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Abstract
Genome-wide mutational screens are central to understanding the genetic underpinnings of 
evolved and engineered phenotypes. The widespread adoption of CRISPR-Cas9 genome editing 
has enabled such screens in many organisms, but identifying functional sgRNAs still remains a 
challenge. Here, we developed a methodology to quantify the cutting efficiency of each sgRNA 
in a genome-scale library, and in doing so improve screens in the biotechnologically important 
yeast Yarrowia lipolytica. Screening in the presence and absence of native DNA repair enabled 
high-throughput quantification of sgRNA function leading to the identification of high efficiency 
sgRNAs that cover 94% of genes. Library validation enhanced the classification of essential 
genes by identifying inactive guides that create false negatives and mask the effects of successful 
disruptions. Quantification of guide effectiveness also creates a dataset from which determinants 
of CRISPR-Cas9 can be identified. Finally, application of the library identified novel mutations 
for metabolic engineering of high lipid accumulation.

mailto:iwheeldon@engr.ucr.edu
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Introduction
A critical challenge in CRISPR-based library screens is the inability to separate active 

from inactive guides to ensure genome-wide coverage and generate high confidence hits. 
Typically, multiple guide RNAs are designed to target each gene of interest with the hypothesis 
that some guides may not be functional (Joung et al., 2017; Li et al., 2014). This strategy 
maximizes the likelihood of full genome coverage through redundant targeting of each gene and 
has been successful in identifying new phenotypes (Koike-Yusa et al., 2014; Sidik et al., 2016), 
but the presence of inactive guides can obscure screening results and create false negatives (Ong 
et al., 2017). While in silico design and activity predictions are emerging, complete training sets 
that correlate CRISPR endonuclease activity, guide sequence, and local genetic context are not 
yet available.

Herein, we demonstrate a methodology to measure and validate the activity of each guide 
RNA in a genome-wide library for screening in the oleaginous yeast Yarrowia lipolytica. We 
selected this non-conventional yeast because it has value as a bioprocessing host for the 
conversion of biomass derived sugars and industrial waste streams (e.g., glycerol, alkanes, and 
fatty acids) into value added chemicals and fuels (Qiao et al., 2017; Schwartz et al., 2017a; 
Wagner et al., 2018). Unlike the model yeast Saccharomyces cerevisiae, DNA repair in Y. 
lipolytica and most other eukaryotes is dominated by nonhomologous end-joining (NHEJ) (Lobs 
et al., 2017). We reasoned that the effectiveness of each guide RNA in a high coverage CRISPR 
library could be quantified by comparing library evolution in an NHEJ-proficient strain and an 
NHEJ-deficient strain. In a strain lacking NHEJ and a homologous template (i.e., NHEJ-
disrupted haploid Y. lipolytica), double strand break repair is severely limited, and the most 
likely outcome of a Cas9-induced DNA double strand break is cell death (Schwartz et al., 
2017b). Using this approach, CRISPR-Cas9 activity can be coupled to cell viability thus 
providing a facile, quantitative metric of guide efficiency. 

Validated CRISPR libraries promise to generate more accurate and robust genetic screens 
with a drastically reduced false negative rate compared with libraries that are naïve to the cutting 
efficiency of each guide. We demonstrate this by identifying essential genes and by screening for 
the industrially relevant phenotype of increased lipid accumulation. In addition, when coupled 
with genome structure analysis (i.e., nucleosome occupancy), validation experiments can provide 
insights into the biological effects that dictate guide RNA effectiveness and genome 
accessibility. Defining a list of validated guide RNAs for any given organisms is valuable 
metabolic engineering resource in and of itself, and is also an important step in moving towards 
high coverage, combinatorial screens that simultaneously target multiple genes in the genome 
(Shen et al., 2017).

Results 
Genome-wide CRISPR-Cas9 library design, construction, and analysis

We designed a library of single guide RNAs (sgRNAs) to target 7,854 coding sequences 
in Y. lipolytica PO1f (Figure 1A, Fig. S1A, and Table S1). Unique sgRNAs were designed to 
target the first 300 exon base pairs in each gene, scored, and then ranked based on their predicted 
on-target cutting efficiency (Doench et al., 2014). The first 300 bp were targeted to maximize the 
likelihood of disrupting gene function in the case of an indel. The complete library was 
subsequently designed to contain the 6 highest scoring sgRNAs for each gene, along with 480 
nontargeting controls. The library was synthesized and subsequently cloned into an expression 
vector with sgRNA expression driven by a synthetic RNA polymerase III (Pol III) promoter 
(Schwartz et al., 2017c; Schwartz et al., 2016). Sequencing revealed that over 97% of the 
designed sgRNAs were well represented in the library (Fig. S1B).
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Figure 1. Genome-wide CRISPR-Cas9 validation and screening in Yarrowia lipolytica. (A) 
Schematic representation of sgRNA library design and workflow for genome-wide validation 
and screening. Y. lipolytica PO1f was used as the base strain for all experiments. Fitness score 
(FS) experiments used PO1f with constitutive expression of Cas9 from Streptococcus pyogenes 
(PO1f Cas9). Cutting score (CS) experiments used PO1f Cas9 with functionally disrupted 
nonhomologous end-joining (NHEJ) by inactivation of KU70 (PO1f Cas9 ku70). LOF indel 
indicates loss of function insertion or deletion, and cntrl strain indicates the negative control 
strain that does not express Cas9 but does contain the sgRNA library. (B) Comparison of FS to 
CS for each sgRNA after 2, 4, and 6 days of growth on defined minimal media containing 2% 
glucose. Transformations were done in biological triplicates with at least 100-fold coverage of the 
library in each replicate. FS and CS values shown are the mean of the three biological replicates.

Growth screens in three different Y. lipolytica strains enabled us to experimentally 
determine two separate metrics for each sgRNA (Figure 1A). A fitness score (FS) was defined as 
the log2 ratio of the abundance of any given sgRNA in a Cas9 expressing strain (PO1f Cas9) to 
the abundance of the same sgRNA in the negative control (PO1f). Each sgRNA was also given a 
cutting score (CS) by calculating the same log2 ratio, but in this case comparing a Cas9 
expressing NHEJ deficient strain (PO1f Cas9 ku70) to the control strain. FS is a measure of how 
harmful a CRISPR-Cas9 mediated indel was to cell growth, whereas CS is a measure of how 
efficient an sgRNA was for inducing a Cas9-mediated DNA double strand break. By using 
transformed PO1f as the denominator in FS and CS calculations, any bias introduced from 
variability in plasmid maintenance (due to a specific sgRNA sequence or otherwise) is implicitly 
accounted for, and changes in sgRNA abundance can be attributed to Cas9 function and the 
resulting effect on cell fitness. A pilot scale experiment with a nontargeting sgRNA and known 
functional sgRNAs targeting one essential gene and one nonessential gene confirmed that the 
outcomes of the FS and CS experiments were consistent with this scoring methodology (Fig. S2). 
A second pilot scale experiment analyzing a subset of sgRNAs that span the spectrum of CS 
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showed, as expected, that cell growth is strongly correlated with CS in the PO1f Cas9 ku70 strain 
(Fig. S2). The absence of growth in cells containing an sgRNA with a low CS also suggests that 
alternative DNA repair pathways, such as microhomology-mediated end-joining, do not 
significantly contribute to repair.

The evolution of the full genome-wide library over three subculture cycles (6 days in 
total) and corresponding CS and FS values are shown in Figure 1B. Only after two growth cycles 
(day 4) were significant changes in cell phenotype and library distribution observed. The 
nontargeting control population behaved as expected, shifting to the upper right quadrant of the 
FS/CS plot indicating nonfunctional sgRNAs that resulted in no change in cell fitness. The day 4 
and day 6 data indicate that the majority of the library was able to create double strand breaks. 
This is apparent from the shift toward the lower two quadrants. The lower left quadrant is 
indicative of sgRNAs that both cut (negative CS) and have a negative effect on growth (negative 
FS). The lower right quadrant also contains sgRNAs that cut effectively but have a neutral or 
positive effect on cell growth (positive FS). The upper left quadrant is only sparsely populated 
around the origin, likely because this quadrant represents instances with observed negative 
growth effects in the absence of a functional sgRNA (positive CS). Overall, three important 
trends are apparent: 1) the library skews strongly towards negative CS values, indicating that 
many of the sgRNAs are functional; 2) sgRNAs that do not produce a cut in the genome can be 
identified in the upper right quadrant; and, 3) a broad range of FS values results from outgrowth-
based screens, suggesting that the library can be used to select for a wide variety of phenotypes. 
Based on these results and the observation that changes in fitness were not observed after one 
growth cycle (2 days), we selected day 4 data for all subsequent analysis.

sgRNA validation and analysis of functional determinants
Based on the average CS of the nontargeting controls, we set a value of 2 as the threshold 

to identify inactive sgRNAs (i.e. noncutters, CS> 2). At the other end of the spectrum, we set a 
CS value of -5 (a 32-fold reduction in sgRNA abundance) as the lower limit of sgRNAs 
considered to be excellent cutters (CS< -5). This threshold was set based on a subpopulation of 
sgRNAs whose abundance was reduced to zero after two subculture cycles (4 days), which 
corresponded to a CS value of -5 or lower. Two intermediate categories were also defined: 
moderate (-5<CS< -1) and poor (-1<CS< 2) cutters. Moderate and poor were separated at a CS of 
-1 because this value indicates at least some depletion of the sgRNA after two subculture cycles. 
Figure 2A shows the CS distribution of the full library as well as six subpopulations ranked from 
best sgRNA per gene (1st) to worst sgRNA per gene (6th). Each subpopulation represents 1-fold 
coverage of the genome. The best subpopulation contained an excellent cutter for 94.6% of the 
targeted genes, while 82.6% of the genes have at least two excellent cutters. Histograms of each 
subpopulation, and the number of excellent cutters per gene are presented (Figures 2B and C, 
and Fig. S3).
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Figure 2. Genome coverage and distribution of CRISPR-Cas9 cutting efficiency. (A) 
Library and genome coverage by sgRNA classification: Excellent (CS<-5; green; 48% of full 
library), Moderate (-5<CS< -1; yellow; 28%), Poor (-1<CS< 2; orange; 18%), and Noncutter 
(>2; red; 6%). The sgRNAs for each gene were ranked by CS from 1st to 6th and separated into 
six subpopulations each representing 1-fold genome coverage. (B,C) Histograms of the 1st and 
6th sgRNA subpopulations. Mean CS values were determined after two growth cycles (4 days) 
from triplicate biological samples.

The analysis of CS across the library revealed several trends in sequence determinants of 
active sgRNAs. For example, a total of 1,808 sgRNAs were found to contain a polyT motif (four 
or more consecutive “T” bases). This subpopulation had a significantly higher average CS than 
the library as a whole (CSpolyT = -1.389, n = 1,808 and CSlibrary = -3.786, n = 46,234; t-test p < 
0.0001, t = 30.43, df = 48,040). The apparent inefficiency of sgRNAs containing a polyT motif is 
not unexpected, as polyT sequences are known terminators for RNA Pol III. As such, it is likely 
that sgRNAs containing a polyT motif have poor functional expression causing reduced 
CRISPR-Cas9 activity. The effect of RNA secondary structure was also examined, but was 
found to be minimal (Fig. S5). 

The position of sgRNAs within each chromosome was also found to have an effect. 
sgRNAs that target close to chromosomal ends were found to have increased cutting scores in 
comparison to the full library (Figure 3A and Fig. S4). Previous studies have reported that genes 
near the ends of chromosomes can be transcriptionally silenced by the chromatin structure of 
telomeres, thus providing the likely mechanism of reduced CRISPR-Cas9 activity at 
chromosomal ends observed here (Doheny et al., 2008; Gottschling et al., 1990).
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Figure 3. Effects of chromosome position and chromatin structure on CRISPR-Cas9 
activity. (A) Cutting score of all sgRNAs targeting chromosome C, plotted by position. The 
terminal 100 kbp of both ends are shown expanded. Each data point represents the mean and 
standard deviation of biological triplicates of CS calculated at day 4. The solid blue line 
represents the average CS for the full sgRNA library. The standard deviation of the CS library 
average is shown as blue dashed lines. Chromosomes A, B, D, E, and F are presented in 
Supplementary Fig. 4. (B) Relationship between nucleosome occupancy and cutting score. Each 
data point represents the mean CS of biological triplicates at day 4 and the relative average 
nucleosome occupancy for each (n=45,247). Pearson’s correlation is 0.223. 

Given this result, we also elected to study the effect of genome-wide chromatin structure 
on sgRNA activity. The CS values of all sgRNAs in the library were compared to experimental 
measurements of nucleosome occupancy across the genome (Tsankov et al., 2010). As shown in 
Figure 3B, nucleosome occupancy positively correlated with CS. These data reveal that 
occupancy provides a stronger correlation to CRISPR-Cas9 activity (Pearson’s, r = 0.223) than 
the algorithm used to design the library (Doench et al., 2014) (r = 0.0525) or other algorithms 
(Doench et al., 2016; Guo et al., 2018; Labuhn et al., 2018) (r = 0.0511; r = 0.1431, r=0.0365; 
Fig. S6). 
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Activity validated CRISPR-Cas9 library improves essential gene analysis
Inactive sgRNAs in CRISPR libraries can produce false negatives in essential gene 

screening (Ong et al., 2017). This problem arises when one or more poor cutting sgRNAs mask 
the effect of successful disruptions on the FS average for a particular gene. The data on sgRNA 
activity provided by the CS experiments can eliminate this issue by focusing analysis on the 
validated cutters and excluding inactive sgRNAs. Figure 4A shows the rank-ordered FS 
calculated from the full library, which is naïve to the effectiveness of each sgRNA and includes 
all excellent, moderate, poor, and noncutter sgRNAs for each gene (the naïve library). Twelve 
nonessential genes and twelve genes that are known to be essential across eukaryotes are shown 
as two subpopulations (Figure 4 and Table S2). The two subpopulations partially overlapped and 
had closely related FS distributions when calculated from the naïve library (Figures 4A and B). 
Three of the genes are notable; ACT1, MYO1, and FOL2 are genes critical to eukaryotic cell 
viability, but were not distinguishable from nonessential genes, suggesting that the presence of 
poor cutting sgRNAs artificially increased their FS. Analysis with only excellent cutters (the 
validated library) resulted in a clear separation between the subpopulations: ACT1, MYO1, and 
FOL2 clustered as expected with other essential genes, and the difference between FS of the 
essential and nonessential subpopulations increased significantly (Figures 4C and D).

Figure 4. Library validation enhances essential gene identification. (A) Rank-ordered fitness 
score (FS) for each gene calculated using the full 6-fold sgRNA library (naïve library). Twelve 
nonessential (yellow) and putatively essential (red) genes are shown. (B) FS for essential and 
nonessential genes using the naïve library. Boxes extend from the 25th to 75th percentiles, the box 
line indicates the median, and the whiskers extend from the 10th to the 90th percentiles, n = 12 for 
both nonessential and essential. Comparison between the means was accomplished by two-sided 
t-test (t = 3.029 and p = 0.0062). Statistical significance is shown graphically with * indicating 
p<0.01 and ** indicating p<0.0001. (C) Rank-ordered FS for each gene calculated using only the 
validated excellent sgRNAs (validated library). For the 5.4% of genes that did not have an 
excellent sgRNA, the best cutter was included. (D) FS for essential and nonessential gene 
subpopulations using the validated library (t = 7.764 and p < 0.0001). (E,F) Comparison of FS to 
CS for each of the sgRNAs targeting the 12 selected essential and nonessential genes. Pearson’s 
coefficients from linear regression (r) and slopes are shown (n = 72). FS and CS values are the 
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mean of three biological replicates, the standard deviations associated with the means are 
presented in Fig. S7. 

One method of evaluating sgRNA effectiveness is to compare multiple targets to the 
same known essential gene (Doench et al., 2016; Xu et al., 2015). By definition, disruptions to 
essential genes are fatal (with or without intact DNA repair), which leads to a hypothesis similar 
to that of the CS experiments. That is, double strand breaks lead to cell death, therefore viability 
in a growth screen can be used as a measure of cutting efficiency. This hypothesis is supported 
by the observed trends in the essential and nonessential sgRNA subpopulations (Figures 4E and 
F).  The regression line of CS/FS data for all 6 of the sgRNAs targeting the curated essential 
gene subpopulation has a slope of 0.997 (r = 0.82), suggesting a quantitative correlation between 
FS and CS, and providing experimental evidence to support CS as a metric for CRISPR-Cas9 
activity. Appropriately, this relationship does not hold for the nonessential gene subpopulation. 

The validated library, containing only highly active sgRNAs, identified 1,377 genes as 
essential in Y. lipolytica, which represents 17.5% of coding sequences (Figure 5 and Table S3; 
see Methods for essential gene identification methodology). Essential genes were identified by 
comparison to known essential and nonessential gene subpopulations. Using the same statistical 
tests, the naïve library (containing both active and inactive sgRNAs) identified only 4.5% of 
genes (359 genes) as essential. Genome-wide knockout collections and extensive experimental 
evidence in model yeasts suggest that ~20% of yeast genes are essential (19.5% or 1,268 genes 
in S. cerevisiae (Cherry, 2015) and 26.1% or 1,260 genes in Schizosaccharomyces pombe (Kim 
et al., 2010)), indicating that the naïve library produced a high number of false negatives in our 
Y. lipolytica essential gene screening. A recent transposon-based analysis in Y. lipolytica 
supports our results (Patterson et al., 2018). The transposon screen identified 22.4% of Y. 
lipolytica genes as essential, an increase in 586 genes over the CRISPR-based analysis in this 
work. The validated CRISPR library implicitly accounts for genomic targets that may be 
inaccessible due to heterochromatin structure, a known experimental limitation of transposon-
based screens that can cause false positives (Gangadharan et al., 2010). The difference between 
these data sets is also likely due to challenges in transposon targeting of short genes (Wang et al., 
2018) (Fig. S8). 

To further confirm essential gene classification, we repeated the analysis with different 
known essential gene subpopulations as training sets. Specifically, we compared essential gene 
lists using the validated library (as described above) with a similar analysis using 186 ribosomal 
genes as the training set. Using the ribosomal genes as a basis for comparison resulted in a Y. 
lipolytica essential gene list of 1,549 genes, an increase of 172 genes over those identified using 
the curated 12-gene training set shown in Figure 4. Combing the two training sets resulted in 
near identical analysis to the ribosomal-only training set; 1,548 genes were identified as essential 
(Table S3). Because of limitations in ribosomal gene identification and uncertainty in the 
essentially of genes classified as ribosomal in Y. lipolytica, here we report the 1,377 genes 
defined as essential based on the curated essential subpopulation. The curated set of 12 genes 
includes genes with a range of cellular functions that are supported by previously published 
experiments (Table S2).
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Figure 5. Y. lipolytica genome map. Y. lipolytica genome map with all nonessential and 
essential genes when grown on synthetic minimal media with 2% glucose at 30 °C are shown by 
chromosomal position. Nonessential genes (n = 6,477; yellow) are shown in the outer ring, and 
essential genes (n = 1,377; red) are shown in inner ring.

Of the 1,377 genes identified as essential for growth of Y. lipolytica, 961 had a homolog 
in S. cerevisiae, 480 of which were found to be essential in both organisms (Fig. S9). One 
hundred fifty-one genes essential in Y. lipolytica are conditionally essential in S. cerevisiae for 
respirative growth. Because Y. lipolytica is an obligate aerobe, respiration is essential and 
therefore the gene conditionally essential in S. cerevisiae were expected to be essential in Y. 
lipolytica. Ninety-five more genes are duplicated in the S. cerevisiae genome, and 69 are 
involved in amino acid or nucleotide biosynthesis. Gene ontology (GO) term analysis 
(Ashburner et al., 2000) was also performed on all genes that had a S. cerevisiae homolog. Genes 
involved in transcription, translation, cellular organization, and cell cycle were found to have 
significantly lower FS (Fig. S9).

To complete the essential gene analysis in Y. lipolytica, we compared the 416 genes that 
were found to be essential but had no S. cerevisiae homolog against the genomes of the fission 
yeast Schizosaccharomyces pombe and the filamentous fungi Aspergillus nidulans (Table S4). 
One hundred and ninety-eight of the 416 genes in this subpopulation have a homolog in S. 
pombe, 111 of which are essential to S. pombe viability. The comparison to A. nidulans was not 
as comprehensive because only limited information on the essential genes of this species have 
been reported. However, 248 genes (of the 416 gene without a homolog in S. cerevisiae) were 
identified in A. nidulans, none of which are known to be essential in A. nidulans.

Genome-wide screening for growth and nongrowth associated phenotypes 
To demonstrate the utility of the CRISPR library, we performed a series of growth and 

nongrowth associated screens to identify genes linked to new phenotypes. The validation 
experiments described above revealed that over 94% of genes in the genome were targeted by 
highly functional sgRNAs (i.e., “Excellent” sgRNAs), thus providing confidence in genome-
wide screening and limiting the likelihood of false negatives. As an initial test, we conducted the 
classic genetic screen for canavanine resistance. Canavanine is a molecule that is structurally 
similar to arginine and is toxic to yeast unless the CAN1 gene is disrupted. Ninety-four percent of 
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sequenced colonies that survived the canavanine challenge (50 mg/L over 2 days of growth) 
harbored an expression vector encoding a CAN1 targeting sgRNA (Figure 6A). The remaining 
sgRNA targeted YALI1_E36540g, a vacuolar phosphate transporter. All identified sgRNAs were 
excellent cutters. 

In a second screen, Y. lipolytica strains with increased lipid staining were isolated from 
the CRISPR library using a fluorescent lipid dye and fluorescence activated cell sorting (Figure 
6B). sgRNA sequences targeting four different genes were associated with a substantial increase 
in lipid staining (defined as 3 standard deviations or more above the mean fluorescence intensity 
for the unsorted strain). All hits were produced with sgRNAs classified as “Excellent”. Two of 
the four identified genes (YALI1_A22440g and YALI1_F16045g) have known roles in lipid 
turnover and growth on fatty acids in other yeast species (Henry et al., 2012; Strijbis et al., 
2009). A third gene (YALI1_F31153g) is likely involved in the enzymatic processing of acyl-
CoA species (Sherman et al., 2004), a function that is often intertwined with lipid metabolism 
(e.g., -oxidation). The final gene (YALI1_F20943g) in the set has no known function or 
similarity to a well-annotated sequence, but two different excellent sgRNAs targeting the gene 
were isolated from the high lipid staining subpopulation. This redundant sgRNA targeting 
supports the validity of the target and demonstrates the utility of the screen for identifying novel 
genotype to phenotype relationships.

Figure 6. Genome-wide CRISPR-Cas9 screens for growth and non-growth associated 
phenotypes. (A) Growth screen for canavanine resistance. Cells were grown in the presence of 
50 mg L-1 canavanine for 3 days, plated and sequenced. (B) Two populations were stained and 
analyzed using fluorescence activated cell sorting (PO1f with library; red in histogram, and PO1f 
Cas9 with library; blue in histogram). The PO1f Cas9 strain with library was sorted twice for 
high lipid producers to yield a high lipid producing population (2x FACS Pool; yellow in 
histogram). Several strains from the high lipid producing population were isolated and compared 
to a mock/un-sorted control consisting of cells subjected to the same process but without a 
fluorescence sorting cutoff. Comparison between the means was accomplished by two-sided t-
test (n = 34, 41; t = 6.713; and, p < 0.0001). Statistical significance is shown graphically with * 
indicating p<0.01 and ** indicating p<0.0001. 
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Discussion 
With genome-scale mutagenesis technologies such as MAGE, TRMR, Tn-seq and other 

similar approaches, it is now possible to generate and track genome edits and their effects on 
native and engineered phenotypes (Si et al., 2017; van Opijnen et al., 2009; Wang et al., 2009; 
Warner et al., 2010). Genome-wide CRISPR systems are complementary to these approaches 
(Hart et al., 2015; Koike-Yusa et al., 2014; Sidik et al., 2016; Wang et al., 2015) and can have 
the added functionality of genome targeted site saturation mutagenesis (Bao et al., 2018; Garst et 
al., 2017; Guo, 2018). However, these techniques have not yet been widely translated to non-
model and other industrially and medically relevant organisms. The widespread adoption of 
CRISPR–Cas9 promises to enable genome-wide engineering and screening for a vast array of 
hosts (Löbs et al., 2017; Lobs et al., 2017; Nodvig et al., 2015; Shan et al., 2013; Sidik et al., 
2016). Here, we designed and applied such a system for functional genomic screening and non-
native phenotype engineering in the yeast Y. lipolytica. Key to the success of the system was our 
ability to functionally disable native nonhomologous DNA repair, which allowed quantification 
of the cutting efficiency of each sgRNA-Cas9 complex in parallel and yielded a list of validated 
sgRNAs for nearly every gene in the Y. lipolytica genome.

The genome-wide data created by the cutting score (CS) experiments also generates new 
information that can be used to identify the determinants of CRISPR-Cas9 function, as well as 
improve screen accuracy. Our experiments in Y. lipolytica revealed that 48% of guides in the 6-
fold coverage library were highly active, and that 94.6% of protein coding sequences were 
targeted by at least one excellent cutting sgRNA (Figure 2). Similar data has recently been 
generated using genome-wide CRISPR-Cas9 systems in E. coli (Guo et al., 2018; Gutierrez et 
al., 2018). This bacterium natively lacks DNA repair by NHEJ creating experiments similar to 
those conducted here with disrupted KU70 function. Overall, library performance in E. coli was 
similar to that observed in Y. lipolytica; ~44% of E. coli sgRNAs had at least 32-fold depletion22, 
compared with ~48% in Y. lipolytica (Figure 2). However, an sgRNA activity prediction 
algorithm derived from the E. coli data had poor correlation with the Y. lipolytica CS data 
(r=0.0365; Fig. S9D) demonstrating that CRISPR-Cas9 activity can vary significantly across 
organisms and expression systems(Guo et al., 2018).

Library validation also substantially improved essential/nonessential gene classification 
(Figures 4 and 5) by significantly reducing false negatives that arise from analysis with all active 
and inactive guides in the library. A nongrowth associated screen was also successful in 
identifying novel gene disruptions for high lipid accumulation (Figure 6). Correlation of CS data 
with nucleosome occupancy and several sgRNA scoring algorithms revealed that occupancy was 
a stronger predictor of function than in silico design (Figure 3; see Refs. (Doench et al., 2016; 
Doench et al., 2014; Horlbeck et al., 2016; Labuhn et al., 2018; Tsankov et al., 2010)). We also 
observed that chromosomal ends were difficult to target. Current scoring algorithms have been 
limited by training set quality and size, relying on subsets of essential genes and/or high 
expression reporters to learn about the relationships between guide RNA sequence and resultant 
Cas9 activity (Doench et al., 2016; Doench et al., 2014; Xu et al., 2015). The genome-wide 
activity measurements obtained in the CS experiments provide a substantially richer data set for 
correlating guide sequence parameters to system-level characteristics. We envision that our 
experiments in Y. lipolytica may also be possible in other eukaryotes by genetically disrupting or 
chemically inhibiting native nonhomologous DNA repair. As such, the approach described here 
not only resulted in a new validated screening tool for Y. lipolytica, but also represents a 
generalizable methodology for enhancing CRISPR-based screens in other organisms. 
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Materials and Methods
Strains and media

All strains were derived from Yarrowia lipolytica strain PO1f (MatA, leu2-270, ura3-
302,xpr2-322, axp-2). The PO1f Cas9 strain was constructed by markerless integration of a 
UAS1B8-TEF(136)-Cas9-CycT expression cassette into the A08 site (Blazeck et al., 2011; 
Schwartz et al., 2017c). The PO1f Cas9 ku70 strain was constructed by disrupting KU70 using 
CRISPR-Cas9 as previously described (Schwartz et al., 2016).

Yeast culturing was done at 30 °C, unless specifically noted otherwise. Yeast strains were 
grown in YPD (1% Bacto yeast extract, 2% Bacto peptone, 2% glucose) for nonselective growth. 
Cells transformed with sgRNA-expressing plasmids were selected in media deficient in leucine 
(SD-leu; 0.67% Difco yeast nitrogen base without amino acids, 0.069% CSM-leu (Sunrise 
Science, San Diego, CA), and 2% glucose). For canavanine resistance screening, 50 g/mL was 
added to SD-leu. For lipid overproduction experiments, SDL-leu (0.67% Difco yeast nitrogen 
base without amino acids, 0.069% CSM-leu, and 8% glucose) was used for outgrowth. 

Plasmid construction
For integration of Cas9, pIW1009 (UAS1B8-Cas9 integration into A08 site) was 

constructed. pHR_A08_hrGFP (Addgene #84615) was digested with BssHII and NheI, and Cas9 
was inserted via Gibson Assembly after PCR via Cr_1250 and Cr_1254 from pCRISPRyl 
(Addgene #70007). To facilitate cloning of the library of sgRNAs, pIW771 (SCR1’-tRNA-AvrII 
site) was generated by digesting pCRISPRyl with BamHI and HindIII and circularizing. 

sgRNA library design
Custom Matlab scripts were used to design each sgRNA in the library based on a recent 

assembly of the Y. lipolytica PO1f parent strain genome, W29 (Magnan et al., 2016). sgRNAs 
were designed for all non-redundant protein coding sequences. The top 6 sgRNAs, as ranked by 
on target efficiency score(Doench et al., 2014) that met the following criteria were selected for 
each gene: (1) uniqueness of target sequence and PAM (protospacer adjacent motif; final 12 bp + 
NGG) in genome, (2) located within first 300 bp of gene, and (3) target sequence present in both 
genome and mRNA sequence (to avoid targeting introns). Four hundred eighty sgRNAs of 
random sequence, confirmed to not target in the genome using the same methodology as was 
used for checking for uniqueness of designed sgRNAs, were included as nontargeting controls. 
All designed sgRNAs and corresponding data are available in Supplementary Table 1.

sgRNA library cloning
Four oligo pools (Supplementary Table 4) consisting of 25% of the designed sgRNAs 

each were ordered from Twist Bioscience. Equal volumes of the oligo pool (1 M) and a 
complementary primer (5 M) were mixed together and annealed using the Thermo annealing 
advanced protocol and the calculated Tm (melting temperature) of the complementary primers 
using IDT’s OligoAnalyzer 3.1. For libraries 1 and 3, second strand synthesis reactions were 
completed using T4 DNA polymerase (NEB) and sgRNA-Rev2, gel extracted, and purified using 
Zymo Research Zymo-Spin 1 columns. Libraries 2 and 4 were amplified via Q5 DNA 
polymerase (NEB) using 60mer_pool-F and spacer-AarI.rev or pLeu-mock-sgRNA.fwd and 
sgRNA-Rev2 with 0.2 picomoles of DNA as template for 7 cycles and column purified.  

For libraries 1, 3, and 4, Gibson Assembly HiFi HC 1-step Master Mix (SGI-DNA) were 
used to clone into pIW771 digested with AarI. Library 2 was digested with AarI and cloned into 
pIW771 digested with AarI with a GoldenGate reaction using T4 DNA ligase (NEB). Cloned 
DNA was transformed into NEB 10-beta E. coli and plated. Sufficient electroporations were 
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performed for each library to yield a >10-fold excess colonies for the number of library variants, 
and the plasmid library was isolated. Errors in sequence were found to have arisen primarily due 
to oligo synthesis (approximately 1 in 500 bp, as reported by the vendor) and were not dependent 
on cloning method. 

Yeast transformation and screening
Transformation of Y. lipolytica with the sgRNA plasmid library was done using a 

previously described method, with slight modifications (Schwartz et al., 2016). Two mL of YPD 
was inoculated with a single colony of the strain of interest and grown in a 14 mL tube with 
shaking at 200 RPM for 24-30 h. Then, 1.5 mL of cells were washed with transformation buffer 
(0.1 M LiAc, 10 mM Tris (pH=8.0), 1 mM EDTA) via centrifugation at 4,000 g and resuspended 
in 600 L transformation buffer. To these cells, 18 L of ssDNA mix (8 mg/mL Salmon Sperm 
DNA, 10 mM Tris (pH=8.0), 1 mM EDTA), 90 L of -mercaptoethanol mix (5% -
mercaptoethanol, 95% triacetin), and 4 g of plasmid library were added, mixed via pipetting, 
and incubated. After incubation at room temperature for 30 min, 900 L of PEG mix (70% w/v 
PEG (3,350 MW)) was added and mixed via pipetting, and incubated at room temperature for 30 
min. Cells were then subjected to heat shock for 25 min at 37 °C, washed with 10 mL H2O, and 
used to inoculate 25 mL of SD-leu media for outgrowth experiments. Dilutions of the 
transformation were plated on solid SD-leu media to calculate transformation efficiency. 
Transformations were pooled as necessary to ensure adequate diversity to maintain library 
representation and to minimize the effect of plasmid instability (100x coverage, 5 x 106 total 
transformants per biological replicate).

Outgrowth was allowed to proceed in 25 mL of liquid media in a 250 mL baffled flask. 
After 2 days, cells reached confluency (optical density at 600 nm (OD600) > 10), and 
approximately 150 L (at least 200-fold library coverage) were used to inoculate 25 mL of fresh 
media as desired. Also at each timepoint, 1 mL of culture was taken, DNase I (New England 
Biolabs) and the corresponding buffer were added, and the mix was incubated for 1 h at 30 °C to 
digest any plasmid DNA in the media. Pellets were then frozen and stored at -80 °C for future 
analysis. Each growth cycle from inoculation to sampling represented approximately 7 cell 
doublings.

Library isolation and sequencing
Pellets were thawed and resuspended in 1 mL H2O. Cells were split into 5 samples of 200 

L, and plasmid was isolated using a Zymo Yeast Miniprep Kit (Zymo Research). Samples from 
a single pellet were pooled, and plasmid copy number was quantified using real time quantitative 
PCR (RT-qPCR) with M13_F and M13_R and SsoAdvanced Universal SYBR Green Supermix 
(Biorad) and verified to be higher than 1 x 107.

To prepare samples for next generation sequencing, isolated plasmid was subjected to 
PCR using forward (Cr_1665-1668) and reverse primers (Cr_1669-1673 and Cr_1709-1711) 
containing all necessary sequences and barcodes (Joung et al., 2017) (Supplementary Table 4). 
At least 1 x 107 plasmids were used as template, and PCR reactions were not allowed to go to 
completion to avoid biased amplification. PCR product at 250 bp was gel extracted, samples 
were pooled at equimolar amounts, and submitted for sequencing on a NextSeq500 at the UCR 
IIGB core facility.

Next generation sequencing results were demultiplexed and mapped to each sgRNA 
using custom scripts. A total of 453 sgRNAs were not present in the sequencing data. In 
addition, 440 sgRNAs had only a very low number of reads (less than 10) in the untransformed 
library or were erroneously designed, and were excluded from downstream analysis. Pairwise 
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comparison between normalized read abundances for biological replicates were done to verify 
consistency (Fig. S10).

Cutting and fitness score analysis
To calculate fitness score (FS) and cutting score (CS) for each replicate, the number of 

reads for each sgRNA in each sequencing sample was normalized to the total number of reads, 
with a pseudo-count of 0.5 added when no reads were mapped to a given sgRNA for a given 
biological replicate. Normalized read counts for biological triplicates were then averaged 
together. The log2 for each abundance was then taken, and then the FS was calculated by 
subtracting the PO1f log2 abundance from the PO1f Cas9 log2 abundance. CS was calculated in 
analogous way, but with PO1f Cas9 replaced with PO1f Cas9 ku70. 

sgRNA analysis
Analysis of sgRNA characteristics was done using a range of publicly available tools and 

data. Nucleosome occupancy was determined by mapping sgRNAs to previously published 
nucleosome occupancy data (Tsankov et al., 2010), adding the occupancy for each base pair in 
the target sequence, and dividing by 20. The scoring for predicting on-target activity for each 
sgRNA was carried out using previously published algorithms (Doench et al., 2016; Doench et 
al., 2014; Labuhn et al., 2018). Secondary structure was predicted using the default settings for 
RNA using Quikfold on the DINAMelt web server (http://unafold.rna.albany.edu/) (Zuker, 
2003). polyT sequences were identified by searching each sgRNA sequence for 4 consecutive 
“T”. sgRNAs at chromosome ends were annotated as the 50 sgRNAs nearest either end of each 
chromosome, except for the end of chromosome A (84 sgRNAs), the beginning of chromosome 
C (126 sgRNAs), and the end of chromosome E (71 sgRNAs). Ends of chromosomes 
determinations were informed by where sgRNA cutting scores increased.

Essential gene identification
Essential genes were identified based on FS at day 4. A two-sided t-test was used to 

determine which genes had a FS different than the 12 putative nonessential genes (p<0.05). A 
second two-sided t-test was also used to determine genes with a FS lower than a numerical cutoff 
defined by the average FS of the 12 essential gene training set plus two standard deviations (1.02 
for naïve library, -1.57 for validated library; see Tables S2 and S3). Multiple comparisons were 
accounted for using a Bonferroni correction as necessary. Genes found to be significant by both 
tests were classified as essential genes. The essential gene analysis was repeated for the validated 
library using ribosomal genes in place of the 12 essential gene training set (cutoff for t-test = -
0.87), and combining ribosomal genes with the 12-gene training set (cutoff for t-test = -0.91). 

Essential gene comparison to S. cerevisiae
Mapping of all Y. lipolytica genes to S. cerevisiae genes was carried out using BLAST 

(E<10-30). Essential genes in S. cerevisiae were those annotated as being “inviable” null mutants 
(Cherry et al., 2012). 

Canavanine screen
Glycerol stocks of the transformed library taken from day 2 cultures were grown in SD-

leu for 2 days, and then used to inoculate SD-leu with 50 g/mL canavanine. Cultures were then 
allowed to grow to confluency and plated on solid SD-leu. Single colonies were subjected to 
colony PCR using Cr_1742 and Cr_1743 to identify the sgRNA expressed in each colony.

http://unafold.rna.albany.edu/)
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LipidTOX Deep Red Staining, Fluorescence Activated Cell Sorting (FACS), and Flow 
Cytometry Confirmation

CRISPR libraries were cultivated for FACS in media and conditions that were previously 
established for Y. lipolytica lipid characterization(Wagner et al., 2018). Specifically, cultures 
were started from frozen glycerol stocks (PO1f with CRISPR library and PO1f Cas9 with 
CRISPR library, starting from day 2 stocks) by inoculating 50 mL of SD-leu media in a 250 mL 
baffled shake flask, followed by 2 days of outgrowth at 28°C.  The resulting inoculum cultures 
were then used to start 50 mL lipid production cultures in SDL-leu media (initial optical density 
of 0.1) with 80 g/L glucose in 250 mL shake flasks. These shake flask cultures were grown using 
air-permeable plugs by shaking for 3 days at 28°C and 225 RPM in a shaking incubator (New 
Brunswick Scientific I 26). HCS LipidTOX Deep Red (Thermo Fisher Scientific) was then used 
to fluorescently stain lipids according to the manufacturer-recommended protocol: cells were 
pelleted, all culture media was removed, and then the cell pellet was re-suspended in 100 μL of a 
1:200 dilution of lipid stain in phosphate buffered saline (PBS).  Two successive rounds of 
fluorescence activated cell sorting (FACS) were performed on a BD FACS Aria III using the 
APC laser/filter set.  For high lipid sorting, the top 0.3% of 3x106 APC+ cells and the top 3% of 
1x105 APC+ cells were collected.  After the first APC sort, the collected cells were outgrown in 
SD-leu to saturation (3 days) and glycerol stocked.  Fresh cultures were then started from the 
frozen glycerol stock by inoculating 50 mL of SD-leu media in a 250 mL baffled shake flask, 
followed by 2 days of outgrowth at 28°C.  The resulting inoculum culture was then used to start 
a 50 mL lipid production culture in SDL-leu media with 80 g/L glucose (initial optical density of 
0.1) in a 250 mL shake flask.  This shake flask culture was grown using air-permeable plugs by 
shaking for 3 days at 28°C and 225 RPM in a shaking incubator (New Brunswick Scientific I 26) 
until ready for the second sort. After the second APC sort, the collected cells were outgrown in 
SD-leu to saturation (3 days) and glycerol stocked again. A mock-sorted / un-sorted pool was 
also generated in parallel throughout this double sorting process by passing the same pool of 
cells through the same FACS process/conditions without applying the sorting gate (i.e., all cells 
were collected, regardless of APC fluorescence).

From the 2X sorted (2X FACS) glycerol stock and mock/un-sorted glycerol stock, 
individual colonies were then isolated on SD-leu plates to isolate individual strains. 48 colonies 
from the 2X FACS and 48 colonies from the mock/un-sorted plates were then subjected to 
colony PCR and Sanger sequencing of the sgRNA cassette. Clones with sgRNAs that were 
successfully colony PCR amplified, sequenced, and identified as cutters (see cutting and fitness 
score analysis above) were subsequently re-screened to establish a lipid staining mean 
fluorescence intensity for individual clones (41 from 2X FACS, 34 from mock/unsorted) using 
the same procedure as for FACS, but with a BD LSRII Fortessa analytical flow cytometer for 
quantifying APC channel fluorescence.

Statistical Analysis
Data is shown as mean ± standard deviation, with n values indicated in the figure 

legends. P values were generated using the statistical approach described in the figure legends 
using either Graphpad Prism 7 or R 3.3.2.  To determine the correlation between different 
sgRNA metrics (such as nucleosome occupancy or design algorithm score), Graphpad Prism 7 
was used to calculate the Pearson’s correlation. Comparisons between FS from essential and 
nonessential genes determined from the two different sgRNA libraries was done using a two-
sided t-test, implemented in Graphpad Prism 7. Essential genes were identified by using a two-
sided t-test to compare the FS of each gene to a nonessential gene reference group (to identify 
those which were significantly different). A second two-sided t-test was used to compare the FS 
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of each gene to a numerical cutoff, which was determined by the FS of a known essential gene 
reference group. Multiple comparisons were accounted for using Bonferroni correction.
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Figure S1. sgRNA design and library construction. (A) Flowchart outlining sgRNA design 
strategy. On target efficiency calculated using previously constructed algorithm (12). YALI1 is a 
recent assembly of the Y. lipolytica PO1f parent strain genome, W29. (B) sgRNA abundance 
distribution in the full library and for each partial library, which were generated using 3 different 
cloning strategies.
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Figure S2. Pilot scale cutting and fitness score experiments. (A) Small scale transformation of 
PO1f, PO1f Cas9, and PO1f Cas9 ku70 with 3 different sgRNA expression plasmids. ACC1 
(light red) is an essential gene, D17 (yellow) is a validated nonessential gene, and NT (red) 
represents a nontargeting sgRNA. The percent abundance of sgRNAs before (initial) and after 
transformation into each strain are shown. Plots show data from a single experiment, with 
sgRNA determined by Sanger sequencing of sgRNA expression plasmid and with 24 colonies 
sequenced per experiment. Initial transformation contained a 1:5:5 ratio of nontargeting, ACC1, 
and D17 sgRNA expression plasmids. PO1f colony sequencing had 12 colonies with the ACC1 
sgRNA and 12 with the D17 sgRNA, PO1f Cas9 colony sequencing had 12 colonies with the 
nontargeting sgRNA and 12 with the D17 sgRNA, and the PO1f Cas9 ku70 colony sequencing 
had 24 colonies with the nontargeting sgRNA. (B) Relationship between CS and growth in the 
PO1f Cas9 ku70 strain. PO1f Cas9 ku70 was separately transformed with plasmids expressing a 
single sgRNA. The transformation was used to inoculate SD-leu media, and the culture was 
allowed to grow until negative control transformations (scrambled sgRNA) reached confluency. 
The log2 of culture density after outgrowth was plotted, and the relationship with CS was 
determined with linear regression analysis. 
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Figure S3. Distribution of cutting scores across library. (A) The sgRNAs for each gene were 
ranked by CS from 1st to 6th and separated into six subpopulations each representing 1-fold 
genome coverage and assigned to sgRNA classes (Excellent (CS< -5; green;), Moderate (-5<CS< 
-1; yellow), Poor (-1<CS< 2; orange), and Noncutter (>2; red)). Mean CS values were 
determined after two growth cycles (4 days) from triplicate biological samples. (B) Frequency of 
the number of excellent sgRNAs for each gene in the genome.
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Figure S4. Cutting score by chromosome position. (A) CS for each sgRNA on Chromosomes 
A – F. (B) Moving average of cutting score across chromosomes. Average CS is calculated by 
moving average of 50 sgRNAs, ordered by position in each chromosome.
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Figure S5. Secondary structure of excellent and noncutter sgRNAs. Predicted secondary 
structure for a representative population of excellent cutters and all noncutters that are not at 
chromosome ends or that contain a polyT motif.

Figure S6. Comparison of sgRNA design algorithm score to cutting score. (a) sgRNA 
activity prediction from Doench et al. 2014 (12) compared to cutting score. (b) sgRNA activity 
prediction from Doench et al. 2016 (18) compared to cutting score. (c) sgRNA activity 
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prediction from Labuhn et al. 2018 (19) compared to cutting score. (d) sgRNA activity 
prediction from Guo et al. 2018 (20) compared to cutting score.

Figure S7. Rank-ordered curves of fitness scores with error. The mean and standard 
deviation of three biological replicates is shown for the full 6-fold coverage library and for the 
validated library.

Figure S8. Transposon and CRISPR essential gene comparison. (A) Comparison of essential 
genes identified in CRISPR and transposon screens. All CRISPR essential genes are shown, with 
the percentages representing the amount that were also identified as essential in the transposon 
screen. (B) Size distribution of CRISPR essential genes that were also identified as essential by 
the transposon screen and those not identified as essential in the transposon screen.
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Figure S9. Essential gene comparison to Saccharomyces cerevisiae. (top) Comparison of 
essential genes identified in Y. lipolytica with known essential genes from S. cerevisiae. 
Respiration indicates genes annotated as being essential for respirative growth in S. cerevisiae, 
Paralog in Sc indicates genes that are duplicated in the S. cerevisiae genome, and Auxotroph 
indicates genes that are involved in nucleotide or amino acid biosynthesis (identified via manual 
inspection). Unknown or no Yl homolog indicate genes that did not have a clear homolog. 
(bottom) GO term analysis and fitness score. Fitness score of groups of genes separated by gene 
ontology classification of genes by S. cerevisiae homolog. Significance was determined by 1-
way ANOVA with post hoc analysis (# p<0.05; * p<0.01; **p<0.0001).
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Figure S10. Pairwise comparison across biological replicates. (A) Pairwise comparison of 
PO1f Cas9 biological replicates 1 and 2. Linear regression analysis yielded a Pearson’s 
coefficient of 0.941. (B) All possible pairwise comparisons of different replicates.
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Table S2: Selected essential and nonessential genes
Putative Essential Genes

Gene
Systematic 
name Function

Ref.

ACC1 YALI1_C15991g Acetyl-CoA carboxylase; lipid biosynthesis unpublished
HMG1 YALI1_E05731g HMG-CoA reductase; sterol biosynthesis unpublished
ERG20 YALI1_E06759 Farnesyl pyrophosphate synthetase; sterol biosynthesis (Cherry et al., 2012)
FBA1 YALI1_E30886 Fructose 1,6-bisphosphate aldolase; glycolysis (Cherry et al., 2012)
KAR2 YALI1_E16731 ATPase; protein import to ER and protein folding mediator (Cherry et al., 2012)
DPB2 YALI1_F35907 Subunit B of DNA polymerase II (Cherry et al., 2012)
POL1 YALI1_E14644 DNA polymerase I catalytic subunit (Cherry et al., 2012)
PRO3 YALI1_B18955 Delta 1-pyrroline-5-carboxylate reductase; proline biosynthesis (Cherry et al., 2012)
FOL2 YALI1_A10254 GTP-cyclohydrolase I; folic acid biosynthesis (Cherry et al., 2012)
RPS5 YALI1_F11930 Protein component of 40S ribosomal subunit (Cherry et al., 2012)
MYO1 YALI1_F17836 Type II myosin heavy chain; cytokinesis and cell separation (Cherry et al., 2012)
ACT1 YALI1_D10600 Actin; structural protein and cytoskeletal functions (Cherry et al., 2012)

Nonessential genes Ref.
Gene 
name

Systematic 
name Function

POX2 YALI1_F14495
3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; 
peroxisomal beta-oxidation

(Haddouche et al., 
2010)

GAL1 YALI1_C18258 Galactokinase; galactose catabolism
(Schwartz et al., 

2018)

GAL7 YALI1_F31405 Galactose-1-phosphate uridyl transferase; galactose catabolism
(Schwartz et al., 

2018)

POX5 YALI1_C32886
3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; 
peroxisomal beta-oxidation

(Haddouche et al., 
2010)

BGL1 YALI1_F21504 beta-glucosidase; cellobiose catabolism
(Schwartz et al., 

2018)

BGL2 YALI1_B18845 beta-glucosidase; cellobiose catabolism
(Schwartz et al., 

2018)

KU70 YALI1_C11925 Subunit of Ku complex; nonhomologous end-joining
(Schwartz et al., 

2017)

KU80 YALI1_E02574 Subunit of Ku complex; nonhomologous end-joining
(Schwartz et al., 

2017)

POX3 YALI1_D32754
3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; 
peroxisomal beta-oxidation

(Haddouche et al., 
2010)

POX4 YALI1_E32603
3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; 
peroxisomal beta-oxidation

(Haddouche et al., 
2010)

ALK2 YALI1_F02132 n-alkane-inducible cytochrome P450; beta-oxidation (Iida et al., 2000)
CAN1 YALI1_B25360 Arginine permease; knockout confers canavanine resistance This work
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Table S4: Primers used in this study
Primer Sequence Use

Cr_1250 TATAAGAATCATTCAAAGGCGCGCATGGATAAGAAATACTCCATTGGCCTG
Cas9 integration 
cloning

Cr_1254 ATAACTAATTACATGAGGCTAGCTTACAGCATGTCCAGATCGAAATCG
Cas9 integration 
cloning

M13_F GTAAAACGACGGCCAGT RT-qPCR
M13_R CACAGGAAACAGCTATGAC RT-qPCR

Cr_1665 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTAGTCCGGTTCGATTCCGGGTC

Forward primer 
Illumina

Cr_1666 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTGTAGTCCGGTTCGATTCCGGGTC

Forward primer 
Illumina

Cr_1667 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTCAGTAGTCCGGTTCGATTCCGGGTC

Forward primer 
Illumina

Cr_1668 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTTCCAGTAGTCCGGTTCGATTCCGGGTC

Forward primer 
Illumina

Cr_1669 CAAGCAGAAGACGGCATACGAGATTCGCCTTGGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1670 CAAGCAGAAGACGGCATACGAGATATAGCGTCGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1671 CAAGCAGAAGACGGCATACGAGATGAAGAAGTGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1672 CAAGCAGAAGACGGCATACGAGATATTCTAGGGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1673 CAAGCAGAAGACGGCATACGAGATCGTTACCAGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1709 CAAGCAGAAGACGGCATACGAGATGTCTGATGGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1710 CAAGCAGAAGACGGCATACGAGATTTACGCACGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

Cr_1711 CAAGCAGAAGACGGCATACGAGATTTGAATAGGTGACTGGAGTTCAGACGTGTGC
TCTTCCGATCTCGACTCGGTGCCACTTTTTCAAG

Reverse primer 
Illumina

60mer_pool-F GATTCCACCTGCCTGAACGT Lib 2 cloning
spacer-AarI.rev CGGCTCACCTGCAGTCAAAC Lib 2 cloning

pLeu-mock-
sgRNA.fwd TAAAATCCATCGTTGCCATCGATGGGC Lib 1, 3, 4 cloning

sgRNA-Rev2 CACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTA
AAA Lib 1, 3, 4 cloning

Cr_1742 GCTCCGTCACGTGATATGTATTATC
Colony PCR and 
sequencing

Cr_1743 CTCGTGATACGCCTATTTTTATAGGTTAATG
Colony PCR and 
sequencing

Oligo pool 1
TAAAATCCATCGTTGCCATCGATGGGCCCCCGGTTCGATTCCGGGTCGGCGCAG
GTTGACGTNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAA
AATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG Lib 1 sgRNAs

Oligo pool 2 GATTCCACCTGCCTGAACGTNNNNNNNNNNNNNNNNNNNNGTTTGACTGCAGGT
GAGCCG Lib 2 sgRNAs

Oligo pool 3
TAAAATCCATCGTTGCCATCGATGGGCCCCCGGTTCGATTCCGGGTCGGCGCAG
GTTGACGTNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAA
AATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG Lib 3 sgRNAs

Oligo pool 4
TAAAATCCATCGTTGCCATCGATGGGCCCCCGGTTCGATTCCGGGTCGGCGCAG
GTTGACGTGACAGGCTCATCTCTAGAAAGTTTTAGAGCTAGAAATAGCAAGTTAAA
ATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG Lib 4 sgRNAs
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