I515C/K519E with MTSET were
monitored at 

 

�

 

40 mV because the current increases much more
at the negative potential than at the positive potential. In experi-
ments using 4 mM Cl

 

�

 

, the current was monitored by a voltage
step to 80 mV followed by a 0-mV voltage step. The initial current
at 0 mV reflects the amount of the current flowing through the
fully open channels at the preceding voltage step of 80 mV.
These measured currents were plotted against the accumulative
MTS exposure time, or the accumulative MTS exposure (concen-
tration 

 

�

 

 time) in Figs. 8 C and 9 A.

 

Single-channel Recordings

 

To compare the MTS modification effects of the cysteine mutants
between macroscopic and single-channel current levels, MTS
modifications at single-channel level were also performed in
some of the mutants expressed in 

 

Xenopus

 

 oocytes (see Fig. 3).
Detailed procedures of single-channel recordings and analyses
were described in the previous papers (Lin et al., 1999; Lin and
Chen, 2000; Chen and Chen, 2001, 2003).

 

Data Analysis

 

Except where indicated, all MTS modification processes were fit-
ted to a single-exponential equation,

where I

 

t

 

 is the measured current at the accumulative exposure
time t, I

 

0

 

 is the initial current, I

 

� 

 

 is the current when the modifi-
cation is reached to a steady-state, and 

 

�

 

 is the time constant of
the modification process. The curve fitting was performed with
an unweighted least-squares method using Clampfit 8 software
(Axon Instruments, Inc.). The time constant 

 

�

 

 and the concen-
tration of MTS reagents were used to calculate the second order
rate constant k according to the following equation:

All data points in this study were the average of at least three
independent measurements, and the numbers are presented as
mean 

 



 

 SEM.

 

R E S U L T S

 

Mutating the amino acid to cysteine sequentially from
residue 512 to 526 of ClC-0 that align to helix R of the
bacterial ClC channel gave rise to functional mutants
in most of the cases. Except K519C and S123C, most of
these cysteine mutants have a similar pattern in the
macroscopic current as that of the WT channel (Fig.
1). For the K519C mutant, the slight outward rectifica-
tion of the instantaneous current is likely due to the
rectification of the single-channel current (Middleton
et al., 1996), whereas the slower current deactivation is

It I∞ I0 I∞–( ) t– τ⁄( ) ,exp+=

kMTS 1 τ MTS[ ]( )⁄ .=
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due to a reduction in the fast-gate closing rate. How-
ever, the fast-gate 

 

P

 

o

 

 of this mutant, like that of the WT
channel, is close to unity at the most depolarized po-
tential, allowing the construction of the steady-state 

 

P

 

o

 

-
V curve. The only mutant that prevents the evaluation
of the fast-gate 

 

P

 

o

 

 from macroscopic current is S123C.
The 

 

P

 

o

 

 of this mutant does not reach to unity even at 80
mV, as judged from the prominent noise from the re-
cording trace (also see Fig. 8 A). Direct observations of
the channel behaviors at the single-channel level also
indicate that the fast-gate closing rate of S123C is very
fast (see below), resulting in a very fast macroscopic
current deactivation that cannot be easily separated
from the capacitance current.

Modifications of the WT and the cysteine mutants
with MTS compounds have different functional conse-
quences depending on the positions of the introduced
cysteine and the charge of the modifying reagent. Even
though there are 11 native cysteine residues in the WT
channel (C212 has been removed in the “WT” channel
referred in this study), applications of MTSES or MT-

SET to the intracellular side of the WT channel have lit-
tle effect in altering the current (Fig. 2 A). On the
other hand, MTSES decreases and MTSET increases
the current of the K519C mutant (Fig. 2 B); the results
directly reflect the modification effects on the single-
channel conductance of this mutant (Middleton et al.,
1996; Chen and Chen, 2003). For the other cysteine

Figure 1. Effects of cysteine mutations at various positions in
ClC-0. All recordings were from excised inside-out patches. Insets
are fast-gate Po-V curves derived from normalization of the initial
tail current following each individual test voltage (see materials
and methods for the detailed voltage protocol).

Figure 2. Voltage protocol used to modify the introduced cys-
teine at a desired voltage. (A) Modification of the WT channel
with MTSES. Top panel shows the original recording traces (only
one out of 10 traces shown). Modification voltage (VMO) was �40
mV, while the modification time was 400 ms (straight line). The
current was measured at the end of the monitoring voltage (VMN)
of 60 mV. The pulse was repeated once every 2 s, and the mea-
sured current was plotted against the accumulative MTSES expo-
sure time. Note that even with 1.5 mM MTSES, the modification of
the WT channel was insignificant. (B) Modification of the K519C
mutant with MTSES and MTSET. Top panel shows one out of five
original traces for 300 �M MTSES modification represented by
the solid circles shown in the bottom left panel. The exposure
time to MTS reagent in each pulse was 800 ms (straight line) in
this experiment. VMO was �40 mV and VMN was 60 and �40 mV for
MTSES and MTSET, respectively. Note that for the plot of MTSET
modification (bottom right), the y-axis is in opposite direction as
that in the MTSES plot (bottom left).
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mutants, MTS modifications can completely inhibit the
current, partially alter the current, or have very little ef-
fect on the current (Fig. 3).

The overall results of MTSES and MTSET modifica-
tions of the 16 mutants examined in this study are
shown in Fig. 4 A. 1 out of these 16 mutants, L521C, as
indicated by the symbol “#” in Fig. 4 A, did not gener-
ate a large enough current for macroscopic current re-
cordings (three runs of expression attempts). 2 out of
those 15 functional mutants (K520C and E526C, indi-
cated by the symbol “

 

�

 

” in Fig. 4 A) did not show an al-
teration of the current upon high concentrations (up
to 1.5 mM) of MTSES and MTSET applications. At the
present time, we could not differentiate if the absence
of MTS modification effect in these two mutants is due
to a lack of modification or because of no functional
consequence after cysteine modification. For the rest of
the mutants, both MTSES and MTSET can modify the
introduced cysteine. In Q517C and I518C mutants,
MTSET modification inhibits the current, while MT-
SES modification has little effect in altering the
current. However, MTSES did modify both mutants
because if the patch was first exposed to MTSES, sub-
sequent MTSET modification was abolished (un-
published data). By the same argument, MTSET can
modify P525C, but the modification has little func-
tional effect. MTS modification rates in these three mu-
tants (indicated by the symbol “

 

�

 

” in Fig. 4 A) there-
fore can be precisely measured only from one MTS re-
agent.

For the 13 cysteine mutants whose currents are sus-
ceptible to MTSES and/or MTSET modifications, the
second order modification rate constants (V

 

MO

 

 

 

	

 

 

 

�

 

40
mV) are compared in Fig. 4 A. The modification rates
of these mutants may seem to have no particular inter-
esting pattern at a first glance. However, a careful com-
parison reveals that four positions stand out and show

faster modifications than the rest of the mutants,
P522C, K519C, I516C, and D513C. In every third posi-
tion along the sequence, the MTS reagents give a faster
modification rate. This might suggest that these four
positions are more exposed to the aqueous solution.
For the other positions, however, the introduced cys-
teine still reacts with both MTSES and MTSET signifi-
cantly. Even for the two mutants S123C and Y512C, the
modification rates at 

 

�

 

40 mV for MTSES and MTSET
are 

 

�

 

200–600 M

 

�

 

1

 

s

 

�

 

1

 

. Because these two residues are
at the deepest locations in the pore, the other truly ex-
posed pore residues should be more accessible to MTS
reagents than these two residues. Thus, we set a crite-
rion for picking up the exposed residues: their MTSES
and MTSET modification rates are both larger than
those of S123C and Y512C. Applying this criterion elim-
inates L524C and S514C from the 10 mutants that are
functionally susceptible to both MTSES and MTSET
modifications. In Fig. 4 B, the positions of the more ex-
posed positions are shown in red, whereas the other po-
sitions in helix R are in yellow. It is interesting to ob-
serve that the “hot” spots are all positioned on one side
of the suggested R helix, and this more exposed side
appears to face the two permeant ions (see Fig. 4 B).
Thus, this modification pattern is consistent with the
idea that residues 512–526 of ClC-0 indeed form a he-
lix, and suggests that these exposed residues likely line
the wall of the pore.

The comparison of MTSES and MTSET modification
rates in these more exposed residues reveals another
interesting observation: they are quite similar to each
other for most of the mutants even though MTSET is
known to have a higher intrinsic reactivity with the free
thiol in the bulk solution (Stauffer and Karlin, 1994).
To examine this issue more closely, we calculate the ra-
tio of the modification rates between MTSES (k

 

MTSES

 

)
and MTSET (k

 

MTSET

 

) for those residues that are likely

Figure 3. Functional consequences of MTSES
modifications of various cysteine mutants. (A) Modi-
fication effects at the single-channel level. Record-
ings were from excised inside-out patches from Xeno-
pus oocytes. External and internal Cl� concentrations
were both 120 mM. Recording voltages were �60 mV
for I515C, and were �90 mV for the other three mu-
tants. (B) MTSES modifications at the macroscopic
current level. Recordings were from excised inside-
out patches from HEK 293 cells. VMO 	 �40 mV.
Note that the residual currents were correlated well
with those observed at the single-channel level shown
in A.
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exposed to the aqueous solution. This ratio reflects the
charge selection at the position where the introduced
cysteine is placed, and may be used to imply the anion
to cation (or vice versa) selectivity of the pore (Cheung
and Akabas, 1997; Pascual and Karlin, 1998; Wilson et
al., 2000). Fig. 4 C plots the ratios of kMTSES/kMTSET for
the six mutants shown in red in Fig. 4 B, those for the

mutants S123C and Y512C, and the ratio of modifying
�-mercaptoethanol (�-ME) taken from the study of
Stauffer and Karlin (1994). It is interesting to observe
that as the position is deeper in the pore, the ratio
kMTSES/kMTSET generally becomes larger, with two excep-
tions: K519C and D513C—both mutations convert a
charged amino acid to a cysteine. The deviation from
the general trend of increasing the ratio at positions
519 and 513 was therefore ascribed to the alteration in
the intrinsic electrostatic potential of the pore due to
the neutralization of charged residue by the mutation.
Because the inner pore residues of ClC-0 control the
conductance of ClC-0 (and thus the Cl� flux) electro-
statically (see Chen and Chen, 2003), we suspected that
the same electrostatic regulations also contribute to the
selection of the charged MTS reagents. To examine this
possibility, we made a double mutant E127Q/K519C,
and compared its MTS modification rates with those of
the K519C mutant. At the same membrane potential,
removing the negative charge at position 127 increases

Figure 4. Comparison of the MTSES and MTSET modification
rates for the cysteine mutants. (A) Second order rate constants of
MTSES and MTSET modifications for various mutants. VMO 	
�40 mV. For the meanings of the symbols labeled on the left of
the mutants, see text in results. The vertical solid line in each
panel represents the smaller value of either S123C or Y512C. (B)
The positions with higher modification rates line up on one side
of the R helix. E. coli ClC channel structure was taken from the
Protein Data Bank (code 1OTS) with the cocrystallized antibody
molecules removed. Green spheres represent Cl� ions. S107 (S123
of ClC-0) and Y445 (Y512 of ClC-0) are in orange and purple, re-
spectively. Arrows depict the intracellular pore entrances. The po-
sitions with larger MTSES and MTSET modification rates than
those indicated by the vertical lines in A are shown in red. All the
other residues in helix R are shown in yellow. (C) Comparison of
the MTSES and MTSET modification rates by taking the ratio of
the MTSES and MTSET modification rates. Only those mutants
whose MTSES and MTSET modifications were both faster than
the values indicated by the solid lines in A (the red positions in B)
are compared.

Figure 5. Side-chain charge effect from E127 on the MTSES
modification rate of the cysteine introduced at position 519.
VMO 	 �40 mV and VMN 	 �60 mV. By removing the negative
charge at the E127 position, the MTSES modification rate is in-
creased by 14-fold. At the same time, the residual current after MT-
SES modification is increased, reflecting the effect of E127Q muta-
tion on the single-channel conductance of the channel in which res-
idue 519 is negatively charged (see Chen and Chen, 2003).
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the MTSES modification by �14-fold (Fig. 5). Unfortu-
nately, in the presence of E127Q mutation, modifying
the cysteine at position 519 with MTSET did not have
an effect on the macroscopic current (unpublished
data). This is because in the E127Q background, the
channels with a positive and a neutral charge at posi-
tion 519 have similar conductance (see Chen and
Chen, 2003). Without a prominent modification effect,
the MTSET modification rate cannot be precisely de-
termined in the E127Q/K519C double mutant.

To circumvent this problem, we introduce cysteine at
position 515 and alter the charge at positions 127 and/
or 519. Fig. 6 A shows the experiment for MTSES mod-
ification of I515C in various background charge combi-
nations for positions 127 and 519. The second order
rate constants for MTSES and MTSET modifications
and the ratios of kMTSES/kMTSET for these mutants are
plotted in Fig. 6 B. It can be seen clearly that as the

overall charge from positions 127 and 519 is made
more negative, the MTSES modification rate is reduced
while the MTSET modification rate is increased. When
these positions are made more positive, the MTSES
modification rate increases as expected, but the
MTSET modification rate is paradoxically increased.
However, the ratio of kMTSES/kMTSET increases monoton-
ically by �110-fold when comparing the one in Q127/
K519 channel with that in the E127/E519 channel.
Like the regulation of the single-channel conductance,
position 127 has a stronger effect in altering the abso-
lute value of MTS modification rate. For example, re-
moving one positive charge at position 519 (Q127/
K519 versus Q127/M519) reduces the MTSES modifi-
cation rate by �10-fold, while adding a negative charge
onto position 127 (Q127/K519 versus E127/K519) re-
duces the MTSES modification rate by �20-fold.
However, in terms of kMTSES/kMTSET ratio, altering the
charge at position 127 is roughly equivalent to chang-
ing the charge at position 519.

Thus, the above results suggest that the pore archi-
tecture of ClC-0 appears to be similar to those seen in
the bacterial ClC channels—the modification pattern
from Y512C to E526C is consistent with a helical struc-
ture, and the charges at these positions also help select
anions over cations. Therefore, helix R of ClC-0 is likely
to line the wall of the pore. Because mutations at the
inner pore mouth change the fast gating property of
the channel (for example, K519E mutation, see Pusch
et al., 1995; Chen and Chen, 2003), we ask if there is a
physical gate internal to the Scen site. Modifications of
the introduced cysteine have been used to suggest the
presence of a physical gate if the introduced cysteine
reacts with MTS reagents significantly faster when the
channel is open than when the pore is closed (Liu et
al., 1997). At more superficial positions, positions 523
and 519, no significant difference in the MTSES modi-
fication rate was observed between conditions in which
the Po of the fast gate are �0.25 and �0.97 (unpub-
lished data). In another experiment, the cysteine at a
deeper position, I515C, was examined (Fig. 7). In this
mutant, two approaches were used to dissect out the
state dependence from the voltage dependence of MTS
modifications. First, we took advantage of the fact that
the fast-gate Po is significantly changed by varying
[Cl�]o (Fig. 7 A), and compared the MTSES modifica-
tion rate at the same voltage but at different [Cl�]o

(Fig. 7 B). Second, we studied MTSES and MTSET
modifications at different voltages (Fig. 7, C and D). In
both approaches, the modification rates for MTSES
and MTSET in various conditions were �300–700
M�1s�1, and we did not observe a consistent increase of
MTS modification rate when the Po of the fast gate is in-
creased. In contrast, the MTSES modification rate ap-
pears to decrease as the Po of the fast gate increases

Figure 6. Electrostatic control of the MTS modification rates by
charged residues at the inner pore mouth. (A) MTSES modifica-
tions of various charge combination mutants. (B) Comparison of
the second order rate constants of MTSES and MTSET modifica-
tions in various charge combination mutants.
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(Fig. 7 C). These experiments suggest that the fast gate
cannot be on the intracellular side of the position 515
in ClC-0.

The voltage-dependent change of the fast-gate Po is
most prominent in the mutant S123C. Fig. 8 A shows
the macroscopic current, and Fig. 8 B shows the single-
channel recording traces of this cysteine mutant. Be-
cause the closing rate of the channel is very fast, we use
an internal Cl� concentration of 2,400 mM to slow
down the closing rate of the channel in single-channel
recording experiments (Chen and Miller, 1996). How-
ever, even under such a high internal Cl� concentra-
tion, the Po of the channel is small at negative voltages.
In the presence of physiological Cl� concentrations on
both sides of the membrane, the closing rate of the

channel is so fast that the deactivation of the macro-
scopic current cannot be easily separated from that of
the capacitance current. Even at a voltage of 80 mV
(the most depolarized voltage in Fig. 8 A), the large
noise from the recording trace suggests that the fast-
gate Po is not close to unity. Therefore, the severe out-
ward rectification in the macroscopic current record-
ing is most likely due to a significant increase of Po

when the voltage is depolarized. We therefore compare
the MTSES modification rates at four voltages (Fig. 8, C
and D). Again, the modifications do not show a consis-
tent pattern of higher modification rate when the Po of
the channel is raised.

Finally, we studied the modification of the cysteine
introduced at another position at Scen, Y512. Fig. 9 A
shows the comparison of MTSES and MTSET modifica-
tions at two voltages where the values of fast-gate Po are
very different. It can be clearly seen that when the fast-
gate Po is raised from �80 to �60 mV, the MTSES mod-
ification rate is significantly reduced while the MTSET

Figure 7. Examination of state-dependent modification for the
I515C mutant. (A) Steady-state Po-V curves of the I515C mutant at
a high (H, 142 mM) and a low (L, 4 mM) [Cl�]o. (B) Comparison
of the MTSES modification rate at the same voltage, but at differ-
ent [Cl�]o. The Po for the conditions of L�40 mV and H�40 mV were
0.32 and 0.79, respectively, as shown from the Po-V curve plot in A.
The difference between the modification rates of these two condi-
tions is not statistically significant (P � 0.05, Student’s t test). (C)
Comparison of the second order rate constants for MTSES and
MTSET modifications in the high [Cl�]o condition at three differ-
ent voltages. The three MTSET modification rates do not show sta-
tistically significant differences, while the MTSES modification
rate at H�40 mV is significantly different from the other two MTSES
modification rates. (D) Comparison of the modification rate at the
same low [Cl�]o, but at two different voltages. The Pos under these
two conditions were 0.19 (L�60 mV) and 0.97 (L�60 mV), respectively.
The modification rates between the two conditions are not statisti-
cally different for both MTSES and MTSET modifications.

Figure 8. MTS modifications for the S123C mutant. (A) Macro-
scopic current from S123C mutant before MTSES modification.
(B) Single-channel recordings of the S123C before MTS modifica-
tions. External and internal Cl� concentrations were 120 and
2,400 mM, respectively. (C) MTSES modifications of the S123C
mutant at two voltages with significant difference in Po. (D) Com-
parison of MTSES modification rates of S123C at four different
voltages. Only the modification rate at 0 mV is significantly differ-
ent from the other conditions.
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modification rate remains roughly the same. Fig. 9 B
shows the averaged results of MTSET modification at
three voltages; the modification rates are all the same.
On the other hand, the MTSES modification rate of
the Y512C mutant varies according to voltages (Fig. 9
C), and the modification shows a consistent pattern—
the more depolarized the membrane potential, the
slower the MTSES modification rate. This appears to be
a state-dependent modification because the change in
the modification rate correlates more with the Po of the
channel but not with the membrane voltage. This state-
dependent modification is further supported by an ex-
periment in which the MTS modification was con-
ducted in a different [Cl�]o. In the presence of a
higher [Cl�]o, the fast-gate Po is larger, and the MTSES

modification rate is consistently smaller than that at a
low Cl�, even though the modification voltage is the
same (Fig. 9 D). Such a pattern of modification rate is
not consistent with a gated access of MTS reagents to
the position behind a gate. Instead, it may suggest a
gating-associated change in the pore that alters the
MTSES modification rate.

D I S C U S S I O N

The present study employs SCAM with charged MTS
reagents to examine the accessibility of the amino acid
residues of ClC-0 that correspond to those on the helix
R of the bacterial ClC channels. The modification pat-
tern from residue 512 to 526 reveals that the modifica-
tion rate is faster in every third position for both
MTSES and MTSET modifications. The most rapid
MTSES and MTSET modification rates at four posi-
tions (D513C, I516C, K519C, and P522C) are close to
the rates of modifying �-ME in the bulk solution, sug-
gesting that these residues are likely to be freely accessi-
ble to the applied MTS reagents. These four positions
as well as two other positions (I515C and Y523C) that
show higher modification rates than those of S123C
and Y512C are located on one side of the R helix that
faces the permeant ions (Fig. 4 B). These results argue
that the structure of the helix R in ClC-0 is likely to be
similar to that of the bacterial ClC channels. For the
rest of the positions in helix R of ClC-0, MTSES and
MTSET can still modify the introduced cysteine with a
smaller rate. The fact that the modification occurs at
most positions may be ascribed to the possibility that
the packing of the helix to the channel is not very tight.
Consequently, the crevice between helices may allow
MTS reagents to gain access to most positions in he-
lix R.

Besides the helical arrangement of the positions
from 512 and 526, we have obtained two other pictures
regarding the functions of the ClC-0 channel. First, the
inner pore region of ClC-0 strongly selects anionic over
cationic MTS reagents. Second, we find no evidence of
a physical gate internal to the central Cl�-binding site.
We discuss below the implications of MTS modification
rates in the intrinsic electrostatic potential of the pore
and in the gating mechanism of the channel.

Anion to Cation Selection by the Intrinsic Electrostatic 
Potential in the Pore

The selection of an anionic over a cationic MTS re-
agent by the pore of ClC-0 is already present even in
modifying the cysteine at the superficial positions such
as Y523 and P522. The ratios of MTSES and MTSET
modification rates are close to 1 at these positions in
contrast to a 12-fold difference for these two com-
pounds to react with the thiol group of �-ME in the

Figure 9. MTS modifications for the Y512C mutant. (A) Com-
parison of MTSES and MTSET modification rates at �80 mV
(filled symbols) and �60 mV (open symbols). [Cl�]o was 4 mM to
shift the fast-gate Po-V curve to a technically convenient position so
that the Po at these two voltages significantly differs from each
other. The horizontal axis represents the concentration (mM) �
cumulative exposure time (s). (B) Second order rate constants of
MTSET modification at three voltages. [Cl�]o 	 4 mM. The Pos at
these three voltages are: 0.20 (�80 mV), 0.51 (�40 mV), and 0.98
(�60 mV). (C). Steady-state Po-V curves (filled symbols) and the
MTSES modification rates (open symbols) at 4 mM external Cl�.
Solid curves are drawn according to Boltzmann equations. (D)
Comparison of the MTSES modification rates from the same volt-
age at different [Cl�]o. L: [Cl�]o 	 4 mM. H: [Cl�]o 	 142 mM.
The Pos at high [Cl�]o are: 0.60 (�80 mV), 0.84 (�40 mV), and
0.99 (�60 mV). At all three voltages, the differences between low
(L) and high (H) [Cl�]o are statistically significant. Note that at
�60 mV, the difference in MTSES modification rates is significant
even though the Po values in the two conditions are both close to
unity.



T
he

 J
ou

rn
al

 o
f 

G
en

er
al

 P
hy

si
ol

og
y

156 MTS Modifications of ClC-0 Pore

bulk solution (for �-ME, k�MTSES/k�MTSET 	 0.08; see
Stauffer and Karlin, 1994). The selection for anionic
over cationic MTS reagents thus may explain the devia-
tions of the K519C and D513C modifications from the
general trend of increasing the ratio of kMTSES/kMTSET

(Fig. 4 C). This selection for anions is even more prom-
inent as the position of the cysteine is deeper (Fig. 4
C). At the deepest positions, S123C and Y512C, MTSES
reacts with these two cysteines two- to fourfold faster
than MTSET—transforming into an anion to cation ra-
tio (kMTSES/kMTSET/0.08) of 20–50 (Cheung and Aka-
bas, 1997).

To evaluate this charge selection more closely, we
adopt the analysis method introduced by Karlin and his
colleagues (Pascual and Karlin, 1998; Wilson et al.,
2000). The analysis reports the intrinsic electrostatic
potential in the pore region under the assumption that
the two MTS reagents are similar in all respects except
charge. Therefore, the ratio of kMTSES/kMTSET should
equal the ratio of the reaction rates of these two re-
agents with �-ME (k�MTSES/k�MTSET) times a factor � that
is a function of the intrinsic electrostatic potential in
the pore (Pascual and Karlin, 1998; Wilson et al.,
2000). Thus,

(1)

and

(2)

where zMTSES and zMTSET are the charge on MTSES and
MTSET, respectively, F, R, and T have their usual mean-
ings, and � is the intrinsic electrostatic potential. From
Eqs. 1 and 2, we calculate the values of � and � for the
mutants that show higher MTSES and MTSET modifi-
cation rates than those of S123C and Y512C mutants
(Table I). It can be seen that as the cysteine position be-
comes deeper in the pore, the value of the electrostatic
potential � becomes more positive, a design of the pore
that helps select anions to enter the pore. These intrin-
sic electrostatic potentials, however, probably do not re-
flect the potential at the position where the cysteine is
introduced, but report the potential several Å away
since MTSES and MTSET molecules are probably 6–7 Å
in length (Pascual and Karlin, 1998; Wilson et al.,
2000). If residues 512–526 of ClC-0 form an � helix, the
linear distance between Y512 and K519 should be �10–
11 Å. Taking into account of the side-chain length of
the target cysteine, the charge on the MTS molecules is
likely at a position close to the side chain of K519 when
MTS reagents efficiently modify the cysteine at the se-
lectivity filter. This may explain the largest anion to cat-
ion selection for modifying the Y512C mutant than
modifying the cysteine at other positions. On the other

ρ kMTSES kMTSET⁄( ) k′MTSES k′MTSET⁄( )⁄=

ρ zMTSES zMTSET–( )– F RT⁄( )ψ[ ],=

hand, when MTS reagents are modifying I515C, the
charge on the MTS molecules probably are 5 Å away on
the intracellular side of K519.

The 5-Å distance, however, is short enough for the
charged residues at the inner pore mouth to exert their
electrostatic influences. Again, we use Eqs. 1 and 2 to
calculate the intrinsic electrostatic potential of a loca-
tion reported by MTS modification of I515C (Table II).
In this case, an increase in the total positive charge (or
a decrease in the negative charge) on E127 and K519
increases the ratio of kMTSES/kMTSET (Fig. 6 B). The cal-
culated intrinsic electrostatic potential indicates that
for an increase of a positive charge at E127 and K519,
there is an �20-mV increase in � (Table II). Altering
the charge at the positions 127 and 519, however, prob-
ably also affects the local pH surrounding I515C be-
cause these three residues are close to each other.
When the overall charge at positions 127 and 519 is
made more positive, the percentage of thiolate species
on the I515C side chain is likely to increase. This may
explain the U-shape pattern in the MTSET modifica-
tion rate (Fig. 6 B).

Although the thiolate formation on the thiol group
of the introduced cysteine could alter the absolute
MTS reaction rate, the changes in the modification
rate cancel out by taking the ratio of kMTSES/kMTSET.
Therefore, the ratio kMTSES/kMTSET is monotonically in-
creased when the sum of the charges at these two posi-
tions is more positive (Fig. 6 B). The roughly staircase
jump in the intrinsic electrostatic potential upon alter-
ing one total charge at these two positions (�20 mV
per charge) suggests that the contributions from these
two charges in selecting charged MTS reagents are

T A B L E  I

The Calculated Anion/Cation Selection Ratio and the Intrinsic Electro-
static Potential for Various Cysteine Mutants at the Inner Pore Region

Cysteine mutant ��40 mV �

mV

Y523C 9.28 28.42

P522C 10.69 30.22

K519C* 1.01 0.14

I516C 15.29 34.78

I515C 23.32 40.16

D513C* 8.09 26.67

S123C 19.41 37.82

Y512C 48.02 49.38

This table lists the values of the anion-cationic selection ratio � and the
intrinsic electrostatic potential � reported by the MTS modifications of the
indicated cysteine mutants. VMO = �40 mV. The values of � and � were
calculated from Eqs. 1 and 2, respectively. As discussed in the text, the
value of � probably reports the potential sensed by the charge on the MTS
reagent, which is �10 Å away from the listed cysteine position. The symbol
“*” indicates a replacement of a charged residue by cysteine, and therefore
the intrinsic electrostatic potential of these mutants show a deviation from
the general trend.
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roughly equal to each other. This is somewhat surpris-
ing because E127 has a dominant role in controlling
the pore conductance (Chen and Chen, 2003). The
difference between the electrostatic control of the pore
conductance and the selection of charged MTS mole-
cules probably reflects the importance of the exact po-
sitions of the interacting charges. In the case of con-
ductance regulation, the fixed internal Cl�-binding
sites are closer to E127 than to K519 (Dutzler et al.,
2003). However, for MTS modification of I515C, since
MTS molecules are long, the charge on the MTS com-
pounds is probably moving randomly outside the inter-
nal pore entrance. The selection of the charged MTS
reagent therefore may come from the averaged contri-
butions from these two residues.

Implication of MTS Modification Rate on the
Gating Mechanism

ClC-0 has been known to have two different gating
mechanisms—the fast and the slow (inactivation) gat-
ing. Which gating mechanism corresponds to the oper-
ation of the E166 side chain? By comparing the MTS
modification rate at different conditions, we found that
the accessibility to MTS compounds in all positions
from the pore mouth to the Cl� selectivity filter is not
higher when the channel is in the open state. There-
fore, a physical gate like the one proposed in voltage-
gated Shaker K� channel (Liu et al., 1997) to gate the
access of MTS reagents to the pore is unlikely to be lo-
cated at a position internal to the selectivity filter. How-
ever, there appears to be a very peculiar state-depen-
dent modification that is very obvious in the MTSES
modification of the Y512C mutant. This apparent state-
dependence is in direct opposition to that observed in
the Shaker K� channel—the modification rate is faster
when the gate is closed. The effect is not due to a volt-
age dependence of MTS modification because the

MTSES modification rate can be reduced at the same
voltage if the Po is elevated through raising [Cl�]o (Fig.
9 D).

The apparent state dependence of Y512C is interest-
ing in that the phenomenon is observed only when
MTSES is used as the modifying reagent. Several possi-
bilities might explain this phenomenon, yet each one
having its own weakness. First, it might be possible that
the side chain of Y512 is part of the fast gate, and when
the gate is closed, this side chain directly points to the
pore, and thus is more accessible to the MTS reagents
in the pore. This proposal faces a severe problem be-
cause a similar state dependence would have occurred
for MTSET modification. A second possibility is that
perhaps in the open state, Cl� ions coming from the ex-
tracellular side would physically knock off the MTS
molecule in the pore, thus reduce the probability for
the molecule to react with the cysteine at the selectivity
filter. This argument is also weak because only Y512C
mutant has such a state-dependent effect while the cys-
teine at other pore positions, such as S123C, does not
show this phenomenon. In addition, if this were the
mechanism, one should have observed at least part of
the knock-off effect for the MTSET modification even
though the interaction of Cl� with MTSES and MTSET
might not be exactly the same. The third possibility is
that perhaps the fast gate is right behind Y512C (for ex-
ample, the side chain of E166), and when the gate is
open, the MTS reagent is pushed through the pore.
Thus, MTS reagents can stay at the selectivity filter
longer to react with Y512C when the gate is closed than
when the gate is open. This argument again is not
strong. Besides the same problem that a similar state-
dependent modification does not occur for the S123C
mutant, it is not known if a large molecule like MTSES
can punch through the pore of ClC-0. The above pro-
posals thus do not reasonably explain this peculiar
state-dependent MTSES modification.

In the literature of MTS modification studies, a simi-
lar MTSES-only, state-dependent modification was ob-
served when MTS modifications were used to evaluate
the proximity of the outer end of the S4 segment to an
external pore residue in Shaker K� channel (Elinder et
al., 2001). It was proposed that an increase in the local
electrostatic potential due to the appearance of a posi-
tive charge can have two effects: the attraction or repul-
sion of MTS reagents to the reporter cysteine and an
increase of the deprotonated state (the thiolate) of the
thiol group of the reporter cysteine. These two effects
which arise from an approaching positive charge (in-
crease MTSES concentration and thiolate formation)
both lead to a higher rate of MTSES modification, but
they cancel out each other in the MTSET modification.
In ClC-0, the electrostatic potential in the pore is prom-
inent as judged from its controls in the ion flux (Chen

T A B L E  I I

The Anion/Cation Selection Ratio and the Intrinsic Electrostatic Potential 
Reported by MTS Modifications of I515C Mutant

Background ��40 mV �

mV

Q127/K519 (�1) 82.22 56.24

Q127/M519 (0) 22.57 39.75

E127/K519 (0) 23.32 40.16

Q127/E519 (�1) 6.27 23.41

E127/M519 (�1) 3.45 15.78

E127/E519 (�2) 0.70 �4.54

This table reports the calculated value of � and � when the reporter
cysteine is at position 515 (I515C). VMO = �40 mV. The sum of the charges
at position 127 and 519 is listed to the right of each 127/519 charge
combination. There appears to be a �20 mV jump in � in response to the
removal of a negative charge (or the addition of a positive charge). 
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and Chen, 2003) and in the selection of different
charged MTS reagents (the above results). If during
the fast-gate opening process a negative charge comes
into the pore (or a positive charge moves away from the
pore), the reduction in the electrostatic potential will
reduce the MTSES modification rate. What are the po-
tential sources for the change of the electrostatic po-
tential in the pore? There are charged residues in the
pore of ClC-0, including the side chain of E166 that
may serve as the gate. The protein conformational
change in the fast gating process surely involves a rear-
rangement of the positions of these charged residues,
and this could result in a different intrinsic electrostatic
potential between the closed and the open channels.
Another possibility that could result in the changes in
the intrinsic electrostatic potential comes from the
binding of Cl� to the pore when the channel is open.
This possibility is directly suggested by the result in Fig.
9 D, in which the MTSES modification rates of the fully
open Y512C pore are not the same when Cl� concen-
trations are different. For example, at 60 mV, the fast-
gate Po of Y512C mutant is close to unity at both 4 and
142 mM [Cl�]o. However, different MTSES modifica-
tion rates are observed under these two conditions—
the higher the [Cl�]o, the smaller the MTSES modifica-
tion rate.

In summary, three conclusions emerge from the
present study. First, the MTS modification pattern sug-
gests that the overall alignments of the residues on he-
lix R in the inner pore region are quite similar between
ClC-0 and the bacterial ClC channels—the hot residues
face the permeant ions as if these residues line the wall
of the ion permeation pathway (Fig. 4 B). Second,
there is no moving structure on the intracellular side of
the selectivity filter, which can physically gate the access
of intracellular MTS reagents in response to the open-
ing and closing of the fast gate. Thus, the hypothesis of
the side chain of E166 being the fast gate of the chan-
nel is applicable to ClC-0. Finally, the electrostatic po-
tential of the ClC-0 pore is prominent. This intrinsic
potential in the pore is not only important in selecting
charged MTS reagents, but is also likely responsible for
the apparent state-dependent modification of Y512C.
As the electrostatic potentials of ClC-0 pore is also criti-
cal for the functional properties of the channel, under-
standing the state-dependent MTSES modification on
Y512C mutant may help further explore the gating and
permeation of ClC-0.
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