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ABSTRACT OF THE DISSERTATION

Sampling from Distributions under Differential Privacy Notions

by

Joseph Donald Geumlek

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Kamalika Chaudhuri, Chair

An individual’s personal information is gathered by a multitude of different data collec-

tors throughout the world today. In order to maintain the trust between the individual and the

aggregator, there is a need for ensuring the methods that interact with that data collection are

acting in a responsible manner. One such way for maintaining trust is to use methods that come

with formal privacy guarantees. A well-established source of such guarantees can be found in

the framework known as differential privacy, which places significant constraints on algorithms

that operate on private data.

This thesis explores the challenges of releasing samples from distributions while satisfy-

xv



ing the requirements of differential privacy or other closely related privacy notions. We present

algorithms for releasing samples in a variety of settings that differ in their privacy aims. From

one angle, we protect the data values directly that arise from exponential family distributions

with methods attuned to differential privacy and further methods attuned to Rényi differential

privacy. From another angle, we explore protecting the identity of a secret sensitive distribution

while releasing what we can from the gathered data. Additionally, a coupling-based analysis is

provided for reasoning about the impact of diffusing the samples from one distribution through

another in order to achieve stronger privacy guarantees from sampling than either distribution

separately. These proposed methods are proven to achieve formal privacy guarantees, and we

also show empirical and theoretical results about their efficacy. These results empower numerous

different styles of Bayesian privacy-preserving methods, and serve as useful primitives for further

privacy analyses that move beyond frequentist probabilistic methods.
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Chapter 1

Introduction

As enter another decade of the 21st century, it is almost impossible to ignore the growth

of data collection and data analysis in the modern highly-interconnected world. Massive data sets,

combined with machine learning methodologies, permit a great deal of insight, knowledge, and

value to be extracted. However, this value is encumbered with sensitive privacy issues, since this

data contains specific information collected from individuals with an innate claim to maintaining

their privacy. When unsure about how the data will be used, individuals may be unwilling to

share honest responses Warner [1965]. In some cases, such as medical or educational data, these

privacy considerations also carry legal and regulatory weight.

The importance of preserving privacy during data analysis has not gone unnoticed by

the research community. In a seminal work, Dwork et al. [2006b] introduced a privacy notion,

differential privacy (DP), which carried a rigorous mathematical foundation of useful properties

[Dwork and Roth, 2014]. This privacy notion, and closely related variants of it, has dominated

the privacy research landscape since its introduction. In addition to the provable guarantees,

differential privacy also provided a smooth parametrization of privacy levels, allowing for a

richer discussion of the costs associated with the privatization of machine learning algorithms.

An important consequence of differential privacy’s definition is that the algorithms

employed must be randomized. It is this randomness, unknown to outside observers, that

provides the uncertainty used mask sensitive information. The focus of a privacy analysis for

1



an algorithm therefore lies on studying the behavior of the probabilistic mapping of inputs to

outputs, and the induced distributions arising from these randomized processes. Separate from

other areas of machine learning and artificial intelligence, it has become customary to refer to

the algorithms and methods as ”mechanisms”. These mechanisms provide means for achieving

desired output behaviors subject to strict probabilistic constraints.

Differential privacy’s appeal is not just limited to theorists, and has seen large-scale

adoption and deployment. Major corporations have publicly commented on their implementation

of differentially private methods around their collection of data from the general public. The

United States census, the federal decennial counting of the nation’s populations, has introduced

differential privacy into the process for 2020. The wide use of differential privacy in today’s

world demonstrates a significant level of maturity this research area has achieved in the years

since the publication of Dwork et al. [2006b].

Although differential privacy remains a central formal privacy guarantee in the literature,

much work has been spent on exploring relaxations and variations of differential privacy. The

original definition makes strong assumptions that need not always match reality, and maintaining

these assumptions carries notable implementation costs. One common relaxation is approximate

DP Dwork et al. [2006a], which introduces a simple secondary privacy parameter which allows

arbitrarily bad events to occur with bounded probability. Several different privacy notions exist

along these lines in which the precise mathematical formulations of the privacy guarantee is

changedMironov [2017], Bun and Steinke [2016], Dwork and Rothblum [2016], Machanavajjhala

et al. [2008], Chaudhuri and Mishra [2006], Wang et al. [2016]. Another variations change the

dynamics of trust in the process, such as Local Differential Privacy Duchi et al. [2013] which

places stricter requirements on mechanisms in exchange for not requiring a central trusted data

curator.

This leaves open a rich and active research field continually exploring the frontiers of

these privacy definitions.
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1.1 Contributions

This thesis enhances the theoretical and practical domains of privacy-preserving machine

learning.

The early chapters of this thesis are structured around the presentation of the contributions

that follow. Chapter 2 provides a high-level discussion of works related to this thesis and how

these contributions fit into the broader literature. Chapter 3 defines and discusses the preliminary

information of differential privacy and its variants that will be used extensively in later chapters.

Chapter 4 explores the problem of privately returning samples from a posterior distribu-

tion is analyzed and improved for Bayesian data analysis for exponential family distributions.

This chapter explores the impact of directly perturbing the statistics of observations and the

asymptotic behaviors of the induced distortions raised by privatization. Compared to prior

methods, this analysis formally demonstrates a statistical efficiency enjoyed by this proposed

method. Numerical experiments also support the theoretical contributions.

Chapter 5 further builds off of the work seen in chapter 4 in also tackling the problem of

private posterior sampling for exponential family distributions. In this chapter, Rényi differential

privacy (a relaxation of differential privacy) is used. The change to this alternative privacy notion

permits more of the structural properties of exponential family distributions to be exploited.

Instead of perturbing the statistics, this chapter introduces methods that leverage the inherent

randomness of posterior sampling. The work is based on altering the balance between the

analyst’s prior knowledge and the observed sensitive data. Multiple ways of affecting that

balance are proposed in analyzed, allowing a more nuanced approach to controlling the statistical

efficiency guarantees. The behaviors of this re-balancing strategies are explored theoretically

and numerically.

Chapter 6 moves in a different direction, and instead studies the theoretical behavior

of combining multiple Rényi differentially private operations by working with fundamental

distributional measures. Multiple distributions sequenced together can be reasoned about in
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a combined fashion, in which we can analyze the privacy arising from passing the output

from one distribution through yet another sampling process. Unlike the common discussed

privacy-degradation compositional properties of privacy mechanisms, this work presents a clean

coupling-based analysis for privacy-amplifying composition. This formulation provides a simpler

rederivation of known results, as well enabling the analysis of novel situations.

Chapter 7 continues the exploration in fundamental aspects of privacy-preservation

definitions by proposing and analyzing the properties of a new rigorous privacy setting. Here,

probabilistic models are introduced in which the sensitive information lies in the identity of

distributions, not the collected data itself. Although other privacy notions have created such

separations, this work identifies and explores a particular class of such settings and proposes

mechanisms designed around its structural properties.
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Chapter 2

Related Work

This thesis touches on a variety of topics related to the theory and practice of differential

privacy. Specific mechanisms are proposed and presented, alternative privacy notions are defined

and explored, and fundamental compositional bounds are proven. Broad surveys of privacy-

preservation techniques can be found in [Dwork and Roth, 2014, Sarwate and Chaudhuri, 2013].

A full inventory of the field of privacy-preservation on both theoretical and practical grounds

would be lengthy, so this section instead focuses on the works most closely related to each

chapter.

Chapters 4 and 5 focus on privacy preservation in a particular Bayesian setting of pos-

terior sampling. This work on exponential family distributions is related to Dimitrakakis et al.

[2014] and Wang et al. [2015b]. Dimitrakakis et al. [2014] examines some common posterior

distributions and presents conditions under which directly sampling from these posteriors is

differentially private. Wang et al. [2015b] presents another criterion for private sampling, which

requires certain modifications to be made for sampling. The contributions of Chapter 4 demon-

strate how such modifications can be avoided while maintaining useful asymptotic behaviors,

and Chapter 5 further improves the situations under which direct sampling can be employed

by re-analyzing Bayesian learning for exponential family distributions under Rényi differential

privacy Mironov [2017].

Chapter 6 extends the examination of Rényi differential privacy Mironov [2017] by pro-
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viding a privacy-amplification result for Rényi differential privacy. This places it alongside other

works in privacy amplification: by subsampling [Chaudhuri and Mishra, 2006, Kasiviswanathan

et al., 2011, Li et al., 2012, Beimel et al., 2013, 2014, Bun et al., 2015, Balle et al., 2018, Wang

et al., 2019], shuffling [Erlingsson et al., 2019, Cheu et al., 2019, Balle et al., 2019] and iteration

[Feldman et al., 2018]. Chapter 6 is most closely related to the privacy amplification by iterations

results of [Feldman et al., 2018], and can be viewed as a generalization of their arguments via

the use of couplings.

Chapter 7 proposes a privacy framework and mechanisms that achieve those privacy

guarantees in a variety settings. This places the alongside many in the literature that propose

novel privacy notions Kifer and Machanavajjhala [2012], Song et al. [2017], Bassily and Freund

[2016], He et al. [2014], Gehrke et al. [2011], Dwork and Rothblum [2016], Kawamoto and

Murakami [2018]. It shares a a connection with [Kifer and Machanavajjhala, 2012] in that it can

be viewed as a special case of their Pufferfish privacy framework, in which our results fill an

understudied regime of instantiations. This chapter is also very complementary to Kawamoto

and Murakami [2018], which also targets a distribution-level notion of privacy, but uses different

methods and analyses for achieving that goal.
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Chapter 3

Preliminaries

This section introduces the fundamental definitions that motivate the work in this thesis,

along with an extended discussion of their properties.

3.1 Differential Privacy

Differential privacy, as proposed in Dwork et al. [2006b], provides a formal mathematical

guarantee of privacy. It builds off of a notion of neighboring data sets, and defines a closeness

requirement for the output distributions of a mechanism applied to each of those neighboring

data sets.

We say two data sets X and X′ are neighboring if they differ in the private record of

a single individual or person. With this neighboring relation, we can then define a privacy

guarantee in terms of a non-negative parameter ε in which values close to zero indicate stronger

privacy guarantees.

Definition 1. Differential Privacy, ε-DP.

A randomized mechanism A (X) is said to be (ε,δ )−differentially private if for any

subset U of the output range of A and any neighboring data sets X and X′, we have Pr(A (X) ∈

U)≤ exp(ε)Pr(A (X′) ∈U).

This single parameter definition is sometime called ”pure differential privacy.” A common

relaxation of differential privacy introduces an additional parameter δ ∈ [0,1] into the guarantee,
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which gives rise to approximate differential privacy Dwork et al. [2006a].

Definition 2. Approximate Differential Privacy, (ε,δ )-DP.

A randomized mechanism A (X) is said to be (ε,δ )−differentially private if for any

subset U of the output range of A and any neighboring data sets X and X′, we have Pr(A (X) ∈

U)≤ exp(ε)Pr(A (X′) ∈U)+δ .

Differential privacy enjoys a number of useful properties, of which we briefly present a

couple. When relevant, the properties of differential privacy will be explained and examined in

the remaining chapters of this thesis.

Observation 1. Robustness to Post-Processing for DP

For any mechanism A that satisfies (ε,δ )-DP, and any randomized function f that

operates on the outputs of A , the mechanism formed by releasing f (A (X)) for a data set X

also satisfies (ε,δ )-DP.

At a high-level, this means any additional computations done on the output released by

A cannot possibly degrade the privacy guarantee offered by A .

Observation 2. Robustness to Composition for DP

For any mechanism A that satisfies (εA ,δA )-DP, and any other mechanism B that

operates on the same data as A and satisfies (εB,δB)-DP, the mechanism formed by releasing

the tuple (A (X),B(X)) for a data set X satisfies (εA + εB,δA +δB)-DP.

At a high-level, this means that multiple differentially private releases result in a degraded

(but still bounded) privacy guarantee. Since this property holds for any choice of private B, this

property also provides bounds for when the second mechanism depends on the output of the first.

If we let o be the output from A (X), and Bo represent a second mechanism that has access to

the output o, then the tuple (o,Bo(X)) satisfies (εA + εB,δA +δB)-DP.

These two properties allow differential privacy mechanisms to be composed and com-

bined in a variety of ways. The privacy analysis of primitives can therefore be used to give
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privacy bounds for complex multi-stage algorithms. It should be noted that the composition result

is not the strongest or tightest bound generally used in the privacy literature, but the technical

details of such bounds are not relevant here.

Both versions of DP (pure and approximate) are concerned with the difference the

participation of a individual might have on the output distribution of the mechanism. The

requirements for DP can be phrased in terms of a privacy loss variable, a random variable that

captures the effective privacy loss of the mechanism output.

Definition 3. Privacy Loss Variable.

We can define a random variable Z that measures the privacy loss of a given output of a

mechanism across two neighboring data sets X and X′.

Z = log
Pr(A (X) = o)
Pr(A (X′) = o)

∣∣∣∣
o∼A (X)

(3.1)

This privacy loss variable measures the log of the probability ratio of the observed output

across the two neighboring data sets X and X′. From a mathematical point of view, ensuring

that this loss variable Z is ”small” under some probability gives a measure of closeness between

the distribution arising from A (X) and A (X′). A more interpretative view can place the ratio

can be seen from imagining an adversary trying to guess whether the observed output came

from the data set X or X ′ with a simple application of Bayes’ rule. In this setting, we can let

Data represent the latent data set identity, and Out represent the random variable arising from

selecting a data set and passing it to the mechanism A . Differential privacy can be interpreting

as bounding the odds of Data = X vs Data = X′ in the adversary’s beliefs after observing the

output Out = o.
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Pr(Data = X|Out = o)
Pr(Data = X′|Out = o)

=
Pr(Out = o|Data = X)Pr(Data = X)/Pr(Out = o)
Pr(Out = o|Data = X′)Pr(Data = X′)/Pr(Out = o)

(3.2)

=
Pr(Out = o|Data = X)Pr(Data = X)

Pr(Out = o|Data = X′)Pr(Data = X′)
(3.3)

=
Pr(Out = o|Data = X)

Pr(Out = o|Data = X′)
· Pr(Data = X)

Pr(Data = X′)
(3.4)

≤ eZ · Pr(Data = X)

Pr(Data = X′)
(3.5)

In this way, the factor eZ provides a multiplicative bound relative to the odds arising from

the adversary’s prior beliefs about the latent variable Data. When Z = 0, this bound implies no

change whatsoever from the prior beliefs, and the framework of differential privacy views this

as perfect privacy: the adversary has gained no information about X vs X′ from the output. For

larger values of Z, the odds are permitted to change more greatly, representing a greater leak

of information. To make full use of this interpretation, it is important to note that differential

privacy’s guarantee is a bound over all pairs of neighboring data sets. This permits us to talk about

differential privacy protecting individuals: if the adversary cannot effectively gain information

about X vs X′ for any possible choice for varying a single individual across these data sets, then

they cannot effectively gain information about the single individual differing between the data

sets. This statement holds regardless of the adversary’s prior beliefs (potentially arising from

arbitrary side information), and even under the extreme setting in which the adversary has full

knowledge or control over all the remaining data in these data sets (the data which X and X′

share).

A sufficient condition for (ε,δ )-DP is to have Z ≤ ε with probability at least 1−δ for

any two neighboring data sets. The exact nature of the trade-off and semantics between ε and δ

is subtle, and choosing them appropriately is difficult. For example, if n represents the number

of individuals in a data set, a (ε,δ = 1/n)−differentially private guarantee would also apply
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to a mechanism that completely publishes the sensitive data of a single individual. It can be

verified that for any pair of neighboring data set, such a mechanism would have the loss variable

Z take on the value 0 with probability n−1
n . For any non-negative ε , this proposed mechanism

has Pr(Z > ε)≤ 1− n−1
n = 1

n , thus achieving a (ε,δ = 1/n)−DP guarantee.

The previous example is intended to demonstrate just one facet of the nuances introduced

by the second privacy parameter δ . When used haphazardly, these privacy guarantees can lose

their meaning. Speaking briefly from a vague intuitive sense of designing a privacy-preserving

mechanism, this simple mechanism that completely publishes one individual’s data is in no way

preserving privacy. Yet, that mechanism does satisfy the requirements of differential privacy for

sufficiently large parameters. This work does not prescribe any particular appropriate choice

for the parameters, it is the intent of this work to reinforce the importance of achieving privacy

bounds with parameters as small as possible.

3.2 Rényi Differential Privacy

When faced with the risks and challenges of analyzing the impact of δ , other means of

expressing parametric privacy guarantees can become attractive. The privacy definitions of 3.1

are not the only formulations for ensuring the privacy loss variable Z is ”small” in a probabilistic

sense. One alternative is to instead bound the Rényi divergence of A (X) and A (X′) Mironov

[2017].

Definition 4. Rényi Divergence.

The Rényi divergence of order α between the two distributions P and Q is defined as

Rα(P||Q) =
1

α−1
log
∫

P(o)αQ(o)1−αdo. (3.6)

We note that a slightly different notation will be used in Chapter 5 which replaces α with

λ , since much of the analysis will deal with distributions with their own α and β parameters.
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The Rényi divergence can be viewed as a generalization of KL divergence. Examining the

limiting behavior of the divergence with respect to its order offers useful insights into this diver-

gence. When α approaches ∞, the integral places increasingly more importance on the maximal

values of P(o)/Q(o) achieved for any output o (in a way highly reminiscent of how the L∞ norm

of the Lp family places its focus on the maximal coordinate of its input). When α = ∞, we can

see R∞(P||Q) gives rise to the max divergence which equals supo log(P(o)/Q(o)). Turning our

attention to smaller values for the order, we can examine the behavior as α approaches 1. In this

regime, the divergence approaches a simple expected value of the ratio logP(o)/Q(o). In fact,

in the limit, we can identify the case of α = 1 with the KL divergence, R1(P||Q) = KL(P||Q).

This leads us to Rényi Differential Privacy, a flexible privacy notion that uses its additional

parameter to smoothly cover the range of intermediate behaviors between average-case KL

divergences and worst-case max divergences.

Definition 5. Rényi Differential Privacy (RDP).

A randomized mechanism A (X) is said to be (α,ε)−Rényi differentially private if for

any neighboring data sets X and X′ we have Rα(A (X)||A (X′))≤ ε .

The choice of α in the bound required for RDP controls the balance between bounding

extreme values Z versus bounding the average value of Z. One can consider a mechanism’s

privacy as being quantified by the entire curve of ε values associated with each order α , but the

results of [Mironov, 2017] show that almost identical bounds can be achieved when this curve is

known at only a finite collection of possible α values. Therefore RDP bounds can still be useful

even when the relationship between α and ε is not easily written down.

RDP also enjoys useful properties, analogous to those we discussed about differential

privacy. The composition result is mathematically convenient, and behaves much tighter than the

simple composition result for (ε,δ )-DP presented earlier.

Observation 3. Robustness to Post-Processing for RDP
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For any mechanism A that satisfies (α,ε)-RDP, and any randomized function f that

operates on the outputs of A , the mechanism formed by releasing f (A (X)) for a data set X

also satisfies (α,ε)-RDP.

Observation 4. Robustness to Composition for RDP

For any mechanism A that satisfies (α,εA )-RDP, and any other mechanism B that

operates on the same data as A and satisfies (α,εB)-DP, the mechanism formed by releasing

the tuple (A (X),B(X)) for a data set X satisfies (α,εA + εB)-DP.

This bound behaves in a nicer fashion than the one for (ε,δ )-DP: the second privacy

parameter α does not degrade under composition in RDP.

RDP behaves in a more mathematically convenient fashion than DP, especially under

composition. The Rényi divergence is more naturally suited for tracking the behavior of the

privacy loss variable. However, the parameter α is much harder to interpret than δ . It is a

common practice to perform a privacy analysis in the RDP framework, get the overall privacy

guarantee of a complicated proposed mechanism, and then as a final step convert the RDP

guarantee into a (ε,δ )-DP guarantee. This final bound is a bit more digestible by human analysts,

since the δ parameter has a natural connection to a bound on the probability of the privacy loss

variable being large.

3.3 Exponential Family Distributions

A large part of the contributions of this thesis are focused on exponential family distribu-

tions, which we shall introduce here.

Exponential families form a broad class of probability distribution families, including

many of the most commonly used distributions in machine learning. Each family contains a

multitude of distributions, each sharing a similar structure and parameterizations. We begin with

the most general description of exponential families, and present a specific concrete example

later.
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An exponential family’s defining trait is how the family can be indexed by a parameter

θ ∈ Rd . Given this parameter, each distribution in the family can be written in the following

form for some choice of functions h : X → R, S : X → Rd , and A : Θ→ R shared by all the

distributions in the family:

Pr(x1, . . . ,xn|θ) = (
n

∏
i=1

h(xi))exp(
n

∑
i=1

S(xi)) ·θ −n ·A(θ) . (3.7)

Of particular importance is S, the sufficient statistics function, and A, the log-partition

function of this family. These two functions give raise to many of the useful behaviors and

properties of these families. The work in this thesis will make use of the following definitions to

ensure the families behave as intended.

Definition 6. The natural parameterization of an exponential family is the one that indexes the

distributions of the family by the vector θ that appears in the inner product of equation (3.7).

Definition 7. An exponential family is minimal if the coordinates of the function S are not

linearly dependent for all x ∈X .

When given a non-minimal exponential family, we can always find an alternative minimal

natural parameterization for that family. When we have a minimal exponential family, we

can then directly find a family of conjugate prior distributions. When the data arises from an

exponential family distribution, and our prior beliefs distribution over the parameter of that

distribution comes from the conjugate prior family, then our posterior beliefs over the parameter

of the data distribution will remain within the conjugate prior family.

A minimal exponential family will always have a minimal conjugate prior family. This

conjugate prior family is also an exponential family, and it satisfies the property that the posterior

distribution formed after observing data is also within the same family. In fact, when we have

the minimal natural representations, we can get the following formula for parameterizing our
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prior and posterior beliefs in terms of η :

Pr(θ |η) = expT (θ) ·η−C(η). (3.8)

The sufficient statistics of θ can be written as T (θ)= (θ ,−A(θ)) and Pr(θ |η0,x1, . . . ,xn)

= Pr(θ |η ′) where η ′ = η0 +∑
n
i=1(S(xi),1). This conjugate prior family is itself an exponential

family of distributions.

Beta-Bernoulli System.

A specific example of an exponential family that we will be interested in is the Beta-

Bernoulli system, where an individual’s data is a single i.i.d. bit modeled as a Bernoulli variable

with parameter ρ , along with a Beta conjugate prior. Pr(x|ρ) = ρx(1−ρ)1−x.

The Bernoulli distribution can be written in the form of equation (5.3) by letting h(x) = 1,

S(x) = x, θ = log( ρ

1−ρ
), and A(θ) = log(1+ expθ) = − log(1− ρ). The Beta distribution

with the usual parameters α0,β0 will be parameterized by η0 = (η
(1)
0 ,η

(2)
0 ) = (α0,α0 + β0)

in accordance equation (3.8). This system satisfies the properties we require, as this natural

parameterization is minimal. In this system, C(η) = Γ(η(1))+Γ(η(2)−η(1))−Γ(η(2)).
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Chapter 4

Private Posterior Sampling of Exponential
Families via Noisy Statistics

4.1 Introduction

Probabilistic models trained via Bayesian inference are widely and successfully used in

application domains where privacy is invaluable, from text analysis [Blei et al., 2003, Goldwater

and Griffiths, 2007], to personalization [Salakhutdinov and Mnih, 2008], to medical informatics

[Husmeier et al., 2006], to MOOCs [Piech et al., 2013]. In these applications, data scientists

must carefully balance the benefits and potential insights from data analysis against the privacy

concerns of the individuals whose data are being studied [Daries et al., 2014].

Dwork et al. [2006b] placed the notion of privacy-preserving data analysis on a solid foun-

dation by introducing differential privacy [Dwork and Roth, 2014], an algorithmic formulation

of privacy which is a gold standard for privacy-preserving data-driven algorithms. Differential

privacy measures the privacy “cost” of an algorithm. When designing privacy-preserving meth-

ods, the goal is to achieve a good trade-off between privacy and utility, which ideally improves

with the amount of available data.

As observed by Dimitrakakis et al. [2014] and Wang et al. [2015b], Bayesian posterior

sampling behaves synergistically with differential privacy because it automatically provides

a degree of differential privacy under certain conditions. However, there are substantial gaps

between this elegant theory and the practical reality of Bayesian data analysis. Privacy-preserving
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posterior sampling is hampered by data inefficiency, as measured by asymptotic relative effi-

ciency (ARE). In practice, it generally requires artificially selected constraints on the spaces of

parameters as well as data points. Its privacy properties are also not typically guaranteed for

approximate inference.

This paper identifies these gaps between theory and practice, and begins to mend them

via an extremely simple alternative technique based on the workhorse of differential privacy, the

Laplace mechanism [Dwork et al., 2006b]. Our approach is equivalent to a generalization of

Zhang et al. [2016]’s recently and independently proposed algorithm for beta-Bernoulli systems.

We provide a theoretical analysis and empirical validation of the advantages of the proposed

method. We extend both our method and Dimitrakakis et al. [2014], Wang et al. [2015b]’s one

posterior sample (OPS) method to the case of approximate inference with privacy-preserving

MCMC. Finally, we demonstrate the practical applicability of this technique by showing how

to use a privacy-preserving HMM model to analyze sensitive military records from the Iraq

and Afghanistan wars leaked by the Wikileaks organization. Our primary contributions are as

follows:

• We analyze the privacy cost of posterior sampling for exponential family posteriors via

OPS.

• We explore a simple Laplace mechanism alternative to OPS for exponential families.

• Under weak conditions we establish the consistency of the Laplace mechanism approach

and its data efficiency advantages over OPS.

• We extend the OPS and Laplace mechanism methods to approximate inference via MCMC.

• We demonstrate the practical implications with a case study on sensitive military records.
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4.2 Setup

We begin by discussing preliminaries on differential privacy and its application to

Bayesian inference. Our novel contributions will begin in Section 4.3.1.

4.2.1 Differential Privacy

Differential privacy is a formal notion of the privacy of data-driven algorithms. For an

algorithm to be differentially private the probabilities of the outputs of the algorithms may not

change much when one individual’s data point is modified, thereby revealing little information

about any one individual’s data. More precisely, a randomized algorithm M (X) is said to be

(ε,δ )-differentially private if

Pr(M (X) ∈S )≤ exp(ε)Pr(M (X′) ∈S )+δ (4.1)

for all measurable subsets S of the range of M and for all datasets X, X′ differing by a single

entry [Dwork and Roth, 2014]. If δ = 0, the algorithm is said to be ε-differentially private.

The Laplace Mechanism

One straightforward method for obtaining ε-differential privacy, known as the Laplace

mechanism [Dwork et al., 2006b], adds Laplace noise to the revealed information, where the

amount of noise depends on ε , and a quantifiable notion of the sensitivity to changes in the

database. Specifically, the L1 sensitivity4h for function h is defined as

4h = max
X,X′
‖h(X)−h(X′)‖1 (4.2)
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for all datasets X, X′ differing in at most one element. The Laplace mechanism adds noise via

ML(X,h,ε) = h(X)+(Y1,Y2, . . . ,Yd) , (4.3)

Yj ∼ Laplace(4h/ε),∀ j ∈ {1,2, . . . ,d} ,

where d is the dimensionality of the range of h. The ML(X,h,ε) mechanism is ε-differentially

private.

The Exponential Mechanism

The exponential mechanism [McSherry and Talwar, 2007] aims to output responses

of high utility while maintaining privacy. Given a utility function u(X,r) that maps database

X/output r pairs to a real-valued score, the exponential mechanism ME(X,u,ε) produces random

outputs via

Pr(ME(X,u,ε) = r) ∝ exp
(

εu(X,r)
24u

)
, (4.4)

where the sensitivity of the utility function is

4u, max
r,(X(1),X(2))

‖u(X(1),r)−u(X(2),r)‖1 , (4.5)

in which (X(1),X(2)) are pairs of databases that differ in only one element.

Composition Theorems

A key property of differential privacy is that it holds under composition, via an additive

accumulation.

Theorem 1. If M1 is (ε1,δ1)-differentially private, and M2 is (ε2,δ2)-differentially private,

then M1,2(X) = (M1(X),M2(X)) is (ε1 + ε2,δ1 +δ2)-differentially private.

This allows us to view the total ε and δ of our procedure as a privacy “budget” that

we spend across the operations of our analysis. There also exists an “advanced composition”
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theorem which provides privacy guarantees in an adversarial adaptive scenario called k-fold

composition, and also allows an analyst to trade an increased δ for a smaller ε in this scenario

[Dwork et al., 2010]. Differential privacy is also immune to data-independent post-processing.

4.2.2 Privacy and Bayesian Inference

Suppose we would like a differentially private draw of parameters and latent variables

of interest θ from the posterior Pr(θ |X), where X = {x1, . . . ,xN} is the private dataset. We can

accomplish this by interpreting posterior sampling as an instance of the exponential mechanism

with utility function u(X,θ) = logPr(θ ,X), i.e. the log joint probability of the chosen θ

assignment and the dataset X [Wang et al., 2015b]. We then draw θ via

f (θ ;X,ε) ∝ exp
(

ε logPr(θ ,X)

24 logPr(θ ,X)

)
= Pr(θ ,X)

ε

24 logPr(θ ,X) (4.6)

where the sensitivity is

4 logPr(θ ,X), max
θ ,(X(1),X(2))

‖ logPr(θ ,X(1))− logPr(θ ,X(2))‖1 (4.7)

in which X(1) and X(2) differ in one element. If the data points are conditionally independent

given θ ,

logPr(θ ,X) = logPr(θ)+
N

∑
i=1

logPr(xi|θ) , (4.8)

where Pr(θ) is the prior and Pr(xi|θ) is the likelihood term for data point xi. Since the prior

does not depend on the data, and each data point is associated with a single log-likelihood term

logPr(xi|θ) in logPr(θ ,X), from the above two equations we have

4 logPr(θ ,X) = max
x,x′,θ
| logPr(x′|θ)− logPr(x|θ)| . (4.9)

This gives us the privacy cost of posterior sampling:
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Theorem 2. If maxx,x′∈χ,θ∈Θ | logPr(x′|θ)− logPr(x|θ)| ≤C, releasing one sample from the

posterior distribution Pr(θ |X) with any prior is 2C-differentially private.

Wang et al. [2015b] derived this form of the result from first principles, while noting that

the exponential mechanism can be used, as we do here. Although they do not explicitly state

the theorem, they implicitly use it to show two noteworthy special cases, referred to as the One

Posterior Sample (OPS) procedure. We state the first of these cases:

Theorem 3. If maxx∈χ,θ∈Θ | logPr(x|θ)| ≤ B, releasing one sample from the posterior distribu-

tion Pr(θ |X) with any prior is 4B-differentially private.

This follows directly from Theorem 2, since if | logPr(x|θ)| ≤ B, C =4 logPr(θ ,X) =

2B.

Under the exponential mechanism, ε provides an adjustable knob trading between privacy

and fidelity. When ε = 0, the procedure samples from a uniform distribution, giving away no

information about X. When ε = 24 logPr(θ ,X), the procedure reduces to sampling θ from

the posterior Pr(θ |X) ∝ Pr(θ ,X). As ε approaches infinity the procedure becomes increasingly

likely to sample the θ assignment with the highest posterior probability. Assuming that our

goal is to sample rather than to find a mode, we would cap ε at 24 logPr(θ ,X) in the above

procedure in order to correctly sample from the true posterior. More generally, if our privacy

budget is ε ′, and ε ′ ≥ 2q4 logPr(θ ,X), for integer q, we can draw q posterior samples within

our budget.

As observed by Huang and Kannan [2012], the exponential mechanism can be understood

via statistical mechanics. We can write it as a Boltzmann distribution (a.k.a. a Gibbs measure)

f (θ ;x,ε) ∝ exp
(−E(θ)

T

)
, T =

24u(X,θ)

ε
, (4.10)

where E(θ) =−u(X,θ) =− logPr(θ ,X) is the energy of state θ in a physical system, and T

is the temperature of the system (in units such that Boltzmann’s constant is one). Reducing ε
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Table 4.1. Comparison of the properties of the two methods for private Bayesian inference.

Mechanism Sensitivity S(X) is Release ARE Pay Gibbs cost

Laplace supX,X′ ‖∑
N
i=1 S(x′(i))−∑

N
i=1 S(x(i))‖1 Noised Statistics 1 Once

Exponential supx,x′∈χ,θ∈Θ |θᵀ
(

S(x′)−S(x)
)

Rescaled One 1+T Per update
(OPS) + logh(x′)− logh(x)| Sample (unless converged)

corresponds to increasing the temperature, which can be understood as altering the distribution

such that a Markov chain moves through the state space more rapidly.

4.3 Privacy for Exponential Families: Exponential vs.
Laplace Mechanisms

By analyzing the privacy cost of sampling from exponential family posteriors in the

general case we can recover the privacy properties of many standard distributions. These results

can be applied to full posterior sampling, when feasible, or to Gibbs sampling updates, as we

discuss in Section 4.4. In this section we analyze the privacy cost of sampling from exponential

family posterior distributions exactly (or at an appropriate temperature) via the exponential

mechanism, following Dimitrakakis et al. [2014] and Wang et al. [2015b], and via a method

based on the Laplace mechanism, which is a generalization of Zhang et al. [2016]. The properties

of the two methods are compared in Table 4.1.

4.3.1 The Exponential Mechanism

Consider exponential family models with likelihood

Pr(x|θ) = h(x)g(θ)exp
(

θ
ᵀS(x)

)
,

where S(x) is a vector of sufficient statistics for data point x, and θ is a vector of natural

parameters. For N i.i.d. data points, we have

Pr(X|θ) =
( N

∏
i=1

h(x(i))
)

g(θ)N exp
(

θ
ᵀ

N

∑
i=1

S(x(i))
)

.
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Further suppose that we have a conjugate prior which is also an exponential family distribution,

Pr(θ |χ,α) = f (χ,α)g(θ)α exp
(

αθ
ᵀ
χ

)
,

where α is a scalar, the number of prior “pseudo-counts,” and χ is a parameter vector. The

posterior is proportional to the prior times the likelihood,

Pr(θ |X,χ,α) ∝ g(θ)N+α exp
(

θ
ᵀ( N

∑
i=1

S(x(i))+αχ
))

. (4.11)

To compute the sensitivity of the posterior, we have

| logPr(x′|θ)− logPr(x|θ)|= |θᵀ
(

S(x′)−S(x)
)
+ logh(x′)− logh(x)| .

From Equation 4.9, we obtain

4 logPr(θ ,X) = sup
x,x′∈χ,θ∈Θ

|θᵀ
(

S(x′)−S(x)
)
+ logh(x′)− logh(x)| . (4.12)

A posterior sample at temperature T ,

PrT (θ |X,χ,α) ∝ g(θ)
N+α

T exp
(

θ
ᵀ∑

N
i=1 S(x(i))+αχ

T

)
, T =

24 log p(θ ,X)

ε
, (4.13)

has privacy cost ε , by the exponential mechanism. As an example, consider a beta-Bernoulli

model,

Pr(p|α,β ) =
1

B(α,β )
pα−1(1− p)β−1

=
1

B(α,β )
exp((α−1

)
log p+(β −1

)
log(1− p))

Pr(x|p) = px(1− p)1−x = exp(x log p+(1− x) log(1− p))
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where B(α,β ) is the beta function. Given N binary-valued data points X = x(1), . . . ,x(N) from

the Bernoulli distribution, the posterior is

Pr(p|X,α,β ) ∝ exp
((

n++α−1
)

log p+
(
n−+β −1

)
log(1− p)

)
n+ =

N

∑
i=1

x(i), n− =
N

∑
i=1

(1− x(i)) .

The sufficient statistics for each data point are S(x) = [x,1− x]ᵀ. The natural parameters for the

posterior are θ = [log p, log(1− p)]ᵀ, and h(x) = 0. The exponential mechanism sensitivity for

a truncated version of this model, where a0 ≤ p≤ 1−a0, can be computed from Equation 4.12,

4 logPr(θ ,X) = sup
x,x′∈{0,1},p∈[a0,1−a0]

|x log p+(1− x) log(1− p)−
(
x′ log p+(1− x′) log(1− p)

)
|

=− loga0 + log(1−a0) . (4.14)

Note that if a0 = 0, corresponding to a standard untruncated beta distribution, the sensitivity is

unbounded. This makes intuitive sense because some datasets are impossible if p = 0 or p = 1,

which violates differential privacy.

4.3.2 The Laplace Mechanism

One limitation of the exponential mechanism / OPS approach to private Bayesian infer-

ence is that the temperature T of the approximate posterior is fixed for any ε that we are willing

to pay, regardless of the number of data points N (Equation 4.10). While the posterior becomes

more accurate as N increases, and the OPS approximation becomes more accurate by proxy, the

OPS approximation remains a factor of T flatter than the posterior at N data points. This is not

simply a limitation of the analysis. An adversary can choose data such that the dataset-specific

privacy cost of posterior sampling approaches the worst case given by the exponential mechanism

as N increases, by causing the posterior to concentrate on the worst-case θ .

Here, we provide a simple Laplace mechanism alternative for exponential family posteri-

ors, which becomes increasingly faithful to the true posterior with N data points, as N increases,
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Figure 4.1. Privacy-preserving approximate posteriors for a truncated beta-Bernoulli model
(ε = 1, the true parameter p = 0.3, truncation point a0 = 0.2, and number of observations
N = 20). For the Laplace mechanism, 30 privatizing draws are rendered.

for any fixed privacy cost ε , under general assumptions. The approach is based on the obser-

vation that for exponential family posteriors, as in Equation 4.11, the data interacts with the

distribution only through the aggregate sufficient statistics, S(X) = ∑
N
i=1 S(x(i)). If we release

privatized versions of these statistics we can use them to perform any further operations that

we’d like, including drawing samples, computing moments and quantiles, and so on. This can

straightforwardly be accomplished via the Laplace mechanism:

Ŝ(X) = proj(S(X)+(Y1,Y2, . . . ,Yd)) , (4.15)

Yj ∼ Laplace(4S(X)/ε),∀ j ∈ {1,2, . . . ,d} ,
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where proj(·) is a projection onto the space of sufficient statistics, if the Laplace noise takes it

out of this region. For example, if the statistics are counts, the projection ensures that they are

non-negative. The L1 sensitivity of the aggregate statistics is

4S(X) = sup
X,X′
‖

N

∑
i=1

S(x′(i))−
N

∑
i=1

S(x(i))‖1 (4.16)

= sup
x,x′
‖S(x′)−S(x)‖1 ,

where X, X′ differ in at most one element. Note that perturbing the sufficient statistics is

equivalent to perturbing the parameters, which was recently and independently proposed by

Zhang et al. [2016] for beta-Bernoulli models such as Bernoulli naive Bayes.

A comparison of Equations 4.16 and 4.12 reveals that the L1 sensitivity and exponential

mechanism sensitivities are closely related. The L1 sensitivity is generally easier to control as it

does not involve θ or h(x) but otherwise involves similar terms to the exponential mechanism

sensitivity. For example, in the beta posterior case, where S(x) = [x,1− x] is a binary indicator

vector, the L1 sensitivity is 2. This should be contrasted to the exponential mechanism sensitivity

of Equation 4.14, which depends heavily on the truncation point, and is unbounded for a standard

untruncated beta distribution. The L1 sensitivity is fixed regardless of the number of data points

N, and so the amount of Laplace noise to add becomes smaller relative to the total S(X) as N

increases.

Figure 4.1 illustrates the differences in behavior between the two privacy-preserving

Bayesian inference algorithms for a beta distribution posterior with Bernoulli observations.

The OPS estimator requires the distribution be truncated, here at a0 = 0.2. This controls the

exponential mechanism sensitivity, which determines the temperature T of the distribution, i.e.

the extent to which the distribution is flattened, for a given ε . Here, T = 2.7. In contrast, the

Laplace mechanism achieves privacy by adding noise to the sufficient statistics, which in this

case are the pseudo-counts of successes and failures for the posterior distribution. In Figure 4.2
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Figure 4.2. L1 error for private approximate samples from a beta posterior over a Bernoulli
success parameter p, as a function of the number of Bernoulli(p) observations, averaged over
1000 repeats. The true parameter was p= 0.1, the exponential mechanism posterior was truncated
at a0 = 0.05, and ε = 0.1.

we illustrate the fidelity benefits of posterior sampling based on the Laplace mechanism instead

of the exponential mechanism as the amount of data increases. In this case the exponential

mechanism performs better than the Laplace mechanism only when the number of data points

is very small (approximately N = 10), and is quickly overtaken by the Laplace mechanism

sampling procedure. As N increases the accuracy of sampling from the Laplace mechanism’s

approximate posterior converges to the performance of samples from the true posterior at the

current number of observations N, while the exponential mechanism behaves similarly to the

posterior with fewer than N observations. We show this formally in the next subsection.

4.3.3 Theoretical Results

First, we show that the Laplace mechanism approximation of exponential family poste-

riors approaches the true posterior distribution evaluated at N data points. Proofs are given in

Section 4.6.
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Lemma 1. For a minimal exponential family given a conjugate prior, where the posterior takes

the form Pr(θ |X,χ,α) ∝ g(θ)n+α exp
(

θᵀ
(

∑
n
i=1 S(x(i))+αχ

))
, where Pr(θ |η) denotes this

posterior with a natural parameter vector η , if there exists a δ > 0 such that these assumptions

are met:

1. The data X comes i.i.d. from a minimal exponential family distribution with natural

parameter θ0 ∈Θ

2. θ0 is in the interior of Θ

3. The function A(θ) has all derivatives for θ in the interior of Θ

4. covPr(x|θ)(S(x))) is finite for θ ∈B(θ0,δ )

5. ∃w > 0 s.t. det(covPr(x|θ)(S(x))))> w for θ ∈B(θ0,δ )

6. The prior Pr(θ |χ,α) is integrable and has support on a neighborhood of θ ∗

then for any mechanism generating a perturbed posterior p̃N = Pr(θ |ηN + γ) against a

noiseless posterior pN = Pr(θ |ηN) where γ comes from a distribution that does not depend on

the number of data observations N and has finite covariance, this limit holds:

limN→∞ E[KL(p̃N ||pN)] = 0 .

Corollary 2. The Laplace mechanism on an exponential family satisfies the noise distribution

requirements of Lemma 1 when the sensitivity of the sufficient statistics is finite and either the

exponential family is minimal, or if the exponential family parameters θ are identifiable.

These assumptions correspond to the data coming from a distribution where the Laplace

regularity assumptions hold and the posterior satisfies the asymptotic normality given by the

Bernstein-von Mises theorem. For example, in the beta-Bernoulli setting, these assumptions

hold as long as the success parameter p is in the open interval (0,1). For p = 0 or 1, the relevant

parameter is not in the interior of Θ, and the result does not apply. In the setting of learning a
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normal distribution’s mean µ where the variance σ2 > 0 is known, the assumptions of Lemma

1 always hold, as the natural parameter space is an open set. However, Corollary 2 does not

apply in this setting because the sensitivity is infinite (unless bounds are placed on the data). Our

efficiency result, in Theorem 4, follows from Lemma 1 and the Bernstein-von Mises theorem.

Theorem 4. Under the assumptions of Lemma 1, the Laplace mechanism has an asymptotic

posterior of N (θ0,2I−1/N) from which drawing a single sample has an asymptotic relative

efficiency of 2 in estimating θ0, where I is the Fisher information at θ0.

Above, the asymptotic posterior refers to the normal distribution, whose variance depends

on N, that the posterior distribution approaches as N increases. This ARE result should be

contrasted to that of the exponential mechanism [Wang et al., 2015b].

Theorem 5. The exponential mechanism applied to the exponential family with temperature

parameter T ≥ 1 has an asymptotic posterior of N (θ ∗,(1+T )I−1/N) and a single sample has

an asymptotic relative efficiency of (1+T ) in estimating θ ∗, where I is the Fisher information at

θ ∗.

Here, the ARE represents the ratio between the variance of the estimator and the optimal

variance I−1/N achieved by the posterior mean in the limit. Sampling from the posterior itself

has an ARE of 2, due to the stochasticity of sampling, which the Laplace mechanism approach

matches. These theoretical results provide an explanation for the difference in the behavior of

these two methods as N increases seen in Figure 4.2. The Laplace mechanism will eventually

approach the true posterior and the impact of privacy on accuracy will diminish when the data

size increases. However, for the exponential mechanism with T > 1, the ratio of variances

between the sampled posterior and the true posterior given N data points approaches (1+T )/2,

making the sampled posterior more spread out than the true posterior even as N grows large.

So far we have compared the ARE values for sampling, as an apples-to-apples comparison.

In reality, the Laplace mechanism has a further advantage as it releases a full posterior with
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privatized parameters, while the exponential mechanism can only release a finite number of

samples with a finite ε , which we discuss in Remark 1.

Remark 1. Under the the assumptions of Lemma 1, by using the full privatized posterior instead

of just a sample from it, the Laplace mechanism can release the privatized posterior’s mean,

which has an asymptotic relative efficiency of 1 in estimating θ ∗.

4.4 Private Gibbs Sampling

We now shift our discussion to the case of approximate Bayesian inference. While the

analysis of Dimitrakakis et al. [2014] and Wang et al. [2015b] shows that posterior sampling is

differentially private under certain conditions, exact sampling is not in general tractable. It does

not directly follow that approximate sampling algorithms such as MCMC are also differentially

private, or private at the same privacy level. Wang et al. [2015b] give two results towards

understanding the privacy properties of approximate sampling algorithms. First, they show that

if the approximate sampler is “close” to the true distribution in a certain sense, then the privacy

cost will be close to that of a true posterior sample:

Proposition 3. If procedure A which produces samples from distribution PX is ε-differentially

private, then any approximate sampling procedures A ′ that produces a sample from P′X such

that ‖PX−P′X‖1 ≤ δ for any X is (ε,(1+ exp(ε)δ )-differentially private.

Unfortunately, it is not in general feasible to verify the convergence of an MCMC

algorithm, and so this criterion is not generally verifiable in practice. In their second result, Wang

et al. study the privacy properties of stochastic gradient MCMC algorithms, including stochastic

gradient Langevin dynamics (SGLD) [Welling and Teh, 2011] and its extensions. SGLD is

a stochastic gradient method with noise injected in the gradient updates which converges in

distribution to the target posterior.

In this section we study the privacy cost of MCMC, allowing us to quantify the privacy

of many real-world MCMC-based Bayesian analyses. We focus on the case of Gibbs sampling,
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under exponential mechanism and Laplace mechanism approaches. By reinterpreting Gibbs

sampling as an instance of the exponential mechanism, we obtain the “privacy for free” cost

of Gibbs sampling. Metropolis-Hastings and annealed importance sampling also have privacy

guarantees.

4.4.1 Gibbs Sampling with the Exponential Mechanism

We consider the privacy cost of a Gibbs sampler, where data X are behind the privacy

wall, current sampled values of parameters and latent variables θ = [θ1, . . . ,θD] are publicly

known, and a Gibbs update is a randomized algorithm which queries our private data in order

to randomly select a new value θ ′l for the current variable θl . The transition kernel for a Gibbs

update of θl is

T (Gibbs,l)(θ ,θ ′) = Pr(θ ′l
∣∣θ¬l,X) , (4.17)

where θ¬l refers to all entries of θ except l, which are held fixed, i.e. θ ′¬l = θ¬l . This update can

be understood via the exponential mechanism:

T (Gibbs,l,ε)(θ ,θ ′) ∝ Pr(θ ′l ,θ¬l,X)
ε

24 logPr(θ ′l ,θ¬l ,X) , (4.18)

with utility function u(X,θ ′l ;θ¬l) = logPr(θ ′l ,θ¬l,X), over the space of possible assignments to

θl , holding θ¬l fixed. A Gibbs update is therefore ε-differentially private, with

ε = 24 logPr(θ ′l ,θ¬l,X). This update corresponds to Equation 4.6 except that the set of

responses for the exponential mechanism is restricted to those where θ ′¬l = θ¬l . Note that

4 logPr(θ ′l ,θ¬l,X)≤4 logPr(θ ,X) (4.19)

as the worst case is computed over a strictly smaller set of outcomes. In many cases each

parameter and latent variable θl is associated with only the lth data point xl , in which case the

privacy cost of a Gibbs scan can be improved over simple additive composition. In this case a
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random sequence scan Gibbs pass, which updates all N θl’s exactly once, is 24 logPr(θ ,X)-

differentially private by parallel composition [Song et al., 2013]. Alternatively, a random scan

Gibbs sampler, which updates a random Q out of N θl’s, is 44 logPr(θ ,X)Q
N -differentially

private from the privacy amplification benefit of subsampling data [Li et al., 2012].

4.4.2 Gibbs Sampling with the Laplace Mechanism

Suppose that the conditional posterior distribution for a Gibbs update is in the exponential

family. Having privatized the sufficient statistics arising from the data for the likelihoods involved

in each update, via Equation 4.15, and publicly released them with privacy cost ε , we may now

perform the update by drawing a sample from the approximate conditional posterior, i.e. Equation

4.11 but with S(X) = ∑
N
i=1(x(i)) replaced by Ŝ(X). Since the privatized statistics can be made

public, we can also subsequently draw from an approximate posterior based on Ŝ(X) with any

other prior (selected based on public information only), without paying any further privacy cost.

This is especially valuable in a Gibbs sampling context, where the “prior” for a Gibbs update

often consists of factors from other variables and parameters to be sampled, which are updated

during the course of the algorithm.

In particular, consider a Bayesian model where a Gibbs sampler interacts with data

only via conditional posteriors and their corresponding likelihoods that are exponential family

distributions. We can privatize the sufficient statistics of the likelihood just once at the beginning

of the MCMC algorithm via the Laplace mechanism with privacy cost ε , and then approximately

sample from the posterior by running the entire MCMC algorithm based on these privatized

statistics without paying any further privacy cost. This is typically much cheaper in the privacy

budget than exponential mechanism MCMC which pays a privacy cost for every Gibbs update,

as we shall see in our case study in Section 4.5. The MCMC algorithm does not need to converge

to obtain privacy guarantees, unlike the OPS method. This approach applies to a very broad

class of models, including Bayesian parameter learning for fully-observed MRF and Bayesian

network models. Of course, for this technique to be useful in practice, the aggregate sufficient
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Figure 4.3. State assignments of privacy-preserving HMM on Iraq (Laplace mechanism, ε = 5).

statistics for each Gibbs update must be large relative to the Laplace noise. For latent variable

models, this typically corresponds to a setting with many data points per latent variable, such as

the HMM model with multiple emissions per timestep which we study in the next section.

4.5 Discussion

A primary goal of this work is to establish the practical feasibility of privacy-preserving

Bayesian data analysis using complex models on real-world datasets. In this section we investi-

gate the performance of the methods studied in this paper for the analysis of sensitive military

data. In July and October 2010, the Wikileaks organization disclosed collections of internal

U.S. military field reports from the wars in Afghanistan and Iraq, respectively. Both disclosures

contained data from between January 2004 to December 2009, with ∼75,000 entries from the war

in Afghanistan, and ∼390,000 entries from Iraq. Hillary Clinton, at that time the U.S. Secretary

of State, criticized the disclosure, stating that it “puts the lives of United States and its partners’

service members and civilians at risk.”1 These risks, and the motivations for the leak, could
1Fallon, Amy (2010). “Iraq war logs: disclosure condemned by Hillary Clinton and Nato.” The Guardian.

Retrieved on 2/22/2016.

33



0

0.05

0.1

0.15

0.2

0.25

0.3

cr
im

in
al

 e
ve

nt
en

em
y 

ac
tio

n
ex

pl
os

iv
e 

ha
za

rd
fr

ie
nd

ly
 a

ct
io

n
fr

ie
nd

ly
 fi

re
no

n−
co

m
ba

t e
ve

nt
ot

he
r

su
sp

ic
io

us
 in

ci
de

nt
th

re
at

 r
ep

or
t

0

0.005

0.01

0.015

0.02

ca
ch

e 
fo

un
d/

cl
ea

re
d

ie
d 

fo
un

d/
cl

ea
re

d
ie

d 
ex

pl
os

io
n

di
re

ct
 fi

re
de

ta
in

es
ca

la
tio

n 
of

 fo
rc

e
in

di
re

ct
 fi

re
sm

al
l a

rm
s 

th
re

at
ra

id
m

ur
de

r

0

0.05

0.1

0.15

0.2

0.25

fr
ie

nd
ly

 a
nd

 h
os

t c
as

ua
lti

es

ci
vi

lia
n 

ca
su

al
tie

s

en
em

y 
ca

su
al

tie
s

Figure 4.4. State 1 for Iraq (type, category, casualties).
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Figure 4.5. State 2 for Iraq (type, category, casualties).

potentially have been mitigated by releasing a differentially private analysis of the data, which

protects the contents of each individual log entry while revealing high-level trends. Note that

since the data are publicly available, although our models were differentially private, other

aspects of this manuscript such as the evaluation may reveal certain information, as in other

works such as Wang et al. [2015a,b].

The disclosed war logs each correspond to an individual event, and contain textual

reports, as well as fields such as coarse-grained types (friendly action, explosive hazard,

. . . ), fine-grained categories (mine found/cleared, show of force, . . . ), and casualty counts

(wounded/killed/detained) for the different factions (Friendly, HostNation (i.e. Iraqi and Afghani

forces), Civilian, and Enemy, where the names are relative to the U.S. military’s perspective).
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Figure 4.6. Log-likelihood results on HMMs. Left: Naive Bayes (Afghanistan). Middle:
Afghanistan. Right: Iraq. For OPS, Dirichlets were truncated at a0 = 1

MKd
, M = 10 or 100,

where Kd = feature d’s dimensionality.

We use the techniques discussed in this paper to privately infer a hidden Markov model on the

log entries. The HMM was fit to the non-textual fields listed above, with one timestep per month,

and one HMM chain per region code. A naive Bayes conditional independence assumption was

used in the emission probabilities for simplicity and parameter-count parsimony. Each field was

modeled via a discrete distribution per latent state, with casualty counts binarized (0 versus > 0),

and with wounded/killed/detained and Friendly/HostNation features combined, respectively, via

disjunction of the binary values. This decreased the number of features to privatize, while slightly

increasing the size of the counts per field to protect and simplifying the model for visualization

purposes. After preprocessing to remove empty timesteps and near-empty region codes, the

median number of log entries per region/timestep pair was 972 for Iraq, and 58 for Afghanistan.

The number of log entries per timestep was highly skewed for Afghanistan, due to an increase in

density over time.

The models were trained via Gibbs sampling, with the transition probabilities collapsed

out, following Goldwater and Griffiths [2007]. We did not collapse out the naive Bayes pa-

rameters in order to keep the conditional likelihood in the exponential family. The details of

the model and inference algorithm are given in the supplementary material for Foulds et al.

[2016]. We trained the models for 200 Gibbs iterations, with the first 100 used for burn-in.

Both privatization methods have the same overall computational complexity as the non-private

sampler. The Laplace mechanism’s computational overhead is paid once up-front, and did not
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greatly affect the runtime, while OPS roughly doubled the runtime. For visualization purposes

we recovered parameter estimates via the posterior mean based on the latent variable assignments

of the final iteration, and we reported the most frequent latent variable assignments over the

non-burn-in iterations. We trained a 2-state model on the Iraq data, and a 3-state model for the

Afghanistan data, using the Laplace approach with total ε = 5 (ε = 1 for each of 5 features).

Interestingly, when given 10 states, the privacy-preserving model only assigned substan-

tial numbers of data points to these 2-3 states, while a non-private HMM happily fit a 10-state

model to the data. The Laplace noise therefore appears to play the role of a regularizer, consistent

with the noise being interpreted as a “random prior,” and along the lines of noise-based regu-

larization techniques such as [Srivastava et al., 2014, van der Maaten et al., 2013], although of

course it may correspond to more regularization than we would typically like. This phenomenon

potentially merits further study, beyond the scope of this paper.

We visualized the output of the Laplace HMM for Iraq in Figures 4.3–4.5. State 1 shows

the U.S. military performing well, with the most frequent outcomes for each feature being

friendly action, cache found/cleared, and enemy casualties, while the U.S. military performed

poorly in State 2 (explosive hazard, IED explosion, civilian casualties). State 2 was prevalent in

most regions until the situation improved to State 1 after the troop surge strategy of 2007. This

transition typically occurred after troops peaked in Sept.–Nov. 2007.

We also evaluated the methods at prediction. A uniform random 10% of the timestep

/ region pairs were held out for 10 train/test splits, and we reported average test likelihoods

over the splits. We estimated test log-likelihood for each split by averaging the test likelihood

over the burned-in samples (Laplace mechanism), or using the final sample (OPS). All methods

were given 10 latent states, and ε was varied between 0.1 and 10. We also considered a naive

Bayes model, equivalent to a 1-state HMM. The Laplace mechanism was superior to OPS for the

naive Bayes model, for which the statistics are corpus-wide counts, corresponding to a high-data

regime in which our asymptotic analysis was applicable. OPS was competitive with the Laplace

mechanism for the HMM on Afghanistan, where the amount of data was relatively low. For the
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Figure 4.7. State assignments for OPS privacy-preserving HMM on Afghanistan. (ε = 5,
truncation point a0 =

1
100Kd

). Top: Estimate from last 100 samples. Bottom: Estimate from last
one sample.

Iraq dataset, where there was more data per timestep, the Laplace mechanism outperformed OPS,

particularly in the high-privacy regime. For OPS, privacy at ε is only guaranteed if MCMC has

converged. Otherwise, from Section 4.4.1, the worst case is an impractical ε(Gibbs) ≤ 400ε (200

iterations of latent variable and parameter updates with worst-case cost ε). OPS only releases

one sample, which harmed the coherency of the visualization for Afghanistan, as latent states of

the final sample were noisy relative to an estimate based on all 100 post burn-in samples (Figure

4.7). Privatizing the Gibbs chain at a privacy cost of ε(Gibbs) would avoid this.

4.6 Proofs of Theoretical Results

Here we provide proofs for the results presented in Section 4.3.3.

Our results hold specifically over the class of exponential families. A family of distribu-

37



tions parameterized by θ which has the form

Pr(x|θ) = h(x)exp
(

θ
ᵀS(x)−A(θ)

)
(4.20)

is said to be an exponential family. Breaking down this structure into its parts, θ is a vector

known as the natural parameters for the distribution and lies in some space Θ. S(x) represents a

vector of sufficient statistics that fully capture the information needed to determine how likely

x is under this distribution. A(θ) represents the log-normalizer, a term used to make this a

probability distribution sum to one over all possibilities of x. h(x) is a base measure for this

family, independent of which distribution in the family is used.

As we are interested in learning θ , we are considering algorithms that generate a posterior

distribution for θ . The exponential families always have a conjugate prior family which is itself

an exponential family. When speaking of these prior and posterior distributions, θ becomes

the random variable and we introduce a new vector of natural parameters η in a space M

to parameterize these distributions. To ease notation, we will express this conjugate prior

exponential family as Pr(θ |η) = f (θ)exp
(

ηᵀT (θ)−B(η)
)

, which is simply a relabelling of

the exponential family structure. The posterior from this conjugate prior is often written in an

equivalent form

Pr(θ |X,χ,α) ∝ g(θ)N+α exp
(

θᵀ
(

∑
N
i=1 S(x(i))+αχ

))
,

where the vector χ and the scalar α together specify the vector η of natural parameters

for this distribution. From the interaction of χ,α, and X on the posterior, one can see that this

prior acts like α observations with average sufficient statistics χ have already been observed.

This parameterization with χ and α has many nice intuitive properties, but our proofs center

around the natural parameter vector η for this prior.

These two forms for the posterior can be reconciled by letting η =(αχ+∑
N
i=1 S(x(i)),N+

α) and T (θ) = (θ ,−A(θ)). This definition for the natural parameters η and sufficient statistics

T (θ) fully specify the exponential family the posterior resides in, with B(η) defined as the
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appropriate log-normalizer for this distribution (and f (θ) = 1 is merely a constant). We note

that the space of T (Θ) is not the full space Rd+1, as the last component of T (θ) is a function of

the previous components. Plugging in these expressions for η and T (θ) we get the following

form for the conjugate prior:

Pr(θ |X,χ,α) = exp
(

θ
ᵀ(αχ +

N

∑
i=1

S(x(i)))− (N +α)A(θ)−B(η)
)

. (4.21)

We begin by defining minimal exponential families, a special class of exponential families

with nice properties. To be minimal, the sufficient statistics must be linearly independent. We

will later relax the requirement that we consider only minimal exponential families.

Definition 8. An exponential family of distributions generating a random variable x ∈X with

S(x) ∈ Rd is said to be minimal if 6 ∃φ ∈ Rd,φ 6= 0 s.t. ∃c ∈ R s.t. ∀x ∈X φᵀS(x) = c.

Next we present a few simple algebraic results of minimal exponential families.

Lemma 4. For two distributions p,q from the same minimal exponential family,

KL(p||q) = A(θq)−A(θp)− (θq−θp)
ᵀ
∇A(θp) (4.22)

where θp,θq are the natural parameters of p and q, and A(θ) is the log-normalizer for

the exponential family.

Lemma 5. A minimal exponential family distribution satisfies these equalities:

∇A(θ) = EPr(x|θ)[S(x)]

∇
2A(θ) = covPr(x|θ)(S(x)) .
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Lemma 6. For a minimal exponential family distribution, its log-normalizer A(θ) is a strictly

convex function over the natural parameters. This implies a bijection between θ and

EPr(x|θ)[S(x)].

These are standard results coming from some algebraic manipulations as seen in [Brown,

1986], and we omit the proof of these lemmas. Lemma 6 immediately leads to a useful corollary

about minimal families and their conjugate prior families.

Corollary 7. For a minimal exponential family distribution, the conjugate prior family given in

equation (4.21) is also minimal.

PROOF:

T (θ) = (θ ,−A(θ)) forms the sufficient statistics for the conjugate prior. Since A(θ)

is strictly convex, there can be no linear relationship between the components of θ and A(θ).

Definition 8 applies. �

Our next result looks at sufficient conditions for getting a KL divergence of 0 in the limit

when adding a finite perturbance vector γ to the natural parameters. The limit is taken over N,

which will later be tied to the amount of data used in forming the posterior. As we now discuss

posterior distributions also forming exponential families, our natural parameters will now be

denoted by η and the random variables are now θ .

Lemma 8. Let Pr(θ |η) denote the distribution from an exponential family of natural parameter

η , and let γ be a constant vector of the same dimensionality as η , and let ηN be a sequence

of natural parameters. If for every ζ on the line segment connecting η and η + γ we have the

spectral norm ||∇2B(ζ )||< DN for some constant DN , then

KL(Pr(θ |ηN + γ)||Pr(θ |ηN))≤ DN ||γ|| .

PROOF: This follows from noticing that equation (4.22) in Lemma 4 becomes the first-order

Taylor approximation of B(ηN) centered at B(ηN + γ). From Taylor’s theorem, there exists α
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between ηN and ηN + γ such that 1
2γᵀ∇2B(α)γ is equal to the error of this approximation.

B(ηN) = B(ηN + γ)+(−γ)ᵀ∇B(ηN + γ)+
1
2

γ
ᵀ
∇

2B(α)γ (4.23)

From rearranging equation (4.22),

B(ηN + γ) = B(ηN)−KL(Pr(θ |ηN + γ)||Pr(θ |ηN))

+(γ)ᵀ∇B(ηn + γ) (4.24)

Using this substitution in (4.23) gives

B(ηN) = B(ηN)−KL(Pr(θ |ηN + γ)||Pr(θ |ηN))+
1
2

γ
ᵀ
∇

2B(α)γ . (4.25)

Solving for KL(Pr(θ |ηN + γ)||Pr(θ |ηN)) then gives the desired result:

KL(Pr(θ |ηN + γ)||Pr(θ |ηN)) =
1
2

γ
ᵀ
∇

2B(α)γ ≤ DN ||γ|| .

�

This provides the heart of our results: If ||∇2B(ζ )|| is small for all ζ connecting η and

η + γ , then we can conclude that KL(Pr(θ |ηN + γ)||Pr(θ |ηN)) is small with respect to ||γ||. We

wish to show that for ηN arising from observing N data points we have DN approaching 0 as N

grows. To achieve this, we will analyze a relationship between the norm of the natural parameter

η and the covariance of the distribution it parameterizes. This relationship shows that posteriors

with plenty of observed data have low covariance over T (θ), which permits us to use Lemma 8

to bound the KL divergence of our perturbed posteriors. Before we reach this relationship, first

we prove that our posteriors have a well-defined mode, as our later relationship will require this

mode to be well-behaved.
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Lemma 9. Let Pr(x|θ) = h(x)exp
(

θᵀS(x)−A(θ)
)

be a likelihood function for θ and let

there be a conjugate prior Pr(θ |η) = f (θ)exp
(

ηᵀT (θ)−B(η)
)

, where both distributions are

minimal exponential families. Let M be the space of natural parameters η , and Θ be the space

of θ . Furthermore, assume η is the parameterization arising from the natural conjugate prior,

such that η = (αχ,α). If the following conditions hold:

1. η is in the interior of M

2. α > 0

3. A(θ) is a real, continuous, and differentiable

4. B(η) exists, the distribution Pr(θ |η) is normalizable.

then

argmaxθ∈Θη
ᵀT (θ) = θ

∗
η

is a well-defined function of η , and θ ∗η is in the interior of Θ.

PROOF:

Using our structure for the conjugate prior from (4.21), we can expand the expression

ηᵀT (θ).

η
ᵀT (θ) = αχ

ᵀ
θ −αA(θ)

We note that the first term is linear in θ , and that by minimality and Lemma 6, A(θ)

is strictly convex. This implies ηᵀT (θ) is strictly concave over θ . Thus any interior local

maximum must also be the unique global maximum.

The gradient of with ηᵀT (θ) respect to θ is simple to compute.

∇(ηᵀT (θ)) = αχ
ᵀ−α∇A(θ)
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This expression can be set to zero, and solving for θ ∗η shows it must satisfy

∇A(θ ∗η) = χ . (4.26)

We remark by Lemma 5 that ∇A(θ ∗η) is equal to EPr(x|θ∗η )[S(x)], and so this is the θ that

generates a distribution with mean χ .

By the strict concavity, this is sufficient to prove θ ∗η is a unique local maximizer and thus

the global maximum.

To see that θ ∗η must be in the interior of Θ, we use the fact that A(θ) is continuously

differentiable. This means ∇A(θ) is a continuous function of θ . Since η is in the interior of

M, we can construct an open neighborhood around χ . The preimage of an open set under a

continuous function is also an open set, so this implies an open neighborhood exists around θ ∗η .

�

Now that we know θ ∗η is well defined for η in the interior of M, we can express our

relationship on high magnitude posterior parameters and the covariance of the distribution over

T (θ) they generate.

Lemma 10. Let Pr(x|θ) = h(x)exp
(

θᵀS(x)−A(θ)
)

be a likelihood function for θ and let

there be a conjugate prior Pr(θ |η) = f (θ)exp
(

ηᵀT (θ)−B(η)
)

, where both distributions are

minimal exponential families. Let M be the space of natural parameters η , and Θ be the space

of θ . Furthermore, assume η is the parameterization arising from the natural conjugate prior,

such that η = (αχ,α).

If ∃η0,δ1 > 0,δ2 > 0 such that the conditions of Lemma 9 hold for η ∈B(η0,δ1), and

we have these additional assumptions,

1. the cone {kη ′|k > 1,η ′ ∈B(η0,δ1)} lies entirely in M

2. A(θ) is differentiable of all orders
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3. ∃P s.t. ∀θ ∈ ∪
η ′∈B(η0,δ1)

B(θ ∗
η ′,δ2) all partial derivatives up to order 7 of A(θ) have

magnitude bounded by P

4. ∃w > 0 such that ∀θ ∈ ∪
η ′∈B(η0,δ1)

B(θ ∗
η ′,δ2) we have det(∇2A(θ))> w

then there exists C,K such that for k > K the following bound holds ∀η ∈B(η0,δ1):

||cov(T (θ)|kη)||< C
k .

PROOF:

This result follows from the Laplace approximation method for B(η) =
∫

Θ
eηᵀT (θ)dθ .

The inner details of this approximation are show in Lemma 14. Here we show that our setting

satisfies all the regularity assumptions for this approximation. First we define functions s(θ ,η)

and Fk(η).

s(θ ,η) = η
ᵀT (θ) = αχ

ᵀ
θ −αA(θ) (4.27)

Fk(η) = B(kη)

=
∫

Θ

ekηᵀT (θ)dθ

=
∫

Θ

eks(θ ,η)dθ (4.28)

With these definitions, we may now begin to check the assumptions of Lemma 14 hold.

We copy these assumptions below, with a substitution of θ for φ and η for Y . The full details of

Lemma 14 can be found at the end of this section.

1. φ∗Y = argmaxφ∈Ms(φ ,Y ) = g(Y ), a function of Y .

2. φ∗Y ′ is in the interior of M for all Y ′ ∈B(Y0,δ1).

3. g(Y ) is continuously differentiable over the neighborhood B(Y0,δ1).
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4. s(φ ,Y ′) has derivatives of all orders for Y ′ ∈ B(Y0,δ1),φ ∈ B(φ∗Y ′,δ2) and all partial

derivatives up to order 7 are bounded by some constant P on this neighborhood.

5. ∃w > 0 such that ∀Y ′ ∈B(Y0,δ1),∀φ ∈B(φ∗Y ′,δ2) we have det(∇2
φ

s(φ ,Y ))> w.

6. F1(Y ′) exists for Y ′ ∈B(Y0,δ1), the integral is finite.

We now show these conditions hold one-by-one. Let η denote an arbitrary element of

B(η0,δ ).

1. θ ∗η is a well-defined function (Lemma 9).

2. θ ∗η is in the interior of Θ (Lemma 9).

3. g(η) follows the inverse of ∇A(θ) :Rd→Rd . This vector mapping has a Jacobian ∇2A(θ)

which assumption 4 guarantees has non-zero determinant on this neighborhood. This

satisfies the Inverse Function Theorem to show g(η) is continuously differentiable.

4. s(θ ,η) has derivatives of all orders, and are suitably bounded as s is composed of a linear

term and the differentiable function A(θ), where we have bounded the derivatives of A(θ).

5. Assumption 4 from this lemma translates directly.

6. F1(η) = B(η) which exists by virtue of η being in the space of valid natural parameters.

This completes all the requirements of Lemma 14, which guarantees the existence of C

and K such that for any k > K and any η ∈B(η0,δ1), if we let ψ denote kη , we have:

||∇2
ψB(ψ)||= ||∇2

ψ logFk(ψ/k)||< C
k .

We conclude by noting that ∇2
ψB(ψ) is the covariance of the posterior with parameteriza-

tion ψ = kη .

�
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Now that all our machinery is in place, it remains to be seen under what conditions the

posterior satisfies the conditions of the previous Lemmas, along with extending to the case where

γ is a random variable, and not just a fixed finite vector.

Lemma 11. Lemma 1 revisited. For a minimal exponential family given a conjugate prior, where

the posterior takes the form Pr(θ |X,χ,α) ∝ g(θ)n+α exp
(

θᵀ
(

∑
n
i=1 S(x(i)) + αχ

))
, where

Pr(θ |η) denotes this posterior with a natural parameter vector η , if there exists a δ > 0

such that these assumptions are met:

1. the data X comes i.i.d. from a minimal exponential family distribution with natural

parameter θ0 ∈Θ

2. θ0 is in the interior of Θ

3. the function A(θ) has all derivatives for θ in the interior of Θ

4. covPr(x|θ)(S(x))) is finite for θ ∈B(θ0,δ )

5. ∃w > 0 s.t. det(covPr(x|θ)(S(x))))> w for θ ∈B(θ0,δ )

6. the prior Pr(θ |χ,α) is integrable and has support on a neighborhood of θ ∗

then for any mechanism generating a perturbed posterior p̃N = Pr(θ |ηN + γ) against a

noiseless posterior pN = Pr(θ |ηN) where γ comes from a distribution that does not depend on

the number of data observations N and has finite covariance, this limit holds:

limN→∞ E[KL(p̃N ||pN)] = 0 .

PROOF:

We begin by fixing the randomness of the noise γ that the mechanism will add to the

natural parameters of the posterior.

We wish to show that the KL divergence goes to zero in the limit, which we will achieve

by showing that for large enough data sizes, both the perturbed and unperturbed posteriors lie

w.h.p. in a region where we can use Lemmas 8 and 10 apply.
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To compute the posterior, after drawing a collection X of N data observations, we

compute the sum of the sufficient statistics and add them to the prior’s parameters.

ηN =
(

αχ +∑S(x(i)),α +N
)

ηN is a random variable depending on the data observations X. To analyze how it behaves,

a couple related random variables will be defined, all implicitly conditioned on the constant

θ0. Let Y denote a random variable matching the distribution of a single observation, and let

UN = 1
N ∑S(x(i)) which has covariance 1

N cov(S(Y)). The expected value for UN is of course

E[S(Y)].

By a vector version of the Chebyshev inequality for a random vector U, [Chen, 2007]

Pr
(
(U−E[U])ᵀ(cov(U))−1(U−E[U])≥ ν

)
,

≤ d
ν

, (4.29)

where d is the dimensionality of U. Using the spectral norm ||(cov(UN))
−1|| and the l2

norm ||UN−E[UN ]|| with some some rearrangement, we can show the following inequalities.

We note that the covariance of UN must be invertible, since the covariance of Y is invertible by

assumption (5).

Pr
(
||UN−E[UN ]|| · ||(cov(UN))

−1|| ≥ ν

)
≤ d

ν
(4.30)

Pr
(
||UN−E[UN ]|| ≥ ν ||cov(UN)||

)
≤ d

ν
(4.31)

Pr
(
||UN−E[S(Y)]|| ≥ ν

N
||cov(Y)||

)
≤ d

ν
(4.32)

47



Thus for any ε > 0, τ > 0, there exists Nε,τ such that when the number of data observa-

tions N exceeds Nε,τ

Pr
(
||UN−E[Y]|| ≥ ε

)
≤ τ . (4.33)

We now define two modified vectors of natural parameters ηa =
ηN
N =(UN ,1)+ 1

N (αχ,α)

and ηb =
ηN+γ

N = (Un,1)+ 1
N (αχ,α)+ 1

N γ . From these definitions, one can see

E[ηa] = (E[Y],1)+
1
N
(αχ,α)

E[ηb] = E[ηa]+
1
N

γ

||ηa− (E[Y],1)|| ≤ ||(UN ,1)− (E[Y],1)||+ 1
N
||αχ|| (4.34)

||ηb− (E[Y],1)|| ≤ ||(UN ,1)− (E[Y],1)||

+
1
N

(
||αχ||+ ||γ||

)
. (4.35)

From the concentration bound in (4.33), we know ηa and ηb can be made to lie w.h.p. in

a region near their expectations with large N, and we wish to show this region satisfies all the

regularity assumptions seen in Lemma 10. Lemma 9 states θ ∗η is a continuously differentiable

function of η . Let it be denoted by the function r(η). For η0 = (E[Y],1), we see from equation

(4.26) that r(η0) = θ0.

The preimage r−1(B(θ0,δ )
)

is an open set, since it is the continuous preimage of an

open set. Thus there exists δ ′ such that B(η0,δ
′)⊂ r−1(B(θ0,δ/2)).

We may now pick ε ≤ δ ′/2 and let N′
δ ′,τ =max

( 2
δ ′ (||γ||+ ||αχ||),Nε,τ

)
. When n>N′

δ ′,τ ,
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we have 1
N ||αχ||+ 1

N ||γ|| ≤ δ ′/2 and (4.33), (4.34),(4.35) together show the following:

Pr(ηa 6∈B(η0,δ
′)∨ηb 6∈B(η0,δ

′))≤ τ . (4.36)

With high probability, ηa and ηb both lie in a neighborhood of η0. Further, all η in

this neighborhood have modes θ ∗η ∈B(θ0,δ ), a region that assumptions (4) and (5) tell us is

well-behaved. The assignment δ1 = δ ′ and δ2 = δ/2 satisfies the conditions for Lemma 10 with

assumptions (2),(3),(4),(5),(6) serving to round out the rest of the regularity assumptions of

Lemma 10 with trivial translations.

By the construction, we have ηN =Nηa and ηN +γ =Nηb. For any ζ on the line segment

connecting ηN and ηN + γ , we have ζ = Nηc for some ηc on the line segment connecting ηa

and ηb.

Therefore by Lemma 10, there exists a K and a C such that if N > K we have

||cov(T (θ)|ζ )||< C
N . This bound can be used in Lemma 8 with DN = O(1/N) to see

KL(p̃N ||pN) = O(1/N)C||γ||

whenever N > max(N′
δ ′,τ ,K) with arbitrarily high probability 1− τ . Letting τ approach

0, we can extend this to the expectation over the randomness of X, as with probability 1 our

random variables will lie in the region where this inequality holds.

limsup
N→∞

EX[KL(p̃N ||pN)] = 0 (4.37)

Equation (4.37) is w.r.t. to a fixed γ , but the desired result is an expectation over γ and

X. First, let us express this expectation in terms of γ and X. Letting DN = O(1/N) denote the

bound used in Lemma 8 and N being sufficiently large:
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E[KL(p̃N ||pN)] =
∫

EX
[
KL(p̃N ||pN)|γ

]
dPr(γ)

≤
∫

DN ||γ||dPr(γ). (4.38)

The assumption that γ comes from a distribution of finite variance ensures the right side

of (4.38) is integrable. By an application of Fatou’s Lemma, the following inequality holds:

∫
limsup

N→∞

EX
[
KL(p̃N ||pN)|γ

]
dPr(γ)

≥ limsup
N→∞

∫
EX
[
KL(p̃N ||pN)|γ

]
dPr(γ). (4.39)

The left hand side has been shown to be zero by equations (4.37) and (4.38), and the right

hand side is bounded below by 0 since KL divergences are never negative. Thus this inequality

suffices to show the limit is zero and prove the desired result.

�

Corollary 12. The Laplace mechanism on an exponential family satisfies the noise distribution

requirements of Lemma 1 when the sensitivity of the sufficient statistics is finite and either the

exponential family is minimal, or if the exponential family parameters θ are identifiable.

PROOF: If the exponential family is already minimal, this result is trivial. If it is not minimal,

there exists a minimal parameterization. We wish to show adding noise to the non-minimal

parameters is equivalent to adding differently distributed noise to the minimal parameterization,

and this new noise distribution also satisfies the noise distribution requirements of Lemma 1: the

noise distribution does not depend on N and it has finite covariance.

Let us explicitly construct a minimal parameterization for this family of distributions. If

the exponential family is not minimal, this means the d dimensions of the sufficient statistics S(x)
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of the data are not fully linearly independent. Let S(x) j be the jth component of S(x) and k be

the maximal number of linearly independent sufficient statistics, and without loss of generality

assume they are the first k components. Let S̃(x) be the vector of these k linearly independent

components.

For ∀ j > k, ∀x∃φ j ∈ Rk such that S(x) j = φ j · S̃(x)+ z j. We wish to build a minimal

exponential family distribution that is identical to the original one, but is parameterized only by

S̃(x) as the sufficient statistics and some θ̃ as the natural parameters. For these two distributions

to be equivalent for all x, it suffices to have equality on the exponents.

(θᵀS(x)−A(θ)) = (θ̃ᵀS̃(x)− Ã(θ̃)) (4.40)

Examining the difference of the two sides, we get

θ
ᵀS(x)− θ̃

ᵀS̃(x)−A(θ)+ Ã(θ̃)

=
k

∑
j=1

(θ j− θ̃ j)S(x) j +
d

∑
j=k+1

θ jS(x) j−A(θ)+ Ã(θ̃). (4.41)

Using the known linear dependence for j > k, this can be rewritten as

k

∑
j=1

(θ j− θ̃ j)S(x) j +
d

∑
j=k+1

θ j(φ j · S̃(x)+ z j)

−A(θ)+ Ã(θ̃) (4.42)

=
k

∑
j=1

(θ j− θ̃ j)S(x) j +
d

∑
j=k+1

θ j(φ j · S̃(x))

+
d

∑
j=k+1

θ jz j−A(θ)+ Ã(θ̃). (4.43)

Now since S̃(x) is merely the first k components of S(x), the first two sums of (4.43) are
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each simply dot products of S̃(x) and can be combined as (θ[k]− θ̃ +∑
d
j=k+1 θ jφ j)

ᵀS̃(x) where

θ[k] is the vector of the first k components of θ . We can force equation (4.40) to hold by choosing

θ̃ and Ã(θ̃) appropriately to set equation (4.43) to zero.

• θ̃ = θ[k]+∑
d
j=k+1 θ jφ j

• Ã(θ̃) =−∑
d
j=k+1 θ jz j +A(θ)

We note that this requires Ã(θ̃) to truly be a function depending only on θ̃ , but we have

written it in terms of θ instead. This is justifiable by the assumption that the natural parameters

θ are identifiable, that is each distribution over x is associated with just one θ ∈Θ. This means

there is a bijection from θ and θ̃ , which ensures Ã(θ̃) is a well-defined function.

This suffices to characterize the way the additional natural parameters affect the parame-

ters of the equivalent minimal system. Any additive noise to a component θ j translates linearly

to additive noise on the components θ̃ j, meaning the Laplace mechanism’s noise distribution on

the non-minimal parameter space still corresponds to some noise distribution on the minimal

parameters that does not depend on the data size N, and it still has a finite covariance. If the

minimal exponential family tends towards a KL divergence of zero, the equivalent non-minimal

exponential family must as well. �

Theorem 6. Under the assumptions of Lemma 1, the Laplace mechanism has an asymptotic

posterior of N (θ0,2I−1/N) from which drawing a single sample has an asymptotic relative

efficiency of 2 in estimating θ0, where I is the Fisher information at θ0.

PROOF:

The assumptions of Lemma 1 match the Laplace regularity assumptions under which

asymptotic normality holds, and we know that the unperturbed posterior pN converges to

N (θ ∗,2I−1/N) under the Bernstein-von Mises theorem [Kass et al., 1990]. If p̃N is the posterior

of the Laplace mechanism for a fixed randomness, then we have limN→∞ KL(p̃N ||pN) = 0 and
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p̃N must converge to the same distribution as pN . From this it is clear that samples from pN

and from p̃N both have an asymptotic relative efficiency of 2. We once again argue that if this

asymptotic behavior holds for any fixed randomness of the Laplace mechanism, it also holds for

the Laplace mechanism as a whole. �

To show the previous results, we relied on some mathematical results involving the co-

variances of posteriors after observing a large amount of data. We still need to show these bounds

on the covariances, which will be accomplished by adapting existing Laplace approximation

methods. Before we get there, we will need one quick result about convex functions with a

positive definite Hessian in order to perform the approximation:

Lemma 13. Let f (y) : Rd → R be a strictly convex function with minimum at y∗. If ∇2 f (y∗) is

positive definite and ∇3 f (y) exists everywhere, then for any c > 0 there exists b > 0 such that

| f (y)− f (y∗)| ≤ b implies ||y− y∗|| ≤ c.

PROOF:

By the existence of ∇3 f (y) and thus the continuity of ∇2 f (y), we know there exists a

positive δ < c and a w > 0 such that y ∈ B(y∗,δ ) implies ∇2 f (y)−wI is positive semi-definite,

where I is the identity matrix. (i.e. the spectral norm ||∇2 f (y)|| ≥ w)

As y∗ is the global minimum, we know the gradient is 0 at y∗. Thus for y ∈ B(y∗,δ ) this

leads to a Taylor expansion of the form

f (y) = f (y∗)+(y− y∗)
1
2

∇
2 f (y′)(y− y∗)ᵀ

≥ f (y∗)+
w
2
||y− y∗|| (4.44)

for some y′ on the line segment connecting y and y∗. The inequality follows from the

second derivative being positive definite on this neighborhood.

Consider the set Qε = {y s.t. ||y− y∗||= ε}. By equation (4.44) we know for y ∈ Qε we
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have | f (y)− f (y∗)| ≥ wε

2 if ε ≤ δ .

For any y 6∈ B(y∗,δ ), there exists t ∈ (0,1) such that (1− t)y∗+ ty ∈Qδ by the continuity

of the norm.

By strict convexity, we know

t f (y)+(1− t) f (y∗)> f (ty+(1− t)y∗)

f (y)>
1
t

f (ty+(1− t)y∗)+
t−1

t
f (y∗)

f (y)− f (y∗)>
1
t

f (ty+(1− t)y∗)− 1
t

f (y∗).

If we let t satisfy (1− t)y∗+ ty ∈ Qδ we know t = δ/||y− y∗|| ≤ 1. Substituting with

(4.44) we get

f (y)− f (y∗)>
(w/2)δ + f (y∗)

t
− 1

t
f (y∗) =

wδ

2t
≥ wδ

2
.

Thus if we let b = wδ

2 , we see ||y− y∗||> c implies | f (y)− f (y∗)|> b.

The desired result then follows as the contrapositive.

�

Lemma 13 will be used to demonstrate a regularity assumption required in the next

lemma, which performs all the heavy lifting in using the Laplace approximation. Lemma 14

adapts a previous argument about Laplace approximations of a posterior. This adapted Laplace

approximation argument forms the core of Lemma 10, which allows us to see the covariance of

posteriors shrink as more data is observed.

Lemma 14. Let s(φ ,Y ) be a function M×U →R, where M is the space of φ and U is the space
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of Y .

For functions of the form Fk(Y ) =
∫

φ∈M eks(φ ,Y )dφ , if the following regularity assumptions

hold for some δ1 > 0, δ2 > 0, Y0 ∈M:

1. φ∗Y = argmaxφ∈Ms(φ ,Y ) = g(Y ), a function of Y

2. φ∗Y ′ is in the interior of M for all Y ′ ∈B(Y0,δ1)

3. g(Y ) is continuously differentiable over the neighborhood B(Y0,δ1)

4. s(φ ,Y ′) has derivatives of all orders for Y ′ ∈B(Y0,δ1),φ ∈B(φ∗Y ′,δ2) and all partial

derivatives up to order 7 are bounded by some constant P on this neighborhood

5. ∃w > 0 such that ∀Y ′ ∈B(Y0,δ1),∀φ ∈B(φ∗Y ′,δ2) we have det(∇2
φ

s(φ ,Y ))> w

6. F1(Y ′) exists for Y ′ ∈B(Y0,δ1), the integral is finite

then there exists C and K such that for any k > K and any Y ′ ∈B(Y0,δ1), letting ψ = kY ′,

the spectral norm ||∇2
ψ logFk(ψ/k)||< C

k .

PROOF:

Our goal here is to bound ||∇2
ψ logFk(ψ/k)||, which we will achieve by characterizing

Fk(ψ/k) and analyzing its derivatives.

We will be using standard Laplace approximation methods seen in [Kass et al., 1990] to

explore Fk(ψ). To begin, we must show our assumptions satisfy the regularity assumptions for

the approximation.

For a fixed Y ′ ∈ B(Y0,δ ), from condition 5 we know there exists a neighborhood around

φ∗Y where ∇2
φ

s(φ ,Y ) is positive definite. For δ ′ > 0, let Qδ ′,Y = {φ ∈M s.t. ||φ −φ∗Y || ≤ δ ′}. By

using Lemma 13 we can verify the following expression for any δ ′ ∈ (0,δ ):

limsup
k→∞

sup
φ 6∈Q

δ ′,Y

s(φ ,Y )− s(φ∗Y ,Y )< 0. (4.45)
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Note that the right hand side does not depend on k, and Lemma 13 guarantees a non-zero

bound for the right hand side for any δ ′ ∈ (0,δ ). Equation (4.45) exactly matches condition

(iii)′ of Kass, and its intuitive meaning is that for any δ ′, there exists sufficiently large k such

that the integral Fk is negligible outside the region Qδ ′ .

Conditions (4),(5),(6) also match directly the conditions given by Kass, though we note

we require even higher derivatives to be bounded or present. These extra derivatives will be used

later to extend the argument given by Kass to suit our purposes and give a uniform bound across

a neighborhood.

Theorem 1 of [Kass et al., 1990] gives the following result, when we set their b to the

constant 1:

Fk(Y ) = (2π)
m
2 [det(k∇

2s(φ∗Y ,Y )]
− 1

2 exp(−ks(φ∗Y ,Y ))Z(kY ) (4.46)

Z(kY ) = 1+
1
k

(
1

72 ∑(∇3
φ s(φ∗Y ,Y ))(pqr)(∇

3s(φ∗Y ,Y ))(de f )µ
6
pqrde f

− 1
24 ∑(∇4s(φ∗Y ,Y ))(de f g)µ

4
de f g

)
+O(k−2), (4.47)

where m is the dimensionality of Y , µ6
pqrde f and µ4

de f g are the sixth and fourth central

moments of a multivariate Gaussian with covariance matrix (∇2s(φ∗Y ,Y ))
−1. All sums are written

in the Einstein summation notation. We remark that the O(k−2) error term of this approximation

also depends on kY .

What we are really interested in is the quantity ∇2
ψ logFk(ψ) evaluated at ψ = kY . We

take the logarithm of (4.46):
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logFk(ψ/k) = log
(
(2π)

m
2 [det(k∇

2s(φ∗Y ,Y )]
− 1

2

· exp(−ks(φ∗Y ,Y ))Z(ψ)
)

= log
(
(2π)

m
2
)
− 1

2
log
(
[det(k∇

2s(φ∗Y ,Y ))]
)

− ks(φ∗Y ,Y )+ log(Z(ψ)). (4.48)

We define new functions s̃0, s̃1, s̃2 to simplify the analysis.

s̃0(Y ) = s(φ∗Y ,Y ) = s(g(Y ),Y ) (4.49)

s̃1(Y ) = ∇φ s(φ∗Y ,Y ) = ∇φ s(g(Y ),Y ) (4.50)

s̃2(Y ) = ∇
2
φ s(φ∗Y ,Y ) = ∇

2
φ s(g(Y ),Y ) (4.51)

By assumptions (3) and (4) we know these functions are continuously differentiable on

B(Y0,δ1) as they are the composition of continuously differentiable functions on the compact

set B(Y0,δ1).

We next look at the first derivative of (4.48). We remark that the partial derivatives of

logdet(X) are given by X−ᵀ.
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∇ψ logFk(ψ/k) =∇ψ [−
1
2

log
(
[det(ks̃2(ψ/k)]

)
]

−∇ψ [ks̃0(ψ/k)]+∇ψ log(Z(ψ))

=− 1
2
(ks̃2(ψ/k)))−ᵀ

1
k

+ s̃1(ψ/k)+
∇ψ(Z(ψ))

Z(ψ)
(4.52)

Now that we have an expression for ∇ψ logFk(ψ/k) , we take yet another derivative w.r.t.

to ψ to get our desired ∇2
ψ .

∇
2
ψ logFk(ψ/k) =∇ψ [−

1
2
(ks̃2(ψ/k)))−ᵀ

1
k
]

+∇ψ [s̃1(ψ/k)]

+∇ψ [
∇ψ(Z(ψ))

Z(ψ)
] (4.53)

Let us consider each of the three terms on the right side of (4.53) in isolation. For the first

term, we introduce yet another function s̃−2(Y ), the composition of s̃2 with the matrix inversion.

s̃−2(Y ) = (s̃2(Y ))−1

With this new function in hand, we further condense the first term of (4.53).

∇ψ [−
1
2
(ks̃2(ψ/k)))−ᵀ

1
k
] =∇ψ [−

1
2k

(s̃−2(ψ/k)))
1
k
]

=− 1
2k3 ∇Y s̃−2(ψ/k)

=O(k−3) (4.54)
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We previously remarked that s̃2 is continuously differentiable on the compact set

B(Y0,δ1). Condition (5) informs us that s̃2(Y ) is bounded away from being a singular matrix on

B(Y0,δ1) , so the matrix inversion is also uniformly continuous on this compact set. This means

∇Y s̃−2(ψ/k) has a finite supremum over B(Y0,δ1) and thus we can say this term is O(k−3)

uniformly on this neighborhood.

Next we consider the second term of (4.53).

∇ψ [s̃1(ψ/k)] =
1
k

s̃2(ψ/k) = O(k−1) (4.55)

From the continuity of s̃2(ψ/k) on our compact neighborhood, we know s̃2(Y ) has a

finite supremum over the compact set B(Y0,δ1), which gives the uniform O(k−1) bound.

Finally, we must consider the third term of (4.53).

∇ψ [
∇ψ(Z(ψ))

Z(ψ)
] =

∇2(Z(ψ))

Z(ψ)
− ∇(Z(ψ))(∇(Z(ψ)))ᵀ

Z(ψ)2 (4.56)

Recall that Z(ψ) had a local O(k−2) error term as given by [Kass et al., 1990]. We wish

to bound the derivatives of logFk(ψ), but the local bound on this error term given by Kass does

not bound its derivatives. However, a slight modification of the argument of [Kass et al., 1990]

shows that our added assumptions about the higher order derivatives are sufficient to control the

behavior of this error term. The following expression is their equation (2.2), translated to our

setting:
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exp(−ks(φ ,Y )) =

exp(−ks(φ∗Y ,Y ))exp(
1
2

∇
2s(φ∗Y ,Y )u

2)W (φ ,Y ) (4.57)

W (φ ,Y ) = 1− 1
6

k−1/2
∇

3s(φ∗Y ,Y )u
3

+
1
72

k−1(∇3s(φ∗Y ,Y ))
2u6

− 1
24

k−1
∇

4s(φ∗Y ,Y )u
4

− 1
120

k−3/2
∇

5s(φ∗Y ,Y )u
5

+
1

72
k−3/2

∇
3A(s(φ∗Y ,Y ))∇

4s(φ∗Y ,Y )u
7

+G(φ ,φ∗Y ,Y ), (4.58)

where G(φ ,φ∗Y ,Y ) is the fifth-order Taylor expansion error term (i.e. it depends on the

sixth-order partial derivatives at some φ ′ between φ and φ∗Y ).

We may continue this Taylor expansion another degree further to bound the variation of

G(φ ,φ∗Y ,Y ) for φ ∈B(φ∗Y ,δ2). We will consider Z(ψ), ∇ψZ(ψ), and ∇2
ψZ(ψ) as three separate

functions, each permitting a higher order Taylor expansion. Each will have their own respective

error term depending on the seventh-order partial derivatives at some φ ′, but we note that φ ′ is

not necessarily the same for each of them.

The argument of [Kass et al., 1990] already shows how the terms composing their O(k−2)

error term can be bounded in terms of ∇6
φ

S(φ∗Y ,Y ). It is trivial to show an analogous result for

our higher order approximations. This allows us to extend our approximation of Z(ψ) and its

derivatives uniformly to the neighborhood B(φ∗Y ,δ2). The newly introduced extra approximation

terms are O(k−v) with v≥ 2, and so our uniform bounds are still simply O(k−2), though with a

larger constant now.

Let k be sufficiently large, and let Q,R,S be positive constants satisfying 0<Q< ||Z(ψ)||,
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R > k||∇ψZ(ψ)||, S > k||∇2
ψZ(ψ)|| for all ψ in {ψ|ψ/k ∈ B(Y0,δ ). We remark that Q exists by

virtue of Z = 1+O(k−1)+O(k−2). R and S similarly exist by ||∇ψZ(ψ)|| and ||∇2
ψZ(ψ)|| both

being O(k−1) with no constant term in front.

∇ψ [
∇ψ(Z(ψ))

Z(ψ)
]≤ S

kQ
− R2

k2Q2 for all Y ′ ∈ B(Y0,δ )

This right hand side is clearly O(k−1), and we have uniform bounds across our neighbor-

hood.

∇ψ [
∇ψ(Z(ψ))

Z(ψ)
] = O(k−1) (4.59)

Combining the results of (4.54), (4.55), (4.59) with their sum in (4.53), we get this result:

||∇2
ψ logFk(ψ/k)||= O(k−1). (4.60)

This uniform asymptotic bound then ensures we have the intended result: ∃C,K such

that ∀Y ∈B(Y0,δ1) when k > K and ψ = kY we have ||∇2
ψ logFk(ψ/k)|| ≤C/k

�

4.7 Conclusion

This paper studied the practical limitations of using posterior sampling to obtain privacy

“for free.” We explored an alternative based on the Laplace mechanism, and analyzed it both

theoretically and empirically. We illustrated the benefits of the Laplace mechanism for privacy-

preserving Bayesian inference to analyze sensitive war records. The study of privacy-preserving

Bayesian inference is only just beginning. We envision extensions of these techniques to other

approximate inference algorithms, as well as their practical application to sensitive real-world

data sets. Finally, we have argued that asymptotic efficiency is important in a privacy context,

leading to an open question: how large is the class of private methods that are asymptotically
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efficient?
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Chapter 5

Private Posterior Sampling of Exponential
Families via Prior Rebalancing

5.1 Introduction

As data analysis continues to expand and permeate ever more facets of life, the concerns

over the privacy of one’s data grow too. Many results have arrived in recent years to tackle

the inherent conflict of extracting usable knowledge from a data set without over-extracting or

leaking the private data of individuals. Before one can strike a balance between these competing

goals, one needs a framework by which to quantify what it means to preserve an individual’s

privacy.

Since 2006, Differential Privacy (DP) has reigned as the privacy framework of choice.

It quantifies privacy by measuring how indistinguishable the mechanism is across whether or

not any one individual is in or out of the data set. This gave not just privacy semantics, but

also robust mathematical guarantees. However, the requirements have been cumbersome for

utility, leading to many proposed relaxations. One common relaxation is approximate DP, which

allows arbitrarily bad events to occur with probability at most δ . A more recent relaxation

is Rényi Differential Privacy (RDP) proposed in [Mironov, 2017], which uses the measure of

Rényi divergences to smoothly vary between bounding the average and maximum privacy loss.

However, RDP has very few mechanisms compared to the more established approximate DP. We

expand the RDP repertoire with novel mechanisms inspired by Rényi divergences, as well as
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re-analyzing an existing method in this new light.

Inherent to DP and RDP is that there must be some uncertainty in the mechanism; they

can not be deterministic. Many privacy methods have been motivated by exploiting pre-existing

sources of randomness in machine learning algorithms. One promising area has been Bayesian

data analysis, which focuses on maintaining and tracking the uncertainty within probabilistic

models. Posterior sampling is prevalent in many Bayesian methods, serving to introduce

randomness that matches the currently held uncertainty.

We analyze the privacy arising from posterior sampling as applied to two domains:

sampling from exponential family and Bayesian logistic regression. Along with these analyses,

we offer tunable mechanisms that can achieve stronger privacy guarantees than directly sampling

from the posterior. These mechanisms work via controlling the relative strength of the prior in

determining the posterior, building off the common intuition that concentrated prior distributions

can prevent overfitting in Bayesian data analysis. We experimentally validate our new methods

on synthetic and real data.

5.2 Setup

5.2.1 Privacy Model.

We say two data sets X and X′ are neighboring if they differ in the private record of a

single individual or person. We use n to refer to the number of records in the data set.

Definition 9. Differential Privacy (DP). A randomized mechanism A (X) is said to be (ε,δ )-

differentially private if for any subset U of the output range of A and any neighboring data sets

X and X′, we have Pr(A (X) ∈U)≤ exp(ε)Pr(A (X′) ∈U)+δ .

DP is concerned with the difference the participation of a individual might have on the

output distribution of the mechanism. When δ > 0, it is known as approximate DP while the

δ = 0 case is known as pure DP. The requirements for DP can be phrased in terms of a privacy

loss variable, a random variable that captures the effective privacy loss of the mechanism output.
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Definition 10. Privacy Loss Variable. We can define a random variable Z that measures the

privacy loss of a given output of a mechanism across two neighboring data sets X and X′.

Z = log
Pr(A (X) = o)
Pr(A (X′) = o)

∣∣∣∣
o∼A (X)

(5.1)

(ε,δ )-DP is the requirement that for any two neighboring data sets Z ≤ ε with probability

at least 1−δ . The exact nature of the trade-off and semantics between ε and δ is subtle, and

choosing them appropriately is difficult. For example, setting δ = 1/n permits (ε,δ )−DP

mechanisms that always violate the privacy of a random individual. However, there are other

ways to specify that a random variable is mostly small. One such way is to bound the Rényi

divergence of A (X) and A (X′).

Definition 11. Rényi Divergence. The Rényi divergence of order λ between the two distributions

P and Q is defined as

Rλ (P||Q) =
1

λ −1
log
∫

P(o)λ Q(o)1−λ do. (5.2)

We remark that this notation differs from that seen in 3.2, namely that the parameter α

has been renamed to λ . This is to avoid a conflict with the parameters α,β that arise in our

discussion of exponential family distributions. This alternative notation will be used consistently

for the rest of this chapter.

As λ → ∞, Rényi divergence becomes the max divergence; moreover, setting P = A (X)

and Q = A (X′) ensures that Rλ (P||Q) = 1
λ−1 logEZ[e(λ−1)Z], where Z is the privacy loss

variable. Thus, a bound on the Rényi divergence over all orders λ ∈ (0,∞) is equivalent to

(ε,0)-DP, and as λ → 1, this approaches the expected value of Z equal to KL(A (X)||A (X′)).

This leads us to Rényi Differential Privacy, a flexible privacy notion that covers this intermediate

behavior.

Definition 12. Rényi Differential Privacy (RDP). A randomized mechanism A (X) is said
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to be (λ ,ε)−Rényi differentially private if for any neighboring data sets X and X′ we have

Rλ (A (X)||A (X′))≤ ε .

The choice of λ in RDP is used to tune how much concern is placed on unlikely large

values of Z versus the average value of Z. One can consider a mechanism’s privacy as being

quantified by the entire curve of ε values associated with each order λ , but the results of [Mironov,

2017] show that almost identical results can be achieved when this curve is known at only a finite

collection of possible λ values.

5.2.2 Posterior Sampling.

In Bayesian inference, we have a model class Θ, and are given observations x1, . . . ,xn

assumed to be drawn from a θ ∈ Θ. Our goal is to maintain our beliefs about θ given the

observational data in the form of the posterior distribution Pr(θ |x1, . . . ,xn). This is often done in

the form of drawing samples from the posterior.

Our goal in this paper is to develop privacy preserving mechanisms for sampling from

the exponential family posterior, which we address in Section 5.3.

5.2.3 Related Work.

Differential privacy has emerged as the gold standard for privacy in a number of data

analysis applications – see Dwork and Roth [2014], Sarwate and Chaudhuri [2013] for surveys.

Since enforcing pure DP sometimes requires the addition of high noise, a number of relaxations

have been proposed in the literature. The most popular relaxation is approximate DP Dwork et al.

[2006a], and a number of uniquely approximate DP mechanisms have been designed by Dwork

and Lei [2009], Thakurta and Smith [2013], Chaudhuri et al. [2014], Bun et al. [2015] among

others. However, while this relaxation has some nice properties, recent work Mironov [2017],

McSherry [2017] has argued that it can also lead privacy pitfalls in some cases. Approximate

differential privacy is also related to, but is weaker than, the closely related δ -probabilistic
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privacy Machanavajjhala et al. [2008] and (1,ε,δ )-indistinguishability Chaudhuri and Mishra

[2006].

Our privacy definition of choice is Rényi differential privacy Mironov [2017], which

is motivated by two recent relaxations – concentrated DP Dwork and Rothblum [2016] and

z-CDP Bun and Steinke [2016]. Concentrated DP has two parameters, µ and τ , controlling

the mean and concentration of the privacy loss variable. Given a privacy parameter α , z-CDP

essentially requires (λ ,αλ )-RDP for all λ . While Bun and Steinke [2016], Dwork and Rothblum

[2016], Mironov [2017] establish tighter bounds on the privacy of existing differentially private

and approximate DP mechanisms, we provide mechanisms based on posterior sampling from

exponential families that are uniquely RDP. RDP is also a generalization of the notion of KL-

privacy Wang et al. [2016], which has been shown to be related to generalization in machine

learning.

There has also been some recent work on privacy properties of Bayesian posterior

sampling; however most of the work has focused on establishing pure or approximate DP.

Dimitrakakis et al. [2014] establishes conditions under which some popular Bayesian posterior

sampling procedures directly satisfy pure or approximate DP. Wang et al. [2015b] provides a pure

DP way to sample from a posterior that satisfies certain mild conditions by raising the temperature.

Chapter 4 and Zhang et al. [2016] provide a simple statistically efficient algorithm for sampling

from exponential family posteriors. Minami et al. [2016] shows that directly sampling from

the posterior of certain GLMs, such as logistic regression, with the right parameters provides

approximate differential privacy. While our work draws inspiration from all Dimitrakakis et al.

[2014], Wang et al. [2015b], Minami et al. [2016], the main difference between their and our

work is that we provide RDP guarantees.

5.2.4 Background: Exponential Families

This section will give a in-depth explanation of exponential families and the properties

of them we exploit in our analysis.
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An exponential family of distributions takes the following form, indexed by a parameter

θ ∈Θ:

Pr(x1, . . . ,xn|θ) = (
n

∏
i=1

h(xi))exp((
n

∑
i=1

S(xi)) ·θ −n ·A(θ)) . (5.3)

We call h the base measure, S the sufficient statistics of x, and A as the log-partition

function of this family. Note that the data {x1, . . . ,xn} interact with the parameter θ solely

through the dot product of θ and the sum of their sufficient statistics. When the parameter θ is

used in this dot product unmodified (as in (5.3)), we call this a natural parameterization. Our

analysis will be restricted to the families that satisfy the following two properties:

Definition 13. An exponential family is minimal if the coordinates of the function S are not

almost surely linearly dependent, and the interior of Θ is non-empty.

Definition 14. For any for ∆ ∈ R, an exponential family is ∆−bounded if

∆≥ supx,y∈X ||S(x)−S(y)||.

When a family is minimal, the log-partition function A has many interesting characteris-

tics. It can be defined as A(θ) = log
∫
X h(x)exp(S(x) ·θ)dx, and serves to normalize the distribu-

tion. Its derivatives form the cumulants of the distribution, that is to say ∇A(θ) = κ1 =Ex|θ [S(x)]

and ∇2A(θ) = κ2 = Ex|θ [(S(x)−κ1)(S(x)−κ1)
ᵀ]. This second cumulant is also the covariance

of S(x), which demonstrates that A(θ) must be a convex function since covariances must be

positive semidefinite.

In Bayesian data analysis, we are interested in finding our posterior distribution over the

parameter θ that generated the data. We must introduce a prior distribution Pr(θ |η) to describe

our initial beliefs on θ , where η is a parameterization of our family of priors.
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Pr(θ |x1, . . . ,xn,η) ∝ Pr(x1, . . . ,xn|θ)Pr(θ |η) (5.4)

∝ (
n

∏
i=1

h(xi))exp((
n

∑
i=1

S(xi)) ·θ −n ·A(θ))Pr(θ |η) (5.5)

∝ exp((
n

∑
i=1

S(xi),n) · (θ ,−A(θ)))Pr(θ |η) (5.6)

(5.7)

Notice that we can ignore the (∏n
i=1 h(xi)) as it is a constant that will be normalized

out. If we let our prior take the form of another exponential family Pr(θ |η) = exp(T (θ) ·η−

B(η)) where T (θ) = (θ ,−A(θ)) and B(η) = log
∫

Θ
exp(T (θ) ·η)dθ , the we can perform these

manipulations,

Pr(θ |x1, . . . ,xn,η) ∝ exp((
n

∑
i=1

S(xi),n) ·T (θ)+η ·T (θ)−B(η)) (5.8)

∝ exp(
(

η +(
n

∑
i=1

S(xi),n)
)
·T (θ)−B(η)) (5.9)

and see that expression (5.9) can be written as

Pr(θ |η ′) = exp(T (θ) ·η ′−C(η ′)) (5.10)

where η ′ = η +∑
n
i=1(S(xi),1) and C(η ′) is chosen such that the distribution is normal-

ized.

This family of posteriors is precisely the same exponential family that we chose for our

prior. We call this a conjugate prior, and it offers us an efficient way of finding the parameter of

our posterior: ηposterior = ηprior +∑
n
i=1(S(xi),1). Within this family, T (θ) forms the sufficient
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statistics of θ , and the derivatives of C(η) give the cumulants of these sufficient statistics.

Beta-Bernoulli System.

A specific example of an exponential family that we will be interested in is the Beta-

Bernoulli system, where an individual’s data is a single i.i.d. bit modeled as a Bernoulli variable

with parameter ρ , along with a Beta conjugate prior.

Pr(x1, . . . ,xn|ρ) =
n

∏
i=1

ρ
xi(1−ρ)1−xi (5.11)

Letting θ = log( ρ

1−ρ
) and A(θ) = log(1+ exp(θ)) =− log(1−ρ) , we can rewrite the

equation as follows:

Pr(x1, . . . ,xn|ρ) =
n

∏
i=1

(
ρ

1−ρ
)xi(1−ρ) (5.12)

= exp(
n

∑
i=1

xi log(
ρ

1−ρ
)+ log(1−ρ)) (5.13)

= exp((
n

∑
i=1

xi) ·θ −A(θ)). (5.14)

This system satisfies the properties we require, as this natural parameterization with θ is

both minimal and ∆−bounded for ∆ = 1.

As our mechanisms are interested mainly in the posterior, the rest of this section will be

written with respect the family specified by equation (5.10).

Now that we have the notation for our distributions, we can write out the expression

for the Rényi divergence of two posterior distributions P and Q (parameterized by ηP and ηQ)

from the same exponential family. This expression allows us to directly compute the Rényi

divergences of posterior sampling methods, and forms the crux of the analysis of our exponential

family mechanisms.

Observation 5. Let P and Q be two posterior distributions from the same exponential family
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that are parameterized by ηP and ηQ. Then,

Rλ (P||Q) =
1

λ −1
log

(∫
Θ

P(θ)λ Q(θ)1−λ dθ

)
=

C(ληP +(1−λ )ηQ)−λC(ηP)

λ −1
+C(ηQ).

(5.15)

To help analyze the implication of equation (5.15) for Rényi Differential Privacy, we

introduce a some more helpful definitions.

Definition 15. We say a posterior parameter η is normalizable if C(η)= log
∫

Θ
exp(T (θ)·η))dθ

is finite.

Let E denote the set of all normalizable η for the conjugate prior family.

Definition 16. Let pset(η0,n) be the convex hull of all parameters η of the form η0+n(S(x),1)

for x ∈X . When n is an integer this represents the hull of possible posterior parameters after

observing n data points starting with the prior η0.

Definition 17. Let Di f f be the difference set for the family, where Di f f is the convex hull of

all vectors of the form (S(x)−S(y),0) for x,y ∈X .

Definition 18. Two posterior parameters η1 and η2 are neighboring iff η1−η2 ∈ Di f f .

They are r−neighboring iff (η1−η2)/r ∈ Di f f .

5.3 Mechanisms and Privacy Guarantees

We begin with our simplest mechanism, Direct Sampling, which samples according to

the true posterior. This mechanism is presented as Algorithm 1.

Algorithm 1: Direct Posterior
Input: Dataset D = (x1, . . . ,xn), prior parameter η0
Sample θ ∼ Pr(θ |η ′) where η ′ = η0 +∑

n
i=1(S(xi),1)

return θ
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Even though Algorithm 1 is generally not differentially private Dimitrakakis et al. [2014],

Theorem 7 suggests that it offers RDP for ∆−bounded exponential families and certain orders λ .

Theorem 7. For a ∆−bounded minimal exponential family of distributions Pr(x|θ) with contin-

uous log-partition function A(θ), there exists λ ∗ ∈ (1,∞] such Algorithm 1 achieves

(λ ,ε(η0,n,λ ))-RDP for λ < λ ∗.

λ ∗ is the supremum over all λ such that all η in the set η0 +(λ −1)Di f f are normaliz-

able.

Corollary 15. For the Beta-Bernoulli system with a prior Beta(α0,β0), Algorithm 1 achieves

(λ ,ε)−RDP iff λ > 1 and λ < 1+min(α0,β0).

Notice the implication of Corollary 15: for any η0 and n > 0, there exists finite λ such

that direct posterior sampling does not guarantee (λ ,ε)-RDP for any finite ε . This also prevents

(ε,0)-DP as an achievable goal as well. Algorithm 1 is inflexible; it offers us no way to change

the privacy guarantee.

This motivates us to propose two different modifications to Algorithm 1 that are capable

of achieving arbitrary privacy parameters. Algorithm 2 modifies the contribution of the data X to

the posterior, while Algorithm 3 modifies the contribution of the prior η0.

Algorithm 2: Diffused Posterior
Input: Dataset D = (x1, . . . ,xn), prior parameter η0, privacy parameters (λ ,ε)
Find r ∈ (0,1] such that ∀r-neighboring ηP,ηQ ∈ pset(η0,rn) we have
Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤ ε

Sample θ ∼ Pr(θ |η ′) where η ′ = η0 + r ∑
n
i=1(S(xi),1)

return θ

Theorem 8. For any ∆−bounded minimal exponential family with prior η0 in the interior of E,

any λ > 1, and any ε > 0, there exists r∗ ∈ (0,1] such that using r ∈ (0,r∗] in Algorithm 2 will

achieve (λ ,ε)−RDP.
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Algorithm 3: Concentrated Posterior
Input: Dataset D = (x1, . . . ,xn), prior parameter η0, privacy parameters (λ ,ε)
Find m ∈ (0,1] such that ∀neighboring ηP,ηQ ∈ pset(η0/m,n),
Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤ ε

Sample θ ∼ Pr(θ |η ′) where η ′ = η0/m+∑
n
i=1(S(xi),1)

return θ

Theorem 9. For any ∆−bounded minimal exponential family with prior η0 in the interior of E,

any λ > 1, and any ε > 0, there exists m∗ ∈ (0,1] such that using m ∈ (0,m∗] in Algorithm 3 will

achieve (λ ,ε)−RDP.

We have not yet specified how to find the appropriate values of r or m, and the condition

requires checking the supremum of divergences across the appropriate pset range of parame-

ters. However, with an additional assumption this supremum of divergences can be efficiently

computed.

Theorem 10. Let e(ηP,ηQ,λ ) = Rλ (Pr(θ |ηP)||Pr(θ |ηQ)). For a fixed λ and fixed ηP, the

function e is a convex function over ηQ.

If for any direction v ∈ Di f f , the function gv(η) = vᵀ∇2C(η)v is convex over η , then

for a fixed λ , the function fλ (ηP) = supηQr−neighboring ηP
e(ηP,ηQ,λ ) is convex over ηP in the

directions spanned by Di f f .

Corollary 16. The Beta-Bernoulli system satisfies the conditions of Theorem 10 since the func-

tions gv(η) have the form (v(1))2(ψ1(η
(1))+ψ1(η

(2)−η(1))), and ψ1 is the digamma function.

Both pset and Di f f are defined as convex sets. The expression supr−neighboring ηP,ηQ∈pset(η0,n)

Rλ (Pr(θ |ηP)||Pr(θ |ηQ)) is therefore equivalent to the maximum of Rλ (Pr(θ |ηP)||Pr(θ |ηQ))

where ηP ∈ η0 +{(0,n),(n,n)} and ηQ ∈ ηP± (r,0).

We can do a binary search over (0,1] to find an appropriate value of r or m. At each

candidate value, we only need to consider the boundary situations to evaluate the supremum and

check the RDP guarantee. These boundary situations depend on the choice of model, and not
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the data size n. For example, in the Beta-Bernoulli system, evaluating the supremum involves

calculating the Rényi divergence across at most 4 pairs of distributions, as in Corollary 16.

Eventually, the search process will find a valid non-zero choice for r or m. If stopped

early and none of the tested candidate values satisfy the privacy constraint, the analyst can either

continue to iterate or decide not to release anything.

5.3.1 Extension: Public Data for Exponential Families

The use of a conjugate prior makes the interaction of observed data versus the prior easy

to see. The prior η0 can be expressed as (αχ,α), where χ is a vector expressing the average

sufficient statistics of pseudo-observations and α represents a count of these pseudo-observations.

After witnessing the n data points, the posterior becomes a prior that has averaged the data

sufficient statistics into a new χ and added n to α .

If the data analyst had some data in addition to X that was not privacy sensitive, perhaps

from a stale data set for which privacy requirements have lapsed, then this data can be used to

form a better prior for the analysis.

Not only would this improve utility by adding information that can be fully exploited, it

would also in most cases improve the privacy guarantees as well. A stronger prior, especially

a prior farther from the boundaries where C(η) becomes infinite, will lead to smaller Rényi

divergences. This is effectively the same behavior as the Concentrated Sampling mechanism,

which scales the prior to imagine more pseudo-observations had been seen. This also could apply

to settings in which the analyst can adaptively pay to receive non-private data, since this method

will inform us once our prior formed from this data becomes strong enough to sample directly at

our desired RDP level.

This also carries another privacy implication for partial data breaches. If an adversary

learns the data of some individuals in the data set, the Direct Sampling mechanism’s privacy

guarantee for the remaining individuals can actually improve. Any contributions of the affected

individuals to the posterior become in effect yet more public data placed in the prior. The privacy
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analysis and subsequent guarantees will match the setting in which this strengthened prior was

used.

5.3.2 Extension: Releasing the result of a Statistical Query

Here we are given a sensitive database X = {x1, . . . ,xn} and a predicate φ(·) which maps

each xi into the interval [0,1]. Our goal is to release a Rényi DP approximation to the quantity:

F(X) = 1
n ∑

n
i=1 φ(xi).

Observe that directly releasing F(X) is neither DP nor Rényi DP, since this is a determin-

istic algorithm; our goal is to release a random sample from a suitable distribution so that the

output is as close to F(X) as possible.

The task of releasing a privatized result of a statistical query can be embedded into our

Beta-Bernoulli system. This allows the privatized statistical query release to be done using either

Algorithm 2 or Algorithm 3.

We can extend the Beta-Bernoulli model to allow the sufficient statistics S(x) to range

over the interval [0,1] instead of just the discrete set {0,1}. This alteration still results in a

∆-bounded exponential family, and the privacy results hold.

The sampled posterior will be a Beta distribution that will concentrate around the mean

of the data observations and the pseudo-observations of the prior. The process is described in the

Beta-Sampled Statistical Query algorithm. The final transformation maps the natural parameter

θ ∈ (−∞,∞) onto the mean of the distribution ρ ∈ (0,1).

Algorithm 4: Beta-Sampled Statistical Query
Input: Dataset D = (x1, . . . ,xn), prior parameter η0, query function f , privacy

parameters (λ ,ε)
Compute X f = { f (x1), . . . , f (xn)}
Sample θ via Algorithm 2 or Algorithm 3 applied to X f with η0, ε , and λ .
Compute ρ = exp(θ)

1+exp(θ)
return ρ
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5.4 Experiments

In this section, we present the experimental results for our proposed algorithms for

both exponential family and GLMs. Our experimental design focuses on two goals – first,

analyzing the relationship between λ and ε in our privacy guarantees and second, exploring the

privacy-utility trade-off of our proposed methods in relation to existing methods.

5.4.1 Synthetic Data: Beta-Bernoulli Sampling Experiments

In this section, we consider posterior sampling in the Beta-Bernoulli system. We compare

three algorithms. As a baseline, we select a modified version of the algorithm in Chapter 4,

which privatizes the sufficient statistic of the data to create a privatized posterior. Instead of

Laplace noise that is used in Chapter 4, we use Gaussian noise to do the privatization; Mironov

[2017] shows that if Gaussian noise with variance σ2 is added, then this offers an RDP guarantee

of (λ ,λ ∆2

σ2 ) for ∆-bounded exponential families. We also consider the two algorithms presented

in Section 5.3 – Algorithm 2 and 3; observe that Algorithm 1 is a special case of both. 500

iterations of binary search were used to select r and m when needed.

Achievable Privacy Levels.

We plot the (λ ,ε)−RDP parameters achievable by the Algorithm 2 and Algorithm 3.

These parameters are plotted for a prior η0 = (6,18) and the data size n = 100 which are

selected arbitrarily for illustrative purposes. We plot over six values {0.1,0.3,0.5,0.7,0.9,1} of

the scaling constants r and m. The results are presented in Figures 5.1 and 5.2. Our primary

observation is the presence of the vertical asymptotes for our proposed methods. As r and m

decrease, the ε guarantees improve and become finite at larger orders λ , but a vertical asymptote

still exists. The results of the baseline are not plotted: it simply achieves RDP along any line of

positive slope passing through the origin.
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Privacy-Utility Tradeoff.

We next evaluate the privacy-utility tradeoff of the algorithms by plotting KL(P||A ) as a

function of ε with λ fixed, where P is the true posterior and A is the output distribution of a

mechanism. For Algorithms 2 and 3, the KL divergence can be evaluated in closed form. For the

Gaussian mechanism, numerical integration was used to evaluate the KL divergence integral.

We have arbitrarily chosen η0 = (6,18) and data set X with 100 total trials and 38 successful

trials. We have plotted the resulting divergences over a range of ε for λ = 2 in Figure 5.3 and for

λ = 15 in Figure 5.4. When λ = 2 < λ ∗, both Algorithms 2 and 3 reach zero KL divergence once

direct sampling is possible. The Gaussian mechanism must always add nonzero noise. As ε→ 0,

Algorithm 3 approaches a point mass distribution heavily penalized by the KL divergence. Due to

its projection step, the Gaussian Mechanism follows a bimodal distribution as ε → 0. Algorithm

2 degrades to the prior, with modest KL divergence. When λ = 15 > λ ∗, the divergences for

Algorithms 2 and 3 are bounded away from 0, while the Gaussian mechanism still approaches

the truth as ε → ∞.

Finally, we plot logPr(XH |θ) as a function of ε , where θ comes from one of the

mechanisms applied to X. Both X and XH consist of 100 Bernoulli trials with proportion

parameter ρ = 0.5. This experiment was run 10000 times, and we report the mean and standard

deviation. Similar to the previous section, we have a fixed prior of η0 = (6,18). The results are

shown for λ = 2 in Figure 5.5 and for λ = 15 in Figure 5.6. These results agree with the limit

behaviors in the KL test. This experiment is more favorable for Algorithm 3, as it degrades only

to the log likelihood under the mode of the prior.

5.5 Proofs of Exponential Family Sampling Theorems

Our proofs will make extensive use of the definitions laid out in Section 5.2.4. We will

however need an additional definition for a modified version of pset, and as well the set of

possible updates to the posterior parameter that might arise from the data.
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Figure 5.1. Achievable (λ ,ε)−RDP Levels for Algorithm 2
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Figure 5.2. Achievable (λ ,ε)−RDP Levels for Algorithm 3

Definition 19. Let l pset(η0,n,b) = pset(η0,n)+bDi f f . This is the set of posterior parameters

that are b−neighboring at least one of the elements of pset(η0,n)

Definition 20. Let U be the set of posterior updates for an exponential family, where U is the

convex hull of all vectors of the form (S(x),1) for x,y ∈X .

We begin by noting that observing a data set when starting at a normalizable prior η0

must result in a normalizable posterior parameter η ′.

Observation 6. In a minimal exponential family, for any prior parameter η0, any n > 0, and

any posterior update, every possible posterior parameter in the set η0 +nU is also normalizable.

As C(η) must be a convex function for minimal families, this must apply to positive non-integer

values of n as well.
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Figure 5.3. KL divergences, where
λ = 2 < λ ∗
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Figure 5.4. KL divergences, where
λ = 15 > λ ∗
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Figure 5.5. − logPr(XH), where λ =
2 < λ ∗
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Figure 5.6. − logPr(XH), where λ =
15 > λ ∗

With this observation, we are ready to prove our result on the conditions under which

sampling from our posterior gives a finite (λ ,ε)−RDP guarantee.

Theorem 11. Theorem 7 revisited.

For a ∆−bounded minimal exponential family of distributions Pr(x|θ) with continuous

log-partition function A(θ), there exists λ ∗ ∈ (1,∞] such Algorithm 1 achieves

(λ ,ε(η0,n,λ ))-RDP for λ < λ ∗.

λ ∗ is the supremum over all λ such that all η in the set η0 +(λ −1)Di f f are normaliz-

able.
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PROOF:

Algorithm 1 samples directly from the posterior ηpost = η0 +∑i(S(xi),1). When applied

to neighboring data sets X and X′, it selects posterior parameters that are neighboring.

The theorem can be reinterpreted as saying there exists λ ∗ such that for λ < λ ∗ we have

sup
neighboring ηP,ηQ∈pset(η0,n)

Rλ (p(θ |ηP)||Pr(θ |ηQ))< ∞. (5.16)

For these two posteriors from the same exponential family, we can write out the Rényi

divergence in terms of the log-partition function C(η).

Rλ (p(θ |ηP)||Pr(θ |ηQ)) =
C(ληP +(1−λ )ηQ)−λC(ηP)

λ −1
+C(ηQ) (5.17)

We wish to show that this is bounded above over all neighboring ηP and ηQ our mecha-

nism might generate, and will do so by showing that |C(η)| must be bounded every where it is

applied in equation (5.17) if λ < λ ∗. To find this bound, we will ultimately show each potential

application of C(η) lies within a closed subset of E, from which the continuity of C will imply

an upper bound.

Let’s begin by observing that ηP and ηQ must lie within pset(η0,n) as they arise as

posteriors for neighboring data sets X and X′. The point ηL = ληP +(1−λ )ηQ = ηP +(λ −

1)(ηP−ηQ) might not lie within pset(η0,n). However, we know ηP−ηQ lies within Di f f and

that ηL−ηP is within (λ −1)Di f f . This means for any neighboring data sets, ηP, ηQ, and ηL

lie inside l pset(η0,n,λ −1).

If λ < λ ∗, then η0 +(λ −1)Di f f ⊆ E. The set η0 +(λ −1)Di f f is potentially an open

set, but the closure of this set must be within E as well, since we can always construct λ ′ ∈ (λ ,λ ∗)

where η0 +(λ ′− 1)Di f f ⊆ E, and the points inside η0 +(λ − 1)Di f f can’t converge to any

point outside of η0 +(λ ′−1)Di f f .

Any point in η ∈ l pset(η0,n,λ −1) can be broken down into three components using the

definition of l pset: η = η0 +u+d, where u ∈ nU and d ∈ (λ −1)Di f f . For any point in this
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l pset, we can therefore subtract off the component u to reach a point in the set η0+(λ −1)Di f f .

With Observation 6, we can conclude that η is normalizable if η − u is normalizable, and

therefore the closure of l pset(η0,n,λ −1) is a subset of E if η0 +(λ −1)Di f f is a subset of E,

which we have shown for λ < λ ∗.

As C(η) is a continuous function, we know that the supremum of |C(η)| over the closure

of l pset(η0,n,λ−1) must be finite. Remember that for any neighboring data sets, ηP,ηQ, and ηL

are inside l pset(η0,n,λ−1). Since |C(η)| is bounded over this l pset, so too must our expression

for Rλ (Pr(θ |ηP)||Pr(θ |ηQ)) in equation (5.17). Therefore there exists an upper-bound for the

order λ Rényi divergence across all pairs of posterior parameters selected by Algorithm 1 on

neighboring data sets. This finite upper-bound provides a finite value for ε(η0,n,λ ) for which

Algorithm 1 offers (λ ,ε(η0,n,λ ))-RDP .

�

To prove our results for Algorithm 2 and Algorithm 3, we’ll need an additional result

that bounds the Rényi divergence in terms of the Hessian of the log-partition function and the

distance between the two distribution parameters.

Lemma 17. For λ > 1, if ||∇2C(η)||< H over the set {ηP + x(ηP−ηQ)|x ∈ [−λ +1,λ −1]},

then

Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤ ||ηP−ηQ||2Hλ (5.18)

PROOF:

Define the function g(x) =C(ηP + xv) where x ∈ R and v = ηP−ηQ. This allows us to

rewrite the Rényi divergence as

Rλ (P||Q) =
g(1−λ )−λg(0)

λ −1
+g(1) (5.19)
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Now we will replace g with its first order Taylor expansion

g(x) = g(0)+ xg′(0)+ e(x) (5.20)

where e(x) is the approximation error term, satisfying |e(x)| ≤ x2 maxy∈[−x,x] g′′(y)/2.

This results in

Rλ (Pr(θ |ηP)||Pr(θ |ηQ)) =
g(0)+(1−λ )g′(0)+ e(1−λ )−λg(0)

λ −1
+g(0)+g′(0)+ e(1)

(5.21)

=−e(1−λ )

λ −1
+ e(1) (5.22)

≤ (λ −1)2

λ −1
max

y∈[−λ+1,λ−1]
g′′(y)/2+ max

y∈[−1,1]
g′′(y)/2 . (5.23)

Further, we can express g′′ in terms of C and v.

g′′(y) = vᵀ∇2C(ηP + yv)v (5.24)

≤ ||ηP−ηQ||2||∇2C(ηP + yv)|| (5.25)

≤ ||ηP−ηQ||2H (5.26)

Plugging in this bound on g′′ gives the desired result.
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Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤
(λ −1)2

λ −1
max

y∈[−λ+1,λ−1]
g′′(y)/2+ max

y∈[−1,1]
g′′(y)/2 (5.27)

≤ (λ −1)||ηP−ηQ||2H/2+ ||ηP−ηQ||2H/2 (5.28)

≤ ||ηP−ηQ||2Hλ/2 (5.29)

≤ ||ηP−ηQ||2Hλ (5.30)

�

We will also make use of the following standard results about the Hessian of the log-

partition function of minimal exponential families, given in [Liese and Miescke, 2007] as

Theorem 1.17 and Corollary 1.19 and rephrased for our purposes.

Theorem 18. (Theorem 1.17 from [Liese and Miescke, 2007] The log-partition function C(η) of

a minimal exponential family is infinitely often differentiable at parameters η in the interior of

the normalizable set E.

Theorem 19. (Corollary 1.19 from [Liese and Miescke, 2007] For minimal exponential family,

the Hessian of the log-partition function ∇2C(η) is nonsingular for every parameter η in the

interior of the normalizable set E.

These results imply that the Hessian ∇2C(η) must exist and be continuous over η in the

interior of E, as well as having non-zero determinant.

Theorem 12. For any ∆−bounded minimal exponential family with prior η0 in the interior of E,

any λ > 1, and any ε > 0, there exists r∗ ∈ (0,1] such that using r ∈ (0,r∗] in Algorithm 2 will

achieve (λ ,ε)-RDP.

PROOF:

Recall that Algorithm 2 uses the posterior parameter η ′ = η0 + r ∑
n
i (S(x),1) where the

data contribution has been scaled by r. Our first step of this proof is to show that there exists
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r0 ∈ (0,1] such that the order λ Rényi divergences of the generated parameters are finite for

r < r0.

Similar to the proof of Theorem 7, we will do so by creating a closed set where C(η)

is finite and that must contain ηP,ηQ, and ηL for any choice of neighboring data sets. On

neighboring data sets, this generates r−neighboring parameters ηP and ηQ. The point ηL =

ληP +(1−λ )ηQ is therefore r(λ −1)−neighboring ηP. These points must be contained in the

set l pset(η0,rn,r(λ −1)) = η0+ rnU + r(λ −1)Di f f . For any point in this set, we can subtract

off the component in rnU to get to a modified prior that is r(λ −1)−neighboring η0.

By the assumption that η0 is in the interior of E, there exists δ > 0 such that the ball

B(η0,δ )⊆ E. For the choice r0 =
δ

2(λ−1)∆ , for any r ∈ (0,r0), the modified prior we constructed

for each point in l pset(η0,rn,r(λ −1)) is within distance r(λ −1)∆ of η0 and therefore within

B(η0,δ/2) ⊂ B(η0,δ ) ⊆ E. Observation 6 then allows us to conclude that every point η

in l pset(η0,rn,r(λ − 1)) has an open neighborhood of radius δ2 where C(η) is finite. This

is enough to conclude that the closure of this l pset must also lie entirely within E, and C(η)

is finite and continuous over this closed set. As in Theorem 7, this suffices to show that the

supremum of order λ Rényi divergences on neighboring data sets is bounded above.

We have thus shown there exists r0 where the ε of our (λ ,ε)−RDP guarantee is finite

for r < r0. However, our goal was to achieve a specific ε guarantee. Our proof of the existence

of r∗ centers around the claim that there must exist a bound H for the Hessian of C(η) over all

choices of r ∈ [0,r0).

We can construct the set D = ∪r∈[0,r0]l pset(η0,rn,r(λ −1)), which will contain every

possible ηP,ηQ, and ηL that might arise from any pair neighboring data sets and any choice of r

in that interval. The previous argument still applies: each point in this union must have an open

neighborhood of radius δ/2 that is a subset of E. This is enough to conclude that closure of D

is also a subset of E. Theorem 18 implies ∇2C(η) exists and is continuous on the interior of

E, and this further implies that there must exist H such that for all η in this closure we have

||∇2C(η)|| ≤ H.
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For any value r, we know that ηP and ηQ are r−neighboring, so we know ||ηP−ηQ|| ≤

r∆. Since D contains l pset(η0,rn,r(λ − 1)), the bound H must apply for all η in the set

{ηP + x(ηP−ηQ)|x ∈ [−λ +1,λ −1]}. This allows us to use Lemma 17 to get the following

expression:

Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤ ||ηP−ηQ||2Hλ (5.31)

≤ r∆
2Hλ . (5.32)

If we set r∗ = ε

∆2Hλ
, then for r < r∗ the order λ Rényi divergence of Algorithm 2 is

bounded above by ε , which gives us the desired result.

�

The concentrated mechanism is a bit more subtle in how it reduces the influence of the

data, and so we need this result modified from Lemmas 9 and 10 in Chapter 4. These results are

presented here in a way that matches our notation. It effectively states that if we start at a prior

η0 satisfy mild but technical regularity assumptions, then the Hessians C(kη0) must converge

to zero as k grows. In practical terms, this implies the covariance of our prior distribution must

shrink as we increase the number of pseudo-observations.

Definition 21. Let T ∗η = T (argmaxθ∈Θη · T (θ)). This represents the mode of the sufficient

statistics under the distribution Pr(T (θ)|η).

Lemma 20. If A(θ) is continuously differentiable and η0 is in the interior of E, then

argmaxθ∈Θη ·T (θ) must be in the interior of Θ.

Lemma 21. If we have a minimal exponential family in which A(θ) is differentiable of all

orders, there exists δ1 > 0 such that the ball B(η0,δ1) is a subset of E, there exists δ2 > 0

and a bound L such that all the seventh order partial derivatives of A(θ) on the set Dη0,δ1,δ2 =

{θ |minη∈B(η0,δ1) ||T (θ)− T ∗η || < δ2} are bounded by P, and the determinant of ∇2A(θ) is
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bounded away from zero on Dη0,δ1,δ2 , then there exists real number V,K such that for k > K we

have

∀η ∈B(η0,δ1) ||∇2C(kη)||< V
k

. (5.33)

Theorem 13. For any ∆−bounded minimal exponential family with prior η0 in the interior of E,

for any λ > 1, and any ε > 0, there exists m∗ ∈ (0,1] such that using m ∈ (0,m∗] in Algorithm 3

will achieve (λ ,ε)−RDP.

PROOF:

For a fixed value of m, recall that Algorithm 3 selects the posterior parameter η ′ =

m−1η0+∑
n
i=1(S(xi),1). For neighboring data sets X and X′, the selected posterior parameters ηP,

ηQ, and ηL = ληP+(1−λ )ηQ lie within l pset(m−1η0,n,λ −1) = m−1η0+nU +(λ −1)Di f f .

We start by showing that the conditions of Lemma 21 are met. As we assumed η0 is in

the interior of E, there exists δ1 > 0 such that we have the ball B(η0,δ1)⊆ E. By Theorem 18,

the log-partition function of the data likelihood A(θ) is differentiable of all orders, and Theorem

19 tells us that the Hessian ∇2A(θ) is non-singular with non-zero determinant on the interior

of Θ. This permits the application of Lemma 20, offering a mapping from η in the interior of

E to their mode T ∗η corresponding to a parameter θ in the interior of Θ. Knowing that A(θ) is

infinitely differentiable on the interior of Θ further implies that the seventh order derivatives are

well-behaved in a neighborhood around each mode resulting from this mapping. This provides

the rest of the requirements for Lemma 21.

Therefore there exists V and K such that the following holds

∀η ∈B(η0,δ1) : ||∇2C(kη)|| ≤ V
k

. (5.34)

We wish to show that ||∇2C(η)|| must be bounded on the expanded set

l pset(m−1η0,n,λ −1) = m−1η0 +nU +(λ −1)Di f f , and will do so by showing that for small
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enough m we can use equation (5.34) to bound the Hessians.

Let α(η) denote the last coordinate of η . This represents the pseudo-observation count

of this parameter, and notice that ∀u ∈U : α(u) = 1 and ∀v ∈ Di f f : α(v) = 0. We are going

to analyze the scaled set cm · l pset(m−1η0,n,λ −1) where cm is a positive scaling constant that

will depend on m.

cm · l pset(m−1
η0,n,λ −1) = cmm−1

η0 + cmnU + cm(λ −1)Di f f (5.35)

.

For each η in this cm · l pset, we have

α(η) = cmm−1
α(η0)+ cmn ·1+ cm(λ −1) ·0 = cm(m−1

α(η0)+n) . (5.36)

Setting cm = α(η0)
m−1α(η0)+n thus guarantees that for all η in cm · l pset(m−1η0,n,λ − 1)

we have α(η) = α(η0). We want to know how far the points in this cm · l pset are from η0,

so we simply subtract η0 to get a set Dm of vectors. These offset vectors have the form

cm · l pset(m−1η0,n,λ −1)−η0 and therefore lie in the set

Dm = (cmm−1−1)η0 + cmnU + cm(λ −1)Di f f . (5.37)

Using our expression of cm as a function of m, we can see the following limiting behavior:

lim
m→0

cm = lim
m→0

α(η0)

m−1α(η0)+n
= 0 (5.38)

lim
m→0

cmm−1−1 = lim
m→0

m−1α(η0)

m−1α(η0)+n
−1 = 1−1 = 0. (5.39)
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These limits lets us take the limit of the size of the vectors in Dm as m→ 0:

lim
m→0

sup
v∈Dm

||v|| ≤ lim
m→0

(cmm−1−1)||η0||+ cmn sup
u1∈U
||u1||+ cm(λ −1) sup

u2∈Di f f
||u2|| (5.40)

≤ 0 · ||η0||+0 · sup
u1∈U
||u1||+0 · sup

u2∈Di f f
||u2|| (5.41)

≤ 0. (5.42)

This limit supremum on Dm tells us that as m→ 0, the maximum distance between points

in the scaled set cm · l pset(m−1η0,n,λ −1) and η0 gets arbitrarily small. This means there exists

some m0 such that for m < m0 the scaled set cm · l pset(m−1η0,n,λ −1) lies within B(η0,δ1).

This scaling mapping can be inverted, and it implies l pset(m−1η0,n,λ −1) is contained within

1
cm

B(η0,δ1). Being contained within this scaled ball is precisely what we need to use equation

(5.34) with 1
k = cm.

Equation (5.34) bounds ||∇2C(η)|| ≤ Hm = V cm for all η in l pset(m−1η0,n,λ − 1),

which in turn lets us use Lemma 17 to bound our Rényi divergences.

Rλ (Pr(θ |ηP)||Pr(θ |ηQ))≤ ||ηP−ηQ||2Hmλ (5.43)

≤ ∆
2V cmλ . (5.44)

As we have cm→ 0 as m→ 0, we know there must exist m∗ such that for m < m∗ we

have cm ≤ ε

∆2V λ
. This means the order λ Rényi divergences of Algorithm 3 on neighboring data

sets is bounded above by ε , which gives us the desired result.

�

We have one last theorem to prove, the result claiming the Rényi divergences of order λ

between ηP and its neighbors is convex, which greatly simplifies finding the supremum of these

divergences over the convex sets being considered.
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Theorem 14. Let e(ηP,ηQ,λ ) = Rλ (Pr(θ |ηP)||Pr(θ |ηQ)).

For a fixed λ and fixed ηP, the function e is a convex function over ηQ.

If for any direction v ∈ Di f f , the function gv(η) = vᵀ∇2C(η)v is convex over η , then

for a fixed λ , the function

fλ (ηP) = sup
ηQ r−neighboring ηP

e(ηP,ηQ,λ ) (5.45)

is convex over ηP in the directions spanned by Di f f .

PROOF:

First, we can show that for a fixed ηP and fixed λ , the choice of ηQ in the supremum

must lie on the boundary of possible neighbors. This is derived from showing that Rλ (P||Q) is

convex over the choice of ηQ.

Consider once again the expression for our Rényi divergence, expressed now as the

function e(ηP,ηQ,λ ):

e(ηP,ηQ,λ ) = Rλ (P||Q) =
C(ληP +(1−λ )ηQ)−λC(ηP)

λ −1
+C(ηQ). (5.46)

Let ∇ηQe(ηP,ηQ,λ ) denote the gradient of the divergence with respect to ηQ.

∇ηQe(ηP,ηQ,λ ) = ∇C(ηQ)+
1−λ

λ −1
∇C(ληP +(1−λ )ηQ) (5.47)

= ∇C(ηQ)−∇C(ληP +(1−λ )ηQ). (5.48)

We can further find the Hessian with respect to ηQ:
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∇
2
ηQ

e(ηP,ηQ,λ ) = ∇
2C(ηQ)− (1−λ )∇2C(ληP +(1−λ )ηQ). (5.49)

By virtue of being a minimal exponential family, we know C is convex and thus ∇2C

is PSD everywhere. Combined with the fact that λ > 1, this is enough to conclude that

∇2
ηQ

e(ηP,ηQ,λ ) is also PSD for everywhere with λ > 1. This means e(ηP,ηQ,λ ) is a con-

vex function with respect to ηQ for any fixed ηP and λ .

We now wish to characterize the function fλ (ηP), which takes a supremum over ηQ ∈

ηP + rDi f f of e(ηP,ηQ,λ ).

fλ (ηP) = sup
ηQr−neighboring ηP

e(ηP,ηQ,λ ) (5.50)

We re-parameterize this supremum in terms of the offset b = ηQ−ηP.

fλ (ηP) = sup
b∈rDi f f

e(ηP,ηP +b,λ ) (5.51)

Now for any fixed offset b, x we can find the expression for the Hessian of ∇2
ηP

e(ηP,ηP+

b,λ ).

∇
2
ηP

e(ηP,ηP +b,λ ) = ∇
2C(ηP +b)− λ

λ −1
∇

2C(ηP)+
1

λ −1
∇

2C(ηp +(1−λ )b) (5.52)

We wish to show this Hessian is PSD, i.e. for any vector v we have vᵀ∇2
ηP

e(ηP,ηP +

b,λ )v is non-negative. We can rewrite this in terms of the function gv(η) introduced in the

theorem statement.
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vᵀ∇2
ηP

e(ηP,ηP +b,λ )v = gv(ηP +b)− λ

λ −1
gv(ηP)+

1
λ −1

gv(ηp +(1−λ )b) (5.53)

=
λ

λ −1

(
λ −1

λ
gv(ηP +b)−gv(ηP)+

1
λ

gv(ηp +(1−λ )b)
)

(5.54)

We know λ

λ−1 > 0 and that ηP must lie between ηP +b and ηP− (λ −1)b. Our assump-

tion that gv(η) is convex over η for all directions v then lets us use Jensen’s inequality to see

that the expression (5.54) must be non-negative.

This lets us conclude that vᵀ(∇2
ηP

e(ηP,ηP +b,λ )v≥ 0 for all v, and thus this Hessian is

PSD for any ηP. This in turn means our divergence e(ηP,ηP +b,λ ) is convex over ηP assuming

a fixed offset b.

We return to fλ (ηP), and observe that it is a supremum of functions that are convex, and

therefore it is convex as well.

�

5.6 Additional Beta-Bernoulli Experiments

The utility of the prior-based methods (Algorithms 2 and 3) depends on how well the prior

matches the observed data. Figure 5.7 shows several additional situations for the experimental

procedure of measuring the log-likelihood of the data.

In each case, the prior η0 = (6,18) was used, and both X and XH had 100 data points.

λ = 15 was fixed in these additional experiments. The only thing that varies is the true population

parameter ρ . In (a), ρ = 1/3 closely matches the predictions of the prior η0. In (b), ρ = 0.5,

presented as an intermediate case where the prior is misleading. Finally, in (c), ρ = 2/3, which is

biased in the opposite direction as the prior. In all cases, the proposed methods act conservatively

in the face of high privacy, but in (a) this worst case limiting behavior still has high utility. Having

a strong informative prior helps these mechanisms. The setting in which the prior is based off of
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Figure 5.7. Utility Comparison for a fixed η0 but varying true population parameter. Left:
ρ = 1/3 (high match with η0). Middle: ρ = 1/2. Right: ρ = 2/3 (low match with η0).
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Figure 5.8. Utility Experiment for the non-informative uniform prior

a representative sample of non-private data from the same population as the private data is likely

to be beneficial for Algorithms 2 and 3.

One other case is presented in Figure 5.8, where ρ = 0.2 but the prior has been changed

η0 = (1,2). λ is still 15, and the number of data points is still 100. This prior corresponds to the

uniform prior, as it assigns equal probability to all estimated data means on (0,1). It represents

an attractive case on a non-informative prior, but also represents a situation in which privacy is

difficult. In particular, λ ∗ = 2 in this setting. When Algorithm 3 scales up this prior, it becomes

concentrated around ρ = 0.2, so this setting also corresponds to a case where the true population

parameter does not match well with the predictions from the prior.
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5.7 Conclusion

The inherent randomness of posterior sampling and the mitigating influence of a prior

can be made to offer a wide range of privacy guarantees. Our proposed methods outperform

existing methods in specific situations. The privacy analyses of the mechanisms fit nicely into

the recently introduced RDP framework, which continues to present itself as a relaxation of DP

worthy of further investigation.
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Chapter 6

Privacy Amplification of Diffusion

6.1 Introduction

Differential privacy (DP) [Dwork et al., 2006b] has arisen in the last decade into a

strong de-facto standard for privacy-preserving computation in the context of statistical analysis.

The success of DP is based, at least in part, on the availability of robust building blocks (e.g.,

the Laplace, exponential and Gaussian mechanisms) together with relatively simple rules for

analyzing complex mechanisms built out of these blocks (e.g., composition and robustness to

post-processing). The inherent tension between privacy and utility in practical applications

has sparked a renewed interest into the development of further rules leading to tighter privacy

bounds. A trend in this direction is to find ways to measure the privacy introduced by sources of

randomness that are not accounted for by standard composition rules. Generally speaking, these

are referred to as privacy amplification rules, with prominent examples being amplification by

subsampling [Chaudhuri and Mishra, 2006, Kasiviswanathan et al., 2011, Li et al., 2012, Beimel

et al., 2013, 2014, Bun et al., 2015, Balle et al., 2018, Wang et al., 2019], shuffling [Erlingsson

et al., 2019, Cheu et al., 2019, Balle et al., 2019] and iteration [Feldman et al., 2018].

Motivated by these considerations, in this paper we initiate a systematic study of privacy

amplification by stochastic post-processing. Specifically, given a DP mechanism M producing

(probabilistic) outputs in X and a Markov operator K defining a stochastic transition between

X and Y, we are interested in measuring the privacy of the post-processed mechanism K ◦M
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producing outputs in Y. The standard post-processing property of DP states that K ◦M is at least

as private as M. Our goal is to understand under what conditions the post-processed mechanism

K ◦M is strictly more private than M. Roughly speaking, this amplification should be non-trivial

when the operator K “forgets” information about the distribution of its input M(D). Our main

insight is that, at least when Y = X, the forgetfulness of K from the point of view of DP can

be measured using similar tools to the ones developed to analyze the speed of convergence, i.e.

mixing, of the Markov process associated with K.

In this setting, we provide three types of results, each associated with a standard method

used in the study of convergence for Markov processes. In the first place, Section 6.3 provides

DP amplification results for the case where the operator K satisfies a uniform mixing condition.

These include standard conditions used in the analysis of Markov chains on discrete spaces,

including the well-known Dobrushin coefficent and Doeblin’s minorization condition [Levin

and Peres, 2017]. Although in principle uniform mixing conditions can also be defined in

more general non-discrete spaces [Del Moral et al., 2003], most Markov operators of interest

in Rd do not exhibit uniform mixing since the speed of convergence depends on how far apart

the initial inputs are. Convergence analyses in this case rely on more sophisticated tools,

including Lyapunov functions [Meyn and Tweedie, 2012], coupling methods [Lindvall, 2002]

and functional inequalities [Bakry et al., 2013].

Following these ideas, Section 6.4 investigates the use of coupling methods to quantify

privacy amplification by post-processing under Rényi DP [Mironov, 2017]. These methods apply

to operators given by, e.g., Gaussian and Laplace distributions, for which uniform mixing does

not hold. Results in this section are intimately related to the privacy amplification by iteration

phenomenon studied in [Feldman et al., 2018] and can be interpreted as extensions of their main

results to more general settings. In particular, our analysis unpacks the shifted Rényi divergence

used in the proofs from [Feldman et al., 2018] and allows us to easily track the effect of iterating

arbitrary noisy Lipschitz maps. As a consequence, we show an exponential improvement on the

privacy amplification by iteration of Noisy SGD in the strongly convex case which follows from
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applying this generalized analysis to strict contractions.

6.2 Setup

We start by introducing notation and concepts that will be used throughout the paper. We

write [n] = {1, . . . ,n}, a∧b = min{a,b} and [a]+ = max{a,0}.

Probability.

Let X= (X,Σ,λ ) be a measurable space with sigma-algebra Σ and base measure λ . We

write P(X) to denote the set of probability distributions on X. Given a probability distribution

µ ∈P(X) and a measurable event E ⊆ X we write µ(E) = Pr[X ∈ E] for a random variable

X ∼ µ , denote its expectation under f : X→ Rd by E[ f (X)], and can get back its distribution

as µ = Law(X). Given two distributions µ,ν (or, in general, arbitrary measures) we write

µ � ν to denote that µ is absolutely continuous with respect to ν , in which case there exists a

Radon-Nikodym derivative dµ

dν
. We shall reserve the notation pµ = dµ

dλ
to denote the density of µ

with respect to the base measure. We also write C (µ,ν) to denote the set of couplings between

µ and ν; i.e. π ∈ C (µ,ν) is a distribution on P(X×X) with marginals µ and ν . The support

of a distribution is supp(µ).

Markov Operators.

We will use K (X,Y) to denote the set of Markov operators K : X→P(Y) defining a

stochastic transition map between X and Y and satisfying that x 7→ K(x)(E) is measurable for

every measurable E ⊆ Y. Markov operators act on distributions µ ∈P(X) on the left through

(µK)(E) =
∫

K(x)(E)µ(dx), and on functions f : Y → R on the right through (K f )(x) =∫
f (y)K(x,dy), which can also be written as (K f )(x) = E[ f (X)] with X ∼ K(x). The kernel of

a Markov operator K (with respect to λ ) is the function k(x, ·) = dK(x)
dλ

associating with x the

density of K(x) with respect to a fixed measure.

Divergences.

A popular way to measure dissimilarity between distributions is to use Csiszár divergences

Dφ (µ‖ν) =
∫

φ(dµ

dν
)dν , where φ : R+→ R is convex with φ(1) = 0. Taking φ(u) = 1

2 |u−1|
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yields the total variation distance TV(µ,ν), and the choice φ(u) = [u− eε ]+ with ε ≥ 0 gives

the hockey-stick divergence Deε , which satisfies

Deε (µ‖ν) =
∫ [dµ

dν
− eε

]
+

dν =
∫
[pµ − eε pν ]+dλ = sup

E⊆X
(µ(E)− eε

ν(E)) .

It is easy to check that ε 7→ Deε (µ‖ν) is monotonically decreasing and D1 = TV. All Csiszár

divergences satisfy joint convexity D((1− γ)µ1 + γµ2‖(1− γ)ν1 + γν2) ≤ (1− γ)D(µ1‖ν1)+

γD(µ2‖ν2) and the data processing inequality D(µK‖νK)≤ D(µ‖ν) for any Markov operator

K. Rényi divergences, which do not belong to the family of Csiszár divergences, are another way

to compare distributions. For α > 1 the Rényi divergence of order α is defined as Rα(µ‖ν) =
1

α−1 log
∫
(dµ

dν
)αdν , and also satisfies the data processing inequality. We note that this notation

for the Rényi divergence differs from that seen in Chapter 3, but this notation is chosen to help

differentiate it from the other general divergences discussed in this chapter. Finally, to measure

similarity between µ,ν ∈P(Rd) we sometimes use the ∞-Wasserstein distance:

W∞(µ,ν) = inf
π∈C (µ,ν)

inf{w≥ 0 : ‖X−Y‖ ≤ w holds almost surely for (X ,Y )∼ π} .

Differential Privacy.

A mechanism M : Dn→P(X) is a randomized function that takes a dataset D ∈ Dn

over some universe of records D and returns a (sample from) distribution M(D). We write

D' D′ to denote two databases differing in a single record. We say that M satisfies1 (ε,δ )-DP

if supD'D′Deε (M(D)‖M(D′))≤ δ [Dwork et al., 2006b]. Furthermore, we say that M satisfies

(α,ε)-RDP if supD'D′ Rα(M(D)‖M(D′))≤ ε [Mironov, 2017].

1This divergence characterization of DP is due to [Barthe and Olmedo, 2013].
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6.3 Amplification From Uniform Mixing

We start our analysis of privacy amplification by stochastic post-processing by con-

sidering settings where the Markov operator K satisfies one of the following uniform mixing

conditions.

Definition 22. Let K ∈K (X,Y) be a Markov operator, γ ∈ [0,1] and ε ≥ 0. We say that K is:

(1) γ-Dobrushin if supx,x′TV(K(x),K(x′))≤ γ ,

(2) (γ,ε)-Dobrushin if supx,x′Deε (K(x)‖K(x′))≤ γ ,

(3) γ-Doeblin if there exists a distribution ω ∈P(Y) such that K(x)≥ (1− γ)ω for all x ∈ X,

(4) γ-ultra-mixing if for all x,x′ ∈ X we have K(x)� K(x′) and dK(x)
dK(x′) ≥ 1− γ .

Most of these conditions arise in the context of mixing analyses in Markov chains. In

particular, the Dobrushin condition can be tracked back to [Dobrushin, 1956], while Doeblin’s

condition was introduced earlier [Doeblin, 1937] (see also [Nummelin, 2004]). Ultra-mixing is a

strengthening of Doeblin’s condition used in [Del Moral et al., 2003]. The (γ,ε)-Dobrushin is, on

the other hand, new and is designed to be a generalization of Dobrushin tailored for amplification

under the hockey-stick divergence.

It is not hard to see that Dobrushin’s is the weakest among these conditions, and in fact

we have the implications summarized in Figure 6.1 (see Lemma 1). This explains why the

amplification bounds in the following result are increasingly stronger, and in particular why the

first two only provide amplification in δ , while the last two also amplify the ε parameter.

Lemma 1. The implications in Figure 6.1 hold.

Proof. That (γ,ε)-Dobrushin implies γ-Dobrushin follows directly from Deε (K(x)‖K(x′)) ≤

TV(K(x),K(x′)).

To see that γ-Doeblin implies γ-Dobrushin we observe that the kernel of a γ-Doeblin

operator must satisfy infx k(x,y)≥ (1− γ)pω(y) for any y. Thus, we can use the characterization
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of TV in terms of a minimum to get

TV(K(x),K(x′)) = 1−
∫
(k(x,y)∧ k(x′,y))λ (dy)≤ 1− (1− γ)

∫
pω(y)λ (dy) = γ .

Finally, to get the γ-Doeblin condition for an operator K satisfying γ-ultra-mixing

we recall from [Del Moral et al., 2003, Lemma 4.1] that for such an operator we have that

K(x)≥ (1− γ)ω̃K is satisfied for any probability distribution ω̃ and x ∈ supp(ω̃). Thus, taking

ω̃ to have full support we obtain Doeblin’s condition with ω = ω̃K.

Theorem 15. Let M be an (ε,δ )-DP mechanism. For a given Markov operator K, the post-

processed mechanism K ◦M satisfies:

(1) (ε,δ ′)-DP with δ ′ = γδ if K is γ-Dobrushin,

(2) (ε,δ ′)-DP with δ ′ = γδ if K is (γ, ε̃)-Dobrushin with2 ε̃ = log(1+ eε−1
δ

),

(3) (ε ′,δ ′)-DP with ε ′ = log(1+ γ(eε −1)) and δ ′ = γ(1− eε ′−ε(1−δ )) if K is γ-Doeblin,

(4) (ε ′,δ ′)-DP with ε ′ = log(1+ γ(eε −1)) and δ ′ = γδeε ′−ε if K is γ-ultra-mixing.

A few remarks about this result are in order. First we note that (2) is stronger than (1)

since the monotonicity of hockey-stick divergences implies TV = D1 ≥ Deε̃ . Also note how in

the results above we always have ε ′ ≤ ε , and in fact the form of ε ′ is the same as obtained under

amplification by subsampling when, e.g., a γ-fraction of the original dataset is kept. This is not a

coincidence since the proofs of (3) and (4) leverage the overlapping mixtures technique used to

analyze amplification by subsampling in [Balle et al., 2018]. However, we note that for (3) we

can have δ ′ > 0 even with δ = 0. In fact the Doeblin condition only leads to an amplification in

δ if γ ≤ δeε

(1−δ )(eε−1) .

For convenience, we split the proof of Theorem 15 into four separate statements, each

corresponding to one of the claims in the theorem.

2We take the convention ε̃ = ∞ whenever δ = 0, in which case the (γ,∞)-Dobrushin condition is obtained with
respect to the divergence D∞(µ‖ν) = µ(supp(µ)\ supp(ν)).
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Recall that a Markov operator K ∈K (X,Y) is γ-Dobrushin if supx,x′TV(K(x),K(x′))≤

γ .

Theorem 16. Let M be an (ε,δ )-DP mechanism. If K is a γ-Dobrushin Markov operator, then

the composition K ◦M is (ε,γδ )-DP.

Proof. This follows directly from the strong Markov contraction lemma established by Cohen

et al. [1993] in the discrete case and by Del Moral et al. [2003] in the general case (see also

[Raginsky, 2016]). In particular, this lemma states that for any divergence D in the sense of

Csiszár we have D(µK‖νK)≤ γD(µ‖ν). Letting µ = M(D) and ν = M(D′) for some D' D′

and applying this inequality to Deε (µK‖νK) yields the result.

Next we prove amplification when K is a (γ,ε)-Dobrushin operator. Recall that a Markov

operator K ∈K (X,Y) is (γ,ε)-Dobrushin if supx,x′Deε (K(x)‖K(x′))≤ γ . We will require the

following technical lemmas in the proof of Theorem 17.

Lemma 2. Let µ⊥ν denote the fact supp(µ)∩ supp(ν) = /0. If K is (γ,ε)-Dobrushin, then we

have

sup
µ⊥ν

Deε (µK‖νK)≤ γ .

Proof. Note that the condition on γ can be written as supx,x′Deε (δxK‖δx′K)≤ γ . This shows that

by hypothesis the condition already holds for the distributions δx⊥δx′ with x 6= x′. Thus, all we

need to do is prove that these distributions are extremal for Deε (µK‖νK) among all distributions

with µ⊥ν . Let µ⊥ν and define U = supp(µ) and V = supp(ν). Working in the discrete setting

for simplicity, we can write µ = ∑x∈U µ(x)δx, with an equivalent expression for ν . Now we use

100



the joint convexity of Deε to write

Deε (µK‖νK)≤ ∑
x∈U

µ(x)Deε (δxK‖νK)≤ ∑
x∈U

∑
x′∈V

µ(x)ν(x′)Deε (δxK‖δx′K)

≤ sup
x 6=x′

D(δxK‖δ ′xK)≤ γ .

Lemma 3. Let a∧b,min{a,b}. Then we have

Deε (µ‖ν) = 1−
∫ (

pµ(x)∧ eε pν(x)
)

λ (dx) .

Proof. Define A = {x : pµ(x)≤ eε pν(x)} to be set of points where µ is dominated by eεν , and

let Ac denote its complementary. Then we have the identities

∫
(pµ ∧ eε pν)dλ =

∫
A

dµ + eε

∫
Ac

dν ,∫
[pµ − eε pν ]+dλ =

∫
Ac

dµ− eε

∫
Ac

dν .

Thus we obtain the desired result since

Deε (µ‖ν)+
∫
(pµ ∧ eε pν)dλ =

∫
[pµ − eε pν ]+dλ +

∫
(pµ ∧ eε pν)dλ

=
∫

Ac
dµ +

∫
A

dµ = 1 .

Theorem 17. Let M be an (ε,δ )-DP mechanism and let ε ′ = log
(

1+ eε−1
δ

)
. If K is a (γ,ε ′)-

Dobrushin Markov operator, then the composition K ◦M is (ε,γδ )-DP.

Proof. Fix µ = M(D) and ν = M(D′) for some D ' D′ and let θ = Deε (µ‖ν) ≤ δ . We start
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by constructing overlapping mixture decompositions for µ and ν as follows. First, define the

function f = pµ ∧ eε pν and let ω be the probability distribution with density pω = f∫
f dλ

= f
1−θ

,

where we used Lemma 3. Now note that by construction we have the inequalities

pµ − (1−θ)pω = pµ − pµ ∧ eε pν ≥ 0 ,

pν −
1−θ

eε
pω = pν − pν ∧ e−ε pµ ≥ 0 .

Assuming without loss of generality that µ 6= ν , these inequalities imply that we can construct

probability distributions µ ′ and ν ′ such that

µ = (1−θ)ω +θ µ
′ ,

ν =
1−θ

eε
ω +

(
1− 1−θ

eε

)
ν
′ .

Now we observe that the distributions µ ′ and ν ′ defined in this way have disjoint support. To see

this we first use the identity pµ = (1−θ)pω +θ pµ ′ to see that

pµ ′(x)> 0≡ pµ(x)− (1−θ)pω(x)> 0≡ pµ(x)− pµ(x)∧ eε pν(x)> 0≡ pµ(x)> eε pν(x) .

Thus we have supp(µ ′) = {x : pµ(x)> eε pν(x)}. A similar argument applied to pν shows that

on the other hand supp(ν ′) = {x : pµ(x)< eε pν(x)}, and thus µ ′⊥ν ′.

Finally, we proceed to use the mixture decomposition of µ and ν and the condition

µ ′⊥ν ′ to bound Deε (µK‖νK) as follows. By using the mixture decompositions we get

µ− eε
ν = θ µ

′− eε

(
1− 1−θ

eε

)
ν
′ = θ(µ ′− eε̃

ν
′) ,

where ε̃ = log
(

1+ eε−1
θ

)
≥ ε ′. Thus, applying the definition of Deε , using the linearity of
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Markov operators, and the monotonicity Deε̃ ≤ Deε ′ we obtain the bound:

Deε (µK‖νK) = θDeε̃ (µ ′K‖ν ′K)≤ θDeε ′ (µ
′K‖ν ′K)≤ γθ = γDeε ′ (µ‖ν) ,

where the last inequality follows from Lemma 2.

Recall that a Markov operator K ∈K (X,Y) is γ-Doeblin if there exists a distribution

ω ∈P(Y) such that K(x)≥ (1− γ)ω for all x ∈ X. The proof of amplification for γ-Doeblin

operators further leverages overlapping mixture decompositions like the one used in Theorem 17,

but this time the mixture arises at the level of the kernel itself.

Theorem 18. Let M be an (ε,δ )-DP mechanism. If K is a γ-Doeblin Markov operator, then the

composition K ◦M is (ε ′,δ ′)-DP with ε ′ = log(1+ γ(eε −1)) and δ ′ = γ

(
1− eε ′−ε(1−δ )

)
.

Proof. Fix µ = M(D) and ν = M(D′) for some D' D′. Let ω be a witness that K is γ-Doeblin

and let Kω be the constant Markov operator given by Kω(x) = ω for all x. Doeblin’s condition

K(x)≥ (1− γ)ω = (1− γ)Kω(x) implies that the following is again a Markov operator:

K̃ =
K− (1− γ)Kω

γ
.

Thus, we can write K as the mixture K = (1− γ)Kω + γK̃ and then use the advanced joint

convexity property of Deε ′ [Balle et al., 2018, Theorem 2] with ε ′ = log(1+ γ(eε −1)) to obtain

the following:

Deε ′ (µK‖νK) = Deε ′ ((1− γ)ω + γµK̃‖(1− γ)ω + γνK̃)

= γDeε (µK̃‖(1−β )ω +βνK̃)

≤ γ
(
(1−β )Deε (µK̃‖ω)+βDeε (µK̃‖νK̃)

)
,

where β = eε ′−ε . Finally, using the immediate bounds Deε (µK̃‖νK̃)≤ Deε (µ‖ν) and
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Deε (µK̃‖ω)≤ 1, we get

Deε ′ (µK‖νK)≤ γ(1− eε ′−ε + eε ′−ε
δ ) .

Our last amplification result applies to operators satisfying the ultra-mixing condition

of Del Moral et al. [2003]. We say that a Markov operator K ∈K (X,Y) is γ-ultra-mixing if

for all x,x′ ∈ X we have K(x)� K(x′) and dK(x)
dK(x′) ≥ 1− γ . The proof strategy is based on the

ideas from the previous proof, although in this case the argument is slightly more technical as it

involves a strengthening of the Doeblin condition implied by ultra-mixing that only holds under

a specific support.

Theorem 19. Let M be an (ε,δ )-DP mechanism. If K is a γ-ultra-mixing Markov operator, then

the composition K ◦M is (ε ′,δ ′)-DP with ε ′ = log(1+ γ(eε −1)) and δ ′ = γδeε ′−ε .

Proof. Fix µ = M(D) and ν = M(D′) for some D' D′. The proof follows a similar strategy as

the one used in Theorem 18, but coupled with the following consequence of the ultra-mixing

property: for any probability distribution ω and x ∈ supp(ω) we have K(x) ≥ (1− γ)ωK

[Del Moral et al., 2003, Lemma 4.1]. We use this property to construct a collection of mixture

decompositions for K as follows. Let α ∈ (0,1) and take ω̃ = (1−α)µ +αν and ω = ω̃K. By

the ultra-mixing condition and the argument used in the proof of Theorem 18, we can show that

K̃ =
K− (1− γ)Kω

γ

is a Markov operator from supp(µ)∪ supp(ν) into X. Here Kω is the constant Markov operator

Kω(x) = ω . Furthermore, the expression for K̃ and the definition of ω imply that

ω̃K̃ =
ω̃K− (1− γ)ω̃Kω

γ
= ω . (6.1)
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γ-ultra-mixing γ-Doeblin γ-Dobrushin

(γ,ε)-Dobrushin

Figure 6.1. Implications between mixing conditions

Mixing Condition Local DP Condition

γ-Dobrushin (0,γ)-LDP

(γ,ε)-Dobrushin (ε,γ)-LDP

γ-Doeblin Blanket condition3

γ-ultra-mixing (log 1
1−γ

,0)-LDP

Figure 6.2. Relation between mixing conditions and local DP

Now note that the mixture decompositions µK = (1− γ)ω + γµK̃ and νK = (1− γ)ω + γνK̃

and the advanced joint convexity property of Deε ′ [Balle et al., 2018, Theorem 2] with ε ′ =

log(1+ γ(eε −1)) yield

Deε ′ (µK‖νK)≤ γ
(
(1−β )Deε (µK̃‖ω)+βDeε (µK̃‖νK̃)

)
≤ γ

(
(1−β )Deε (µK̃‖ω)+βDeε (µ‖ν)

)
≤ γ

(
(1−β )Deε (µK̃‖ω)+βδ

)
,

where β = eε ′−ε . Using (6.1) we can expand the remaining divergence above as follows:

Deε (µK̃‖ω) = Deε (µK̃‖ω̃K̃)≤ Deε (µ‖ω̃)≤ αDeε (µ‖ν)≤ αδ ,

where we used the definition of ω̃ and joint convexity. Since α was arbitrary, we can now take

the limit α → 0 to obtain the bound Deε ′ (µK‖νK)≤ γδeε ′−ε .

Proof of Theorem 15. It follows from Theorems 16, 17, 18 and 19.

We conclude this section by noting that the conditions in Definition 22, despite being

quite natural, might be too stringent for proving amplification for DP mechanisms on, say, Rd .
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One way to see this is to interpret the operator K :X→P(Y) as a mechanism and to note that the

uniform mixing conditions on K can be rephrased in terms of local DP (LDP) [Kasiviswanathan

et al., 2011] properties (see Table 6.2 for property3 translations)where the supremum is taken

over any pair of inputs (instead of neighboring ones). This motivates the results on next section,

where we look for finer conditions to prove amplification by stochastic post-processing.

6.4 Amplification From Couplings

In this section we turn to coupling-based proofs of amplification by post-processing

under the Rényi DP framework. Our first result is a measure-theoretic generalization of the

shift-reduction lemma in [Feldman et al., 2018] which does not require the underlying space to

be a normed vector space. The main differences in our proof are to use explicit couplings instead

of the shifted Rényi divergence which implicitly relies on the existence of a norm (through the

use of W∞), and replace the identity U +W −W =U between random variables which depends

on the vector-space structure with a transport operators Hπ and Hπ ′ which satisfy µHπ ′Hπ = µ

in a general measure-theoretic setting.

Given a coupling π ∈ C (µ,ν) with µ,ν ∈P(X), we construct a transport Markov

operator Hπ : X→P(X) with kernel4 hπ(x,y) =
pπ (x,y)
pµ (x)

, where pπ = dπ

dλ⊗λ
and pµ = dµ

dλ
. It is

immediate to verify from the definition that Hπ is a Markov operator satisfying the transport

property µHπ = ν (see Lemma 4).

Lemma 4. The transport operator Hπ with π ∈ C (µ,ν) satisfies µHπ = ν .

Proof. Take an arbitrary event E and note that:

(µHπ)(E) =
∫
X

Hπ(x)(E)µ(dx) =
∫
X

∫
E

hπ(x,y)µ(dx)λ (dy) =
∫
X

∫
E

pπ(x,y)
pµ(x)

µ(dx)λ (dy)

=
∫
X

∫
E

pπ(x,y)λ (dx)λ (dy) =
∫

E
pν(y)λ (dy) = ν(E) ,

3The blanket condition is a necessary condition for LDP introduced in [Balle et al., 2019] to analyze privacy
amplification by shuffling.

4Here we use the convention 0
0 = 0.
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where we used the coupling property
∫
X pπ(x,y)λ (dx) = pν(y).

Theorem 20. Let α ≥ 1, µ,ν ∈P(X) and K ∈K (X,Y). For any distribution ω ∈P(X) and

coupling π ∈ C (ω,µ) we have

Rα(µK‖νK)≤ Rα(ω‖ν)+ sup
x∈supp(ν)

Rα((HπK)(x)‖K(x)) . (6.2)

Proof. Let ω ∈P(X) and π ∈ C (ω,µ) be as in the statement, and let π ′ =C(µ,ω). Note that

taking Hπ and Hπ ′ to be the corresponding transport operators we have µ = µHπ ′Hπ = ωHπ .

Now, given a λ ∈P(X×X) let Π2(λ ) =
∫

λ (dx, ·) denote the marginal of λ on the second

coordinate. In particular, if µ ⊗K denotes the joint distribution of µ and µK, then we have

Π2(µ⊗K) = µK. Thus, by the data processing inequality we have

Rα(µK‖νK) = Rα(ωHπK‖νK) = Rα(Π2(ω⊗HπK)‖Π2(ν⊗K))≤ Rα(ω⊗HπK‖ν⊗K) .

The final step is to expand the RHS of the derivation above as follows:

e(α−1)Rα (ω⊗Hπ K‖ν⊗K) =
∫∫ (d(ω⊗HπK)

d(ν⊗K)

)α

ν(dx)K(x,dy)

=
∫∫ ( pω(x)

∫
hπ(x,dz)k(z,y)

pν(x)k(x,y)

)α

ν(dx)K(x,dy)

=
∫∫ ( pω(x)

pν(x)

)α(∫ hπ(x,dz)k(z,y)
k(x,y)

)α

ν(dx)K(x,dy)

≤
(∫ ( pω(x)

pν(x)

)α

ν(dx)
)(

sup
x

∫ (∫ hπ(x,dz)k(z,y)
k(x,y)

)α

K(x,dy)
)

= e(α−1)Rα (ω‖ν) · e(α−1)supxRα ((Hπ K)(x)‖K(x)) ,

where the supremums are taken with respect to x ∈ supp(ν).

Note that this result captures the data-processing inequality for Rényi divergences since

taking ω = µ and the identity coupling yields Rα(µK‖νK) ≤ Rα(µ‖ν). The next examples
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illustrate the use of this theorem to obtain amplification by operators corresponding to the

addition of Gaussian and Laplace noise.

Example 1 (Iterated Gaussian). We can show that (6.2) is tight and equivalent to the shift-

reduction lemma [Feldman et al., 2018] on Rd by considering the simple scenario of adding Gaus-

sian noise to the output of a Gaussian mechanism. In particular, suppose M(D) =N ( f (D),σ2
1 I)

for some function f with global L2-sensitivity ∆ and the Markov operator K is given by K(x) =

N (x,σ2
2 I). The post-processed mechanism is given by (K ◦M)(D) = N ( f (D),(σ2

1 +σ2
2 )I),

which satisfies (α, α∆2

2(σ2
1+σ2

2 )
)-RDP. We now show how this result also follows from Theorem 20.

Given two datasets D'D′ we write µ = M(D) =N (u,σ2
1 I) and ν = M(D′) =N (v,σ2

1 I) with

‖u− v‖ ≤ ∆. We take ω = N (w,σ2
1 I) for some w to be determined later, and couple ω and µ

through a translation τ = u−w, yielding a coupling π with pπ(x,y) ∝ exp(−‖x−w‖2

2σ2
1

)I[y = x+τ]

and a transport operator Hπ with kernel hπ(x,y) = I[y = x+τ]. Plugging these into (6.2) we get

Rα(µK‖νK)≤ α‖w− v‖2

2σ2
1

+ sup
x∈Rd

Rα(K(x+ τ)‖K(x)) =
α

2

(
‖w− v‖2

σ2
1

+
‖u−w‖2

σ2
2

)
.

Finally, taking w = θu+(1−θ)v with θ = (1+ σ2
2

σ2
1
)−1 yields Rα(µK‖νK)≤ α∆2

2(σ2
1+σ2

2 )
.

Example 2 (Iterated Laplace). To illustrate the flexibility of this technique, we also apply it to get

an amplification result for iterated Laplace noise, in which Laplace noise is added to the output

of a Laplace mechanism. We begin by noting a negative result that there is no amplification in

the (ε,0)-DP regime.

Lemma 5. Let M(D) = Lap( f (D),λ1) for some function f : D→ R with global L1-sensitivity

∆ and let the Markov operator K be given by K(x) = Lap(x,λ2). The post-processed mechanism

(K ◦M) does not achieve (ε,0)-DP for any ε < ∆

max{λ1,λ2} . Note that M achieves ( ∆

λ1
,0)-DP and

K( f (D)) achieves ( ∆

λ2
,0)-DP.

Proof. This can be shown by directly analyzing the distribution arising from the sum of two

independent Laplace variables. Let Lap2(λ1,λ2) denote this distribution. In the following
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equations, we assume x > 0. Due to symmetry around the origin, densities at negative values can

be found by looking instead at the corresponding positive location.

Lap2(x;λ1,λ2) =
∫

∞

−∞

1
2λ1

exp
(
−|x− t|

λ1

)
1

2λ2
exp
(
−|t|

λ2

)
dt

=
1

4λ1λ2

∫
∞

−∞

exp
(
−λ2|x− t|+λ1|t|

λ1λ2

)
dt

=
1

4λ1λ2

(∫ 0

−∞

e−
λ2(x−t)−λ1t

λ1λ2 dt +
∫ x

0
e−

λ2(x−t)+λ1t
λ1λ2 dt +

∫
∞

x
e−

−λ2(x−t)+λ1t
λ1λ2 dt

)
=

1
4λ1λ2

(∫ 0

−∞

e−
λ2x−(λ1+λ2)t

λ1λ2 dt +
∫ x

0
e−

λ2x+(λ1−λ2)t
λ1λ2 dt +

∫
∞

x
e−

−λ2x+(λ1+λ2)t
λ1λ2 dt

)

=
1

4λ1λ2

 e−
λ2x−(λ1+λ2)t

λ1λ2

(λ1 +λ2)/λ1λ2

∣∣t=0
t=−∞

+
∫ x

0
e−

λ2x+(λ1−λ2)t
λ1λ2 dt +

e−
−λ2x+(λ1+λ2)t

λ1λ2

(λ1 +λ2)/λ1λ2

∣∣t=∞

t=x



The integration on the middle term varies between the cases λ1 = λ2 and λ1 6= λ2.

Finishing this derivation and replacing x with |x| to account for both positive and negative values,

we get a complete expression for our Lap2(λ1,λ2) density.

Lap2(x;λ1,λ2) =


1
4

(
( 1

λ1+λ2
+ 1

λ1−λ2
)e−

|x|
λ1 +( 1

λ1+λ2
− 1

λ1−λ2
)e−

|x|
λ2

)
if λ1 6= λ2 ,

1
4λ 2

1
e−
|x|
λ1 (λ1 + |x|) if λ1 = λ2 .

(6.3)

To finish this lemma, we need to derive the best (ε,0)-DP guarantee offered by adding

noise from Lap2(λ1,λ2). From the post-processing property of DP and the commutativity of

additive mechanisms, we know this guarantee is upper-bounded by ∆/max{λ1,λ2}. A direct

computation of limx→∞ log(Lap2(x;λ1,λ2)/Lap2(x+∆;λ1,λ2)) results in ∆/max{λ1,λ2} in

both cases of equation (6.3). This arises from the limit depending entirely on the dominating

term with the largest exponent. Therefore, this lower-bounds the privacy guarantee by the same

value. Thus we can conclude this is the exact level of (ε,0)-DP offered by this mechanism.
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However, the iterated Laplace mechanism K ◦M above still offers additional privacy in

the relaxed RDP setting. An application of (6.2) allows us to identify some of this improvement.

Recall from [Mironov, 2017, Corollary 2] that M satisfies (α, 1
α−1 loggα(

∆

λ1
))-RDP with gα(z) =

α

2α−1 exp(z(α−1))+ α−1
2α−1 exp(−zα). As in Example 1, we take ω = Lap(w,λ1) for some w to

be determined later, and couple ω and µ through a translation τ = u−w. Through (6.2) we

obtain

Rα(µK‖νK)≤ 1
α−1

log
(

gα

(
|w− v|

λ1

))
+ sup

x∈R
Rα(K(x+ τ)‖K(x))

=
1

α−1
log
(

gα

(
|w− v|

λ1

)
gα

(
|u−w|

λ2

))
.

In the simple case where λ1 = λ2, an amplification result is observed from the log-convexity of gα ,

since gα(a)gα(b)≤ gα(a+b). When λ1 6= λ2, certain values of w still result in amplification,

but they depend nontrivially on α . However, we also observe that this improvement vanishes as

α → ∞, since the necessary convexity also vanishes. In the limit, the lowest upper bound offered

by (6.2) for R∞ (which reduces to (ε,0)-DP) matches the ∆

max{λ1,λ2} result of Lemma 5.

Example 3 (Lipschitz Kernel). As a warm-up for the results in Section 6.4.1, we now re-work

Example 1 with a slightly more complex Markov operator. Suppose ψ is an L-Lipschitz map5

and let K(x) = N (ψ(x),σ2
2 I). Taking M to be the Gaussian mechanism from Example 1, we

will show that the post-processed mechanism K ◦M satisfies (α, α∆2

2σ2
∗
)-RDP with σ2

∗ = σ2
1 +

σ2
2

L2 .

To prove this bound, we instantiate the notation from Example 1, and use the same coupling

strategy to obtain

Rα(µK‖νK)≤ α

2

(
‖w− v‖2

σ2
1

+ sup
x∈Rd

‖ψ(x+ τ)−ψ(x)‖2

σ2
2

)
≤ α

2

(
‖w− v‖2

σ2
1

+
L2‖u−w‖2

σ2
2

)
,

where the second inequality uses the Lipschitz property. As before, the result follows from

5That is, ‖ψ(x)−ψ(y)‖ ≤ L‖x− y‖ for any pair x,y.
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taking w = θu+(1−θ)v with θ = (1+ σ2
2

L2σ2
1
)−1. This example shows that we get amplification

(i.e. σ2
∗ > σ2

1 ) for any L < ∞ and σ2 > 0, although the amount of amplification decreases as L

grows. On the other hand, for L < 1 the amplification is stronger than just adding Gaussian

noise (Example 1).

6.4.1 Amplification by Iteration in Noisy Projected SGD with Strongly
Convex Losses

Now we use Theorem 20 and the computations above to show that the proof of privacy

amplification by iteration [Feldman et al., 2018, Theorem 22] can be extended to explicitly

track the Lipschitz coefficients in a “noisy iteration” algorithm. In particular, this allows us

to show an exponential improvement on the rate of privacy amplification by iteration in noisy

SGD when the loss is strongly convex. To obtain this result we first provide an iterated version

of Theorem 20 in Rd with Lipschitz Gaussian kernels. This version of the analysis introduces

an explicit dependence on the W∞ distances along an “interpolating” path between the initial

distributions µ,ν ∈P(Rd) which could later be optimized for different applications. In our

view, this helps to clarify the intuition behind the previous analysis of amplification by iteration.

Theorem 21. Let α ≥ 1, µ,ν ∈P(Rd) and let K⊆ Rd be a convex set. Suppose K1, . . . ,Kr ∈

K (Rd,Rd) are Markov operators where Yi∼Ki(x) is obtained as6 Yi =ΠK(ψi(x)+Zi) with Zi∼

N (0,σ2I), where the maps ψi : K→ Rd are L-Lipschitz for all i ∈ [r]. For any µ0,µ1, . . . ,µr ∈

P(Rd) with µ0 = µ and µr = ν we have

Rα(µK1 · · ·Kr‖νK1 · · ·Kr)≤
αL2

2σ2

r

∑
i=1

L2(r−i)W∞(µi,µi−1)
2 . (6.4)

Furthermore, if L≤ 1 and W∞(µ,ν) = ∆, then

Rα(µK1 · · ·Kr‖νK1 · · ·Kr)≤
α∆2Lr+1

2rσ2 . (6.5)

6Here ΠK(x) = argminy∈K‖x− y‖ denotes the projection operator onto the convex set K⊆ Rd .
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The proof of Theorem 21 relies on the following technical lemma about the effect of a

projected Lipschitz Gaussian operator on the ∞-Wasserstein distance between two distributions.

Lemma 6. Let K⊆Rd be a convex set and ψ :K→Rd be L-Lipschitz. Suppose K ∈K (Rd,Rd)

is a Markov operator where Y ∼ K(x) is obtained as Y = ΠK(ψ(x)+Z) with Z ∼N (0,σ2I).

Then, for any µ,ν ∈P(Rd) we have W∞(µK,νK)≤ LW∞(µ,ν).

Proof. Let π ∈ C (µ,ν) be a witness of W∞(µ,ν) = ∆. We construct a witness of

W∞(µK,νK) ≤ L∆ as follows: sample (X ,X ′) ∼ π and Z ∼ N (0,σ2I) and then let Y =

ΠK(ψ(X)+Z) and Y ′ = ΠK(ψ(X ′)+Z). It is clear from the construction that Law((Y,Y ′)) ∈

C (µK,νK). Furthermore, by the Lipschitz assumption on ψ and that fact that the map ΠK is

contractive, the following holds almost surely:

‖Y −Y ′‖ ≤ ‖ψ(X)−ψ(X ′)‖ ≤ L‖X−X ′‖ ≤ L∆ .

Proof of Theorem 21. We prove (6.4) by induction on r. For the base case r = 1 we apply

Theorem 20 with ω = ν and a coupling π ∈ C (ν ,µ) witnessing that W∞(µ,ν) = ∆. This choice

of coupling guarantees that for any x ∈ supp(ν) we have supp(Hπ(x))⊆ B∆(x), where B∆(x) is

the ball of radius ∆ around x. Note also that (HπK1)(x) = Hπ(x)K1. Thus, from (6.2) we obtain,

using Hölder’s inequality and the monotonicity of the logarithm, that:

Rα(µK1‖νK1)≤ sup
x∈supp(ν)

Rα((HπK1)(x)‖K1(x))≤ sup
x∈supp(ν)

sup
y∈supp(Hπ (x))

Rα(K1(y)‖K1(x))

≤ sup
‖x−y‖≤∆

Rα(K1(y)‖K1(x)) .

Now note that the Markov operator K1 can be obtained by post-processing

K̃1(x) = N (ψ1(x),σ2I) with the projection ΠK. Thus, by the data processing inequality we

112



obtain

sup
‖x−y‖≤∆

Rα(K1(y)‖K1(x))≤ sup
‖x−y‖≤∆

Rα(K̃1(y)‖K̃1(x))

= sup
‖x−y‖≤∆

α‖ψ1(x)−ψ1(y)‖2

2σ2 ≤ α∆2L2

2σ2 .

For the inductive case we suppose that (6.4) holds for some r ≥ 1 and consider the

case r+1, in which we need to bound Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1). Let µ0,µ1, . . . ,µr+1 be a

sequence of distributions with µ0 = µ and µr+1 = ν . Applying (6.2) with ω = µ1K1 · · ·Kr and

some coupling π ∈ C (µ1K1 · · ·Kr,µK1 · · ·Kr) we have

Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1)≤ Rα(µ1K1 · · ·Kr‖νK1 · · ·Kr)

+ sup
x∈supp(νK1···Kr)

Rα((HπKr+1)(x)‖Kr+1(x)) .

By the inductive hypothesis, the first term in the RHS above can be bounded as follows:

Rα(µ1K1 · · ·Kr‖νK1 · · ·Kr)≤
αL2

2σ2

r

∑
i=1

L2(r−i)W∞(µi+1,µi)
2

=
αL2

2σ2

r+1

∑
i=2

L2(r+1−i)W∞(µi,µi−1)
2 .

To bound the second term we assume the coupling π is a witness of W∞(µ1K1 · · ·Kr,µK1 · · ·Kr)=

∆′, in which case a similar argument to the one we used in the base case yields:

sup
x
Rα((HπKr+1)(x)‖Kr+1(x))≤ sup

x
sup

y∈supp(Hπ (x))
Rα(Kr+1(y)‖Kr+1(x))

≤ sup
‖x−y‖≤∆′

Rα(Kr+1(y)‖Kr+1(x))

≤ α∆′2L2

2σ2 ≤ αL2r+2W∞(µ1,µ)
2

2σ2 ,

where the last inequality follows from Lemma 6. Plugging the last three inequalities together we

113



finally obtain

Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1)≤
αL2r+2W∞(µ1,µ0)

2

2σ2 +
αL2

2σ2

r+1

∑
i=2

L2(r+1−i)W∞(µi,µi−1)
2

=
αL2

2σ2

r+1

∑
i=1

L2(r+1−i)W∞(µi,µi−1)
2 .

When L ≤ 1, we can obtain (6.5) from (6.4) as follows. First, construct a sequence of

distributions µ0, . . . ,µr such that ∆i ,W∞(µi,µi−1) = ∆0Li for i ∈ [r], where ∆0 =
∆

L
1−L
1−Lr is a

normalization constant chosen such that ∑i∈[r]∆i = ∆. With this choice plugged into (6.4) we

obtain

Rα(µK1 · · ·Kr‖νK1 · · ·Kr)≤
αL2

2σ2 r∆
2
0L2r =

α∆2Lr+1r
2σ2

(
L−

1
2 −L

1
2

L−
r
2 −L

r
2

)2

=
α∆2Lr+1r

2σ2 φ(L)2 .

Now we note the function φ(L) defined above is increasing in [0,1] and furthermore

limL→1 φ(L) = 1
r , which can be checked by applying L’Hôpital’s rule twice. Thus, we can plug

the inequality φ(L)≤ 1
r above to obtain (6.5).

But we still need to show that a sequence µ0, . . . ,µr with ∆i as above exists. To construct

such a sequence we let π ∈ C (µ,ν) be a witness of W∞(µ,ν) = ∆, take random variables

(X ,X ′) ∼ π , and define µi = Law((1−θi)X +θiX ′) with θi =
∆0
∆ ∑

i
j=1 L j = 1−Li

1−Lr . Clearly we

get µ0 = Law(X) = µ and µr = Law(X ′) = ν .

To see that W∞(µi,µi−1)≤ ∆0Li we construct a coupling between µi and µi−1 as follows:

sample (X ,X ′) ∼ π and let Y = (1− θi)X + θiX ′ and Y ′ = (1− θi−1)X + θi−1X ′. Clearly we

have Law((Y,Y ′)) ∈ C (µi,µi−1). Furthermore, with probability one the following holds:

‖Y −Y ′‖= ‖(θi−1−θi)X− (θi−1−θi)X ′‖=
∆0

∆
Li‖X−X ′‖ ≤ ∆0Li ,

where the last inequality uses that π is a witness of W∞(µ,ν)≤ ∆. This concludes the proof.

Note how taking L = 1 in the bound above we obtain α∆2

2rσ2 = O(1/r), which matches
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[Feldman et al., 2018, Theorem 1]. On the other hand, for L strictly smaller than 1, the analysis

above shows that the amplification rate is O(Lr+1/r) as a consequence of the maps ψi being

strict contractions, i.e. ‖ψi(x)−ψi(y)‖< ‖x− y‖. For L > 1 this result is not useful since the

sum will diverge; however, the proof could easily be adapted to handle the case where each

ψi is Li-Lipschitz with some Li > 1 and some Li < 1. We now apply this result to improve the

per-person privacy guarantees of noisy projected SGD (Algorithm 5) in the case where the loss

function is smooth and strongly convex.

Algorithm 5: Noisy Projected Stochastic Gradient Descent —
NoisyProjSGD(D, `,η ,σ ,ξ0)

Input: Dataset D = (z1, . . . ,zn), loss function ` : K×D→ R, learning rate η , noise
parameter σ , initial distribution ξ0 ∈P(K)

Sample x0 ∼ ξ0
for i ∈ [n] do

xi←ΠK (xi−1−η(∇x`(xi−1,zi)+Z)) with Z ∼N (0,σ2I)
return xn

A function f : K ⊆ Rd → R defined on a convex set is β -smooth if it is continuously

differentiable and ∇ f is β -Lipschitz, i.e., ‖∇ f (x)−∇ f (y)‖ ≤ β‖x− y‖, and is ρ-strongly

convex if the function g(x) = f (x)− ρ

2‖x‖
2 is convex. When we say that a loss function

` : K×D→ R satisfies a property (e.g. smoothness) we mean the property is satisfied by `(·,z)

for all z ∈ D. Furthermore, we recall from [Feldman et al., 2018] that a mechanism M : Dn→ X

satisfies (α,ε)-RDP at index i if Rα(M(D)‖M(D′))≤ ε holds for any pair of databases D and

D′ differing on the ith coordinate.

Theorem 22. Let ` : K×D→ R be a C-Lipschitz, β -smooth, ρ-strongly convex loss function. If

η ≤ 2
β+ρ

, then NoisyProjSGD(D, `,η ,σ ,ξ0) satisfies (α,αεi)-RDP at index i, where εn =
2C2

σ2

and εi =
2C2

(n−i)σ2 (1−
2ηβρ

β+ρ
)

n−i+1
2 for 1≤ i≤ n−1.

Since [Feldman et al., 2018, Theorem 23] shows that for smooth Lipschitz loss functions

the guarantee at index i of NoisyProjSGD is given by εi = O( C2

(n−i)σ2 ), our result provides an

exponential improvement in the strongly convex case. This implies, for example, that using
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the technique in [Feldman et al., 2018, Corollary 31] one can show that, in the strongly convex

setting, running Θ(log(d)) additional iterations of NoisyProjSGD on public data is enough to

attain (up to constant factors) the same optimization error as non-private SGD while providing

privacy for all individuals.

To prove Theorem 22 we will use the following well-known fact about convex optimiza-

tion: gradient iterations on a strongly convex function are strict contractions. The lemma below

provides an expression for the contraction coefficient.

Lemma 7. Let K⊆ Rd be a convex set and suppose the function f : K→ R is β -smooth and

ρ-strongly convex. If η ≤ 2
β+ρ

, then the map ψ(x) = x−η∇ f (x) is L-Lipschitz on K with

L =
√

1− 2ηβρ

β+ρ
< 1.

Proof. This follows from a standard calculation in convex optimization; see e.g. [Bubeck, 2015,

Theorem 3.12]. We reproduce the proof here for completeness. Recall from [Bubeck, 2015,

Lemma 3.11] that if a function f is β -smooth and ρ-strongly convex, then for any x,y ∈K we

have

βρ

β +ρ
‖x− y‖2 +

1
β +ρ

‖∇ f (x)−∇ f (y)‖2 ≤ 〈∇ f (x)−∇ f (y),x− y〉 .

Using this inequality, one can show the following:

‖ψ(x)−ψ(y)‖2 = ‖(x−η∇ f (x))− (y−η∇ f (y))‖2

= ‖x− y‖2 +η
2‖∇ f (x)−∇ f (y)‖2−2η〈∇ f (x)−∇ f (y),x− y〉

≤
(

1− 2ηβρ

β +ρ

)
‖x− y‖2 +η

(
η− 2

β +ρ

)
‖∇ f (x)−∇ f (y)‖2

≤
(

1− 2ηβρ

β +ρ

)
‖x− y‖2 ,

where the last inequality uses our assumption on η .

Proof of Theorem 22. Fix 1 ≤ i ≤ n− 1 and let D ' D′ be two datasets differing on the ith

116



coordinate. Let ξ , ξi−1 ∈ P(Rd) represent the distribution of xi−1 in the execution of

Algorithm 5 with input D. Since D and D′ differ only on the ith coordinate, the distribu-

tion of xi−1 on input D′ is also ξ . Now let ψ0(x) = x−η∇x`(x,zi), ψ ′0(x) = x−η∇x`(x,z′i),

and ψ j(x) = x−η∇x`(x,zi+ j) for j ∈ [r] with r = n− i. Defining the Markov operators K j,

j ∈ {0, . . . ,r}, where Yj ∼ K j(x) is given by K j(x) = ΠK(ψ j(x)+Z) with Z ∼N (0,η2σ2I),

we immediately obtain that the distribution of the output xn of NoisyProjSGD(D, `,η ,σ) can be

written as ξ K0K1 · · ·Kr. Similarly, the distribution of the output of NoisyProjSGD(D′, `,η ,σ)

can be written as ξ K′0K1 · · ·Kr, where K′0(x) =N (ψ ′0(x),η
2σ2I). Therefore, to obtain the Rényi

differential privacy of NoisyProjSGD(D, `,η ,σ) at index i we need to bound

Rα(ξ K0K1 · · ·Kr‖ξ K′0K1 · · ·Kr).

With the goal to apply Theorem 21, we first define µ = ξ K0 and ν = ξ K′0 and use the

Lipschitz assumption on ` to conclude that W∞(µ,ν) ≤ 2ηC. Indeed, consider the coupling

π ∈ C (µ,ν) obtained by sampling (Y,Y ′)∼ π as follows: sample X ∼ ξ and Z ∼N (0,η2σ2I),

and then let Y = ΠK(ψ0(X)+Z) and Y ′ = ΠK(ψ
′
0(X)+Z). Now, since `(·,zi) and `(·,z′i) are

both C-Lipschitz and ΠK is contractive, we see that the following holds almost surely under π:

‖Y −Y ′‖ ≤ ‖ψ0(X)−ψ
′
0(X)‖= η‖∇x`(X ,zi)−∇x`(X ,z′i)‖

≤ η (‖∇x`(X ,zi)‖+‖∇x`(X ,zi)‖)≤ 2ηC .

Thus, W∞(µ,ν)≤ 2ηC as claimed.

Next we note that the assumption η ≤ 2
β+ρ

together with Lemma 7 imply that ψ j, j ∈ [r],

are all L-Lipschitz with L =
√

1− 2ηβρ

β+ρ
< 1. Thus we can apply Theorem 21 with ∆ = 2ηC to

obtain

Rα(ξ K0K1 · · ·Kr‖ξ K′0K1 · · ·Kr)≤
2αη2C2Ln−i+1

(n− i)η2σ2 =
2αC2

(n− i)σ2

(
1− 2ηβρ

β +ρ

) n−i+1
2

.

This concludes the analysis of the case i < n.
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For the case i = n we need to bound Rα(ξ K0‖ξ K′0), where now ξ is the distribution of

xn−1, and the operators K0 and K′0 are defined as above. By Hölder’s inequality, monotonicity of

the logarithm, the contractiveness of ΠK and the Lipschitz assumption on ` we have

Rα(ξ K0‖ξ K′0)≤ sup
x∈supp(ξ )

Rα(K0(x)‖K′0(x))≤ sup
x∈Rd

Rα(K0(x)‖K′0(x))

≤ sup
x∈Rd

αη2‖∇x`(x,zn)−∇x`(x,z′n)‖2

2η2σ2 ≤ 2αC2

σ2 .

6.5 Conclusion

We have undertaken a systematic study of amplification by post-processing. Our results

yield improvements over recent work on amplification by iteration, and introduce a new Ornstein-

Uhlenbeck mechanism which is more accurate than the Gaussian mechanism. In the future it

would be interesting to study applications of amplification by post-processing. One promising

application is Hierarchical Differential Privacy, where information is released under increasingly

strong privacy constraints (e.g. to a restricted group within a company, globally within a

company, and finally to outside parties).
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Chapter 7

Profile-based Privacy Preservation

7.1 Introduction

A great deal of machine learning in the 21st century is carried out on sensitive data,

and hence the field of privacy preserving data analysis is of increasing importance. Differential

privacy Dwork et al. [2006b], introduced in 2006, has become the dominant paradigm for

specifying data privacy. A body of compelling results Chaudhuri et al. [2011, 2012], Kifer et al.

[2012], Foulds et al. [2016], Wang et al. [2015b] have been achieved in the ”centralized” model,

in which a trusted data curator has raw access to the data while performing the privacy-preserving

operations. However, such trust is not always easy to achieve, especially when the trust must

also extend to all future uses of the data.

An implementation of differential privacy that has been particularly popular in industrial

applications makes each user into their own trusted curator. Commonly referred to as Local

Differential Privacy Duchi et al. [2013], this model consists of users locally privatizing their own

data before submission to an aggregate data curator. Due to the strong robustness of differential

privacy under further computations, this model preserves privacy regardless of the trust in the

aggregate curator, now or in the future. Two popular industrial systems implementing local

differential privacy include Google’s RAPPOR and Apple’s iOS data collection systems.

However, a major barrier for the local model is the undesirable utility sacrifices of the

submitted data. A local differential privacy implementation achieves much lower utility than a
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similar method that assumes trusts in the curator. Strong lower bounds have been found for the

local framework Duchi et al. [2013], leading to pessimistic results requiring massive amounts of

data to achieve both privacy and utility.

In this work, we address this challenge by proposing a new restricted privacy definition,

called Profile-based privacy. The central idea relies on specifying a graph G of data generating

distributions, where edges encode sensitive pairs of distributions that should be made indistin-

guishable. Our framework does not require that all features of the observed data be obscured;

instead only the information connected to identifying the distributions must be perturbed. This

side-steps the utility costs of local differential privacy, where every possible pair of observations

must be indistinguishable.

7.2 Setup

We begin with defining local differential privacy – a prior privacy framework that is

related to our definition.

Definition 23. A mechanism A : X → Y achieves ε-local differential privacy if for every pair

(X ,X ′) of individuals’ private records in X we have:

Pr(A (X) = Y )≤ eεPr(A (X ′) = Y ). (7.1)

Concretely, local differential privacy limits the ability of an adversary to increase their

confidence in whether an individual’s private value is X versus X ′ even with arbitrary prior

knowledge. These protections are robust to any further computation performed on the mechanism

output.

Pufferfish Privacy

Pufferfish privacy (Definition 24) is an inferential privacy framework that introduces

explicit secret pairs and limits the ability of an adversary to infer secrets across each protected
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pair of secrets. Typically, it is defined in its global form.

Definition 24. Given a set of data generation scenarios Θ, and a set Spairs of pairs (si,s j) of

secrets, a mechanism A : X → Y is achieves (ε,Spairs,Θ)-Pufferfish privacy if for every pair

(si,s j) in Spairs, and for every data generating distribution θ ∈Θ that assigns non-zero probability

to si and s j, and every output Y ∈ Y :

Pr(A (X) = Y |si,X ∼ θ)≤ eεPr(A (X) = Y |s j,X ∼ θ). (7.2)

The secrets (si,s j) protected by Pufferfish privacy can be any mutually disjoint events.

With the flexibility of this framework, literature on this framework typically focuses on specific

instantiations Kifer and Machanavajjhala [2012], Song et al. [2017]. The most popular instances

either make the secrets more granular and value-dependent, or change the data generation

scenario θ to account for correlations not addressed by differential privacy. While our framework

can also be massaged into this framework, it is different in two ways; first, it is a local framework

- the output is a distorted version of a single person’s value, and second, it behaves differently

from prior Pufferfish instantiations and requires its own mechanisms.

To find an instance matching differential privacy, these secrets take the form of ”this

individual contributed data with value t” versus ”this individual did not contribute”, and the set of

data generation scenarios consist of all distributions where each individual’s data is independently

generated.

This secret pair encodes a limit on inferring the individual’s contribution.

7.3 Profile-based Privacy Definition

Before we present the definition and discuss its implications, it is helpful to have a

specific problem in mind. We present one possible setting in which our profiles have a clear

interpretation.
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7.3.1 Example: Resource Usage Problem Setting

Imagine a shared workstation with access to several resources, such as network bandwidth,

specialized hardware, or electricity usage. Different users might use this workstation, coming

from a diverse pool of job titles and roles. An analyst wishes to collect and analyze the metrics

of resource usage, but also wishes to respect the privacy of the workstation users. One choice of

privacy framework is local differentially privacy, in which every value of a resource usage metric

is considered sensitive and privatized. Under our alternative profile-based framework, a choice

exists to select only the user identities as the sensitive information protected. This shifts the goal

away from hiding all features of the resource usages, and permits measurements to be released

more faithfully when not indicative of a user’s identity.

7.3.2 Definition of Local Profile-based Differential Privacy

Our privacy definition revolves around a notion of profiles, which represent distinct

potential data-generating distributions. To preserve privacy, the mechanism’s release must not

give too much of an advantage in guessing the release’s underlying profile. However, other

facets of the observed data can (and should) be preserved, permitting greater utility than local

differential privacy.

Definition 25. Given a graph G = (P,E) consisting of a collection P of data generating profiles

over the space X and collection of edges E, a mechanism A : X → Y achieves (G,ε)-profile-

based differential privacy if for every edge e ∈ E connecting profiles Pi and Pj, and for all outputs

Y ∈ Y we have:

Pr(A (X ,Pi) = Y |X ∼ Pi)

Pr(A (X ,Pj) = Y |X ∼ Pj)
≤ eε . (7.3)

Inherent in this definition is an assumption on adversarial prior knowledge: the adversary

knows each profile distribution, but has no further auxiliary information about X . The protected

secrets are the identities of the source distributions, and are not directly related to particular
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features of the data X . These additional assumptions in the problem setting, however, open

up avenues for increased performance. By not attempting to completely privatize the raw

observations, information that is less relevant for guessing the sensitive profile identity can be

preserved for downstream tasks.

The flexible specification of sensitive pairs via edges in the graph permits privacy design

decisions that also impact the privacy-utility trade-off. When particular profile pairs can be

declared less sensitive, the perturbations required to blur those profiles can be avoided. Such

design decisions would be impractical in the data-oriented local differential privacy setting,

where the space of pairs of data sets is intractably large.

The local profile-based differential privacy framework exists as an inverse to the goals

seen in maximal-leakage-constrained hypothesis testing Liao et al. [2017], where their hypotheses

act similarly to our profiles as data distributions. While they focus on protecting observation-

privacy and maintaining distribution-utility, we focus on maintaining observation-utility and

protecting distribution-privacy. Both settings are interesting and situational.

7.3.3 Discussion of the Resource Usage Problem

This privacy framework is quite general, and as such it helps to discuss its meaning in

more concrete terms. Let us return to the resource usage setting. We’ll assume that each user

has a personal resource usage profile known prior to the data collection process. The choice

of edges in the graph G opens up flexibility over what inferences are sensitive. If the graph

has many edges, the broad identity of the workstation user will be hidden by forbidding many

potential inferences. However, even with this protection not all the information about resource

must be perturbed. For example, if all users require roughly the same amount of electricity at the

workstation, then electrical usage metrics will not require much obfuscation. Contrast this with

the standard local differential privacy scheme, in which every pair of distinct observed values

must be obscured.

A more sparse graph might only connect profiles with the same job title or role. These
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sensitive pairs will prevent inferences about particular identities within each role. However,

without connections across job titles, no protection is enforced against inferring the job title of

the current workstation user. Thus such a graph declares user identities sensitive, while a user’s

role is not sensitive. This permits the released data to be more faithful to the raw observations,

since only the peculiarities of resource usage among users of the same role must be obscured,

rather than the peculiarities of the different roles.

One important caveat of this definition is that the profile distributions must be known

and are assumed to be released a priori, i.e. they are not considered privacy sensitive. If the user

profiles cannot all be released, this can be mitigated somewhat by reducing the granularity of the

graph. A graph consisting only of profiles for each distinct job role can still encode meaningful

protections, since limiting inferences on job role can also limit inferences on highly correlated

information like the user’s identity.

The trade-off in profile granularity is subtle. More profiles permit more structure and

opportunities for our definition to achieve better utility than local differential privacy, but also

require a greater level of a priori knowledge.

7.4 Properties

Our privacy definition enjoys several similar properties to other differential-privacy-

inspired frameworks. The post-processing and composition properties are recognized as highly

desired traits for privacy definitions Kifer and Machanavajjhala [2012].

Post-Processing

The post-processing property specifies that any additional computation (without access

to the private information) on the released output cannot result in worse privacy. Following

standard techniques, our definition also shares this data processing inequality.

Observation 7. If a data sample Xi is drawn from profile Pi, and A preserves (G,ε)-profile-

based privacy, then for any (potentially randomized) function F, the release F(A (Xi,Pi))
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preserves (G,ε)-profile-based privacy.

Composition

The composition property allows for multiple privatized releases to still offer privacy

even when witnessed together. Our definition also gets a compositional property, although not all

possible compositional settings behave nicely. We mitigate the need for composition by focusing

on a local model where the data mainly undergoes one privatization.

Profile-based differential privacy enjoys additive composition if truly independent sam-

ples X are drawn from the same profile. The proof of this follows the same reasoning as the

additive composition of differential privacy.

Observation 8. If two independent samples X1 and X2 are drawn from profile Pi, and A1

preserves (G,ε1)-profile-based privacy and A2 preserves (G,ε2)-profile-based privacy, then the

combined release (A1(X1,Pi),A2(X2,Pi)) preserves (G,ε1 + ε2)-profile-based privacy.

A notion of parallel composition can also be applied if two data sets come from two

independent processes of selecting a profile. In this setting, information about one instance has no

bearing on the other. This matches the parallel composition of differential privacy when applied

to multiple independent individuals, and would be the analogous setting to local differential

privacy where each individual applies their own mechanism.

Observation 9. If two profiles Pi and Pj are independently selected, and two observations

Xi ∼ Pi and X j ∼ Pj are drawn, and A1 preserves (G,ε1)-profile-based privacy and A2 pre-

serves (G,ε2)-profile-based privacy, then the combined release (A1(Xi,Pi),A2(X j,Pj)) preserves

(G,max{ε1,ε2})-profile-based privacy.

The parallel composition result assumes that the choice of A2 does depend on the first

release, or in other words that is non-adaptive. It should also be noted that the privacy guarantee

is about how much protection a single edge receives in just one profile selection process. With

two releases, clearly more information is being released, but the key idea in this result is that the
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information released in the one round has no impact on the secret profile identity of the other

round.

However, this framework cannot offer meaningful protections against adversaries that

know about correlations in the profile selection process. For example, consider an adversary with

knowledge that profile Pk is always selected immediately after either Pi or Pj are selected. An

edge obscuring Pi versus Pj will not prevent the adversary from deducing Pk in the next round.

This matches the failure of differential privacy to handle correlations across individuals. The

definition also does not compose if the same observation X is reprocessed, as it adds correlations

unaccounted for in the privacy analysis. Although such compositions would be valuable, it is

less important when the privatization occurs locally at the time of data collection.

Placing these results in the context of reporting resource usage, we can bound the total

privacy loss across multiple releases in two cases. Additive composition applies if a single user

emits multiple independent measurements and each measurement is separately privatized. When

two users independently release measurements, each has no bearing on the other and parallel

composition applies. If correlations exist across measurements (or across the selection of users),

no compositional result is provided.

7.5 Mechanisms

We now provide mechanisms to implement the profile-based privacy definition. Before

getting into specifics, let us first consider the kind of utility goals that we can hope to achieve.

We have two primary aspects of the graph G we wish to exploit. First, we wish to preserve any

information in the input that does not significantly indicate profile identities. Second, we wish to

use the structure of the graph and recognize that some regions of the graph might require less

perturbations than others.
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Figure 7.1. Summary of Composition Results. From left to right: independent observation
samples with independent mechanism applications compose additively, independent profile
selections compose in parallel, dependent observation samples from the same profile do not
compose nicely, and dependent profile selections do not compose nicely.

7.5.1 The One-Bit Setting

We begin with a one-bit setting – where the input to the mechanism is a single private bit

– and build up to the more general discrete setting.

The simplest case is when we have two profiles i and j represented by Bernoulli distribu-

tions Pi and Pj with parameters pi and p j respectively. Here, we aim to design a mechanism A

that makes a bit b drawn from Pi or Pj indistinguishable; that is, for any t ∈ {0,1}, with bi ∼ Pi

and b j ∼ Pj,
Pr(A (bi,Pi) = t)
Pr(A (b j,Pj) = t)

≤ eε . (7.4)

A plausible mechanism is to draw a bit b′ from a Bernoulli distribution that is independent

of the original bit b. However, this is not desirable as the output bit would lose any correlation

with the input, and any and all information in the bit b would be discarded.

We instead use a mechanism that flips the input bit with some probability α ≤ 1/2.
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Lower values of α improve the correlation between the output and the input. The flip-probability

α is obtained by solving the following optimization problem:

min α (7.5)

subject to α ≥ 0

pi(1−α)+(1− pi)α

p j(1−α)+(1− p j)α
∈ [e−ε ,eε ]

(1− pi)(1−α)+ piα

(1− p j)(1−α)+ p jα
∈ [e−ε ,eε ].

When pi = 0 and p j = 1 (or vice versa), this reduces to the standard randomized response

mechanism Warner [1965]; however, α may be lower if pi and p j are closer – a situation where

our utility is better than local differential privacy’s.

Algorithm 6: Single-bit Two-profile Mechanism
Input: Two Bernoulli profiles parameterized by p1 and p2, privacy level ε , input

profile Pi, input bit x.
Solve the linearly constrained optimization (7.5) to get a flipping probability α .

Sample r as

{
x w.p. 1−α

¬x w.p. α

return r

The mechanism described above only addresses two profiles. If we have a cluster of

profiles representing a connected component of the profile graph, we can compute the necessary

flipping probabilities across all edges in the cluster. To satisfy all the privacy constraints, it

suffices to always use a flipping probability equal to the largest value required by an edge in

the cluster. This results in a naive method we will call the One Bit Cluster mechanism, directly

achieves profile-based privacy.

Theorem 23. The One Bit Cluster mechanism achieves (G,ε)-profile-based privacy.

The One Bit Cluster mechanism has two limitations. First, it applies only to single bit
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Algorithm 7: One Bit Cluster Mechanism
Input: Graph (P,E) of Bernoulli profiles, privacy level ε , input profile Pi, input bit

x.
for each edge e in the connected component of the graph containing Pi do

Solve the linearly constrained optimization (7.5) to get a flipping probability αe
for this edge.

Compute α = maxe αe.

Sample r as

{
x w.p. 1−α

¬x w.p. α

return r

settings and Bernoulli profiles, and not categorical distributions. Second, by treating all pairs of

path-connected profiles similarly, it is overly conservative; when profiles are distant in the graph

from a costly edge, it is generally possible to provide privacy with lesser perturbations for these

distant profiles.

We address the second drawback while remaining in the one bit setting with the Smooth

One Bit mechanism, which uses ideas inspired by the smoothed sensitivity mechanism in differ-

ential privacy Nissim et al. [2007]. However, rather than smoothly calibrating the perturbations

across the entire space of data sets, a profile-based privacy mechanism needs only to smoothly

calibrate over the specified profile graph. This presents a far more tractable task than smoothly

handling all possible data sets in differential privacy.

This involves additional optimization variables, α1, . . . ,αk, for each of the k profiles in

G. Thus each profile is permitted its own chance of inverting the released bit. Here, pi once

again refers to the parameter of the Bernoulli distribution Pi. We select our objective function as

max(α1, . . . ,αk) in order to uniformly bound the mechanism’s chances of inverting or corrupting

the input bit. This task remains convex as before, and is still tractably optimized.
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min
α1,...,αk

max(α1, . . . ,αk) (7.6)

subject to ∀i ∈ [k]: αi ≥ 0

pi(1−αi)+(1− pi)αi

p j(1−α j)+(1− p j)α j
∈ [e−ε ,eε ]

(1− pi)(1−αi)+ piαi

(1− p j)(1−α j)+ p jα j
∈ [e−ε ,eε ].

Algorithm 8: Smooth One Bit Mechanism
Input: Graph (P,E) of k Bernoulli profiles, privacy level ε , input profile Pi, input

bit x.
Solve the linearly constrained optimization (7.6) to get flipping probabilities
α1, . . . ,αk.

Sample r as

{
x w.p. 1−αi

¬x w.p. αi
return r

Theorem 24. The Smooth One Bit mechanism achieves (G,ε)-profile-based privacy.

7.5.2 The Categorical Setting

We now show how to generalize this model into the categorical setting. This involves

additional constraints, as well as a (possibly) domain specific objective that maximizes some

measure of fidelity between the input and the output.

Specifically, suppose we have k categorical profiles each with d categories; we introduce

kd2 variables to optimize, with each profile receiving a d×d transition matrix. To keep track of

these variables, we introduce the following notation:

• Pi, . . . ,Pk: a set of k categorical profiles in d dimensions encoded as a vector.

• A1, . . . ,Ak: A set of d-by-d transition matrix that represents the mechanism’s release

probabilities for profile i. Ai
j,k represents the ( j,k)-th element of the matrix Ai.
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• PiAi represents the d dimensional categorical distribution induced by the transition matrix

Ai applied to the distribution Pi.

• In an abuse of notation, PiAi ≤ eεPjA j is a constraint that applies element-wise to all

components of the resulting vectors on each side.

With this notation, we can express our optimization task:

min
A1,...,Ak

max(off-diagonal entries of A1, . . . ,Ak) (7.7)

subject to ∀i ∈ [n]∀ j ∈ [d]∀k ∈ [d]: 0≤ Ai
j,k ≤ 1

∀i ∈ [n]∀ j ∈ [d]:
d

∑
k=1

Ai
j,k = 1

∀(Pi,Pj) ∈ E: PiAi ≤ eεPjA j, PjA j ≤ eεPiAi.

Algorithm 9: Smooth Categorical Mechanism
Input: Graph (P,E) of Categorical profiles, privacy level ε , input profile Pi, input

x
Solve the linearly constrained optimization (7.7) to get the transition matrices
A1, . . . ,Ak

Sample r according to the discrete distribution given by the xth row of Ai.
return r

To address the tractability of the optimization, we note that each of the privacy constraints

are linear constraints over our optimization variables. We further know the feasible solution set

is nonempty, as trivial non-informative mechanisms achieve privacy. All that is left is to choose

a suitable objective function to make this a readily solved convex problem.

To settle onto an objective will require some domain-specific knowledge of the trade-offs

between choosing which profiles and which categories to report more faithfully. Our general

choice is a maximum across the off-diagonal elements, which attempts to uniformly minimize
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the probability of any data corruptions. This can be further refined in the presence of a prior

distribution over profiles, to give more importance to the profiles more likely to be used.

We define the Smooth Categorical mechanism as the process that solves the optimiza-

tion (7.7) and applies the appropriate transition probabilities on the observed input.

Theorem 25. The Smooth Categorical mechanism achieves (G,ε)-profile-based privacy.

7.5.3 Utility Results

The following results present utility bounds which illustrate potential improvements upon

local differential privacy; a more detailed numerical simulation is presented in Section 7.6.

Theorem 26. If A is a mechanism that preserves ε-local differential privacy, then for any graph

G of sensitive profiles, A also preserves (G,ε)-profile-based differential privacy.

An immediate result of Theorem 26 is that, in general and for any measure of utility on

mechanisms, the profile-based differential privacy framework will never require worse utility

than a local differential privacy approach. However, in specific cases, stronger results can be

shown.

Observation 10. Suppose we are in the single-bit setting with two Bernoulli profiles Pi and Pj

with parameters pi and p j respectively. If pi ≤ p j ≤ eε p j, then the solution α to (7.5) satisfies

α ≤max{0,
p j− eε pi

2(p j− eε pi)− (1− eε)
,

pi− eε p j + eε −1
2(pi− eε p j)+ eε −1

}. (7.8)

Observe that to attain local differential privacy with parameter ε by a similar bit-flipping

mechanism, we need a flipping probability of 1
1+eε = 1

1+(1+eε−1) , while we get bounds of the

form 1
1+(1+ eε−1

p j−eε pi
)
. Thus, profile based privacy does improve over local differential privacy

in this simple case. The proof of Observation 10 follows from observing that this value of α

satisfies all constraints in the optimization problem (7.5).
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7.6 Evaluation

We next evaluate our privacy mechanisms and compare them against each other and the

corresponding local differential privacy alternatives. In order to understand the privacy-utility

trade-off unconfounded by model specification issues, we consider synthetic data in this paper.

7.6.1 Experimental Setup

We look at three experimental settings – Bernoulli-Couplet, Bernoulli-Chain and

Categorical-Chain-3.

Settings.

In Bernoulli-Couplet, the profile graph consists of two nodes connected by a single edge

G = (P = {a,b},E = {(a,b)}). Additionally, each profile is a Bernoulli distribution with a

parameter p.

In Bernoulli-Chain, the profile graph consists of a chain of nodes, where successive

nodes in the chain are connected by an edge. Each profile is still a Bernoulli distribution with

parameter p. We consider two experiments in this category – Bernoulli-Chain-6, where there are

six profiles corresponding to six values of p that are uniformly spaced across the interval [0,1],

and Bernoulli-Chain-21, where there are 21 profiles corresponding to p uniformly spaced on

[0,1].

Finally, in Categorical-Chain, the profile graph comprises of three nodes connected into a

chain P1−P2−P3. Each profile however, corresponds to a 4-dimensional categorical distribution,

instead of Bernoulli.

Table 7.1. Categorical-Chain profiles used in our experiments

P1 0.2 0.3 0.4 0.1
P2 0.3 0.3 0.3 0.1
P3 0.4 0.4 0.1 0.1
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Baselines.

For Bernoulli-Couplet and Bernoulli-Chain, we use Warner’s Randomized Response

mechanism Warner [1965] as a local differentially private baseline. For Categorical-Chain, the

corresponding baseline is the K-ary version of randomized response.

For Bernoulli-Couplet, we use our Smooth One Bit mechanism to evaluate our framework.

For Categorical-Chain, we use the Smooth Categorical mechanism.

7.6.2 Results

Figure 7.2 plots the flipping probability for Bernoulli-Couplet as a function of the

difference between profile parameters p. We find that as expected, as the difference between the

profile parameters grows, so does the flipping probability and hence the noise added. However,

in all cases, this probability stays below the corresponding value for local differential privacy –

the horizontal black line – thus showing that profile-based privacy is an improvement.

Figures 7.5-7.8 plot the probability that the output is 1 as a function of ε for each profile

in Bernoulli-Chain-6 and Bernoulli-Chain-21. The spread of the profiles for a given ε provides a

glimpse into the distortions caused by these methods. The true profiles are uniformly spread on

the unit interval, so a spread close to covering the entire interval represents smaller distortion. On

the other hand, a small spread, with all profiles having almost identical distributions, represents a

heavy distortion of the profiles and poor performance. We find that as expected for low ε , the

probability that the output is 1 is close to 1/2 for both the local differential privacy baseline

and our method, whereas for higher ε , it is spread out more evenly, (which indicates higher

correlation with the input and higher utility). Additionally, we find that our Smooth One Bit

mechanism performs better than the baseline in both cases.

Figures 7.3-7.4 plot the utility across different outputs in the Categorical-Chain setting.

We illustrate its behavior through a small setting with 3 profiles, each with 4 categories. We can

no longer plot the entirety of these profiles, so at each privacy level we measure the maximum

absolute error for each output. Thus, in this setting, each privacy level is associated with 4 costs
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Figure 7.2. Bernoulli-Couplet, Our Method and Baseline.

0.0 0.2 0.4 0.6 0.8 1.0

0.
11

0.
12

0.
13

0.
14

0.
15

ε

C
os

t

output 1
output 2
output 3
output 4

Figure 7.3. Categorical-Chain, Baseline (Lo-
cal differential privacy). All 4 curves overlap.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

ε

C
os

t
output 1
output 2
output 3
output 4

Figure 7.4. Categorical-Chain, Our Method.

of the form given in (7.9). This permits the higher fidelity of profile-irrelevant information to be

seen.

cost j = maxi∈[n]|Pi
j− (PiAi) j| (7.9)

Our experiments show the categories less associated with the profile identity have lower

associated costs than the more informative ones. However, the local differential privacy baseline

fails to exploit any of this structure and performs worse.
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Figure 7.6. Probability that the output is 1 as
a function of ε for each profile for Bernoulli-
Chain-21, Baseline. A vertical line has been
drawn at ε = 0.2 to illustrate the spread.
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a function of ε for each profile for Bernoulli-
Chain-6, Our Method. A vertical line has been
drawn at ε = 0.2 to illustrate the spread.
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7.7 Proof of Theorems and Observations

Observation 11. If a data sample Xi is drawn from profile Pi, and A preserves (G,ε)-profile-

based privacy, then for any (potentially randomized) function F, the release F(A (Xi,Pi))

preserves (G,ε)-profile-based privacy.

Proof. Let Xi ∼ Pi and X j ∼ Pj represent two random variables drawn from the profiles Pi and

Pj. We define additional random variables as Yi = A (Xi,Pi) and Zi = F(A (Xi,Pi)), along with

the corresponding Yj and Z j that use X j and Pj. This is a result following from a standard data

processing inequality.

Pr(Zi = z)
Pr(Z j = z)

=

∫
Y Pr(Zi = z,Yi = y)dy∫
Y Pr(Z j = z,Yj = y)dy

(7.10)

=

∫
Y Pr(Zi = z|Yi = y)Pr(Yi = y)dY∫
Y Pr(Z j = z|Yj = y)Pr(Yj = y)dY

(7.11)

≤max
Y

Pr(Yi = y)
Pr(Yj = y)

(7.12)

≤ eε (7.13)

Observation 12. If two independent samples X1 and X2 are drawn from profile Pi, and A1

preserves (G,ε1)-profile-based privacy and A2 preserves (G,ε2)-profile-based privacy, then the

combined release (A1(X1,Pi),A2(X2,Pi)) preserves (G,ε1 + ε2)-profile-based privacy.

Proof. The proof of this statement relies on the independence of the two releases Y1 =A1(X1,Pi)

and Y2 = A2(X2,Pi), given the independence of X1 and X2 from the same same profile Pi. Let

Pj be another profile such that there is an edge (Pi,Pj) in G. We will introduce X ′1 and X ′2 as

independent samples from the profile Pj, and define Y ′1 = A1(X ′1,Pj) and Y ′2 = A2(X ′2,Pj) By

marginalizing over the two independent variables X1,X2, we may bound the combined privacy

loss. For brevity, we will use Pr(X) as a shorthand for the density at an arbitrary point Pr(X = x).
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Pr(Y1,Y2)

Pr(Y ′1,Y
′
2)

=

∫
X

∫
X Pr(X1,Y1,X2,Y2)dX1dX2∫

X

∫
X Pr(X ′1,Y

′
1,X

′
2,Y
′
2|Pj)dX1dX2

(7.14)

=

∫
X

∫
X Pr(X1,Y1)Pr(X2,Y2)dX1dX2∫

X

∫
X Pr(X ′1,Y

′
1)Pr(X

′
2,Y
′
2)dX1dX2

(7.15)

=

∫
X Pr(X1,Y1)dX1

∫
X Pr(X2,Y2)dX2∫

X Pr(X ′1,Y
′
1)dX1

∫
X Pr(X ′2,Y

′
2)dX2

(7.16)

=
Pr(Y1)Pr(Y2)

Pr(Y ′1)Pr(Y
′
2)

(7.17)

≤ eε1eε2 (7.18)

Observation 13. This proof does not hold if X1 and X2 are not independent samples from Pi.

This may occur if the same observational data X is privatized twice, or if other correlations exist

between X1 and X2. We do not provide a composition result for this case.

Observation 14. If two profiles Pi and Pj are independently selected, and two observations

Xi ∼ Pi and X j ∼ Pj are drawn, and A1 preserves (G,ε1)-profile-based privacy and A2 pre-

serves (G,ε2)-profile-based privacy, then the combined release (A1(Xi,Pi),A2(X j,Pj)) preserves

(G,max{ε1,ε2})-profile-based privacy.

Proof. For the purposes of this setting, let Q1 and Q2 be two random variables representing

the choice of profile in the first and second selections, with the random variables X1 ∼ Q1 and

X2 ∼ Q2.

Since the two profiles and their observations are independent, the two releases Y1 =

A1(X1,Q1) and Y2 = A2(X2,Q2) contain no information about each other. That is, Pr(Y1 =

y1|Q1 = Pi,Q2 = Pj,Y2 = y2) = Pr(Yi|Q1 = Pi). Similarly we have Pr(Y2 = y2|Q1 = Pi,Y1 =

y1,Q2 = Pj) = Pr(Y2 = y2).

Let Ph and Pk be profiles such that the edges (Ph,Pi) and (Pj,Pk) are in G.

138



Pr(Y1,Y2|Q1 = Pi)

Pr(Y1,Y2|Q1 = Ph)
=

∑Q2 Pr(Y1,Y2,Q2|Q1 = Pi)

∑Q2 Pr(Y1,Y2,Q2|Q1 = Ph)
(7.19)

=
∑Q2 Pr(Y1|Q1 = Pi,Y2,Q2)Pr(Y2,Q2|Q1 = Pi)

∑Q2 Pr(Y1|Q1 = Ph,Y2,Q2)Pr(Y2,Q2|Q1 = Ph)
(7.20)

=
∑Q2 Pr(Y1|Q1 = Pi)Pr(Y2,Q2)

∑Q2 Pr(Y1|Q1 = Ph)Pr(Y2,Q2)
(7.21)

=
Pr(Y1|Q1 = Pi)

Pr(Y1|Q1 = Ph)
· ∑Q2 Pr(Y2,Q2)

∑Q2 Pr(Y2,Q2)
(7.22)

=
Pr(Y1|Q1 = Pi)

Pr(Y1|Q1 = Ph)
(7.23)

≤ eε1 (7.24)

A similar derivation conditioning on P2 = Pj results in a ratio bounded by eε2 over the

edge (Pj,Pk). Thus to get a single bound for the combined release (Y1,Y2) over the edges of the

graph G, we take the maximum emax{ε1,ε2}.

Observation 15. This proof does not hold if the profile selection process is not independent. We

do not provide a composition result for this case.

Theorem 22. The One Bit Cluster mechanism achieves ε-profile based privacy.

Proof. By direct construction, it is known that the flipping probabilities generated for single

edges αe will satisfy the privacy constraints. What remains to be shown for the privacy analysis

is that taking α = maxe αe will satisfy the privacy constraints for all the edges simultaneously.

To show this, we will demonstrate a monotonicity property: if a flipping probability

α < 0.5 guarantees a certain privacy level, then so too do all the probabilities in the interval

(α,0.5). By taking the maximum across all edges, this algorithm exploits the monotonicity to

ensure all the constraints are met simultaneously.

Let x1 ∼ P1 and x2 ∼ P2, and let pi and p j denote the parameters of these two Bernoulli
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distributions. When computing the privacy level, we have two output values and thus two output

ratios to consider:

∣∣∣∣log
Pr(A (x1,P1) = 1)
Pr(A (x2,P2) = 1)

∣∣∣∣= ∣∣∣∣log
p1 · (1−α)+(1− p1) ·α
p2 · (1−α)+(1− p2) ·α

∣∣∣∣ (7.25)∣∣∣∣log
Pr(A (x1,P1) = 0)
Pr(A (x2,P2) = 0)

∣∣∣∣= ∣∣∣∣log
p1 ·α +(1− p1) · (1−α)

p2 ·α +(1− p2) · (1−α)

∣∣∣∣ (7.26)

Without loss of generality, assume p1 > p2. (If they are equal, then all possible privacy

levels are achieved trivially.) This means following two quantities are positive and equal to the

absolute values above when α < 0.5.

log
Pr(A (x1,P1) = 1)
Pr(A (x2,P2) = 1)

= log
p1 · (1−α)+(1− p1) ·α
p2 · (1−α)+(1− p2) ·α

(7.27)

log
Pr(A (x1,P1) = 0)
Pr(A (x2,P2) = 0)

= log
p2 ·α +(1− p2) · (1−α)

p1 ·α +(1− p1) · (1−α)
(7.28)

Our next task is to show that these quantities reveal monotonic increases in privacy levels

as α increases up to 0.5. Taking just the A (x1,P1) = 1 term for now, we compute the derivatives.

∂

∂α

[
log

p1 · (1−α)+(1− p1) ·α
p2 · (1−α)+(1− p2) ·α

]
=

1−2p1

p1 · (1−α)+(1− p1) ·α
− 1−2p2

p2 · (1−α)+(1− p2) ·α
(7.29)

=
1−2p1

p1 +(1−2p1)α
− 1−2p2

p2 +(1−2p2)α
(7.30)

=
(1−2p1)(p2 · (1−α)+(1− p2) ·α)− (1−2p2)(p1 · (1−α)+(1− p1) ·α)

(p1 · (1−α)+(1− p1) ·α)(p2 · (1−α)+(1− p2) ·α)
(7.31)

=
p2− p1

Pr(A (x1,P1) = 1)Pr(A (x2,P2) = 1)
≤ 0 (7.32)

The final inequality arises from our assumption that p1 > p2. A similar computation on

the A (x1,P1) = 0 term also finds that the derivative is always negative.
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This monotonicity implies that increasing α (up to 0.5 at most) only decreases the

probability ratios. In the limit when α = 0.5, the ratios are precisely 1 (and the logarithm is 0).

Thus if α < 0.5 achieves a certain privacy level, all α ′ satisfying α < α ′ < 0.5 achieve a privacy

level at least as strong.

The One Bit Cluster mechanism takes the maximum across all edges, ensuring the final

flipping probability is no less than the value needed by each edge to achieve probability ratios

within e±ε . Therefore each edge constraint is satisfied by the final choice of flipping probability,

and the mechanism satisfies the privacy requirements.

Theorem 27. The Smooth One Bit mechanism achieves (G,ε)-profile-based privacy.

Theorem 28. The Smooth Categorical mechanism achieves (G,ε)-profile-based privacy.

The Smooth One Bit mechanism and Smooth Categorical mechanism satisfy a privacy

analysis directly from the constraints of the optimization problem. These optimizations are

done without needing any access to a sensitive observation, and as such pose no privacy risk.

Implicitly, the solution to the optimization problem is verified to satisfy the constraints before

being used.

Theorem 29. If A is a mechanism that preserves ε-local differential privacy, then for any graph

G of sensitive profiles, A also preserves (G,ε)-profile-based differential privacy.

Proof. The proof of this theorem lies in that the strong protections given by local differential

differential privacy to the observed data also extend to protecting the profile identities. Let

Yi = A (Xi,Pi), the output of a locally differentially private algorithm A that protects any two

distinct data observations x and x′. As local differential privacy mechanisms do not use profile

information, the distribution of Yi depends only on Xi and ignores Pi. To prove the generality of

this analysis over any graph G, we will show the privacy constraint is satisfied for any possible

edge (Pi,Pj) of two arbitrary profiles.
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Pr(Yi = y)
Pr(Yj = y)

=

∫
X Pr(Yi = y|Xi = x)Pr(Xi = x)dx∫
X Pr(Yi = y|X j = x)Pr(X j = x)dx

(7.33)

≤ supxPr(Yi = y|Xi = x)
infX Pr(Y j = y|X j = x)

(7.34)

≤ eε (7.35)

If the final inequality did not hold, one would be able to find two values X and X ′ such that

the output Y violates the local differential privacy constraint, which contradicts our assumption

on A .

Observation 16. Suppose we are in the single-bit setting with two Bernoulli profiles Pi and Pj

with parameters pi and p j respectively. If pi ≤ p j ≤ eε p j, then the solution α to (7.5) satisfies

α ≤max{0,
p j− eε pi

2(p j− eε pi)− (1− eε)
,

pi− eε p j + eε −1
2(pi− eε p j)+ eε −1

}. (7.36)

Proof. Direct computation shows the desired constraints are met with this value for α .

min α (7.37)

subject to α ≥ 0

pi(1−α)+(1− pi)α

p j(1−α)+(1− p j)α
∈ [e−ε ,eε ]

(1− pi)(1−α)+ piα

(1− p j)(1−α)+ p jα
∈ [e−ε ,eε ].

First, we note that by our assumption pi ≤ p j and ε ≥ 0, we immediately have two of our

constraints trivially satisfied given α ≤ 0.5, since pi(1−α)+(1− pi)α ≤ p j(1−α)+(1− p j)α

and (1− pi)(1−α)+ piα ≥ (1− p j)(1−α)+ p jα .
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Two constraints of interest remain:

pi(1−α)+(1− pi)α

p j(1−α)+(1− p j)α
≥ e−ε (7.38)

(1− pi)(1−α)+ piα

(1− p j)(1−α)+ p jα
≤ eε . (7.39)

We know that these ratios are monotonic in α , so to solve these inequalities, it suffices to

find the values of α where we have equality on these two constraints. Any values of α larger

than this (and less than 1/2) will therefore satisfy the inequality.

For (7.38), we get α =
p j−eε pi

2(p j−eε pi)−(1−eε ) . Solving (7.39) instead, we get

α =
pi−eε p j+eε−1

2(pi−eε p j)+eε−1 .

Since both constraints must be satisfied simultaneously, we can complete our statement

by taking the maximum of the two points given by our constraints, along with knowing α ≥ 0.

7.8 Conclusion

In conclusion, we provide a novel definition of local privacy – profile based privacy

– that can achieve better utility than local differential privacy. We prove properties of this

privacy definition, and provide mechanisms for two discrete settings. Simulations show that our

mechanisms offer superior privacy-utility trade-offs than standard local differential privacy.
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Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R©
in Machine Learning, 8(3-4):231–357, 2015.

145

http://www.jstor.org/stable/4355554


Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Theory of Cryptography Conference, pages 635–658. Springer, 2016.

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release and
learning of threshold functions. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 634–649. IEEE, 2015.

Kamalika Chaudhuri and Nina Mishra. When random sampling preserves privacy. In Annual
International Cryptology Conference, pages 198–213. Springer, 2006.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical
risk minimization. J. Mach. Learn. Res., 12:1069–1109, July 2011. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1953048.2021036.

Kamalika Chaudhuri, Anand Sarwate, and Kaushik Sinha. Near-optimal differentially private
principal components. In Advances in Neural Information Processing Systems, pages 989–997,
2012.

Kamalika Chaudhuri, Daniel Hsu, and Shuang Song. The large margin mechanism for differen-
tially private maximization. In Neural Inf. Processing Systems, 2014.

Xinjia Chen. A new generalization of Chebyshev inequality for random vectors. arXiv preprint
arXiv:0707.0805, 2007.

Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, pages 375–403, 2019.

Joel E Cohen, Yoh Iwasa, Gh Rautu, Mary Beth Ruskai, Eugene Seneta, and Gh Zbaganu.
Relative entropy under mappings by stochastic matrices. Linear algebra and its applications,
179:211–235, 1993.

Jon P Daries, Justin Reich, Jim Waldo, Elise M Young, Jonathan Whittinghill, Andrew Dean
Ho, Daniel Thomas Seaton, and Isaac Chuang. Privacy, anonymity, and big data in the social
sciences. Communications of the ACM, 57(9):56–63, 2014.

P Del Moral, M Ledoux, and L Miclo. On contraction properties of Markov kernels. Probability
theory and related fields, 126(3):395–420, 2003.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin IP Rubinstein.
Robust and private Bayesian inference. In Algorithmic Learning Theory (ALT), pages 291–
305. Springer, 2014.

146

http://dl.acm.org/citation.cfm?id=1953048.2021036


Roland L Dobrushin. Central limit theorem for nonstationary Markov chains. I. Theory of
Probability & Its Applications, 1(1):65–80, 1956.

W. Doeblin. Sur les proprietes asymptotiques de mouvements rÉgis par certains types de chaÎnes
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Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer Security Foundations Sympo-
sium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 263–275, 2017.

Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sampling
in private data analysis. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, pages 75–84, 2007.

Esa Nummelin. General irreducible Markov chains and non-negative operators, volume 83.
Cambridge University Press, 2004.

C Piech, J Huang, Z Chen, C Do, A Ng, and D Koller. Tuned models of peer assessment in
MOOCs. In Proceedings of the 6th International Conference on Educational Data Mining,
pages 153–160, 2013.

Maxim Raginsky. Strong data processing inequalities and Φ-Sobolev inequalities for discrete
channels. IEEE Transactions on Information Theory, 62(6):3355–3389, 2016.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo. In Proceedings of the 25th International Conference on Machine
Learning (ICML), pages 880–887, 2008.

149

https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md


Anand D Sarwate and Kamalika Chaudhuri. Signal processing and machine learning with
differential privacy: Algorithms and challenges for continuous data. IEEE signal processing
magazine, 30(5):86–94, 2013.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pages 245–248. IEEE, 2013.

Shuang Song, Yizhen Wang, and Kamalika Chaudhuri. Pufferfish privacy mechanisms for
correlated data. In SIGMOD, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Abhradeep Guha Thakurta and Adam Smith. Differentially private feature selection via stability
arguments, and the robustness of the lasso. In Conference on Learning Theory, pages 819–850,
2013.

Laurens van der Maaten, Minmin Chen, Stephen Tyree, and Kilian Q. Weinberger. Learning
with marginalized corrupted features. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 410–418, 2013.

Yining Wang, Yu-Xiang Wang, and Aarti Singh. Differentially private subspace clustering. In
Advances in Neural Information Processing Systems (NIPS), pages 1000–1008, 2015a.

Yu-Xiang Wang, Stephen E Fienberg, and Alex Smola. Privacy for free: Posterior sampling
and stochastic gradient Monte Carlo. Proceedings of The 32nd International Conference on
Machine Learning (ICML), pages 2493––2502, 2015b.

Yu-Xiang Wang, Jing Lei, and Stephen E Fienberg. On-average kl-privacy and its equivalence
to generalization for max-entropy mechanisms. In International Conference on Privacy in
Statistical Databases, pages 121–134. Springer, 2016.

Yu-Xiang Wang, Borja Balle, and Shiva Kasiviswanathan. Subsampled rényi differential privacy
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