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The t-t′-J model in one dimension using extremely correlated Fermi liquid theory
and time dependent density matrix renormalization group

Peizhi Mai1, Steven R. White2 and B. Sriram Shastry1

1Physics Department, University of California, Santa Cruz, CA 95064
2Department of Physics and Astronomy, University of California, Irvine, CA 92717

(Dated: June 26, 2018)

We study the one-dimensional t-t′-J model for generic couplings using two complementary theo-
ries, the extremely correlated Fermi liquid theory and time dependent density matrix renormalization
group over a broad energy scale. The two methods provide a unique insight into the strong momen-
tum dependence of the self-energy of this prototypical non-Fermi liquid, described at low energies as
a Tomonaga-Luttinger liquid. We also demonstrate its intimate relationship to spin-charge separa-
tion, i.e. the splitting of Landau quasi-particles of higher dimensions into two constituents, driven
by strong quantum fluctuations inherent in one dimension. The momentum distribution function,
the spectral function, and the excitation dispersion of these two methods also compare well.

I. INTRODUCTION

In varying dimensions the t-Jmodel continues to at-
tract attention owing to its relevance in cuprates and
other important strongly interacting electronic systems.
The model embodies very strong correlations, which lie
outside the regime of validity of perturbation theory, and
thus pose a challenging problem. Our main goal in this
work is to obtain an understanding of the properties in
one dimension (1-d), over a wide energy range.

At low energies the bosonization technique has been
widely applied to the (closely related) Hubbard model1–5.
For large U several non-perturbative methods have been
devised to study the t-Jmodel for general dimensions, in-
cluding the study of finite clusters6,7 and large-N based
slave particle mean-field theories8. In 1-d we also have
exact results using Bethe’s ansatz9–14 at special val-
ues of the parameters of the model, and also for long-
ranged versions15 of the t-Jmodel, using techniques de-
veloped in the Haldane-Shastry models. Photoemission
experiments16 have been carried out to study the spec-
tral properties of several quasi 1-d metals, relevant to the
t-Jmodel.

To study a wider energy range, including the low to in-
termediate and high energy regimes, we employ and com-
pare the results from two complementary techniques. In
1-d, the density matrix renormalization group (DMRG)17

provides nearly exact results for the ground state, and
can also be used for finite temperature and spectral prop-
erties. Ground state DMRG has been used to give the
phase diagram of the t-Jmodel over a broad range of
parameters in18. Here we study dynamics using the
time dependent density matrix renormalization group
(tDMRG). tDMRG17,19 has been used to obtain virtu-
ally exact spectral functions for spin chains, but only a
few times for doped Fermi systems. One such time was
a tDMRG treatment of the t-Jmodel, obtaining spectral
functions for the system at finite temperature20. In this
work we use tDMRG only at T = 0, but we have pushed
much farther in terms of system size, accuracy, and fre-
quency resolution than in20. This accuracy is needed to

resolve the detailed features of the self-energy, which has
not been done before with tDMRG.

The other technique used is the extremely correlated
Fermi liquid (ECFL) theory21. This analytical theory,
which can treat a large class of large U problems, in-
cluding the t-Jmodel, uses Schwinger’s functional dif-
ferential equations for the electron Green’s function.
These equations are systematically expanded in a pa-
rameter λ ∈ [0, 1], representing partial Gutzwiller pro-
jection. The O(λ2) theory leads to a closed set of cou-
pled equations21,22 for the Green’s function. This treat-
ment has been benchmarked in high dimensions and in
2-d. In infinite dimensions, dynamical mean field theory
(DMFT)23 provides a solution to the Hubbard model,
and ECFL has been benchmarked recently24,25 against
exact results from the single impurity Anderson model,
and DMFT in d =∞26,27. The limiting case U =∞ has
been explored in detail in28. The agreement at low ener-
gies is good enough to yield accurate results for the low T
resistivity, a highly sensitive variable. In 2-d, ECFL has
been applied recently to cuprate superconductors29,30.
It is therefore interesting to see how well this scheme
deals with the physics of 1-d. The equations used here
have the character of a skeleton graph series. We have
checked that the second order skeleton graphs for the
Hubbard model in 1-d already displays characteristics
of spin-charge separation and non-Fermi liquid spectral
functions, while the non-skeleton, i.e. bare perturbation
theory does not.

Understanding the extent of momentum dependence of
the Dysonian self-energy Σ in various dimensions is one
of the goals of the present work. While the d =∞ mod-
els have a momentum independent self-energy, momen-
tum dependence of Σ is inevitable in lower dimensions.
However there is a scarcity of reliable information on its
extent and location. In most published work, the self-
energy in 1-d is rarely presented31, or even calculated,
since standard solutions directly deal with the Green’s

function. In contrast we focus on unraveling the (~k, ω)
dependence of the Dysonian self-energy in 1-d and com-
paring with its higher dimensional counterparts.
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(a) n=0.7, t’=0, J=0.3
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(b) n=0.7, t’=0, J=0.6
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(c) n=0.7, t’=0.2, J=0.3
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(d) n=0.7, t’=0.2, J=0.6

FIG. 1: Momentum distribution nk for ECFL (yellow) at T=0.005 and tDMRG (blue) at T=0 with n=0.7, J=0.3, 0.6 and
t’=0, 0.2. In all cases these two methods agree well especially in the occupied region and both give a power law singularity at
kF . The small discrepancy in the unoccupied region corresponds to the 3kF feature in the exact solutions discussed in9. This
subtle singularity is missed by the O(λ2) equations.

II. OVERVIEW

In the present work we solve the d = 1 t-t′-J model
for generic parameters using the same set of ECFL equa-
tions as in higher dimensions. We calculate from the
two theories the momentum distribution function, self-
energy, spectral function and excitation dispersion over
a broad energy scale. In the low k, ω regime exhibiting
non-Fermi liquid behavior, reasonable agreement is found
between the two and the exact diagonalization (ED) data
in the velocities of spinons and holons6, as well as the
Tomonaga-Luttinger liquid (TLL) theory in anomalous
exponent18. Extending the O(λ2) ECFL equations to
higher orders holds promise of a better agreement. At
higher energies, where few studies exist, the agreement
between the two theories is quite good already. A valu-
able insight gained at low energies is the close relationship
between a momentum dependent ridge in the Im Σ(k, ω)
and the spin-charge separation.

III. MODEL AND PARAMETERS USED

The Hamiltonian of the 1-d t-t′-J model is

HtJ = −t
∑
〈ij〉

Xσ0
i X0σ

j − t′
∑
〈〈ij〉〉

Xσ0
i X0σ

j − µ
∑
i

Xσσ
i ,

+ J
∑
〈ij〉

(
~Si.~Sj −

1

4
Xσσ
i Xσ′σ′

j

)
,

(1)

where repeated spin indices are summed , Xσ0
i =

PGC
†
iσPG, X0σ

i = PGCiσPG, Xσσ′

i = PGC
†
iσCiσ′PG with

PG = Πi(1 − ni↑ni↓) as the Gutzwiller projection oper-
ator. 〈ij〉 and 〈〈ij〉〉 refers to summing over first and
second neighbor pairs respectively.

For this model21,29 we compute the results from the
two theories at density n = 0.7, second nearest neighbor
hopping t′/t = 0, 0.2 and J/t = 0.3, 0.6. We avoid the
special cases of t′ = 0 = J since this leads to a degenerate
spectrum, with a charge sector that is isomorphic to the
spinless Fermi gas. The ECFL results are shown at vari-
ous T while the tDMRG results are at T = 0 where most
reliable calculations are possible. t = 1 is the energy unit
and will be neglected below.

The tDMRG methods used are very similar to those
used in Ref. [32]. We start by obtaining the ground state
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(a) ECFL, T=0.005 (b) tDMRG, T=0

FIG. 2: n=0.7, J=0.3, t’=0: Imaginary self-energy ρΣ(k, ω) at low ω and k − kF from both methods. Both give a dominant
(k, ω) dependent ridge running from left to right, and a less prominent feature running from top-left to bottom-right. Both of
them pass through k = kF , ω = 0 region. The dominant ridge is responsible for the appearance of the twin peaks structure in
the spectral functions which represents the spin-charge separation. The peaks for k < kF , ω < 0 are seen in the left half of the
electronic spectral function in Fig. (6) panels (a,b), while the peaks for k > kF , ω > 0 are seen in the right half of the same
figures. As seen in Fig. (5) panel (c), the peak in the self-energy ρΣ directly leads to a dip in the electronic spectral function
ρG, provided the real part is small.
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(b) tDMRG, T=0

FIG. 3: n = 0.7, J = 0.3: ρΣ(k, ω) vs ω at marked k/kF ’s.
, from ECFL at T = 0.005 (a) and tDMRG at T = 0 (b)
in a large scale. The two sets of results are similar on a
broad energy scale, and are comparable to higher dimensional
results. The low energy behavior is discussed below.

|0〉 using DMRG on a rather long but finite chain, with

L = 400, and then apply ĉ0 or ĉ†0 to a site 0 near the
center, forming |ψ(t = 0)〉. We use a Trotter based time
evolution algorithm, with fermionic swap gates to handle
next-nearest neighbor terms. We specify a density ma-
trix eigenvalue truncation cutoff of 3 × 10−8 during the
evolution, subject to a constraint on the maximum num-
ber of states kept of m = 3000. (Results were checked
by comparing to m = 2000.) We evolve out to a time
t = 50. At t = 50, the normalization of |ψ(t)〉 had de-
creased by a few percent, a small error affecting primarily
the widths of any sharp peaks. The space and time de-
pendent Green’s function is obtained by sandwiching ĉi
or ĉ†i between the ground state and |ψ(t)〉 for all i. Linear

prediction is used to extend the time dependent Green’s
function out to t = 100, after which the data is windowed
and Fourier transformed.This calculation represents the
most accurate and detailed study to date of the spectral
properties of the model at T = 0.

IV. MOMENTUM DISTRIBUTION FUNCTION

In 1-d t-Jmodel, nk shows a power law singularity at
kF

2,5, a signature of the TLL, unlike a jump in higher
dimensions as Fermi liquid behavior. This feature is ob-
served from both methods in Fig. (1) for different t′ and
J . Due to the second order approximation, the weak
3kF singularity related to shadow band9,12 is not ob-
served in ECFL results. Besides this weak effect, nk from
both methods agrees well, especially in the occupied side,
showing that ECFL describes the correct t′ and J depen-
dent behaviors.

V. SELF-ENERGY

Next we present the Dysonian self-energy in terms of
its spectral function ρΣ defined as

ρΣ(k, ω) = − 1

π
Im Σ(k, ω). (2)

It is derived separately from the Green’s functions in
ECFL and tDMRG methods. In tDMRG, Σ can be found
from G by inverting the Dyson relation G−1 = G−1

0 −Σ.
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FIG. 4: ρΣ(kF , ω) from ECFL is shown in (a) for several T at J = 0.3, t′ = 0. The central peak ρΣ(kF , 0) scales as T 1.1,
in contrast to Fermi liquid behavior T 2. Extrapolating to T = 0 the double minimum structure disappears, leaving behind a
∼ |ω|1.3 dependence. (b) displays the self-energy in larger scale where changing T barely makes a difference. (c) shows the
spectral function softened by warming.

The ECFL theory produces two (non Dysonian) self ener-
gies Φ,Ψ21, and the resulting G can again be inverted to
find the standard Dysonian Σ. Both ECFL (T = 0.005)
and tDMRG (T = 0) self-energies are shown in Fig. (2)
for comparison.

In Fig. (2), the two theories have a similar pattern
of k dependence, a dominant ridge running from left to
right, and a less prominent feature running from top-
left to bottom-right. They pass through k = kF , ω = 0
region. The ridge leads to the appearance of twin peaks
in the spectral functions representing spin-charge separa-
tion. In the higher energy region in Fig. (3), both theo-
ries agree well and are similar to their higher dimensional
counterparts.

A powerful feature of ECFL theory is that it allows us
to vary temperature without extra effort, at least in the
low to intermediate temperature region. In Fig. (4), ρΣ

at kF is presented in several temperatures. The bump
becomes higher with increasing temperature though no
obvious change in larger scale (Panel (b)). This is ex-
pected because warming softens the peak height of spec-
tral function at kF , which is ρG(kF , 0) = 1/(π2ρΣ(kF , 0)
in Panel (c). The central peak height ρΣ(kF , 0) scales as
Tα with α ≈ 1.1, as opposed to α = 2 expected for a
Fermi liquid. Although T = 0.005 is the lowest temper-
ature in the current numerical scheme for second order
ECFL due to the finite lattice size (up to L = 2417 and

Nω = 217), we extrapolate the curve to T = 0. The peak
at kF disappears at zero T, and is replaced by a mini-
mum at the origin corresponding to a singular peak in the
spectral function, consistent with earlier studies2,12. The
self-energy approaches zero as

∣∣ω∣∣γ , where γ ≈ 1.3. This
behavior is difficult to observe in our present tDMRG im-
plementation, because the finite time cut-off, leads to a
broadening. The peak and its k dependence is recovered
on moving away from kF , causing spin-charge separated
peaks at T=0.

VI. SPECTRAL FUNCTION

We also compare the spectral functions from both
methods. In Fig. (5) panel (a,b) both show a single
peak at kF and double peaks away from kF representing
spinons and holons respectively. Panel (c) puts together
the spectral function away from kF and different parts of
its formula:

ρG(k, ω) =
ρΣ(k, ω)

[ω + µ− εk − ReΣ(k, ω)]2 + π2ρ2
Σ(k, ω)

,

(3)
It shows that ω + µ − εk − ReΣ(k, ω) is very small in
the frequency range that spans the two peaks, and con-
firms that the visible twin peaks result from a peak in
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(c) ECFL T=0.005, J=0.3
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(d) ECFL T=0.005, J=0.3

FIG. 5: Energy distribution curves (EDCs) at t’=0, J=0.3: (a) and (b) (same legends marking k/kF ) displaying the spinon
and the holon for k 6= kF . Panel (c) at k = .9kF shows that the peak in (πρΣ)2 (dashed black) coincides with the dip in the
spectral function ρG(ω) (solid gold), while (ω + µ − εk − Re Σ)2) (magenta dots) is small everywhere. This implies that the
twin peaks originate in the intervening peak of self-energy. Panel (d) also at k = .9kF shows the fitting procedure for finding

the anomalous exponent ζ′ ≡ ζ − 1
2

for the spinon1,4, we fit to .59(ω − ωpeak)ζ
′

(dashed blue), the best fit value is ζ′ ∼ −0.44,

close to the TLL result −0.4518.

ρΣ in the middle. Thus the location of the ridge lies
in the minimum between spinon and and holon peaks
in the spectral function in panels (a,b), and in-fact the
ridge causes the twin peaks. The exponents in panel (d)
match reasonably with those from the TLL at J = 0.3
and also at 0.6 (where ζ ′ ∼ −.49 versus ζ ′ ∼ −0.46 from
Ref. [18]). We take the Luttinger parameter Kρ ≈ 0.53
at J = 0.3, t′ = 0 from Fig. (4) in Ref. [18]. Then we
calculate ζ = γρ = (Kρ + K−1

ρ − 2)/8 ≈ 0.051,4. There-

fore the anomalous exponent is ζ ′ = ζ − 1
2 = −0.45. The

calculation is similar for J = 0.6 with Kρ ≈ 0.56 from
Fig. (4). The tDMRG spectral function in panel b is too
soft to extract the anomalous exponent, because its finite
time cutoff leads to the broadening of spectral peaks in
the low ω region.

In Fig. (6) we compares the spectral function of the
tDMRG with the ECFL theory. The latter is presented
both with and without Gaussian windowing by a suitable
time constant comparable to that in our tDMRG work.
As one might expect, the scales of the two theories differ
if we compare the raw (un-windowed) figures, but become
very close upon windowing.

VII. DISPERSION RELATION OF SPINONS
AND HOLONS

We extract the excitation dispersion relation from
spectral function in Fig. (7). According to Ref. [6], in the
selected parameter region n=0.7, J=0.3, 0.6 and t’=0,
0.2, the holon velocity vc is larger than the spinon ve-
locity vs. The error bars in the tDMRG originates from
the broadening of the lines due to finite time window-
ing. Within the error bar, the DMRG agrees with the
available ED data6. We expect that the neglected higher
order terms in the ECFL theory would play a role in
improving the holon velocity and also intensities.

VIII. CONCLUSION AND DISCUSSION

In this paper, we present the self-energy for the 1-d t-
t′-J model from both ECFL and tDMRG and specify its
characteristic low energy strongly momentum-dependent
cross-ridge, qualitatively different from higher dimen-
sional cases, responsible for the spin-charge separation
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(a) tDMRG (b) ECFL with window

(c) ECFL without window

FIG. 6: J = 0.6, t′ = 0. The spectral function of the tDMRG (T = 0) with an intrinsic time window (a) and the ECFL
(T = .005) with (b) and without (c) a comparable time window. The introduction of a time window brings the two theories
to the same scale. The central peak and the spinon peaks are of comparable height while the holon peak of ECFL is less
prominent duo to second order approximation.

in spectral function. This perspective is different from
the ones discussed in earlier studies on this model in 1-
d5,6,9–14,18,20,33. The existence of a ridge structure in
the imaginary self-energy, represents a non-trivial exact
statement about the momentum dependence of the 1-d
model.

We also compare the spectral function, the excitation
dispersion and the momentum distribution function be-
tween both methods. They agree qualitatively in the low
energy region, both capturing clear signatures of the TLL
and more quantitatively at larger energy scales where the
system behaves like it does in higher dimensions.

In summary we have shown in this work that the
ECFL equations capture the essential physics of 1-d sys-
tems, namely spin-charge separation and non-Fermi liq-
uid Green’s functions in parallel to the behavior displayed
by the tDMRG solution. A remarkable conclusion of this

work is that ECFL theory works in the widely different
regimes of infinite dimensions24, two dimensions29,30 and
1-d. This observation lends support to the overall scheme
in general dimensions as well.
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FIG. 7: Dispersion of excitations from both ECFL at T=0.005 (gold dots) and tDMRG at T=0 (blue dots), and the available
ED data (red)6. The error bars in the tDMRG estimates are from the time window broadening. The tDMRG results are
consistent with the ED results, while the ECFL holon dispersion deviates somewhat.
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